WorldWideScience

Sample records for high-mobility multi-purpose wheeled

  1. Followup Audit: DLA Officials Took Appropriate Actions to Address Concerns With Repair Parts for the High Mobility Multipurpose Wheeled Vehicle

    Science.gov (United States)

    2016-04-29

    Followup Audit : DLA Officials Took Appropriate Actions to Address Concerns With Repair Parts for the High Mobility Multipurpose Wheeled Vehicle A P R I L...Results in Brief Followup Audit : DLA Officials Took Appropriate Actions to Address Concerns With Repair Parts for the High Mobility Multipurpose Wheeled...and Maritime Paid Too Much for High Mobility Multipurpose Wheeled Vehicle Repair Parts,” (HMMWV) was issued on April 4, 2014. The audit

  2. The Effect of Wheel Size on Mobility Performance in Wheelchair Athletes

    NARCIS (Netherlands)

    Mason, B.; van der Woude, L.; Lenton, J. P.; Goosey-Tolfrey, V.

    2012-01-01

    The purpose of the current study was to investigate the effects of different wheel sizes, with fixed gear ratios, on maximal effort mobility performance in wheelchair athletes. 13 highly trained wheelchair basketball players, grouped by classification level, performed a battery of 3 field tests in

  3. Localization of Wheeled Mobile Robot Based on Extended Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Li Guangxu

    2015-01-01

    Full Text Available A mobile robot localization method which combines relative positioning with absolute orientation is presented. The code salver and gyroscope are used for relative positioning, and the laser radar is used to detect absolute orientation. In this paper, we established environmental map, multi-sensor information fusion model, sensors and robot motion model. The Extended Kalman Filtering (EKF is adopted as multi-sensor data fusion technology to realize the precise localization of wheeled mobile robot.

  4. Synthesis of the adaptive continuous system for the multi-axle wheeled vehicle body oscillation damping

    Science.gov (United States)

    Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.

    2018-02-01

    In order to meet the growing mobility requirements for the wheeled vehicles on all types of terrain the engineers have to develop a large number of specialized control algorithms for the multi-axle wheeled vehicle (MWV) suspension improving such qualities as ride comfort, handling and stability. The authors have developed an adaptive algorithm of the dynamic damping of the MVW body oscillations. The algorithm provides high ride comfort and high mobility of the vehicle. The article discloses a method for synthesis of an adaptive dynamic continuous algorithm of the MVW body oscillation damping and provides simulation results proving high efficiency of the developed control algorithm.

  5. Three omni-directional wheels control on a mobile robot

    OpenAIRE

    Ribeiro, António Fernando; Moutinho, Ivo; Silva, Pedro; Fraga, Carlos; Pereira, Nino

    2004-01-01

    Traditional two wheels differential drive normally used on mobile robots have manoeuvrability limitations and take time to sort out. Most teams use two driving wheels (with one or two cast wheels), four driving wheels and even three driving wheels. A three wheel drive with omni-directional wheel has been tried with success, and was implemented on fast moving autonomous mobile robots. This paper deals with the mathematical kinematics description of such mobile platform, it describes the advant...

  6. Control of wheeled mobile robot in restricted environment

    Science.gov (United States)

    Ali, Mohammed A. H.; En, Chang Yong

    2018-03-01

    This paper presents a simulation and practical control system for wheeled mobile robot in restricted environment. A wheeled mobile robot with 3 wheels is fabricated and controlled by proportional derivative active force control (PD-AFC) to move in a pre-planned restricted environment to maintain the tracking errors at zero level. A control system with two loops, outer by PD controller and inner loop by Active Force Control, are designed to control the wheeled mobile robot. Fuzzy logic controller is implemented in the Active force Control to estimate the inertia matrix that will be used to calculate the actual torque applied on the wheeled mobile robot. The mobile robot is tested in two different trajectories, namely are circular and straight path. The actual path and desired path are compared.

  7. Demographic Profile of Older Adults Using Wheeled Mobility Devices

    Directory of Open Access Journals (Sweden)

    Amol M. Karmarkar

    2011-01-01

    Full Text Available The purpose of this study was to determine whether the use of wheeled mobility devices differed with respect to age, gender, residential setting, and health-related factors among older adults. A total of 723 adults ageing 60 and older are representing three cohorts, from nursing homes, the Center for Assistive Technology, and the wheelchair registry from the Human Engineering Research Laboratories. Wheeled mobility devices were classified into three main groups: manual wheelchairs, power wheelchairs, and scooters. Our results found factors including age, gender, diagnosis, and living settings to be associated with differences in use of manual versus powered mobility devices. Differences in use were also noted for subtypes of manual (depot, standard, and customized and powered (scooter, standard, and customized mobility devices, on demographic, living arrangements, and health-related factors. Consideration of demographic, health-related, and environmental factors during the prescription process may help clinicians identify the most appropriate mobility device for the user.

  8. A Four-Wheel-Rhombus-Arranged Mobility System for a New Lunar Robotic Rover

    Directory of Open Access Journals (Sweden)

    Guilin Wen

    2013-10-01

    Full Text Available Different from traditional ground vehicles, planetary robotic rovers with limited weight and power need to travel in unfamiliar and extremely arduous environments. In this paper, a newly developed four-wheel-rhombus-arranged (FWRA mobility system is presented as a lunar robotic rover with high mobility and a low-weight structure. The mobility system integrates independent active suspensions with a passive rotary link structure. The active suspension with swing arms improves the rover's capacity to escape from a trapped environment whereas the passive rotary link structure guarantees continuous contact between the four wheels and the terrain. The four-wheel-three-axis rhombus configuration of the mobility system gives a high degree of lightweight structure because it has a simple mechanism with the minimum number of wheels among wheeled rovers with three-axis off-road mobility. The performance evaluation of the lightweight nature of the structure, manoeuvrability and the mobility required in a planetary exploring environment are illustrated by theoretical analysis and partly shown by experiments on the developed rover prototype.

  9. An overview on real-time control schemes for wheeled mobile robot

    Science.gov (United States)

    Radzak, M. S. A.; Ali, M. A. H.; Sha’amri, S.; Azwan, A. R.

    2018-04-01

    The purpose of this paper is to review real-time control motion algorithms for wheeled mobile robot (WMR) when navigating in environment such as road. Its need a good controller to avoid collision with any disturbance and maintain a track error at zero level. The controllers are used with other aiding sensors to measure the WMR’s velocities, posture, and interference to estimate the required torque to be applied on the wheels of mobile robot. Four main categories for wheeled mobile robot control systems have been found in literature which are namely: Kinematic based controller, Dynamic based controllers, artificial intelligence based control system, and Active Force control. A MATLAB/Simulink software is the main software to simulate and implement the control system. The real-time toolbox in MATLAB/SIMULINK are used to receive/send data from sensors/to actuator with presence of disturbances, however others software such C, C++ and visual basic are rare to be used.

  10. Analysis of motion of the three wheeled mobile platform

    Directory of Open Access Journals (Sweden)

    Jaskot Anna

    2018-01-01

    Full Text Available The work is dedicated to the designing motion of the three wheeled mobile platform under the unsteady conditions. In this paper the results of the analysis based on the dynamics model of the three wheeled mobile robot, with two rear wheels and one front wheel has been included The prototype has been developed by the author's construction assumptions that is useful to realize the motion of the platform in a various configurations of wheel drives, including control of the active forces and the direction of their settings while driving. Friction forces, in longitudinal and in the transverse directions, are considered in the proposed model. Relation between friction and active forces are also included. The motion parameters of the mobile platform has been determined by adopting classical approach of mechanics. The formulated initial problem of platform motion has been solved numerically using the Runge-Kutta method of the fourth order. Results of motion analysis with motion parameters values are determined and sample results are presented.

  11. Kinematics and dynamics modelling of a mecanum wheeled mobile platform

    CSIR Research Space (South Africa)

    Tlale, NS

    2008-12-01

    Full Text Available analysis for mecanum wheeled mobile platform same time during the operation of the mobile platform, a maximum of eighty-one combinations of wheels (four wheels: 1,2, 3 and 4) and directions of rotational velocity of wheels (three directions of rotation... = I ’ (15) where ai is a constant depending on the wheel number and ai = -1 for i = 1 and 4, and ai = 1 for i = 2 and 3, T is the torque developed on the vehicle that changes the posture of the vehicle, I is the mass inertia of the vehicle...

  12. Module-based structure design of wheeled mobile robot

    Directory of Open Access Journals (Sweden)

    Z. Luo

    2018-02-01

    Full Text Available This paper proposes an innovative and systematic approach for synthesizing mechanical structures of wheeled mobile robots. The principle and terminologies used for the proposed synthesis method are presented by adopting the concept of modular design, isomorphic and non-isomorphic, and set theory with its associated combinatorial mathematics. The modular-based innovative synthesis and design of wheeled robots were conducted at two levels. Firstly at the module level, by creative design and analysing the structures of classic wheeled robots, a wheel module set containing four types of wheel mechanisms, a suspension module set consisting of five types of suspension frames and a chassis module set composed of five types of rigid or articulated chassis were designed and generalized. Secondly at the synthesis level, two kinds of structure synthesis modes, namely the isomorphic-combination mode and the non-isomorphic combination mode were proposed to synthesize mechanical structures of wheeled robots; which led to 241 structures for wheeled mobile robots including 236 novel ones. Further, mathematical models and a software platform were developed to provide appropriate and intuitive tools for simulating and evaluating performance of the wheeled robots that were proposed in this paper. Eventually, physical prototypes of sample wheeled robots/rovers were developed and tested so as to prove and validate the principle and methodology presented in this paper.

  13. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking...

  14. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    2003-01-01

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking...

  15. Hybrid Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter

    2003-01-01

    We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory trackin...

  16. Design of Wheeled Mobile Robot with Tri-Star Wheel as Rescue Robot

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2014-10-01

    Full Text Available This study aims to design, and analyze a mobile robot that can handle some of the obstacles, they are uneven surfaces, slopes, can also climb stairs. WMR in this study is Tristar wheel that is containing three wheels for each set. On average surface only two wheels in contact with the surface, if there is an uneven surface or obstacle then the third wheel will rotate with the rotation center of the wheel in contact with the leading obstacle then only one wheel in contact with the surface. This study uses the C language program. Furthermore, the minimum thrust to be generated torque of the motor and transmission is 9.56 kg. The results obtained by calculation and analysis of DC motors used must have a torque greater than 14.67 kg.cm. Minimum thrust to be generated motor torque and the transmission is 9.56 kg. The experimental results give good results for robot to moving forward, backward, turn left, turn right and climbing the stairs.

  17. A multi-mode real-time terrain parameter estimation method for wheeled motion control of mobile robots

    Science.gov (United States)

    Li, Yuankai; Ding, Liang; Zheng, Zhizhong; Yang, Qizhi; Zhao, Xingang; Liu, Guangjun

    2018-05-01

    For motion control of wheeled planetary rovers traversing on deformable terrain, real-time terrain parameter estimation is critical in modeling the wheel-terrain interaction and compensating the effect of wheel slipping. A multi-mode real-time estimation method is proposed in this paper to achieve accurate terrain parameter estimation. The proposed method is composed of an inner layer for real-time filtering and an outer layer for online update. In the inner layer, sinkage exponent and internal frictional angle, which have higher sensitivity than that of the other terrain parameters to wheel-terrain interaction forces, are estimated in real time by using an adaptive robust extended Kalman filter (AREKF), whereas the other parameters are fixed with nominal values. The inner layer result can help synthesize the current wheel-terrain contact forces with adequate precision, but has limited prediction capability for time-variable wheel slipping. To improve estimation accuracy of the result from the inner layer, an outer layer based on recursive Gauss-Newton (RGN) algorithm is introduced to refine the result of real-time filtering according to the innovation contained in the history data. With the two-layer structure, the proposed method can work in three fundamental estimation modes: EKF, REKF and RGN, making the method applicable for flat, rough and non-uniform terrains. Simulations have demonstrated the effectiveness of the proposed method under three terrain types, showing the advantages of introducing the two-layer structure.

  18. Mechanical Design Engineering Enabler Project wheel and wheel drives

    Science.gov (United States)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  19. 3D dynamic modeling of spherical wheeled self-balancing mobile robot

    OpenAIRE

    İnal, Ali Nail

    2012-01-01

    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references. In recent years, dynamically stable platforms that move on spherical wheels, also known as BallBots, gained popularity in the robotics literature as an alternative locomotion method to statically stable wheeled mobile robots. In contrast to wheeled ...

  20. Improvement of the operation of wheels mobile robot TRASMAR2

    International Nuclear Information System (INIS)

    Guerra C, D. A.; Tovar M, R.; Gonzalez M, J. L.; Segovia de los Rios, A.

    2013-10-01

    In the Instituto Nacional de Investigaciones Nucleares (ININ), personnel have been working in the development of wheels mobile robots for the surveillance and supervision of contaminated areas, and for the radioactive material transport. One of these achievements is the wheels mobile robot denominated TRASMAR2, which is sought that works in the tele operated form using net technologies, in particular, using a Web page by means of the client-servant technology. For this, diverse circuits and control programs have been development with the purpose that the robot carries out the movements that are required, being considered the use of sensors to avoid collisions. The different programs have been implemented in different micro controllers, and although the robot was working, is necessary to optimize and to concentrate these programs on a single micro controller. In this work are presented the analysis of the previously implemented programs, as the realized changes, including new programs required to improve the robot operation. As complement, was development and implemented an alternative proposal of the robot's tele operation by means of a Web page using Lab view, which is described in the work. With this proposal tele operate the robot was achieved, although its application is evaluating due to the resources that is consumes. (author)

  1. Robust balancing and position control of a single spherical wheeled mobile platform

    OpenAIRE

    Yavuz, Fırat; Yavuz, Firat; Ünel, Mustafa; Unel, Mustafa

    2016-01-01

    Self-balancing mobile platforms with single spherical wheel, generally called ballbots, are suitable example of underactuated systems. Balancing control of a ballbot platform, which aims to maintain the upright orientation by rejecting external disturbances, is important during station keeping or trajectory tracking. In this paper, acceleration based balancing and position control of a single spherical wheeled mobile platform that has three single-row omniwheel drive m...

  2. Real-time Non-linear Target Tracking Control of Wheeled Mobile Robots

    Institute of Scientific and Technical Information of China (English)

    YU Wenyong

    2006-01-01

    A control strategy for real-time target tracking for wheeled mobile robots is presented. Using a modified Kalman filter for environment perception, a novel tracking control law derived from Lyapunov stability theory is introduced. Tuning of linear velocity and angular velocity with mechanical constraints is applied. The proposed control system can simultaneously solve the target trajectory prediction, real-time tracking, and posture regulation problems of a wheeled mobile robot. Experimental results illustrate the effectiveness of the proposed tracking control laws.

  3. A Null Space Control of Two Wheels Driven Mobile Manipulator Using Passivity Theory

    Science.gov (United States)

    Shibata, Tsuyoshi; Murakami, Toshiyuki

    This paper describes a control strategy of null space motion of a two wheels driven mobile manipulator. Recently, robot is utilized in various industrial fields and it is preferable for the robot manipulator to have multiple degrees of freedom motion. Several studies of kinematics for null space motion have been proposed. However stability analysis of null space motion is not enough. Furthermore, these approaches apply to stable systems, but they do not apply unstable systems. Then, in this research, base of manipulator equips with two wheels driven mobile robot. This robot is called two wheels driven mobile manipulator, which becomes unstable system. In the proposed approach, a control design of null space uses passivity based stabilizing. A proposed controller is decided so that closed-loop system of robot dynamics satisfies passivity. This is passivity based control. Then, control strategy is that stabilizing of the robot system applies to work space observer based approach and null space control while keeping end-effector position. The validity of the proposed approach is verified by simulations and experiments of two wheels driven mobile manipulator.

  4. Robust Feedback Linearization-based Control Design for a Wheeled Mobile Robot

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Andersen, Palle; Pedersen, Tom Søndergaard

    This paper considers the trajectory tracking problem for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The robot is modeled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. A nonlinear trajectory tracking feedback control law based...

  5. Effect of wheelchair design on wheeled mobility and propulsion efficiency in less-resourced settings

    Directory of Open Access Journals (Sweden)

    Christopher J. Stanfill

    2017-09-01

    Conclusion: Use of wheel-mounted accelerometers as a means to test user mobility proved to be a feasible methodology in rural settings. Variability in wheeled mobility data could be decreased with longer acclimatisation periods. The data suggest that push rim users experience an easier transition to a dual-lever propulsion system.

  6. Simulation of Intelligent Single Wheel Mobile Robot

    Directory of Open Access Journals (Sweden)

    Maki K. Rashid

    2008-11-01

    Full Text Available Stabilization of a single wheel mobile robot attracted researcher attentions in robotic area. However, the budget requirements for building experimental setups capable in investigating isolated parameters and implementing others encouraged the development of new simulation methods and techniques that beat such limitations. In this work we have developed a simulation platform for testing different control tactics to stabilize a single wheel mobile robot. The graphic representation of the robot, the dynamic solution, and, the control scheme are all integrated on common computer platform using Visual Basic. Simulation indicates that we can control such robot without knowing the detail of it's internal structure or dynamics behaviour just by looking at it and using manual operation tactics. Twenty five rules are extracted and implemented using Takagi-Sugeno's fuzzy controller with significant achievement in controlling robot motion during the dynamic simulation. The resulted data from the successful implementation of the fuzzy model are used to utilize and train a neurofuzzy controller using ANFIS scheme to produce further improvement in robot performance

  7. Self-reported difficulty and preferences of wheeled mobility device users for simulated low-floor bus boarding, interior circulation and disembarking.

    Science.gov (United States)

    D'Souza, Clive; Paquet, Victor L; Lenker, James A; Steinfeld, Edward

    2017-11-13

    Low ridership of public transit buses among wheeled mobility device users suggests the need to identify vehicle design conditions that are either particularly accommodating or challenging. The objective of this study was to determine the effects of low-floor bus interior seating configuration and passenger load on wheeled mobility device user-reported difficulty, overall acceptability and design preference. Forty-eight wheeled mobility users evaluated three interior design layouts at two levels of passenger load (high vs. low) after simulating boarding and disembarking tasks on a static full-scale low-floor bus mockup. User self-reports of task difficulty, acceptability and design preference were analyzed across the different test conditions. Ramp ascent was the most difficult task for manual wheelchair users relative to other tasks. The most difficult tasks for users of power wheelchairs and scooters were related to interior circulation, including moving to the securement area, entry and positioning in the securement area and exiting the securement area. Boarding and disembarking at the rear doorway was significantly more acceptable and preferred compared to the layouts with front doorways. Understanding transit usability barriers, perceptions and preferences among wheeled mobility users is an important consideration for clinicians who recommend mobility-related device interventions to those who use public transportation. Implications for Rehabilitation In order to maximize community participation opportunities for wheeled mobility users, clinicians should consider potential public transit barriers during the processes of wheelchair device selection and skills training. Usability barriers experienced by wheeled mobility device users on transit vehicles differ by mobility device type and vehicle configurations. Full-scale environment simulations are an effective means of identifying usability barriers and design needs in people with mobility impairments and may

  8. Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure.

    Science.gov (United States)

    Lee, Dae-Young; Kim, Sa-Reum; Kim, Ji-Suk; Park, Jae-Jun; Cho, Kyu-Jin

    2017-06-01

    A wheel drive mechanism is simple, stable, and efficient, but its mobility in unstructured terrain is seriously limited. Using a deformable wheel is one of the ways to increase the mobility of a wheel drive robot. By changing the radius of its wheels, the robot becomes able to pass over not only high steps but also narrow gaps. In this article, we propose a novel design for a variable-diameter wheel using an origami-based soft robotics design approach. By simply folding a patterned sheet into a wheel shape, a variable-diameter wheel was built without requiring lots of mechanical parts and a complex assembly process. The wheel's diameter can change from 30 to 68 mm, and it is light in weight at about 9.7 g. Although composed of soft materials (fabrics and films), the wheel can bear more than 400 times its weight. The robot was able to change the wheel's radius in response to terrain conditions, allowing it to pass over a 50-mm gap when the wheel is shrunk and a 50-mm step when the wheel is enlarged.

  9. [Active and safe with wheeled walkers : Pilot study on feasibility of mobility exercises for wheeled walker users].

    Science.gov (United States)

    Pflaum, Marina; Lang, Frieder R; Freiberger, Ellen

    2016-07-01

    The number of older people with mobility impairments using wheeled walkers is increasing; however, the handling of these walking aids is often ineffective. Moreover, age-associated functional loss, environmental demands and fear of falling may additionally challenge mobility. The new training program "Active and safe with wheeled walkers" aims to enhance skills and to improve mobility. The present pilot study was carried out to assess the feasibility of the training as well as to identify training effects and methodological insights for further research. The study was carried out with 28 wheeled walker users (age 68-91 years) in assisted living facilities using a pre-post design. Of the participants 13 persons were trained for 10 weeks (90 min, twice a week) and 15 persons served as a control group. Data were collected on functional mobility, hand strength, leg strength, balance, walker handling and fear of falling. The drop-out rate for the training was 38 % due to health concerns (n = 2), lack of time (n = 1) and changes in health status independent of training (n = 3). Medium to large effects were detected. Data regarding the recruitment strategy and the acceptance of individual exercises are available. The results indicate a good feasibility and effectiveness of the training. The simple accessibility of the training was conducive for the regular participation. The everyday relevance of the results and the lack of comparable interventions suggest that further research efforts be carried out. Recruitment strategies, training requirements and data collection methods need to be optimized.

  10. A Mathematical Model to Estimate the Position of Mobile Robot by Sensing Caster Wheel Motion

    Directory of Open Access Journals (Sweden)

    Amarendra Jnana H.

    2018-01-01

    Full Text Available This paper describes the position estimation of mobile robot by sensing caster wheel motion. A mathematical model is developed to determine the position of mobile robot by sensing the angular velocity and heading angle of the caster wheel. Using the established equations, simulations were carried out using MATLAB version 8.6 to observe and verify the position coordinates of mobile robot and in turn obtain its trajectory. The simulation results show that the angular velocity of caster wheel and heading angle calculated from the sensor output readings with the help of inverse kinematics equations matches well with that of actual values given as input for simulation. Simulation result of tracking rectangular trajectory implies that the path traced by the mobile robot can also be determined from the sensor output readings. This concept can be implemented on a real mobile robot for estimation of its position.

  11. Study on general theory of kinematics and dynamics of wheeled mobile robots

    Science.gov (United States)

    Tsukishima, Takahiro; Sasaki, Ken; Takano, Masaharu; Inoue, Kenji

    1992-03-01

    This paper proposes a general theory of kinematics and dynamics of wheeled mobile robots (WMRs). Unlike robotic manipulators which are modeled as 3-dimensional serial link mechanism, WMRs will be modeled as planar linkage mechanism with multiple links branching out from the base and/or another link. Since this model resembles a tree with branches, it will be called 'tree-structured-link'. The end of each link corresponds to the wheel which is in contact with the floor. In dynamics of WMR, equation of motion of a WMR is derived from joint input torques incorporating wheel dynamics. The wheel dynamics determines forces and moments acting on wheels as a function of slip velocity. This slippage of wheels is essential in dynamics of WMR. It will also be shown that the dynamics of WMR reduces to kinematics when slippage of wheels is neglected. Furthermore, the equation of dynamics is rewritten in velocity input form, since most of industrial motors are velocity controlled.

  12. Problems With Deployment of Multi-Domained, Multi-Homed Mobile Networks

    Science.gov (United States)

    Ivancic, William D.

    2008-01-01

    This document describes numerous problems associated with deployment of multi-homed mobile platforms consisting of multiple networks and traversing large geographical areas. The purpose of this document is to provide insight to real-world deployment issues and provide information to groups that are addressing many issues related to multi-homing, policy-base routing, route optimization and mobile security - particularly those groups within the Internet Engineering Task Force.

  13. An Omnidirectional Mobile Millimeters Size Micro-Robot with Novel Duel-Wheels

    Directory of Open Access Journals (Sweden)

    Zhenbo Li

    2006-09-01

    Full Text Available A millimeters size omni-directional mobile micro-robot is presented in this paper. A unique duel-wheel structure is designed for no-slip motion during the steering, by turning the slip friction between the wheel and ground into rolling friction. The robot was driven by four electromagnetic micromotors with 2.1mm×2.1mm×1.3mm size. Three of them are for translation and the other one is for rotation. Kinematics model is analyzed to prove the omni-directional mobility. Virtual-Winding Approach (VWA and PWM-Based Vector-Synthesize Approach(PBVSA current control methods are presented to satisfy a requirement of higher positioning accuracy. Experimental results demonstrate the feasibility of this concept.

  14. An Omnidirectional Mobile Millimeters Size Micro-Robot with Novel Duel-Wheels

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2008-11-01

    Full Text Available A millimeters size omni-directional mobile micro-robot is presented in this paper. A unique duel-wheel structure is designed for no-slip motion during the steering, by turning the slip friction between the wheel and ground into rolling friction. The robot was driven by four electromagnetic micromotors with 2.1mm?2.1mm?1.3mm size. Three of them are for translation and the other one is for rotation. Kinematics model is analyzed to prove the omni-directional mobility. Virtual-Winding Approach (VWA and PWM-Based VectorSynthesize Approach(PBVSA current control methods are presented to satisfy a requirement of higher positioning accuracy. Experimental results demonstrate the feasibility of this concept.

  15. Wheels Optimization and Vision Control of Omni-directional Mobile Microrobot

    Directory of Open Access Journals (Sweden)

    Jianghao Li

    2008-06-01

    Full Text Available This paper presents a millimeters scale omni-directional mobile microrobot with special dual-wheel structure. The microrobot was actuated by three electromagnetic micromotors of 2mm diameter. Dynamic analysis of translational and steering movements presented the relationship between the sizes of the dual-wheel structure and the output torque of the micromotor. Genetic algorithm (GA was employed to optimize the dual-wheel's sizes for reducing the unnecessary torque consumption and improving the driving ability of the microrobot. A computer vision system contained two sets of feedback control is devised for the microrobot. Torque self-balance and current-limiting control approach are presented to ensure the accuracy of step movement. Experiment results demonstrate the feasibility of these concepts.

  16. Omnidirectional Wheel-Legged Hybrid Mobile Robot

    Directory of Open Access Journals (Sweden)

    István Vilikó

    2015-06-01

    Full Text Available The purpose of developing hybrid locomotion systems is to merge the advantages and to eliminate the disadvantages of different type of locomotion. The proposed solution combines wheeled and legged locomotion methods. This paper presents the mechatronic design approach and the development stages of the prototype.

  17. The Effects of Rear-Wheel Camber on Maximal Effort Mobility Performance in Wheelchair Athletes

    NARCIS (Netherlands)

    Mason, B.; van der Woude, L.; Tolfrey, K.; Goosey-Tolfrey, V.

    This study examined the effect of rear-wheel camber on maximal effort wheelchair mobility performance. 14 highly trained wheelchair court sport athletes performed a battery of field tests in 4 standardised camber settings (15°, 18°, 20°, 24°) with performance analysed using a velocometer. 20 m

  18. Design of Test Tracks for Odometry Calibration of Wheeled Mobile Robots

    Directory of Open Access Journals (Sweden)

    Changbae Jung

    2011-09-01

    Full Text Available Pose estimation for mobile robots depends basically on accurate odometry information. Odometry from the wheel's encoder is widely used for simple and inexpensive implementation. As the travel distance increases, odometry suffers from kinematic modeling errors regarding the wheels. Therefore, in order to improve the odometry accuracy, it is necessary that systematic errors be calibrated. The UMBmark test is a practical and useful scheme for calibrating the systematic errors of two-wheeled mobile robots. However, the square path track size used in the test has not been validated. A consideration of the calibration equations, experimental conditions, and modeling errors is essential to improve the calibration accuracy. In this paper, we analyze the effect on calibration performance of the approximation errors of calibration equations and nonsystematic errors under experimental conditions. Then, we propose a test track size for improving the accuracy of odometry calibration. From simulation and experimental results, we show that the proposed test track size significantly improves the calibration accuracy of odometry under a normal range of kinematic modeling errors for robots.

  19. Mobility potential of a robotic six-wheeled omnidirectional drive vehicle (ODV) with z-axis and tire inflation control

    Science.gov (United States)

    Witus, Gary

    2000-07-01

    Robot vehicle mobility is the product of the physical configuration, mechatronics (sensors, actuators, and control) and the motion programs for different obstacles, terrain conditions, and maneuver objectives. This paper examines the mobility potential of a robotic 6-by-6 wheeled omni-directional drive vehicle (ODV) with z-axis and tire inflation control. Ad ODV can steer and drive all wheels independently. The direction of motion is independent of the orientation of the body. Z- axis control refers to independent control of the suspension elevation at each wheel. Pneumatic tire inflation control provides the ability to inflate and deflate individual tires. The paper describes motion programs for various discrete obstacles and challenging terrain conditions. The paper illustrates how ODV control, z-axis control and tire inflation control interact to provide high mobility with respect to cornering, maneuvering on slopes, negotiating vertical step and horizontal gap obstacles, and braking/acceleration on soft soil and slick surfaces. The paper derives guidelines for the physical dimensions of the vehicle needed to achieve these capabilities.

  20. Development and Testing of a Mobile Robot with Hybrid Legged-Wheeled Locomotion

    Directory of Open Access Journals (Sweden)

    Petre Barbu

    2017-06-01

    Full Text Available In this paper the authors present the development and testing process of a mobile robot with hybrid legged-wheeled locomotion, that can be used for exploring dangerous environments. The robot has a high adaptability to rough terrain by being able to modify its ride height, to overpass step or ditch type obstacles and most of all, being able to operate while overturned or to revert itself into the normal operating position.

  1. Design of the Dual Offset Active Caster Wheel for Holonomic Omni-Directional Mobile Robots

    Directory of Open Access Journals (Sweden)

    Woojin Chung

    2010-12-01

    Full Text Available It is shown how a holonomic and omni-directional mobile robot is designed towards indoor public services. Dual offset steerable wheels with orthogonal velocity components are proposed. The proposed wheel provides precise positioning and reliable navigation performance as well as durability. A fabricated prototype is introduced, then, an experiment is carried out.

  2. Wheels Optimization and Vision Control of Omni-directional Mobile Microrobot

    Directory of Open Access Journals (Sweden)

    Jianghao Li

    2008-11-01

    Full Text Available This paper presents a millimeters scale omni-directional mobile microrobot with special dual-wheel structure. The microrobot was actuated by three electromagnetic micromotors of 2mm diameter. Dynamic analysis of translational and steering movements presented the relationship between the sizes of the dual-wheel structure and the output torque of the micromotor. Genetic algorithm (GA was employed to optimize the dualwheel's sizes for reducing the unnecessary torque consumption and improving the driving ability of the microrobot. A computer vision system contained two sets of feedback control is devised for the microrobot. Torque self-balance and current-limiting control approach are presented to ensure the accuracy of step movement. Experiment results demonstrate the feasibility of these concepts.

  3. Multi-component lightweight gearwheels with deep-drawn wheel body for automotive applications

    Science.gov (United States)

    Benkert, Tim; Hiller, Maria; Volk, Wolfram

    2017-09-01

    Multi-component gearwheels offer great lightweight opportunities for automotive applications. An assembly of a gear ring and a wheel body joined by press fit replaces the monolithic gearwheel. To save weight, the wheel body uses lightweight design. This lightweight design influences the assembled gearwheel’s mechanical properties like stiffness, weight and torque capacity. Further, the wheel body material influences the mentioned properties as well. In this paper, the effects of the lightweight wheel body manufactured by deep-drawing on the mechanical properties of the assembled gearwheel are investigated. Three different wheel body designs are examined regarding their stiffness and weight compared to a reference gearwheel. Using the best design, the influence of five materials with increasing yield strength on the maximum torque the gearwheel can transmit is studied. All research is done virtually using Abaqus 6.12-3.

  4. Position Control of the Single Spherical Wheel Mobile Robot by Using the Fuzzy Sliding Mode Controller

    OpenAIRE

    Hamed Navabi; Soroush Sadeghnejad; Sepehr Ramezani; Jacky Baltes

    2017-01-01

    A spherical wheel robot or Ballbot—a robot that balances on an actuated spherical ball—is a new and recent type of robot in the popular area of mobile robotics. This paper focuses on the modeling and control of such a robot. We apply the Lagrangian method to derive the governing dynamic equations of the system. We also describe a novel Fuzzy Sliding Mode Controller (FSMC) implemented to control a spherical wheel mobile robot. The nonlinear nature of the equations makes the controller nontrivi...

  5. The response of a high-speed train wheel to a harmonic wheel-rail force

    International Nuclear Information System (INIS)

    Sheng, Xiaozhen; Liu, Yuxia; Zhou, Xin

    2016-01-01

    The maximum speed of China's high-speed trains currently is 300km/h and expected to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject to a force rotating at the same speed along its periphery. This fast moving force contains not only the axle load component, but also many components of high frequencies generated from wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite element scheme is developed for responses of a train wheel subject to a vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a periodic function of the cross-section angle 6, can be decomposed, using Fourier series, into a number of components at different circumferential orders. The derived FE equation is solved for each circumferential order. The sum of responses at all circumferential orders gives the actual response of the wheel. (paper)

  6. A Modular Approach for a Family of Ground Mobile Robots

    Directory of Open Access Journals (Sweden)

    Giuseppe Quaglia

    2013-07-01

    Full Text Available This paper deals with Epi.q, a family of mobile robots whose main characteristic is a wheel-legged hybrid locomotion. These multi-purpose robots can be successfully exploited for security and surveillance tasks. The document presents state of the art security robotics, the Epi.q mechanical architecture, the concept behind the robot driving unit, three prototypes and the design of a new one.

  7. Automatic stair-climbing algorithm of the planetary wheel type mobile robot in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Soo; Kim, Seung Ho; Lee, Jong Min [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-10-01

    A mobile robot, named KAEROT, has been developed for inspection and maintenance operations in nuclear facilities. The main feature of locomotion system is the planetary wheel assembly with small wheels. This mechanism has been designed to be able to go over the stairs and obstacles with stability. This paper presents the inverse kinematic solution that is to be operated by remote control. The automatic stair climbing algorithm is also proposed. The proposed algorithms the moving paths of small wheels and calculates the angular velocity of 3 actuation wheels. The results of simulations and experiments are given for KAEROT performed on the irregular stairs in laboratory. It is shown that the proposed algorithm provides the lower inclination angle of the robot body and increases its stability during navigation. 14 figs., 16 refs. (Author).

  8. Automatic stair-climbing algorithm of the planetary wheel type mobile robot in nuclear facilities

    International Nuclear Information System (INIS)

    Kim, Byung Soo; Kim, Seung Ho; Lee, Jong Min

    1995-01-01

    A mobile robot, named KAEROT, has been developed for inspection and maintenance operations in nuclear facilities. The main feature of locomotion system is the planetary wheel assembly with small wheels. This mechanism has been designed to be able to go over the stairs and obstacles with stability. This paper presents the inverse kinematic solution that is to be operated by remote control. The automatic stair climbing algorithm is also proposed. The proposed algorithms the moving paths of small wheels and calculates the angular velocity of 3 actuation wheels. The results of simulations and experiments are given for KAEROT performed on the irregular stairs in laboratory. It is shown that the proposed algorithm provides the lower inclination angle of the robot body and increases its stability during navigation. 14 figs., 16 refs. (Author)

  9. A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Su; Moon, Woo Sung; Seo, Woo Jin; Baek, Kwang Ryul [Pusan National University, Busan (Korea, Republic of)

    2011-11-15

    Inertial navigation systems (INS) are composed of inertial sensors, such as accelerometers and gyroscopes. An INS updates its orientation and position automatically; it has an acceptable stability over the short term, however this stability deteriorates over time. Odometry, used to estimate the position of a mobile robot, employs encoders attached to the robot's wheels. However, errors occur caused by the integrative nature of the rotating speed and the slippage between the wheel and the ground. In this paper, we discuss mobile robot position estimation without using external signals in indoor environments. In order to achieve optimal solutions, a Kalman filter that estimates the orientation and velocity of mobile robots has been designed. The proposed system combines INS and odometry and delivers more accurate position information than standalone odometry.

  10. 76 FR 55708 - Servicing Multi-Piece and Single Piece Rim Wheels; Extension of the Office of Management and...

    Science.gov (United States)

    2011-09-08

    ...] Servicing Multi-Piece and Single Piece Rim Wheels; Extension of the Office of Management and Budget's (OMB... concerning its proposal to extend the Office of Management and Budget's (OMB) approval of the information collection requirements specified in the Standard on Servicing Multi-Piece and Single Piece Rim Wheels (29...

  11. Visual Servo Tracking Control of a Wheeled Mobile Robot with a Monocular Fixed Camera

    National Research Council Canada - National Science Library

    Chen, J; Dixon, W. E; Dawson, D. M; Chitrakaran, V. K

    2004-01-01

    In this paper, a visual servo tracking controller for a wheeled mobile robot (WMR) is developed that utilizes feedback from a monocular camera system that is mounted with a fixed position and orientation...

  12. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    Science.gov (United States)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  13. Study on control schemes of flexible steering system of a multi-axle all-wheel-steering robot

    Directory of Open Access Journals (Sweden)

    Pingxia Zhang

    2016-05-01

    Full Text Available It is well known that a multi-axle wheeled robot possesses larger load capability and also higher drive performance. However, its steering flexibility is degraded due to the large number of wheels. In order to solve this problem, in this article, we proposed three control schemes based on the center of rotation or the steering angles of both the first- and last-axle wheels. To release these control schemes, steering mode selection and also the left wheel’s steering angle in a specific axle are added approaching a practical application. Thereafter, the remaining wheels’ steering angles can be calculated with the Ackerman steering theorem. In order to verify the control effects, a five-axle all-wheel-steering wheeled robot has been developed with the Bluetooth wireless monitor system. Based on the newly designed robot, validation experiments are carried out, such as lateral movement, situ rotation, and multi-mode steering within a narrow space. The results indicate that the proposed design in this article can ensure a more flexible and faster movement within a narrow space. It shows large potential in obstacle avoidance compared with the conventional partial-wheel steering mode.

  14. Wheeled hopping robot

    Science.gov (United States)

    Fischer, Gary J [Albuquerque, NM

    2010-08-17

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  15. Optimization of an implicit constrained multi-physics system for motor wheels of electric vehicle

    International Nuclear Information System (INIS)

    Lei, Fei; Du, Bin; Liu, Xin; Xie, Xiaoping; Chai, Tian

    2016-01-01

    In this paper, implicit constrained multi-physics model of a motor wheel for an electric vehicle is built and then optimized. A novel optimization approach is proposed to solve the compliance problem between implicit constraints and stochastic global optimization. Firstly, multi-physics model of motor wheel is built from the theories of structural mechanics, electromagnetism and thermal physics. Then, implicit constraints are applied from the vehicle performances and magnetic characteristics. Implicit constrained optimization is carried out by a series of unconstrained optimization and verifications. In practice, sequentially updated subspaces are designed to completely substitute the original design space in local areas. In each subspace, a solution is obtained and is then verified by the implicit constraints. Optimal solutions which satisfy the implicit constraints are accepted as final candidates. The final global optimal solution is optimized from those candidates. Discussions are carried out to discover the differences between optimal solutions with unconstrained problem and different implicit constrained problems. Results show that the implicit constraints have significant influences on the optimal solution and the proposed approach is effective in finding the optimals. - Highlights: • An implicit constrained multi-physics model is built for sizing a motor wheel. • Vehicle dynamic performances are applied as implicit constraints for nonlinear system. • An efficient novel optimization is proposed to explore the constrained design space. • The motor wheel is optimized to achieve maximum efficiency on vehicle dynamics. • Influences of implicit constraints on vehicle performances are compared and analyzed.

  16. Reliability of the Test of Wheeled Mobility (TOWM) and the Short Wheelie Test

    NARCIS (Netherlands)

    Fliess-Douer, Osnat; Van der Woude, Lucas H. V.; Vanlandewijck, Yves C.

    Objective: To assess the reliability of the Test of Wheeled Mobility (TOWM) and the Wheelie test. Design: Cohort study. Setting: Gymnasium. Participants: Manual wheelchair users (N=30, age 23-53y) with a spinal cord injury. Intervention: Participants performed the 30 skills of the TOWM and the 8

  17. Design of Wheeled Mobile Robot with Tri-Star Wheel as Rescue Robot

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2016-05-01

    Full Text Available This study aims to design, and analyze a mobilerobot that can handle some of the obstacles, they are unevensurfaces, slopes, can also climb stairs. WMR in this study is Tristarwheel that is containing three wheels for each set. Onaverage surface only two wheels in contact with the surface, ifthere is an uneven surface or obstacle then the third wheel willrotate with the rotation center of the wheel in contact with theleading obstacle then only one wheel in contact with the surface.This study uses the C language program. Furthermore, theminimum thrust to be generated torque of the motor andtransmission is 9.56 kg. The results obtained by calculation andanalysis of DC motors used must have a torque greater than14.67 kg.cm. Minimum thrust to be generated motor torque andthe transmission is 9.56 kg. The experimental results give goodresults for robot to moving forward, backward, turn left, turnright and climbing the stairs

  18. Multi Objective Optimization of Multi Wall Carbon Nanotube Based Nanogrinding Wheel Using Grey Relational and Regression Analysis

    Science.gov (United States)

    Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy

    2016-07-01

    Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.

  19. Wheeled-mobility correlates of life-space and social participation in adult manual wheelchair users aged 50 and older.

    Science.gov (United States)

    Sakakibara, Brodie M; Routhier, François; Miller, William C

    2017-08-01

    To characterize the life-space mobility and social participation of manual wheelchair users using objective measures of wheeled mobility. Individuals (n = 49) were included in this cross-sectional study if they were aged 50 or older, community-dwelling and used their wheelchair on a daily basis for the past 6 months. Life-space mobility and social participation were measured using the life-space assessment and late-life disability instrument. The wheeled mobility variables (distance travelled, occupancy time, number of bouts) were captured using a custom-built data logger. After controlling for age and sex, multivariate regression analyses revealed that the wheeled mobility variables accounted for 24% of the life-space variance. The number of bouts variable, however, did not account for any appreciable variance above and beyond the occupancy time and distance travelled. Occupancy time and number of bouts were significant predictors of social participation and accounted for 23% of the variance after controlling for age and sex. Occupancy time and distance travelled are statistically significant predictors of life-space mobility. Lower occupancy time may be an indicative of travel to more distant life-spaces, whereas the distance travelled is likely a better reflection of mobility within each life-space. Occupancy time and number of bouts are significant predictors of participation frequency. Implications for rehabilitation Component measures of wheelchair mobility, such as distance travelled, occupancy time and number of bouts, are important predictors of life-space mobility and social participation in adult manual wheelchair users. Lower occupancy time is an indication of travel to more distant life-spaces, whereas distance travelled is likely a better reflection of mobility within each life-space. That lower occupancy time and greater number of bouts are associated with more frequent participation raises accessibility and safety issues for manual wheelchair

  20. Optimal Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PID Controller

    Directory of Open Access Journals (Sweden)

    Ameer L. Saleh

    2018-02-01

    Full Text Available This paper present an optimal Fractional Order PID (FOPID controller based on Particle Swarm Optimization (PSO for controlling the trajectory tracking of Wheeled Mobile Robot(WMR.The issue of trajectory tracking with given a desired reference velocity is minimized to get the distance and deviation angle equal to zero, to realize the objective of trajectory tracking a two FOPID controllers are used for velocity control and azimuth control to implement the trajectory tracking control. A path planning and path tracking methodologies are used to give different desired tracking trajectories.  PSO algorithm is using to find the optimal parameters of FOPID controllers. The kinematic and dynamic models of wheeled mobile robot for desired trajectory tracking with PSO algorithm are simulated in Simulink-Matlab. Simulation results show that the optimal FOPID controllers are more effective and has better dynamic performance than the conventional methods.

  1. Defense Logistics: The Army Needs to Implement an Effective Management and Oversight Plan for the Equipment Maintenance Contract in Kuwait

    National Research Council Canada - National Science Library

    Solis, William M; Coffey, Carole; Baker, Sarah; Brown, Renee; Cantin, Janine; La Due Lake, Ronald; Lenane, Katherine; Sawyer, Jr, Connie W

    2008-01-01

    .... Contractors at Camp Arifjan refurbish and repair a variety of military vehicles such as the Bradley Fighting Vehicle, armored personnel carriers and the High-Mobility, Multi-Purpose Wheeled Vehicle (HMMWV...

  2. Using unconstrained tongue motion as an alternative control mechanism for wheeled mobility.

    Science.gov (United States)

    Huo, Xueliang; Ghovanloo, Maysam

    2009-06-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users' intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility.

  3. Wheeled mobility device transportation safety in fixed route and demand-responsive public transit vehicles within the United States.

    Science.gov (United States)

    Frost, Karen L; van Roosmalen, Linda; Bertocci, Gina; Cross, Douglas J

    2012-01-01

    An overview of the current status of wheelchair transportation safety in fixed route and demand-responsive, non-rail, public transportation vehicles within the US is presented. A description of each mode of transportation is provided, followed by a discussion of the primary issues affecting safety, accessibility, and usability. Technologies such as lifts, ramps, securement systems, and occupant restraint systems, along with regulations and voluntary industry standards have been implemented with the intent of improving safety and accessibility for individuals who travel while seated in their wheeled mobility device (e.g., wheelchair or scooter). However, across both fixed route and demand-responsive transit systems a myriad of factors such as nonuse and misuse of safety systems, oversized wheeled mobility devices, vehicle space constraints, and inadequate vehicle operator training may place wheeled mobility device (WhMD) users at risk of injury even under non-impact driving conditions. Since WhMD-related incidents also often occur during the boarding and alighting process, the frequency of these events, along with factors associated with these events are described for each transit mode. Recommendations for improving WhMD transportation are discussed given the current state of

  4. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    Directory of Open Access Journals (Sweden)

    Lihang Feng

    Full Text Available Wheel force transducer (WFT, which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  5. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    Science.gov (United States)

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  6. AlGaN/GaN High Electron Mobility Transistors with Multi-MgxNy/GaN Buffer

    OpenAIRE

    Chang, P. C.; Lee, K. H.; Wang, Z. H.; Chang, S. J.

    2014-01-01

    We report the fabrication of AlGaN/GaN high electron mobility transistors with multi-MgxNy/GaN buffer. Compared with conventional HEMT devices with a low-temperature GaN buffer, smaller gate and source-drain leakage current could be achieved with this new buffer design. Consequently, the electron mobility was larger for the proposed device due to the reduction of defect density and the corresponding improvement of crystalline quality as result of using the multi-MgxNy/GaN buffer.

  7. Smooth Jerk-Bounded Optimal Path Planning of Tricycle Wheeled Mobile Manipulators in the Presence of Environmental Obstacles

    Directory of Open Access Journals (Sweden)

    Moharam Habibnejad Korayem

    2012-10-01

    Full Text Available In this work, a computational algorithm is developed for the smooth-jerk optimal path planning of tricycle wheeled mobile manipulators in an obstructed environment. Due to a centred orientable wheel, the tricycle mobile manipulator exhibits more steerability and manoeuvrability over traditional mobile manipulators, especially in the presence of environmental obstacles. This paper presents a general formulation based on the combination of the potential field method and optimal control theory in order to plan the smooth point-to-point path of the tricycle mobile manipulators. The nonholonomic constraints of the tricycle mobile base are taken into account in the dynamic formulation of the system and then the optimality conditions are derived considering jerk restrictions and obstacle avoidance. Furthermore, by means of the potential field method, a new formulation of a repulsive potential function is proposed for collision avoidance between any obstacle and each part of the mobile manipulator. In addition, to ensure the accurate placement of the end effector on the target point an attractive potential function is applied to the optimal control formulation. Next, a mixed analytical-numerical algorithm is proposed to generate the point-to-point optimal path. Finally, the proposed method is verified by a number of simulations on a two-link tricycle manipulator.

  8. Effects of transit bus interior configuration on performance of wheeled mobility users during simulated boarding and disembarking.

    Science.gov (United States)

    D'Souza, Clive; Paquet, Victor; Lenker, James A; Steinfeld, Edward

    2017-07-01

    The emergence of low-floor bus designs and related regulatory standards in the U.S. have resulted in substantial improvements in public transit accessibility. However, passengers using wheeled mobility devices still experience safety concerns and inefficiencies in boarding, disembarking, and interior circulation on low-floor buses. This study investigates effects of low-floor bus interior configuration and passenger crowding on boarding and disembarking efficiency and safety. Users of manual wheelchairs (n = 18), powered wheelchairs (n = 21) and electric scooters (n = 9) simulated boarding and disembarking in three interior layout configurations at low and high passenger crowding conditions on a full-scale laboratory mock-up of a low-floor bus. Dependent measures comprised task times and critical incidents during access ramp use, fare payment, and movement to and from the doorway and wheeled mobility securement area. Individual times for unassisted boarding ranged from 15.2 to 245.3 s and for disembarking ranged from 9.1 to 164.6 s across layout and passenger crowding conditions. Nonparametric analysis of variance showed significant differences and interactions across vehicle design conditions, passenger load and mobility device type on user performance. The configuration having electronic on-board fare payment, rear-bus entrance doorways and adjacent device securement areas demonstrated greatest efficiency and safety. High passenger load adversely impacted efficiency and frequency of critical incidents during on-board circulation across all three layouts. Findings have broader implications for improving transit system efficiency and quality of service across the spectrum of transit users. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Improvement of the operation of wheels mobile robot TRASMAR2; Mejora del funcionamiento del robot movil de ruedas TRASMAR2

    Energy Technology Data Exchange (ETDEWEB)

    Guerra C, D. A.; Tovar M, R. [Instituto Tecnologico de San Luis Potosi, Av. Tecnologico s/n, Col. UPA Soledad de Graciano Sanchez, 78437 San Luis Potosi (Mexico); Gonzalez M, J. L.; Segovia de los Rios, A., E-mail: deniwar@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In the Instituto Nacional de Investigaciones Nucleares (ININ), personnel have been working in the development of wheels mobile robots for the surveillance and supervision of contaminated areas, and for the radioactive material transport. One of these achievements is the wheels mobile robot denominated TRASMAR2, which is sought that works in the tele operated form using net technologies, in particular, using a Web page by means of the client-servant technology. For this, diverse circuits and control programs have been development with the purpose that the robot carries out the movements that are required, being considered the use of sensors to avoid collisions. The different programs have been implemented in different micro controllers, and although the robot was working, is necessary to optimize and to concentrate these programs on a single micro controller. In this work are presented the analysis of the previously implemented programs, as the realized changes, including new programs required to improve the robot operation. As complement, was development and implemented an alternative proposal of the robot's tele operation by means of a Web page using Lab view, which is described in the work. With this proposal tele operate the robot was achieved, although its application is evaluating due to the resources that is consumes. (author)

  10. AlGaN/GaN High Electron Mobility Transistors with Multi-MgxNy/GaN Buffer

    Directory of Open Access Journals (Sweden)

    P. C. Chang

    2014-01-01

    Full Text Available We report the fabrication of AlGaN/GaN high electron mobility transistors with multi-MgxNy/GaN buffer. Compared with conventional HEMT devices with a low-temperature GaN buffer, smaller gate and source-drain leakage current could be achieved with this new buffer design. Consequently, the electron mobility was larger for the proposed device due to the reduction of defect density and the corresponding improvement of crystalline quality as result of using the multi-MgxNy/GaN buffer.

  11. Computation of wheel-rail contact force for non-mapping wheel-rail profile of Translohr tram

    Science.gov (United States)

    Ji, Yuanjin; Ren, Lihui; Zhou, Jinsong

    2017-09-01

    Translohr tram has steel wheels, in V-like arrangements, as guide wheels. These operate over the guide rails in inverted-V arrangements. However, the horizontal and vertical coordinates of the guide wheels and guide rails are not always mapped one-to-one. In this study, a simplified elastic method is proposed in order to calculate the contact points between the wheels and the rails. By transforming the coordinates, the non-mapping geometric relationship between wheel and rail is converted into a mapping relationship. Considering the Translohr tram's multi-point contact between the guide wheel and the guide rail, the elastic-contact hypothesis take into account the existence of contact patches between the bodies, and the location of the contact points is calculated using a simplified elastic method. In order to speed up the calculation, a multi-dimensional contact table is generated, enabling the use of simulation for Translohr tram running on curvatures with different radii.

  12. Centre of Gravity (C.O.G)-Based Analysis on the Dynamics of the Extendable Double-Link Two-Wheeled Mobile Robot

    International Nuclear Information System (INIS)

    Rahman, M T Abdul; Ahmad, S; Akmeliawati, R; Altalmas, T; Aula, A

    2013-01-01

    This paper discusses about the analysis on the centre of gravity (C.O.G) in affecting the input reference of the motion control of the extendable double-link of two-wheeled mobile robot. The proposed system mimics double inverted pendulum, where the angular position of the first link (Link1) is to be varied depends on the value of the angular position of the second link (Link2) and the elongation of the extendable-link (Link3) that is attached to Link2 with different payload. The two-wheeled mobile robot together with the extendable link on Link2 makes that system become more flexible but yet, the system has become more unstable. The inclination of extendable link at any interest angle will affect the C.O.G of the system especially when the payload is having a significant weight. This two-wheeled mobile robot can be balanced on the condition that the system's center of gravity must be located on the centre of the wheels. Therefore the input reference of Link1 will be determined from the C.O.G analysis of the system with the payload. Preliminary results show that the angular position of Link1 can be set at suitable degree based on C.O.G analysis that is used for motion control

  13. The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System.

    Science.gov (United States)

    Qian, Jun; Zi, Bin; Wang, Daoming; Ma, Yangang; Zhang, Dan

    2017-09-10

    In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields.

  14. Feasibility of the Enhancing Participation In the Community by improving Wheelchair Skills (EPIC Wheels) program: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Giesbrecht, Edward M; Miller, William C; Eng, Janice J; Mitchell, Ian M; Woodgate, Roberta L; Goldsmith, Charles H

    2013-10-24

    Many older adults rely on a manual wheelchair for mobility but typically receive little, if any, training on how to use their wheelchair effectively and independently. Standardized skill training is an effective intervention, but limited access to clinician trainers is a substantive barrier. Enhancing Participation in the Community by Improving Wheelchair Skills (EPIC Wheels) is a 1-month monitored home training program for improving mobility skills in older novice manual wheelchair users, integrating principles from andragogy and social cognitive theory. The purpose of this study is to determine whether feasibility indicators and primary clinical outcome measures of the EPIC Wheels program are sufficiently robust to justify conducting a subsequent multi-site randomized controlled trial. A 2 × 2 factorial randomized controlled trial at two sites will compare improvement in wheelchair mobility skills between an EPIC Wheels treatment group and a computer-game control group, with additional wheelchair use introduced as a second factor. A total of 40 community-dwelling manual wheelchair users at least 55 years old and living in two Canadian metropolitan cities (n = 20 × 2) will be recruited. Feasibility indicators related to study process, resources, management, and treatment issues will be collected during data collection and at the end of the study period, and evaluated against proposed criteria. Clinical outcome measures will be collected at baseline (pre-randomization) and post-intervention. The primary clinical outcome measure is wheelchair skill capacity, as determined by the Wheelchair Skills Test, version 4.1. Secondary clinical outcome measures include wheelchair skill safety, satisfaction with performance, wheelchair confidence, life-space mobility, divided-attention, and health-related quality of life. The EPIC Wheels training program offers several innovative features. The convenient, portable, economical, and adaptable tablet-based, home program model

  15. Mathematical model of rolling an elastic wheel over deformable support base

    Science.gov (United States)

    Volskaia, V. N.; Zhileykin, M. M.; Zakharov, A. Y.

    2018-02-01

    to provide the most accurate description of the interaction process of a wheeled propulsion devices and the ground, also this method allows to define tension in the ground, deformation of the ground and the tire and ground’s compression. However, the high laboriousness of computations is essential shortcoming of that method therefore it’s hard to use these models as part of the general motion model of multi-axis wheeled vehicles. The purpose of this research is the elaboration of mathematical model of elastic wheel rolling over deformable rough support base taking into account the contact patch deformation. The mathematical model of rectilinear rolling an elastic wheel over rough deformable support base, taking into account variation of contact patch area and variation in the direction of the radial and tangential reactions also load bearing capacity of the ground, is developed. The efficiency of developed mathematical model of rectilinear rolling an elastic wheel over rough deformable support base is proved by the simulation methods.

  16. Fuzzy Vector Field Orientation Feedback Control-Based Slip Compensation for Trajectory Tracking Control of a Four Track Wheel Skid-steered Mobile Robot

    Directory of Open Access Journals (Sweden)

    Xuan Vinh Ha

    2013-04-01

    Full Text Available Skid-steered mobile robots have been widely used in exploring unknown environments and in military applications. In this paper, the tuning fuzzy Vector Field Orientation (FVFO feedback control method is proposed for a four track wheel skid-steered mobile robot (4-TW SSMR using flexible fuzzy logic control (FLC. The extended Kalman filter is utilized to estimate the positions, velocities and orientation angles, which are used for feedback control signals in the FVFO method, based on the AHRS kinematic motion model and velocity constraints. In addition, in light of the wheel slip and the braking ability of the robot, we propose a new method for estimating online wheel slip parameters based on a discrete Kalman filter to compensate for the velocity constraints. As demonstrated by our experimental results, the advantages of the combination of the proposed FVFO and wheel slip estimation methods overcome the limitations of the others in the trajectory tracking control problem for a 4-TW SSMR.

  17. Tensegrital Wheel for Enhanced Surface Mobility, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations introduces the "tensegrital wheel" an inventive concept for wheeled locomotion that exploits the geometric and mechanical attributes of a tensegrity...

  18. Utilization of multi-purpose high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kawada, Osamu; Onuki, Yoshiaki; Wasaoka, Takeshi.

    1974-01-01

    Concerning the utilization of multi-purpose high temperature gas-cooled reactors, the electric power generation with gas turbines is described: features of HTR-He gas turbine power plants; the state of development of He gas turbines; and combined cycle with gas turbines and steam turbines. The features of gas turbines concern heat dissipation into the environment and the mode of load operation. Outstanding work in the development of He gas turbines is that in Hochtemperatur Helium-Turbine Project in West Germany. The power generation with combined gas turbines and steam turbines appears to be superior to that with gas turbines alone. (Mori, K.)

  19. Reaction wheels for kinetic energy storage

    Science.gov (United States)

    Studer, P. A.

    1984-11-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  20. Position Control of the Single Spherical Wheel Mobile Robot by Using the Fuzzy Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Hamed Navabi

    2017-01-01

    Full Text Available A spherical wheel robot or Ballbot—a robot that balances on an actuated spherical ball—is a new and recent type of robot in the popular area of mobile robotics. This paper focuses on the modeling and control of such a robot. We apply the Lagrangian method to derive the governing dynamic equations of the system. We also describe a novel Fuzzy Sliding Mode Controller (FSMC implemented to control a spherical wheel mobile robot. The nonlinear nature of the equations makes the controller nontrivial. We compare the performance of four different fuzzy controllers: (a regulation with one signal, (b regulation and position control with one signal, (c regulation and position control with two signals, and (d FSMC for regulation and position control with two signals. The system is evaluated in a realistic simulation and the robot parameters are chosen based on a LEGO platform, so the designed controllers have the ability to be implemented on real hardware.

  1. Middleware for multi-client and multi-server mobile applications

    NARCIS (Netherlands)

    Rocha, B.P.S.; Rezende, C.G.; Loureiro, A.A.F.

    2007-01-01

    With popularization of mobile computing, many developers have faced problems due to great heterogeneity of devices. To address this issue, we present in this work a middleware for multi-client and multi-server mobile applications. We assume that the middleware at the server side has no resource

  2. An Innovative Running Wheel-based Mechanism for Improved Rat Training Performance.

    Science.gov (United States)

    Chen, Chi-Chun; Yang, Chin-Lung; Chang, Ching-Ping

    2016-09-19

    This study presents an animal mobility system, equipped with a positioning running wheel (PRW), as a way to quantify the efficacy of an exercise activity for reducing the severity of the effects of the stroke in rats. This system provides more effective animal exercise training than commercially available systems such as treadmills and motorized running wheels (MRWs). In contrast to an MRW that can only achieve speeds below 20 m/min, rats are permitted to run at a stable speed of 30 m/min on a more spacious and high-density rubber running track supported by a 15 cm wide acrylic wheel with a diameter of 55 cm in this work. Using a predefined adaptive acceleration curve, the system not only reduces the operator error but also trains the rats to run persistently until a specified intensity is reached. As a way to evaluate the exercise effectiveness, real-time position of a rat is detected by four pairs of infrared sensors deployed on the running wheel. Once an adaptive acceleration curve is initiated using a microcontroller, the data obtained by the infrared sensors are automatically recorded and analyzed in a computer. For comparison purposes, 3 week training is conducted on rats using a treadmill, an MRW and a PRW. After surgically inducing middle cerebral artery occlusion (MCAo), modified neurological severity scores (mNSS) and an inclined plane test were conducted to assess the neurological damages to the rats. PRW is experimentally validated as the most effective among such animal mobility systems. Furthermore, an exercise effectiveness measure, based on rat position analysis, showed that there is a high negative correlation between the effective exercise and the infarct volume, and can be employed to quantify a rat training in any type of brain damage reduction experiments.

  3. A sub-target approach to the kinodynamic motion control of a wheeled mobile robot

    Science.gov (United States)

    Motonaka, Kimiko; Watanabe, Keigo; Maeyama, Shoichi

    2018-02-01

    A mobile robot with two independently driven wheels is popular, but it is difficult to stabilize it by a continuous controller with a constant gain, due to its nonholonomic property. It is guaranteed that a nonholonomic controlled object can always be converged to an arbitrary point using a switching control method or a quasi-continuous control method based on an invariant manifold in a chained form. From this, the authors already proposed a kinodynamic controller to converge the states of such a two-wheeled mobile robot to the arbitrary target position while avoiding obstacles, by combining the control based on the invariant manifold and the harmonic potential field (HPF). On the other hand, it was confirmed in the previous research that there is a case that the robot cannot avoid the obstacle because there is no enough space to converge the current state to the target state. In this paper, we propose a method that divides the final target position into some sub-target positions and moves the robot step by step, and it is confirmed by the simulation that the robot can converge to the target position while avoiding obstacles using the proposed method.

  4. Discrete Globalised Dual Heuristic Dynamic Programming in Control of the Two-Wheeled Mobile Robot

    Directory of Open Access Journals (Sweden)

    Marcin Szuster

    2014-01-01

    Full Text Available Network-based control systems have been emerging technologies in the control of nonlinear systems over the past few years. This paper focuses on the implementation of the approximate dynamic programming algorithm in the network-based tracking control system of the two-wheeled mobile robot, Pioneer 2-DX. The proposed discrete tracking control system consists of the globalised dual heuristic dynamic programming algorithm, the PD controller, the supervisory term, and an additional control signal. The structure of the supervisory term derives from the stability analysis realised using the Lyapunov stability theorem. The globalised dual heuristic dynamic programming algorithm consists of two structures: the actor and the critic, realised in a form of neural networks. The actor generates the suboptimal control law, while the critic evaluates the realised control strategy by approximation of value function from the Bellman’s equation. The presented discrete tracking control system works online, the neural networks’ weights adaptation process is realised in every iteration step, and the neural networks preliminary learning procedure is not required. The performance of the proposed control system was verified by a series of computer simulations and experiments realised using the wheeled mobile robot Pioneer 2-DX.

  5. Four-wheeled walker related injuries in older adults in the Netherlands.

    Science.gov (United States)

    van Riel, K M M; Hartholt, K A; Panneman, M J M; Patka, P; van Beeck, E F; van der Cammen, T J M

    2014-02-01

    With ageing populations worldwide, mobility devices are used more than ever. In the current literature there is no consensus whether the available mobility devices safely improve the mobility of their users. Also, evidence is lacking concerning the risks and types of injuries sustained while using a four-wheeled walker. To assess injury risks and injury patterns in older adults (≥65 years) who presented at Emergency Departments (ED) in the Netherlands with an injury due to using a four-wheeled walker. In this study, the Dutch Injury Surveillance System was used to obtain a national representative sample of annual ED visits in the Netherlands in the adult population (≥65 years) sustaining an injury while using a four-wheeled walker. The numbers of four-wheeled walker users in the Netherlands were obtained from the national insurance board. The numbers of ED visits were divided by the numbers of four-wheeled walker users to calculate age- and sex-specific injury risks. Annually 1869 older adults visited an ED after sustaining an injury while using a four-wheeled walker. Falls were the main cause of injury (96%). The injury risk was 3.1 per 100 users of four-wheeled walkers. Women (3.5 per 100 users) had a higher risk than men (2.0 per 100 users). Injury risk was the highest in women aged 85 years and older (6.2 per 100 users). The majority of injuries were fractures (60%) with hip fracture (25%) being the most common injury. Nearly half of all four-wheeled walker related injuries required hospitalisation, mostly due to hip fractures. Healthcare costs per injury were approximately €12 000. This study presents evidence that older adults experiencing a fall while using a four-wheeled walker are at high risk to suffer severe injuries.

  6. Modeling Multi-Mobile Agents System Based on Coalition Signature Mechanism Using UML

    Institute of Scientific and Technical Information of China (English)

    SUNZhixin; HUANGHaiping; WANGRuchuan

    2004-01-01

    With the development of electronic commerce and agent techniques, multi-mobile agents cooperation can not only improve the efficiency of electronic business trade, but more importantly, it has a comprehensive applicative value in solving the security issues of mobile agent system. This paper firstly describes the mechanism of multi-mobile agents coalition signature aiming at the system security. Subsequently it brings forward a basic architecture of Multi-mobile agents system (MMAS) based on the design pattern of multi-mobile agents. The paper uses the diagrs_rn of UML, such as use case diagram, class diagram and sequence diagram to build the detailed model of the coalition signature and multi-mobile agents cooperation results. Through security analysis, we find that multimobile agents cooperation and interaction can solve some security problems of mobile agents in transfer, and also it can improve the efficiency of business trade. These results indicate that MMAS has a high security performance and can be widely used in E-commerce trade.

  7. A Car Transportation System in Cooperation by Multiple Mobile Robots for Each Wheel: iCART II

    Science.gov (United States)

    Kashiwazaki, Koshi; Yonezawa, Naoaki; Kosuge, Kazuhiro; Sugahara, Yusuke; Hirata, Yasuhisa; Endo, Mitsuru; Kanbayashi, Takashi; Shinozuka, Hiroyuki; Suzuki, Koki; Ono, Yuki

    The authors proposed a car transportation system, iCART (intelligent Cooperative Autonomous Robot Transporters), for automation of mechanical parking systems by two mobile robots. However, it was difficult to downsize the mobile robot because the length of it requires at least the wheelbase of a car. This paper proposes a new car transportation system, iCART II (iCART - type II), based on “a-robot-for-a-wheel” concept. A prototype system, MRWheel (a Mobile Robot for a Wheel), is designed and downsized less than half the conventional robot. First, a method for lifting up a wheel by MRWheel is described. In general, it is very difficult for mobile robots such as MRWheel to move to desired positions without motion errors caused by slipping, etc. Therefore, we propose a follower's motion error estimation algorithm based on the internal force applied to each follower by extending a conventional leader-follower type decentralized control algorithm for cooperative object transportation. The proposed algorithm enables followers to estimate their motion errors and enables the robots to transport a car to a desired position. In addition, we analyze and prove the stability and convergence of the resultant system with the proposed algorithm. In order to extract only the internal force from the force applied to each robot, we also propose a model-based external force compensation method. Finally, proposed methods are applied to the car transportation system, the experimental results confirm their validity.

  8. Investigation In Two Wheels Mobile Robot Movement: Stability and Motion Paths

    Directory of Open Access Journals (Sweden)

    Abdulrahman A.A. Emhemed

    2013-01-01

    Full Text Available This paper deals with the problem of dynamic modelling of inspection robot two wheels. Fuzzy controller based on robotics techniques for optimize of an inspection stability. The target is to enhancement of robot direction and avoids the obstacles. To find collision free area, distance-sensors such as ultra-sonic sensors and laser scanners or vision systems are usually employed. The distance-sensors offer only distance information between mobile robots and obstacles. Also the target are shown can be reached by different directions. The fuzzy logic controller is effect to avoid the abstacles and get ideal direction to “the target box”.

  9. Discrete Globalised Dual Heuristic Dynamic Programming in Control of the Two-Wheeled Mobile Robot

    OpenAIRE

    Marcin Szuster; Zenon Hendzel

    2014-01-01

    Network-based control systems have been emerging technologies in the control of nonlinear systems over the past few years. This paper focuses on the implementation of the approximate dynamic programming algorithm in the network-based tracking control system of the two-wheeled mobile robot, Pioneer 2-DX. The proposed discrete tracking control system consists of the globalised dual heuristic dynamic programming algorithm, the PD controller, the supervisory term, and an additional control signal...

  10. Multi-Language and Multi-Purpose Educational Tool for Kids

    DEFF Research Database (Denmark)

    Holmen, Hee; Valente, Andrea; Marchetti, E.

    2005-01-01

    ‘Crazipes’ is one of the prototype games within SMAALL, a multi-language and multi-purpose games project for young kids of age 3-5 years old. The main goal of SMAALL is to expose young learners in multi-purpose and multi-module games. In the prototype of Crazipes, the game is designed to teach fo...

  11. Characterizing Wheel-Soil Interaction Loads Using Meshfree Finite Element Methods: A Sensitivity Analysis for Design Trade Studies

    Science.gov (United States)

    Contreras, Michael T.; Trease, Brian P.; Bojanowski, Cezary; Kulakx, Ronald F.

    2013-01-01

    A wheel experiencing sinkage and slippage events poses a high risk to planetary rover missions as evidenced by the mobility challenges endured by the Mars Exploration Rover (MER) project. Current wheel design practice utilizes loads derived from a series of events in the life cycle of the rover which do not include (1) failure metrics related to wheel sinkage and slippage and (2) performance trade-offs based on grouser placement/orientation. Wheel designs are rigorously tested experimentally through a variety of drive scenarios and simulated soil environments; however, a robust simulation capability is still in development due to myriad of complex interaction phenomena that contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree nite element approaches enable simulations that capture su cient detail of wheel-soil interaction while remaining computationally feasible. This study implements the JPL wheel-soil benchmark problem in the commercial code environment utilizing the large deformation modeling capability of Smooth Particle Hydrodynamics (SPH) meshfree methods. The nominal, benchmark wheel-soil interaction model that produces numerically stable and physically realistic results is presented and simulations are shown for both wheel traverse and wheel sinkage cases. A sensitivity analysis developing the capability and framework for future ight applications is conducted to illustrate the importance of perturbations to critical material properties and parameters. Implementation of the proposed soil-wheel interaction simulation capability and associated sensitivity framework has the potential to reduce experimentation cost and improve the early stage wheel design proce

  12. Human Mobile Inverted Pendulum Transporter - a Mechatronic System Case Study

    DEFF Research Database (Denmark)

    Bech, Michael Møller; Hansen, Anders Hedegaard; Pedersen, Henrik C.

    2011-01-01

    procedure combined with the formulation and the solution of an optimization problem involving a number of constraints related to performance, costs, geometry, availability of components etc. In this paper, we present a case-study of a more traditional design procedure for a highly multi-disciplinary device......, which nevertheless illustrates the potentials of unifying classical engineering technologies (mechanics, electronics, control systems) with modern high-efficient inverter-fed permanent magnet AC motors and the latest MEMS sensor technology. A full-scale fully operational prototype of a two-wheel mobile...

  13. A development of the distributive law of points on the multi-wheeled machine wheels with electro-mechanical transmission, made under the scheme "motor-axis"

    Directory of Open Access Journals (Sweden)

    M. M. Jileikin

    2014-01-01

    Full Text Available Currently, developers of multi-wheeled vehicles (MWV show growing interest in electromechanical drive in the «motor-axis» implementation. However, in designing the traction electric drive (TED based on such approach the problems arise, primarily, from a lack of creating experience and of ready algorithmic solutions to control the traction motors. The use of methods to implement the individual TED is impossible because of the presence of cross-axle differential in the leading axle drive, which does not allow the input torque control of each wheel singly. The paper offers a law to control a traction electric drive of MWV leading axles that comprises the law to control the tractive effort torque and braking moment on the leading axles as well as algorithms of anti-lock brake and traction control systems.An analysis of simulation modeling results shows an efficiency of the developed law that allows control of the traction electric drive of MWV leading axles. The control law includes an algorithm to control the tractive effort torque and braking moment on the driving-wheels, as well as algorithms of anti-lock brake and traction systems.At stationary (constant speed rotation and non-stationary (elk test maneuvering there was no spin of vehicle wheels. Angular speeds of the wheels vary smoothly. Partial loss of vehicle stability when making maneuvers on ice may be reduced through development of algorithms for dynamic stabilization, which will improve the MWV road-holding and trajectory ability. Fullscale tests of MWV with traction electric drive implemented using a “motor-axis" approach are required to have a final answer on the performance and effectiveness of the developed control law.

  14. Most Essential Wheeled Mobility Skills for Daily Life : An International Survey Among Paralympic Wheelchair Athletes With Spinal Cord Injury

    NARCIS (Netherlands)

    Fliess-Douer, Osnat; Vanlandewijck, Yves C.; Van der Woude, Lucas H. V.

    Fliess-Douer O, Vanlandewijck YC, Van Der Woude LHV. Most essential wheeled mobility skills for daily life: an international survey among paralympic wheelchair athletes with spinal cord injury. Arch Phys Med Rehabil 2012;93:629-35. Objectives: To create a hierarchical list of the most essential

  15. Multi-Purpose X-ray System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Stellarray proposes the development of a highly novel Multi-Purpose X-ray Source and System (MPXS), for use on flight missions, space stations, planetary excursions...

  16. An Exploration of Teacher Attrition and Mobility in High Poverty Racially Segregated Schools

    Science.gov (United States)

    Djonko-Moore, Cara M.

    2016-01-01

    The purpose of this study was to examine the mobility (movement to a new school) and attrition (quitting teaching) patterns of teachers in high poverty, racially segregated (HPRS) schools in the US. Using 2007-9 survey data from the National Center for Education Statistics, a multi-level multinomial logistic regression was performed to examine the…

  17. Technics study on high accuracy crush dressing and sharpening of diamond grinding wheel

    Science.gov (United States)

    Jia, Yunhai; Lu, Xuejun; Li, Jiangang; Zhu, Lixin; Song, Yingjie

    2011-05-01

    Mechanical grinding of artificial diamond grinding wheel was traditional wheel dressing process. The rotate speed and infeed depth of tool wheel were main technics parameters. The suitable technics parameters of metals-bonded diamond grinding wheel and resin-bonded diamond grinding wheel high accuracy crush dressing were obtained by a mount of experiment in super-hard material wheel dressing grind machine and by analysis of grinding force. In the same time, the effect of machine sharpening and sprinkle granule sharpening was contrasted. These analyses and lots of experiments had extent instruction significance to artificial diamond grinding wheel accuracy crush dressing.

  18. Western diet increases wheel running in mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Meek, T H; Eisenmann, J C; Garland, T

    2010-06-01

    Mice from a long-term selective breeding experiment for high voluntary wheel running offer a unique model to examine the contributions of genetic and environmental factors in determining the aspects of behavior and metabolism relevant to body-weight regulation and obesity. Starting with generation 16 and continuing through to generation 52, mice from the four replicate high runner (HR) lines have run 2.5-3-fold more revolutions per day as compared with four non-selected control (C) lines, but the nature of this apparent selection limit is not understood. We hypothesized that it might involve the availability of dietary lipids. Wheel running, food consumption (Teklad Rodent Diet (W) 8604, 14% kJ from fat; or Harlan Teklad TD.88137 Western Diet (WD), 42% kJ from fat) and body mass were measured over 1-2-week intervals in 100 males for 2 months starting 3 days after weaning. WD was obesogenic for both HR and C, significantly increasing both body mass and retroperitoneal fat pad mass, the latter even when controlling statistically for wheel-running distance and caloric intake. The HR mice had significantly less fat than C mice, explainable statistically by their greater running distance. On adjusting for body mass, HR mice showed higher caloric intake than C mice, also explainable by their higher running. Accounting for body mass and running, WD initially caused increased caloric intake in both HR and C, but this effect was reversed during the last four weeks of the study. Western diet had little or no effect on wheel running in C mice, but increased revolutions per day by as much as 75% in HR mice, mainly through increased time spent running. The remarkable stimulation of wheel running by WD in HR mice may involve fuel usage during prolonged endurance exercise and/or direct behavioral effects on motivation. Their unique behavioral responses to WD may render HR mice an important model for understanding the control of voluntary activity levels.

  19. Exploring Multi-Scale Spatiotemporal Twitter User Mobility Patterns with a Visual-Analytics Approach

    Directory of Open Access Journals (Sweden)

    Junjun Yin

    2016-10-01

    Full Text Available Understanding human mobility patterns is of great importance for urban planning, traffic management, and even marketing campaign. However, the capability of capturing detailed human movements with fine-grained spatial and temporal granularity is still limited. In this study, we extracted high-resolution mobility data from a collection of over 1.3 billion geo-located Twitter messages. Regarding the concerns of infringement on individual privacy, such as the mobile phone call records with restricted access, the dataset is collected from publicly accessible Twitter data streams. In this paper, we employed a visual-analytics approach to studying multi-scale spatiotemporal Twitter user mobility patterns in the contiguous United States during the year 2014. Our approach included a scalable visual-analytics framework to deliver efficiency and scalability in filtering large volume of geo-located tweets, modeling and extracting Twitter user movements, generating space-time user trajectories, and summarizing multi-scale spatiotemporal user mobility patterns. We performed a set of statistical analysis to understand Twitter user mobility patterns across multi-level spatial scales and temporal ranges. In particular, Twitter user mobility patterns measured by the displacements and radius of gyrations of individuals revealed multi-scale or multi-modal Twitter user mobility patterns. By further studying such mobility patterns in different temporal ranges, we identified both consistency and seasonal fluctuations regarding the distance decay effects in the corresponding mobility patterns. At the same time, our approach provides a geo-visualization unit with an interactive 3D virtual globe web mapping interface for exploratory geo-visual analytics of the multi-level spatiotemporal Twitter user movements.

  20. Comparative Analysis of Lightweight Robotic Wheeled and Tracked Vehicle

    OpenAIRE

    Johnson, Christopher Patrick

    2012-01-01

    This study focuses on conducting a benchmarking analysis for light wheeled and tracked robotic vehicles. Vehicle mobility has long been a key aspect of research for many organizations. According to the Department of Defense vehicle mobility is defined as, "the overall capacity to move from place to place while retaining its ability to perform its primary mission"[1]. Until recently this definition has been applied exclusively to large scale wheeled and tracked vehicles. With new development l...

  1. Safety analysis of the experimental multi-purpose high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Mitake, Susumu; Ezaki, Masahiro; Suzuki, Katsuo; Takaya, Junichi; Shimazu, Akira

    1976-02-01

    Safety features of the experimental multi-purpose high-temperature gas-cooled reactor being developed in JAERI were studied or the basis of its preliminary conceptual design of the reactor plant. Covered are control of the plant in transients, plant behaviour in accidents, and functions of engineered safeguards, and also dynamics of the uprant and frequencies of the accidents. These studies have shown, (i) the reactor plant can be operated both in plant slave to reactor and reactor slave to plant control, (ii) stable control of

  2. Mice from lines selectively bred for high voluntary wheel running exhibit lower blood pressure during withdrawal from wheel access.

    Science.gov (United States)

    Kolb, Erik M; Kelly, Scott A; Garland, Theodore

    2013-03-15

    Exercise is known to be rewarding and have positive effects on mental and physical health. Excessive exercise, however, can be the result of an underlying behavioral/physiological addiction. Both humans who exercise regularly and rodent models of exercise addiction sometimes display behavioral withdrawal symptoms, including depression and anxiety, when exercise is denied. However, few studies have examined the physiological state that occurs during this withdrawal period. Alterations in blood pressure (BP) are common physiological indicators of withdrawal in a variety of addictions. In this study, we examined exercise withdrawal in four replicate lines of mice selectively bred for high voluntary wheel running (HR lines). Mice from the HR lines run almost 3-fold greater distances on wheels than those from non-selected control lines, and have altered brain activity as well as increased behavioral despair when wheel access is removed. We tested the hypothesis that male HR mice have an altered cardiovascular response (heart rate, systolic, diastolic, and mean arterial pressure [MAP]) during exercise withdrawal. Measurements using an occlusion tail-cuff system were taken during 8 days of baseline, 6 days of wheel access, and 2 days of withdrawal (wheel access blocked). During withdrawal, HR mice had significantly lower systolic BP, diastolic BP, and MAP than controls, potentially indicating a differential dependence on voluntary wheel running in HR mice. This is the first characterization of a cardiovascular withdrawal response in an animal model of high voluntary exercise. Copyright © 2013. Published by Elsevier Inc.

  3. Multi-objective Search-based Mobile Testing

    OpenAIRE

    Mao, K.

    2017-01-01

    Despite the tremendous popularity of mobile applications, mobile testing still relies heavily on manual testing. This thesis presents mobile test automation approaches based on multi-objective search. We introduce three approaches: Sapienz (for native Android app testing), Octopuz (for hybrid/web JavaScript app testing) and Polariz (for using crowdsourcing to support search-based mobile testing). These three approaches represent the primary scientific and technical contributions of the thesis...

  4. Multi-scale Fatigue Damage Life Assessment of Railroad Wheels

    Science.gov (United States)

    2018-01-01

    This study focused on the presence of a crack in the railway wheels subsurface and how it affects the wheels fatigue life. A 3-D FE-model was constructed to simulate the stress/strain fields that take place under the rolling contact of railway ...

  5. A new multi-purpose NIM module

    International Nuclear Information System (INIS)

    Dong Binjiang; Wang Congrong; Du Chunxiang.

    1992-01-01

    The authors briefly state the function, character and main technique performance of a new multi-purpose NIM interposition (NI01) developed recently. This interposition uses 8031 single-chip microprocessors as the kernel and is multi-purpose, reliable and convenient. Especially, it is suitable for training teaching and scientific researching

  6. A fully omnidirectional wheeled assembly for robotic vehicles

    International Nuclear Information System (INIS)

    Killough, S.M.; Pin, F.G.

    1990-01-01

    A large number of wheeled or tracked platform mechanisms have been studied and developed to provide their mobility capability to teleoperated and autonomous robot vehicles. This paper presents an original wheeled platform based on an orthogonal wheel assembly that provides a full (three-degrees-of-freedom) omnidirectionality of the platform without wheel slippage and with the capability for simultaneous motions in rotation and translation (including sideways movements). A schematic of the basic wheel assembly is shown. The motion of the assembly is unconstrained (freewheeling) in the direction parallel to the main assembly shaft, while it is constrained in the direction perpendicular to the shaft, being driven in this direction by rotation of the shaft. A prototype platform was constructed to demonstrate the feasibility of this new concept

  7. Systems-on-chip approach for real-time simulation of wheel-rail contact laws

    Science.gov (United States)

    Mei, T. X.; Zhou, Y. J.

    2013-04-01

    This paper presents the development of a systems-on-chip approach to speed up the simulation of wheel-rail contact laws, which can be used to reduce the requirement for high-performance computers and enable simulation in real time for the use of hardware-in-loop for experimental studies of the latest vehicle dynamic and control technologies. The wheel-rail contact laws are implemented using a field programmable gate array (FPGA) device with a design that substantially outperforms modern general-purpose PC platforms or fixed architecture digital signal processor devices in terms of processing time, configuration flexibility and cost. In order to utilise the FPGA's parallel-processing capability, the operations in the contact laws algorithms are arranged in a parallel manner and multi-contact patches are tackled simultaneously in the design. The interface between the FPGA device and the host PC is achieved by using a high-throughput and low-latency Ethernet link. The development is based on FASTSIM algorithms, although the design can be adapted and expanded for even more computationally demanding tasks.

  8. UT Biomedical Informatics Lab (BMIL) probability wheel

    Science.gov (United States)

    Huang, Sheng-Cheng; Lee, Sara; Wang, Allen; Cantor, Scott B.; Sun, Clement; Fan, Kaili; Reece, Gregory P.; Kim, Min Soon; Markey, Mia K.

    A probability wheel app is intended to facilitate communication between two people, an "investigator" and a "participant", about uncertainties inherent in decision-making. Traditionally, a probability wheel is a mechanical prop with two colored slices. A user adjusts the sizes of the slices to indicate the relative value of the probabilities assigned to them. A probability wheel can improve the adjustment process and attenuate the effect of anchoring bias when it is used to estimate or communicate probabilities of outcomes. The goal of this work was to develop a mobile application of the probability wheel that is portable, easily available, and more versatile. We provide a motivating example from medical decision-making, but the tool is widely applicable for researchers in the decision sciences.

  9. Continuous Wheel Momentum Dumping Using Magnetic Torquers and Thrusters

    Science.gov (United States)

    Oh, Hwa-Suk; Choi, Wan-Sik; Eun, Jong-Won

    1996-12-01

    Two momentum management schemes using magnetic torquers and thrusters are sug-gested. The stability of the momentum dumping logic is proved at a general attitude equilibrium. Both momentum dumping control laws are implemented with Pulse-Width- Pulse-Frequency Modulated on-off control, and shown working equally well with the original continuous and variable strength control law. Thrusters are assummed to be asymmetrically configured as a contingency case. Each thruster is fired following separated control laws rather than paired thrusting. Null torque thrusting control is added on the thrust control calculated from the momentum control law for the gener-ation of positive thrusting force. Both magnetic and thrusting control laws guarantee the momentum dumping, however, the wheel inner loop control is needed for the "wheel speed" dumping, The control laws are simulated on the KOrea Multi-Purpose SATellite (KOMPSAT) model.

  10. Characterization of Fillite as a planetary soil simulant in support of rover mobility assessment in high-sinkage/high-slip environments

    Science.gov (United States)

    Edwards, Michael

    smaller than those of most other simulants. Smaller shear strength, coupled with much smaller bulk unit weight as compared to other simulants, results in smaller bearing and shearing resistances allowing for better simulation of the intended high-sinkage, high-slip behavior for rover mobility studies. The results of the normal bevameter tests were used to determine parameters for two models available in the literature - the Bekker model and the New Model of Mobility (N2M) model. These parameters were then used to predict the sinkage of a Spirit rover wheel if the rover were to be used on Fillite. The predicted sinkage of a Spirit rover wheel in Fillite was 84% of the wheel diameter, which was within the observed sinkage of 50 to 90% of the wheel diameter of the Spirit rover on Mars. Shear bevameter tests were also performed on Fillite to assess the shear stresses and shear deformations imparted by wheels under torsional loads. The results compared well to the estimated shear stresses and deformations of Martian soil caused by the wheels of the Spirit rover. When compared to other simulants (e.g. GRC-1), the pressure-sinkage and shear stress-shear deformation behaviors of Fillite confirm that Fillite is more suitable for high-sinkage and high-slip rover studies than other typical simulants derived from natural terrestrial soils and rocks.

  11. On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles

    Science.gov (United States)

    2006-02-17

    On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles Report Title ABSTRACT In this work we proposed two semi-analytic...298-102 Enclosure 1 On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles by...Specifically, the following problems will be addressed during this project: 2.1 Challenges The problem of trajectory planning for high-speed autonomous vehicles is

  12. Experimental analysis on performance of high temperature heat pump and desiccant wheel system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Deng, Na

    2013-01-01

    In order to solve the problem of high energy consumption for regeneration of desiccant wheel in the rotary desiccant system, high temperature heat pump and desiccant wheel (HTHP&DW) system and corresponding air conditioning unit is built and tested in the extensive thermal hygrometric environment...

  13. The Coastal Hazard Wheel system for coastal multi-hazard assessment & management in a changing climate

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl; Halsnæs, Kirsten

    2015-01-01

    This paper presents the complete Coastal Hazard Wheel (CHW) system, developed for multi-hazard-assessment and multi-hazard-management of coastal areas worldwide under a changing climate. The system is designed as a low-tech tool that can be used in areas with limited data availability...... screening and management. The system is developed to assess the main coastal hazards in a single process and covers the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding. The system was initially presented in 2012 and based on a range of test......-applications and feedback from coastal experts, the system has been further refined and developed into a complete hazard management tool. This paper therefore covers the coastal classification system used by the CHW, a standardized assessment procedure for implementation of multi-hazard-assessments, technical guidance...

  14. A Novel Multi-Finger Gate Structure of AlGaN/GaN High Electron Mobility Transistor

    International Nuclear Information System (INIS)

    Cui Lei; Wang Quan; Wang Xiao-Liang; Xiao Hong-Ling; Wang Cui-Mei; Jiang Li-Juan; Feng Chun; Yin Hai-Bo; Gong Jia-Min; Li Bai-Quan; Wang Zhan-Guo

    2015-01-01

    A novel multi-finger gate high electron mobility transistor (HEMT) is designed to reduce the peak electric field value at the drain-side gate edge when the device is at off-state. The effective gate length (L_e_f_f) of the multi-finger gate device is smaller than that of the field plate gate device. In this work, field plate gate, five-finger gate and ten-finger gate devices are simulated. The results of the simulation indicate that the multi-finger gate device has a lower peak value than the device with the gate field plate. Moreover, this value would be further reduced when the number of gate fingers is increased. In addition, it has the potential to make the HEMT work in a higher frequency since it has a lower effective length of gate. (paper)

  15. Multi-Purpose Test Stand

    Data.gov (United States)

    Federal Laboratory Consortium — The Multi-Purpose Test Stand is used for a wide variety of tests. The Stand is designed to be rotated through a range of fixed yaw positions to allow engines to be...

  16. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Yang Liyuan; Ai Shan; Chen Yonghe; Cao Mengyi; Zhang Kai; Ma Xiaohua; Hao Yue

    2013-01-01

    Self-heating in multi-finger AlGaN/GaN high-electron-mobility transistors (HEMTs) is investigated by measurements and modeling of device junction temperature under steady-state operation. Measurements are carried out using micro-Raman scattering to obtain the detailed and accurate temperature distribution of the device. The device peak temperature corresponds to the high field region at the drain side of gate edge. The channel temperature of the device is modeled using a combined electro-thermal model considering 2DEG transport characteristics and the Joule heating power distribution. The results reveal excellent correlation to the micro-Raman measurements, validating our model for the design of better cooled structures. Furthermore, the influence of layout design on the channel temperature of multi-finger AlGaN/GaN HEMTs is studied using the proposed electro-thermal model, allowing for device optimization. (semiconductor devices)

  17. Multi-Dimensional Auction Mechanisms for Crowdsourced Mobile Video Streaming

    OpenAIRE

    Tang, Ming; Pang, Haitian; Wang, Shou; Gao, Lin; Huang, Jianwei; Sun, Lifeng

    2017-01-01

    Crowdsourced mobile video streaming enables nearby mobile video users to aggregate network resources to improve their video streaming performances. However, users are often selfish and may not be willing to cooperate without proper incentives. Designing an incentive mechanism for such a scenario is challenging due to the users' asynchronous downloading behaviors and their private valuations for multi-bitrate coded videos. In this work, we propose both single-object and multi-object multi-dime...

  18. Structural analysis of ITER multi-purpose deployer

    International Nuclear Information System (INIS)

    Manuelraj, Manoah Stephen; Dutta, Pramit; Gotewal, Krishan Kumar; Rastogi, Naveen; Tesini, Alessandro; Choi, Chang-Hwan

    2016-01-01

    Highlights: • System modelling for structural analysis of the Multi-Purpose Deployer (MPD). • Finite element modeling of the Multi-Purpose Deployer (MPD). • Static, modal and seismic response analysis of the Multi-Purpose Deployer (MPD). • Iterative structural analysis and design update to satisfy the structural criteria. • Modal analysis for various kinematic configurations. • Reaction force calculations on the interfacing systems. - Abstract: The Multi-Purpose Deployer (MPD) is a general purpose ITER in-vessel remote handling (RH) system. The main handling equipment, known as the MPD Transporter, consists of a series of linked bodies, which provide anchoring to the vacuum vessel port and an articulated multi-degree of freedom motion to perform various in-vessel maintenance tasks. During the in-vessel operations, the structural integrity of the system should be guaranteed against various operational and seismic loads. This paper presents the structural analysis results of the concept design of the MPD Transporter considering the seismic events. Static structural, modal and frequency response spectrum analyses have been performed to verify the structural integrity of the system, and to provide reaction forces to the interfacing systems such as vacuum vessel and cask. Iterative analyses and design updates are carried out based on the reference design of the system to improve the structural behavior of the system. The frequency responses of the system in various kinematics and payloads are assessed.

  19. An adaptive unscented Kalman filter-based adaptive tracking control for wheeled mobile robots with control constrains in the presence of wheel slipping

    Directory of Open Access Journals (Sweden)

    Mingyue Cui

    2016-09-01

    Full Text Available A novel control approach is proposed for trajectory tracking of a wheeled mobile robot with unknown wheels’ slipping. The longitudinal and lateral slipping are considered and processed as three time-varying parameters. The adaptive unscented Kalman filter is then designed to estimate the slipping parameters online, an adaptive adjustment of the noise covariances in the estimation process is implemented using a technique of covariance matching in the adaptive unscented Kalman filter context. Considering the practical physical constrains, a stable tracking control law for this robot system is proposed by the backstepping method. Asymptotic stability is guaranteed by Lyapunov stability theory. Control gains are determined online by applying pole placement method. Simulation and real experiment results show the effectiveness and robustness of the proposed control method.

  20. An overview of the Accident Response Mobile Manipulation System (ARMMS)

    International Nuclear Information System (INIS)

    Morse, W.D.; Hayward, D.R.; Jones, D.P.; Sanchez, A.; Shirey, D.L.

    1993-01-01

    The development of a high mobility platform integrated with high strength manipulation is under development at Sandia National Laboratories. The mobility platform used is a High Mobility Multipurpose Wheeled Vehicle (HMMWV). Manipulation is provided by two Titan 7F Schilling manipulators integrated onboard the HMMWV. The current state of development is described and future plans are discussed

  1. Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware

    Directory of Open Access Journals (Sweden)

    Y.-W. Kang

    2007-12-01

    Full Text Available We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512, KAF-1602E(1536×1024, KAF-3200E(2184×1472 made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.

  2. Multi-criteria objective based climate change impact assessment for multi-purpose multi-reservoir systems

    Science.gov (United States)

    Müller, Ruben; Schütze, Niels

    2014-05-01

    Water resources systems with reservoirs are expected to be sensitive to climate change. Assessment studies that analyze the impact of climate change on the performance of reservoirs can be divided in two groups: (1) Studies that simulate the operation under projected inflows with the current set of operational rules. Due to non adapted operational rules the future performance of these reservoirs can be underestimated and the impact overestimated. (2) Studies that optimize the operational rules for best adaption of the system to the projected conditions before the assessment of the impact. The latter allows for estimating more realistically future performance and adaption strategies based on new operation rules are available if required. Multi-purpose reservoirs serve various, often conflicting functions. If all functions cannot be served simultaneously at a maximum level, an effective compromise between multiple objectives of the reservoir operation has to be provided. Yet under climate change the historically preferenced compromise may no longer be the most suitable compromise in the future. Therefore a multi-objective based climate change impact assessment approach for multi-purpose multi-reservoir systems is proposed in the study. Projected inflows are provided in a first step using a physically based rainfall-runoff model. In a second step, a time series model is applied to generate long-term inflow time series. Finally, the long-term inflow series are used as driving variables for a simulation-based multi-objective optimization of the reservoir system in order to derive optimal operation rules. As a result, the adapted Pareto-optimal set of diverse best compromise solutions can be presented to the decision maker in order to assist him in assessing climate change adaption measures with respect to the future performance of the multi-purpose reservoir system. The approach is tested on a multi-purpose multi-reservoir system in a mountainous catchment in Germany. A

  3. Multi-purpose ECG telemetry system.

    Science.gov (United States)

    Marouf, Mohamed; Vukomanovic, Goran; Saranovac, Lazar; Bozic, Miroslav

    2017-06-19

    The Electrocardiogram ECG is one of the most important non-invasive tools for cardiac diseases diagnosis. Taking advantage of the developed telecommunication infrastructure, several approaches that address the development of telemetry cardiac devices were introduced recently. Telemetry ECG devices allow easy and fast ECG monitoring of patients with suspected cardiac issues. Choosing the right device with the desired working mode, signal quality, and the device cost are still the main obstacles to massive usage of these devices. In this paper, we introduce design, implementation, and validation of a multi-purpose telemetry system for recording, transmission, and interpretation of ECG signals in different recording modes. The system consists of an ECG device, a cloud-based analysis pipeline, and accompanied mobile applications for physicians and patients. The proposed ECG device's mechanical design allows laypersons to easily record post-event short-term ECG signals, using dry electrodes without any preparation. Moreover, patients can use the device to record long-term signals in loop and holter modes, using wet electrodes. In order to overcome the problem of signal quality fluctuation due to using different electrodes types and different placements on subject's chest, customized ECG signal processing and interpretation pipeline is presented for each working mode. We present the evaluation of the novel short-term recorder design. Recording of an ECG signal was performed for 391 patients using a standard 12-leads golden standard ECG and the proposed patient-activated short-term post-event recorder. In the validation phase, a sample of validation signals followed peer review process wherein two experts annotated the signals in terms of signal acceptability for diagnosis.We found that 96% of signals allow detecting arrhythmia and other signal's abnormal changes. Additionally, we compared and presented the correlation coefficient and the automatic QRS delineation results

  4. On minimizing mechanical stresses of the rail way wheels

    International Nuclear Information System (INIS)

    Moosavi, H.; Esfahanian, M.

    2000-01-01

    The purpose of this paper is to study the behavior of elastic-plastic stresses under severe drag braking. A railway wheel performs three tasks, aiding in trian movement, supporting the car load, and acting as a brake drum. Finite element computer programs are developed for elasto-plastic stress analysis. An attempt is made here to find an improved fillet profile of the wheel with the intention of minimizing high tensile mechanical stresses. Three new fillet profiles for the wheel are tested. A penalty function is used as a criterion for comparison of stresses between the new designs and the old design. The design with the least penalty is chosen to be the improved one

  5. Word wheels

    CERN Document Server

    Clark, Kathryn

    2013-01-01

    Targeting the specific problems learners have with language structure, these multi-sensory exercises appeal to all age groups including adults. Exercises use sight, sound and touch and are also suitable for English as an Additional Lanaguage and Basic Skills students.Word Wheels includes off-the-shelf resources including lesson plans and photocopiable worksheets, an interactive CD with practice exercises, and support material for the busy teacher or non-specialist staff, as well as homework activities.

  6. High speed reaction wheels for satellite attitude control and energy storage

    Science.gov (United States)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  7. A horizontal multi-purpose microbeam system

    Science.gov (United States)

    Xu, Y.; Randers-Pehrson, G.; Marino, S. A.; Garty, G.; Harken, A.; Brenner, D. J.

    2018-04-01

    A horizontal multi-purpose microbeam system with a single electrostatic quadruplet focusing lens has been developed at the Columbia University Radiological Research Accelerator Facility (RARAF). It is coupled with the RARAF 5.5 MV Singleton accelerator (High Voltage Engineering Europa, the Netherlands) and provides micrometer-size beam for single cell irradiation experiments. It is also used as the primary beam for a neutron microbeam and microPIXE (particle induced x-ray emission) experiment because of its high particle fluence. The optimization of this microbeam has been investigated with ray tracing simulations and the beam spot size has been verified by different measurements.

  8. 5G Terminals with Multi-Streaming Features for Real-Time Mobile Broadband Applications

    Directory of Open Access Journals (Sweden)

    T. Shuminoski

    2017-06-01

    Full Text Available In this paper we present a novel QoS framework on the network layer for 5G terminals with vertical multi-homing and multi-streaming capabilities by using radio networks aggregation. The proposed framework is leading to high performance utility networks with QoS provisioning for real-time multimedia services by achieving low packet delays, stochastic queuing network stability and highest mobile broadband capabilities i.e. bitrates. The proposed QoS algorithm is implemented within the mobile terminals on one side, and in dedicated proxy servers on mobile core network side. It is based on Lyapunov optimization techniques and it is targeted to handle simultaneously multiple multimedia service flows via multiple radio network interfaces in parallel.

  9. A Multi-Technology Communication Platform for Urban Mobile Sensing.

    Science.gov (United States)

    Almeida, Rodrigo; Oliveira, Rui; Luís, Miguel; Senna, Carlos; Sargento, Susana

    2018-04-12

    A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network.

  10. A Multi-Technology Communication Platform for Urban Mobile Sensing

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeida

    2018-04-01

    Full Text Available A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE, a delay-tolerant network (DTN-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network.

  11. A Multi-Technology Communication Platform for Urban Mobile Sensing

    Science.gov (United States)

    Almeida, Rodrigo; Oliveira, Rui

    2018-01-01

    A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network. PMID:29649175

  12. Adaptive control of two-wheeled mobile balance robot capable to adapt different surfaces using a novel artificial neural network–based real-time switching dynamic controller

    Directory of Open Access Journals (Sweden)

    Ali Unluturk

    2017-03-01

    Full Text Available In this article, a novel real-time artificial neural network–based adaptable switching dynamic controller is developed and practically implemented. It will be used for real-time control of two-wheeled balance robot which can balance itself upright position on different surfaces. In order to examine the efficiency of the proposed controller, a two-wheeled mobile balance robot is designed and a test platform for experimental setup is made for balance problem on different surfaces. In a developed adaptive controller algorithm which is capable to adapt different surfaces, mean absolute target angle deviation error, mean absolute target displacement deviation error and mean absolute controller output data are employed for surface estimation by using artificial neural network. In a designed two-wheeled mobile balance robot system, robot tilt angle is estimated via Kalman filter from accelerometer and gyroscope sensor signals. Furthermore, a visual robot control interface is developed in C++ software development environment so that robot controller parameters can be changed as desired. In addition, robot balance angle, linear displacement and controller output can be observed online on personal computer. According to the real-time experimental results, the proposed novel type controller gives more effective results than the classic ones.

  13. Reinventing the wheel: comparison of two wheel cage styles for assessing mouse voluntary running activity.

    Science.gov (United States)

    Seward, T; Harfmann, B D; Esser, K A; Schroder, E A

    2018-04-01

    Voluntary wheel cage assessment of mouse activity is commonly employed in exercise and behavioral research. Currently, no standardization for wheel cages exists resulting in an inability to compare results among data from different laboratories. The purpose of this study was to determine whether the distance run or average speed data differ depending on the use of two commonly used commercially available wheel cage systems. Two different wheel cages with structurally similar but functionally different wheels (electromechanical switch vs. magnetic switch) were compared side-by-side to measure wheel running data differences. Other variables, including enrichment and cage location, were also tested to assess potential impacts on the running wheel data. We found that cages with the electromechanical switch had greater inherent wheel resistance and consistently led to greater running distance per day and higher average running speed. Mice rapidly, within 1-2 days, adapted their running behavior to the type of experimental switch used, suggesting these running differences are more behavioral than due to intrinsic musculoskeletal, cardiovascular, or metabolic limits. The presence of enrichment or location of the cage had no detectable impact on voluntary wheel running. These results demonstrate that mice run differing amounts depending on the type of cage and switch mechanism used and thus investigators need to report wheel cage type/wheel resistance and use caution when interpreting distance/speed run across studies. NEW & NOTEWORTHY The results of this study highlight that mice will run different distances per day and average speed based on the inherent resistance present in the switch mechanism used to record data. Rapid changes in running behavior for the same mouse in the different cages demonstrate that a strong behavioral factor contributes to classic exercise outcomes in mice. Caution needs to be taken when interpreting mouse voluntary wheel running activity to

  14. Applied design methodology for lunar rover elastic wheel

    Science.gov (United States)

    Cardile, Diego; Viola, Nicole; Chiesa, Sergio; Rougier, Alessandro

    2012-12-01

    In recent years an increasing interest in the Moon surface operations has been experienced. In the future robotic and manned missions of Moon surface exploration will be fundamental in order to lay the groundwork for more ambitious space exploration programs. Surface mobility systems will be the key elements to ensure an efficient and safe Moon exploration. Future lunar rovers are likely to be heavier and able to travel longer distances than the previously developed Moon rover systems. The Lunar Roving Vehicle (LRV) is the only manned rover, which has so far been launched and used on the Moon surface. Its mobility system included flexible wheels that cannot be scaled to the heavier and longer range vehicles. Thus the previously developed wheels are likely not to be suitable for the new larger vehicles. Taking all these considerations into account, on the basis of the system requirements and assumptions, several wheel concepts have been discussed and evaluated through a trade-off analysis. Semi-empirical equations have been utilized to predict the wheel geometrical characteristics, as well as to estimate the motion resistances and the ability of the system to generate thrust. A numerical model has also been implemented, in order to define more into the details the whole wheel design, in terms of wheel geometry and physical properties. As a result of the trade-off analysis, the ellipse wheel concept has shown the best behavior in terms of stiffness, mass budget and dynamic performance. The results presented in the paper have been obtained in cooperation with Thales Alenia Space-Italy and Sicme motori, in the framework of a regional program called STEPS . STEPS-Sistemi e Tecnologie per l'EsPlorazione Spaziale is a research project co-financed by Piedmont Region and firms and universities of the Piedmont Aerospace District in the ambit of the P.O.R-F.E.S.R. 2007-2013 program.

  15. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    International Nuclear Information System (INIS)

    Greene, John P.; Gabor, Rachel; Neubauer, Janelle

    2001-01-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or 'wobbled' beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material

  16. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    International Nuclear Information System (INIS)

    Greene, J. P.; Gabor, R.; Neubauer, J.

    2000-01-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material

  17. A Framework for Joint Optical-Wireless Resource Management in Multi-RAT, Heterogeneous Mobile Networks

    DEFF Research Database (Denmark)

    Zakrzewska, Anna; Popovska Avramova, Andrijana; Christiansen, Henrik Lehrmann

    2013-01-01

    Mobile networks are constantly evolving: new Radio Access Technologies (RATs) are being introduced, and backhaul architectures like Cloud-RAN (C-RAN) and distributed base stations are being proposed. Furthermore, small cells are being deployed to enhance network capacity. The end-users wish...... to be always connected to a high-quality service (high bit rates, low latency), thus causing a very complex network control task from an operator’s point of view. We thus propose a framework allowing joint overall network resource management. This scheme covers different types of network heterogeneity (multi......-RAT, multi-layer, multi-architecture) by introducing a novel, hierarchical approach to network resource management. Self-Organizing Networks (SON) and cognitive network behaviors are covered as well as more traditional mobile network features. The framework is applicable to all phases of network operation...

  18. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    Science.gov (United States)

    Vellers, Heather L.; Letsinger, Ayland C.; Walker, Nicholas R.; Granados, Jorge Z.; Lightfoot, J. Timothy

    2017-01-01

    Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s) may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels. Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD) or high fat/high sugar (HFHS) diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males) and 17β-estradiol (females) to determine if sex hormone augmentation altered diet-induced changes in activity. Results: 117 mice (56♂, 61♀) were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p running-wheel distance in male (p = 0.05, 70 ± 28%) and female mice (p = 0.02, 57 ± 26%). In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat. Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones. PMID:28890701

  19. RapidIO as a multi-purpose interconnect

    Science.gov (United States)

    Baymani, Simaolhoda; Alexopoulos, Konstantinos; Valat, Sébastien

    2017-10-01

    RapidIO (http://rapidio.org/) technology is a packet-switched high-performance fabric, which has been under active development since 1997. Originally meant to be a front side bus, it developed into a system level interconnect which is today used in all 4G/LTE base stations world wide. RapidIO is often used in embedded systems that require high reliability, low latency and scalability in a heterogeneous environment - features that are highly interesting for several use cases, such as data analytics and data acquisition (DAQ) networks. We will present the results of evaluating RapidIO in a data analytics environment, from setup to benchmark. Specifically, we will share the experience of running ROOT and Hadoop on top of RapidIO. To demonstrate the multi-purpose characteristics of RapidIO, we will also present the results of investigating RapidIO as a technology for high-speed DAQ networks using a generic multi-protocol event-building emulation tool. In addition we will present lessons learned from implementing native ports of CERN applications to RapidIO.

  20. MYRRHA a multi-purpose hybrid research reactor for high-tech applications

    International Nuclear Information System (INIS)

    Abderrahim, H. A.; Baeten, P.

    2012-01-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the flexible experimental accelerator driven system (ADS) in development at SCK-CEN. MYRRHA is able to work both in subcritical (ADS) as in critical mode. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for generation IV (GEN IV) systems, material developments for fusion reactors, radioisotope production and industrial applications, such as Si-doping. MYRRHA will also demonstrate the ADS full concept by coupling the three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow the study of efficient transmutation of high-level nuclear waste. MYRRHA is based on the heavy liquid metal technology and so it will contribute to the development of lead fast reactor (LFR) technology and in critical mode, MYRRHA will play the role of European technology pilot plant in the roadmap for LFR. In this paper the historical evolution of MYRRHA and the rationale behind the design choices is presented and the latest configuration of the reactor core and primary system is described. (authors)

  1. Wheel/rail noise generated by a high-speed train investigated with a line array of microphones

    Science.gov (United States)

    Barsikow, B.; King, W. F.; Pfizenmaier, E.

    1987-10-01

    Radiated noise generated by a high-speed electric train travelling at speeds up to 250 km/h has been measured with a line array of microphones mounted along the wayside in two different orientations. The test train comprised a 103 electric locomotive, four Intercity coaches, and a dynamo coach. Some of the wheels were fitted with experimental wheel-noise absorbers. By using the directional capabilities of the array, the locations of the dominant sources of wheel/rail radiated noise were identified on the wheels. For conventional wheels, these sources lie near or on the rim at an average height of about 0·2 m above the railhead. The effect of wheel-noise absorbers and freshly turned treads on radiated noise were also investigated.

  2. Regulatory issues associated with the Multi-Purpose (MPC) system

    International Nuclear Information System (INIS)

    Roberts, J.P.; Desell, L.J.; Birch, M.L.; Morgan, R.G.

    1994-01-01

    The US Department of Energy Office of Civilian Radioactive Waste Management is developing a Multi-Purpose Canister system to promote compatibility between the waste program elements of storage, transportation, and disposal. The development of a Multi-Purpose Canister system requires meeting various regulatory requirements. These regulatory requirements are set forth in environmental and Nuclear Regulatory Commission (NRC) regulations. This paper discusses the more significant regulatory issues that must be addressed in the development of a Multi-Purpose Canister system by the Department of Energy

  3. Summary of the experimental multi-purpose very high temperature gas cooled reactor design

    International Nuclear Information System (INIS)

    1984-12-01

    The report presents the design of Multi-purpose Very High Temperature Gas Cooled Reactor (the Experimental VHTR) based on the second stage of detailed design which was completed on March 1984, in the from of ''An application of reactor construction permit Appendix 8''. The Experimental VHTR is designed to satisfy with the design specification for the reactor thermal output 50 MW and reactor outlet temperature 950 0 C. The adequacy of the design is also checked by the safety analysis. The planning of plant system and safety is summarized such as safety design requirements and conformance with them, seismic design and plant arrangement. Concerning with the system of the Experimental VHTR the design basis, design data and components are described in the order. (author)

  4. Finite-Time Switched Second-Order Sliding-Mode Control of Nonholonomic Wheeled Mobile Robot Systems

    Directory of Open Access Journals (Sweden)

    Hao Ce

    2018-01-01

    Full Text Available A continuous finite-time robust control method for the trajectory tracking control of a nonholonomic wheeled mobile robot (NWMR is presented in this paper. The proposed approach is composed of conventional sliding-mode control (SMC in the internal loop and modified switched second-order sliding-mode (S-SOSM control in the external loop. Sliding-mode controller is equivalently represented as stabilization of the nominal system without uncertainties. An S-SOSM control algorithm is employed to counteract the impact of state-dependent unmodeled dynamics and time-varying external disturbances, and the unexpected chattering has been attenuated significantly. Particularly, state-space partitioning is constructed to obtain the bounds of uncertainty terms and accomplish different control objectives under different requirements. Simulation and experiment results are used to demonstrate the effectiveness and applicability of the proposed approach.

  5. Micromagnetics on high-performance workstation and mobile computational platforms

    Science.gov (United States)

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  6. Velocity Tracking Control of Wheeled Mobile Robots by Iterative Learning Control

    Directory of Open Access Journals (Sweden)

    Xiaochun Lu

    2016-05-01

    Full Text Available This paper presents an iterative learning control (ILC strategy to resolve the trajectory tracking problem of wheeled mobile robots (WMRs based on dynamic model. In the previous study of WMRs’ trajectory tracking, ILC was usually applied to the kinematical model of WMRs with the assumption that desired velocity can be tracked immediately. However, this assumption cannot be realized in the real world at all. The kinematic and dynamic models of WMRs are deduced in this chapter, and a novel combination of D-type ILC algorithm and dynamic model of WMR with random bounded disturbances are presented. To analyze the convergence of the algorithm, the method of contracting mapping, which shows that the designed controller can make the velocity tracking errors converge to zero completely when the iteration times tend to infinite, is adopted. Simulation results show the effectiveness of D-type ILC in the trajectory tracking problem of WMRs, demonstrating the effectiveness and robustness of the algorithm in the condition of random bounded disturbance. A comparative study conducted between D-type ILC and compound cosine function neural network (NN controller also demonstrates the effectiveness of the ILC strategy.

  7. 49 CFR 238.119 - Rim-stamped straight-plate wheels.

    Science.gov (United States)

    2010-10-01

    ... input to the wheel during braking. (b) A rim-stamped straight-plate wheel shall not be used as a... that is periodically tread-braked for a short duration by automatic circuitry for the sole purpose of...

  8. Multi-Purpose Storage Complex description

    International Nuclear Information System (INIS)

    Nyman, D.H.

    1993-01-01

    The Multi-Purpose Storage Complex will provide interim storage of radioactive material (irradiated fuel, cesium/strontium capsules, plutonium residuals, canisters of vitrified high-level waste glass, and other radioactive material) at the Hanford Site near Richland, Washington. A Storage Preparation and Shipping Facility is included that will have the capability to stabilize failed metal fuel, segregate high-level solid waste, and package/repackage any of the materials for interim storage/final disposal or subsequent processing. Current technology, both domestic and foreign, will be adapted with the expectation that no new technology will be required. This cost-effective approach will use fuel casks, transport systems, and/or modular vaults that have been licensed in the United States. The complex will have a central control room, and appropriate safeguards and security measures will be incorporated. A specific design objective will be to minimize the amount of secondary waste

  9. Graphene for Multi-purpose Applications

    KAUST Repository

    Qaisi, Ramy M.

    2015-12-01

    In the recent past, graphene has been discovered and studied as one of the most promising materials after silicon and carbon nanotube. Its atomically thin structure, pristine dangling bonds free surface and interface, ultra-fast charge transport capability, semi-metallic behavior, ultra-strong mechanical ruggedness, promising photonic properties and bio-compatibility makes it a material to explore from all different perspectives to identify potential application areas which can augment the quality of our life. Therefore, in this doctoral work the following critical studies have been carried out meticulously with key findings are listed below: (1) A simplistic and sustainable growth process of double or multi-layer graphene (up to 4” substrate coverage with uniformity) using low-cost atmospheric chemical vapor deposition (APCVD) technique. [presented in MRS Fall Meeting 2012 and in IEEE SIECPC 2012) (2) A buried metallic layer based contact engineering process to overcome the sustained challenge of contact engineering associated with low-dimensional atomically thin material. (presented in IEEE Nano 2013 and archieved in conference proceedings) (3) Demonstration of a fin type graphene transistor (inspired by multi-gate architecture) with a mobility of 11,000 cm2/V.s at room temperature with an applied drive-in voltage of ±1 volt to demonstrate for the first time a pragmatic approach for graphene transistor for mobile applications which can maintain its ultra-fast charge transport behavior with ultra-low power consumption. [Published in ACS Nano 2013] (4) Further a meticulous study has been done to understand the harsh environment compatibility of graphene for its potential use in underwater and space applications. [Published as Cover Article in physica solidi status – Rapid Research Letters, 2014] (5) Due to its highly conductive nature and low surface-to-volume ratio it has been used to replace conventional gold based anodic material in microbial fuel cells

  10. Fluid Mechanics of a High Performance Racing Bicycle Wheel

    Science.gov (United States)

    Mercat, Jean-Pierre; Cretoux, Brieuc; Huat, Francois-Xavier; Nordey, Benoit; Renaud, Maxime; Noca, Flavio

    2013-11-01

    In 2012, MAVIC released the most aerodynamic bicycle wheel on the market, the CXR 80. The french company MAVIC has been a world leader for many decades in the manufacturing of bicycle wheels for competitive events such as the Olympic Games and the Tour de France. Since 2010, MAVIC has been in a research partnership with the University of Applied Sciences in Geneva, Switzerland, for the aerodynamic development of bicycle wheels. While most of the development up to date has been performed in a classical wind tunnel, recent work has been conducted in an unusual setting, a hydrodynamic towing tank, in order to achieve low levels of turbulence and facilitate quantitative flow visualization (PIV). After a short introduction on the aerodynamics of bicycle wheels, preliminary fluid mechanics results based on this novel setup will be presented.

  11. Driving in Parkinson's disease: mobility, accidents, and sudden onset of sleep at the wheel.

    Science.gov (United States)

    Meindorfner, Charlotte; Körner, Yvonne; Möller, Jens Carsten; Stiasny-Kolster, Karin; Oertel, Wolfgang Hermann; Krüger, Hans-Peter

    2005-07-01

    Only few studies have addressed driving ability in Parkinson's disease (PD) to date. However, studies investigating accident proneness of PD patients are urgently needed in the light of motor disability in PD and--particularly--the report of "sleep attacks" at the wheel. We sent a questionnaire about sudden onset of sleep (SOS) and driving behavior to 12,000 PD patients. Subsequently, of 6,620 complete data sets, 361 patients were interviewed by phone. A total of 82% of those 6,620 patients held a driving license, and 60% of them still participated in traffic. Of the patients holding a driving license, 15% had been involved in and 11% had caused at least one accident during the past 5 years. The risk of causing accidents was significantly increased for patients who felt moderately impaired by PD, had an increased Epworth Sleepiness Scale (ESS) score, and had experienced SOS while driving. Sleep attacks at the wheel usually occurred in easy driving situations and resulted in typical fatigue-related accidents. Those having retired from driving had a more advanced (subjective) disease severity, higher age, more frequently female gender, an increased ESS score, and a longer disease duration. The study revealed SOS and daytime sleepiness as critical factors for traffic safety in addition to motor disabilities of PD patients. The results suggest that real sleep attacks without any prior sleepiness are rare. However, our data underline the importance of mobility for patients and the need for further studies addressing the ability to drive in PD. Copyright 2005 Movement Disorder Society.

  12. Recovery tread wheel pairs of machining

    Directory of Open Access Journals (Sweden)

    Igor IVANOV

    2013-01-01

    Full Text Available The basic methods of resurfacing wheels are determined and analised. It’sshown that for raising resource of used wheels and decreasing requirements of railwaytransport for new wheels it’s reasonable to use methods of recovering not only geometricparameters of rim, but also its mechanical properties. It’s marked that use of infeedprofile high-speed grinding (VPVSh enables to intensify significantly process ofmechanical treatment of wheel rim profile both when its resurfacing in service and whenmanufacturing new wheel.

  13. Improving Mobility Performance in Wheelchair Basketball.

    Science.gov (United States)

    Veeger, Thom T J; De Witte, Annemarie M H; Berger, Monique A M; Van Der Slikke, Rienk M A; Veeger, Dirkjan H E J; Hoozemans, Marco J M

    2017-10-16

    This study aimed to investigate which characteristics of athlete, wheelchair and athlete-wheelchair interface are the best predictors of wheelchair basketball mobility performance. Sixty experienced wheelchair basketball players performed a wheelchair mobility performance test to assess their mobility performance. To determine which variables were the best predictors of mobility performance, forward stepwise linear regression analyses were performed on a set of 33 characteristics, including ten athlete, nineteen wheelchair and four athlete-wheelchair interface characteristics. Eight of the characteristics turned out to be significant predictors of wheelchair basketball mobility performance. Classification, experience, maximal isometric force, wheel axis height and hand rim diameter - which both interchangeable with each other and wheel diameter - camber angle, and the vertical distance between shoulder and rear wheel axis - which was interchangeable with seat height - were positively associated with mobility performance. The vertical distance between the front seat and the footrest was negatively associated with mobility performance. With this insight, coaches and biomechanical specialists are provided with statistical findings to determine which characteristics they could focus on best to improve mobility performance. Six out of eight predictors are modifiable and can be optimized to improve mobility performance. These adjustments could be carried out both in training (maximal isometric force) and in wheelchair configurations (e.g. camber angle).

  14. A mechanical model for deformable and mesh pattern wheel of lunar roving vehicle

    Science.gov (United States)

    Liang, Zhongchao; Wang, Yongfu; Chen, Gang (Sheng); Gao, Haibo

    2015-12-01

    As an indispensable tool for astronauts on lunar surface, the lunar roving vehicle (LRV) is of great significance for manned lunar exploration. An LRV moves on loose and soft lunar soil, so the mechanical property of its wheels directly affects the mobility performance. The wheels used for LRV have deformable and mesh pattern, therefore, the existing mechanical theory of vehicle wheel cannot be used directly for analyzing the property of LRV wheels. In this paper, a new mechanical model for LRV wheel is proposed. At first, a mechanical model for a rigid normal wheel is presented, which involves in multiple conventional parameters such as vertical load, tangential traction force, lateral force, and slip ratio. Secondly, six equivalent coefficients are introduced to amend the rigid normal wheel model to fit for the wheels with deformable and mesh-pattern in LRV application. Thirdly, the values of the six equivalent coefficients are identified by using experimental data obtained in an LRV's single wheel testing. Finally, the identified mechanical model for LRV's wheel with deformable and mesh pattern are further verified and validated by using additional experimental results.

  15. Context-Aware Middleware Support for the Nomadic Mobile Services on Multi-homed Handheld Mobile Devices

    NARCIS (Netherlands)

    Pawar, Pravin; van Beijnum, Bert-Jan; Peddemors, Arjan; van Halteren, Aart

    2007-01-01

    Nowadays, a variety ofhandheld mobile devices are capable of connecting to the Internet using multiple network interfaces. This is referred to as multi-homing. In addition to this, enriched computation resources allow them to host nomadic mobile services and provide these services to the clients

  16. Analysis of power wheeling services

    Energy Technology Data Exchange (ETDEWEB)

    Tepel, R.C.; Jewell, W.; Johnson, R.; Maddigan, R.

    1986-11-01

    Purpose of this study is to examine existing wheeling arrangements to determine the terms of the agreements, to analyze the terms relative to regulatory goals, and finally, to suggest ways in which the arrangements can be modified to lead to outcomes more closely in line with the goals. The regulatory goals that are considered are: Does the arrangement meet the revenue requirement of the wheeling firm. Is efficient use promoted. Are the costs fairly apportioned. And, is the arrangement practical and feasible to implement.

  17. Wheel-running activity and energy metabolism in relation to ambient temperature in mice selected for high wheel-running activity

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Garland, Theodore; Daan, Serge; Visser, G. Henk; Garland Jr., Theodore; Heldmaier, G.

    Interrelationships between ambient temperature, activity, and energy metabolism were explored in mice that had been selectively bred for high spontaneous wheel-running activity and their random-bred controls. Animals were exposed to three different ambient temperatures (10, 20 and 30 degrees C) and

  18. Minisatellite Attitude Guidance Using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Ion STROE

    2015-06-01

    Full Text Available In a previous paper [2], the active torques needed for the minisatellite attitude guidance from one fixed attitude posture to another fixed attitude posture were determined using an inverse dynamics method. But when considering reaction/momentum wheels, instead of this active torques computation, the purpose is to compute the angular velocities of the three reaction wheels which ensure the minisatellite to rotate from the initial to the final attitude. This paper presents this computation of reaction wheels angular velocities using a similar inverse dynamics method based on inverting Euler’s equations of motion for a rigid body with one fixed point, written in the framework of the x-y-z sequence of rotations parameterization. For the particular case A=B not equal C of an axisymmetric minisatellite, the two computations are compared: the active torques computation versus the computation of reaction wheels angular velocities ̇x , ̇y and ̇z. An interesting observation comes out from this numerical study: if the three reaction wheels are identical (with Iw the moment of inertia of one reaction wheel with respect to its central axis, then the evolutions in time of the products between Iw and the derivatives of the reaction wheels angular velocities, i.e. ̇ , ̇ and ̇ remain the same and do not depend on the moment of inertia Iw.

  19. Vehicle Mobility Assessment for Project Wheels Study Group

    Science.gov (United States)

    1972-07-01

    cash savings p’Asible through the elimination of special military automotive features, such as front-wheel 1 Idrive , or the use of commercial vehicles...E12. (12) off-,,,d mobiliY profile 4x4 0ruck, c 2Z4< 20 ,ernn It Iot "- III IIIII III I I I IIII A%. West Germany 0A * s ps ArizonazD • Ř’.. • D

  20. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    Directory of Open Access Journals (Sweden)

    Heather L. Vellers

    2017-08-01

    Full Text Available Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels.Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD or high fat/high sugar (HFHS diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males and 17β-estradiol (females to determine if sex hormone augmentation altered diet-induced changes in activity.Results: 117 mice (56♂, 61♀ were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p < 0.0001; female: p < 0.0001 and had significantly higher body fat (male: p < 0.0001; female: p < 0.0001. The HFHS diet did not reduce sex hormone levels, but did significantly reduce acute running-wheel distance in male (p = 0.05, 70 ± 28% and female mice (p = 0.02, 57 ± 26%. In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat.Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones.

  1. MACBenAbim: A Multi-platform Mobile Application for searching keyterms in Computational Biology and Bioinformatics.

    Science.gov (United States)

    Oluwagbemi, Olugbenga O; Adewumi, Adewole; Esuruoso, Abimbola

    2012-01-01

    Computational biology and bioinformatics are gradually gaining grounds in Africa and other developing nations of the world. However, in these countries, some of the challenges of computational biology and bioinformatics education are inadequate infrastructures, and lack of readily-available complementary and motivational tools to support learning as well as research. This has lowered the morale of many promising undergraduates, postgraduates and researchers from aspiring to undertake future study in these fields. In this paper, we developed and described MACBenAbim (Multi-platform Mobile Application for Computational Biology and Bioinformatics), a flexible user-friendly tool to search for, define and describe the meanings of keyterms in computational biology and bioinformatics, thus expanding the frontiers of knowledge of the users. This tool also has the capability of achieving visualization of results on a mobile multi-platform context. MACBenAbim is available from the authors for non-commercial purposes.

  2. Cassette pontoon bridge of high mobility

    Directory of Open Access Journals (Sweden)

    Krzysztof KOSIUCZENKO

    2011-01-01

    Full Text Available Looking through the known and used buoyant systems, it can be remarked that the single buoyant segments are the stiff objects made of steel or plastic with variable dimensions and a complex construction. The ready to use buoyant segments, that assure the proper displacement, must have the factory leak-tightness. They take up a big transportation volume and need the assurance of the suitably abundant means of transport. Usually the heavy wheeled vehicles are needed because of high own mass of buoyant segment and large gauges. The exploitation of such constructions is very expensive. A cassette pontoon bridge, presented in this paper, is the proposition of the increase of the mobility of construction. The decrease of the single buoyant segment dimensions with the assurance of the capacity leads that more segments fit into in the same dimensions of the loading compartment of the vehicle and storage accommodation. The application of standardized joints assures the assembly efficiency with not numerous crew.

  3. Peculiarities of Clutch Forming Rails and Wheel Block Construction

    Science.gov (United States)

    Shiler, V. V.; Galiev, I. I.; Shiler, A. V.

    2018-03-01

    The clutch of the wheel and rail is significantly influenced by the design features of the standard wheel pair, which are manifested in the presence of "parasitic" slipping of the wheels along the rails during its movement. The purpose of the presented work is to evaluate new design solutions for wheel sets. The research was carried out using methods of comparative simulation modelling and physical prototyping. A new design of the wheel pair (block wheel pair) is proposed, which features an independent rotation of all surfaces of the wheels in contact with the rails. The block construction of the wheel pair forms open mechanical contours with the track gauge, which completely eliminates the "parasitic" slippage. As a result, in the process of implementing traction or braking forces, the coupling coefficient of the block construction of the wheel pair is significantly higher than that of existing structures. In addition, in the run-out mode, the resistance to movement of the block wheel pair is half as much. All this will allow one to significantly reduce the energy consumption for traction of trains, wear of track elements and crew, and to increase the speed and safety of train traffic.

  4. Wheel running reduces high-fat diet intake, preference and mu-opioid agonist stimulated intake

    Science.gov (United States)

    Liang, Nu-Chu; Bello, Nicholas T.; Moran, Timothy H.

    2015-01-01

    The ranges of mechanisms by which exercise affects energy balance remain unclear. One potential mechanism may be that exercise reduces intake and preference for highly palatable, energy dense fatty foods. The current study used a rodent wheel running model to determine whether and how physical activity affects HF diet intake/preference and reward signaling. Experiment 1 examined whether wheel running affected the ability of intracerebroventricular (ICV) µ opioid receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) to increase HF diet intake. Experiment 2 examined the effects of wheel running on the intake of and preference for a previously preferred HF diet. We also assessed the effects of wheel running and diet choice on mesolimbic dopaminergic and opioidergic gene expression. Experiment 1 revealed that wheel running decreased the ability of ICV DAMGO administration to stimulate HF diet intake. Experiment 2 showed that wheel running suppressed weight gain and reduced intake and preference for a previously preferred HF diet. Furthermore, the mesolimbic gene expression profile of wheel running rats was different from that of their sedentary paired-fed controls but similar to that of sedentary rats with large HF diet consumption. These data suggest that alterations in preference for palatable, energy dense foods play a role in the effects of exercise on energy homeostasis. The gene expression results also suggest that the hedonic effects of exercise may substitute for food reward to limit food intake and suppress weight gain. PMID:25668514

  5. OBJECT-SPACE MULTI-IMAGE MATCHING OF MOBILE-MAPPING-SYSTEM IMAGE SEQUENCES

    Directory of Open Access Journals (Sweden)

    Y. C. Chen

    2012-07-01

    Full Text Available This paper proposes an object-space multi-image matching procedure of terrestrial MMS (Mobile Mapping System image sequences to determine the coordinates of an object point automatically and reliably. This image matching procedure can be applied to find conjugate points of MMS image sequences efficiently. Conventional area-based image matching methods are not reliable to deliver accurate matching results for this application due to image scale variations, viewing angle variations, and object occlusions. In order to deal with these three matching problems, an object space multi-image matching is proposed. A modified NCC (Normalized Cross Correlation coefficient is proposed to measure the similarity of image patches. A modified multi-window matching procedure will also be introduced to solve the problem of object occlusion. A coarse-to-fine procedure with a combination of object-space multi-image matching and multi-window matching is adopted. The proposed procedure has been implemented for the purpose of matching terrestrial MMS image sequences. The ratio of correct matches of this experiment was about 80 %. By providing an approximate conjugate point in an overlapping image manually, most of the incorrect matches could be fixed properly and the ratio of correct matches was improved up to 98 %.

  6. Analysis of multi cloud storage applications for resource constrained mobile devices

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Bedi

    2016-09-01

    Full Text Available Cloud storage, which can be a surrogate for all physical hardware storage devices, is a term which gives a reflection of an enormous advancement in engineering (Hung et al., 2012. However, there are many issues that need to be handled when accessing cloud storage on resource constrained mobile devices due to inherent limitations of mobile devices as limited storage capacity, processing power and battery backup (Yeo et al., 2014. There are many multi cloud storage applications available, which handle issues faced by single cloud storage applications. In this paper, we are providing analysis of different multi cloud storage applications developed for resource constrained mobile devices to check their performance on the basis of parameters as battery consumption, CPU usage, data usage and time consumed by using mobile phone device Sony Xperia ZL (smart phone on WiFi network. Lastly, conclusion and open research challenges in these multi cloud storage apps are discussed.

  7. Teleoperated mobile robot (KAEROT) for inspection in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung-Soo; Kim, Chang-Hoi; Hwang, Suk-Young; Kim, Seung-Ho; Lee, Jong-Min [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1994-12-31

    A teleoperated mobile robot, named as KAEROT, has been developed for inspection and maintenance in nuclear facilities. It is composed of the planetary wheel-type mobile unit and 5 DOF manipulator one. The mobile unit is able to climb up and down stairs with high stability. This paper presents the kinematic analysis of KAEROT and the stair climbing algorithm. The proposed algorithm consists of two parts; one is to generate the moving path, and the other is to calculate the angular velocity of each wheel to follow up the generated reference path. Simulations and experiments on the irregular stairs have been carried out with the developed mobile robot. The proposed algorithm is proved to be very effective for inspection in nuclear facilities. The inclination angle of robot is maintained below 30.8deg while it is climbing up the stairs of a slope of 25deg. (author).

  8. Teleoperated mobile robot (KAEROT) for inspection in nuclear facilities

    International Nuclear Information System (INIS)

    Kim, Byung-Soo; Kim, Chang-Hoi; Hwang, Suk-Young; Kim, Seung-Ho; Lee, Jong-Min

    1994-01-01

    A teleoperated mobile robot, named as KAEROT, has been developed for inspection and maintenance in nuclear facilities. It is composed of the planetary wheel-type mobile unit and 5 DOF manipulator one. The mobile unit is able to climb up and down stairs with high stability. This paper presents the kinematic analysis of KAEROT and the stair climbing algorithm. The proposed algorithm consists of two parts; one is to generate the moving path, and the other is to calculate the angular velocity of each wheel to follow up the generated reference path. Simulations and experiments on the irregular stairs have been carried out with the developed mobile robot. The proposed algorithm is proved to be very effective for inspection in nuclear facilities. The inclination angle of robot is maintained below 30.8deg while it is climbing up the stairs of a slope of 25deg. (author)

  9. Reduced thermal resistance in AlGaN/GaN multi-mesa-channel high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Asubar, Joel T., E-mail: joel@rciqe.hokudai.ac.jp; Yatabe, Zenji; Hashizume, Tamotsu [Research Center for Integrated Quantum Electronics (RCIQE) and Graduate School of Information Science and Technology, Hokkaido University, Sapporo (Japan); Japan Science and Technology Agency (JST), CREST, 102-0075 Tokyo (Japan)

    2014-08-04

    Dramatic reduction of thermal resistance was achieved in AlGaN/GaN Multi-Mesa-Channel (MMC) high electron mobility transistors (HEMTs) on sapphire substrates. Compared with the conventional planar device, the MMC HEMT exhibits much less negative slope of the I{sub D}-V{sub DS} curves at high V{sub DS} regime, indicating less self-heating. Using a method proposed by Menozzi and co-workers, we obtained a thermal resistance of 4.8 K-mm/W at ambient temperature of ∼350 K and power dissipation of ∼9 W/mm. This value compares well to 4.1 K-mm/W, which is the thermal resistance of AlGaN/GaN HEMTs on expensive single crystal diamond substrates and the lowest reported value in literature.

  10. Soil mechanical stresses in high wheel load agricultural field traffic: a case study

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2017-01-01

    highly skewed. Across tyres, the maximum stress in the contact area correlated linearly with, but was much higher than, the mean ground pressure. For each of the three soil depths, the maximum stresses under the tyres were significantly correlated with the wheel load, but not with other loading......Subsoil compaction is a serious long-term threat to soil functions. Only a few studies have quantified the mechanical stresses reaching deep subsoil layers for modern high wheel load machinery. In the present study we measured the vertical stresses in the tyre–soil contact area and at 0.3, 0...

  11. Development and validation of a new kind of coupling element for wheel-hub motors

    Science.gov (United States)

    Perekopskiy, Sergey; Kasper, Roland

    2018-05-01

    For the automotive industry, electric powered vehicles are becoming an increasingly relevant factor in the competition against climate change. Application of one special example - a wheel-hub motor, for electric powered vehicle can support this challenge. Patented slotless air gap winding invented at the chair of mechatronics of the Otto von Guericke University Magdeburg has great application potential in constantly growing e-mobility field, especially for wheel-hub motors based on this technology due to its advantages, such as a high gravimetric power density and high efficiency. However, advantages of this technology are decreased by its sensibility to the loads out of driving maneuvers by dimensional variations of air gap consistency. This article describes the development and validation of a coupling element for the designed wheel-hub motor. To find a suitable coupling concept first the assembly structure of the motor was analyzed and developed design of the coupling element was checked. Based on the geometry of the motor and wheel a detailed design of the coupling element was generated. The analytical approach for coupling element describes a potential of the possible loads on the coupling element. The FEM simulation of critical load cases for the coupling element validated results of the analytical approach.

  12. Development of New Wheel-Chair for Sports Competition

    Directory of Open Access Journals (Sweden)

    Akira Shionoya

    2018-03-01

    Full Text Available The purpose of this study was to develop the new wheel-chair which had the function to drive straight by one-hand operation. To perform this purpose, the driving force transmission axis (DFTA which had transmitted the driving force from the one side of wheel to another side of that was developed. The wheel-chair could drive straight by one-hand operation by the DFTA. The large torque, however, was generated in the DFTA, because the DFTA transmitted the driving force from the one side of wheel to another side by the axis of small diameter. Furthermore, the shear stress in the DFTA generated by this torque would lead to the DFTA break. The shear stress in the DFTA was calculated to examine the axial strength and durability. On the DETA of the wheelchair, the maximum shear stress calculated from the torque in driving was 39.53 MP and this was defined as the standard of the demand specifications as a strength and durability of the DFTA.

  13. Restoring Natural Streamflow Variability by Modifying Multi-purpose Reservoir Operation

    Science.gov (United States)

    Shiau, J.

    2010-12-01

    Multi-purpose reservoirs typically provide benefits of water supply, hydroelectric power, and flood mitigation. Hydroelectric power generations generally do not consume water. However, temporal distribution of downstream flows is highly changed due to hydro-peaking effects. Associated with offstream diversion of water supplies for municipal, industrial, and agricultural requirements, natural streamflow characteristics of magnitude, duration, frequency, timing, and rate of change is significantly altered by multi-purpose reservoir operation. Natural flow regime has long been recognized a master factor for ecosystem health and biodiversity. Restoration of altered flow regime caused by multi-purpose reservoir operation is the main objective of this study. This study presents an optimization framework that modifying reservoir operation to seeking balance between human and environmental needs. The methodology presented in this study is applied to the Feitsui Reservoir, located in northern Taiwan, with main purpose of providing stable water-supply and auxiliary purpose of electricity generation and flood-peak attenuation. Reservoir releases are dominated by two decision variables, i.e., duration of water releases for each day and percentage of daily required releases within the duration. The current releasing policy of the Feitsui Reservoir releases water for water-supply and hydropower purposes during 8:00 am to 16:00 pm each day and no environmental flows releases. Although greater power generation is obtained by 100% releases distributed within 8-hour period, severe temporal alteration of streamflow is observed downstream of the reservoir. Modifying reservoir operation by relaxing these two variables and reserve certain ratio of streamflow as environmental flow to maintain downstream natural variability. The optimal reservoir releasing policy is searched by the multi-criterion decision making technique for considering reservoir performance in terms of shortage ratio

  14. Location Estimation of Mobile Devices

    Directory of Open Access Journals (Sweden)

    Kamil ŽIDEK

    2009-06-01

    Full Text Available This contribution describes mathematical model (kinematics for Mobile Robot carriage. The mathematical model is fully parametric. Model is designed universally for any measures three or four wheeled carriage. The next conditions are: back wheels are driving-wheel, front wheels change angle of Robot turning. Position of the front wheel gives the actual position of the robot. Position of the robot is described by coordinates x, y and by angle of the front wheel α in reference position. Main reason for model implementation is indoor navigation. We need some estimation of robot position especially after turning of the Robot. Next use is for outdoor navigation especially for precising GPS information.

  15. The Influence of Wheel/Rail Contact Conditions on the Microstructure and Hardness of Railway Wheels

    Directory of Open Access Journals (Sweden)

    Paul Molyneux-Berry

    2014-01-01

    Full Text Available The susceptibility of railway wheels to wear and rolling contact fatigue damage is influenced by the properties of the wheel material. These are influenced by the steel composition, wheel manufacturing process, and thermal and mechanical loading during operation. The in-service properties therefore vary with depth below the surface and with position across the wheel tread. This paper discusses the stress history at the wheel/rail contact (derived from dynamic simulations and observed variations in hardness and microstructure. It is shown that the hardness of an “in-service” wheel rim varies significantly, with three distinct effects. The underlying hardness trend with depth can be related to microstructural changes during manufacturing (proeutectoid ferrite fraction and pearlite lamellae spacing. The near-surface layer exhibits plastic flow and microstructural shear, especially in regions which experience high tangential forces when curving, with consequentially higher hardness values. Between 1 mm and 7 mm depth, the wheel/rail contacts cause stresses exceeding the material yield stress, leading to work hardening, without a macroscopic change in microstructure. These changes in material properties through the depth of the wheel rim would tend to increase the likelihood of crack initiation on wheels toward the end of their life. This correlates with observations from several train fleets.

  16. Problems of locomotive wheel wear in fleet replacement

    Directory of Open Access Journals (Sweden)

    L.P. Lingaytis

    2013-08-01

    Full Text Available Purpose. To conduct a research and find out the causes of defects appearing on the wheel thread of freight locomotives 2М62 and SIEMENS ER20CF. Methodology. To find the ways to solve this problem comparing the locomotive designs and their operating conditions. Findings. After examining the nature of the wheel wear the main difference was found: in locomotives of the 2M62 line wears the wheel flange, and in the locomotives SIEMENS ER20CF – the tread surface. After installation on the 2M62 locomotive the lubrication system of flanges their wear rate significantly decreased. On the new freight locomotives SIEMENS ER20CF the flange lubrication systems of the wheel set have been already installed at the factory, however the wheel thread is wearing. As for locomotives 2M62, and on locomotives SIEMENS ER20CF most wear profile skating wheels of the first wheel set. On both locomotive lines the 2М62 and the SIEMENS ER20CF the tread profile of the first wheel set most of all is subject to the wear. After reaching the 170 000 km run, the tread surface of some wheels begins to crumble. There was a suspicion that the reason for crumb formation of the wheel surface may be insufficient or excessive wheel hardness or its chemical composition. In order to confirm or deny this suspicion the following studies were conducted: the examination of the rim surface, the study of the wheel metal hardness and the document analysis of the wheel production and their comparison with the results of wheel hardness measurement. Practical value. The technical condition of locomotives is one of the bases of safety and reliability of the rolling stock. The reduction of the wheel wear significantly reduces the operating costs of railway transport. After study completion it was found that there was no evidence to suggest that the ratio of the wheel-rail hardness could be the cause of the wheel surface crumbling.

  17. Multi-purpose HealthCare Telemedicine Systems with mobile communication link support

    Directory of Open Access Journals (Sweden)

    Karayiannis D

    2003-03-01

    Full Text Available Abstract The provision of effective emergency telemedicine and home monitoring solutions are the major fields of interest discussed in this study. Ambulances, Rural Health Centers (RHC or other remote health location such as Ships navigating in wide seas are common examples of possible emergency sites, while critical care telemetry and telemedicine home follow-ups are important issues of telemonitoring. In order to support the above different growing application fields we created a combined real-time and store and forward facility that consists of a base unit and a telemedicine (mobile unit. This integrated system: can be used when handling emergency cases in ambulances, RHC or ships by using a mobile telemedicine unit at the emergency site and a base unit at the hospital-expert's site, enhances intensive health care provision by giving a mobile base unit to the ICU doctor while the telemedicine unit remains at the ICU patient site and enables home telemonitoring, by installing the telemedicine unit at the patient's home while the base unit remains at the physician's office or hospital. The system allows the transmission of vital biosignals (3–12 lead ECG, SPO2, NIBP, IBP, Temp and still images of the patient. The transmission is performed through GSM mobile telecommunication network, through satellite links (where GSM is not available or through Plain Old Telephony Systems (POTS where available. Using this device a specialist doctor can telematically "move" to the patient's site and instruct unspecialized personnel when handling an emergency or telemonitoring case. Due to the need of storing and archiving of all data interchanged during the telemedicine sessions, we have equipped the consultation site with a multimedia database able to store and manage the data collected by the system. The performance of the system has been technically tested over several telecommunication means; in addition the system has been clinically validated in three

  18. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis

    Science.gov (United States)

    Bian, Jian; Gu, Yuantong; Murray, Martin Howard

    2013-06-01

    Wheel-rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel-rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel-rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional finite element (FE) model for the impact analysis induced by the wheel flat is developed by the use of the FE analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this FEA and they are important for track engineers to improve their understanding of the design and maintenance of the track system.

  19. Identification of abnormal movement state and avoidance strategy for mobile robots

    Institute of Scientific and Technical Information of China (English)

    CAI Zi-xing; DUAN Zhuo-hua; ZHANG Hui-tuan; YU Jin-xia

    2006-01-01

    Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence of abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinematics of the normal and abnormal movement states were exploited, 8 kinds of features were extracted. Secondly, 4 multi-layer perceptrons were employed to classify the features for four 4-driving wheels into 4 kinds of states, i.e. normal, blocked, deadly blocked, and slipping. Finally,avoidance strategies were designed based on this. Experiment results show that the methods can identify most abnormal movement states and avoid the abnormality correctly and timely.

  20. Wheel running decreases the positive reinforcing effects of heroin.

    Science.gov (United States)

    Smith, Mark A; Pitts, Elizabeth G

    2012-01-01

    The purpose of this study was to examine the effects of voluntary wheel running on the positive reinforcing effects of heroin in rats with an established history of drug self-administration. Rats were assigned to sedentary (no wheel) and exercise (wheel) conditions and trained to self-administer cocaine under positive reinforcement contingencies. Rats acquiring cocaine self-administration were then tested with various doses of heroin during daily test sessions. Sedentary rats self-administered more heroin than exercising rats, and this effect was greatest at low and moderate doses of heroin. These data suggest that voluntary wheel running decreases the positive reinforcing effects of heroin.

  1. Micro-Avionics Multi-Purpose Platform (MicroAMPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Micro-Avionics Multi-Purpose Platform (MicroAMPP) is a common avionics architecture supporting microsatellites, launch vehicles, and upper-stage carrier...

  2. Plasma adiponectin is increased in mice selectively bred for high wheel-running activity, but not by wheel running per se

    NARCIS (Netherlands)

    Vaanholt, L. M.; Meerlo, P.; Garland, T.; Visser, G. H.; van Dijk, G.

    2007-01-01

    Mice selectively bred for high wheel-running activity (S) have decreased fat content compared to mice from randomly bred control (C) lines. We explored whether this difference was associated with alterations in levels of circulating hormones involved in regulation of food intake and energy balance,

  3. Integrated multi-sensor fusion for mapping and localization in outdoor environments for mobile robots

    Science.gov (United States)

    Emter, Thomas; Petereit, Janko

    2014-05-01

    An integrated multi-sensor fusion framework for localization and mapping for autonomous navigation in unstructured outdoor environments based on extended Kalman filters (EKF) is presented. The sensors for localization include an inertial measurement unit, a GPS, a fiber optic gyroscope, and wheel odometry. Additionally a 3D LIDAR is used for simultaneous localization and mapping (SLAM). A 3D map is built while concurrently a localization in a so far established 2D map is estimated with the current scan of the LIDAR. Despite of longer run-time of the SLAM algorithm compared to the EKF update, a high update rate is still guaranteed by sophisticatedly joining and synchronizing two parallel localization estimators.

  4. First conceptual design of the experimental multi-purpose high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, T [Fuji Electric Co. Ltd., Tokyo (Japan)

    1976-02-01

    A part of the multi-purpose high temperature reactor (VHTR) was designed by the First Atomic Power Industry Group (FAPIG). Both Fuji Electric Co., Ltd. and Kawasaki Heavy Industries, Ltd. of the FAPIG group took charge of the design of main parts of the reactor Kobe Steel, Ltd., Ebara Manufacturing Co., Ltd., Shimizu Construction Co., Ltd. and the Nuclear Fuel Corp. have associated with this group. The reactor system includes a nuclear reactor and two cooling loops provided through intermediate heat exchangers in order to utilize the heat of helium gas delivered from the reactor outlet at 1,000 deg C. One is a reformer loop to produce the reducing gas for steel manufacture. The other is a testing loop for a reducing gas heater and a gas turbine. These loops transfer heat of about 25 MW at 930 deg C at rated capacity. The reformer can supply the reducing gas equivalent to the production of 100 tons per day sponge iron. A housing of the reactor is composed of a primary steel container, internal concrete and a secondary container made of reinforced concrete. The construction is based on the following principles. (1) For the very high temperature portion at 1,000 deg C, a non-metallic material such as graphite should be used. (2) The metallic construction shall be cooled with return gas below 400 deg C. (3) The steel pressure vessel shall be employed. (4) The design shall be based on the existing gas furnace.

  5. Multi purpose research reactor

    International Nuclear Information System (INIS)

    Raina, V.K.; Sasidharan, K.; Sengupta, Samiran; Singh, Tej

    2006-01-01

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor

  6. Maximum allowable load on wheeled mobile manipulators

    International Nuclear Information System (INIS)

    Habibnejad Korayem, M.; Ghariblu, H.

    2003-01-01

    This paper develops a computational technique for finding the maximum allowable load of mobile manipulator during a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints applied to resolving the redundancy are the most important factors. To resolve extra D.O.F introduced by the base mobility, additional constraint functions are proposed directly in the task space of mobile manipulator. Finally, in two numerical examples involving a two-link planar manipulator mounted on a differentially driven mobile base, application of the method to determining maximum allowable load is verified. The simulation results demonstrates the maximum allowable load on a desired trajectory has not a unique value and directly depends on the additional constraint functions which applies to resolve the motion redundancy

  7. Small Multi-Purpose Research Facility (SMiRF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Small Multi-Purpose Research Facility (SMiRF) evaluates the performance of the thermal protection systems required to provide long-term storage (up to 10 years)...

  8. Assistive devices alter gait patterns in Parkinson disease: advantages of the four-wheeled walker.

    Science.gov (United States)

    Kegelmeyer, Deb A; Parthasarathy, Sowmya; Kostyk, Sandra K; White, Susan E; Kloos, Anne D

    2013-05-01

    Gait abnormalities are a hallmark of Parkinson's disease (PD) and contribute to fall risk. Therapy and exercise are often encouraged to increase mobility and decrease falls. As disease symptoms progress, assistive devices are often prescribed. There are no guidelines for choosing appropriate ambulatory devices. This unique study systematically examined the impact of a broad range of assistive devices on gait measures during walking in both a straight path and around obstacles in individuals with PD. Quantitative gait measures, including velocity, stride length, percent swing and double support time, and coefficients of variation were assessed in 27 individuals with PD with or without one of six different devices including canes, standard and wheeled walkers (two, four or U-Step). Data were collected using the GAITRite and on a figure-of-eight course. All devices, with the exception of four-wheeled and U-Step walkers significantly decreased gait velocity. The four-wheeled walker resulted in less variability in gait measures and had less impact on spontaneous unassisted gait patterns. The U-Step walker exhibited the highest variability across all parameters followed by the two-wheeled and standard walkers. Higher variability has been correlated with increased falls. Though subjects performed better on a figure-of-eight course using either the four-wheeled or the U-Step walker, the four-wheeled walker resulted in the most consistent improvement in overall gait variables. Laser light use on a U-Step walker did not improve gait measures or safety in figure-of-eight compared to other devices. Of the devices tested, the four-wheeled-walker offered the most consistent advantages for improving mobility and safety. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Analysis of wheel rim - Material and manufacturing aspects

    Science.gov (United States)

    Misra, Sheelam; Singh, Abhiraaj; James, Eldhose

    2018-05-01

    The tire in an automobile is supported by the rim of the wheel and its shape and dimensions should be adjusted to accommodate a specified tire. In this study, a tire of car wheel rim belonging to the disc wheel category is considered. Design is an important industrial operation used to define and specify the quality of the product. The design and modelling reduces the risk of damage involved in the manufacturing process. The design performed on this wheel rim is done on modelling software. After designing the model, it is imported for analysis purposes. The analysis software is used to calculate the different types of force, stresses, torque, and pressures acting upon the rim of the wheel and it reduces the time spent by a human for mathematical calculations. The analysis carried out considers two different materials namely structural steel and aluminium. Both materials are analyzed and their performance is noted.

  10. Bucket wheel rehabilitation of ERC 1400-30/7 high-capacity excavators from lignite quarries

    Science.gov (United States)

    Vîlceanu, Fl; Iancu, C.

    2016-11-01

    The existence of bucket wheel equipment type ERC 1400-30/7 in lignite quarries with lifetime expired, or in the ultimate life period, together with high cost investments for their replacement, makes rational the efforts made to rehabilitation in order to extend their life. Rehabilitation involves checking operational safety based on relevant expertise of metal structures supporting effective resistance but also the replacement (or modernization) of subassemblies that can increase excavation process productivity, lowering energy consumption, reducing mechanical stresses. This paper proposes an analysis of constructive solution of using a part of the classical bucket wheel, on which are located 9 cutting cups and 9 chargers cups and adding a new part so that the new redesigned bucket-wheel will contain 18 cutting-chargers cups, compared to the classical model. On the CAD model of bucket wheel was performed a static and a dynamic FEA, the results being compared with the yield strength of the material of the entire structure, were checked mechanical stresses in the overall distribution map, and were verified the first 4 vibrating modes the structure compared to real loads. Thus was verified that the redesigned bucket-wheel can accomplish the proposed goals respectively increase excavation process productivity, lowering energy consumption and reducing mechanical stresses.

  11. TMAP - A Versatile Mobile Robot

    Science.gov (United States)

    Weiss, Joel A.; Simmons, Richard K.

    1989-03-01

    TMAP, the Teleoperated Mobile All-purpose Platform, provides the Army with a low cost, light weight, flexibly designed, modularly expandable platform for support of maneuver forces and light infantry units. The highly mobile, four wheel drive, diesel-hydraulic platform is controllable at distances of up to 4km from a portable operator control unit using either fiber optic or RF control links. The Martin Marietta TMAP system is based on a hierarchical task decomposition Real-time Control System architecture that readily supports interchange of mission packages and provides the capability for simple incorporation of supervisory control concepts leading to increased system autonomy and resulting force multiplication. TMAP has been designed to support a variety of missions including target designation, anti-armor, anti-air, countermine, and reconnaissance/surveillance. As a target designation system TMAP will provide the soldier with increased survivability and effectiveness by providing substantial combat standoff, and the firepower effectiveness of several manual designator operators. Force-on-force analysis of simulated TMAP engagements indicate that TMAP should provide significant force multiplication for the Army in Air-Land Battle 2000.

  12. Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system

    Science.gov (United States)

    Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wang, Chao; Lei, Xiao-hui; Xiong, Yi-song; Zhang, Wei

    2017-08-01

    The derivation of joint operating policy is a challenging task for a multi-purpose multi-reservoir system. This study proposed an aggregation-decomposition model to guide the joint operation of multi-purpose multi-reservoir system, including: (1) an aggregated model based on the improved hedging rule to ensure the long-term water-supply operating benefit; (2) a decomposed model to allocate the limited release to individual reservoirs for the purpose of maximizing the total profit of the facing period; and (3) a double-layer simulation-based optimization model to obtain the optimal time-varying hedging rules using the non-dominated sorting genetic algorithm II, whose objectives were to minimize maximum water deficit and maximize water supply reliability. The water-supply system of Li River in Guangxi Province, China, was selected for the case study. The results show that the operating policy proposed in this study is better than conventional operating rules and aggregated standard operating policy for both water supply and hydropower generation due to the use of hedging mechanism and effective coordination among multiple objectives.

  13. Sensor Fusion and Model Verification for a Mobile Robot

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Vinther, Dennis; Østergaard, Kasper Zinck

    2005-01-01

    This paper presents the results of modeling, sensor fusion and model verification for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The model derived for the robot describes the actuator and wheel dynamics and the vehicle kinematics, and includes friction terms...

  14. Multi-Purpose X-ray System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Multi-Purpose X-ray Source and System (MPXS) can be used on flight missions, space stations, planetary excursions and planetary or asteroid bases, to...

  15. System Integration for Real-time Mobile Manipulation

    OpenAIRE

    Oftadeh, Reza; Aref, Mohammad M.; Ghabcheloo, Reza; Mattila, Jouni

    2014-01-01

    Mobile manipulators are one of the most complicated types of mechatronics systems. The performance of these robots in performing complex manipulation tasks is highly correlated with the synchronization and integration of their low-level components. This paper discusses in detail the mechatronics design of a four wheel steered mobile manipulator. It presents the manipulator ’s mechanical structure and electrical interfaces, designs low-level software architecture based on embedded PC-based con...

  16. Improvement in the Physical and Psychological Well-Being of Persons with Spinal Cord Injuries by Means of Powered Wheelchairs Driven by Dual Power Wheels and Mobile Technologies

    Directory of Open Access Journals (Sweden)

    Yee-Pien Yang

    2017-10-01

    Full Text Available This study unites researchers from the fields of psychology, occupational therapy, and engineering to improve the holistic physical and psychological well-being of persons with spinal cord injury (SCI by using assistive devices (i.e., wheelchairs and mobile technology (i.e., cell phone and network. These technologies are used to bring persons with SCI through the difficult period of rehabilitation and to return them to their daily life in school or the working environment. First, a SpinoAid Application (APP is developed to motivate persons with SCI to participate in the community after their injury. Second, we integrate mobile technology with a mobility assistive device to design a smart wheelchair, which is innovated by transforming the pushrim of a manually driven wheelchair into a rim motor. After the rim motor is combined with a battery, a brake, and a controller to become a power wheel, two power wheels are installed on both sides of the wheelchair to become a powered wheelchair. Third, a SmartChair APP is developed with the main functions of reminding persons with SCI to perform exercises, recording the physical condition and the wheelchair using status, and building up a social network for information sharing to increase their exercise habit, prevent cumulative injuries or discomfort of the upper extremities, and enhance their health and quality of life.

  17. Wheeling in Canada

    International Nuclear Information System (INIS)

    Fytche, E.L.

    1991-01-01

    The quest for economic efficiency, or lowest cost, in the electricity supply industry is furthered by trading between high and low cost utilities, one aspect being transporting or wheeling power through the transmission system of a third party. Some of the pressures and constraints limiting wheeling are discussed. A simple formula is presented for determining whether trading and wheeling are worthwhile. It is demonstrated for assumed capital and operating cost levels, the viability of nine cases where bulk power or economy energy would need to be wheeled across provincial boundaries in order to reach potential buyers. Wheeling in Canada is different from the situation in the USA, due to large distances spanned by Canadian utilities and because most are provincial crown corporations, with different territorial interests and profit motivations than investor-owned utilities. Most trading in electricity has been between contiguous neighbours, for mutual advantage. New technology allows power transmission over distances of up to 1000 miles, and the economics of Canada's electrical supply could be improved, with means including access to low cost coal of Alberta, and remote hydro in British Columbia, Manitoba, Quebec and Labrador. Nuclear plants could be located anywhere but suffer from an unfriendly public attitude. A bridge across the Prairies appears uneconomic due to cost of transmission, and also due to low valuation given to Alberta coal. 7 refs., 2 figs., 3 tabs

  18. The hydraulic wheel

    International Nuclear Information System (INIS)

    Alvarez Cardona, A.

    1985-01-01

    The present article this dedicated to recover a technology that key in disuse for the appearance of other techniques. It is the hydraulic wheel with their multiple possibilities to use their energy mechanical rotational in direct form or to generate electricity directly in the fields in the place and to avoid the high cost of transport and transformation. The basic theory is described that consists in: the power of the currents of water and the hydraulic receivers. The power of the currents is determined knowing the flow and east knowing the section of the flow and its speed; they are given you formulate to know these and direct mensuration methods by means of floodgates, drains and jumps of water. The hydraulic receivers or properly this hydraulic wheels that are the machines in those that the water acts like main force and they are designed to transmit the biggest proportion possible of absolute work of the water, the hydraulic wheels of horizontal axis are the common and they are divided in: you rotate with water for under, you rotate with side water and wheels with water for above. It is analyzed each one of them, their components are described; the conditions that should complete to produce a certain power and formulate them to calculate it. There are 25 descriptive figures of the different hydraulic wheels

  19. Control synchronization of differential mobile robots

    NARCIS (Netherlands)

    Nijmeijer, H.; Rodriguez Angeles, A.; Allgoewer, F.

    2004-01-01

    In this paper a synchronization controller for differential mobile robots is proposed. The synchronization goal is to control the angular position of each wheel to a desired trajectory and at the same time the differential (or synchronization) error between the angular positions of the two wheels.

  20. Sliding GAIT Algorithm for the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE)

    Science.gov (United States)

    Townsend, Julie; Biesiadecki, Jeffrey

    2012-01-01

    The design of a surface robotic system typically involves a trade between the traverse speed of a wheeled rover and the terrain-negotiating capabilities of a multi-legged walker. The ATHLETE mobility system, with both articulated limbs and wheels, is uniquely capable of both driving and walking, and has the flexibility to employ additional hybrid mobility modes. This paper introduces the Sliding Gait, an intermediate mobility algorithm faster than walking with better terrain-handling capabilities than wheeled mobility.

  1. Performance Analysis of Nomadic Mobile Services on Multi-homed Handheld Devices

    NARCIS (Netherlands)

    Pawar, P.; van Beijnum, Bernhard J.F.; van Sinderen, Marten J.; Aggarwal, Akshai; De Clercq, Frederic

    2007-01-01

    Compared to their predecessors, the current generation handheld mobile devices possess higher processing power, increased memory and new multi-homing capabilities. These features combined with the widespread acceptance and use of these devices result in a situation where mobile devices are no longer

  2. Stochastic Wheel-Slip Compensation Based Robot Localization and Mapping

    Directory of Open Access Journals (Sweden)

    SIDHARTHAN, R. K.

    2016-05-01

    Full Text Available Wheel slip compensation is vital for building accurate and reliable dead reckoning based robot localization and mapping algorithms. This investigation presents stochastic slip compensation scheme for robot localization and mapping. Main idea of the slip compensation technique is to use wheel-slip data obtained from experiments to model the variations in slip velocity as Gaussian distributions. This leads to a family of models that are switched depending on the input command. To obtain the wheel-slip measurements, experiments are conducted on a wheeled mobile robot and the measurements thus obtained are used to build the Gaussian models. Then the localization and mapping algorithm is tested on an experimental terrain and a new metric called the map spread factor is used to evaluate the ability of the slip compensation technique. Our results clearly indicate that the proposed methodology improves the accuracy by 72.55% for rotation and 66.67% for translation motion as against an uncompensated mapping system. The proposed compensation technique eliminates the need for extro receptive sensors for slip compensation, complex feature extraction and association algorithms. As a result, we obtain a simple slip compensation scheme for localization and mapping.

  3. A modified high-intensity Cs sputter negative-ion source with multi-target mechanism

    International Nuclear Information System (INIS)

    Si Houzhi; Zhang Weizhong; Zhu Jinhau; Du Guangtian; Zhang Tiaorong; Gao Xiang

    1993-01-01

    The source is based on Middleton's high-intensity mode, but modified to a multi-target version. It is equipped with a spherical molybdenum ionizer, a 20-position target wheel and a vacuum lock for loading and unloading sample batches. A metal-ceramic bonded section protected by a specially designed labyrinth shielding system results in reliable insulation of the cathode and convenient control of cesium vapor. The latter is particularly important when an oversupply of cesium occurs. The source was developed for accelerator mass spectrometry (AMS) applications. Recently, three versions based on the prototype of the source have been successfully tested to meet different requirements: (a) Single target version, (b) multi-target version with manual sample change, and (c) multi-target version with remote control sample change. Some details of the technical and operational characteristics are presented. (orig.)

  4. Multi-Layer Visualization of Mobile Mapping Data

    Directory of Open Access Journals (Sweden)

    D. Eggert

    2013-10-01

    Full Text Available application various different visualization schemes are conceivable. This paper presents a multi-layer based visualization method, enabling fast data browsing of mobile mapping data. In contrast to systems like Google Street View the proposed visualization does not base on 360° panoramas, but on colored point clouds projected on partially translucent images. Those images are rendered as overlapping textures, preserving the depth of the recorded data and still enabling fast rendering on any kind of platform. Furthermore the proposed visualization allows the user to inspect the mobile mapping data in a panoramic fashion with an immersive depth illusion using the parallax scrolling technic.

  5. Perspectives in high-speed transport: Maglev and/or wheel-and-rail techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hochbruck, H

    1985-03-01

    Proceeding from a consideration of possible system structures, a technically and economically meaning-full top speed for a railway system is developed which offers, in competition with the airplane and the private car, good chances of winning an appropriate share of the traffic where the distances are in the range of about 400 to 600 km. It is deduced from the present state of developments in high-speed wheel/rail systems and in maglev technology that the wheel/rail mode has clear advantages where a network is concerned. Maglev technology is now being brought to the stage of operational readiness and its first applications are likely to be for point-to-point or direct-line links.

  6. Laboratory experiments in mobile robot navigation

    International Nuclear Information System (INIS)

    Kar, Asim; Pal, Prabir K.

    1997-01-01

    Mobile robots have potential applications in remote surveillance and operation in hazardous areas. To be effective, they must have the ability to navigate on their own to desired locations. Several experimental navigational runs of a mobile robot developed have been conducted. The robot has three wheels of which the front wheel is steered and the hind wheels are driven. The robot is equipped with an ultrasonic range sensor, which is turned around to get range data in all directions. The range data is fed to the input of a neural net, whose output steers the robot towards the goal. The robot is powered by batteries (12V 10Ah). It has an onboard stepper motor controller for driving the wheels and the ultrasonic setup. It also has an onboard computer which runs the navigation program NAV. This program sends the range data and configuration parameters to the operator''s console program OCP, running on a stationary PC, through radio communication on a serial line. Through OCP, an operator can monitor the progress of the robot from a distant control room and intervene if necessary. In this paper the control modules of the mobile robot, its ways of operation and also results of some of the experimental runs recorded are reported. It is seen that the trained net guides the mobile robot through gaps of 1m and above to its destination with about 84% success measured over a small sample of 38 runs

  7. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  8. Analysis of torque transmitting behavior and wheel slip prevention control during regenerative braking for high speed EMU trains

    Science.gov (United States)

    Xu, Kun; Xu, Guo-Qing; Zheng, Chun-Hua

    2016-04-01

    The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability, improving the adhesion utilization, and achieving deep energy recovery. There remain technical challenges mainly because of the nonlinear, uncertain, and varying features of wheel-rail contact conditions. This research analyzes the torque transmitting behavior during regenerative braking, and proposes a novel methodology to detect the wheel-rail adhesion stability. Then, applications to the wheel slip prevention during braking are investigated, and the optimal slip ratio control scheme is proposed, which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control. The proposed methodology achieves the optimal braking performance without the wheel-rail contact information. Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.

  9. Multi-purpose canister project overview

    International Nuclear Information System (INIS)

    Williams, J.

    1995-01-01

    In this presentation, the author lists the approved and proposed dry storage technologies. He discusses the compatibility of dry storage systems with waste management systems. Historical aspects, recent history, key features of the program approach, benefits, specifications, acquisition and potential utility use of the multi-purpose canister (MPC) are covered. The MPCs provide standardization in the waste management system and a cost savings to utilities and government. MPC will be developed to the same level as existing dry storage systems

  10. Multi-sensors multi-baseline mapping system for mobile robot using stereovision camera and laser-range device

    Directory of Open Access Journals (Sweden)

    Mohammed Faisal

    2016-06-01

    Full Text Available Countless applications today are using mobile robots, including autonomous navigation, security patrolling, housework, search-and-rescue operations, material handling, manufacturing, and automated transportation systems. Regardless of the application, a mobile robot must use a robust autonomous navigation system. Autonomous navigation remains one of the primary challenges in the mobile-robot industry; many control algorithms and techniques have been recently developed that aim to overcome this challenge. Among autonomous navigation methods, vision-based systems have been growing in recent years due to rapid gains in computational power and the reliability of visual sensors. The primary focus of research into vision-based navigation is to allow a mobile robot to navigate in an unstructured environment without collision. In recent years, several researchers have looked at methods for setting up autonomous mobile robots for navigational tasks. Among these methods, stereovision-based navigation is a promising approach for reliable and efficient navigation. In this article, we create and develop a novel mapping system for a robust autonomous navigation system. The main contribution of this article is the fuse of the multi-baseline stereovision (narrow and wide baselines and laser-range reading data to enhance the accuracy of the point cloud, to reduce the ambiguity of correspondence matching, and to extend the field of view of the proposed mapping system to 180°. Another contribution is the pruning the region of interest of the three-dimensional point clouds to reduce the computational burden involved in the stereo process. Therefore, we called the proposed system multi-sensors multi-baseline mapping system. The experimental results illustrate the robustness and accuracy of the proposed system.

  11. Cost-efficient demand-pull policies for multi-purpose technologies – The case of stationary electricity storage

    International Nuclear Information System (INIS)

    Battke, Benedikt; Schmidt, Tobias S.

    2015-01-01

    Highlights: • A definition of multi-purpose technologies (MPTs) is proposed. • Opportunities for a cost-efficient demand-pull policy strategy for MPTs are derived. • The multi-purpose character of stationary electricity storage (SES) is shown. • An exemplary profitability assessment of one SES technology supports the argument. - Abstract: Stationary electricity storage technologies (SES) allow to increase the shares of intermittent renewable energy technologies in electricity networks. As SES currently exhibit high costs, policy makers have started introducing demand-pull policies in order to foster their diffusion and drive these technologies further down the learning curve. However, as observed in the case of renewable energy technologies, demand-pull policies for technologies can come at high costs in cases where the profitability gap that needs to be covered by the policy support is large. Yet, SES can create value in multiple distinct applications in the power system – making it a “multi-purpose technology”. We argue that policy makers can make use of the multi-purpose character of SES to limit costs of demand-pull policies. We propose a policy strategy which grants support based on the profitability gap in the different applications, thereby moving down the learning curve efficiently. To support our argumentation, we firstly conduct a comprehensive literature review of SES applications exemplifying the multi-purpose character of these technologies. Second, we assess the profitability of one SES technology (vanadium redox flow battery) in five SES applications, highlighting a strong variation of the profitability gap across these applications

  12. To the question of modeling of wheels and rails wear processes

    Directory of Open Access Journals (Sweden)

    S.V. Myamlin

    2013-06-01

    Full Text Available Purpose. There is a need of wear process modeling in the wheel-rail system. This is related to the fact that the wear processes in this system are absolutely different in the initial and final stages. The profile change of rail and, especially, of the wheels caused by the wear significantly affects the rolling stock dynamics, traffic safety and the resource of the wheels and rails. Wear modeling and the traffic safety evaluation requires the accounting of the low frequency component forces (including the modeling of transitional areas affecting the wheel on the side of the rail and carriage in motion of rolling stock, so the statistical analysis is not possible. Methodology. The method of mathematical modeling of the wheel set and the rail interaction was used during the research conducting. Findings. As a result of the modeling of the wheel set motion on the rail track, the mathematic model with 19 freedom degrees was obtained. This model takes into account the axle torque and studies wheels constructions as the components of the mechanical systems, consisting of a hub and tire. Originality. The mathematic model allows evaluating the wear degree of the wheels and rails when using on the rolling stock not only all-metal wheel sets, but also compound ones with the use of spring wheels and independent rotation of semi-axes with the wheels. Practical value. The development of the improved mathematical model of freight car wheel set motion with differential rotation of the wheels and compound axles allows studying the wear processes of wheels and rails.

  13. The wheel-rail contact friction influence on high speed vehicle model stability

    Directory of Open Access Journals (Sweden)

    Mirosław DUSZA

    2015-09-01

    Full Text Available Right estimating of the coefficient of friction between the wheel and rail is essential in modelling rail vehicle dynamics. Constant value of coefficient of friction is the typical assumption in theoretical studies. But it is obvious that in real circumstances a few factors may have significant influence on the rails surface condition and this way on the coefficient of friction value. For example the weather condition, the railway location etc. Influence of the coefficient of friction changes on high speed rail vehicle model dynamics is presented in this paper. Four axle rail vehicle model were built. The FASTSIM code is employed for calculation of the tangential contact forces between wheel and rail. One coefficient of friction value is adopted in the particular simulation process. To check the vehicle model properties under the influence of wheel-rail coefficient of friction changes, twenty four series of simulations were performed. For three curved tracks of radii R = 3000m, 6000m and  (straight track, the coefficient of friction was changed from 0.1 to 0.8. The results are presented in form of bifurcation diagrams.

  14. Analyzing the Wheeled Vehicle Gearbox Structures for Running in Harsh Conditions

    Directory of Open Access Journals (Sweden)

    V. V. Vasiliev

    2015-01-01

    Full Text Available In domestic automotive industry the need for transition from transmission with manual control to automatic gearboxes (GB emerged long ago. Regarding the leading foreign manufacturers (Allison, ZF, Eaton, etc., an experience in design of automatic transmissions and the level of technological development is incomparably small. Thus, to have an informed choice of the gearbox structure types and control system is a relevant problem. Application efficiency of this or other gearbox depends both on its adaptability to the actual operating conditions and on the quality of transition refinement. This paper analyzes the special features of the gear change process in the most common types of automatic gearboxes. Constructive feasibilities of an "ideal" gear change (without power loss and strategies for gear shifting are compared. The paper offers an overview of common problems when achieving these goals and the ways to solve them. An automatic transmission of the particular type used in the wheeled vehicles under off-road conditions determines the probability of maintaining their mobility. This is due to the phenomenon of wheel`s breakdown to slipping caused by sharp increase of torque on the wheel. Planetary hydromechanical transmissions (AT provide continuous input torque to the wheels, but they are expensive and difficult to manufacture and use. Besides, to provide a high number of density ratios in them is more complicated than in the automated and manual transmissions (AMT. This is important when moving long in the lower gears under difficult conditions. Compared with AT dual clutch transmissions due to design features require even more precise and fast control system of actuators and engine. Automation of constant-mesh or synchromesh transmissions provides a significant reduction in the duration of interruption in torque delivery. If it is not enough to increase mobility in the harsh conditions, a rational choice is to use a transmission type of TCCT

  15. Design of mobile shelters for communication purposes

    Science.gov (United States)

    Lotens, W. A.; Leebeek, H. J.

    1982-03-01

    A general design for a future generation of shelters, to be used as mobile work places, is presented. Design criteria involve ergonomics, functional suitability, and air conditioning. Electronics, power supply, and personnel get their own compartments. Work space is provided for two people with room for two more. Center of mass and cable connections are considered. Air conditioning requirements are calculated with a computer program. The result is an integrated design, applicable to shelters for several purposes.

  16. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel

    Science.gov (United States)

    Wang, Jifeng; Müller, Norbert

    2012-06-01

    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  17. High levels of wheel running protect against behavioral sensitization to cocaine.

    Science.gov (United States)

    Renteria Diaz, Laura; Siontas, Dora; Mendoza, Jose; Arvanitogiannis, Andreas

    2013-01-15

    Although there is no doubt that the direct action of stimulant drugs on the brain is necessary for sensitization to their behavioral stimulating effects, several experiments indicate that drug action is often not sufficient to produce sensitization. There is considerable evidence that many individual characteristics and experiential variables can modulate the behavioral and neural changes that are seen following repeated exposure to stimulant drugs. In the work presented here, we examined whether chronic wheel running would modulate behavioral sensitization to cocaine, and whether any such influence was contingent on individual differences in wheel running. We found that a 5- or 10-week experience with wheel running protects against behavioral sensitization to cocaine but only in animals with a natural tendency to run the most. Understanding the mechanism underlying the modulating effect of wheel running on behavioral sensitization may have important implications for future studies on the link between drug-induced behavioral and neural adaptations. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Manual Wheelchair Use: Bouts of Mobility in Everyday Life

    Directory of Open Access Journals (Sweden)

    Sharon Eve Sonenblum

    2012-01-01

    Full Text Available Background. This study aimed to describe how people move about in manual wheelchairs (MWCs during everyday life by evaluating bouts of mobility or continuous periods of movement. Methods. A convenience sample of 28 MWC users was recruited. Participants' everyday mobility was measured using a wheel-mounted accelerometer and seat occupancy switch for 1-2 weeks. Bouts of mobility were recorded and characterized. Results. Across 29,200 bouts, the median bout lasted 21 seconds and traveled 8.6 m at 0.43 m/s. 85% of recorded bouts lasted less than 1 minute and traveled less than 30 meters. Participants' daily wheelchair activity included 90 bouts and 1.6 km over 54 minutes. Average daily occupancy time was 11 hours during which participants wheeled 10 bouts/hour and spent 10% of their time wheeling. Spearman-Brown Prophecy analysis suggested that 7 days were sufficient to achieve a reliability of 0.8 for all bout variables. Conclusions. Short, slow bouts dominate wheelchair usage in a natural environment. Therefore, clinical evaluations and biomechanical research should reflect this by concentrating on initiating movement, maneuvering wheelchairs, and stopping. Bouts of mobility provide greater depth to our understanding of wheelchair use and are a more stable metric (day-to-day than distance or time wheeled.

  19. Multi-purpose passive debugging for embedded wireless

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg

    Debugging embedded wireless systems can be cumbersome and hard due to low visibility. To ease the task of debugging we propose a multi-purpose passive debugging framework, called TinyDebug, for developing embedded wireless systems. TinyDebug is designed to be used throughout the entire system...

  20. Autonomous mobile platform with simultaneous localisation and mapping system for patrolling purposes

    Science.gov (United States)

    Mitka, Łukasz; Buratowski, Tomasz

    2017-10-01

    This work describes an autonomous mobile platform for supervision and surveillance purposes. The system can be adapted for mounting on different types of vehicles. The platform is based on a SLAM navigation system which performs a localization task. Sensor fusion including laser scanners, inertial measurement unit (IMU), odometry and GPS lets the system determine its position in a certain and precise way. The platform is able to create a 3D model of a supervised area and export it as a point cloud. The system can operate both inside and outside as the navigation algorithm is resistant to typical localization errors caused by wheel slippage or temporal GPS signal loss. The system is equipped with a path-planning module which allows operating in two modes. The first mode is for periodical observation of points in a selected area. The second mode is turned on in case of an alarm. When it is called, the platform moves with the fastest route to the place of the alert. The path planning is always performed online with use of the most current scans, therefore the platform is able to adjust its trajectory to the environment changes or obstacles that are in the motion. The control algorithms are developed under the Robot Operating System (ROS) since it comes with drivers for many devices used in robotics. Such a solution allows for extending the system with any type of sensor in order to incorporate its data into a created area model. Proposed appliance can be ported to other existing robotic platforms or used to develop a new platform dedicated to a specific kind of surveillance. The platform use cases are to patrol an area, such as airport or metro station, in search for dangerous substances or suspicious objects and in case of detection instantly inform security forces. Second use case is a tele-operation in hazardous area for an inspection purposes.

  1. Inspector-2000. A DSP-based, portable, multi-purpose MCA

    International Nuclear Information System (INIS)

    Koskelo, M.J.; Sielaff, W.A.; Hall, D.L.; Kastner, M.H.; Jordanov, V.T.

    2001-01-01

    Various in-situ gamma-spectroscopy applications need a versatile, multi-purpose, portable multi-channel analyzer (MCA). Recently, Canberra has introduced the Inspector-2000 for this purpose. It uses digital signal processing (DSP) technology and weighs only about 1.2 kg. It also supports CdTe, NaI and Ge detectors. Due to its use of DSP technology, the Inspector-2000 also provides a longer battery life, a better detector resolution and a better temperature stability than most portable MCAs. A short description of the Inspector-2000 MCA is included and its performance characteristics compared to an analog MCA. (author)

  2. The robustness of k0-NAA in large multi-purpose research reactors

    International Nuclear Information System (INIS)

    Attila Stopic; Bennett, J.W.

    2014-01-01

    The challenges and opportunities associated with performing k 0 -NAA in high-powered, multi-purpose research reactors are examined and recommendations are made concerning the conditions that need to be met in such facilities in order to allow the potential for this method of elemental analysis to be fully realised. (author)

  3. Damages and resource of locomotive wheels used under the north operating conditions

    Directory of Open Access Journals (Sweden)

    A. V. Grigorev

    2014-01-01

    Full Text Available In operating railway equipment, in particular the elements, such as a wheel and a rail there is damage accumulation of any kind, causing a premature equipment failure. Thus, an analysis of the mechanisms and modeling of damage accumulation and fracture both on the surface and in the bulk material remain a challenge.Data on the defective wheel sets to be subjected to facing has been collected and analyzed to assess the locomotive wheel sets damage of the locomotive fleet company of AK «Yakutia Railways», city of Aldan, The Republic of Sakha (Yakutia. For this purpose, three main locomotives have been examined.The object of research carried out in this paper, is a locomotive wheels tire, which is subjected to cyclic impact (dynamic loads during operation. In this regard, the need arises to determine both the strength of material in response to such shock loads and the quantitative calculation of damage accumulated therein.The accumulated fatigue damage has been attributed to one radial cross section of the wheel coming into contact with the rail once per revolution of the wheel. Consequently, in one revolution a wheel is under one loading cycle. As stated, the average mileage of locomotives to have the unacceptable damages formed on the tread surface is 12 thousand km.Test results establish that along with the high-cycle loading the shock-contact action on rail joints significantly affects the accumulation of damage in the locomotive wheels tire. The number of cycles to failure due to the formation of unacceptable damage in the locomotive wheels tire is N = 2,4×106 and 6×105 cycles, respectively, for fatigue and shock-contact loading.In general, we can say that the problem of higher intensity to form the surface damage is directly related to the operation of the locomotive wheel tire under abnormally low climatic temperatures. With decreasing ambient temperature, this element material rapidly looses its plastic properties, thereby accelerating

  4. Equipping an automated wheelchair with an infrared encoder wheel odometer - biomed 2011.

    Science.gov (United States)

    Schultz, D; Allen, M; Barrett, S F

    2011-01-01

    Assistive technology is a rapidly growing field that provides a degree of freedom and self-sufficiency to people of limited mobility. Smart wheelchairs are a subset of assistive technology, and are designed to be operated by people who are unable to use a traditional control system. Instead, smart wheelchairs are equipped with a combination of automated functionality and steering mechanisms specialized to meet a person’s individual needs. One feature common to the automated capabilities of smart wheelchairs is the tracking system. The wheelchair’s microcontroller needs to know how far the chair has travelled, its speed, and the rotational direction of its wheels in order to successfully navigate through an environment. The purpose of this research was to develop an odometer to track the motion of a motorized wheelchair. Due to federal regulations that prohibit changing the structure or internal mechanics of a medical device, the odometer had to be designed as a separate, removable part. The final design for the odometer consisted of two infrared sensors that measure edge transitions of a segmented black and white encoder wheel. The sensor output was then run through two comparator op amps and a high pass filter to produce a clean, crisp square wave signal output. The signal was then fed to an Atmel ATmega164P microcontroller. The microcontroller was programmed to compare the sensor signal with its internal clock, sense edge transitions, and thereby extrapolate the speed, travelled distance, and rotational direction of the wheelchair.

  5. Multi-Layer 5G Mobile Phone Antenna for Multi-User MIMO Communications

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    for 5G wireless communications. Two identical linear sub arrays can be simultaneously used at different sides of the mobile-phone printed circuit board (PCB) for operation in diversity or multiple-input multiple-output (MIMO) modes. Each sub array contains eight elements of very compact off......-center dipole antennas with dimensions of 5.4×0.67 mm2. The feature of compact design with good beam-steering function makes them well-suited to integrate into the mobile-phone mock-up. The fundamental properties of the proposed antenna have been investigated. Simulations show that the proposed 5G antenna......In this study, a new design of multi-layer phased array antenna for millimeter-wave (mm-Wave) fifth generation (5G) mobile terminals is proposed. The proposed linear phased array antenna is designed on four layers of the Rogers RT5880 substrates to operate at 28 GHz which is under consideration...

  6. Central Vehicle Dynamics Control of the Robotic Research Platform ROboMObil

    OpenAIRE

    Bünte, Tilman; Ho, Lok Man; Satzger, Clemens; Brembeck, Jonathan

    2014-01-01

    The ROboMObil is DLR’s space-robotics driven by-wire electro-mobile research platform for mechatronic actuators, vehicle dynamics control, human machine interfaces, and autonomous driving (DLR = German Aerospace Center). Due to its four highly integrated identical Wheel Robots it exhibits an extraordinary manoeuvrability even allowing for driving sideward or rotating on the spot. Topics related to vehicle dynamics control are addressed in this article.

  7. Mobile Design Pattern Gallery UI Patterns for Mobile Applications

    CERN Document Server

    Neil, Theresa

    2012-01-01

    When you're under pressure to produce a well designed, easy-to-navigate mobile app, there's no time to reinvent the wheel. This concise book provides a handy reference to 70 mobile app design patterns, illustrated by more than 400 screenshots from current iOS, Android, BlackBerry, WebOS, Windows Mobile, and Symbian apps. User experience professional Theresa Neil (Designing Web Interfaces) walks you through design patterns in 10 separate categories, including anti-patterns. Whether you're designing a simple iPhone application or one that's meant to work for every popular mobile OS on the mark

  8. Ride comfort optimization of a multi-axle heavy motorized wheel dump truck based on virtual and real prototype experiment integrated Kriging model

    Directory of Open Access Journals (Sweden)

    Bian Gong

    2015-06-01

    Full Text Available The optimization of hydro-pneumatic suspension parameters of a multi-axle heavy motorized wheel dump truck is carried out based on virtual and real prototype experiment integrated Kriging model in this article. The root mean square of vertical vibration acceleration, in the center of sprung mass, is assigned as the optimization objective. The constraints are the natural frequency, the working stroke, and the dynamic load of wheels. The suspension structure for the truck is the adjustable hydro-pneumatic suspension with ideal vehicle nonlinear characteristics, integrated with elastic and damping elements. Also, the hydraulic systems of two adjacent hydro-pneumatic suspension are interconnected. Considering the high complexity of the engineering model, a novel kind of meta-model called virtual and real prototype experiment integrated Kriging is proposed in this article. The interpolation principle and the construction of virtual and real prototype experiment integrated Kriging model were elucidated. Being different from traditional Kriging, virtual and real prototype experiment integrated Kriging combines the respective advantages of actual test and Computer Aided Engineering simulation. Based on the virtual and real prototype experiment integrated Kriging model, the optimization results, obtained by experimental verification, showed significant improvement in the ride comfort by 12.48% for front suspension and 11.79% for rear suspension. Compared with traditional Kriging, the optimization effect was improved by 3.05% and 3.38% respectively. Virtual and real prototype experiment integrated Kriging provides an effective way to approach the optimal solution for the optimization of high-complexity engineering problems.

  9. Diagnostics of the wheel thread of railway rolling stock

    Directory of Open Access Journals (Sweden)

    S. Yu. Buryak

    2013-02-01

    Full Text Available Purpose. At present, the devastating impact of faulty wheels on rails on the move is a major problem of railway transport. This factor is one of the most important, which causes the shift from traditional manual methods of verification and external examination to the automated diagnostic system of rolling stock in operation. Methodology. To achieve this goal the main types of wheel damages and the way they appear are analyzed. The methods for defects and abnormalities of the wheel thread determining as well as their advantages and disadvantages were presented. Nowadays these methods are under usage in both the international practice and in the one of the CIS countries. Findings. The faulty wheel sound on the move was researched and analyzed. The necessity of using the automated system, enabling one to reduce significantly the human factor is substantiated. Originality. The method to determine the wheel thread damage on the basis of a sound diagnostic is proposed. Practical value. Automatic tracking system of the wheels condition allows performing their more qualitative diagnostics, detecting a fault at the early stage and forecasting the rate of its extension. Besides detecting the location of the faulty wheel in the rolling stock, it is also possible to trace the dynamics of the fault extension and to give the recommendations on how to eliminate it.

  10. Mobile teleoperator research at Savannah River Laboratory

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1985-01-01

    A Robotics Technology Group was organized at Savannah River Laboratory to employ modern automation and robotics for applications at the Savannah River site. Several industrial robots have been installed in plant processes. Other robotics systems are under development in the laboratories, including mobile teleoperators for general remote tasks and emergency response operations. This paper discusses present work on a low-cost wheeled mobile vehicle, a modular light duty manipulator arm, a large gantry telerobot system, and a high technology six-legged walking robot with a teleoperated arm

  11. SUBSTANTIATION OF EFFICIENCY OF THE MULTI-PURPOSE CONSTRUCTION MACHINERY IN EARTHWORKS

    Directory of Open Access Journals (Sweden)

    SOKOLOV I. A.

    2015-11-01

    Full Text Available Formulation of the problem. Construction of buildings and structures is a complex process, one of the components of which are the processing of digging. The cost structure constructed earthworks, depending on the types of buildings and structures, ranging from three to sixty percent. Currently, excavation work on 98% mechanized. Machines for the production of excavation, are one of the main vehicles by which the comprehensive mechanization of construction. Equipment construction vehicle with high, fast replacement of obsolete equipment with new, highly productive - one of the main ways of increasing the efficiency of excavation in construction. Intensification excavation mainly ensured by improving the organizational and technological measures to ensure efficient use of earthmoving equipment fleet. The current structure of the fleet, each of which can perform only one operation of the production cycle, resulting in the fact that for the implementation of the entire set of works on creation of earthworks necessary to form a set of machines capable to realize them. An alternative is to use a set of machines earth-moving equipment, multi-purpose equipped with 5-10 kinds of changeable working equipment with 20-40 working bodies, which provides all kinds of earthworks single machine. The purpose of the article. Develop a mechanism for technical and economic assessment of the effectiveness of the set of specialized earth-moving machines as compared to earth-moving machines, multi-purpose allows, under specified production parameters, to establish the limits of their effective application. To determine the efficiency of each unit of the considered earth-moving equipment, and further, to form a rational set of machines that can run on time given the amount of work at minimum cost. Conclusions. Systematic approach to the design of complete production process of digging it possible to establish the relationship between technology and feasibility indexes

  12. Analysis and Relative Evaluation of Connectivity of a Mobile Multi-Hop Network

    Science.gov (United States)

    Nakano, Keisuke; Miyakita, Kazuyuki; Sengoku, Masakazu; Shinoda, Shoji

    In mobile multi-hop networks, a source node S and a destination node D sometimes encounter a situation where there is no multi-hop path between them when a message M, destined for D, arrives at S. In this situation, we cannot send M from S to D immediately; however, we can deliver M to D after waiting some time with the help of two capabilities of mobility. One of the capabilities is to construct a connected multi-hop path by changing the topology of the network during the waiting time (Capability 1), and the other is to move M closer to D during the waiting time (Capability 2). In this paper, we consider three methods to deliver M from S to D by using these capabilities in different ways. Method 1 uses Capability 1 and sends M from S to D after waiting until a connected multi-hop path appears between S and D. Method 2 uses Capability 2 and delivers M to D by allowing a mobile node to carry M from S to D. Method 3 is a combination of Methods 1 and 2 and minimizes the waiting time. We evaluate and compare these three methods in terms of the mean waiting time, from the time when M arrives at S to the time when D starts receiving M, as a new approach to connectivity evaluation. We consider a one-dimensional mobile multi-hop network consisting of mobile nodes flowing in opposite directions along a street. First, we derive some approximate equations and propose an estimation method to compute the mean waiting time of Method 1. Second, we theoretically analyze the mean waiting time of Method 2, and compute a lower bound of that of Method 3. By comparing the three methods under the same assumptions using results of the analyses and some simulation results, we show relations between the mean waiting times of these methods and show how Capabilities 1 and 2 differently affect the mean waiting time.

  13. Endurance capacity of mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Meek, Thomas H; Lonquich, Brian P; Hannon, Robert M; Garland, Theodore

    2009-09-15

    Mice from four lines bred for high voluntary wheel activity run approximately 3-fold more revolutions per day and have elevated maximal oxygen consumption during forced treadmill exercise, as compared with four unselected control (C) lines. We hypothesized that these high runner (HR) lines would have greater treadmill endurance-running capacity. Ninety-six mice from generation 49 were familiarized with running on a motorized treadmill for 3 days. On days 4 and 5, mice were given an incremental speed test (starting at 20 m min(-1), increased 1.5 m min(-1) every 2 min) and endurance was measured as the total time or distance run to exhaustion. Blood samples were taken to measure glucose and lactate concentrations at rest during the photophase, during peak nightly wheel running, and immediately following the second endurance test. Individual differences in endurance time were highly repeatable between days (r=0.79), and mice tended to run longer on the second day (paired t-test, Pwheel running and treadmill endurance differed between the sexes, reinforcing previous studies that indicate sex-specific responses to selective breeding. HR mice appear to have a higher endurance capacity than reported in the literature for inbred strains of mice or transgenics intended to enhance endurance.

  14. The Relative Importance of Motives for International Self-Initiated Mobility

    Science.gov (United States)

    Thorn, Kaye

    2009-01-01

    Purpose: This paper aims to explore the relative importance of the motives and sub-motives which influence a highly educated individual's decision to move across global boundaries. Design/methodology/approach: The approach takes a multi-dimensional perspective of mobility, resulting in the development of a range of motives for self-initiated…

  15. Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior

    Science.gov (United States)

    Pendergast, Julie S.; Branecky, Katrina L.; Huang, Roya; Niswender, Kevin D.; Yamazaki, Shin

    2014-01-01

    Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running activity could prevent the proximate effects of high-fat diet consumption on circadian organization and behavioral rhythms in mice. Mice were housed with locked or freely rotating running wheels and fed chow or high-fat diet for 1 week and rhythms of locomotor activity, eating behavior, and molecular timekeeping (PERIOD2::LUCIFERASE luminescence rhythms) in ex vivo tissues were measured. Wheel-running activity delayed the phase of the liver rhythm by 4 h in both chow- and high-fat diet-fed mice. The delayed liver phase was specific to wheel-running activity since an enriched environment without the running wheel did not alter the phase of the liver rhythm. In addition, wheel-running activity modulated the effect of high-fat diet consumption on the daily rhythm of eating behavior. While high-fat diet consumption caused eating events to be more evenly dispersed across the 24 h-day in both locked-wheel and wheel-running mice, the effect of high-fat diet was much less pronounced in wheel-running mice. Together these data demonstrate that wheel-running activity is a salient factor that modulates liver phase and eating behavior rhythms in both chow- and high-fat-diet fed mice. Wheel-running activity in mice is both a source of exercise and a self-motivating, rewarding behavior. Understanding the putative reward-related mechanisms whereby wheel-running activity alters circadian rhythms could have implications for human obesity since palatable food and exercise may modulate similar reward circuits. PMID:24624109

  16. Kinematics, dynamics and control design of 4WIS4WID mobile robots

    Directory of Open Access Journals (Sweden)

    Ming-Han Lee

    2015-01-01

    Full Text Available Kinematic and dynamic modelling and corresponding control design of a four-wheel-independent steering and four-wheel-independent driving (4WIS4WID mobile robot are presented in this study. Different from the differential or car-like mobile robot, the 4WIS4WID mobile robot is controlled by four steering and four driving motors, so the control scheme should possess the ability to integrate and manipulate the four independent wheels. A trajectory tracking control scheme is developed for the 4WIS4WID mobile robot, where both non-linear kinematic control and dynamic sliding-mode control are designed. All of the stabilities of the kinematic and dynamic control laws are proved by Lyapunov stability analysis. Finally, the feasibility and validity of the proposed trajectory tracking control scheme are confirmed through computer simulations.

  17. EXPERIMENTAL EVALUATION OF ARTICULATED WHEELED VEHICLES POSITION STABILITY

    Directory of Open Access Journals (Sweden)

    Ye. Dubinin

    2015-07-01

    Full Text Available With introducing a mobile measurement system with linear acceleration sensors there was experimentally determined the parameter of position stability of the articulated wheeled vehicle on the example of HTA-200 «Slobozhanets». It was determined that the position stability was provided within the entire range of operating speeds and accelerations. The obtained results can be used to enhance the traffic safety of articulated vehicles.

  18. ITS Technologies in Military Wheeled Tactical Vehicles: Status Quo and the Future

    International Nuclear Information System (INIS)

    Knee, H.E.

    2001-01-01

    The U.S. Army operates and maintains the largest trucking fleet in the United States. Its fleet consists of over 246,000 trucks, and it is responsible for buying and developing trucks for all branches of the armed forces. The Army's tactical wheeled vehicle fleet is the logistical backbone of the Army, and annually, the fleet logs about 823 million miles. The fleet consists of a number of types of vehicles. They include eight different families of trucks from the High Mobility Multi-Purpose Wheeled Vehicles to M900 series line haul tractors and special bodies. The average age of all the trucks within the Army fleet is 15 years, and very few have more than traditional driving instrumentation on-board. Over the past decade, the Department of Transportation's (DOT's) Intelligent Transportation Systems (ITS) Program has conducted research and deployment activities in a number of areas including in-vehicle systems, communication and telematics technologies. Many current model passenger vehicles have demonstrated the assimilation of these technologies to enhance safety and trip quality. Commercial vehicles are also demonstrating many new electronic devices that are assisting in making them safer and more efficient. Moreover, a plethora of new technologies are about to be introduced to drivers that promise greater safety, enhanced efficiency, congestion avoidance, fuel usage reduction, and enhanced trip quality. The U.S. Army has special needs with regard to fleet management, logistics, sustainability, reliability, survivability, and fuel consumption that goes beyond similar requirements within the private industry. In order to effectively apply emerging ITS technologies to the special needs of the U.S. Army, planning for the conduct of the Army's Vehicle Intelligence Program (AVIP) has now commenced. The AVIP will be focused on the conduct of research that: (1) will apply ITS technologies to the special needs of the Army, and (2) will conduct research for special needs

  19. Mathematical Methods and Algorithms of Mobile Parallel Computing on the Base of Multi-core Processors

    Directory of Open Access Journals (Sweden)

    Alexander B. Bakulev

    2012-11-01

    Full Text Available This article deals with mathematical models and algorithms, providing mobility of sequential programs parallel representation on the high-level language, presents formal model of operation environment processes management, based on the proposed model of programs parallel representation, presenting computation process on the base of multi-core processors.

  20. An Omni-Directional Wall-Climbing Microrobot with Magnetic Wheels Directly Integrated with Electromagnetic Micromotors

    Directory of Open Access Journals (Sweden)

    Xiaoning Tang

    2012-04-01

    Full Text Available This paper presents an omni-directional wall-climbing microrobot with magnetic wheels. The integral design with an actuator and adhesive is realized by integrating stators and rotors of an MEMS-based electromagnetic micromotor with a magnetic wheel. The omni-directional wall-climbing mechanism is designed by a set of steering gears and three standard magnetic wheels. The required torque and magnetic force for microrobot movement are derived by its static analysis. The size of the magnetic wheel is optimized, with consideration of its own design constraints, by ANSOFT and Pro/Engineer simulation so as to reduce unnecessary torque consumption under the same designed load. Related experiments demonstrate that the microrobot (diameter: 26mm; height: 16.4; mass: 7.2g; load capacity: 3g we have developed has a good wall-climbing ability and flexible mobility, and it can perform visual detection in a ferromagnetic environment.

  1. Costs associated with wheeling

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Wheeling costs are incurred by all companies that experience a change in power flows over their transmission lines during a specific transaction, whether or not the lines of that company are part of the contract path. The costs of providing wheeling service differ from one system to another and from one kind of wheeling transaction to another. While most transactions may be completed using existing capacity, others may require an increase in line. Depending on the situation, some cost components may be high, low, negative, or not incurred at all. This article discusses two general categories of costs; transactional and capital. The former are all operation, maintenance and opportunity costs incurred in completing a specific transaction assuming the existence of adequate capacity. Capital costs are the costs of major new equipment purchases and lines necessary to provide any increased level of transmission services

  2. Experimental analysis and regression prediction of desiccant wheel behavior in high temperature heat pump and desiccant wheel air-conditioning system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Sun, Yuexia

    2014-01-01

    The objectives of this study are to evaluate the performance of desiccant wheel (DW) in the running system and obtain the useful data for practical application. The combined influences of multiple variables on the performance of desiccant wheel are investigated based on evaluating the indexes...... of moisture removal capacity, dehumidification effectiveness, dehumidification coefficient of performance and sensible energy ratio. The results show that higher effect on the dehumidification is due to the regeneration temperature and outdoor air humidity ratio rather than the outdoor air temperature...... and the ratio between regeneration and process air flow rates. A simple method based on multiple linear regression theory for predicting the performance of the wheel has been proposed. The predicted values and the experimental data are compared and good agreements are obtained. Regression models are established...

  3. Design and Construction of a Robotic Vehicle with Omni-directional Mecanum Wheels

    Directory of Open Access Journals (Sweden)

    Ján VACHÁLEK

    2014-06-01

    Full Text Available The paper deals with the design and construction of a universal robotic vehicle prototype, used for laboratory and educational purposes. The main goal is its use as a technology demonstrator for the needs of students, therefore it is equipped with several kinds of sensors and universal advanced control technologies and design solutions. Its basis is a control system and construction concept using mobile battery gear and omnidirectional Mecanum wheels. A manipulating arm and advanced tracking and spatial navigation systems are also components of the design. Since the problem of a customized design and construction of such a robotic vehicle is very complex and solved in various scientific fields, in this paper we will mainly focus on the detailed description of the control systems and subsystems of the vehicle.

  4. Mechatronic track guidance on disturbed track: the trade-off between actuator performance and wheel wear

    Science.gov (United States)

    Kurzeck, Bernhard; Heckmann, Andreas; Wesseler, Christoph; Rapp, Matthias

    2014-05-01

    Future high-speed trains are the main focus of the DLR research project Next Generation Train. One central point of the research activities is the development of mechatronic track guidance for the two-axle intermediate wagons with steerable, individually powered, independently rotating wheels. The traction motors hereby fulfil two functions; they concurrently are traction drives and steering actuators. In this paper, the influence of the track properties - line layout and track irregularities - on the performance requirements for the guidance actuator is investigated using multi-body models in SIMPACK®. In order to compromise on the design conflict between low wheel wear and low steering torque, the control parameters of the mechatronic track guidance are optimised using the DLR in-house software MOPS. Besides the track irregularities especially the increasing inclination at transition curves defines high actuator requirements due to gyroscopic effects at high speed. After introducing a limiter for the actuating variables into the control system, a good performance is achieved.

  5. Open-field behavior of house mice selectively bred for high voluntary wheel-running.

    Science.gov (United States)

    Bronikowski, A M; Carter, P A; Swallow, J G; Girard, I A; Rhodes, J S; Garland, T

    2001-05-01

    Open-field behavioral assays are commonly used to test both locomotor activity and emotionality in rodents. We performed open-field tests on house mice (Mus domesticus) from four replicate lines genetically selected for high voluntary wheel-running for 22 generations and from four replicate random-bred control lines. Individual mice were recorded by video camera for 3 min in a 1-m2 open-field arena on 2 consecutive days. Mice from selected lines showed no statistical differences from control mice with respect to distance traveled, defecation, time spent in the interior, or average distance from the center of the arena during the trial. Thus, we found little evidence that open-field behavior, as traditionally defined, is genetically correlated with wheel-running behavior. This result is a useful converse test of classical studies that report no increased wheel-running in mice selected for increased open-field activity. However, mice from selected lines turned less in their travel paths than did control-line mice, and females from selected lines had slower travel times (longer latencies) to reach the wall. We discuss these results in the context of the historical open-field test and newly defined measures of open-field activity.

  6. Modular, scalable EV powertrains for mobile energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Christie, L. [Rapid Electric Vehicles Technologies, Vancouver, BC (Canada)

    2010-07-01

    Rapid Electric Vehicles (REV) develops powertrains and control systems for 100 percent electric bi-directional charging ancillary power vehicles (APVs). APV fleet vehicles are used for the purpose of mobile energy storage and are necessary for scaling energy and power according to customer demand. REV is currently using OEM frames and bodies. This presentation discussed REV's OEM strategy and its progression towards advanced APVs. The product development timeline for front wheel drive systems was also presented. Several products were also discussed, including a modular all-electric front wheel drive; an ACX2.0 to Burlington Hydro; testing of ACX2.5 systems, vehicles near completion; and a V2x demonstration. The presentation discussed each of these products in detail. Other topics that were presented included modular solutions; strategic partnerships; electric vehicle performance and requirements; and an ACX-3 drive system study. tabs., figs.

  7. Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility

    Directory of Open Access Journals (Sweden)

    Klaus Moessner

    2013-10-01

    Full Text Available This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines.

  8. Multi-Destination and Multi-Purpose Trip Effects in the Analysis of the Demand for Trips to a Remote Recreational Site

    Science.gov (United States)

    Martínez-Espiñeira, Roberto; Amoako-Tuffour, Joe

    2009-06-01

    One of the basic assumptions of the travel cost method for recreational demand analysis is that the travel cost is always incurred for a single purpose recreational trip. Several studies have skirted around the issue with simplifying assumptions and dropping observations considered as nonconventional holiday-makers or as nontraditional visitors from the sample. The effect of such simplifications on the benefit estimates remains conjectural. Given the remoteness of notable recreational parks, multi-destination or multi-purpose trips are not uncommon. This article examines the consequences of allocating travel costs to a recreational site when some trips were taken for purposes other than recreation and/or included visits to other recreational sites. Using a multi-purpose weighting approach on data from Gros Morne National Park, Canada, we conclude that a proper correction for multi-destination or multi-purpose trip is more of what is needed to avoid potential biases in the estimated effects of the price (travel-cost) variable and of the income variable in the trip generation equation.

  9. A full-spectrum analysis of high-speed train interior noise under multi-physical-field coupling excitations

    Science.gov (United States)

    Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie

    2016-06-01

    High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show

  10. Multi-Sensor Based State Prediction for Personal Mobility Vehicles.

    Directory of Open Access Journals (Sweden)

    Jamilah Abdur-Rahim

    Full Text Available This paper presents a study on multi-modal human emotional state detection while riding a powered wheelchair (PMV; Personal Mobility Vehicle in an indoor labyrinth-like environment. The study reports findings on the habituation of human stress response during self-driving. In addition, the effects of "loss of controllability", change in the role of the driver to a passenger, are investigated via an autonomous driving modality. The multi-modal emotional state detector sensing framework consists of four sensing devices: electroencephalograph (EEG, heart inter-beat interval (IBI, galvanic skin response (GSR and stressor level lever (in the case of autonomous riding. Physiological emotional state measurement characteristics are organized by time-scale, in terms of capturing slower changes (long-term and quicker changes from moment-to-moment. Experimental results with fifteen participants regarding subjective emotional state reports and commercial software measurements validated the proposed emotional state detector. Short-term GSR and heart signal characterizations captured moment-to-moment emotional state during autonomous riding (Spearman correlation; ρ = 0.6, p < 0.001. Short-term GSR and EEG characterizations reliably captured moment-to-moment emotional state during self-driving (Classification accuracy; 69.7. Finally, long-term GSR and heart characterizations were confirmed to reliably capture slow changes during autonomous riding and also of emotional state during participant resting state. The purpose of this study and the exploration of various algorithms and sensors in a structured framework is to provide a comprehensive background for multi-modal emotional state prediction experiments and/or applications. Additional discussion regarding the feasibility and utility of the possibilities of these concepts are given.

  11. ANALISIS PENGENDALIAN MUTU PROSES MACHINING ALLOY WHEEL MENGGUNAKAN METODE SIX SIGMA

    Directory of Open Access Journals (Sweden)

    Ong Andre Wahyu Rijanto

    2014-12-01

    Full Text Available PT. Meshindo Alloy Wheel adalah perusahaan yang bergerak di bidang manufaktur alloy wheel atau dikenal dengan sebutan velg racing untuk didistribusikan ke industri mobil atau dikenal sebagai OEM (Original Equipment Manufacturer baik untuk industri otomotif di Indonesia maupun di Jepang. Mutu merupakan syarat penting dalam sukses bisnis. Kehandalan kinerja proses dan keakuratan pencapaian persyaratan mutu harus dapat dipenuhi. Proses dikatakan capable jika dapat memenuhi spesifikasi pelanggan, variasi yang terjadi pada proses relatif kecil, dan defect atau DPMO yang terjadi kecil. Artikel ini menganalisis pengendalian mutu proses pembuatan valve hole location pada alloy wheel type MS 511 YA. Pengendalian variasi proses produksi dan pengukuran dengan menggunakan metode six sigma DMAIC (Define Measure Analysis Improve Control untuk dapat mencapai target penurunan cacat sampai mencapai 3,4 DPMO (defect per million opportunities, Cp 1,54 dan Cpk 1,54. Setelah proses six sigma selesai, diharapkan implementasi six sigma dapat memberikan saran-saran perbaikan pada proses-proses yang lain.

  12. ANALISIS PENGENDALIAN MUTU PROSES MACHINING ALLOY WHEEL MENGGUNAKAN METODE SIX SIGMA

    Directory of Open Access Journals (Sweden)

    Ong Andre Wahyu Rijanto

    2014-12-01

    Full Text Available PT. Meshindo Alloy Wheel adalah perusahaan yang bergerak di bidang manufaktur alloy wheel atau dikenal dengan sebutan velg racing untuk didistribusikan ke industri mobil atau dikenal sebagai OEM (Original Equipment Manufacturer baik untuk industri otomotif di Indonesia maupun di Jepang. Mutu merupakan syarat penting dalam sukses bisnis. Kehandalan kinerja proses dan keakuratan pencapaian persyaratan mutu harus dapat dipenuhi. Proses dikatakan capable jika dapat memenuhi spesifikasi pelanggan, variasi yang terjadi pada proses relatif kecil, dan defect atau DPMO yang terjadi kecil.  Artikel ini menganalisis pengendalian mutu proses pembuatan valve hole location pada alloy wheel type MS 511 YA. Pengendalian variasi proses produksi dan pengukuran dengan menggunakan metode six sigma DMAIC (Define Measure Analysis Improve Control untuk dapat mencapai target penurunan cacat sampai mencapai 3,4 DPMO (defect per million opportunities, Cp 1,54 dan Cpk 1,54. Setelah proses six sigma selesai, diharapkan implementasi six sigma dapat memberikan saran-saran perbaikan pada proses-proses yang lain.

  13. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  14. Studies on design principles and criteria of fuels and graphites for experimental multi-purpose very high temperature reactor

    International Nuclear Information System (INIS)

    Arai, Taketoshi; Sato, Sadao; Tani, Yutaro

    1977-12-01

    Design principles and criteria of fuels and graphites have been studied to determine the main design parameters of a reference core MARK-III of the Experimental Multi-purpose Very High Temperature Reactor. The present status of research and development for HTGR fuels and graphites is reviewed from a standpoint of their integrity and safety aspects, and is compared to the specific design requirements for the VHTR fuels and graphites. Consequently, reasonable materials specifications, safety criteria and design analysis methods are presented for coated fuel particle, fuel compact, graphite sleeve, core support graphite and neutron absorber material. These design principles and criteria will be refined by further experimental investigations. (auth.)

  15. The Effect of Terrain Inclination on Performance and the Stability Region of Two-Wheeled Mobile Robots

    Directory of Open Access Journals (Sweden)

    Zareena Kausar

    2012-11-01

    Full Text Available Two-wheeled mobile robots (TWMRs have a capability of avoiding the tip-over problem on inclined terrain by adjusting the centre of mass position of the robot body. The effects of terrain inclination on the robot performance are studied to exploit this capability. Prior to the real-time implementation of position control, an estimation of the stability region of the TWMR is essential for safe operation. A numerical method to estimate the stability region is applied and the effects of inclined surfaces on the performance and stability region of the robot are investigated. The dynamics of a TWMR is modelled on a general uneven terrain and reduced for cases of inclined and horizontal flat terrain. A full state feedback (FSFB controller is designed based on optimal gains with speed tracking on a horizontal flat terrain. The performance and stability regions are simulated for the robot on a horizontal flat and inclined terrain with the same controller. The results endorse a variation in equilibrium points and a reduction in stability region for robot motion on inclined terrain.

  16. A model of multi-purpose shopping trip behavior

    NARCIS (Netherlands)

    Arentze, T.A.; Borgers, A.W.J.; Timmermans, H.J.P.

    1993-01-01

    Existing utility-based models of complex choice behavior do not adequately deal with the interdependencies of chained choices. In this paper, we introduce a model of multi-purpose shopping which is aimed at overcoming this shortcoming. In the proposed model, dependencies between choices within as

  17. Speed Daemon: Experience-Based Mobile Robot Speed Scheduling

    Science.gov (United States)

    2014-10-01

    a wheeled mobile robot. Robotica , 20(2): 181–193, 2002. [7] O. Purwin and R. D‘Andrea. Trajectory generation and control for four wheeled...robot on an uneven surface. Robotica , 27(4):481–498, 2009. [9] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale

  18. Design and implementation of self-balancing coaxial two wheel robot based on HSIC

    Science.gov (United States)

    Hu, Tianlian; Zhang, Hua; Dai, Xin; Xia, Xianfeng; Liu, Ran; Qiu, Bo

    2007-12-01

    This thesis has studied the control problem concerning position and orientation control of self-balancing coaxial two wheel robot based on the human simulated intelligent control (HSIC) theory. Adopting Lagrange equation, the dynamic model of self-balancing coaxial two-wheel Robot is built up, and the Sensory-motor Intelligent Schemas (SMIS) of HSIC controller for the robot is designed by analyzing its movement and simulating the human controller. In robot's motion process, by perceiving position and orientation of the robot and using multi-mode control strategy based on characteristic identification, the HSIC controller enables the robot to control posture. Utilizing Matlab/Simulink, a simulation platform is established and a motion controller is designed and realized based on RT-Linux real-time operating system, employing high speed ARM9 processor S3C2440 as kernel of the motion controller. The effectiveness of the new design is testified by the experiment.

  19. Experimental Fault Detection and Accomodation for an Agricultural Mobile Robot

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck; Vinther, D.; Bisgaard, Morten

    2005-01-01

    This paper presents a systematic procedure to achieve fault tolerant capability for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The procedure is exemplified through the paper by applying on a compass module. Detailed methods for fault detection and fault...

  20. Umbrella Wheel - a stair-climbing and obstacle-handling wheel design concept

    DEFF Research Database (Denmark)

    Iversen, Simon; Jouffroy, Jerome

    2017-01-01

    This paper proposes a new design for stair-climbing using a wheel that can split into segments and walk up stairs or surmount other obstacles often found where humans traverse, while still being able to retain a perfectly round shape for traveling on smooth ground. Using this change of configurat......This paper proposes a new design for stair-climbing using a wheel that can split into segments and walk up stairs or surmount other obstacles often found where humans traverse, while still being able to retain a perfectly round shape for traveling on smooth ground. Using this change...... of configuration, staircases with a wide range of dimensions can be covered efficiently and safely. The design, named Umbrella Wheel, can consist of as many wheel segments as desired, and as few as two. A smaller or higher number of wheel segments has advantages and disadvantages depending on the specific...

  1. Modeling of Two-Wheeled Self-Balancing Robot Driven by DC Gearmotors

    Science.gov (United States)

    Frankovský, P.; Dominik, L.; Gmiterko, A.; Virgala, I.; Kurylo, P.; Perminova, O.

    2017-08-01

    This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot's mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.

  2. OCRWM Bulletin: Westinghouse begins designing multi-purpose canister

    International Nuclear Information System (INIS)

    1995-01-01

    This publication consists of two parts: OCRWM (Office of Civilian Radioactive Waste Management) Bulletin; and Of Mountains ampersand Science which has articles on the Yucca Mountain project. The OCRWM provides information about OCRWM activities and in this issue has articles on multi-purpose canister design, and transportation cask trailer

  3. OCRWM Bulletin: Westinghouse begins designing multi-purpose canister

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This publication consists of two parts: OCRWM (Office of Civilian Radioactive Waste Management) Bulletin; and Of Mountains & Science which has articles on the Yucca Mountain project. The OCRWM provides information about OCRWM activities and in this issue has articles on multi-purpose canister design, and transportation cask trailer.

  4. Mobile Business Retailing: Driving Experiential Learning on Campus

    Science.gov (United States)

    Fischbach, Sarah; Guerrero, Veronica

    2018-01-01

    Engaging students in the classroom is a struggle all faculty face especially in the age of modern technology. This article proposes a novel approach to engage and motivate students through the mobile business "on wheels" marketing concept. The growth in mobile business retailing (e.g., food trucks, mobile dog groomers, etc.) is an…

  5. Mitochondrial haplotypes are not associated with mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Wone, Bernard W M; Yim, Won C; Schutz, Heidi; Meek, Thomas H; Garland, Theodore

    2018-04-04

    Mitochondrial haplotypes have been associated with human and rodent phenotypes, including nonshivering thermogenesis capacity, learning capability, and disease risk. Although the mammalian mitochondrial D-loop is highly polymorphic, D-loops in laboratory mice are identical, and variation occurs elsewhere mainly between nucleotides 9820 and 9830. Part of this region codes for the tRNA Arg gene and is associated with mitochondrial densities and number of mtDNA copies. We hypothesized that the capacity for high levels of voluntary wheel-running behavior would be associated with mitochondrial haplotype. Here, we analyzed the mtDNA polymorphic region in mice from each of four replicate lines selectively bred for 54 generations for high voluntary wheel running (HR) and from four control lines (Control) randomly bred for 54 generations. Sequencing the polymorphic region revealed a variable number of adenine repeats. Single nucleotide polymorphisms (SNPs) varied from 2 to 3 adenine insertions, resulting in three haplotypes. We found significant genetic differentiations between the HR and Control groups (F st  = 0.779, p ≤ 0.0001), as well as among the replicate lines of mice within groups (F sc  = 0.757, p ≤ 0.0001). Haplotypes, however, were not strongly associated with voluntary wheel running (revolutions run per day), nor with either body mass or litter size. This system provides a useful experimental model to dissect the physiological processes linking mitochondrial, genomic SNPs, epigenetics, or nuclear-mitochondrial cross-talk to exercise activity. Copyright © 2018. Published by Elsevier B.V.

  6. Mobility Management of Mobile IP Based on Multi-tier Cellular Systems%基于多层小区结构的移动IP移动性管理

    Institute of Scientific and Technical Information of China (English)

    唐宏; 吴中福; 聂能; 赵军; 熊思民

    2003-01-01

    In this paper,several currently existed Mobility Management Schemes of Mobile IP are simply analyzed,and so does the network structure of multi-tier cellular which nowadays is easily seen. Then we propose a few promo-tions on the strategies of mobility management when realizing mobile IP in multi-tier cellular network structure. Thekey of the promotions is that the required type of cell for a MN is determined based on the classification of its mobilitypattern. Consequently,the capacity of system may be increased while the frequency of handoff is decreased.

  7. ANALYSIS OF FORMING TREAD WHEEL SETS

    Directory of Open Access Journals (Sweden)

    Igor IVANOV

    2017-09-01

    Full Text Available This paper shows the results of a theoretical study of profile high-speed grinding (PHSG for forming tread wheel sets during repair instead of turning and mold-milling. Significant disadvantages of these methods are low capacity to adapt to the tool and inhomogeneous structure of the wheel material. This leads to understated treatment regimens and difficulties in recovering wheel sets with thermal and mechanical defects. This study carried out modeling and analysis of emerging cutting forces. Proposed algorithms describe the random occurrence of the components of the cutting forces in the restoration profile of wheel sets with an inhomogeneous structure of the material. To identify the statistical features of randomly generated structures fractal dimension and the method of random additions were used. The multifractal spectrum formed is decomposed into monofractals by wavelet transform. The proposed method allows you to create the preconditions for controlling the parameters of the treatment process.

  8. Stabilization of the wheel running phenotype in mice.

    Science.gov (United States)

    Bowen, Robert S; Cates, Brittany E; Combs, Eric B; Dillard, Bryce M; Epting, Jessica T; Foster, Brittany R; Patterson, Shawnee V; Spivey, Thomas P

    2016-03-01

    Increased physical activity is well known to improve health and wellness by modifying the risks for many chronic diseases. Rodent wheel running behavior is a beneficial surrogate model to evaluate the biology of daily physical activity in humans. Upon initial exposure to a running wheel, individual mice differentially respond to the experience, which confounds the normal activity patterns exhibited in this otherwise repeatable phenotype. To promote phenotypic stability, a minimum seven-day (or greater) acclimation period is utilized. Although phenotypic stabilization is achieved during this 7-day period, data to support acclimation periods of this length are not currently available in the literature. The purpose of this project is to evaluate the wheel running response in C57BL/6j mice immediately following exposure to a running wheel. Twenty-eight male and thirty female C57BL/6j mice (Jackson Laboratory, Bar Harbor, ME) were acquired at eight weeks of age and were housed individually with free access to running wheels. Wheel running distance (km), duration (min), and speed (m∙min(-1)) were measured daily for fourteen days following initial housing. One-way ANOVAs were used to evaluate day-to-day differences in each wheel running character. Limits of agreement and mean difference statistics were calculated between days 1-13 (acclimating) and day 14 (acclimated) to assess day-to-day agreement between each parameter. Wheel running distance (males: F=5.653, p=2.14 × 10(-9); females: F=8.217, p=1.20 × 10(-14)), duration (males: F=2.613, p=0.001; females: F=4.529, p=3.28 × 10(-7)), and speed (males: F=7.803, p=1.22 × 10(-13); females: F=13.140, p=2.00 × 10(-16)) exhibited day-to-day differences. Tukey's HSD post-hoc testing indicated differences between early (males: days 1-3; females: days 1-6) and later (males: days >3; females: days >6) wheel running periods in distance and speed. Duration only exhibited an anomalous difference between wheel running on day 13

  9. System Engineering Strategy for Distributed Multi-Purpose Simulation Architectures

    Science.gov (United States)

    Bhula, Dlilpkumar; Kurt, Cindy Marie; Luty, Roger

    2007-01-01

    This paper describes the system engineering approach used to develop distributed multi-purpose simulations. The multi-purpose simulation architecture focuses on user needs, operations, flexibility, cost and maintenance. This approach was used to develop an International Space Station (ISS) simulator, which is called the International Space Station Integrated Simulation (ISIS)1. The ISIS runs unmodified ISS flight software, system models, and the astronaut command and control interface in an open system design that allows for rapid integration of multiple ISS models. The initial intent of ISIS was to provide a distributed system that allows access to ISS flight software and models for the creation, test, and validation of crew and ground controller procedures. This capability reduces the cost and scheduling issues associated with utilizing standalone simulators in fixed locations, and facilitates discovering unknowns and errors earlier in the development lifecycle. Since its inception, the flexible architecture of the ISIS has allowed its purpose to evolve to include ground operator system and display training, flight software modification testing, and as a realistic test bed for Exploration automation technology research and development.

  10. Wheel running decreases palatable diet preference in Sprague-Dawley rats

    OpenAIRE

    Moody, Laura; Liang, Joy; Choi, Pique P.; Moran, Timothy H.; Liang, Nu-Chu

    2015-01-01

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel...

  11. A rotating target wheel system for gammasphere

    International Nuclear Information System (INIS)

    Greene, J. P.

    1999-01-01

    A description is given for a low-mass, rotating target wheel to be used within the Gammasphere target chamber. This system was developed for experiments employing high beam currents in order to extend lifetimes of targets using low-melting point target material. The design is based on a previously successful implementation of rotating target wheels for the Argonne Positron Experiment (APEX) as well as the Fragment Mass Analyser (FMA) at ATLAS (Argonne Tandem Linac Accelerator System). A brief history of these rotating target wheel systems is given as well as a discussion on target preparation and performance

  12. Reconfigurable mobile manipulation for accident response

    International Nuclear Information System (INIS)

    Anderson, Robert J.; Morse, William D.; Shirey, David L.; Cdebaca, DanielL M.; Hoffman, John P. Jr.; Lucy, William E.

    2000-01-01

    The need for a telerobotic vehicle with hazard sensing and integral manipulation capabilities has been identified for use in transportation accidents where nuclear weapons are involved. The Accident Response Mobile Manipulation System (ARMMS) platform has been developed to provide remote dexterous manipulation and hazard sensing for the Accident Response Group (ARG) at Sandia National Laboratories. The ARMMS' mobility platform is a military HMMWV [High Mobility Multipurpose Wheeled Vehicle] that is teleoperated over RF or Fiber Optic communication channels. ARMMS is equipped with two high strength Schilling Titan II manipulators and a suite of hazardous gas and radiation sensors. Recently, a modular telerobotic control architecture call SMART (Sandia Modular Architecture for Robotic and Teleoperation) has been applied to ARMMS. SMART enables input devices and many system behaviors to be rapidly configured in the field for specific mission needs. This paper summarizes current SMART developments applied to ARMMS

  13. Modeling of Two-Wheeled Self-Balancing Robot Driven by DC Gearmotors

    Directory of Open Access Journals (Sweden)

    Frankovský P.

    2017-08-01

    Full Text Available This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot’s mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.

  14. Multi-Layer Mobility Load Balancing in a Heterogeneous LTE Network

    DEFF Research Database (Denmark)

    Fotiadis, Panagiotis; Polignano, Michele; Laselva, Daniela

    2012-01-01

    This paper analyzes the behavior of a distributed Mobility Load Balancing (MLB) scheme in a multi-layer 3GPP (3rd Generation Partnership Project) Long Term Evolution (LTE) deployment with different User Equipment (UE) densities in certain network areas covered with pico cells. Target of the study...

  15. Ramp-related incidents involving wheeled mobility device users during transit bus boarding/alighting.

    Science.gov (United States)

    Frost, Karen L; Bertocci, Gina; Smalley, Craig

    2015-05-01

    To estimate the prevalence of wheeled mobility device (WhMD) ramp-related incidents while boarding/alighting a public transit bus and to determine whether the frequency of incidents is less when the ramp slope meets the proposed Americans with Disabilities Act (ADA) maximum allowable limit of ≤9.5°. Observational study. Community public transportation. WhMD users (N=414) accessing a public transit bus equipped with an instrumented ramp. Not applicable. Prevalence of boarding/alighting incidents involving WhMD users and associated ramp slopes; factors affecting incidents. A total of 4.6% (n=35) of WhMD users experienced an incident while boarding/alighting a transit bus. Significantly more incidents occurred during boarding (6.3%, n=26) than during alighting (2.2%, n=9) (Pboard/alight when the ramp slope exceeded the proposed ADA maximum allowable ramp slope was 5.1 (95% confidence interval, 2.9-9.0; P9.5° and ramps deployed to street level are associated with a higher frequency of incidents and provision of assistance. Transit agencies should increase awareness among bus operators of the effect kneeling and deployment location (street/sidewalk) have on the ramp slope. In addition, ramp components and the built environment may contribute to incidents. When prescribing WhMDs, skills training must include ascending/descending ramps at slopes encountered during boarding/alighting to ensure safe and independent access to public transit buses. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Multi-purpose mid-plane manipulator for plasma surface interaction research in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Son, S.H., E-mail: ssh0609@nfri.re.kr [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Hong, S.-H. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Department of Electrical Engineering, HanYang University, Seoul 133-791 (Korea, Republic of); Department of Accelerator and Nuclear Fusion Physics and Engineering, Korea University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Kim, Junghee [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, Jun Young [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Department of Accelerator and Nuclear Fusion Physics and Engineering, Korea University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Kim, H.S. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Ding, F.; Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 1126 (China); Németh, J.; Zoletnik, S. [Institute for Particle and Nuclear Physics (RMI), Wigner RCP, Hungarian Academy of Sciences, Budapest (Hungary); Fenyvesi, A. [Institute for Nuclear Physis (MTA Atomki), Hungarian Academy of Sciences, Devrecent (Hungary); Pitts, R. [ITER Organization, Route de Vinon-surVerdon, 13115 Saint Paul-lez-Durance (France)

    2016-11-01

    Highlights: • A multi-purpose mid-plane manipulator system has been developed and installed at the mid-plane of the KSTAR vacuum vessel. • It presents mechanial structure and function for multi-purpose manipulator system. • The changeable head part allows change the samples and probe during inter-shot/day without breaking vacuum system in KSTAR which gives flexibility for various PSI studies in a campaign. - Abstract: A multi-purpose mid-plane manipulator system has been developed and installed at the mid-plane of the KSTAR vacuum vessel. The system serves as user facility which allows to cover various topics of researches in plasma-surface interaction (PSI) including material sample test and PSI diagnostic. The multi-purpose mid-plane manipulator system has a 4 m long cantilever structure with a 3 m long moving shaft. The system is equipped with a differential pumping system for the independent installation and removal of samples and diagnostic without vacuum break of KSTAR. The sample mounting head at the end of the shaft can reach the position of the outer boundary of ∼10 cm away from the last closed flux surface (LCFS). In this paper, selected PSI related experiments by using the manipulator are introduced.

  17. Multi-purpose mid-plane manipulator for plasma surface interaction research in KSTAR

    International Nuclear Information System (INIS)

    Son, S.H.; Hong, S.-H.; Kim, Junghee; Kim, Jun Young; Kim, H.S.; Ding, F.; Luo, G.-N.; Németh, J.; Zoletnik, S.; Fenyvesi, A.; Pitts, R.

    2016-01-01

    Highlights: • A multi-purpose mid-plane manipulator system has been developed and installed at the mid-plane of the KSTAR vacuum vessel. • It presents mechanial structure and function for multi-purpose manipulator system. • The changeable head part allows change the samples and probe during inter-shot/day without breaking vacuum system in KSTAR which gives flexibility for various PSI studies in a campaign. - Abstract: A multi-purpose mid-plane manipulator system has been developed and installed at the mid-plane of the KSTAR vacuum vessel. The system serves as user facility which allows to cover various topics of researches in plasma-surface interaction (PSI) including material sample test and PSI diagnostic. The multi-purpose mid-plane manipulator system has a 4 m long cantilever structure with a 3 m long moving shaft. The system is equipped with a differential pumping system for the independent installation and removal of samples and diagnostic without vacuum break of KSTAR. The sample mounting head at the end of the shaft can reach the position of the outer boundary of ∼10 cm away from the last closed flux surface (LCFS). In this paper, selected PSI related experiments by using the manipulator are introduced.

  18. High mobility ZnO nanowires for terahertz detection applications

    International Nuclear Information System (INIS)

    Liu, Huiqiang; Peng, Rufang; Chu, Shijin; Chu, Sheng

    2014-01-01

    An oxide nanowire material was utilized for terahertz detection purpose. High quality ZnO nanowires were synthesized and field-effect transistors were fabricated. Electrical transport measurements demonstrated the nanowire with good transfer characteristics and fairly high electron mobility. It is shown that ZnO nanowires can be used as building blocks for the realization of terahertz detectors based on a one-dimensional plasmon detection configuration. Clear terahertz wave (∼0.3 THz) induced photovoltages were obtained at room temperature with varying incidence intensities. Further analysis showed that the terahertz photoresponse is closely related to the high electron mobility of the ZnO nanowire sample, which suggests that oxide nanoelectronics may find useful terahertz applications.

  19. A Brief Opportunity to Run Does Not Function as a Reinforcer for Mice Selected for High Daily Wheel-Running Rates

    Science.gov (United States)

    Belke, Terry W.; Garland, Theodore, Jr.

    2007-01-01

    Mice from replicate lines, selectively bred based on high daily wheel-running rates, run more total revolutions and at higher average speeds than do mice from nonselected control lines. Based on this difference it was assumed that selected mice would find the opportunity to run in a wheel a more efficacious consequence. To assess this assumption…

  20. A stroller ethnography of mobilities design

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    This paper explores a neglected mode of mobility through an ethnographic study of pram strollers in Copenhagen. I illustrate the analytic advantages of using the recent mobilities design turn to explore how pram strolling is conditioned by material designs and experienced through affective...... properties and experiential effects of urban surfaces. In this process, I relate pram mobility to questions of urban accessibility issues and discuss urban design interventions, not as transient inconveniencies, but enduring predicaments for wheeled-based mobility in the contemporary city....

  1. 77 FR 38766 - Proposed Information Collection; Comment Request; International Client Life-Cycle Multi-Purpose...

    Science.gov (United States)

    2012-06-29

    ... Request; International Client Life-Cycle Multi-Purpose Forms AGENCY: International Trade Administration...-0151, 0625-0215, 0625-0220, 0625-0228, and 0625- 0238. These collections include all client intake... trade events to U.S. organizations. The International Client Life-cycle Multi-Purpose Forms, previously...

  2. Biomechanical effects of mobile computer location in a vehicle cab.

    Science.gov (United States)

    Saginus, Kyle A; Marklin, Richard W; Seeley, Patricia; Simoneau, Guy G; Freier, Stephen

    2011-10-01

    The objective of this research is to determine the best location to place a conventional mobile computer supported by a commercially available mount in a light truck cab. U.S. and Canadian electric utility companies are in the process of integrating mobile computers into their fleet vehicle cabs. There are no publications on the effect of mobile computer location in a vehicle cab on biomechanical loading, performance, and subjective assessment. The authors tested four locations of mobile computers in a light truck cab in a laboratory study to determine how location affected muscle activity of the lower back and shoulders; joint angles of the shoulders, elbows, and wrist; user performance; and subjective assessment. A total of 22 participants were tested in this study. Placing the mobile computer closer to the steering wheel reduced low back and shoulder muscle activity. Joint angles of the shoulders, elbows, and wrists were also closer to neutral angle. Biomechanical modeling revealed substantially less spinal compression and trunk muscle force. In general, there were no practical differences in performance between the locations. Subjective assessment indicated that users preferred the mobile computer to be as close as possible to the steering wheel. Locating the mobile computer close to the steering wheel reduces risk of injuries, such as low back pain and shoulder tendonitis. Results from the study can guide electric utility companies in the installation of mobile computers into vehicle cabs. Results may also be generalized to other industries that use trucklike vehicles, such as construction.

  3. Reaction Wheel Disturbance Model Extraction Software - RWDMES

    Science.gov (United States)

    Blaurock, Carl

    2009-01-01

    The RWDMES is a tool for modeling the disturbances imparted on spacecraft by spinning reaction wheels. Reaction wheels are usually the largest disturbance source on a precision pointing spacecraft, and can be the dominating source of pointing error. Accurate knowledge of the disturbance environment is critical to accurate prediction of the pointing performance. In the past, it has been difficult to extract an accurate wheel disturbance model since the forcing mechanisms are difficult to model physically, and the forcing amplitudes are filtered by the dynamics of the reaction wheel. RWDMES captures the wheel-induced disturbances using a hybrid physical/empirical model that is extracted directly from measured forcing data. The empirical models capture the tonal forces that occur at harmonics of the spin rate, and the broadband forces that arise from random effects. The empirical forcing functions are filtered by a physical model of the wheel structure that includes spin-rate-dependent moments (gyroscopic terms). The resulting hybrid model creates a highly accurate prediction of wheel-induced forces. It accounts for variation in disturbance frequency, as well as the shifts in structural amplification by the whirl modes, as the spin rate changes. This software provides a point-and-click environment for producing accurate models with minimal user effort. Where conventional approaches may take weeks to produce a model of variable quality, RWDMES can create a demonstrably high accuracy model in two hours. The software consists of a graphical user interface (GUI) that enables the user to specify all analysis parameters, to evaluate analysis results and to iteratively refine the model. Underlying algorithms automatically extract disturbance harmonics, initialize and tune harmonic models, and initialize and tune broadband noise models. The component steps are described in the RWDMES user s guide and include: converting time domain data to waterfall PSDs (power spectral

  4. Auto-calibration of Systematic Odometry Errors in Mobile Robots

    DEFF Research Database (Denmark)

    Bak, Martin; Larsen, Thomas Dall; Andersen, Nils Axel

    1999-01-01

    This paper describes the phenomenon of systematic errors in odometry models in mobile robots and looks at various ways of avoiding it by means of auto-calibration. The systematic errors considered are incorrect knowledge of the wheel base and the gains from encoder readings to wheel displacement....... By auto-calibration we mean a standardized procedure which estimates the uncertainties using only on-board equipment such as encoders, an absolute measurement system and filters; no intervention by operator or off-line data processing is necessary. Results are illustrated by a number of simulations...... and experiments on a mobile robot....

  5. 49 CFR 570.10 - Wheel assemblies.

    Science.gov (United States)

    2010-10-01

    ... bead through one full wheel revolution and note runout in excess of one-eighth of an inch. (c) Mounting... 49 Transportation 6 2010-10-01 2010-10-01 false Wheel assemblies. 570.10 Section 570.10... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  6. Multi-purpose canisters as an alternative for storage, transportation, and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Hollaway, W.R.; Rozier, R.; Nitti, D.A.; Williams, J.R.

    1993-01-01

    A study was conducted to assess the feasibility of using multi-purpose canisters to handle spent nuclear fuel throughout the Civilian Radioactive Waste Management System. Multi-purpose canisters would be sealed, metallic containers maintaining multiple spent fuel assemblies in a dry, inert environment and overpacked separately and uniquely for the various system elements of storage, transportation, and disposal. Using five implementation scenarios, the multi-purpose canister was evaluated with regard to several measures of effectiveness, including number of handlings, radiation exposure, cost, schedule and licensing considerations, and public perception. Advantages and disadvantages of the multi-purpose canister were identified relative to the current reference system within each scenario, and the scenarios were compared to determine the most effective method of implementation

  7. Locomotor trade-offs in mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Dlugosz, Elizabeth M; Chappell, Mark A; McGillivray, David G; Syme, Douglas A; Garland, Theodore

    2009-08-01

    We investigated sprint performance and running economy of a unique ;mini-muscle' phenotype that evolved in response to selection for high voluntary wheel running in laboratory mice (Mus domesticus). Mice from four replicate selected (S) lines run nearly three times as far per day as four control lines. The mini-muscle phenotype, resulting from an initially rare autosomal recessive allele, has been favoured by the selection protocol, becoming fixed in one of the two S lines in which it occurred. In homozygotes, hindlimb muscle mass is halved, mass-specific muscle oxidative capacity is doubled, and the medial gastrocnemius exhibits about half the mass-specific isotonic power, less than half the mass-specific cyclic work and power, but doubled fatigue resistance. We hypothesized that mini-muscle mice would have a lower whole-animal energy cost of transport (COT), resulting from lower costs of cycling their lighter limbs, and reduced sprint speed, from reduced maximal force production. We measured sprint speed on a racetrack and slopes (incremental COT, or iCOT) and intercepts of the metabolic rate versus speed relationship during voluntary wheel running in 10 mini-muscle and 20 normal S-line females. Mini-muscle mice ran faster and farther on wheels, but for less time per day. Mini-muscle mice had significantly lower sprint speeds, indicating a functional trade-off. However, contrary to predictions, mini-muscle mice had higher COT, mainly because of higher zero-speed intercepts and postural costs (intercept-resting metabolic rate). Thus, mice with altered limb morphology after intense selection for running long distances do not necessarily run more economically.

  8. Application of the Coastal Hazard Wheel methodology for coastal multi-hazard assessment and management in the state of Djibouti

    Directory of Open Access Journals (Sweden)

    Lars Rosendahl Appelquist

    2014-01-01

    Full Text Available This paper presents the application of a new methodology for coastal multi-hazard assessment and management in a changing global climate on the state of Djibouti. The methodology termed the Coastal Hazard Wheel (CHW is developed for worldwide application and is based on a specially designed coastal classification system that incorporates the main static and dynamic parameters determining the characteristics of a coastal environment. The methodology provides information on the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding and can be used to support management decisions at local, regional and national level, in areas with limited access to geophysical data. The assessment for Djibouti applies a geographic information system (GIS to develop a range of national hazard maps along with relevant hazard statistics and is showcasing the procedure for applying the CHW methodology for national hazard assessments. The assessment shows that the coastline of Djibouti is characterized by extensive stretches with high or very high hazards of ecosystem disruption, mainly related to coral reefs and mangrove forests, while large sections along the coastlines of especially northern and southern Djibouti have high hazard levels for gradual inundation. The hazard of salt water intrusion is moderate along most of Djibouti’s coastline, although groundwater availability is considered to be very sensitive to human ground water extraction. High or very high erosion hazards are associated with Djibouti’s sedimentary plains, estuaries and river mouths, while very high flooding hazards are associated with the dry river mouths.

  9. Wheel running, voluntary ethanol consumption, and hedonic substitution.

    Science.gov (United States)

    Ozburn, Angela Renee; Harris, R Adron; Blednov, Yuri A

    2008-08-01

    Few studies have examined the relationship between naturally rewarding behaviors and ethanol drinking behaviors in mice. Although natural and drug reinforcers activate similar brain circuitry, there is behavioral evidence suggesting food and drug rewards differ in perceived value. The primary goal of the present study was to investigate the relationships between naturally reinforcing stimuli and consumption of ethanol in ethanol preferring C57BL/6J mice. Mouse behaviors were observed after the following environmental manipulations: standard or enhanced environment, accessible or inaccessible wheel, and presence or absence of ethanol. Using a high-resolution volumetric drinking monitor and wheel running monitor, we evaluated whether alternating access to wheel running modified ethanol-related behaviors and whether alternating access to ethanol modified wheel running or subsequent ethanol-related behaviors. We found that ethanol consumption remains stable with alternating periods of wheel running. Wheel running increases in the absence of ethanol and decreases upon reintroduction of ethanol. Upon reintroduction of ethanol, an alcohol deprivation effect was seen. Collectively, the results support theories of hedonic substitution and suggest that female C57BL/6J mice express ethanol seeking and craving under these specific conditions.

  10. Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future trends

    Science.gov (United States)

    Xu, Bing; Cheng, Min

    2018-06-01

    This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.

  11. A mobile robot for remote inspection of radioactive waste

    International Nuclear Information System (INIS)

    Suh, Y. C.; Kim, C. H.; Cho, J. W.; Choi, Y. S.; Kim, S. H.

    2004-01-01

    Tele-operation and remote monitoring techniques are essential and important technologies for the inspection and maintenance of the radioactive waste. A mobile robot has been developed for the application of remote monitoring and inspection of nuclear facilities, where human access is limited because of the high-level radioactive environments. The mobile robot was designed with reconfigurable crawler type of wheels attached on the front and rear side in order to pass through the ditch. The extendable mast, mounted on the mobile robot, car be extended up to 8 m vertically. The robust controller for radiation is designed in focus on electric components to prevent abnormal operation in a highly radioactivated area during reactor operation. This robot system will enhance the reliability of nuclear power facilities, and cope with the unexpected radiation accident

  12. Dynamic analysis of elastic rubber tired car wheel breaking under variable normal load

    Science.gov (United States)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.

    2017-10-01

    The purpose of the paper is to analyze the dynamics of the braking of the wheel under normal load variations. The paper uses a mathematical simulation method according to which the calculation model of an object as a mechanical system is associated with a dynamically equivalent schematic structure of the automatic control. Transfer function tool analyzing structural and technical characteristics of an object as well as force disturbances were used. It was proved that the analysis of dynamic characteristics of the wheel subjected to external force disturbances has to take into account amplitude and phase-frequency characteristics. Normal load variations impact car wheel braking subjected to disturbances. The closer slip to the critical point is, the higher the impact is. In the super-critical area, load variations cause fast wheel blocking.

  13. Grinding performance evaluation of porous composite-bonded CBN wheels for Inconel 718

    Directory of Open Access Journals (Sweden)

    Chen Zhenzhen

    2014-08-01

    Full Text Available For high-efficiency grinding of difficult-to-cut materials such as titanium and nickel alloys, a high porosity is expected and also a sufficient mechanical strength to satisfy the function. However, the porosity increase is a disadvantage to the mechanical strength. As a promising pore forming agent, alumina bubbles are firstly induced into the abrasive layer to fabricate porous cubic boron nitride (CBN wheels. When the wheel porosity reaches 45%, the bending strength is still high up to 50 MPa with modified orderly pore distribution. A porous CBN wheel was fabricated with a total porosity around 30%. The grinding performance of the porous composite-bonded CBN wheel was evaluated in terms of specific force, specific grinding energy, and grinding temperature, which were better than those of the vitrified one under the same grinding conditions. Compared to the vitrified CBN wheel, clear straight cutting grooves and less chip adhesion are observed on the ground surface and there is also no extensive loading on the wheel surface after grinding.

  14. THE PROCESS OF FORMATION OF RAILWAY WHEEL DAMAGES AND TIRES IN OPERATION

    Directory of Open Access Journals (Sweden)

    N. A. Grischenko

    2015-01-01

    Full Text Available Purpose. The dependence analysis of structural changes in the metal of railway wheels and tires from indicated influences in operation, for the further development of strategy of service reliability growth. Methodology. Test materials are the details selected from railway wheels which were taken out of operation beforehand because of various damages. Micro-structural researches were made with the use of light microscope Epiquant and electron microscope. The sizing of structural elements was done by using the methods of quantitative metallography. Findings. Over the past few decades the rapid development of industry was supported by the steady growth of intensity of using railway transport. In this case simultaneous increase of load at wheel set axle, with the increase of speed was accompanied by natural increase of the amount of cases of premature wheels and tires’ withdrawing out of operation. Railway wheel, except the formation of metal layer at rolling surface with the high defects concentration of crystal structure and first of all dislocations, falls under thermal influence from interaction with break blocks. The nature of joint influence (cold deformation and heating on the metal rim of a wheel is conditioned by the appearance of sufficiently high gradients of structural changes that can be considered as the influence on the level of internal residual stresses. In case of the rise of volume part of carbide phase at a constant ferrite grain size, it is achieved only by the increasing of dislocation nucleation sources without changing the number of annihilation positions. In this case the accumulation of dislocations at the initial stages of plastic deformation (in metal volume in front of delta arm crack will lead to the formation of cementite globes around certain interlocked dislocation density. In contrast the sharp increase of deformation hardening carbon steel parameters is observed. Originality. During the braking of locomotive the

  15. Conceptual design of EAST multi-purpose maintenance deployer system

    International Nuclear Information System (INIS)

    Pan, Hongtao; He, Kaihui; Cheng, Yong; Song, Yuntao; Yang, Yang; Villedieu, Eric; Shi, Shanshuang; Yang, Songzhu

    2017-01-01

    Highlights: • A redundant 11-DOF articulated robot for EAST in-vessel maintenance is presented. • A new modular joint developed to optimize the yaw joint actuator for the robot is described. • A 3-DOF gripper integrated with cameras and torque sensor is developed. - Abstract: EAST multi-purpose maintenance deployer (EMMD) system, being collaboratively developed by ASIPP and CEA-IRFM, is built as upgrades for EAMA. Updated kinematics parameters such as DOF distribution and joint angle for EMMD robot are performed and verified in a simulation platform. A new modular joint has been developed to optimize the yaw joint actuator for easy assembly and flexibility reduction. A 3-DOF gripper with cameras and torque sensor has been designed to provide inspection and dexterous handling of small fragments inside the EAST chamber. A conceptual upgrade for EAMA-CASK has been developed for the purpose of protecting the end-effector's sensors which do not have temperature-resistant qualification. The high temperature and vacuum compatible solutions and validation experiments have been presented in this paper.

  16. Conceptual design of EAST multi-purpose maintenance deployer system

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hongtao [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui 230022 (China); He, Kaihui, E-mail: hekh@iterchina.cn [China International Nuclear Fusion Energy Program Execution Center, Beijing 100862 (China); Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui 230022 (China); Yang, Yang [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Villedieu, Eric [CEA-IRFM, F-13108 Saint-Paul-Lez-Durance (France); Shi, Shanshuang; Yang, Songzhu [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China)

    2017-05-15

    Highlights: • A redundant 11-DOF articulated robot for EAST in-vessel maintenance is presented. • A new modular joint developed to optimize the yaw joint actuator for the robot is described. • A 3-DOF gripper integrated with cameras and torque sensor is developed. - Abstract: EAST multi-purpose maintenance deployer (EMMD) system, being collaboratively developed by ASIPP and CEA-IRFM, is built as upgrades for EAMA. Updated kinematics parameters such as DOF distribution and joint angle for EMMD robot are performed and verified in a simulation platform. A new modular joint has been developed to optimize the yaw joint actuator for easy assembly and flexibility reduction. A 3-DOF gripper with cameras and torque sensor has been designed to provide inspection and dexterous handling of small fragments inside the EAST chamber. A conceptual upgrade for EAMA-CASK has been developed for the purpose of protecting the end-effector's sensors which do not have temperature-resistant qualification. The high temperature and vacuum compatible solutions and validation experiments have been presented in this paper.

  17. Application of the Coastal Hazard Wheel methodology for coastal multi-hazard assessment and management in the state of Djibouti

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl; Balstrøm, Thomas

    2014-01-01

    coastal classification system that incorporates the main static and dynamic parameters determining the characteristics of a coastal environment. The methodology provides information on the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding and can be used...... to support management decisions at local, regional and national level, in areas with limited access to geophysical data. The assessment for Djibouti applies a geographic information system (GIS) to develop a range of national hazard maps along with relevant hazard statistics and is showcasing the procedure......This paper presents the application of a new methodology for coastal multi-hazard assessment and management in a changing global climate on the state of Djibouti. The methodology termed the Coastal Hazard Wheel (CHW) is developed for worldwide application and is based on a specially designed...

  18. Austempered ductile iron (ADI) for railroad wheels : final report.

    Science.gov (United States)

    2017-01-31

    The purpose of this project is to investigate the potential for austempered ductile iron (ADI) to be used as an alternative material for the production of rail wheels, which are currently cast or forged steel which is commonly heat treated. ADI has s...

  19. A general purpose program system for high energy physics experiment data acquisition and analysis

    International Nuclear Information System (INIS)

    Li Shuren; Xing Yuguo; Jin Bingnian

    1985-01-01

    This paper introduced the functions, structure and system generation of a general purpose program system (Fermilab MULTI) for high energy physics experiment data acquisition and analysis. Works concerning the reconstruction of MULTI system level 0.5 which can be run on the computer PDP-11/23 are also introduced briefly

  20. The effect of mountain bike wheel size on cross-country performance.

    Science.gov (United States)

    Hurst, Howard Thomas; Sinclair, Jonathan; Atkins, Stephen; Rylands, Lee; Metcalfe, John

    2017-07-01

    The purpose of this study was to determine the influence of different wheel size diameters on indicators of cross-country mountain bike time trial performance. Nine competitive male mountain bikers (age 34.7 ± 10.7 years; stature 177.7 ± 5.6 cm; body mass 73.2 ± 8.6 kg) performed 1 lap of a 3.48 km mountain bike (MTB) course as fast as possible on 26″, 27.5″ and 29″ wheeled MTB. Time (s), mean power (W), cadence (revs · min -1 ) and velocity (km · h -1 ) were recorded for the whole lap and during ascent and descent sections. One-way repeated measure ANOVA was used to determine significant differences. Results revealed no significant main effects for any variables by wheel size during all trials, with the exception of cadence during the descent (F (2, 16)  = 8.96; P = .002; P 2  = .53). Post hoc comparisons revealed differences lay between the 26″ and 29″ wheels (P = .02). The findings indicate that wheel size does not significantly influence performance during cross-country when ridden by trained mountain bikers, and that wheel choice is likely due to personal choice or sponsorship commitments.

  1. User oriented design features of Korea Multi-purpose Research Reactor and its utilization plan

    International Nuclear Information System (INIS)

    Kim, Byungkoo; Jun, Byungjin

    1994-01-01

    Construction of a 30 MW class Korea Multi-purpose Research Reactor (KMRR) is near its completion and expected to reach initial criticality by the end of 1994 at KAERI Taejon site. As Korea will become one of developed countries during the lifetime of this reactor and many worldwide high performance research reactors of the first generation are reaching end of life, it is believed that KMRR will meet the increasing domestic needs to utilize high performance research reactor and its worldwide role will be important as well. In reactor design, effort has been focused on optimization which can satisfy various future utilization demands as much as possible with enhanced safety as a basic requirement. Light water cooled and heavy water reflected compact core using low enriched and high uranium loaded fuel, computer controlled operation, etc. are expected to provide truly multi-purpose user environments with stable high quality neutron flux. High level experimental facilities and equipment for reactor fuel and material test, various studies using neutron beam, radioisotope production, semiconductor doping, neutron activation analysis, etc., will be completed in parallel with the reactor or gradually depending on users' needs. When KMRR becomes fully operational, it will not only serve the domestic users but also be a valuable tool for a worldwide research community using a research reactor

  2. PD-like controller for delayed bilateral teleoperation of wheeled robots

    Science.gov (United States)

    Slawiñski, E.; Mut, V.; Santiago, D.

    2016-08-01

    This paper proposes a proportional derivative (PD)-like controller applied to the delayed bilateral teleoperation of wheeled robots with force feedback in face of asymmetric and varying-time delays. In contrast to bilateral teleoperation of manipulator robots, in these systems, there is a mismatch between the models of the master and slave (mobile robot), problem that is approached in this work, where the system stability is analysed. From this study, it is possible to infer the control parameters, depending on the time delay, necessary to assure stability. Finally, the performance of the delayed teleoperation system is evaluated through tests where a human operator drives a 3D simulator as well as a mobile robot for pushing objects.

  3. Grinding Characteristics Of Directionally Aligned SiC Whisker Wheel-Comparison With Al2O3 Fiber Wheel

    Institute of Scientific and Technical Information of China (English)

    魏源迁; 山口胜美; 菊泽贤二; 洞口严; 中根正喜

    2003-01-01

    A unique SiC whisker wheel was invented,in which the whiskers were aligned normally to the grinding wheel surface.In this paper,grindabilities of the SiC whisker wheel are investigated and compared with those of other wheels of SiC grains,Al2O3 grains,as well as Al2O3 long and short fibres which were also aligned normally to the grinding wheel surface,respectively.The main research contents concern grinding characteristics of a directionally aligned SiC whisker wheel such as material-removal volume,wheel-wear rates,integrity of the ground surfaces,grinding ratios and grinding efficiency.Furthermore,grinding wheels of whiskers and fibres have a common disadvantage:they tend to load easily.The authors have proposed a simple method of loading-free grinding to overcome this propensity and investigate some related grinding characteristics under loading-free grinding conditions.

  4. Tracked Vehicle Road Wheel Puller

    Science.gov (United States)

    2009-02-01

    employed for removing smaller-size components, such as bolts and the like. U.S. Patent No. 5,410,792, issued to Freeman (3), discloses a caster wheel ...separation of the rubberized annular layer from the outer annular surface of the wheel . Figure 5 further illustrates a modification of the wheel puller...2001. 2. Rubino et al. Pulling Tool. U.S. Patent 5,479,688, 1996. 3. Freeman. Caster Wheel Axle Extraction Apparatus. U.S. Patent 5,410,792

  5. Mice selectively bred for high voluntary wheel-running behavior conserve more fat despite increased exercise.

    Science.gov (United States)

    Hiramatsu, Layla; Garland, Theodore

    2018-04-20

    Physical activity is an important component of energy expenditure, and acute changes in activity can lead to energy imbalances that affect body composition, even under ad libitum food availability. One example of acute increases in physical activity is four replicate, selectively-bred High Runner (HR) lines of mice that voluntarily run ~3-fold more wheel revolutions per day over 6-day trials and are leaner, as compared with four non-selected control (C) lines. We expected that voluntary exercise would increase food consumption, build lean mass, and reduce fat mass, but that these effects would likely differ between HR and C lines or between the sexes. We compared wheel running, cage activity, food consumption, and body composition between HR and C lines for young adults of both sexes, and examined interrelationships of those traits across 6 days of wheel access. Before wheel testing, HR mice weighed less than C, primarily due to reduced lean mass, and females were lighter than males, entirely due to lower lean mass. Over 6 days of wheel access, all groups tended to gain small amounts of lean mass, but lose fat mass. HR mice lost less fat than C mice, in spite of much higher activity levels, resulting in convergence to a fat mass of ~1.7 g for all 4 groups. HR mice consumed more food than C mice (with body mass as a covariate), even accounting for their higher activity levels. No significant sex-by-linetype interactions were observed for any of the foregoing traits. Structural equation models showed that the four sex-by-linetype groups differed considerably in the complex phenotypic architecture of these traits. Interrelationships among traits differed by genetic background and sex, lending support to the idea that recommendations regarding weight management, diet, and exercise may need to be tailored to the individual level. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Effects of leptin treatment and Western diet on wheel running in selectively bred high runner mice.

    Science.gov (United States)

    Meek, Thomas H; Dlugosz, Elizabeth M; Vu, Kim T; Garland, Theodore

    2012-05-15

    The role of leptin in regulating physical activity is varied. The behavioral effects of leptin signaling depend on the type of activity and the animal's physiological state. We used mice from lines selectively bred for high voluntary wheel running to further study how leptin regulates volitional exercise. Mice from four replicate high runner (HR) lines typically run ~3-fold more revolutions per day than those from four non-selected control (C) lines. HR mice have altered dopamine function and differences from C in brain regions known to be important in leptin-mediated behavior. Furthermore, male HR mice have been found to dramatically increase running when administered Western diet, an effect possibly mediated through leptin signaling. Male mice from generation 61 (representing three HR lines and one C line) were allowed wheel access at 24 days of age and given either Western diet (high in fat and with added sucrose) or standard chow. After four weeks, Western diet significantly increased circulating leptin, insulin, C-peptide, gastric inhibitory polypeptide, and inflammatory hormone resistin concentrations in HR mice (C mice not measured). Western diet increased running in HR mice, but did not significantly affect running in C mice. During the fifth week, all mice received two days of intra-peritoneal sham injections (physiological saline) followed by three days of murine recombinant leptin injections, and then another six days of sham injections. Leptin treatment significantly decreased caloric intake (adjusted for body mass) and body mass in all groups. Wheel running significantly increased with leptin injections in HR mice (fed Western or standard diet), but was unaffected in C mice. Whether Western diet and leptin treatment stimulate wheel running in HR mice through the same physiological pathways awaits future study. These results have implications for understanding the neural and endocrine systems that control locomotor activity, food consumption, and body

  7. Grinding Wheel System

    Science.gov (United States)

    Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh

    2003-08-05

    A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.

  8. The Development of Lightweight Commercial Vehicle Wheels Using Microalloying Steel

    Science.gov (United States)

    Lu, Hongzhou; Zhang, Lilong; Wang, Jiegong; Xuan, Zhaozhi; Liu, Xiandong; Guo, Aimin; Wang, Wenjun; Lu, Guimin

    Lightweight wheels can reduce weight about 100kg for commercial vehicles, and it can save energy and reduce emission, what's more, it can enhance the profits for logistics companies. The development of lightweight commercial vehicle wheels is achieved by the development of new steel for rim, the process optimization of flash butt welding, and structure optimization by finite element methods. Niobium micro-alloying technology can improve hole expansion rate, weldability and fatigue performance of wheel steel, and based on Niobium micro-alloying technology, a special wheel steel has been studied whose microstructure are Ferrite and Bainite, with high formability and high fatigue performance, and stable mechanical properties. The content of Nb in this new steel is 0.025% and the hole expansion rate is ≥ 100%. At the same time, welding parameters including electric upsetting time, upset allowance, upsetting pressure and flash allowance are optimized, and by CAE analysis, an optimized structure has been attained. As a results, the weight of 22.5in×8.25in wheel is up to 31.5kg, which is most lightweight comparing the same size wheels. And its functions including bending fatigue performance and radial fatigue performance meet the application requirements of truck makers and logistics companies.

  9. Stereotypic wheel running decreases cortical activity in mice

    Science.gov (United States)

    Fisher, Simon P.; Cui, Nanyi; McKillop, Laura E.; Gemignani, Jessica; Bannerman, David M.; Oliver, Peter L.; Peirson, Stuart N.; Vyazovskiy, Vladyslav V.

    2016-01-01

    Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours. PMID:27748455

  10. 77 FR 38582 - Proposed Information Collection; Comment Request; Domestic Client Life-Cycle Multi-Purpose Forms

    Science.gov (United States)

    2012-06-28

    ... Request; Domestic Client Life-Cycle Multi-Purpose Forms AGENCY: International Trade Administration. ACTION..., 0625-0237, and 0625-0238. These collections include all client intake, events/activities and export... Client Life-cycle Multi-Purpose Forms, previously titled Export Information Services Order Forms, are...

  11. ANALYSIS OF MOBILE LASER SCANNING DATA AND MULTI-VIEW IMAGE RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    C. Briese

    2012-07-01

    Full Text Available The combination of laser scanning (LS, active, direct 3D measurement of the object surface and photogrammetry (high geometric and radiometric resolution is widely applied for object reconstruction (e.g. architecture, topography, monitoring, archaeology. Usually the results are a coloured point cloud or a textured mesh. The geometry is typically generated from the laser scanning point cloud and the radiometric information is the result of image acquisition. In the last years, next to significant developments in static (terrestrial LS and kinematic LS (airborne and mobile LS hardware and software, research in computer vision and photogrammetry lead to advanced automated procedures in image orientation and image matching. These methods allow a highly automated generation of 3D geometry just based on image data. Founded on advanced feature detector techniques (like SIFT (Scale Invariant Feature Transform very robust techniques for image orientation were established (cf. Bundler. In a subsequent step, dense multi-view stereo reconstruction algorithms allow the generation of very dense 3D point clouds that represent the scene geometry (cf. Patch-based Multi-View Stereo (PMVS2. Within this paper the usage of mobile laser scanning (MLS and simultaneously acquired image data for an advanced integrated scene reconstruction is studied. For the analysis the geometry of a scene is generated by both techniques independently. Then, the paper focuses on the quality assessment of both techniques. This includes a quality analysis of the individual surface models and a comparison of the direct georeferencing of the images using positional and orientation data of the on board GNSS-INS system and the indirect georeferencing of the imagery by automatic image orientation. For the practical evaluation a dataset from an archaeological monument is utilised. Based on the gained knowledge a discussion of the results is provided and a future strategy for the integration of

  12. Effects of early-life exposure to Western diet and wheel access on metabolic syndrome profiles in mice bred for high voluntary exercise.

    Science.gov (United States)

    Meek, T H; Eisenmann, J C; Keeney, B K; Hannon, R M; Dlugosz, E M; Garland, T

    2014-03-01

    Experimental studies manipulating diet and exercise have shown varying effects on metabolic syndrome components in both humans and rodents. To examine the potential interactive effects of diet, exercise and genetic background, we studied mice from four replicate lines bred (52 generations) for high voluntary wheel running (HR lines) and four unselected control lines (C). At weaning, animals were housed for 60 days with or without wheels and fed either a standard chow or Western diet (WD, 42% kcal from fat). Four serial (three juvenile and one adult) blood samples were taken to measure fasting total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), triglycerides and glucose. Western diet was obesogenic for all mice, even after accounting for the amount of wheel running and kilojoules consumed. Western diet significantly raised glucose as well as TC and HDL-C concentrations. At the level of individual variation (repeatability), there was a modest correlation (r = 0.3-0.5) of blood lipids over time, which was reduced with wheel access and/or WD. Neither genetic selection history nor wheel access had a statistically significant effect on blood lipids. However, HR and C mice had divergent ontogenetic trajectories for body mass and caloric intake. HR mice also had lower adiposity, an effect that was dependent on wheel access. The environmental factors of diet and wheel access had pronounced effects on body mass, food consumption and fasting glucose concentrations, interacting with each other and/or with genetic strain. These data underscore the importance (and often unpredictable nature) of genotype-by-environment and environment-by-environment interactions when studying body weight regulation. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. Multi-Hop Link Capacity of Multi-Route Multi-Hop MRC Diversity for a Virtual Cellular Network

    Science.gov (United States)

    Daou, Imane; Kudoh, Eisuke; Adachi, Fumiyuki

    In virtual cellular network (VCN), proposed for high-speed mobile communications, the signal transmitted from a mobile terminal is received by some wireless ports distributed in each virtual cell and relayed to the central port that acts as a gateway to the core network. In this paper, we apply the multi-route MHMRC diversity in order to decrease the transmit power and increase the multi-hop link capacity. The transmit power, the interference power and the link capacity are evaluated for DS-CDMA multi-hop VCN by computer simulation. The multi-route MHMRC diversity can be applied to not only DS-CDMA but also other access schemes (i. e. MC-CDMA, OFDM, etc.).

  14. Mobility Research and Development (Briefing charts)

    Science.gov (United States)

    2016-03-17

    Mobility Research & Development Dr. Paramsothy Jayakumar, STE, Analytics Tank Automotive Research, Development and Engineering Center Research...Mobility Model (NRMM) • Dr. M. G. Bekker of TARDEC is the “Father of Terrain-Vehicle Systems ” • NRMM was developed in 1960-70 by TARDEC and ERDC...Blocks: Scaled Experiments Particle Image Velocimetry Pressure – Sinkage Test Direct Shear Test Simulations Single Wheel Test Plate width = 50 mm

  15. Maximal metabolic rates during voluntary exercise, forced exercise, and cold exposure in house mice selectively bred for high wheel-running.

    Science.gov (United States)

    Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Malisch, Jessica L; Garland, Theodore

    2005-06-01

    Selective breeding for high wheel-running activity has generated four lines of laboratory house mice (S lines) that run about 170% more than their control counterparts (C lines) on a daily basis, mostly because they run faster. We tested whether maximum aerobic metabolic rates (V(O2max)) have evolved in concert with wheel-running, using 48 females from generation 35. Voluntary activity and metabolic rates were measured on days 5+6 of wheel access (mimicking conditions during selection), using wheels enclosed in metabolic chambers. Following this, V(O2max) was measured twice on a motorized treadmill and twice during cold-exposure in a heliox atmosphere (HeO2). Almost all measurements, except heliox V(O2max), were significantly repeatable. After accounting for differences in body mass (S running speeds on the treadmill. However, running speeds and V(O2max) during voluntary exercise were significantly higher in S lines. Nevertheless, S mice never voluntarily achieved the V(O2max) elicited during their forced treadmill trials, suggesting that aerobic capacity per se is not limiting the evolution of even higher wheel-running speeds in these lines. Our results support the hypothesis that S mice have genetically higher motivation for wheel-running and they demonstrate that behavior can sometimes evolve independently of performance capacities. We also discuss the possible importance of domestication as a confounding factor to extrapolate results from this animal model to natural populations.

  16. Nesting behavior of house mice (Mus domesticus) selected for increased wheel-running activity.

    Science.gov (United States)

    Carter, P A; Swallow, J G; Davis, S J; Garland, T

    2000-03-01

    Nest building was measured in "active" (housed with access to running wheels) and "sedentary" (without wheel access) mice (Mus domesticus) from four replicate lines selected for 10 generations for high voluntary wheel-running behavior, and from four randombred control lines. Based on previous studies of mice bidirectionally selected for thermoregulatory nest building, it was hypothesized that nest building would show a negative correlated response to selection on wheel-running. Such a response could constrain the evolution of high voluntary activity because nesting has also been shown to be positively genetically correlated with successful production of weaned pups. With wheel access, selected mice of both sexes built significantly smaller nests than did control mice. Without wheel access, selected females also built significantly smaller nests than did control females, but only when body mass was excluded from the statistical model, suggesting that body mass mediated this correlated response to selection. Total distance run and mean running speed on wheels was significantly higher in selected mice than in controls, but no differences in amount of time spent running were measured, indicating a complex cause of the response of nesting to selection for voluntary wheel running.

  17. Mobile Apps for Educational Purposes.

    Science.gov (United States)

    Pilcher, Jobeth

    With the growing number of mobile resources, nurse educators and professional development practitioners have the opportunity to harness mobile applications as a tool for their education toolbox. Yet, the overwhelming availability of choices can lead to questions, such as the following: How do we locate apps without spending huge amounts of our valuable time? How do we know which apps to choose? How can we evaluate apps? This article is aimed at addressing these questions.

  18. FUZZY CONTROLLER FOR THE CONTROL OF THE MOBILE PLATFORM OF THE CORBYS ROBOTIC GAIT REHABILITATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Maria Kyrarini

    2014-12-01

    Full Text Available In this paper, an inverse kinematics based control algorithm for the joystick control of the mobile platform of the novel mobile robot-assisted gait rehabilitation system CORBYS is presented. The mobile platform has four independently steered and driven wheels. Given the linear and angular velocities of the mobile platform, the inverse kinematics algorithm gives as its output the steering angle and the driving angular velocity of each of the four wheels. The paper is focused on the steering control of the platform for which a fuzzy logic controller is developed and implemented. The experimental results of the real-world steering of the platform are presented in the paper.

  19. Wheel speed management control system for spacecraft

    Science.gov (United States)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  20. Multi-objective Optimal Design of a Five-Phase Fault-Tolerant Axial Flux PM Motor

    Directory of Open Access Journals (Sweden)

    SAAVEDRA, H.

    2015-02-01

    Full Text Available Electric motors used for traction purposes in electric vehicles (EVs must meet several requirements, including high efficiency, high power density and fault-tolerance. Among them, permanent magnet synchronous motors (PMSMs highlight. Especially, five-phase axial flux permanent magnet (AFPM synchronous motors are particularly suitable for in-wheel applications with enhanced fault-tolerant capabilities. This paper is devoted to optimally design an AFPM for in-wheel applications. The main geometric, electric and mechanical parameters of the designed AFPM are calculated by applying an iterative method based on a set of analytical equations, which is assisted by means of a reduced number of three-dimensional finite element method (3D-FEM simulations to limit the computational burden. To optimally design the AFPM, a constrained multi-objective optimization process based on a genetic algorithm is applied, in which two objective functions are considered, i.e. the power density and the efficiency. Several fault-tolerance constraints are settled during the optimization process to ensure enhanced fault-tolerance in the resulting motor design. The accuracy of the best solution attained is validated by means of 3D-FEM simulations.

  1. Effect of wheel speed on magnetic and mechanical properties of melt spun Fe-6.5 wt.% Si high silicon steel

    Science.gov (United States)

    Ouyang, Gaoyuan; Jensen, Brandt; Tang, Wei; Dennis, Kevin; Macziewski, Chad; Thimmaiah, Srinivasa; Liang, Yongfeng; Cui, Jun

    2018-05-01

    Fe-Si electric steel is the most widely used soft magnetic material in electric machines and transformers. Increasing the silicon content from 3.2 wt.% to 6.5 wt.% brings about large improvement in the magnetic and electrical properties. However, 6.5 wt.% silicon steel is inherited with brittleness owing to the formation of B2 and D03 ordered phase. To obtain ductility in Fe-6.5wt.% silicon steel, the ordered phase has to be bypassed with methods like rapid cooling. In present paper, the effect of cooling rate on magnetic and mechanical properties of Fe-6.5wt.% silicon steel is studied by tuning the wheel speed during melt spinning process. The cooling rate significantly alters the ordering and microstructure, and thus the mechanical and magnetic properties. X-ray diffraction data shows that D03 ordering was fully suppressed at high wheel speeds but starts to nucleate at 10m/s and below, which correlates with the increase of Young's modulus towards low wheel speeds as tested by nanoindentation. The grain sizes of the ribbons on the wheel side decrease with increasing wheel speeds, ranging from ˜100 μm at 1m/s to ˜8 μm at 30m/s, which lead to changes in coercivity.

  2. Analysis of the individual factors affecting mobile phone use while driving in France: socio-demographic characteristics, car and phone use in professional and private contexts.

    Science.gov (United States)

    Brusque, Corinne; Alauzet, Aline

    2008-01-01

    In France, as in many other countries, phoning while driving is legally restricted because of its negative impact on driving performance which increases accident risk. Nevertheless, it is still a frequently observed practice and one which has not been analyzed in detail. This study attempts to identify the profiles of those who use mobile phones while at the wheel and determine the forms taken by this use. A representative sample of 1973 French people was interviewed by phone on their driving practices and mobile phone use in everyday life and their mobile phone use while driving. Logistics regressions have been conducted to highlight the explanatory factors of phoning while driving. Strong differences between males and females have been shown. For the male population, age is the main explanatory factor of phoning while driving, followed by phone use for work-related reasons and extensive mobile phone use in everyday life. For females, high mileage and intensive use of mobile phone are the only two explanatory factors. We defined the intensive phone use at the wheel group as drivers who receive or send at least five or more calls per day while driving. There is no socio-demographic variable related to this practice. Car and phone uses in everyday life are the only explanatory factors for this intensive mobile use of the phone at the wheel.

  3. Automated Robot Movement in the Mapped Area Using Fuzzy Logic for Wheel Chair Application

    Science.gov (United States)

    Siregar, B.; Efendi, S.; Ramadhana, H.; Andayani, U.; Fahmi, F.

    2018-03-01

    The difficulties of the disabled to move make them unable to live independently. People with disabilities need supporting device to move from place to place. For that, we proposed a solution that can help people with disabilities to move from one room to another automatically. This study aims to create a wheelchair prototype in the form of a wheeled robot as a means to learn the automatic mobilization. The fuzzy logic algorithm was used to determine motion direction based on initial position, ultrasonic sensors reading in avoiding obstacles, infrared sensors reading as a black line reader for the wheeled robot to move smooth and smartphone as a mobile controller. As a result, smartphones with the Android operating system can control the robot using Bluetooth. Here Bluetooth technology can be used to control the robot from a maximum distance of 15 meters. The proposed algorithm was able to work stable for automatic motion determination based on initial position, and also able to modernize the wheelchair movement from one room to another automatically.

  4. MATHEMATICAL MODEL OF WHEELSET OSCILLATIONS WITH INDEPENDENT WHEEL ROTATION IN THE HORIZONTAL PLANE

    Directory of Open Access Journals (Sweden)

    S. V. Myamlin

    2016-08-01

    Full Text Available Purpose. The work is devoted to the study of horizontal oscillation and the assessment of the motion stability of a single wheelset with independent wheel rotation, and to the comparison of stability indicators of the typical wheelset and the wheelset with independent wheel rotation. This is connected with the necessity to increase traffic speed of rolling stock, improve road safety and comfort of passengers. Methodology. To achieve this purpose we used the methods of mathematical simulation of railway rolling stock dynamics, as well as the linear algebra methods to assess the stability of solutions of the linear homogeneous differential equations. Findings. To solve the set task the design model of a single wheelset with independent wheel rotation was created. The wheelset is not a single solid body; each of the wheelset axles has a surplus degree of freedom. Thus, we obtained the system with 4 degrees of freedom. The design model allowed to obtain the system of linear homogeneous differential equations describing the oscillations of the represented wheelset in a horizontal plane on a straight track section. On the basis of the computer modeling were calculated the eigenvalues of the differential equation system coefficients and the asymptotic stability analysis of the wheelset motion with independent wheel rotation. The increment and the frequency of fluctuations were compared with similar indicators for the standard wheelset. The authors also discussed non-oscillatory forms of the wheelset motion and the issues of wheelset self-centering on the track. Originality. The result of the work is the mathematical model of the sinuous movement of a single wheelset, in two-dimensional formulation, with independent wheel rotation and the estimate of the dynamic indices during its motion on a straight track section without any irregularities. There were also proposed the ways to ensure the self-centering on the track of the wheelset with independent

  5. Multi-thread Parallel Speech Recognition for Mobile Applications

    Directory of Open Access Journals (Sweden)

    LOJKA Martin

    2014-05-01

    Full Text Available In this paper, the server based solution of the multi-thread large vocabulary automatic speech recognition engine is described along with the Android OS and HTML5 practical application examples. The basic idea was to bring speech recognition available for full variety of applications for computers and especially for mobile devices. The speech recognition engine should be independent of commercial products and services (where the dictionary could not be modified. Using of third-party services could be also a security and privacy problem in specific applications, when the unsecured audio data could not be sent to uncontrolled environments (voice data transferred to servers around the globe. Using our experience with speech recognition applications, we have been able to construct a multi-thread speech recognition serverbased solution designed for simple applications interface (API to speech recognition engine modified to specific needs of particular application.

  6. Multi level governance framework for sustainable urban mobility

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik

    2013-01-01

    Cities constitute the backbone of European historic development and provide the basis of its economic future. The near neglect of cities in existing European policies for sustainable growth and development such as the Europe 2020 strategy is untenable. The 2011 White Paper has sought to face...... seem essential to move cities beyond business as usual. Research-wise we need to understand in more detail the political and contextual background for successes - and failures - of European cities. This could help build an effective multi level governance framework for sustainable urban mobility...

  7. Wheel inspection system environment.

    Science.gov (United States)

    2008-11-18

    International Electronic Machines Corporation (IEM) has developed and is now marketing a state-of-the-art Wheel Inspection System Environment (WISE). WISE provides wheel profile and dimensional measurements, i.e. rim thickness, flange height, flange ...

  8. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu [Korea Atomic Energy Research Institute, T/H Safety Research Team, Yusung, Daejeon (Korea)

    2000-10-01

    MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

  9. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu

    2000-01-01

    MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

  10. The prospects for retail wheeling

    International Nuclear Information System (INIS)

    O'Donnell, E.H.; Center, J.A.

    1992-01-01

    This paper as published is an outline of a presentation on retail wheeling of electric power. The topics discussed are development of increased wholesale transmission access, government regulatory policies on wholesale transmission, examples of past and present retail transmission access agreements, examples of Federal Energy Regulatory Commission jurisdiction over retail wheeling, and state policies on retail wheeling

  11. Wheel running decreases palatable diet preference in Sprague-Dawley rats.

    Science.gov (United States)

    Moody, Laura; Liang, Joy; Choi, Pique P; Moran, Timothy H; Liang, Nu-Chu

    2015-10-15

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague-Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. Published by Elsevier Inc.

  12. Wheel running decreases palatable diet preference in Sprague-Dawley rats

    Science.gov (United States)

    Moody, Laura; Liang, Joy; Choi, Pique P.; Moran, Timothy H.; Liang, Nu-Chu

    2015-01-01

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. PMID:25791204

  13. Mission Analysis and Orbit Control of Interferometric Wheel Formation Flying

    Science.gov (United States)

    Fourcade, J.

    Flying satellite in formation requires maintaining the specific relative geometry of the spacecraft with high precision. This requirement raises new problem of orbit control. This paper presents the results of the mission analysis of a low Earth observation system, the interferometric wheel, patented by CNES. This wheel is made up of three receiving spacecraft, which follow an emitting Earth observation radar satellite. The first part of this paper presents trades off which were performed to choose orbital elements of the formation flying which fulfils all constraints. The second part presents orbit positioning strategies including reconfiguration of the wheel to change its size. The last part describes the station keeping of the formation. Two kinds of constraints are imposed by the interferometric system : a constraint on the distance between the wheel and the radar satellite, and constraints on the distance between the wheel satellites. The first constraint is fulfilled with a classical chemical station keeping strategy. The second one is fulfilled using pure passive actuators. Due to the high stability of the relative eccentricity of the formation, only the relative semi major axis had to be controlled. Differential drag due to differential attitude motion was used to control relative altitude. An autonomous orbit controller was developed and tested. The final accuracy is a relative station keeping better than few meters for a wheel size of one kilometer.

  14. A multi-purpose unit concept to integrate storage, transportation, and the engineered barrier system

    International Nuclear Information System (INIS)

    Hollaway, W.R.; Rozier, R.; Nitti, D.A.; Williams, J.R.

    1993-01-01

    The Multi-Purpose Unit (MPU) is a new concept for standardizing and integrating the waste management functions of spent fuel storage, transportation, and geologic disposal. The MPU concept would use one unit, composed of a relatively thick-walled inner canister with a multi-purpose overpack, to meet the requirements for storage in 10 CFR 72, transportation in 10 CFR 71, and the engineered barrier system in 10 CFR 60. The MPU concept differs from the recently proposed Multi-Purpose Canister (MPC) concept in that the MPU concept uses a single multi-purpose overpack for storage, transportation, and geologic disposal, while the MPC concept uses separate and unique overpacks for each of these system functions. A design concept for the MPU is presented along with an estimate of unit costs. An initial evaluation of overall system cost showed that the MPU concept could be economically competitive with the current reference system. The MPU concept provides the potential for significant reduction, simplification, and standardization of Civilian Radioactive Waste Management (CRWMS) facilities and operations, including those at the utilities, during waste acceptance and transportation, and at the Monitored Retrievable Storage (MRS) facility and the repository. The primary issues for the MPU concept relate to uncertainties with respect to licensing, and the programmatic risks associated with implementing the MPU concept before the repository design is finalized. The strong potential exhibited by the MPU concept demonstrates that this option merits additional development and should be considered in the next phase of work on multi-purpose concepts for the CRWMS

  15. Analysing and Developing Promotion of Multi-Sided Platform Mobile Application: Case: Yamii

    OpenAIRE

    Chen , Luyao

    2013-01-01

    The commissioning party of this thesis is a start-up company called LBB Solutions Oy, where the author is working as a marketing manager of the “Yamii” project. The aim of this thesis is to ascertain reasons for the current situation and any problems regarding the MSP (multi-sided platform) mobile App “Yamii”, from a marketing point of view, and to give suggestions on products development and multi-sided marketing. This is a procedural thesis and both quantitative and qualitative researc...

  16. Out-of-round railway wheels—assessment of wheel tread irregularities in train traffic

    Science.gov (United States)

    Johansson, Anders

    2006-06-01

    Results from an extensive wheel measurement campaign performed in Sweden are given and discussed. Out-of-roundness (OOR), transverse profile and surface hardness of 99 wheels on passenger trains (X2 and intercity), freight trains, commuter trains (Regina) and underground trains (C20) were measured. Both tread and disc braked wheels were investigated. The selected wheels had travelled a distance of more than 100000 km, and the measurements were conducted when the train wagons/coaches had been taken out of traffic for maintenance, most of them due to reasons other than wheel OOR. Mechanical contact measurement methods were used. The highest roughness levels (higher than 20 dB re 1 μm for some wheels) were found on powered high-speed (X2) train wheels. The previously known polygonalization of C20 underground wheels is quantified. It is also verified that an initial irregularity is formed due to the clamping in a three-jaw chuck during profiling of new C20 wheels. Magnitudes and wavelength contents of measured wheel roughness are compared with corresponding measurements of rail roughness.

  17. High Mobility, High Life Wheels for Mars

    Data.gov (United States)

    National Aeronautics and Space Administration — GRC will build Mars spring tires based on JPL requirements. GRC will evaluate tractive performance. JPL will conduct life cycle testing and load analysis.

  18. Stocks and flows of lead-based wheel weights in the United States

    Science.gov (United States)

    Bleiwas, Donald I.

    2006-01-01

    Lead is used in many widely known applications, such as automobile batteries and radiation shielding. Another lesser known, but long-term, use of lead is in automotive vehicle wheel weights. Lead weights have been used to balance wheels since the 1930s because of its high specific gravity, low relative cost, and its malleability. Out-of-balance tires tend to 'cup' and vibrate and as a result cause excessive wear on tires and vehicle suspension components and result in compromised handling, especially at high speeds. The mass, number, and style of weights needed to balance a wheel depend on the tire's size and weight and on the type and condition of the wheels (rims) on the vehicle. This study addresses an accounting of the stocks and flows of lead contained in lead wheel weights from their manufacture, through use, dissipation, and recycling, and environmental issues associated with the use of lead.

  19. SPENT NUCLEAR FUEL NUMBER DENSITIES FOR MULTI-PURPOSE CANISTER CRITICALITY CALCULATIONS

    International Nuclear Information System (INIS)

    D. A. Thomas

    1996-01-01

    The purpose of this analysis is to calculate the number densities for spent nuclear fuel (SNF) to be used in criticality evaluations of the Multi-Purpose Canister (MPC) waste packages. The objective of this analysis is to provide material number density information which will be referenced by future MPC criticality design analyses, such as for those supporting the Conceptual Design Report

  20. Recursive Backstepping Stabilization of a Wheeled Mobile Robot

    Directory of Open Access Journals (Sweden)

    Faical Mnif

    2004-12-01

    Full Text Available This research is aimed to the development of a dynamic control to enhance the performance of the existing dynamic controllers for mobile robots. System dynamics of the car-like robot with nonholonomic constraints were employed. A Backstepping approach for the design of discontinuous state feedback controller is used for the design of the controller. It is shown that the origin of the closed loop system can be made stable in the sense of Lyapunov. The control design is made on the basis of a suitable Lyapunov function candidate. The effectiveness of the proposed approach is tested through simulation on a car-like vehicle mobile robot.

  1. Four-Wheel Vehicle Suspension System

    Science.gov (United States)

    Bickler, Donald B.

    1990-01-01

    Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).

  2. Running in a running wheel substitutes for stereotypies in mink (Mustela vison) but does it improve their welfare?

    DEFF Research Database (Denmark)

    Hansen, Steffen W; Damgaard, Birthe Marie

    2009-01-01

    This experiment investigated whether access to a running wheel affects the development of stereotypies during restricted feeding and whether selection for high or low levels of stereotypy affects the use of the running wheel. Sixty-two female mink kept in standard cages and selected for high or low...... levels of stereotypy were used. Thirty of these females had access to a running wheel whereas thirty-two female mink had no access to running wheels. The number of turns of the running wheel, behaviour, feed consumption, body weight and the concentration of plasma cortisol were measured during the winter...... period. Mink with access to a running wheel did not perform stereotypic behaviour and mink selected for a high level of stereotypies had more turns in the running wheel than mink selected for low levels of stereotypies. Mink with access to a running wheel used the running wheel for the same amount...

  3. High mobility emissive organic semiconductor

    Science.gov (United States)

    Liu, Jie; Zhang, Hantang; Dong, Huanli; Meng, Lingqiang; Jiang, Longfeng; Jiang, Lang; Wang, Ying; Yu, Junsheng; Sun, Yanming; Hu, Wenping; Heeger, Alan J.

    2015-01-01

    The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm2 V−1 s−1. Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m−2 and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics. PMID:26620323

  4. The Reaction Wheel Pendulum

    CERN Document Server

    Block, Daniel J; Spong, Mark W

    2007-01-01

    This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like device for control education and research. We discuss the history and background of the reaction wheel pendulum and other similar experimental devices. We develop mathematical models of the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the sensors and actuators that are used for feedback control. We treat various aspects of the control problem, from linear control of themotor, to stabilization of the pendulum about an equilibrium configuration using linear control, t

  5. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  6. Solving conformal contacts using multi-Hertzian techniques

    Science.gov (United States)

    Pascal, Jean-Pierre; Soua, Brahim

    2016-06-01

    Recently, publications aiming at wheel-rail contact surveys let readers think that multi-Hertzian methods present severe drawbacks with respect to 'virtual penetration' methods. These surveys criticise multi-Hertzian solutions mainly because presenting 'larger contacts overlaps' and 'frequent secondary contacts near the border of the first contact', both obvious geometric possibilities of which the practical occurrence and eventual inconvenience would remain purely theoretical unless established over definite methods demonstrating poor practical results. Recent surveys all quote Piotrowski-Chollet 2005 survey of wheel-rail contact models that attempted to illustrate defective multi-Hertzian techniques by concentrating on the method initiated by Sauvage in the 1990s and further developed by Pascal. The 2005 paper not only gives no evidence of practical inconveniences of Sauvage's method but also confuses static geometric contact overlaps with the dynamical overlapping of forces. In reality it mixes Sauvage method up with a quite different technique. Thus a clarification is now necessary by reminding what the proper Sauvage technique really is and by showing some of its practical successful applications. The present paper, focusing on determination of normal contact forces in conformal situations, intends to explain clearly the advantages of the unequivocal localisation of secondary ellipses in that multi-Hertzian method which has been developed in INRETS VOCO codes in the 1990s and successfully used by SNCF and ALSTOM in the INRETS-SNCF code, VOCODYM, and later in Pascal's online calculation of railway elastic contacts code. It proved its effectiveness for studying freight wagons derailments as well as rail wear and head-check, unrounded wheels wear, high-speed lines' deformations or TGV comfort. While simulating American ACELA trainsets' behaviour on the US North-East Corridor tracks, prior to actual tests, as part of the commercial contract. It has been also a

  7. Time-domain simulation and nonlinear analysis on ride performance of four-wheel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y S; He, H; Geng, A L [School of Automobile and Traffic Engineering, Liaoning University of Technology, Jinzhou 121001 (China)], E-mail: jzwbt@163.com

    2008-02-15

    A nonlinear dynamic model with eight DOFs of a four-wheel vehicle is established in this paper. After detaching the nonlinear characteristics of the leaf springs and shock absorbers, the multi-step linearizing method is used to simulate the vehicle vibration in time domain, under a correlated four-wheel road roughness model. Experimental verifications suggest that the newly built vehicle model and simulation procedure are reasonable and feasible to be used in vehicle vibration analysis. Furthermore, some nonlinear factors of the leaf springs and shock absorbers, which affect the vehicle ride performance (or comfort), are investigated under different vehicle running speeds. Some substaintial rules of the nonlinear vehicle vibrations are revealed in this paper.

  8. Time-domain simulation and nonlinear analysis on ride performance of four-wheel vehicles

    International Nuclear Information System (INIS)

    Wang, Y S; He, H; Geng, A L

    2008-01-01

    A nonlinear dynamic model with eight DOFs of a four-wheel vehicle is established in this paper. After detaching the nonlinear characteristics of the leaf springs and shock absorbers, the multi-step linearizing method is used to simulate the vehicle vibration in time domain, under a correlated four-wheel road roughness model. Experimental verifications suggest that the newly built vehicle model and simulation procedure are reasonable and feasible to be used in vehicle vibration analysis. Furthermore, some nonlinear factors of the leaf springs and shock absorbers, which affect the vehicle ride performance (or comfort), are investigated under different vehicle running speeds. Some substaintial rules of the nonlinear vehicle vibrations are revealed in this paper

  9. Multi-purpose deployer for ITER in-vessel maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang-Hwan, E-mail: Chang-Hwan.CHOI@iter.org [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul lez Durance (France); Tesini, Alessandro; Subramanian, Rajendran [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul lez Durance (France); Rolfe, Alan; Mills, Simon; Scott, Robin; Froud, Tim; Haist, Bernhard; McCarron, Eddie [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon, OXON (United Kingdom)

    2015-10-15

    Highlights: • ITER RH system called as the multi-purpose deployer (MPD) is introduced. • The MPD performs dust and tritium inventory control, in-service inspection. • The MPD performs leak localization, in-vessel diagnostics maintenance. • The MPD has nine degrees of freedom with a payload capacity up to 2 tons. - Abstract: The multi-purpose deployer (MPD) is a general purpose in-vessel remote handling (RH) system in the ITER RH system. The MPD provides the means for deployment and handling of in-vessel tools or components inside the vacuum vessel (VV) for dust and tritium inventory control, in-service inspection, leak localization, and in-vessel diagnostics. It also supports the operation of blanket first wall maintenance and neutral beam duct liner module maintenance operations. This paper describes the concept design of the MPD. The MPD is a cask based system, i.e. it stays in the hot cell building during the machine operation, and is deployed to the VV using the cask system for the in-vessel operations. The main part of the MPD is the articulated transporter which provides transportation and positioning of the in-vessel tools or components. The articulated transporter has nine degrees of freedom with a payload capacity up to 2 tons. The articulated transporter can cover the whole internal surface of the VV by switching between the four equatorial RH ports. Additionally it can use two non-RH equatorial ports to transfer large tools or components. A concept for in-cask tool exchange is developed which minimizes the cask transportation by allowing the MPD to stay in the VV during the tool exchange.

  10. Non-Model-Based Control of a Wheeled Vehicle Pulling Two Trailers to Provide Early Powered Mobility and Driving Experiences.

    Science.gov (United States)

    Sanders Td Vr, David A

    2018-01-01

    Non-model-based control of a wheeled vehicle pulling two trailers is proposed. It is a fun train for disabled children consisting of a locomotive and two carriages. The fun train has afforded opportunities for both disabled and able bodied young people to share an activity and has provided early driving experiences for disabled children; it has introduced them to assistive and powered mobility. The train is a nonlinear system and subject to nonholonomic kinematic constraints, so that position and state depend on the path taken to get there. The train is described, and then, a robust control algorithm using proportional-derivative filtered errors is proposed to control the locomotive. The controller was not dependent on an accurate model of the train, because the mass of the vehicle and two carriages changed depending on the number, size, and shape of children and wheelchair seats on the train. The controller was robust and stable in uncertainty. Results are presented to show the effectiveness of the approach, and the suggested control algorithm is shown to be acceptable without knowing the exact plant dynamics.

  11. A target field design of open multi-purpose RF coil for musculoskeletal MR imaging at 3T.

    Science.gov (United States)

    Gao, Fei; Zhang, Rui; Zhou, Diange; Wang, Xiaoying; Huang, Kefu; Zhang, Jue

    2016-10-01

    Musculoskeletal MR imaging under multi-angle situations plays an increasingly important role in assessing joint and muscle tissues system. However, there are still limitations due to the closed structures of most conventional RF coils. In this study, a time-harmonic target-field method was employed to design open multi-purpose coil (OMC) for multi-angle musculoskeletal MR imaging. The phantom imaging results suggested that the proposed OMC could achieve homogeneously distributed magnetic field and high signal-to-noise ratio (SNR) of 239.04±0.83 in the region of interest (ROI). The maximum temperature in the heating hazard test was 16°C lower than the standard regulation, which indicated the security of the designed OMC. Furthermore, to demonstrate the effectiveness of the proposed OMC for musculoskeletal MR imaging, especially for multi-angle imaging, a healthy volunteer was examined for MR imaging of elbow, ankle and knee using OMC. The in vivo imaging results showed that the proposed OMC is effective for MR imaging of musculoskeletal tissues at different body parts, with satisfied B1 field homogeneity and SNR. Moreover, the open structure of the OMC could provide a large joint movement region. The proposed open multi-purpose coil is feasible for musculoskeletal MR imaging, and potentially, it is more suitable for the evaluation of musculoskeletal tissues under multi-angle conditions. Copyright © 2016. Published by Elsevier Inc.

  12. The effect of mountain bike wheel size on Cross-Country performance

    OpenAIRE

    Hurst, Howard Thomas; Atkins, Stephen; Metcalfe, John; Sinclair, Jonathan Kenneth; Rylands, Lee

    2016-01-01

    The purpose of this study was to determine the influence of different wheel size diameters on indicators of cross-country mountain bike time trial performance. Nine competitive male mountain bikers (age 34.7 ± 10.7 years; stature 177.7 ± 5.6 cm; body mass 73.2 ± 8.6 kg) performed 1 lap of a 3.48 km mountain bike (MTB) course as fast as possible on 26″, 27.5″ and 29″ wheeled MTB. Time (s), mean power (W), cadence (revs · min−1) and velocity (km · h−1) were recorded for the whole lap and during...

  13. Wheel traffic effect on air-filled porosity and air permeability in a soil catena across the wheel rut

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Lamandé, Mathieu

    might induce different effects on soil physical properties. The objective of this study was to investigate the impact of vehicle traffic on soil physical properties and air permeability by systematic collection of samples in a transect running from the center to the outside of the wheel rut. A field...... catena running from center of the wheel rut to un wheeled part of the field ( 0, 20, 40, 50,60 and 400 cm horizontal distance). We measured water retention and air permeability (ka) at -30, -100 and -300 hPa matric potentials. At -100 hPa, we obtained consistently lower air filled under the wheel rut......The impact of wheel traffic on soil physical properties is usually quantified by randomly collecting soil cores at specific depths below the wheeled surface. However, modeling studies as well as few measurements indicated a non-uniform stress distribution in a catena across the wheel rut, which...

  14. Wheel liner design for improved sound and structural performances

    Science.gov (United States)

    Oltean, Alexandru; Diaconescu, Claudiu; Tabacu, Ştefan

    2017-10-01

    Vehicle noise is composed mainly of wheel-road noise and noise from the power unit. At low speeds power unit noise dominates while at high speeds wheel-road noise dominates as wheel-road noise level increases approximately logarithmically with speed. The wheel liner is designed as a component of the vehicle that has a multiple role. It has to prevent the dirt or water from the road surface that are engaged by the wheel to access the engine/front bay. Same time it has the important role to reduce perceived noised in the passenger’s compartment that comes from the wheel-road interaction. Progress in plastic injection moulding technology allowed for new structures to be developed - nonwoven materials in combination with a PP based carrier structure which benefits from a cell structure caused by MuCell injection moulding. The results are light parts with increased sound absorption performances. An adapted combination of materials and production processes can provide the solution for stiff yet soundproofing structures valued for modern vehicles. Sound absorption characteristics of materials used for wheel liners applications were reported in this study. Different polypropylene and polyester fibre-based thermally bonded nonwovens varying in weight and thickness were investigated. Having as a background the performances of the nonwoven material the microcellular structure was part of the analysis. Acoustical absorptive behaviour was explained by analysing the results obtained using the impedance tube and correlating with the knowledge of materials structure.

  15. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.

    2000-07-01

    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  16. Using SMES as a multi-purpose interface in power generation, transmission and distribution systems

    International Nuclear Information System (INIS)

    Tam, K.S.; Zhang, X.; Yarali, A.

    1991-01-01

    This paper presents a new SMES schemes, the MSMES system, which significantly broadens the ways in which SMES can be applied to electric power systems. On the generation side, the SMES system can convert low-quality power into high-quality power and enhances the utilization of all energy sources available to the power systems. Acting both as an energy storage device and a power flow control device, a MSMES system can act as a hub in a power transmission system. The use of multiple MSMES systems can provide many new solutions to the problems facing the transmission networks of the United States today. On the distribution side, MSMES systems can be used as advanced power distribution centers that supply high-quality power to the customers while providing desirable load shapes to the power systems. In addition to these functions, a MSMES unit can also perform functions such as damping of power oscillation, stability and dynamic performance improvement and other recognized benefits of the conventional SMES system. Functioning as a multi-purpose power processing units, the MSMES systems improve the economics of SMES system. Functioning as a multi-purpose power processing units, the MSMES systems improve the economics of SMES technology and expand its potential market

  17. Dynamic Modelling and Adaptive Traction Control for Mobile Robots

    Directory of Open Access Journals (Sweden)

    A. Albagul

    2004-09-01

    Full Text Available Mobile robots have received a great deal of research in recent years. A significant amount of research has been published in many aspects related to mobile robots. Most of the research is devoted to design and develop some control techniques for robot motion and path planning. A large number of researchers have used kinematic models to develop motion control strategy for mobile robots. Their argument and assumption that these models are valid if the robot has low speed, low acceleration and light load. However, dynamic modelling of mobile robots is very important as they are designed to travel at higher speed and perform heavy duty work. This paper presents and discusses a new approach to develop a dynamic model and control strategy for wheeled mobile robot which I modelled as a rigid body that roles on two wheels and a castor. The motion control strategy consists of two levels. The first level is dealing with the dynamic of the system and denoted as ‘Low’ level controller. The second level is developed to take care of path planning and trajectory generation.

  18. A Nontoxic Barlow's Wheel

    Science.gov (United States)

    Daffron, John A.; Greenslade, Thomas B.

    2015-01-01

    Barlow's wheel has been a favorite demonstration since its invention by Peter Barlow (1776-1862) in 1822.1 In the form shown in Fig. 1, it represents the first electric motor. The interaction between the electric current passing from the axle of the wheel to the rim and the magnetic field produced by the U-magnet produces a torque that turns the wheel. The original device used mercury to provide electrical contact to the rim, and the dangers involved with the use of this heavy metal have caused the apparatus to disappear from the lecture hall.

  19. Optimal Multi-Interface Selection for Mobile Video Streaming in Efficient Battery Consumption and Data Usage

    Directory of Open Access Journals (Sweden)

    Seonghoon Moon

    2016-01-01

    Full Text Available With the proliferation of high-performance, large-screen mobile devices, users’ expectations of having access to high-resolution video content in smooth network environments are steadily growing. To guarantee such stable streaming, a high cellular network bandwidth is required; yet network providers often charge high prices for even limited data plans. Moreover, the costs of smoothly streaming high-resolution videos are not merely monetary; the device’s battery life must also be accounted for. To resolve these problems, we design an optimal multi-interface selection system for streaming video over HTTP/TCP. An optimization problem including battery life and LTE data constraints is derived and then solved using binary integer programming. Additionally, the system is designed with an adoption of split-layer scalable video coding, which provides direct adaptations of video quality and prevents out-of-order packet delivery problems. The proposed system is evaluated using a prototype application in a real, iOS-based device as well as through experiments conducted in heterogeneous mobile scenarios. Results show that the system not only guarantees the highest-possible video quality, but also prevents reckless consumption of LTE data and battery life.

  20. RAC-Multi: Reader Anti-Collision Algorithm for Multichannel Mobile RFID Networks

    Directory of Open Access Journals (Sweden)

    Kwangcheol Shin

    2009-12-01

    Full Text Available At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks.

  1. Effects of hardness of abrasive grains on surface roughness of work piece in PVA bonded grinding wheel

    International Nuclear Information System (INIS)

    Nitta, S.; Takata, A.; Ishizaki, K.

    2000-01-01

    The purpose of this study is to clarify relation between hardness of abrasive grains and surface roughness of work piece in the case of PVA (Polyvinyl alcohol) bonded grinding wheels. Two PVA bonded grinding wheels; with diamond or silicon carbide as abrasive grains and grinding of glass and aluminum alloy was performed. The PVA bonded grinding wheels The PVA bonded grinding wheel with silicon carbide could not grind the glass. Because insufficiency in hardness, the PVA bonded grinding wheel with the diamond abrasive grains caused deep scratch on the aluminum alloy. It was found that the final surface roughness of the work piece was not proportional to the hardness of abrasive grains. The suitable hardness of abrasive grains will be obtained by the hardness of work piece. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  2. Customer loads of two-wheeled vehicles

    Science.gov (United States)

    Gorges, C.; Öztürk, K.; Liebich, R.

    2017-12-01

    Customer usage profiles are the most unknown influences in vehicle design targets and they play an important role in durability analysis. This publication presents a customer load acquisition system for two-wheeled vehicles that utilises the vehicle's onboard signals. A road slope estimator was developed to reveal the unknown slope resistance force with the help of a linear Kalman filter. Furthermore, an automated mass estimator was developed to consider the correct vehicle loading. The mass estimation is performed by an extended Kalman filter. Finally, a model-based wheel force calculation was derived, which is based on the superposition of forces calculated from measured onboard signals. The calculated wheel forces were validated by measurements with wheel-load transducers through the comparison of rainflow matrices. The calculated wheel forces correspond with the measured wheel forces in terms of both quality and quantity. The proposed methods can be used to gather field data for improved vehicle design loads.

  3. Space shuttle wheels and brakes

    Science.gov (United States)

    Carsley, R. B.

    1985-01-01

    The Space Shuttle Orbiter wheels were subjected to a combination of tests which are different than any previously conducted in the aerospace industry. The major testing difference is the computer generated dynamic landing profiles used during the certification process which subjected the wheels and tires to simulated landing loading conditions. The orbiter brakes use a unique combination of carbon composite linings and beryllium heat sink to minimize weight. The development of a new lining retention method was necessary in order to withstand the high temperature generated during the braking roll. As with many programs, the volume into which this hardware had to fit was established early in the program, with no provisions made for growth to offset the continuously increasing predicted orbiter landing weight.

  4. A Collaborative Digital Pathology System for Multi-Touch Mobile and Desktop Computing Platforms

    KAUST Repository

    Jeong, W.

    2013-06-13

    Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server system that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch-enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. We introduce a domain-specific image-stack compression method that leverages real-time hardware decoding on mobile devices. It adaptively encodes image stacks in a decorrelated colour space to achieve extremely low bitrates (0.8 bpp) with very low loss of image quality. We evaluate the image quality of our compression method and the performance of our system for diagnosis with an in-depth user study. Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server systems that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  5. A Collaborative Digital Pathology System for Multi-Touch Mobile and Desktop Computing Platforms

    KAUST Repository

    Jeong, W.; Schneider, J.; Hansen, A.; Lee, M.; Turney, S. G.; Faulkner-Jones, B. E.; Hecht, J. L.; Najarian, R.; Yee, E.; Lichtman, J. W.; Pfister, H.

    2013-01-01

    Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server system that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch-enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. We introduce a domain-specific image-stack compression method that leverages real-time hardware decoding on mobile devices. It adaptively encodes image stacks in a decorrelated colour space to achieve extremely low bitrates (0.8 bpp) with very low loss of image quality. We evaluate the image quality of our compression method and the performance of our system for diagnosis with an in-depth user study. Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server systems that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  6. Genetic algorithm–based varying parameter linear quadratic regulator control for four-wheel independent steering vehicle

    Directory of Open Access Journals (Sweden)

    Linlin Gao

    2015-11-01

    Full Text Available From the perspective of vehicle dynamics, the four-wheel independent steering vehicle dynamics stability control method is studied, and a four-wheel independent steering varying parameter linear quadratic regulator control system is proposed with the help of expert control method. In the article, a four-wheel independent steering linear quadratic regulator controller for model following purpose is designed first. Then, by analyzing the four-wheel independent steering vehicle dynamic characteristics and the influence of linear quadratic regulator control parameters on control performance, a linear quadratic regulator control parameter adjustment strategy based on vehicle steering state is proposed to achieve the adaptive adjustment of linear quadratic regulator control parameters. In addition, to further improve the control performance, the proposed varying parameter linear quadratic regulator control system is optimized by genetic algorithm. Finally, simulation studies have been conducted by applying the proposed control system to the 8-degree-of-freedom four-wheel independent steering vehicle dynamics model. The simulation results indicate that the proposed control system has better performance and robustness and can effectively improve the stability and steering safety of the four-wheel independent steering vehicle.

  7. Assessment of a Boat Fractured Steering Wheel

    Directory of Open Access Journals (Sweden)

    Vukelic Goran

    2016-09-01

    Full Text Available During regular use of the steering wheel mounted on a boat, two cracks emanating from a fastener hole were noticed which, consequently, caused final fracture of the wheel. To determine the behavior of a boat steering wheel with cracks present, assessment of a fractured wheel was performed. Torque moments of the fasteners were measured prior to removing the steering wheel from the boat. Visual and dye penetrant inspection followed along with the material detection. Besides using experimental procedures, assessment of the fractured wheel was performed using finite element analysis, i.e. stress intensity factor values were numerically determined. Variation of stress intensity factor with crack length is presented. Possible causes of crack occurrence are given and they include excessive values of fastener torque moments coupled with fretting between fastener and fastener hole that was poorly machined. Results obtained by this assessment can be taken for predicting fracture behavior of a cracked steering wheel and as a reference in the design, mounting and exploitation process of steering wheels improving that way their safety in transportation environment.

  8. Multi-core for mobile phones

    NARCIS (Netherlands)

    Berkel, van C.H.

    2009-01-01

    High-end mobile phones support multiple radio standards and a rich suite of applications, which involves advanced radio, audio, video, and graphics processing. The overall digital workload amounts to nearly 100GOPS, from 4b integer to 24b floating-point operations. With a power budget of only 1W

  9. Principles of designing mobile robots for nuclear applications: Some Soviet development projects

    International Nuclear Information System (INIS)

    Adamov, E.O.; Ivanov, V.G.; Meieran, H.B.

    1990-01-01

    The I.V. Kurchatov Institute of Atomic Energy and the Research and Design Institute of Power Engineering, both designers of nuclear power plant systems and located in Moscow, USSR, have collectively recognized the positive merits of utilizing mobile robots in the nuclear industry. They have given authority to their subsidiary agency CENOTECH to mount an active campaign to program the development of new generations of mobile robots that will support routine and emergency situation operations in the nuclear industry. CENOTECH's rationale for design and performance requirements of mobile robot units to be utilized in the nuclear industry is presented in this paper. A description of design, performance requirements, and operational characteristics of four mobile robots that have been developed at CENOTECH within the past 3 yr is also presented: the 2-tracked KURSOR; the 4 hybrid-wheeled TELER; the 12-wheeled BUGGY with articulated platforms; and the 2-tracked SADKO

  10. An Evolutionary Mobility Aware Multi-Objective Hybrid Routing Algorithm for Heterogeneous Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Neeli R.; Prasad, Ramjee

    deliberation. To tackle these two problems, Mobile Wireless Sensor Networks (MWSNs) is a better choice. In MWSN, Sensor nodes move freely to a target area without the need for any special infrastructure. Due to mobility, the routing process in MWSN has become more complicated as connections in the network can...... such as Average Energy consumption, Control Overhead, Reaction Time, LQI, and HOP Count. The authors study the influence of energy heterogeneity and mobility of sensor nodes on the performance of EMRP. The Performance of EMRP compared with Simple Hybrid Routing Protocol (SHRP) and Dynamic Multi-Objective Routing...

  11. Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA

    Science.gov (United States)

    Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji

    2018-01-01

    A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.

  12. An Ultrasonic Wheel-Array Probe

    Science.gov (United States)

    Drinkwater, B. W.; Brotherhood, C. J.; Freemantle, R. J.

    2004-02-01

    This paper describes the development and modeling of an ultrasonic array wheel probe scanning system. The system operates at 10 MHz using a 64 element array transducer which is 50 mm in length and located in a fluid filled wheel. The wheel is coupled to the test structure dry, or with a small amount of liquid couplant. When the wheel is rolled over the surface of the test structure a defect map (C-Scan) is generated in real-time. The tyre is made from a soft, durable polymer which has very little acoustic loss. Two application studies are presented; the inspection of sealant layers in an aluminum aircraft wing structure and the detection of embedded defects in a thick section carbon composite sample.

  13. Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes.

    Science.gov (United States)

    Thompson, Zoe; Argueta, Donovan; Garland, Theodore; DiPatrizio, Nicholas

    2017-03-01

    The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA

  14. A multi-purpose brain-computer interface output device.

    Science.gov (United States)

    Thompson, David E; Huggins, Jane E

    2011-10-01

    While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as stand-alone communication and control systems, rather than as interfaces to existing systems built for these purposes. An individual communication and control system may be powerful or flexible, but no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCls could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e., without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems.

  15. A Multi-purpose Brain-Computer Interface Output Device

    Science.gov (United States)

    Thompson, David E; Huggins, Jane E

    2012-01-01

    While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as standalone communication and control systems, rather than as interfaces to existing systems built for these purposes. While an individual communication and control system may be powerful or flexible, no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCIs could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e. without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems. PMID:22208120

  16. 49 CFR 229.73 - Wheel sets.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wheel sets. 229.73 Section 229.73 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Suspension System § 229.73 Wheel sets. (a...) when applied or turned. (b) The maximum variation in the diameter between any two wheel sets in a three...

  17. NIOSH Mobile Emergency Medical Service (EMS) Work Environment Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NIOSH Mobile Emergency Medical Service (EMS) Work Environment Laboratory is a 2005 Wheeled Coach Type III ambulance mounted on a Ford E-450 cut-away van chassis....

  18. A multi-tiered architecture for content retrieval in mobile peer-to-peer networks.

    Science.gov (United States)

    2012-01-01

    In this paper, we address content retrieval in Mobile Peer-to-Peer (P2P) Networks. We design a multi-tiered architecture for content : retrieval, where at Tier 1, we design a protocol for content similarity governed by a parameter that trades accu...

  19. Full drive-by-wire dynamic control for four-wheel-steer all-wheel-drive vehicles

    Science.gov (United States)

    Fahimi, Farbod

    2013-03-01

    Most of the controllers introduced for four-wheel-steer (4WS) vehicles are derived with the assumption that the longitudinal speed of the vehicle is constant. However, in real applications, the longitudinal speed varies, and the longitudinal, lateral, and yaw dynamics are coupled. In this paper, the longitudinal dynamics of the vehicle as well as its lateral and yaw motions are controlled simultaneously. This way, the effect of driving/braking forces of the tires on the lateral and yaw motions of the vehicle are automatically included in the control laws. To address the dynamic parameter uncertainty of the vehicle, a chatter-free variable structure controller is introduced. Elimination of chatter is achieved by introducing a dynamically adaptive boundary layer thickness. It is shown via simulations that the proposed control approach performs more robustly than the controllers developed based on dynamic models, in which longitudinal speed is assumed to be constant, and only lateral speed and yaw rate are used as system states. Furthermore, this approach supports all-wheel-drive vehicles. Front-wheel-drive or rear-wheel-drive vehicles are also supported as special cases of an all-wheel-drive vehicle.

  20. Structural Analysis of a Vehicle Dynamics Model for Fault Detection and Isolation on the ROboMObil

    OpenAIRE

    Ho, Lok Man

    2013-01-01

    The ROboMObil, a mobility prototype under development at the DLR, differs from most current road vehicles with its high degree of overactuation with regards to the vehicle dynamics. This is due to the independent traction motor drives and steering actuators in each wheel, as well as one brake-by-wire actuator for each axle. Together with the large number of sensors, these provide opportunities for control and also lead to challenges for fault detection and isolation. In this study, the ROboMO...

  1. BEYOND THE WORK-LIFE BALANCE: FAMILY AND INTERNATIONAL MOBILITY OF THE HIGHLY SKILLED

    Directory of Open Access Journals (Sweden)

    Núria Vergés Bosch

    2013-10-01

    Full Text Available International mobility of the highly skilled has become one of the cornerstones of development in the current knowledge society. Correspondingly, highly skilled personnel are impelled to move abroad in order to improve their competences and build influential professional networks. Mobility implies some advantages involving personal, social and family opportunities when movers experience handicaps in their country of origin. For movers, mobility becomes a new challenge beyond the work-family balance, particularly for women who usually take on the lion’s share of childcare and domestic tasks within the family. The literature exploring the gender dimension in relation to international mobility points to complex outcomes. Firstly, women are taking on a more active role in international mobility processes, even when they have family. Secondly, family and international mobility are interrelated both for men and for women, although family could become a hindrance, particularly for women. Thirdly, international mobility and women’s career development may interfere with family formation or modify traditional family values. Finally, families moving abroad constitute a challenge for public policy, since they present a new area of problems. We aim to analyse the relationship between international mobility and family based on in-depth interviews from a purposive sample of highly skilled personnel in science and technology. The results of our research suggest that international mobility of the highly skilled has effects on the family and vice versa; however, while international mobility and family are compatible, measures and policies to reconcile them are still insufficient.

  2. Technological process of a multi-purpose radwaste incineration system

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Qiu Mingcai; Yang Liguo; Li Xiaohai; Zhang Xiaobin; Lu Xiaowu; Dong Jingling; Wang Xujin; Li Chuanlian; Yang Baomin

    2002-01-01

    The author introduces the technological process of a multi-purpose radwaste incineration system. It is composed of three parts: pretreatment, incinerating and clean up of off-gas. The waste that may be treated include combustible solid waste, spent resins and oils. Technological routes of the system is pyrolysis incinerating for solid waste, spray incinerating for spent oils, combination of dry-dust removing and wet adsorption for cleaning up off-gas

  3. Drowsy Driver Detection via Steering Wheel

    Directory of Open Access Journals (Sweden)

    Herlina ABDUL RAHIM

    2010-09-01

    Full Text Available The main purpose of this project is to produce a safety system especially for fatigue car driver so as to prevent from accidents. The statistic on road fatality shows that human error constitute of 64.84 % road accidents fatality and 17.4 % due to technical factors. These systems encompassed the approach of hand pressure applied on the steering wheel. The steering will be installed with pressure sensors. At the same time these sensors can be used to measure gripping force while driving.

  4. Reduced metabolic disease risk profile by voluntary wheel running accompanying juvenile Western diet in rats bred for high and low voluntary exercise.

    Science.gov (United States)

    Ruegsegger, Gregory N; Toedebusch, Ryan G; Braselton, Joshua F; Roberts, Christian K; Booth, Frank W

    2015-12-01

    Metabolic disease risk is influenced by genetics and modifiable factors, such as physical activity and diet. Beginning at 6 weeks of age, rats selectively bred for high (HVR) versus low voluntary running distance (LVR) behaviors were housed in a complex design with or without voluntary running wheels being fed either a standard or Western (WD, 42% kcal from fat and added sucrose) diet for 8 weeks. Upon intervention completion, percent body fat, leptin, insulin, and mediobasal hypothalamic mRNAs related to appetite control were assessed. Wheel access led to differences in body weight, food intake, and serum leptin and insulin. Intriguingly, percent body fat, leptin, and insulin did not differ between HVR and LVR lines in response to the two levels of voluntary running, regardless of diet, after the 8 wk. experiment despite HVR eating more calories than LVR regardless of diet and voluntarily running 5-7 times further in wheels than LVR. In response to WD, we observed increases in Cart and Lepr mediobasal hypothalamic mRNA in HVR, but no differences in LVR. Npy mRNA was intrinsically greater in LVR than HVR, while wheel access led to greater Pomc and Cart mRNA in LVR versus HVR. These data suggest that despite greater consumption of WD, HVR animals respond similarly to WD as LVR as a result, in part, of their increased wheel running behavior. Furthermore, high physical activity in HVR may offset the deleterious effects of a WD on adiposity despite greater energy intake in this group. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Heat Flow Characteristics of a Newly-Designed Cooling System with Multi-Fans and Thermal Baffle in the Wheel Loader

    Directory of Open Access Journals (Sweden)

    Yidai Liao

    2017-03-01

    Full Text Available In the traditional cooling case, there is usually one fan in charge of heat transfer and airflow for all radiators. However, this seems to be inappropriate, or even insufficient, for modern construction machinery, as its overall heat flow density is increasing but thermal distribution is becoming uneven. In order to ensure that the machine works in a better condition, this paper employs a new cooling system with multiple fans and an independent cooling region. Based on the thermal flow and performance requirements, seven fans are divided into three groups. The independent cooling region is segregated from the engine region by a thermal baffle to avoid heat flowing into the engine region and inducing an overheat phenomenon. The experiment validates the efficiency of the new cooling system and accuracy of simulation. After validation, the simulation then analyzes heat transfer and flow characteristics of the cooling system, changing with different cross-sections in different axis directions, as well as different distances of the fan central axes. Finally, thermal baffles are set among the fan groups and provided a better cooling effect. The research realizes a multi-fan scheme with an independent cooling region in a wheel loader, which is a new, but high-efficiency, cooling system and will lead to a new change of various configurations and project designs in future construction machinery.

  6. Back up core designs for the experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Aochi, Tetsuo; Yasuno, Takehiko; Miyamoto, Yoshiaki; Shindo, Ryuichi; Ikushima, Takeshi

    1979-02-01

    For the Experimental Multi-Purpose Very High Temperature Reactor (thermal power 50 MW and reactor outlet helium temperature 1000 0 C), design studies have been made of two backup cores loaded with new-type fuel elements. The purpose is to improve core operational characteristics, especially in thermohydraulics, of the reference design core consisting of pin-in-block type fuel elements having externally cooled hollow fuel rods. In this report are described the design principles and the analyses made of nuclear, thermal and hydraulic, fuel, and safety performances to determine the backup fuel and core design parameters. The first backup core (SP fuel core) is composed of fuel elements with internally cooled fuel rods (semi-pin), 36 rods in each standard element and 18 rods in each control element. The second backup core (MH fuel core) is composed of multihole fuel elements. 102 fuel and 54 coolant holes in each standard element and 30 fuel and 18 coolant holes in each control element. Either of the cores has 73 fuel columns 4 m high; the arrangement of active core and reactor internal structures is the same as that in the reference design. The backup cores meet nearly all design requirements of the VHTR, permitting the rated power operation with coolant Reynolds number of over 10,000 in the SP core and over 6,000 in the MH core. (author)

  7. SU-E-J-47: Development of a High-Precision, Image-Guided Radiotherapy, Multi- Purpose Radiation Isocenter Quality-Assurance Calibration and Checking System

    International Nuclear Information System (INIS)

    Liu, C; Yan, G; Helmig, R; Lebron, S; Kahler, D

    2014-01-01

    Purpose: To develop a system that can define the radiation isocenter and correlate this information with couch coordinates, laser alignment, optical distance indicator (ODI) settings, optical tracking system (OTS) calibrations, and mechanical isocenter walkout. Methods: Our team developed a multi-adapter, multi-purpose quality assurance (QA) and calibration device that uses an electronic portal imaging device (EPID) and in-house image-processing software to define the radiation isocenter, thereby allowing linear accelerator (Linac) components to be verified and calibrated. Motivated by the concept that each Linac component related to patient setup for image-guided radiotherapy based on cone-beam CT should be calibrated with respect to the radiation isocenter, we designed multiple concentric adapters of various materials and shapes to meet the needs of MV and KV radiation isocenter definition, laser alignment, and OTS calibration. The phantom's ability to accurately define the radiation isocenter was validated on 4 Elekta Linacs using a commercial ball bearing (BB) phantom as a reference. Radiation isocenter walkout and the accuracy of couch coordinates, ODI, and OTS were then quantified with the device. Results: The device was able to define the radiation isocenter within 0.3 mm. Radiation isocenter walkout was within ±1 mm at 4 cardinal angles. By switching adapters, we identified that the accuracy of the couch position digital readout, ODI, OTS, and mechanical isocenter walkout was within sub-mm. Conclusion: This multi-adapter, multi-purpose isocenter phantom can be used to accurately define the radiation isocenter and represents a potential paradigm shift in Linac QA. Moreover, multiple concentric adapters allowed for sub-mm accuracy for the other relevant components. This intuitive and user-friendly design is currently patent pending

  8. A Multi-purpose Rescue Vehicle and a human–robot interface architecture for remote assistance in ITER

    International Nuclear Information System (INIS)

    Soares, João; Vale, Alberto; Ventura, Rodrigo

    2015-01-01

    Highlights: • Design of an omnidirectional vehicle equipped with cameras and laser range finders. • Two robotic manipulators that slide over the vehicle's body to perform independent tasks. • Architecture to connect the control system, communication, power, navigation and HMI. • An immersive interface HMI with augmented reality features with head mounted display. - Abstract: The remote handling (RH) plays an important role in nuclear test facilities, such as in ITER, for in-vessel and ex-vessel maintenance operations. Unexpected situations may occur when RH devices fail. Since no human being is allowed during the RH operations, a Multi-purpose Rescue Vehicle (MPRV) must be required for providing support in site. This paper proposes a design of a MPRV, i.e., a mobile platform equipped with different sensors and two manipulators with different sets of end-effectors. A human–machine interface is also proposed to remotely operate the MPRV and to carry out rescue and recovery operations.

  9. A Multi-purpose Rescue Vehicle and a human–robot interface architecture for remote assistance in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Soares, João [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Vale, Alberto, E-mail: avale@ipfn.tecnico.ulisboa.pt [Instituto de Plasmas e Fusão Nuclear, Instituto SuperiorTécnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ventura, Rodrigo, E-mail: rodrigo.ventura@isr.tecnico.ulisboa.pt [Laboratório de Robótica e Sistemas em Engenharia eCiência, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Design of an omnidirectional vehicle equipped with cameras and laser range finders. • Two robotic manipulators that slide over the vehicle's body to perform independent tasks. • Architecture to connect the control system, communication, power, navigation and HMI. • An immersive interface HMI with augmented reality features with head mounted display. - Abstract: The remote handling (RH) plays an important role in nuclear test facilities, such as in ITER, for in-vessel and ex-vessel maintenance operations. Unexpected situations may occur when RH devices fail. Since no human being is allowed during the RH operations, a Multi-purpose Rescue Vehicle (MPRV) must be required for providing support in site. This paper proposes a design of a MPRV, i.e., a mobile platform equipped with different sensors and two manipulators with different sets of end-effectors. A human–machine interface is also proposed to remotely operate the MPRV and to carry out rescue and recovery operations.

  10. The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    Science.gov (United States)

    Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James; hide

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for

  11. Fundamental conceptual design of the experimental multi-purpose high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shimokawa, Junichi; Yasuno, Takehiko; Yasukawa, Shigeru; Mitake, Susumu; Miyamoto, Yoshiaki

    1975-06-01

    The fundamental conceptual design of the experimental multi-purpose very high-temperature gas-cooled reactor (experimental VHTR of thermal output 50 MW with reactor outlet-gas temperature 1,000 0 C) has been carried out to provide the operation modes of the system consisting of the reactor and the heat-utilization system, including characteristics and performance of the components and safety of the plant system. For the heat-utilization system of the plant, heat distribution, temperature condition, cooling system constitution, and the containment facility are specified. For the operation of plant, testing capability of the reactor and controlability of the system are taken into consideration. Detail design is made of the fuel element, reactor core, reactivity control and pressure vessel, and also the heat exchanger, steam reformer, steam generator, helium circulator, helium-gas turbine, and helium-gas purification, fuel handling, and engineered safety systems. Emphasis is placed on providing the increase of the reactor outlet-gas temperature. Fuel element design is directed to the prismatic graphite blocks of hexagonal cross-section accommodating the hollow or tubular fuel pins sheathed in graphite sleeve. The reactor core is composed of 73 fuel columns in 7 stages, concerning the reference design MK-II. Orificing is made in the upper portion of core; one orifice for every 7 fuel columns. Average core power density is 2.5 watts/cm 3 . Fuel temperature is kept below 1,300 0 C in rated power. The main components, i.e. pressure vessel, reformer, gas turbine and intermediate heat exchanger are designed in detail; the IHX is of a double-shell and helically-wound tube coils, the reformer is of a byonet tube type, and the turbine-compressor unit is of an axial flow type (turbine in 6 stages and compressor in 16 stages). (auth.)

  12. Fuzzy model for predicting the number of deformed wheels

    Directory of Open Access Journals (Sweden)

    Ž. Đorđević

    2015-10-01

    Full Text Available Deformation of the wheels damage cars and rails and affect on vehicle stability and safety. Repair and replacement cause high costs and lack of wagons. Planning of maintenance of wagons can not be done without estimates of the number of wheels that will be replaced due to wear and deformation in a given period of time. There are many influencing factors, the most important are: weather conditions, quality of materials, operating conditions, and distance between the two replacements. The fuzzy logic model uses the collected data as input variables to predict the output variable - number of deformed wheels for a certain type of vehicle in the defined period at a particular section of the railway.

  13. Service-oriented workflow to efficiently and automatically fulfill products in a highly individualized web and mobile environment

    Science.gov (United States)

    Qiao, Mu

    2015-03-01

    Service Oriented Architecture1 (SOA) is widely used in building flexible and scalable web sites and services. In most of the web or mobile photo book and gifting business space, the products ordered are highly variable without a standard template that one can substitute texts or images from similar to that of commercial variable data printing. In this paper, the author describes a SOA workflow in a multi-sites, multi-product lines fulfillment system where three major challenges are addressed: utilization of hardware and equipment, highly automation with fault recovery, and highly scalable and flexible with order volume fluctuation.

  14. An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery.

    Science.gov (United States)

    Liu, H; Puangmali, P; Zbyszewski, D; Elhage, O; Dasgupta, P; Dai, J S; Seneviratne, L; Althoefer, K

    2010-01-01

    This paper presents a novel wheeled probe for the purpose of aiding a surgeon in soft tissue abnormality identification during minimally invasive surgery (MIS), compensating the loss of haptic feedback commonly associated with MIS. Initially, a prototype for validating the concept was developed. The wheeled probe consists of an indentation depth sensor employing an optic fibre sensing scheme and a force/torque sensor. The two sensors work in unison, allowing the wheeled probe to measure the tool-tissue interaction force and the rolling indentation depth concurrently. The indentation depth sensor was developed and initially tested on a homogenous silicone phantom representing a good model for a soft tissue organ; the results show that the sensor can accurately measure the indentation depths occurring while performing rolling indentation, and has good repeatability. To validate the ability of the wheeled probe to identify abnormalities located in the tissue, the device was tested on a silicone phantom containing embedded hard nodules. The experimental data demonstrate that recording the tissue reaction force as well as rolling indentation depth signals during rolling indentation, the wheeled probe can rapidly identify the distribution of tissue stiffness and cause the embedded hard nodules to be accurately located.

  15. Seismic analysis of ITER multi-purpose deployer

    International Nuclear Information System (INIS)

    Manuelraj, Manoah Stephen; Gotewal, Krishan Kumar; Dutta, Pramit; Rastogi, Naveen; Choi, Chang-Hwan; Tesini, Alessandro

    2015-01-01

    The Multi-Purpose Deployer (MPD) is a general purpose ITER in-vessel remote handling (RH) system. The MPD will perform various in-vessel maintenance tasks such as dust and tritium inventory control, in-service inspection, leak localization and in-vessel diagnostics maintenance. The main handling equipment, called as the MPD Transporter, consists of a series of linked bodies, which provide anchoring to the vacuum vessel port and an articulated multi-degree of freedom motion to perform the aforementioned tasks. The target payload for the MPD Transporter is 2 tons. The total length is 16.6 m and 18.1 m for short and long configuration respectively, while the total weight of the system is about 25.5 tons including the payload. During the in-vessel operations, the structural integrity of the system should be guaranteed against various operational and seismic loads. This paper presents the seismic structural analysis results of the concept design of the MPD Transporter. Static structural, modal and frequency response spectrum analyses have been performed to verify the structural integrity of the MPD itself, and to provide reaction loads to the interfacing systems such as vacuum vessel and cask. The analyses are carried out by using the ANSYS. The first analysis iteration was carried out for the reference design of the MPD Transporter, which showed stresses higher than the permissible limit. Structural optimizations and reinforcements were performed for individual bodies referring the stress levels in each body, and a reinforced design was proposed. The reinforced design satisfies the required structural criteria in terms of general global stresses. Though local stress concentrations were observed, it can be solved in the next design phase by further local reinforcements or proper material choice. (author)

  16. Hand on the wheel, mind on the mobile: an analysis of social factors contributing to texting while driving.

    Science.gov (United States)

    Seiler, Steven J

    2015-02-01

    In an era defined by social technology, mobile phones provide constant connection to others. However, they also present a very dangerous situation when people choose to use their mobile phones while driving. In particular, exchanging text messages while driving has resulted in numerous accidents and fatalities. The purpose of this study is to examine social factors that lead people to text while driving. Specifically, using a multivariate logistic regression analysis of data from a 2010 survey by the Pew Research Center, variables for general mobile talk, driving while talking on a mobile, using the Internet on a mobile, sexting, and various motivations for texting were examined to determine factors that increase the likelihood of texting while driving. The findings suggest that people engage in mobile multiplexing (i.e., communication using two or more media on the mobile) while driving. Additionally, exchanging text messages in public, and consequently texting while driving, has become normalized. Furthermore, people are socialized into such behaviors through observing others texting while driving and using a mobile recklessly while driving. Finally, a number of motivations for texting were found to increase the likelihood of texting while driving significantly. Ultimately, the author contends that texting while driving has become a cultural artifact in the United States, which conflicts with driver safety as well as laws prohibiting texting while driving. The findings of this study could inform future awareness campaigns and technology developers to help establish a safer driving environment within the multitasking culture.

  17. The Effect of First-Order Bending Resonance of Wheelset at High Speed on Wheel-Rail Contact Behavior

    Directory of Open Access Journals (Sweden)

    Shuoqiao Zhong

    2013-01-01

    Full Text Available The first-order bending deformation of wheelset is considered in the modeling vehicle/track coupling dynamic system to investigate its effect on wheel/rail contact behavior. In considering the effect of the first-order bending resonance on the rolling contact of wheel/rail, a new wheel/rail contact model is derived in detail in the modeling vehicle/track coupling dynamic system, in which the many intermediate coordinate systems and complex coordinate system transformations are used. The bending mode shape and its corresponding frequency of the wheelset are obtained through the modal analysis by using commercial software ANSYS. The modal superposition method is used to solve the differential equations of wheelset motion considering its flexible deformation due to the first-order bending resonance. In order to verify the present model and clarify the influence of the first-order bending deformation of wheelset on wheel/track contact behavior, a harmonic track irregularity with a fixed wavelength and a white-noise roughness are, respectively used as the excitations in the two models of vehicle-rail coupling dynamic system, one considers the effect of wheelset bending deformation, and the other does not. The numerical results indicate that the wheelset first-order bending deformation has an influence on wheel/rail rolling contact behavior and is easily excited under wheel/rail roughness excitation.

  18. The Mobile Phone Affinity Scale: Enhancement and Refinement

    Science.gov (United States)

    Rosen, Rochelle K

    2016-01-01

    Background Existing instruments that assess individuals’ relationships with mobile phones tend to focus on negative constructs such as addiction or dependence, and appear to assume that high mobile phone use reflects pathology. Mobile phones can be beneficial for health behavior change, disease management, work productivity, and social connections, so there is a need for an instrument that provides a more balanced assessment of the various aspects of individuals’ relationships with mobile phones. Objective The purpose of this research was to develop, revise, and validate the Mobile Phone Affinity Scale, a multi-scale instrument designed to assess key factors associated with mobile phone use. Methods Participants (N=1058, mean age 33) were recruited from Amazon Mechanical Turk between March and April of 2016 to complete a survey that assessed participants’ mobile phone attitudes and use, anxious and depressive symptoms, and resilience. Results Confirmatory factor analysis supported a 6-factor model. The final measure consisted of 24 items, with 4 items on each of 6 factors: Connectedness, Productivity, Empowerment, Anxious Attachment, Addiction, and Continuous Use. The subscales demonstrated strong internal consistency (Cronbach alpha range=0.76-0.88, mean 0.83), and high item factor loadings (range=0.57-0.87, mean 0.75). Tests for validity further demonstrated support for the individual subscales. Conclusions Mobile phone affinity may have an important impact in the development and effectiveness of mobile health interventions, and continued research is needed to assess its predictive ability in health behavior change interventions delivered via mobile phones. PMID:27979792

  19. Highly passable propulsive device for UGVs on rugged terrain

    Directory of Open Access Journals (Sweden)

    Gradetsky Valery

    2018-01-01

    Full Text Available One of the priority functional tasks of both industrial and mobile robotics is to perform operations for moving payloads in space. Typically, researchers pay attention to control the movement of the robot on different soils. It is necessary to underline the specificity of the movements of mobile robots, the main functional purpose of which is the movement of different objects. Unlike other robot applications there is the fact that transported cargo may have different mass-dimensional characteristics. The payload should be comparable to the mass of the mobile robot. This article addresses the issue of passability on rough terrain for a mobile robot performing the transport task and proposed a technical solution in the field of mechanics of propulsion to improve propelling of the traction wheel of the mobile robot with the ground.

  20. Development of a multi-purpose logic module with the FPGA

    International Nuclear Information System (INIS)

    Nanbu, K.; Ishikawa, T.; Shimizu, H.

    2008-01-01

    We have developed a multi-purpose logic module (MPLM) with an FPGA. The internal circuit of this module can be modified easily with the FPGA. This kind of module enables trigger pulse processing for nuclear science. As a first step, the MPLM is used as an event tag generator in experiments with the FOREST detector system. (author)

  1. Magic Mountains and multi-disciplines in international medical mobilities Comment on "Patient mobility in the global marketplace: a multidisciplinary perspective".

    Science.gov (United States)

    Mainil, Tomas; Meulemans, Herman

    2014-06-01

    Medical mobilities offer both opportunities and challenges. This tension follows the same ratio as many other historic fora, but offers at the same time a sustainable equilibrium. Multi-disciplines are, therefore, the key to the medical lifeworld for the global health and well-being of transnational health users around the globe.

  2. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K., E-mail: paul.hurley@tyndall.ie [Tyndall National Institute, University College Cork, Dyke Parade, Cork (Ireland)

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  3. Multi-purpose reactor

    International Nuclear Information System (INIS)

    1991-05-01

    The Multi-Purpose-Reactor (MPR), is a pool-type reactor with an open water surface and variable core arrangement. Its main feature is plant safety and reliability. Its power is 22MW t h, cooled by light water and moderated by beryllium. It has platetype fuel elements (MTR type, approx. 20%. enriched uranium) clad in aluminium. Its cobalt (Co 60 ) production capacity is 50000 Ci/yr, 200 Ci/gr. The distribution of the reactor core and associated control and safety systems is essentially based on the following design criteria: - upwards cooling flow, to waive the need for cooling flow inversion in case the reactor is cooled by natural convection if confronted with a loss of pumping power, and in order to establish a superior heat transfer potential (a higher coolant saturation temperature); - easy access to the reactor core from top of pool level with the reactor operating at full power, in order to facilitate actual implementation of experiments. Consequently, mechanisms associated to control and safety rods s,re located underneath the reactor tank; - free access of reactor personnel to top of pool level with the reactor operating at full power. This aids in the training of personnel and the actual carrying out of experiments, hence: - a vast water column was placed over the core to act as radiation shielding; - the core's external area is cooled by a downwards flow which leads to a decay tank beyond the pool (for N 16 to decay); - a small downwards flow was directed to stream downwards from above the reactor core in order to drag along any possibly active element; and - a stagnant hot layer system was placed at top of pool level so as to minimize the upwards coolant flow rising towards pool level

  4. Maintaining excellence: planning a new multi-purpose research reactor for Canada

    International Nuclear Information System (INIS)

    Whitlock, J.

    2011-01-01

    This paper outlines the need for a multi-purpose research reactor for Canada. The main objective of this paper is to stimulate a discussion and increase the profile for the need to develop a national strategy to meet the long term research reactor needs.

  5. Design and implementation of a personal mobility of single spherical drive

    International Nuclear Information System (INIS)

    Hoshino, Tasuku; Yazawa, Miki; Naganuma, Ryota; Takada, Kotaro

    2016-01-01

    This paper deals with a personal electric vehicle driven by a single spherical wheel. Using an appropriate feedback control, this driving strategy realizes dynamic stability in all directions and the vehicle can always be kept upright on the road surface of variety of slopes. It also enables immediate mobility to all directions, unlike personal vehicles of two- wheel type. The spherical wheel is driven by omnidirectional wheels as usual; however, since the number and location of wheels have huge effect on the driving performance, the authors firstly analyze kinematics of omnidirectional wheels and sphere and derive new configuration to achieve maximum power. Based on the kinematic analysis, the equation of motion of the vehicle is derived via Lagrangian formulation. The full dynamic model including kinematic constraints is then derived. Using the full model, a stabilizing controller for driving is designed based on partial feedback linearization technique. The vehicle is constructed and tested with a human driver. The proposed configuration of omnidirectional wheels, the controller design model and the control scheme are examined in practice. Results of the experiments, including going over uphill road and uneven ground, show much better driving performance than authors’ previous prototype of the similar. (paper)

  6. Cross-stream ejection in the inter-wheel region of aircraft landing gears

    Science.gov (United States)

    McCarthy, Philip; Ekmekci, Alis

    2014-11-01

    The reduction of aircraft noise is an important challenge currently faced by aircraft manufacturers. During approach and landing, the landing gears contribute a significant proportion of the aircraft generated noise. It is therefore critical that the key noise sources be identified and understood in order for effective mitigation methods to be developed. For a simplified two-wheel nose landing gear, a strong cross stream flow ejection phenomena has been observed to occur in the inter-wheel region in presence of wheel wells. The location and orientation of these flow ejections causes highly unsteady, three dimensional flow between the wheels that may impinge on other landing gear components, thereby potentially acting as a significant noise generator. The effects of changing the inter-wheel geometry (inter-wheel spacing, the wheel well depth and main strut geometry) upon the cross-stream ejection behaviour has been experimentally investigated using both qualitative flow visualisation and quantitative PIV techniques. A summary of the key results will be presented for the three main geometrical parameters under examination and the application of these findings to real life landing gears will be discussed. Thanks to Messier-Bugatti-Dowty and NSERC for their support for this project.

  7. Guidelines for the structural design of experimental multi-purpose VHTR at the elevated temperature services

    International Nuclear Information System (INIS)

    Nomura, Sueo; Uga, Takeo; Miyamoto, Yoshiaki; Muto, Yasushi; Ikushima, Takeshi

    1976-02-01

    The guidelines are presented for structural design of the experimental multi-purpose VHTR(Very High Temperature Reactor) at the elevated temperature services. Covered are features of the VHTR structural design, specifications, safety design, seismic design, failure modes to be considered, stress criteria for various load combinations and the mechanical properties of the materials. The guidelines were prepared by referring to safety criteria of high-temperature gas cooled reactors, ASME Boiler and Pressure Vessel code, Section III, case 1592 and the domestic seismic design guide of nuclear power facilities. (auth.)

  8. TECHNO-ECONOMIC ASSESSMENT OF THE USE OF WHEELS OF PERSPECTIVE STRUCTURAL SCHEME FOR RAILWAY VEHICLES

    Directory of Open Access Journals (Sweden)

    S. A. Semenov

    2016-12-01

    Full Text Available Purpose. The article is aimed to the definition of technical and economic efficiency from the use of wheels of perspective structural scheme in the undercarriage of the rail vehicles (wagon. Methodology. The use efficiency of wheels of promising design scheme by reducing the motion resistance and wear of the wheel flanges is estimated by calculated values of estimated annual economic effect of implementation and payback period of the costs required for the development and implementation of the proposed wheel. Non-recurring costs include the cost associated with conducting research and development work, as well as the additional costs required for the manufacture of wheels of promising design scheme. Findings. In the course of computation and analysis of the economic efficiency from introductions of wheels of promising design concept, carried out on the basis of the initial data for the South-West railway, it was determined the profit which can be obtained by reducing the following operating costs: cost of returning the wheel flange on wheel sets; cost of fuel and energy resources for train traction; the value of the idle of cars in the current uncoupling repair; cost of repairs and current maintenance of rail track. In addition, it can be additionally released a number of cars by reducing their downtime. The calculation of net discounted income is carried out with the following assumptions: calculation period; estimated increase in the cost of wheel sets with wheels of promising constructive scheme compared to the model, the values of net profit for the accounting period, which was calculated by calculating the average value minus the cost of research, development and manufacturing of wheelset park with wheels of new design scheme. For a given billing period, the calculated value of the net discounted income was obtained and the payback period of the project was determined. Originality. The approaches to the perfection of design scheme of wheels

  9. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    Science.gov (United States)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.

    2009-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  10. A novel dual motor drive system for three wheel electric vehicles

    Science.gov (United States)

    Panmuang, Piyapat; Thongsan, Taweesak; Suwapaet, Nuchida; Laohavanich, Juckamass; Photong, Chonlatee

    2018-03-01

    This paper presents a novel dual motor drive system used for three wheel electric vehicles that have one free wheel at the front and two wheels with a drive system at the end of the vehicles. A novel dual motor drive system consists of two identical DC motors that are independently controlled by its speed-torque controller. Under light load conditions, only one of the DC motors will operate around it rated whilst under hard load conditions both of the DC motors will operate. With this drive system, the motors will operate only at its high performance at rated or else no operate to retain longer lifetime. The simulated results for the Skylab three wheel electric vehicle prototype with 8kW at full load (high torque, low speed) and around 4kW at light/normal operating loads (regular speed-torque) showed that the proposed system provides better dynamic responses with faster overshoot current/voltage recovery time, has lower investment costs, has longer lifetime of the motors and allows the motors to always operate at their high performance and thus achieve more cost effective system compared to a single motor drive system with 8kW DC motors.

  11. Nonlinear dynamics modeling and simulation of two-wheeled self-balancing vehicle

    Directory of Open Access Journals (Sweden)

    Yunping Liu

    2016-11-01

    Full Text Available Two-wheeled self-balancing vehicle system is a kind of naturally unstable underactuated system with high-rank unstable multivariable strongly coupling complicated dynamic nonlinear property. Nonlinear dynamics modeling and simulation, as a basis of two-wheeled self-balancing vehicle dynamics research, has the guiding effect for system design of the project demonstration and design phase. Dynamics model of the two-wheeled self-balancing vehicle is established by importing a TSi ProPac package to the Mathematica software (version 8.0, which analyzes the stability and calculates the Lyapunov exponents of the system. The relationship between external force and stability of the system is analyzed by the phase trajectory. Proportional–integral–derivative control is added to the system in order to improve the stability of the two-wheeled self-balancing vehicle. From the research, Lyapunov exponent can be used to research the stability of hyperchaos system. The stability of the two-wheeled self-balancing vehicle is better by inputting the proportional–integral–derivative control. The Lyapunov exponent and phase trajectory can help us analyze the stability of a system better and lay the foundation for the analysis and control of the two-wheeled self-balancing vehicle system.

  12. Design Optimization of Heat Wheels for Energy Recovery in HVAC Systems

    Directory of Open Access Journals (Sweden)

    Stefano De Antonellis

    2014-11-01

    Full Text Available Air to air heat exchangers play a crucial role in mechanical ventilation equipment, due to the potential primary energy savings both in case of refurbishment of existing buildings or in case of new ones. In particular, interest in heat wheels is increasing due to their low pressure drop and high effectiveness. In this paper a detailed optimization of design parameters of heat wheels is performed in order to maximize sensible effectiveness and to minimize pressure drop. The analysis is carried out through a one dimensional lumped parameters heat wheel model, which solves heat and mass transfer equations, and through appropriate correlations to estimate pressure drop. Simulation results have been compared with experimental data of a heat wheel tested in specific facilities, and good agreement is attained. The device optimization is performed through the variation of main design parameters, such as heat wheel length, channel base, height and thickness and for different operating conditions, namely the air face velocity and the revolution speed. It is shown that the best configurations are achieved with small channel thickness and, depending on the required sensible effectiveness, with appropriate values of wheel length and channel base and height.

  13. Why Animals Run on Legs, Not on Wheels.

    Science.gov (United States)

    Diamond, Jared

    1983-01-01

    Speculates why animals have not developed wheels in place of inefficient legs. One study cited suggests three reasons why animals are better off without wheels: wheels are efficient only on hard surfaces, limitation of wheeled motion due to vertical obstructions, and the problem of turning in spaces cluttered with obstacles. (JN)

  14. DESIGN OF BACKWARD SWEPT TURBINE WHEEL FOR CRYOGENIC TURBOEXPANDER

    Directory of Open Access Journals (Sweden)

    BALAJI K. CHOUDHURY

    2014-08-01

    Full Text Available With support from the Department of Atomic Energy, our institute has initiated a programme on development and study of a low capacity (20 liters/hr. turboexpander based Nitrogen liquefier. Hence a process design was carried out and a turboexpander was designed to meet the requirement of the liquefier. The turboexpander is used for lowering the temperature of the process gas (Nitrogen by the isenthalpic expansion. The efficiency of the turboexpander mainly depends on the specific speed and specific diameter of the turbine wheel. The paper explains a general methodology for the design of any type of turbine wheel (radial, backward swept and forward swept for any pressure ratio with different process gases. The design of turbine wheel includes the determination of dimensions, blade profile and velocity triangles at inlet and outlet of the turbine wheel. Generally radial turbine wheels are used but in this case to achieve the high efficiency at desired speed, backward curved blades are used to maintain the Mach number of the process gas at the nozzle exit, close to unity. If the velocity of fluid exceeds the speed of sound, the flow gets choked leading to the creation of shock waves and flow at the exit of the nozzle will be non-isentropic.

  15. Semi-autonomous exploration of multi-floor buildings with a legged robot

    Science.gov (United States)

    Wenger, Garrett J.; Johnson, Aaron M.; Taylor, Camillo J.; Koditschek, Daniel E.

    2015-05-01

    This paper presents preliminary results of a semi-autonomous building exploration behavior using the hexapedal robot RHex. Stairwells are used in virtually all multi-floor buildings, and so in order for a mobile robot to effectively explore, map, clear, monitor, or patrol such buildings it must be able to ascend and descend stairwells. However most conventional mobile robots based on a wheeled platform are unable to traverse stairwells, motivating use of the more mobile legged machine. This semi-autonomous behavior uses a human driver to provide steering input to the robot, as would be the case in, e.g., a tele-operated building exploration mission. The gait selection and transitions between the walking and stair climbing gaits are entirely autonomous. This implementation uses an RGBD camera for stair acquisition, which offers several advantages over a previously documented detector based on a laser range finder, including significantly reduced acquisition time. The sensor package used here also allows for considerable expansion of this behavior. For example, complete automation of the building exploration task driven by a mapping algorithm and higher level planner is presently under development.

  16. The Mobile Team of Parasitology-Mycology, a medical entity for educational purposes to serve sick patients.

    Science.gov (United States)

    Desoubeaux, G; Simon, E G; Perrotin, D; Chandenier, J

    2014-06-01

    The Mobile Team of Parasitology-Mycology is a movable entity of the Parasitology-Mycology laboratory of Tours University Hospital, France. In contrast to the usual prerogatives of biomedical laboratories, the Mobile Team of Parasitology-Mycology is requested to intervene directly at bedside in various clinical departments, or even outside the hospital facility. Although its actions are of course primarily devoted to specialized diagnostic and therapeutic purposes, the Mobile Team also plays an important educational role in the medical training of undergraduate or graduate students. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Behavioral Simulation and Performance Evaluation of Multi-Processor Architectures

    Directory of Open Access Journals (Sweden)

    Ausif Mahmood

    1996-01-01

    Full Text Available The development of multi-processor architectures requires extensive behavioral simulations to verify the correctness of design and to evaluate its performance. A high level language can provide maximum flexibility in this respect if the constructs for handling concurrent processes and a time mapping mechanism are added. This paper describes a novel technique for emulating hardware processes involved in a parallel architecture such that an object-oriented description of the design is maintained. The communication and synchronization between hardware processes is handled by splitting the processes into their equivalent subprograms at the entry points. The proper scheduling of these subprograms is coordinated by a timing wheel which provides a time mapping mechanism. Finally, a high level language pre-processor is proposed so that the timing wheel and the process emulation details can be made transparent to the user.

  18. CAMEX-4 MOBILE X-BAND POLARIMETRIC WEATHER RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobile X-band Polarimetric Weather Radar on Wheels (X-POW)is a Doppler scanning radar operating at 9.3 GHz.with horizontal and vertical polarization. Used for...

  19. High electron mobility InN

    International Nuclear Information System (INIS)

    Jones, R. E.; Li, S. X.; Haller, E. E.; van Genuchten, H. C. M.; Yu, K. M.; Ager, J. W. III; Liliental-Weber, Z.; Walukiewicz, W.; Lu, H.; Schaff, W. J.

    2007-01-01

    Irradiation of InN films with 2 MeV He + ions followed by thermal annealing below 500 deg. C creates films with high electron concentrations and mobilities, as well as strong photoluminescence. Calculations show that electron mobility in irradiated samples is limited by triply charged donor defects. Subsequent thermal annealing removes a fraction of the defects, decreasing the electron concentration. There is a large increase in electron mobility upon annealing; the mobilities approach those of the as-grown films, which have 10 to 100 times smaller electron concentrations. Spatial ordering of the triply charged defects is suggested to cause the unusual increase in electron mobility

  20. Reference core design Mark-III of the experimental multi-purpose, high-temperature, gas-cooled reactor

    International Nuclear Information System (INIS)

    Shindo, Ryuiti; Watanabe, Takashi; Ishiguro, Okikazu; Kuroki, Syuzi

    1977-10-01

    The reactivity control system is one of the important items in reactor design, but it is much restricted by structural design of fuel element and pressure vessel in the experimental multi-purpose, high-temperature reactor. Preceding the first conceptual design of the reactor, therefore, the reactivity control system composed of control rod, burnable poison and reserve shutdown system in Mark-II design was re-studied, and several improvements were indicated. (1) The diameter of control rods must be as large as possible because it is impossible to increase the number of control rods. (2) The accuracy in estimation of the reactivity to be compensated with control rods is important because of the mutual interference of pair control rods with the twin configuration in a fuel element. (3) The improvement of core performance in burnup is accompanied by the reduction of design margin for control rods. (4) Increase of the reactivity to be compensated with the burnable poison leads to increase of the core reactivity recovery with burnup, and the assertion of the decrease for recovery of reactivity leads to increase of the temperature dependency of reactivity compensated with control rods. (5) Reduction of reactivity to be compensated with control rods is thus limited by cancellation of the effects in the reactivity recovery and the reactivity temperature dependency. (6) The reserve shutdown system can be designed with margin under the condition of excluding the reactivity of burnup from that to be compensated. (auth.)

  1. Wheel set run profile renewing method effectiveness estimation

    OpenAIRE

    Somov, Dmitrij; Bazaras, Žilvinas; Žukauskaite, Orinta

    2010-01-01

    At all the repair enterprises, despite decreased rim wear-off resistance, after every grinding only geometry wheel profile parameters are renewed. Exploit wheel rim work edge decrease tendency is noticed what induces acquiring new wheels. This is related to considerable axle load and train speed increase and also because of wheel work edge repair method imperfection.

  2. 49 CFR 230.113 - Wheels and tire defects.

    Science.gov (United States)

    2010-10-01

    ... tires may not have a seam running lengthwise that is within 33/4 inches of the flange. (g) Worn flanges... 49 Transportation 4 2010-10-01 2010-10-01 false Wheels and tire defects. 230.113 Section 230.113... Tenders Wheels and Tires § 230.113 Wheels and tire defects. Steam locomotive and tender wheels or tires...

  3. Detection method based on Kalman filter for high speed rail defect AE signal on wheel-rail rolling rig

    Science.gov (United States)

    Hao, Qiushi; Shen, Yi; Wang, Yan; Zhang, Xin

    2018-01-01

    Nondestructive test (NDT) of rails has been carried out intermittently in traditional approaches, which highly restricts the detection efficiency under rapid development of high speed railway nowadays. It is necessary to put forward a dynamic rail defect detection method for rail health monitoring. Acoustic emission (AE) as a practical real-time detection technology takes advantage of dynamic AE signal emitted from plastic deformation of material. Detection capacities of AE on rail defects have been verified due to its sensitivity and dynamic merits. Whereas the application under normal train service circumstance has been impeded by synchronous background noises, which are directly linked to the wheel speed. In this paper, surveys on a wheel-rail rolling rig are performed to investigate defect AE signals with varying speed. A dynamic denoising method based on Kalman filter is proposed and its detection effectiveness and flexibility are demonstrated by theory and computational results. Moreover, after comparative analysis of modelling precision at different speeds, it is predicted that the method is also applicable for high speed condition beyond experiments.

  4. A new solution method for wheel/rail rolling contact.

    Science.gov (United States)

    Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei

    2016-01-01

    To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.

  5. Seasonal Patterns of Community Participation and Mobility of Wheelchair Users Over an Entire Year.

    Science.gov (United States)

    Borisoff, Jaimie F; Ripat, Jacquie; Chan, Franco

    2018-03-23

    To describe how people who use wheelchairs participate and move at home and in the community over an entire yearlong period, including during times of inclement weather conditions. Longitudinal mixed-methods research study. Urban community in Canada. People who use a wheelchair for home and community mobility (N=11). Not applicable. Use of a global positioning system (GPS) tracker for movement in community (number of trips per day), use of accelerometer for bouts of wheeling mobility (number of bouts per day, speed, distance, and duration), prompted recall interviews to identify supports and barriers to mobility and participation. More trips per day were taken during the summer (P= .03) and on days with no snow and temperatures above 0°C. Participants reliant on public transportation demonstrated more weather-specific changes in their trip patterns. The number of daily bouts of mobility remained similar across seasons; total daily distance wheeled, duration, and speed were higher on summer days, days with no snow, and days with temperatures above 0°C. A higher proportion of outdoor wheeling bouts occurred in summer (P=.02) and with temperatures above 0°C (P=.03). Inaccessible public environments were the primary barrier to community mobility and participation; access to social supports and private transportation were the primary supports. Objective support is provided for the influence of various seasonal weather conditions on community mobility and participation for people who use a wheelchair. Longitudinal data collection provided a detailed understanding of the patterns of, and influences on, wheelchair mobility and participation within wheelchair users' own homes and communities. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Optimization of wheel-rail interface friction using top-of-rail friction modifiers: State of the art

    Science.gov (United States)

    Khan, M. Roshan; Dasaka, Satyanarayana Murty

    2018-05-01

    High Speed Railways and Dedicated Freight Corridors are the need of the day for fast and efficient transportation of the ever growing population and freight across long distances of travel. With the increase in speeds and axle loads carried by these trains, wearing out of rails and train wheel sections are a common issue, which is due to the increase in friction at the wheel-rail interfaces. For the cases where the wheel-rail interface friction is less than optimum, as in case of high speed trains with very low axle loads, wheel-slips are imminent and loss of traction occurs when the trains accelerate rapidly or brake all of a sudden. These vast variety of traction problems around the wheel-rail interface friction need to be mitigated carefully, so that the contact interface friction neither ascents too high to cause material wear and need for added locomotive power, nor be on the lower side to cause wheel-slips and loss of traction at high speeds. Top-of-rail friction modifiers are engineered surface coatings applied on top of rails, to maintain an optimum frictional contact between the train wheels and the rails. Extensive research works in the area of wheel-rail tribology have revealed that the optimum frictional coefficients at wheel-rail interfaces lie at a value of around 0.35. Application of top-of-rail (TOR) friction modifiers on rail surfaces add an extra layer of material coating on top of the rails, with a surface frictional coefficient of the desired range. This study reviews the common types of rail friction modifiers, the methods for their application, issues related with the application of friction modifiers, and a guideline on selection of the right class of coating material based on site specific requirements of the railway networks.

  7. Control of an automated mobile manipulator using artificial immune system

    Science.gov (United States)

    Deepak, B. B. V. L.; Parhi, Dayal R.

    2016-03-01

    This paper addresses the coordination and control of a wheeled mobile manipulator (WMM) using artificial immune system. The aim of the developed methodology is to navigate the system autonomously and transport jobs and tools in manufacturing environments. This study integrates the kinematic structures of a four-axis manipulator and a differential wheeled mobile platform. The motion of the developed WMM is controlled by the complete system of parametric equation in terms of joint velocities and makes the robot to follow desired trajectories by the manipulator and platform within its workspace. The developed robot system performs its action intelligently according to the sensed environmental criteria within its search space. To verify the effectiveness of the proposed immune-based motion planner for WMM, simulations as well as experimental results are presented in various unknown environments.

  8. Mobile Multi-System Overview

    Science.gov (United States)

    Witoff, Robert J.; Doody, David F.

    2012-01-01

    At the time of this reporting, there are 2,589 rich mobile devices used at JPL, including 1,550 iPhones and 968 Blackberrys. Considering a total JPL population of 5,961 employees, mobile applications have a total addressable market of 43 percent of the employees at JPL, and that number is rising. While it was found that no existing desktop tools can realistically be replaced by a mobile application, there is certainly a need to improve access to these desktop tools. When an alarm occurs and an engineer is away from his desk, a convenient means of accessing relevant data can save an engineer a great deal of time and improve his job efficiency. To identify which data is relevant, an engineer benefits from a succinct overview of the data housed in 13+ tools. This need can be well met by a single, rich, mobile application that provides access to desired data across tools in the ops infrastructure.

  9. Voluntary Wheel Running in Mice.

    Science.gov (United States)

    Goh, Jorming; Ladiges, Warren

    2015-12-02

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. Copyright © 2015 John Wiley & Sons, Inc.

  10. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.

    Science.gov (United States)

    Tsai, Chung-Ying; Lin, Chien-Ju; Huang, Yueh-Chu; Lin, Po-Chou; Su, Fong-Chin

    2012-11-22

    The rear-wheel camber, defined as the inclination of the rear wheels, is usually used in wheelchair sports, but it is becoming increasingly employed in daily propulsion. Although the rear-wheel camber can increase stability, it alters physiological performance during propulsion. The purpose of the study is to investigate the effects of rear-wheel cambers on temporal-spatial parameters, joint angles, and propulsion patterns. Twelve inexperienced subjects (22.3±1.6 yr) participated in the study. None had musculoskeletal disorders in their upper extremities. An eight-camera motion capture system was used to collect the three-dimensional trajectory data of markers attached to the wheelchair-user system during propulsion. All participants propelled the same wheelchair, which had an instrumented wheel with cambers of 0°, 9°, and 15°, respectively, at an average velocity of 1 m/s. The results show that the rear-wheel camber significantly affects the average acceleration, maximum end angle, trunk movement, elbow joint movement, wrist joint movement, and propulsion pattern. The effects are especially significant between 0° and 15°. For a 15° camber, the average acceleration and joint peak angles significantly increased (p propulsion patterns and joint range of motion. When choosing a wheelchair with camber adjustment, the increase of joint movements and the base of support should be taken into consideration.

  11. 29 CFR 1910.215 - Abrasive wheel machinery.

    Science.gov (United States)

    2010-07-01

    ... be securely fastened to the spindle and the bearing surface shall run true. When more than one wheel... 29 Labor 5 2010-07-01 2010-07-01 false Abrasive wheel machinery. 1910.215 Section 1910.215 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery. (a...

  12. Simulation modeling of wheeled vehicle dynamics on the stand "Roller"

    Directory of Open Access Journals (Sweden)

    G. O. Kotiev

    2014-01-01

    Full Text Available The tests are an integral part of the wheeled vehicle design, manufacturing, and operation. The need for their conducting arises from the research and experimental activities to assess the qualitative and quantitative characteristics of the vehicles in general, as well as the individual components and assemblies. It is obvious that a variety of design features of wheeled vehicles request a development of methods both for experimental studies and for creating the original bench equipment for these purposes.The main positive feature of bench tests of automotive engineering is a broad capability to control the combinations of traction loads, speed rates, and external input conditions. Here, the steady state conditions can be used for a long time, allowing all the necessary measurements to be made, including those with video and photo recording experiment.It is known that the benefits of test "M" type (using a roller dynamometer include a wide range of test modes, which do not depend on the climatic conditions, as well as a capability to use a computer-aided testing programs. At the same time, it is known that the main drawback of bench tests of full-size vehicle is that the tire rolling conditions on the drum mismatch to the real road pavements, which are difficult to simulate on the drum surface. This problem can be solved owing to wheeled vehicle tests at the benches "Roller" to be, in efficiency, the most preferable research method. The article gives a detailed presentation of developed at BMSTU approach to its solving.Problem of simulation mathematical modeling has been solved for the vehicle with the wheel formula 8 × 8, and individual wheel-drive.The simulation results have led to the conclusion that the proposed principle to simulate a vehicle rolling on a smooth non-deformable support base using a bench " Roller " by simulation modeling is efficient.

  13. Recognition of diamond grains on surface of fine diamond grinding wheel

    Institute of Scientific and Technical Information of China (English)

    Fengwei HUO; Zhuji JIN; Renke KANG; Dongming GUO; Chun YANG

    2008-01-01

    The accurate evaluation of grinding wheel sur-face topography, which is necessary for the investigation of the grinding principle, optimism, modeling, and simu-lation of a grinding process, significantly depends on the accurate recognition of abrasive grains from the measured wheel surface. A detailed analysis of the grain size distri-bution characteristics and grain profile wavelength of the fine diamond grinding wheel used for ultra-precision grinding is presented. The requirements of the spatial sampling interval and sampling area for instruments to measure the surface topography of a diamond grinding wheel are discussed. To recognize diamond grains, digital filtering is used to eliminate the high frequency disturb-ance from the measured 3D digital surface of the grinding wheel, the geometric features of diamond grains are then extracted from the filtered 3D digital surface, and a method based on the grain profile frequency characteris-tics, diamond grain curvature, and distance between two adjacent diamond grains is proposed. A 3D surface pro-filer based on scanning white light interferometry is used to measure the 3D surface topography of a #3000 mesh resin bonded diamond grinding wheel, and the diamond grains are then recognized from the 3D digital surface. The experimental result shows that the proposed method is reasonable and effective.

  14. Temperature measurement of flat glass edge during grinding and effect of wheel and workpiece speeds

    International Nuclear Information System (INIS)

    Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan

    2017-01-01

    Flat glass temperature at the vicinity of the grinding wheel during grinding can become very high and reach that of the glass transition (typically around 550–600 °C). In such cases, the mechanical strength of glass is greatly affected and the grinding process cannot be carried out properly. Hence, thermal phenomena must be managed by adjusting the machining parameters to avoid overheating. For this purpose, it is very important to be able to measure the glass temperature, especially at the grinding interface. However, measuring the interfacial glass temperature is difficult and none of the existing methods for metal grinding is adequate for glass grinding. This work shows a novel temperature method that uses constantan and copper strips on both sides of the glass plates; thermoelectric contact being provided by the metallic binder of diamond particles in the grinding wheel. This new technique allows the measurement of the glass edge temperature during the wheel displacement around the glass plate. The experimental results show an average glass edge temperature between 300 and 600 °C depending on the value of the machining parameters such as work speed, wheel speed, depth of cut and water coolant flow rate. As this new thermal instrumentation is rather intrusive, glass temperature biases were analysed using a 3D heat transfer model with a moving source. Model computations performed using finite elements show that the temperature biases are less than 70 °C, which is smaller than the standard deviation of the glass edge temperatures measured during grinding. (paper)

  15. A Study of Torque Vectoring and Traction Control for an All-Wheel Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Maharun Mui’nuddin

    2014-07-01

    Full Text Available Common vehicle always experience energy loss during cornering manoeuver. Thus, to ensure it did not happened especially at high speed, a study of torque vectoring and traction control need to be made since it can increase the traction control of tyres during cornering at high speed. The study of torque vectoring and traction control for an all-wheel drive electric vehicle was conducted by modelling an all-wheel drive electric vehicle (EV in ADAMS/Car software. In addition, an optimal control algorithm will be developed for best performance to minimize energy losses using MATLAB/Simulink software. Furthermore, to prove the effectiveness of the all-wheel drive electric, the torque and traction control simulation of the all-wheel drive electric vehicle will be compared with uncontrolled electric vehicle model. According to the result, torque vectoring and traction control of in-wheel motor in all wheel drive EV can help to increase the performance of the electric vehicle during cornering manoeuver. In conclusion, this study of torque vectoring and traction control for an all-wheel drive electric vehicle will help researchers to improve the design of the future electric vehicle in term of the vehicle performance during cornering manoeuvre.

  16. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    Science.gov (United States)

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Spin dynamics on cyclic iron wheels in high magnetic fields

    International Nuclear Information System (INIS)

    Schnelzer, Lars

    2008-01-01

    In the present thesis the spin dynamics of cyclic spin-cluster compounds, the so called ''ferric wheels'' were studied by means of the NMR. In the iron wheels Li/Na rate at Fe 6 (tea) 6 and Cs rate at Fe 8 (tea) 8 as probes of NMR both the protons and the centrally lying alkali atoms 7 Li, 23 Na, and 133 Cs were available. For this purpose measurements in the magnetic field region up to B=20 T and at temperatures between room temperature and T=50 mK were performed. The longitudinal relaxation rate was temperature dependently studied at two field values on the lithium cluster and a frequency independent maximum of the relaxation rate at a temperature of T∼30 K resulted. Different behaviour showed the measurement on the sodium cluster. the longitudinal relaxation rate slopes linearly with the temperature and shows no maximum. The two quadrupole satellites of the 23 Na could be resolved. From the distance of the satellites to the central transition both on the field gradient of the iron ring and on the orientation of the symmetry axis to the external magnetic field could be concluded. The determined field gradient of the Na rate at Fe 6 (tea) 6 of eq=4.78(11).10 20 V/m 2 was in very good agreement with the present theoretically calculated value. The orientation of the crystal was determined to θ(c,B)=62.8 . The very low splitting of the 7 Li NMR spectrum of the lithium cluster allows to give as upper limit for the value of the field gradient eq=1.82(11).10 20 V/m 2 . From the seven lines of the cesium spectrum theoretically to be expected five were resolved. The evaluation yielded for the cesium ring a value of eq=-1.3(1).10 21 V/m 2 . The study of the field-dependent line position of the 23 Na NMR line led to the determination of the parameter of the transferred hyperfine interaction to A tHf /2π=140 kHz. For the first time on a cyclic iron cluster a level crossing could be studied by means of the central ion. The temperature dependence of the longitudinal

  18. Flow characteristics of Korea multi-purpose research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heonil Kim; Hee Taek Chae; Byung Jin Jun; Ji Bok Lee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-09-01

    The construction of Korea Multi-purpose Research Reactor (KMRR), a 30 MW{sub th} open-tank-in-pool type, is completed. Various thermal-hydraulic experiments have been conducted to verify the design characteristics of the KMRR. This paper describes the commissioning experiments to determine the flow distribution of KMRR core and the flow characteristics inside the chimney which stands on top of the core. The core flow is distributed to within {+-}6% of the average values, which is sufficiently flat in the sense that the design velocity in the fueled region is satisfied. The role of core bypass flow to confine the activated core coolant in the chimney structure is confirmed.

  19. Adaptive Text Entry for Mobile Devices

    DEFF Research Database (Denmark)

    Proschowsky, Morten Smidt

    The reduced size of many mobile devices makes it difficult to enter text with them. The text entry methods are often slow or complicated to use. This affects the performance and user experience of all applications and services on the device. This work introduces new easy-to-use text entry methods...... for mobile devices and a framework for adaptive context-aware language models. Based on analysis of current text entry methods, the requirements to the new text entry methods are established. Transparent User guided Prediction (TUP) is a text entry method for devices with one dimensional touch input. It can...... be touch sensitive wheels, sliders or similar input devices. The interaction design of TUP is done with a combination of high level task models and low level models of human motor behaviour. Three prototypes of TUP are designed and evaluated by more than 30 users. Observations from the evaluations are used...

  20. Exercise training effects on hypoxic and hypercapnic ventilatory responses in mice selected for increased voluntary wheel running.

    Science.gov (United States)

    Kelly, Scott A; Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Kolb, Erik M; Malisch, Jessica L; Rhodes, Justin S; Mitchell, Gordon S; Garland, Theodore

    2014-02-01

    What is the central question of this study? We used experimental evolution to determine how selective breeding for high voluntary wheel running and exercise training (7-11 weeks) affect ventilatory chemoreflexes of laboratory mice at rest. What is the main finding and its importance? Selective breeding, although significantly affecting some traits, did not systematically alter ventilation across gas concentrations. As with most human studies, our findings support the idea that endurance training attenuates resting ventilation. However, little evidence was found for a correlation between ventilatory chemoreflexes and the amount of individual voluntary wheel running. We conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running. Ventilatory control is affected by genetics, the environment and gene-environment and gene-gene interactions. Here, we used an experimental evolution approach to test whether 37 generations of selective breeding for high voluntary wheel running (genetic effects) and/or long-term (7-11 weeks) wheel access (training effects) alter acute respiratory behaviour of mice resting in normoxic, hypoxic and hypercapnic conditions. As the four replicate high-runner (HR) lines run much more than the four non-selected control (C) lines, we also examined whether the amount of exercise among individual mice was a quantitative predictor of ventilatory chemoreflexes at rest. Selective breeding and/or wheel access significantly affected several traits. In normoxia, HR mice tended to have lower mass-adjusted rates of oxygen consumption and carbon dioxide production. Chronic wheel access increased oxygen consumption and carbon dioxide production in both HR and C mice during hypercapnia. Breathing frequency and minute ventilation were significantly reduced by chronic wheel access in both HR and C mice during hypoxia. Selection history, while significantly affecting some traits

  1. On-Demand Routing in Multi-hop Wireless Mobile Ad Hoc Networks

    National Research Council Canada - National Science Library

    Maltz, David A

    2001-01-01

    .... Routing protocols used in ad hoc networks must automatically adjust to environments that can vary between the extremes of high mobility with low bandwidth, and low mobility with high bandwidth...

  2. Mobile e-Commerce Recommendation System Based on Multi-Source Information Fusion for Sustainable e-Business

    Directory of Open Access Journals (Sweden)

    Yan Guo

    2018-01-01

    Full Text Available A lack of in-depth excavation of user and resources information has become the main bottleneck restricting the predictive analytics of recommendation systems in mobile commerce. This article provides a method which makes use of multi-source information to analyze consumers’ requirements for e-commerce recommendation systems. Combined with the characteristics of mobile e-commerce, this method employs an improved radial basis function (RBF network in order to determine the weights of recommendations, and an improved Dempster–Shafer theory to fuse the multi-source information. Power-spectrum estimation is then used to handle the fusion results and allow decision-making. The experimental results illustrate that the traditional method is inferior to the proposed approach in terms of recommendation accuracy, simplicity, coverage rate and recall rate. These achievements can further improve recommendation systems, and promote the sustainable development of e-business.

  3. Hierarchical coordination control of mobile robots

    NARCIS (Netherlands)

    Adinandra, S.

    2012-01-01

    In the last decade, robotic systems have penetrated human life more than human can imagine. In particular, the multi-mobile robotic systems have faced a fast growing due to the fact that by deploying a large collection of mobile robots the overall system has a high redundancy and offers the

  4. Outline of a Hardware Reconfiguration Framework for Modular Industrial Mobile Manipulators

    DEFF Research Database (Denmark)

    Schou, Casper; Bøgh, Simon; Madsen, Ole

    2014-01-01

    This paper presents concepts and ideas of a hard- ware reconfiguration framework for modular industrial mobile manipulators. Mobile manipulators pose a highly flexible pro- duction resource due to their ability to autonomously navigate between workstations. However, due to this high flexibility new...... approaches to the operation of the robots are needed. Reconfig- uring the robot to a new task should be carried out by shop floor operators and, thus, be both quick and intuitive. Late research has already proposed a method for intuitive robot programming. However, this relies on a predetermined hardware...... configuration. Finding a single multi-purpose hardware configuration suited to all tasks is considered unrealistic. As a result, the need for reconfiguration of the hardware is inevitable. In this paper an outline of a framework for making hardware reconfiguration quick and intuitive is presented. Two main...

  5. Multi Service Proxy: Mobile Web Traffic Entitlement Point in 4G Core Network

    Directory of Open Access Journals (Sweden)

    Dalibor Uhlir

    2015-05-01

    Full Text Available Core part of state-of-the-art mobile networks is composed of several standard elements like GGSN (Gateway General Packet Radio Service Support Node, SGSN (Serving GPRS Support Node, F5 or MSP (Multi Service Proxy. Each node handles network traffic from a slightly different perspective, and with various goals. In this article we will focus only on the MSP, its key features and especially on related security issues. MSP handles all HTTP traffic in the mobile network and therefore it is a suitable point for the implementation of different optimization functions, e.g. to reduce the volume of data generated by YouTube or similar HTTP-based service. This article will introduce basic features and functions of MSP as well as ways of remote access and security mechanisms of this key element in state-of-the-art mobile networks.

  6. Situational Effects on the Usage Intention of Mobile Games

    Science.gov (United States)

    Liang, Ting-Peng; Yeh, Yi-Hsuan

    As value-added services on mobile devices are developing rapidly, text messaging, multi-media messaging, music, video, games, GPS navigation, RFID, and mobile TV are all accessible from a single device. Mobile games that combine mobile communication with computer games are an emerging industry. The purpose of this research is to explore what situation factors may affect the intention to play mobile game. We propose a research model to fit the nature of mobile games and conducted an online survey to examine the effect of situational factors. The model integrates constructs in TAM and TRA. The findings are as follows. First, Subjective norm affects a user’s intention in using mobile games when a user has no other task. Second, perceived playfulness affects a user’s intention to use mobile games when the user has another task.

  7. Optimizing the process of teaching English for medical purposes with the use of mobile applications a memrise-based case study

    CERN Document Server

    Chojnacka, Maria

    2017-01-01

    This book investigates the effectiveness of the use of a mobile version of a flashcard spaced-repetition learning platform (Memrise.com) in learning and teaching of English for Medical Purposes. It outlines design and core principles of the «Mobile Medical English Companion» - a mobile spaced-repetition medical vocabulary tutor.

  8. Multi-UAV Doppler Information Fusion for Target Tracking Based on Distributed High Degrees Information Filters

    Directory of Open Access Journals (Sweden)

    Hamza Benzerrouk

    2018-03-01

    Full Text Available Multi-Unmanned Aerial Vehicle (UAV Doppler-based target tracking has not been widely investigated, specifically when using modern nonlinear information filters. A high-degree Gauss–Hermite information filter, as well as a seventh-degree cubature information filter (CIF, is developed to improve the fifth-degree and third-degree CIFs proposed in the most recent related literature. These algorithms are applied to maneuvering target tracking based on Radar Doppler range/range rate signals. To achieve this purpose, different measurement models such as range-only, range rate, and bearing-only tracking are used in the simulations. In this paper, the mobile sensor target tracking problem is addressed and solved by a higher-degree class of quadrature information filters (HQIFs. A centralized fusion architecture based on distributed information filtering is proposed, and yielded excellent results. Three high dynamic UAVs are simulated with synchronized Doppler measurement broadcasted in parallel channels to the control center for global information fusion. Interesting results are obtained, with the superiority of certain classes of higher-degree quadrature information filters.

  9. Innovative Design and Performance Evaluation of Bionic Imprinting Toothed Wheel.

    Science.gov (United States)

    Zhang, Zhihong; Wang, Xiaoyang; Tong, Jin; Stephen, Carr

    2018-01-01

    A highly efficient soil-burrowing dung beetle possesses an intricate outer contour curve on its foreleg end-tooth. This study was carried out based on evidence that this special outer contour curve has the potential of reducing soil penetration resistance and could enhance soil-burrowing efficiency. A toothed wheel is a typical agricultural implement for soil imprinting, to increase its working efficiency; the approach of the bionic geometrical structure was utilized to optimize the innovative shape of imprinting toothed wheel. Characteristics in the dung beetle's foreleg end-tooth were extracted and studied by the edge detection technique. Then, this special outer contour curve was modeled by a nine-order polynomial function and used for the innovative design of imprinting the tooth's cutting edge. Both the conventional and bionic teeth were manufactured, and traction tests in a soil bin were conducted. Taking required draft force and volume of imprinted microbasin as the evaluating indexes, operating efficiency and quality of different toothed wheels were compared and investigated. Results indicate that compared with the conventional toothed wheel, a bionic toothed wheel possesses a better forward resistance reduction property against soil and, meanwhile, can enhance the quality of soil imprinting by increasing the volume of the created micro-basin.

  10. A Multi-Case Study of University Students' Language-Learning Experience Mediated by Mobile Technologies: A Socio-Cultural Perspective

    Science.gov (United States)

    Ma, Qing

    2017-01-01

    Emerging mobile technologies can be considered a new form of social and cultural artefact that mediates people's language learning. This multi-case study investigates how mobile technologies mediate a group of Hong Kong university students' L2 learning, which serves as a lens with which to capture the personalised, unique, contextual and…

  11. Eating meals before wheel-running exercise attenuate high fat diet-driven obesity in mice under two meals per day schedule.

    Science.gov (United States)

    Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Shibata, Shigenobu

    2015-06-01

    Mice that exercise after meals gain less body weight and visceral fat compared to those that exercised before meals under a one meal/exercise time per day schedule. Humans generally eat two or three meals per day, and rarely have only one meal. To extend our previous observations, we examined here whether a "two meals, two exercise sessions per day" schedule was optimal in terms of maintaining a healthy body weight. In this experiment, "morning" refers to the beginning of the active phase (the "morning" for nocturnal animals). We found that 2-h feeding before 2-h exercise in the morning and evening (F-Ex/F-Ex) resulted in greater attenuation of high fat diet (HFD)-induced weight gain compared to other combinations of feeding and exercise under two daily meals and two daily exercise periods. There were no significant differences in total food intake and total wheel counts, but feeding before exercise in the morning groups (F-Ex/F-Ex and F-Ex/Ex-F) increased the morning wheel counts. These results suggest that habitual exercise after feeding in the morning and evening is more effective for preventing HFD-induced weight gain. We also determined whether there were any correlations between food intake, wheel rotation, visceral fat volume and skeletal muscle volumes. We found positive associations between gastrocnemius muscle volumes and morning wheel counts, as well as negative associations between morning food intake volumes/body weight and morning wheel counts. These results suggest that morning exercise-induced increase of muscle volume may refer to anti-obesity. Evening exercise is negatively associated with fat volume increases, suggesting that this practice may counteract fat deposition. Our multifactorial analysis revealed that morning food intake helps to increase exercise, and that evening exercise reduced fat volumes. Thus, exercise in the morning or evening is important for preventing the onset of obesity.

  12. Body weight manipulation, reinforcement value and choice between sucrose and wheel running: a behavioral economic analysis.

    Science.gov (United States)

    Belke, Terry W; Pierce, W David

    2009-02-01

    Twelve female Long-Evans rats were exposed to concurrent variable (VR) ratio schedules of sucrose and wheel-running reinforcement (Sucrose VR 10 Wheel VR 10; Sucrose VR 5 Wheel VR 20; Sucrose VR 20 Wheel VR 5) with predetermined budgets (number of responses). The allocation of lever pressing to the sucrose and wheel-running alternatives was assessed at high and low body weights. Results showed that wheel-running rate and lever-pressing rates for sucrose and wheel running increased, but the choice of wheel running decreased at the low body weight. A regression analysis of relative consumption as a function of relative price showed that consumption shifted toward sucrose and interacted with price differences in a manner consistent with increased substitutability. Demand curves showed that demand for sucrose became less elastic while demand for wheel running became more elastic at the low body weight. These findings reflect an increase in the difference in relative value of sucrose and wheel running as body weight decreased. Discussion focuses on the limitations of response rates as measures of reinforcement value. In addition, we address the commonalities between matching and demand curve equations for the analysis of changes in relative reinforcement value.

  13. Design and experimental study of a micro-groove grinding wheel with spray cooling effect

    Directory of Open Access Journals (Sweden)

    Shi Chaofeng

    2014-04-01

    Full Text Available The effectiveness of grinding fluid supply has a crucial impact on grinding quality and efficiency in high speed grinding. In order to improve the cooling and lubrication, through in-depth research of self-inhaling internal cooling method and intermittent grinding mechanism, a new spray cooling method used in high speed grinding is proposed. By referring to the structure of bowl-shaped dispersion disk, the grinding wheel matrix with atomization ability is designed; through studying heat transfer of droplet collision and the influence of micro-groove on the boiling heat transfer, grinding segment with micro-groove is designed to enhance the heat flux of coolant and achieve maximum heat transfer between droplets and grinding contact zone. High-speed grinding experiments on GH4169 with the developed grinding wheel are carried out. The results show that with the micro-groove grinding wheel just 5.4% of pump outlet flow rate and 0.5% of spindle energy is needed to reduce the grinding temperature to 200 °C, which means the developed grinding wheel makes cooling high efficient and low energy consuming.

  14. Study on design of light-weight super-abrasive wheel

    Science.gov (United States)

    Nohara, K.; Yanagihara, K.; Ogawa, M.

    2018-01-01

    Fixed-abrasive tool, also called a grinding wheel, is produced by furnacing abrasive compound which contains abrasive grains and binding powder such as vitrified materials or resins. Fixed-abrasive tool is installed on spindle of grinding machine. And it is given 1,800-2,000 min-1 of spindle rotation for the usage. The centrifugal fracture of the compound of fixed- abrasive tool is one of the careful respects in designing. In recent years, however, super-abrasive wheel as a fixed-abrasive tool has been developed and applied widely. One of the most characteristic respects is that metal is applied for the body of grinding-wheel. The strength to hold abrasive grain and the rigidity of wheel become stronger than those of general grinding wheel, also the lifespan of fixed-abrasive tool becomes longer. The weight of fixed-abrasive tool, however, becomes heavier. Therefore, when the super-abrasive wheel is used, the power consumption of spindle motor becomes larger. It also becomes difficult for the grinding-wheel to respond to sudden acceleration or deceleration. Thus, in order to reduce power consumption in grinding and to obtain quicker frequency response of super-abrasive wheel, the new wheel design is proposed. The design accomplishes 46% weight reduction. Acceleration that is one second quicker than that of conventional grinding wheel is obtained.

  15. The Multi-Purpose Detector (MPD) of the collider experiment

    Energy Technology Data Exchange (ETDEWEB)

    Golovatyuk, V.; Kekelidze, V.; Kolesnikov, V.; Rogachevsky, O. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Sorin, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation)

    2016-08-15

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study dense baryonic matter in heavy-ion collisions in the energy range up to √(s{sub NN}) = 11 GeV with average luminosity of L = 10{sup 27} cm{sup -2}s{sup -1} (for {sup 197}Au{sup 79}). The experimental program at the NICA collider will be performed with the Multi-Purpose Detector (MPD). We report on the main physics objectives of the NICA heavy-ion program and present the main detector components. (orig.)

  16. Voluntary wheel running in dystrophin-deficient (mdx) mice: Relationships between exercise parameters and exacerbation of the dystrophic phenotype

    OpenAIRE

    Smythe, Gayle M; White, Jason D

    2012-01-01

    Voluntary wheel running can potentially be used to exacerbate the disease phenotype in dystrophin-deficient mdx mice. While it has been established that voluntary wheel running is highly variable between individuals, the key parameters of wheel running that impact the most on muscle pathology have not been examined in detail. We conducted a 2-week test of voluntary wheel running by mdx mice and the impact of wheel running on disease pathology. There was significant individual variation in the...

  17. Aerodynamic analysis of an isolated vehicle wheel

    Science.gov (United States)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  18. Aerodynamic analysis of an isolated vehicle wheel

    International Nuclear Information System (INIS)

    Leśniewicz, P; Kulak, M; Karczewski, M

    2014-01-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  19. Motion Planning for Omnidirectional Wheeled Mobile Robot by Potential Field Method

    Directory of Open Access Journals (Sweden)

    Weihao Li

    2017-01-01

    Full Text Available In this paper, potential field method has been used to navigate a three omnidirectional wheels’ mobile robot and to avoid obstacles. The potential field method is used to overcome the local minima problem and the goals nonreachable with obstacles nearby (GNRON problem. For further consideration, model predictive control (MPC has been used to incorporate motion constraints and make the velocity more realistic and flexible. The proposed method is employed based on the kinematic model and dynamics model of the mobile robot in this paper. To show the performance of proposed control scheme, simulation studies have been carried to perform the motion process of mobile robot in specific workplace.

  20. Design of Mobility System for Ground Model of Planetary Exploration Rover

    Directory of Open Access Journals (Sweden)

    Younkyu Kim

    2012-12-01

    Full Text Available In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL, followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

  1. Aspects of Manual Wheelchair Configuration Affecting Mobility: A Review

    OpenAIRE

    Medola, Fausto Orsi [UNESP; Elui, Valeria Meirelles Carril; Santana, Carla da Silva; Fortulan, Carlos Alberto

    2014-01-01

    Many aspects relating to equipment configuration affect users’ actions in a manual wheelchair, determining the overall mobility performance. Since the equipment components and configuration determine both stability and mobility efficiency, configuring the wheelchair with the most appropriate set-up for individual users’ needs is a difficult task. Several studies have shown the importance of seat/backrest assembly and the relative position of the rear wheels to the user in terms of the kinetic...

  2. First Wheel of the Hadronic EndCap Calorimeter Completed

    CERN Multimedia

    Oram, C.J.

    2002-01-01

    With the LAr calorimeters well advanced in module production, the attention is turning to Batiment 180 where the calorimeter modules are formed into complete detectors and inserted into their respective cryostats. For the Hadronic End Cap (HEC) Group the task in B180 is to assemble the wheels, rotate them into their final orientation, and put them onto the cradle in front of the End Cap Cryostat. These tasks have been completed for the first HEC wheel in the B180 End Cap Clean Room. Given that this wheel weighs 70 tons the group is very relieved to have established that these gymnastics with the wheel proceed in a routine fashion. To assemble a wheel we take modules that have already been cold tested, do the final electrical testing and locate them onto the HEC wheel assembly table. Four wheels are required in total, each consisting of 32 modules. Wheel assembly is done in the horizontal position, creating a doughnut-like object sitting on the HEC table. The first picture shows the last module being added ...

  3. Wheel-running in a transgenic mouse model of Alzheimer's disease: protection or symptom?

    Science.gov (United States)

    Richter, Helene; Ambrée, Oliver; Lewejohann, Lars; Herring, Arne; Keyvani, Kathy; Paulus, Werner; Palme, Rupert; Touma, Chadi; Schäbitz, Wolf-Rüdiger; Sachser, Norbert

    2008-06-26

    Several studies on both humans and animals reveal benefits of physical exercise on brain function and health. A previous study on TgCRND8 mice, a transgenic model of Alzheimer's disease, reported beneficial effects of premorbid onset of long-term access to a running wheel on spatial learning and plaque deposition. Our study investigated the effects of access to a running wheel after the onset of Abeta pathology on behavioural, endocrinological, and neuropathological parameters. From day 80 of age, the time when Abeta deposition becomes apparent, TgCRND8 and wildtype mice were kept with or without running wheel. Home cage behaviour was analysed and cognitive abilities regarding object recognition memory and spatial learning in the Barnes maze were assessed. Our results show that, in comparison to Wt mice, Tg mice were characterised by impaired object recognition memory and spatial learning, increased glucocorticoid levels, hyperactivity in the home cage and high levels of stereotypic behaviour. Access to a running wheel had no effects on cognitive or neuropathological parameters, but reduced the amount of stereotypic behaviour in transgenics significantly. Furthermore, wheel-running was inversely correlated with stereotypic behaviour, suggesting that wheel-running may have stereotypic qualities. In addition, wheel-running positively correlated with plaque burden. Thus, in a phase when plaques are already present in the brain, it may be symptomatic of brain pathology, rather than protective. Whether or not access to a running wheel has beneficial effects on Alzheimer-like pathology and symptoms may therefore strongly depend on the exact time when the wheel is provided during development of the disease.

  4. Project considerations and design of systems for wheeling cogenerated power

    Energy Technology Data Exchange (ETDEWEB)

    Tessmer, R.G. Jr.; Boyle, J.R.; Fish, J.H. III; Martin, W.A.

    1994-08-01

    Wheeling electric power, the transmission of electricity not owned by an electric utility over its transmission lines, is a term not generally recognized outside the electric utility industry. Investigation of the term`s origin is intriguing. For centuries, wheel has been used to describe an entire machine, not just individual wheels within a machine. Thus we have waterwheel, spinning wheel, potter`s wheel and, for an automobile, wheels. Wheel as a verb connotes transmission or modification of forces and motion in machinery. With the advent of an understanding of electricity, use of the word wheel was extended to be transmission of electric power as well as mechanical power. Today, use of the term wheeling electric power is restricted to utility transmission of power that it doesn`t own. Cogeneration refers to simultaneous production of electric and thermal power from an energy source. This is more efficient than separate production of electricity and thermal power and, in many instances, less expensive.

  5. Learning feedforward controller for a mobile robot vehicle

    NARCIS (Netherlands)

    Starrenburg, J.G.; Starrenburg, J.G.; van Luenen, W.T.C.; van Luenen, W.T.C.; Oelen, W.; Oelen, W.; van Amerongen, J.

    1996-01-01

    This paper describes the design and realisation of an on-line learning posetracking controller for a three-wheeled mobile robot vehicle. The controller consists of two components. The first is a constant-gain feedback component, designed on the basis of a second-order model. The second is a learning

  6. Lenstronomy: Multi-purpose gravitational lens modeling software package

    Science.gov (United States)

    Birrer, Simon; Amara, Adam

    2018-04-01

    Lenstronomy is a multi-purpose open-source gravitational lens modeling python package. Lenstronomy reconstructs the lens mass and surface brightness distributions of strong lensing systems using forward modelling and supports a wide range of analytic lens and light models in arbitrary combination. The software is also able to reconstruct complex extended sources as well as point sources. Lenstronomy is flexible and numerically accurate, with a clear user interface that could be deployed across different platforms. Lenstronomy has been used to derive constraints on dark matter properties in strong lenses, measure the expansion history of the universe with time-delay cosmography, measure cosmic shear with Einstein rings, and decompose quasar and host galaxy light.

  7. Phenomena of Foamed Concrete under Rolling of Aircraft Wheels

    Science.gov (United States)

    Jiang, Chun-shui; Yao, Hong-yu; Xiao, Xian-bo; Kong, Xiang-jun; Shi, Ya-jie

    2014-04-01

    Engineered Material Arresting System (EMAS) is an effective technique to reduce hazards associated with aircraft overrunning runway. In order to ascertain phenomena of the foamed concrete used for EMAS under rolling of aircraft wheel, a specially designed experimental setup was built which employed Boeing 737 aircraft wheels bearing actual vertical loads to roll through the foamed concrete. A number of experiments were conducted upon this setup. It is discovered that the wheel rolls the concrete in a pure rolling manner and crushes the concrete downwards, instead of crushing it forward, as long as the concrete is not higher than the wheel axle. The concrete is compressed into powder in-situ by the wheel and then is brought to bottom of the wheel. The powder under the wheel is loose and thus is not able to sustain wheel braking. It is also found that after being rolled by the wheel the concrete exhibits either of two states, i.e. either 'crushed through' whole thickness of the concrete or 'crushed halfway', depending on combination of strength of the concrete, thickness of the concrete, vertical load the wheel carries, tire dimension and tire pressure. A new EMAS design concept is developed that if an EMAS design results in the 'crushed through' state for the main gears while the 'crushed halfway' state for the nose gear, the arresting bed would be optimal to accommodate the large difference in strength between the nose gear and the main gear of an aircraft.

  8. Fabrication of MTF measurement system for a mobile phone lens using multi-square objects

    Science.gov (United States)

    Hong, Sung Mok; Jo, Jae Heung; Lee, Hoi Youn; Yang, Ho Soon; Lee, Yun Woo; Lee, In Won

    2007-12-01

    The mobile phone market grows rapidly and the performance estimation about camera module is required. Accordingly, we fabricate the MTF measurement system for a mobile phone lens having extremely small diameter and large f-number. The objective lens with the magnification of X20 for MTF measurement for high resolution lens and a detector of CCD that is pixel size of 7.4 um are adapted to the system. Also, the CCD is translated by using a linear motor to reduce measurement errors. The measurement lens is placed at the most suitable imaging point by a precise auto-focusing motor. The measuring equipment which we developed for off-axis MTF measurement of a mobile phone lens used the multi-square objects. The square objects of measuring equipment are arranged a unit in the on-axis and total 12 units (0.3 field: 4 units, 0.5 field: 4 units, 0.7 field: 4 units) in the off-axis. When the measurement is started, the linear motors of signal detection part are transferred from on-axis to off-axis. And a detected signals from the each square objects are used for MTF measurement. System driver and MTF measure are using application program that developed us. This software can be measure the on-axis and the off-axis sequentially. In addition to that it did optimization of motor transfer for measurement time shortening.

  9. System Integration for Real-Time Mobile Manipulation

    Directory of Open Access Journals (Sweden)

    Reza Oftadeh

    2014-03-01

    Full Text Available Mobile manipulators are one of the most complicated types of mechatronics systems. The performance of these robots in performing complex manipulation tasks is highly correlated with the synchronization and integration of their low-level components. This paper discusses in detail the mechatronics design of a four wheel steered mobile manipulator. It presents the manipulator's mechanical structure and electrical interfaces, designs low-level software architecture based on embedded PC-based controls, and proposes a systematic solution based on code generation products of MATLAB and Simulink. The remote development environment described here is used to develop real-time controller software and modules for the mobile manipulator under a POSIX-compliant, real-time Linux operating system. Our approach enables developers to reliably design controller modules that meet the hard real-time constraints of the entire low-level system architecture. Moreover, it provides a systematic framework for the development and integration of hardware devices with various communication mediums and protocols, which facilitates the development and integration process of the software controller.

  10. The Mobile Phone Affinity Scale: Enhancement and Refinement.

    Science.gov (United States)

    Bock, Beth C; Lantini, Ryan; Thind, Herpreet; Walaska, Kristen; Rosen, Rochelle K; Fava, Joseph L; Barnett, Nancy P; Scott-Sheldon, Lori Aj

    2016-12-15

    Existing instruments that assess individuals' relationships with mobile phones tend to focus on negative constructs such as addiction or dependence, and appear to assume that high mobile phone use reflects pathology. Mobile phones can be beneficial for health behavior change, disease management, work productivity, and social connections, so there is a need for an instrument that provides a more balanced assessment of the various aspects of individuals' relationships with mobile phones. The purpose of this research was to develop, revise, and validate the Mobile Phone Affinity Scale, a multi-scale instrument designed to assess key factors associated with mobile phone use. Participants (N=1058, mean age 33) were recruited from Amazon Mechanical Turk between March and April of 2016 to complete a survey that assessed participants' mobile phone attitudes and use, anxious and depressive symptoms, and resilience. Confirmatory factor analysis supported a 6-factor model. The final measure consisted of 24 items, with 4 items on each of 6 factors: Connectedness, Productivity, Empowerment, Anxious Attachment, Addiction, and Continuous Use. The subscales demonstrated strong internal consistency (Cronbach alpha range=0.76-0.88, mean 0.83), and high item factor loadings (range=0.57-0.87, mean 0.75). Tests for validity further demonstrated support for the individual subscales. Mobile phone affinity may have an important impact in the development and effectiveness of mobile health interventions, and continued research is needed to assess its predictive ability in health behavior change interventions delivered via mobile phones. ©Beth C Bock, Ryan Lantini, Herpreet Thind, Kristen Walaska, Rochelle K Rosen, Joseph L Fava, Nancy P Barnett, Lori AJ Scott-Sheldon. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 15.12.2016.

  11. A new multi-purpose furnace for the preparation of compounds, alloys and single crystals

    International Nuclear Information System (INIS)

    Spirlet, J.-C.; Wellum, R.

    2004-01-01

    A new modular multi-purpose furnace has been designed and the prototype constructed. This furnace was a development utilizing more than two decades of experience at the JRC establishment, Karlsruhe, to bring together the possibility of several techniques that normally require separate, expensive facilities. With this new modular device, different functions are provided by exchanging the head of the furnace while leaving the base as a permanent fixture. The processes can be carried out in high vacuum (10 -6 Pa) or in the presence of high-purity gases, e.g., argon. The modules developed allow the following processes to be carried out: Arc melting, levitation melting, resistance and radio-frequency heating in a crucible, single-crystal growth by various techniques, and electron-beam heating. The rationale behind the development was to produce a device capable of many functions but at an acceptable cost so as to make the various techniques available to a wide range of research and development institutes. A full description of the apparatus is given, outlining the range of the methods which can be applied to the production of high-purity advanced materials for research purposes

  12. Experimental Investigation on the Detection of Obstacles by a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Zoltan-Iosif Korka

    2017-06-01

    Full Text Available The paper presents an experimental investigation regarding the detection of obstacles in the workspace of a mobile robot. The traveling time of mobile robot on wheels, while moving on four with same length routes but with different shapes, was investigated. In this context, the average time to avoid an obstacle was determined, concluding with regard to the sensorial system of the robot.

  13. Multi-purpose nuclear heat source for advanced gas-cooled reactor plants

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1993-01-01

    Nuclear power has the potential to be the ultimate green technology in that it could eliminate the need for burning fossil fuels with their polluting combustion products and greenhouse gases. This view is shared by many technologists, but it may be a generation before the public becomes convinced, and that will involve overcoming many safety, institutional, financial, and technical impediments. This paper addresses only the latter topic; a major theme being that for nuclear power to truly be a green technology and significantly benefit society, it must meet the needs of the full energy spectrum. Specifically, it must satisfy energy needs beyond just the electricity generating sector by today's nuclear plants. By virtue of its high temperature capability, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is the only type of reactor that has the potential to meet the wide range of energy needs that will emerge in the future. This paper discusses the nuclear heat source that gives the MHTGR multi-purpose capability, which is recognized today, but will not be implemented until early in the next century

  14. High-Fidelity Computational Aerodynamics of Multi-Rotor Unmanned Aerial Vehicles

    Science.gov (United States)

    Ventura Diaz, Patricia; Yoon, Seokkwan

    2018-01-01

    High-fidelity Computational Fluid Dynamics (CFD) simulations have been carried out for several multi-rotor Unmanned Aerial Vehicles (UAVs). Three vehicles have been studied: the classic quadcopter DJI Phantom 3, an unconventional quadcopter specialized for forward flight, the SUI Endurance, and an innovative concept for Urban Air Mobility (UAM), the Elytron 4S UAV. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. The DJI Phantom 3 is simulated with different rotors and with both a simplified airframe and the real airframe including landing gear and a camera. The effects of weather are studied for the DJI Phantom 3 quadcopter in hover. The SUI En- durance original design is compared in forward flight to a new configuration conceived by the authors, the hybrid configuration, which gives a large improvement in forward thrust. The Elytron 4S UAV is simulated in helicopter mode and in airplane mode. Understanding the complex flows in multi-rotor vehicles will help design quieter, safer, and more efficient future drones and UAM vehicles.

  15. Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    the aircraft braking mode with a slight increase in weight and complexity of the system.Mathematical modeling of the WBCS is intended to provide the possibility for studying the effect of various parameters on the braking process, choice of a rational law of the anti-skid automatics and minimization of the brake way on the runway in designing the WBCS, and its certification for compliance with AP25 under normal operation and in appearing of credible failures. The article presents differential equations of motion of the braking system of the aircraft landing gear wheel, which is an electro-hydraulic actuator to form the braking torque Мт, depending on the control signal Uу. The actuator comprises a remote control system of pressure and multi-disc friction brake. This mathematical model of the braking system of aircraft landing gear wheel allows us to study the braking process in a wide variation range of different parameters both of the braking system itself and its components, and of the aircraft parameters, runway conditions, and anti-skid system parameters, i.e. it provides an optimized braking process in conditions of changing a large number of different parameters the most important of which are: RFC, lifting force and aircraft weight; speed of the aircraft; parameters of the WBCS hydraulic units, etc.

  16. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model

    International Nuclear Information System (INIS)

    Chen, C.C.; Chang, M.W.; Chang, C.P.; Chan, S.C.; Chang, W.Y.; Yang, C.L.; Lin, M.T.

    2014-01-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use

  17. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model

    Directory of Open Access Journals (Sweden)

    C.C. Chen

    2014-10-01

    Full Text Available We developed a forced non-electric-shock running wheel (FNESRW system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h. An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS, an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05 and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.

  18. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model.

    Science.gov (United States)

    Chen, C C; Chang, M W; Chang, C P; Chan, S C; Chang, W Y; Yang, C L; Lin, M T

    2014-10-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.

  19. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.C. [Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan (China); Chang, M.W. [Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Chang, C.P. [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Chan, S.C.; Chang, W.Y.; Yang, C.L. [Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan (China); Lin, M.T. [Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan (China)

    2014-08-15

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.

  20. Dose mapping of the multi-purpose gamma irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G; Lanuza, L G; Villamater, D T [Irradiation Services, Nuclear Services and Training Division, Philippine Nuclear Research Institute, Quezon City (Philippines)

    1989-12-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author).

  1. Dose mapping of the multi-purpose gamma irradiation facility

    International Nuclear Information System (INIS)

    Cabalfin, E.G.; Lanuza, L.G.; Villamater, D.T.

    1989-01-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author)

  2. Comparison of High-Flexion Fixed-Bearing and High-Flexion Mobile-Bearing Total Knee Arthroplasties-A Prospective Randomized Study.

    Science.gov (United States)

    Kim, Young-Hoo; Park, Jang-Won; Kim, Jun-Shik

    2018-01-01

    There is none, to our knowledge, about comparison of high-flexion fixed-bearing and high-flexion mobile-bearing total knee arthroplasties (TKAs) in the same patients. The purpose of this study was to determine whether clinical results; radiographic and computed tomographic scan results; and the survival rate of a high-flexion mobile-bearing TKA is better than that of a high-flexion fixed-bearing TKA. The present study consisted of 92 patients (184 knees) who underwent same-day bilateral TKA. Of those, 17 were men and 75 were women. The mean age at the time of index arthroplasty was 61.5 ± 8.3 years (range 52-65 years). The mean body mass index was 26.2 ± 3.3 kg/m 2 (range 23-34 kg/m 2 ). The mean follow-up was 11.2 years (range 10-12 years). The Knee Society knee scores (93 vs 92 points; P = .531) and function scores (80 vs 80 points; P = 1.000), WOMAC scores (14 vs 15 points; P = .972), and UCLA activity scores (6 vs 6 points; P = 1.000) were not different between the 2 groups at 12 years follow-up. There were no differences in any radiographic and CT scan parameters between the 2 groups. Kaplan-Meier survivorship of the TKA component was 98% (95% confidence interval, 93-100) in the high-flexion fixed-bearing TKA group and 99% (95% confidence interval, 94-100) in the high-flexion mobile-bearing TKA group 12 years after the operation. We found no benefit to mobile-bearing TKA in terms of pain, function, radiographic and CT scan results, and survivorship. Longer-term follow-up is necessary to prove the benefit of the high-flexion mobile-bearing TKA over the high-flexion fixed-bearing TKA. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. performance evaluation of a pilot paraplegic centricity mobility aid

    African Journals Online (AJOL)

    This paper was aimed at evaluating the functional characteristics of a developed mobility aid for paraplegics in Benin City, Nigeria using their anthropometric data. These functional characteristics were compared with the conventional motorised wheel chair found in most city centres in Nigeria under the same condition.

  4. Nonlinear analysis of the GFRP material wheel hub

    Directory of Open Access Journals (Sweden)

    Dong Yun-Feng

    2015-01-01

    Full Text Available In this paper, the current bicycle wheel was replaced by the ones which composed by the wheel hub with Glassfiber Reinforced Plastic (alkali free thin-walled cylinder material, hereinafter referred to as GFRP material and the protective components made up of rubber outer pneumatic pad. With the help of the basic theory of elastic-plastic mechanics, the finite element “Nonlinear buckling” analysis of the wheel was carried out. The results show that the maximum elastic deformation of the wheel hub and the critical value of buckling failure load were restricted by the elasticity under the condition of external loads. Considering with the tensile strength and elastic modulus of the GFRP value of the material, it is demonstrated that the material is feasible to be used for wheel hub.

  5. Path following mobile robot in the presence of velocity constraints

    DEFF Research Database (Denmark)

    Bak, Martin; Poulsen, Niels Kjølstad; Ravn, Ole

    2001-01-01

    This paper focuses on path following algorithms for mobile robots with velocity constraints on the wheels. The path considered consists of straight lines intersected with given angles. We present a fast real-time receding horizon controller which anticipates the intersections and smoothly control...

  6. Meals on Wheels Association of America

    Science.gov (United States)

    ... Meals About Meals on Wheels Get Started The Issue The Problem & Our Solution Meals on Wheels Health Facts & Resources Senior Facts Map State Fact Sheets Research More Than a Meal Pilot Research Study Medicare Claims Analyses Policy Myths Hunger in Older Adults Take Action Volunteer Advocate #SAVELUNCH ...

  7. Advanced wireless mobile collaborative sensing network for tactical and strategic missions

    Science.gov (United States)

    Xu, Hao

    2017-05-01

    In this paper, an advanced wireless mobile collaborative sensing network will be developed. Through properly combining wireless sensor network, emerging mobile robots and multi-antenna sensing/communication techniques, we could demonstrate superiority of developed sensing network. To be concrete, heterogeneous mobile robots including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) are equipped with multi-model sensors and wireless transceiver antennas. Through real-time collaborative formation control, multiple mobile robots can team the best formation that can provide most accurate sensing results. Also, formatting multiple mobile robots can also construct a multiple-input multiple-output (MIMO) communication system that can provide a reliable and high performance communication network.

  8. Development of Diamond-like Carbon Fibre Wheel

    Institute of Scientific and Technical Information of China (English)

    魏源迁; 山口勝美; 洞口巌; 竹内雅之

    2004-01-01

    A unique diamond-like carbon (DLC) grinding wheel was developed, in which the DLC fibres were made by rolling Al sheets coated with DLC films and aligned normally to the grinding wheel surface by laminating Al sheets together with DLC fibres. In this paper, the formation process of DLC fibres and the fabrication process of a DLC fibre wheel were investigated. Many grinding experiments were also carried out on a precision NC plane milling machine using a newly developed DLC wheel. Grinding of specimens of silicon wafers, optical glasses, quartz, granites and hardened die steel SKD11 demonstrated the capabilities of nanometer surface finish. A smooth surface with a roughness value of Ra2.5nm (Ry26nm) was achieved.

  9. Batangas Heavy Fabrication Yard Multi-Purpose Cooperative: Basis for Business Operation

    Directory of Open Access Journals (Sweden)

    JENNIFER D. MASICAT

    2014-08-01

    Full Text Available This research aimed to determine the proposed business initiatives to enhance the operation of Batangas Heavy Fabrication Yard Multi-Purpose Cooperative for the long survival and growth. More specifically, it shall answer the following objectives to describe the profile of the respondents in terms of their age, gender, type of membership and shared capital; to assess the business operation of the cooperative in the aspects of its management, marketing, finances, facilities and technology and their delivery of services; to identify the problems encountered by the cooperative in its business operation; to determine the significant relationship between the profile of the respondents and their assessment to its business operation; and to propose an action plan and to assess the business operation of BHFY Multi-Purpose Cooperative. The researcher used the descriptive correlation design in the study to obtain information concerning the current status of the BHFY-MPC cooperative; to describe what exists with respect to the variables or conditions in a situation. Based on the result, majority of the members are aged 51 to 55 years old, holding the regular type of membership and have a shared capital ranging from 51,001 to 100,000.The finding of the study states that the BHFY Multi-purpose cooperative performs well in terms of its management, marketing, finances, facilities and technology and delivery of services. Also, there are problems seldom encountered in the operation of the cooperative but the cooperative never encountered problems like overinvestment, ineffective leadership of management team and board of directors, inadequate source of fund, income of cooperative affected by negative issues and mismanagement of funds by the officers. Also, the type of membership influences the members’ assessment on the type of delivery of services; moreover, age contributes to the assessment of the business operation in terms of management and delivery of

  10. Kinematic evaluation of mobile robotic platforms for overground gait neurorehabilitation

    Science.gov (United States)

    Alias, N. Akmal; Huq, M. Saiful; Ibrahim, B. S. K. K.; Omar, Rosli

    2017-09-01

    Gait assistive devices offer a great solution to the walking re-education which reduce patients theoretical limit by aiding the anatomical joints to be in line with the rehabilitation session. Overground gait training, which is differs significantly from body-weight supported treadmill training in many aspects, essentially consists of a mobile robotic base to support the subject securely (usually with overhead harness) while its motion and orientation is controlled seamlessly to facilitate subjects free movement. In this study, efforts have been made for evaluation of both holonomic and nonholonomic drives, the outcome of which may constitute the primarily results to the effective approach in designing a robotic platform for the mobile rehabilitation robot. The sets of kinematic equations are derived using typical geometries of two different drives. The results indicate that omnidirectional mecanum wheel platform is capable for more sophisticated discipline. Although the differential drive platform happens to be more simple and easy to construct, but it is less desirable as it has limited number of motions applicable to the system. The omnidirectional robot consisting of mecanum wheels, which is classified as holonomic is potentially the best solution in terms of its capability to move in arbitrary direction without concerning the changing of wheel's direction.

  11. Physical characteristics of experienced and junior open-wheel car drivers.

    Science.gov (United States)

    Raschner, Christian; Platzer, Hans-Peter; Patterson, Carson

    2013-01-01

    Despite the popularity of open-wheel car racing, scientific literature about the physical characteristics of competitive race car drivers is scarce. The purpose of this study was to compare selected fitness parameters of experienced and junior open-wheel race car drivers. The experienced drivers consisted of five Formula One, two GP2 and two Formula 3 drivers, and the nine junior drivers drove in the Formula Master, Koenig, BMW and Renault series. The following fitness parameters were tested: multiple reactions, multiple anticipation, postural stability, isometric upper body strength, isometric leg extension strength, isometric grip strength, cyclic foot speed and jump height. The group differences were calculated using the Mann-Whitney U-test. Because of the multiple testing strategy used, the statistical significance was Bonferroni corrected and set at P < 0.004. Significant differences between the experienced and junior drivers were found only for the jump height parameter (P = 0.002). The experienced drivers tended to perform better in leg strength (P = 0.009), cyclic foot speed (P = 0.024) and grip strength (P = 0.058). None of the other variables differed between the groups. The results suggested that the experienced drivers were significantly more powerful than the junior drivers: they tended to be quicker and stronger (18% to 25%) but without statistical significance. The experienced drivers demonstrated excellent strength and power compared with other high-performance athletes.

  12. Mobile Workforce, Mobile Technology, Mobile Threats

    International Nuclear Information System (INIS)

    Garcia, J.

    2015-01-01

    Mobile technologies' introduction into the world of safeguards business processes such as inspection creates tremendous opportunity for novel approaches and could result in a number of improvements to such processes. Mobile applications are certainly the wave of the future. The success of the application ecosystems has shown that users want full fidelity, highly-usable, simple purpose applications with simple installation, quick responses and, of course, access to network resources at all times. But the counterpart to opportunity is risk, and the widespread adoption of mobile technologies requires a deep understanding of the threats and vulnerabilities inherent in mobile technologies. Modern mobile devices can be characterized as small computers. As such, the threats against computing infrastructure apply to mobile devices. Meanwhile, the attributes of mobile technology that make it such an obvious benefit over traditional computing platforms all have elements of risk: pervasive, always-on networking; diverse ecosystems; lack of centralized control; constantly shifting technological foundations; intense competition among competitors in the marketplace; the scale of the installation base (from millions to billions); and many more. This paper will explore the diverse and massive environment of mobile, the number of attackers and vast opportunities for compromise. The paper will explain how mobile devices prove valuable targets to both advanced and persistent attackers as well as less-skilled casual hackers. Organized crime, national intelligence agencies, corporate espionage are all part of the landscape. (author)

  13. Performance Studies of Micromegas Chambers for the New Small Wheel Upgrade Project

    Directory of Open Access Journals (Sweden)

    Leontsinis S.

    2016-01-01

    Full Text Available The ATLAS collaboration has chosen the Micromegas technology along with the small-strip Thin Gap Chambers for the upgrade of the inner muon station in the high-rapidity region, the so called New Small Wheel upgrade project. It will employ eight layers of Micromegas and eight layers of small-strip Thin Gap Chambers per wheel. The New Small Wheel project requires fully efficient Micromegas chambers, able to cope with the maximum expected rate of 15 kHz/cm2 featuring single plane spatial resolution better than 100 μm. The Micromegas detectors will cover a total active area of ~ 1200 m2 and will be operated in a moderate magnetic field (≤ 0.3 T. Moreover, together with their precise tracking capability the New Small Wheel Micromegas chambers will contribute to the ATLAS Level-1 trigger system. Several studies have been performed on small (10 × 10 cm2 and medium (1 × 0.5 m2 size prototypes using medium (1 − 5 GeV/c and high momentum (120 – 150 GeV/c hadron beams at CERN. A brief overview of the results obtained is presented.

  14. Wheeling rates evaluation using optimal power flows

    International Nuclear Information System (INIS)

    Muchayi, M.; El-Hawary, M. E.

    1998-01-01

    Wheeling is the transmission of electrical power and reactive power from a seller to a buyer through a transmission network owned by a third party. The wheeling rates are then the prices charged by the third party for the use of its network. This paper proposes and evaluates a strategy for pricing wheeling power using a pricing algorithm that in addition to the fuel cost for generation incorporates the optimal allocation of the transmission system operating cost, based on time-of-use pricing. The algorithm is implemented for the IEEE standard 14 and 30 bus system which involves solving a modified optimal power flow problem iteratively. The base of the proposed algorithm is the hourly spot price. The analysis spans a total time period of 24 hours. Unlike other algorithms that use DC models, the proposed model captures wheeling rates of both real and reactive power. Based on the evaluation, it was concluded that the model has the potential for wide application in calculating wheeling rates in a deregulated competitive power transmission environment. 9 refs., 3 tabs

  15. 49 CFR 229.75 - Wheels and tire defects.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wheels and tire defects. 229.75 Section 229.75....75 Wheels and tire defects. Wheels and tires may not have any of the following conditions: (a) A... two adjoining spots that are each two or more inches in length. (e) A seam running lengthwise that is...

  16. Tilted wheel satellite attitude control with air-bearing table experimental results

    Science.gov (United States)

    Inumoh, Lawrence O.; Forshaw, Jason L.; Horri, Nadjim M.

    2015-12-01

    Gyroscopic actuators for satellite control have attracted significant research interest over the years, but their viability for the control of small satellites has only recently started to become clear. Research on variable speed gyroscopic actuators has long been focused on single gimbal actuators; double gimbal actuators typically operate at constant wheel spin rate and allow tilt angle ranges far larger than the ranges needed to operate most satellite missions. This research examines a tilted wheel, a newly proposed type of inertial actuator that can generate torques in all three principal axes of a rigid satellite using a spinning wheel and a double tilt mechanism. The tilt mechanism tilts the angular momentum vector about two axes providing two degree of freedom control, while variation of the wheel speed provides the third. The equations of motion of the system lead to a singularity-free system during nominal operation avoiding the need for complex steering logic. This paper describes the hardware design of the tilted wheel and the experimental setup behind both standalone and spherical air-bearing tables used to test it. Experimental results from the air bearing table are provided with the results depicting the high performance capabilities of the proposed actuator in torque generation.

  17. The high flux reactor Petten, A multi-purpose research and test facility for the future of nuclear energy

    International Nuclear Information System (INIS)

    Bergmans, H.; Duijves, K.; Conrad, R.; Markgraf, J.F.W.; May, R.; Moss, R.L.; Sordon, G.; Tartaglia, G.P.

    1996-01-01

    The High Flux Reactor (HFR) at Petten, is owned by the European Commission (EC) and managed by the Institute for Advanced Materials (IAM) of the Joint Research Centre (JRC) of the EC. Its operation has been entrusted since 1962 to the Netherlands Energy Research Foundation (ECN). The HFR is one of the most powerful multi-purpose research and test reactors in the world. Together with the ECN hot cells at Petten, it has provided since three decades an integral and full complement of irradiation and examination services as required by current and future research and development for nuclear energy, industry and research organizations. Since 1963, the HFR has recognized record of consistent, reliable and high availability of more than 250 days of operation per year. The HFR has 20 in-core and 12 poolside irradiation positions, plus 12 beam tubes. With a variety of dedicated irradiation devices, and with its long-standing experience in executing small and large irradiation projects, the HFR is particularly suited for fuel, materials and components testing for all reactor lines, including thermonuclear fusion reactors. In addition, processing with neutrons and gamma rays, neutron-based research and inspection services are employed by industry and research, such as activation analysis, boron neutron capture therapy, neutron radiography and neutron diffraction. Moreover, in recent years, HFRs' mission has been broadened within the area of radioisotopes production, where, within a few years, the HFR has attained the European leadership in production volume

  18. Wheel slip control with torque blending using linear and nonlinear model predictive control

    Science.gov (United States)

    Basrah, M. Sofian; Siampis, Efstathios; Velenis, Efstathios; Cao, Dongpu; Longo, Stefano

    2017-11-01

    Modern hybrid electric vehicles employ electric braking to recuperate energy during deceleration. However, currently anti-lock braking system (ABS) functionality is delivered solely by friction brakes. Hence regenerative braking is typically deactivated at a low deceleration threshold in case high slip develops at the wheels and ABS activation is required. If blending of friction and electric braking can be achieved during ABS events, there would be no need to impose conservative thresholds for deactivation of regenerative braking and the recuperation capacity of the vehicle would increase significantly. In addition, electric actuators are typically significantly faster responding and would deliver better control of wheel slip than friction brakes. In this work we present a control strategy for ABS on a fully electric vehicle with each wheel independently driven by an electric machine and friction brake independently applied at each wheel. In particular we develop linear and nonlinear model predictive control strategies for optimal performance and enforcement of critical control and state constraints. The capability for real-time implementation of these controllers is assessed and their performance is validated in high fidelity simulation.

  19. The effect of wheel eccentricity and run-out on grinding forces, waviness, wheel wear and chatter

    OpenAIRE

    O'DONNELL, GARRET; MURPHY, STUART

    2011-01-01

    PUBLISHED The effect of grinding-wheel eccentricity on grinding forces, wheel wear and final waviness height was studied. Eccentricity was evident in force oscillations and acceleration and audio measurements. A model was developed to predict final scallop-profile shape from grinding parameters and eccentricity. Recommendations are given on detecting eccentricity and determining when eccentricity is tolerable.

  20. Finite element analysis of rail-wheel interaction

    International Nuclear Information System (INIS)

    Rahman, F.; Kharlamov, Y.A.; Islam, S.; Khan, A.A.

    2006-01-01

    Damage mechanisms such as surface cracks, plastic deformation and wear can significantly reduce the service life of railway track and rolling stock. They also have a negative impact on the rolling noise as well as: on the riding comfort. A proper understanding of these mechanisms requires a detailed knowledge of physical interaction between wheel and rail. Furthermore, demands for higher train speeds and increased axle loads implies that the consequences of larger contact. forces between wheel and rail must be thoroughly investigated. Two methods have traditionally been used to investigate the rail-wheel contact, that is the Hertz analytical method and simplified numerical method based on the boundary element (BE) method. These methods rely on a half-space assumption and a linear material model. This paper presents that to overcome these limitations, a tool for FE-based quasistatic wheel-rail contact simulations has been developed. The tool is a library of ANSYS macro routines for configuring, meshing and loading of a parametric wheel-rail model. The meshing is based on measured wheel and rail profiles. The wheel and rail materials in the contact region are treated as elastic-plastic with kinematic hardening. By controlling the values of the configuration parameters, representations of various driving cases can be generated. The quasi-static loads are obtained from train motion. Interaction phenomena such as rolling, spinning and sidling can be included. The modeling tool and a methodology are described in the presented paper. Significant differences in the calculated state between the FE solution and the traditional approaches can be observed. These differences are most significant in situations with flange contact. (author)