WorldWideScience

Sample records for high-mg siliceous mafic

  1. Petrogenesis of siliceous high-Mg series rocks as exemplified by the Early Paleoproterozoic mafic volcanic rocks of the Eastern Baltic Shield: enriched mantle versus crustal contamination

    Science.gov (United States)

    Bogina, Maria; Zlobin, Valeriy; Sharkov, Evgenii; Chistyakov, Alexeii

    2015-04-01

    The Early Paleoproterozoic stage in the Earth's evolution was marked by the initiation of global rift systems, the tectonic nature of which was determined by plume geodynamics. These processes caused the voluminous emplacement of mantle melts with the formation of dike swarms, mafic-ultramafic layered intrusions, and volcanic rocks. All these rocks are usually considered as derivatives of SHMS (siliceous high-magnesian series). Within the Eastern Baltic Shield, the SHMS volcanic rocks are localized in the domains with different crustal history: in the Vodlozero block of the Karelian craton with the oldest (Middle Archean) crust, in the Central Block of the same craton with the Neoarchean crust, and in the Kola Craton with a heterogeneous crust. At the same time, these rocks are characterized by sufficiently close geochemical characteristics: high REE fractionation ((La/Yb)N = 4.9-11.7, (La/Sm)N=2.3-3.6, (Gd/Yb)N =1.66-2.74)), LILE enrichment, negative Nb anomaly, low to moderate Ti content, and sufficiently narrow variations in Nd isotope composition from -2.0 to -0.4 epsilon units. The tectonomagmatic interpretation of these rocks was ambiguous, because such characteristics may be produced by both crustal contamination of depleted mantle melts, and by generation from a mantle source metasomatized during previous subduction event. Similar REE patterns and overlapping Nd isotope compositions indicate that the studied basaltic rocks were formed from similar sources. If crustal contamination en route to the surface would play a significant role in the formation of the studied basalts, then almost equal amounts of contaminant of similar composition are required to produce the mafic rocks with similar geochemical signatures and close Nd isotopic compositions, which is hardly possible for the rocks spaced far apart in a heterogeneous crust. This conclusion is consistent with analysis of some relations between incompatible elements and their ratios. In particular, the

  2. Storage conditions of the mafic and silicic magmas at Cotopaxi, Ecuador

    Science.gov (United States)

    Martel, Caroline; Andújar, Joan; Mothes, Patricia; Scaillet, Bruno; Pichavant, Michel; Molina, Indira

    2018-04-01

    The 2015 reactivation of the Cotopaxi volcano urges us to understand the complex eruptive dynamics of Cotopaxi for better management of a potential major crisis in the near future. Cotopaxi has commonly transitioned from andesitic eruptions of strombolian style (lava flows and scoria ballistics) or nuées ardentes (pyroclastic flows and ash falls) to highly explosive rhyolitic ignimbrites (pumiceous pyroclastic flows), which entail drastically different risks. To better interpret geophysical and geochemical signals, Cotopaxi magma storage conditions were determined via existing phase-equilibrium experiments that used starting materials chemically close to the Cotopaxi andesites and rhyolites. The results suggest that Cotopaxi's most mafic andesites (last erupted products) can be stored over a large range of depth from 7 km to ≥16 km below the summit (pressure from 200 to ≥400 MPa), 1000 °C, NNO +2, and contain 4.5-6.0±0.7 wt% H2O dissolved in the melt in equilibrium with 30-40% phenocrysts of plagioclase, two pyroxenes, and Fe-Ti oxides. These mafic andesites sometimes evolve towards more silicic andesites by cooling to 950 °C. Rhyolitic magmas are stored at 200-300 MPa (i.e. 7-11 km below the summit), 750 °C, NNO +2, and contain 6-8 wt% H2O dissolved in a nearly aphyric melt (<5% phenocrysts of plagioclase, biotite, and Fe-Ti oxides). Although the andesites produce the rhyolitic magmas by fractional crystallization, the Cotopaxi eruptive history suggests reactivation of either reservoirs at distinct times, likely reflecting flux or time fluctuations during deep magma recharge.

  3. Occurrence and mineral chemistry of chromite and related silicates from the Hongshishan mafic-ultramafic complex, NW China with petrogenetic implications

    Science.gov (United States)

    Ruan, Banxiao; Yu, Yingmin; Lv, Xinbiao; Feng, Jing; Wei, Wei; Wu, Chunming; Wang, Heng

    2017-10-01

    The Hongshishan mafic-ultramafic complex is located in the western Beishan Terrane, NW China, and hosts an economic Ni-Cu deposit. Chromite as accessory mineral from the complex is divided into three types based on its occurrence and morphology. Quantitative electron probe microanalysis (EPMA) have been conducted on the different types of chromites. Type 1 chromite occurs as inclusions within silicate minerals and has relatively homogeneous composition. Type 2 chromite occurs among serpentine, as interstitial phase. Type 3 chromite is zoned and exhibits a sudden change in compositions from core to rim. Type 1 chromite occurs in olivine gabbro and troctolite showing homogeneous composition. This chromite is more likely primary. Interstitial type 2 and zoned type 3 chromite has compositional variation from core to rim and is more likely modified. Abundant inclusions of orthopyroxene, phlogopite and hornblende occur within type 2 and type 3 chromites. The parental melt of type 1 chromite has an estimated composition of 14.5 wt% MgO, 12.3 wt% Al2O3 and 1.9 wt% TiO2 and is characterized by high temperature, picritic affinity, hydrous nature and high Mg and Ti contents. Compositions of chromite and clinopyroxene are distinct from those of Alaskan-type complexes and imply that the subduction-related environment is not reasonable. Post orogenic extension and the early Permian mantle plume are responsible for the emplacement of mafic-ultramafic complexes in the Beishan Terrane. The cores of zoned chromites are classified as ferrous chromite and the rims as ferrian chromite. The formation of ferrian rim involves reaction of ferrous chromite, forsterite and magnetite to produce ferrian chromite and chlorite, or alternaively, the rim can be simply envisioned as the result of external addition of magnetite in solution to the already formed ferrous chromite.

  4. Origin of silicic magmas along the Central American volcanic front: Genetic relationship to mafic melts

    Science.gov (United States)

    Vogel, Thomas A.; Patino, Lina C.; Eaton, Jonathon K.; Valley, John W.; Rose, William I.; Alvarado, Guillermo E.; Viray, Ela L.

    2006-09-01

    Silicic pyroclastic flows and related deposits are abundant along the Central American volcanic front. These silicic magmas erupted through both the non-continental Chorotega block to the southeast and the Paleozoic continental Chortis block to the northwest. The along-arc variations of the silicic deposits with respect to diagnostic trace element ratios (Ba/La, U/Th, Ce/Pb), oxygen isotopes, Nd and Sr isotope ratios mimic the along-arc variation in the basaltic and andesitic lavas. This variation in the lavas has been interpreted to indicate relative contributions from the slab and asthenosphere to the basaltic magmas [Carr, M.J., Feigenson, M.D., Bennett, E.A., 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contributions to Mineralogy and Petrology, 105, 369-380.; Patino, L.C., Carr, M.J. and Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138 (3), 265-283.]. With respect to along-arc trends in basaltic lavas the largest contribution of slab fluids is in Nicaragua and the smallest input from the slab is in central Costa Rica — similar trends are observed in the silicic pyroclastic deposits. Data from melting experiments of primitive basalts and basaltic andesites demonstrate that it is difficult to produce high K 2O/Na 2O silicic magmas by fractional crystallization or partial melting of low-K 2O/Na 2O sources. However fractional crystallization or partial melting of medium- to high-K basalts can produce these silicic magmas. We interpret that the high-silica magmas associated Central America volcanic front are partial melts of penecontemporaneous, mantle-derived, evolved magmas that have ponded and crystallized in the mid-crust — or are melts extracted from these nearly completely crystallized magmas.

  5. Mafic-silicic magma interaction in the layered 1.87 Ga Soukkio Complex in Mäntsälä, southern Finland

    Directory of Open Access Journals (Sweden)

    Toni T. Eerola

    2002-01-01

    Full Text Available The Svecofennian layered Soukkio Complex (1.87 Ga in Mäntsälä, southern Finland, consists of layered tholeiitic gabbro and porphyritic calc-alkaline monzonite, quartz monzonite and granite, mingled together. The gabbro belongs to a group of ten mafic-ultramafic intrusions of Mäntsälä, part of the 150 km long and 20 km wide, linear, E-W trending Hyvinkää–Mäntsälä Gabbroic Belt(HMGB, representing syn-collisional magmatism. Structures and textures related to magma mingling and mixing occur in a 1–2 km wide zone around Lake Kilpijärvi, located at the center of the Soukkio Complex. The complex is compositionally stratified and consists of four zones:its base, found at the Western Zone, is a dynamically layered gabbro. The followingtonalite is probably a result of magma mixing. Felsic amoeboid layers and pipes, alternating with or cutting the fine-grained gabbro in the Central-Western Zone, resemble those of mafic-silicic layered intrusions in general. Mafic magmatic enclaves (MMEs and pillows form the South-Central Zone and disrupted synplutonic mafic dykes or sheets intruded the granite in the Eastern Zone. The MMEs and disrupted synplutonic mafic dykes or sheets show cuspate and chilled margins against the felsic host, quartz ocelli, corroded K-feldspar xenocrysts with or without plagioclase mantles, and acicular apatite, all typical features of magma mingling and mixing. Mixing is suggested by intermediate composition of MMEs between granitoid and gabbro, as well as by their partly linear trends in some Harker diagrams. REE composition of the MMEs is similar to that of the Soukkio Gabbro, as expected for granite hosted MMEs. The model proposed for evolution of the Soukkio Complex involves intrusion of mafic magma into the crust, causing its partial melting. This generated granitic magma above the mafic chamber. Injections of mafic magma invaded the felsic chamber and those magmas interacted mainly by intermingling. Mingling and

  6. Silicate geothermometry as an indicator of water-rock interaction processes in the serpentinized mafic-ultramafic intrusion of Ylivieska

    International Nuclear Information System (INIS)

    Ruskeeniemi, T.; Blomqvist, R.; Vuorela, P.; Frape, S.K.; Blyth, A.

    1996-01-01

    The aim of the study was to use oxygen and hydrogen isotopes to examine the origin of different generations of serpentine. Of special interest was the study of low-temperature generations that may be correlated with the present meteoric waters. The research was commenced with drill core logging in order to obtain insight into the fracture minerals and their distribution in a mafic-ultramafic intrusion. (39 refs., 17 figs., 5 tabs.)

  7. Crustal contamination versus an enriched mantle source for intracontinental mafic rocks: Insights from early Paleozoic mafic rocks of the South China Block

    Science.gov (United States)

    Xu, Wenjing; Xu, Xisheng; Zeng, Gang

    2017-08-01

    Several recent studies have documented that the silicic rocks (SiO2 > 65 wt.%) comprising Silicic Large Igneous Provinces are derived from partial melting of the crust facilitated by underplating/intraplating of "hidden" large igneous province-scale basaltic magmas. The early Paleozoic intracontinental magmatic rocks in the South China Block (SCB) are dominantly granitoids, which cover a combined area of 22,000 km2. In contrast, exposures of mafic rocks total only 45 km2. These mafic rocks have extremely heterogeneous isotopic signatures that range from depleted to enriched (whole rock initial 87Sr/86Sr = 0.7041-0.7102; εNd(t) = - 8.4 to + 1.8; weighted mean zircon εHf(t) = - 7.4 to + 5.2), show low Ce/Pb and Nb/U ratios (0.59-13.1 and 3.5-20.9, respectively), and variable Th/La ratios (0.11-0.51). The high-MgO mafic rocks (MgO > 10 wt.%) tend to have lower εNd(t) values (- 4) and Sm/Nd ratios (> 0.255). The differences in geochemistry between the high-MgO and low-MgO mafic rocks indicate greater modification of the compositions of high-MgO mafic magmas by crustal material. In addition, generally good negative correlations between εNd(t) and initial 87Sr/86Sr ratios, MgO, and K2O, along with the presence of inherited zircons in some plutons, indicate that the geochemical and isotopic compositions of the mafic rocks reflect significant crustal contamination, rather than an enriched mantle source. The results show that high-MgO mafic rocks with fertile isotopic compositions may be indicative of crustal contamination in addition to an enriched mantle source, and it is more likely that the lithospheric mantle beneath the SCB during the early Paleozoic was moderately depleted than enriched by ancient subduction processes.

  8. Stratigraphy, distribution, and evidence for mafic triggering of the ca. 8.5 ka Driftwood Pumice eruption, Makushin Volcano, Alaska, U.S.A

    Science.gov (United States)

    Lerner, Allan H.; Crowley, Peter D.; Nicolaysen, Kirsten P.; Hazlett, Richard W.

    2018-05-01

    Makushin Volcano on Unalaska Island, Alaska, threatens the Aleutian's largest population centers (Unalaska and Dutch Harbor), yet its eruption mechanisms are poorly known. This study presents a detailed stratigraphic and geochemical investigation of Makushin's most recent highly explosive event: the ca. 8.5 ka Driftwood Pumice eruption. The Driftwood Pumice has measured thicknesses of over 2.5 m, and isopach reconstructions estimate a total deposit volume of 0.3 to 1.6 km3, indicating a VEI 4-5 eruption. Proximal deposits consist of normally-graded, tan, dacitic to andesitic pumice, capped by a thinner dark layer of lower-silica andesitic scoria mixed with abundant lithic fragments. This stratigraphy is interpreted as an initial vent-clearing eruption that strengthened into a climactic ejection of pumice and ash and concluded with vent destabilization and the eruption of somewhat more mafic, gas-poor magma. Within the pumice, geochemical trends, disequilibrium mineral populations, and mineral zonation patterns show evidence of magma mixing between a bulk silicic magma and a mafic melt. Euhedral high-Ca plagioclase (An68-91) and high-Mg olivine (Fo69-77) phenocrysts are in disequilibrium with trachydacitic glass (65-68 wt% SiO2) and more abundant sodic plagioclase (An34-55), indicating the former originally crystallized in a more mafic melt. Tephra whole rock compositions become more mafic upwards through the deposit, ranging from a basal low-silica dacite to an andesite (total range: 60.8-63.3 wt% SiO2). Collectively, these compositional variations suggest magma mixing in the Driftwood Pumice (DWP) magma reservoir, with a systematic increase in the amount of a mafic component (up to 25%) upward through the deposit. Olivine-liquid and liquid-only thermometry indicate the mafic magma intruded at temperatures 140-200 °C hotter than the silicic magma. Diffusion rates calculated for 5-7 μm thick, lower-Mg rims on the olivine phenocrysts (Fo60 rim vs Fo76 bulk) suggest

  9. Vesuvianite–wollastonite–grossular-bearing calc-silicate rock near ...

    Indian Academy of Sciences (India)

    Felsic layers are white in colour, whereas mafic layers range from green, brown to grey colour depending on the modal abundance of different mafic minerals. Layers rich in diopside are green coloured and those rich in garnet are brown. Keywords. Vesuvianite; wollastonite; grossular; diopside; calc-silicate rock. J. Earth ...

  10. Petrological constraints on the recycling of mafic crystal mushes, magma ascent and intrusion of braided sills in the Torres del Paine mafic complex (Patagonia)

    Science.gov (United States)

    Leuthold, Julien; Müntener, Othmar; Baumgartner, Lukas; Putlitz, Benita

    2014-05-01

    Cumulate and crystal mush disruption and reactivation are difficult to recognise in coarse grained shallow plutonic rocks. Mafic minerals included in hornblende and zoned plagioclase provide snapshots of early crystallization and cumulate formation, but are difficult to interpret in terms of the dynamics of magma ascent and possible links between silicic and mafic rock emplacement. We will present the field relations, the microtextures and the mineral chemistry of the Miocene mafic sill complex of the Torres del Paine intrusive complex (Patagonia, Chile) and its sub-vertical feeder-zone. The mafic sill complex was built up by a succession of braided sills of shoshonitic and high-K calc-alkaline porphyritic hornblende-gabbro and fine grained monzodioritic sills. The mafic units were over-accreted over 41±11 ka, underplating the overlying granite. Local diapiric structures and felsic magma accumulation between sills indicate limited separation of intercumulus liquid from the mafic sills. Anhedral hornblende cores, with olivine + clinopyroxene ± plagioclase ± apatite inclusions, crystallized at temperatures >900°C and pressures of ~300 to ~500 MPa. The corresponding rims and monzodiorite matrix crystallized at 950°C) from the middle crust reservoir to the emplacement level. We show that hornblende-plagioclase thermobarometry is a useful monitor for the determination of segregation conditions of granitic magmas from gabbroic crystal mushes, and for monitoring the evolution of shallow crustal magmatic crystallization, decompression and cooling.

  11. High-Mg basalts as a Signal of Magma System Replenishment at Lopevi Island, Vanuatu

    Science.gov (United States)

    Stewart, R. B.; Smith, I. E.; Turner, M. B.; Cronin, S. J.

    2007-05-01

    Lopevi is is a basalt to basaltic andesite island stratovolcano in central Vanuatu and is part of a long-lived, mature Island Arc chain. Central Vanuatu is tectonically influenced by the subduction of the D'Entrecasteaux zone. Primitive rock types that have been identified from the arc include picrites, ankaramites and high MgO basalts. High MgO rocks are generally considered to be a relatively rare component of arc-type magma suites but as detailed sequence sampling of individual volcanoes occurs, they have been identified more often. Here we report on the occurrence of high-Mg basalts in a sequence of lavas erupted in the last 100 years from Lopevi volcano. Activity at Lopevi is characteristically intermittent with eruptive sequences occurring over a c. 6 year period, separated by longer periods of repose. A major eruptive episode in 1939 caused evacuation of the island and the next eruptive episode in the 1960's also led to evacuation. The 1960's cycle of activity ended in 1982. The most recent phase of activity commenced in 1998 with a return to eruption of more siliceous, high alumina basaltic andesite. Geochemical data show that the 1960's lavas were different from those erupted earlier and later. They are olivine basalts with up to 9 wt percent MgO, 70 ppm Ni and 300 ppm Cr; Al2O3 content is about 12 wt percent. The 2003 lavas and pre-1960's lavas, in contrast, are basaltic andesites with c. 4 wt percent MgO, less than 25 ppm Ni, less than 100 ppm Cr and c. 20 wt percent Al2O3. The 1960's Lopevi sequence of eruptions represents an injection of a more primitive, high MgO magma at the end of a 21 year quiescent period after the major eruptions of 1939. Injection of small batches of more primitive magmas over decadal time periods at Lopevi marks the initiation of a new magmatic cycle. The occurrence of high MgO magmas as part of a cycle that includes typically low MgO arc type rocks demonstrates a consanguineous relationship and shows that high MgO arc type

  12. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  13. Mesozoic mafic dikes from the Shandong Peninsula, North China Craton: Petrogenesis and tectonic implications

    International Nuclear Information System (INIS)

    Liu Shen; Hu Ruizhong; Zhao Junhong; Feng Caixia; Zou, Haibo

    2006-01-01

    Mesozoic mafic dikes are widely distributed in Luxi (Mengyin and Zichuan) and Jiaodong regions of the Shandong Peninsula, China, providing an opportunity of investigating the nature of the lost lithospheric mantle beneath the North China Craton (NCC). The mafic dikes are characterized by strong depletion in high field strength elements (HFSE), enrichment in light rare earth elements (LREE), highly variable Th/U ratios, high initial ( 87 Sr/ 86 Sr) i (0.7050-0.7099) and negative ε Nd (T) (-6.0 to -17.6). They were derived from melting of metasomatized portions of the subcontinental lithospheric mantle, followed by fractionation of clinopyroxenes. The similarity in Nd isotopic compositions between the Mengyin gabbro dikes and the Paleozoic peridotite xenoliths suggests that ancient lithospheric mantle was still retained at 120 Ma below Mengyin, although the ancient lithospheric mantle in many other places beneath NCC had been severely modified. There might be multiple enrichment events in the lithospheric mantle. An early-stage (before or during Paleozoic) rutile-rich metasomatism affected the lithospheric mantle below Mengyin, Jiaodong and Zichuan. Since then, the lithospheric mantle beneath Mengyin was isolated. A late-stage metasomatism by silicate melts modified the lithospheric mantle beneath Jiaodong and Zichuan but not Mengyin. The removal of the enriched lithospheric mantle and the generation of the mafic dikes may be mainly related to the convective overturn accompanying Jurassic-Cretaceous subduction of the paleo-Pacific plate. (author)

  14. Geochemistry and geodynamics of the Mawat mafic complex in the Zagros Suture zone, northeast Iraq

    Science.gov (United States)

    Azizi, Hossein; Hadi, Ayten; Asahara, Yoshihiro; Mohammad, Youssef Osman

    2013-12-01

    The Iraqi Zagros Orogenic Belt includes two separate ophiolite belts, which extend along a northwest-southeast trend near the Iranian border. The outer belt shows ophiolite sequences and originated in the oceanic ridge or supra-subduction zone. The inner belt includes the Mawat complex, which is parallel to the outer belt and is separated by the Biston Avoraman block. The Mawat complex with zoning structures includes sedimentary rocks with mafic interbedded lava and tuff, and thick mafic and ultramafic rocks. This complex does not show a typical ophiolite sequences such as those in Penjween and Bulfat. The Mawat complex shows evidence of dynamic deformation during the Late Cretaceous. Geochemical data suggest that basic rocks have high MgO and are significantly depleted in LREE relative to HREE. In addition they show positive ɛ Nd values (+5 to+8) and low 87Sr/86Sr ratios. The occurrence of some OIB type rocks, high Mg basaltic rocks and some intermediate compositions between these two indicate the evolution of the Mawat complex from primary and depleted source mantle. The absence of a typical ophiolite sequence and the presence of good compatibility of the source magma with magma extracted from the mantle plume suggests that a mantle plume from the D″ layer is more consistent as the source of this complex than the oceanic ridge or supra-subduction zone settings. Based on our proposed model the Mawat basin represents an extensional basin formed during the Late Paleozoic to younger along the Arabian passive margin oriented parallel to the Neo-Tethys oceanic ridge or spreading center. The Mawat extensional basin formed without creation of new oceanic basement. During the extension, huge volumes of mafic lava were intruded into this basin. This basin was squeezed between the Arabian Plate and Biston Avoraman block during the Late Cretaceous.

  15. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  16. Aleutian tholeiitic and calc-alkaline magma series I: The mafic phenocrysts

    Science.gov (United States)

    Kay, S. Mahlburg; Kay, Robert W.

    1985-07-01

    Diagnostic mafic silicate assemblages in a continuous spectrum of Aleutian volcanic rocks provide evidence for contrasts in magmatic processes in the Aleutian arc crust. Tectonic segmentation of the arc exerts a primary control on the variable mixing, fractional crystallization and possible assimilation undergone by the magmas. End members of the continuum are termed calc-alkaline (CA) and tholeiitic (TH). CA volcanic rocks (e.g., Buldir and Moffett volcanoes) have low FeO/MgO ratios and contain compositionally diverse phenocryst populations, indicating magma mixing. Their Ni and Cr-rich magnesian olivine and clinopyroxene come from mantle-derived mafic olivine basalts that have mixed with more fractionated magmas at mid-to lower-crustal levels immediately preceding eruption. High-Al amphibole is associated with the mafic end member. In contrast, TH lavas (e.g., Okmok and Westdahl volcanoes) have high FeO/MgO ratios and contain little evidence for mixing. Evolved lavas represent advanced stages of low pressure crystallization from a basaltic magma. These lavas contain groundmass olivine (FO 40 50) and lack Ca-poor pyroxene. Aleutian volcanic rocks with intermediate FeO/MgO ratios are termed transitional tholeiitic (TTH) and calc-alkaline (TCA). TCA magmas are common (e.g., Moffett, Adagdak, Great Sitkin, and Kasatochi volcanoes) and have resulted from mixing of high-Al basalt with more evolved magmas. They contain amphibole (high and low-Al) or orthopyroxene or both and are similar to the Japanese hypersthene-series. TTH magmas (e.g., Okmok and Westdahl) contain orthopyroxene or pigeonite or both, and show some indication of upper crustal mixing. They are mineralogically similar to the Japanese pigeonite-series. High-Al basalt lacks Mg-rich mafic phases and is a derivative magma produced by high pressure fractionation of an olivine tholeiite. The low pressure mineral assemblage of high-Al basalt results from crystallization at higher crustal levels.

  17. Genesis of Cenozoic intraplate high Mg# andesites in Northeast China

    Science.gov (United States)

    Liu, J. Q.; Chen, L. H.; Zhong, Y.; Wang, X. J.

    2017-12-01

    High-Mg# andesites (HMAs) are usually generated in the converged plate boundary and have genetic relationships with slab subduction. However, it still remained controversial about the origin of those HMAs erupted in the intra-plate setting. Here we present major, trace element, and Sr-Nd-Pb-Hf isotopic compositions for the Cenozoic intra-plate HMAs from Northeast China to constrain their origin and formation process. Cenozoic Xunke volcanic rocks are located in the northern Lesser Khingan Range, covering an area of about 3, 000 km2. These volcanic rocks are mainly basaltic andesite and basaltic trachyandesite, with only several classified as trachyandesite and andesites. They have high SiO2 contents (54.3-57.4 wt%) and Mg# (49.6-57.8), falling into the scope of high Mg# andesites. The Xunke HMAs are enriched in large ion lithophile elements but depleted in high field strength elements, with positive Ba, K, Sr and negative Zr-Hf, and Ti anomalies. Their trace element absolute concentrations are between those of potassic basalts and Wuchagou HMAs. The Xunke HMAs have relatively enriched Sr-Nd-Hf isotopes (87Sr/86Sr = 0.705398-0.705764, ɛNd=-8.8-3.8, ɛHf=0.5-11.7), and low radiogenic Pb isotopes (206Pb/204Pb = 16.701-17.198), towards to the EM1 end-member, which indicates that they are ultimately derived from ancient, recycled crustal components. Primitive silica-rich melts were generated from higher degrees of partial melting of recycled crustal materials (relative to potassic basalts) and then interacted with the peridotite to produce the Xunke HMAs.

  18. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  19. Petrogenesis of the Alaskan-type mafic-ultramafic complex in the Makkah quadrangle, western Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Habtoor, Abdelmonem; Ahmed, Ahmed Hassan; Harbi, Hesham

    2016-10-01

    The Makkah quadrangle is a part of the Jeddah terrane in the Precambrian basement, Western Arabian Shield of Saudi Arabia. Gabal Taftafan mafic-ultramafic complex lies within the central part of the Makkah quadrangle. The Taftafan mafic-ultramafic complex is a well-differentiated rock association which comprises of dunite core, hornblende- and plagioclase-bearing peridotites, troctolite, clinopyroxenite and marginal gabbro, in a distinctive zonal structure. The bulk-rock geochemistry of the Taftafan mafic-ultramafic rocks is characterized by a tholeiitic/sub-alkaline affinity with high Mg in the ultramafic core (0.84) and is systematically decreased towards the marginal gabbro (0.60). The patterns of trace elements show enrichment in the fluid-mobile elements (Sr, Ba) and a pronounced negative Nb anomaly which reflect a hydrous parental magma generated in a subduction tectonic setting. The mafic-ultramafic rocks of the Taftafan complex have low total rare earth elements (REE) displaying sub-parallel patterns leading to the assumption that these rocks are comagmatic and are formed by fractional crystallization from a common magma type. The platinum-group elements (PGE) content of all rock types in the Taftafan complex is very low, with ∑ PPGE > ∑ IPGE; displaying slightly positive slopes of the PGE distribution patterns. The chemistry of ferromagnesian minerals is characterized by a high forsterite (Fo) olivine with wide range (Fo91-67), from ultramafic core to the marginal gabbro, Ca-rich diopsidic clinopyroxene, and calcic hornblende. Orthopyroxene is almost absent from all rock types, or very rare when present. Hornblende and Ca-plagioclase possess the longest crystallization history since they are present in almost all rock types of the complex. Spinels in the dunite and hornblende-bearing peridotite core show homogeneous composition with intermediate Cr# (0.53-0.67). Plagioclase-bearing peridotite and troctolite have two exsolved types of spinel; Al

  20. Pseudotachylitic breccia in mafic and felsic rocks

    Science.gov (United States)

    Kovaleva, Elizaveta; Huber, Matthew S.

    2017-04-01

    Impact-produced pseudotachylitic breccia (PTB) is abundant in the core of the Vredefort impact structure and was found in many pre-impact lithologies (e.g., Reimold and Colliston, 1994; Gibson et al., 1997). The mechanisms involved in the process of forming this rock remain highly debated, and various authors have discussed many possible models. We investigate PTB from two different rock types: meta-granite and meta-gabbro and test how lithology controls the development of PTB. We also report on clast transport between different lithologies. In the core of the Vredefort impact structure, meta-granite and meta-gabbro are observed in contact with each other, with an extensive set of PTB veins cutting through both lithologies. Microstructural analyses of the PTB veins in thin sections reveals differences between PTBs in meta-granite and meta-gabbro. In granitic samples, PTB often develops along contacts of material with different physical properties, such as a contact with a migmatite or pegmatite vein. Nucleation sites of PTB have features consistent with ductile deformation and shearing, such as sigmoudal-shaped clasts and dragged edges of the veins. Preferential melting of mafic and hydrous minerals takes place (e.g., Reimold and Colliston, 1994; Gibson et al., 2002). Refractory phases remain in the melt as clasts and form reaction rims. In contrast, PTB in meta-gabbro develop in zones with brittle deformation, and do not exploit existing physical contacts. Cataclastic zones develop along the faults and progressively produce ultracataclasites and melt. Thus, PTB veins in meta-gabbro contain fewer clasts. Clasts usually represent multi-phase fragments of host rock and not specific phases. Such fragments often originate from the material trapped between two parallel or horse-tail faults. The lithological control on the development of PTB does not imply that PTB develops independently in different lithologies. We have observed granitic clasts within PTB veins in meta

  1. Interaction of coeval felsic and mafic magmas from the Kanker ...

    Indian Academy of Sciences (India)

    66

    20 crystallization of the latter, results in hybrid magmas under the influence of thermal and. 21 chemical exchange. The mechanical exchange occurs between the coexisting magmas due to. 22 viscosity contrast, if the mafic magma enters slightly later into the magma chamber, when the. 23 felsic magma started to crystallize.

  2. Mafic dykes at the southwestern margin of Eastern Ghats belt ...

    Indian Academy of Sciences (India)

    Ghats belt: Evidence of rifting and collision. S Bhattacharya. 1,∗ ... 1.3 Ga, which may have been initiated by intra-plate volcanism. 1. Introduction ... tively, is described as a compressional orogen. Keywords. ... charnockite gneiss, around Naraseraopet, AP (b) Thin mafic ... Sometimes orthopyroxene also occurs at margin of.

  3. The influence of mineralogical, chemical and physical properties on grindability of commercial clinkers with high MgO level

    International Nuclear Information System (INIS)

    Souza, Vladia Cristina G. de; Koppe, Jair Carlos; Costa, Joao F.C.L.; Vargas, Andre Luis Marin; Blando, Eduardo; Huebler, Roberto

    2008-01-01

    This research investigates various methods able to identify possible mineralogical, physical and chemical influences on the grindability of commercial clinkers with high MgO level. The aim of the study is to evaluate the hardness and elastic modulus of the clinker mineral phases and their fracture strength during the comminution processes, comparing samples from clinkers with low MgO level (0.5%) and clinkers with elevated MgO levels (> 5.0%). The study of the influence of mineralogical, chemical and physical properties was carried out using several analytical techniques, such as: optical microscopy, X-ray diffraction with Rietveld refinement (XRD) and X-ray fluorescence (XRF). These techniques were useful in qualifying the different clinker samples. The drop weight test (DWT) and the Bond ball mill grindability test were performed to characterize the mechanical properties of clinkers. Nanoindentation tests were also carried out. Results from the Bond ball mill grindability test were found to be related to the hardness of the mineral phase and to mineralogical characteristics, such as type and amount of inclusions in silicates, belite and alite crystals shape, or microcracked alites. In contrast, the results obtained by the DWT were associated to the macro characteristics of clinkers, such as porosity, as well as to the hardness and mineralogical characteristics of belite crystals in clusters. Hardness instrumented tests helped to determine the Vickers hardness and elastic modulus from the mineral phases in commercial clinkers and produced different values for the pure phases compared to previous publications

  4. The timing of compositionally-zoned magma reservoirs and mafic 'priming' weeks before the 1912 Novarupta-Katmai rhyolite eruption

    Science.gov (United States)

    Singer, Brad S.; Costa, Fidel; Herrin, Jason S.; Hildreth, Wes; Fierstein, Judith

    2016-01-01

    The June 6, 1912 eruption of more than 13 km3 of dense rock equivalent (DRE) magma at Novarupta vent, Alaska was the largest of the 20th century. It ejected >7 km3 of rhyolite, ~1.3 km3 of andesite and ~4.6 km3 of dacite. Early ideas about the origin of pyroclastic flows and magmatic differentiation (e.g., compositional zonation of reservoirs) were shaped by this eruption. Despite being well studied, the timing of events that led to the chemically and mineralogically zoned magma reservoir remain poorly known. Here we provide new insights using the textures and chemical compositions of plagioclase and orthopyroxene crystals and by reevaluating previous U-Th isotope data. Compositional zoning of the magma reservoir likely developed a few thousand years before the eruption by several additions of mafic magma below an extant silicic reservoir. Melt compositions calculated from Sr contents in plagioclase fill the compositional gap between 68 and 76% SiO2 in whole pumice clasts, consistent with uninterrupted crystal growth from a continuum of liquids. Thus, our findings support a general model in which large volumes of crystal-poor rhyolite are related to intermediate magmas through gradual separation of melt from crystal-rich mush. The rhyolite is incubated by, but not mixed with, episodic recharge pulses of mafic magma that interact thermochemically with the mush and intermediate magmas. Hot, Mg-, Ca-, and Al-rich mafic magma intruded into, and mixed with, deeper parts of the reservoir (andesite and dacite) multiple times. Modeling the relaxation of the Fe-Mg concentrations in orthopyroxene and Mg in plagioclase rims indicates that the final recharge event occurred just weeks prior to the eruption. Rapid addition of mass, volatiles, and heat from the recharge magma, perhaps aided by partial melting of cumulate mush below the andesite and dacite, pressurized the reservoir and likely propelled a ~10 km lateral dike that allowed the overlying rhyolite to reach the surface.

  5. Silicates in Alien Asteroids

    Science.gov (United States)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  6. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does not...

  7. Petrology and oxygen isotope geochemistry of the Pucon ignimbrite - Southern Andean volcanic zone, Chile: Implications for genesis of mafic ignimbrites

    International Nuclear Information System (INIS)

    McCurry, Michael; Schmidt, Keegan

    2001-01-01

    Although mafic components of dominantly intermediate to silicic ignimbrites are rather common, voluminous, dominantly mafic ignimbrites are rare (e.g., Smith, 1979; cf. Freundt and Schmincke, 1995). Volcan Villarrica, the most active composite volcano in South America, located in the Southern Andean Volcanic Zone (SAVZ, Lopez-Escobar and Moreno, 1994a), has produced two such ignimbrites, respectively the Lican and Pucon Ignimbrites, in the last 14,000 years (Clavero, 1996). The two ignimbrites are low-Si andesite and basaltic-andesite to low-Si andesite, respectively, the former about twice as voluminous as the later (10 and 5 km 3 ). Eruption of the ignimbrites produced calderas respectively 5 and 2 km in diameter (Moreno, 1995; Clavero, 1996). In addition to its mafic bulk composition, the Pucon Ignimbrite (PI) is also distinguished by numerous xenolithic fragments among and also within magmatic pyroclasts. Many of these are fragments of granitoid rocks. Volcan Villarrica has also produced numerous smaller mafic ignimbrites and pyroclastic surge deposits, as well as dominantly basaltic fallout and lava flows (Lopez-Escobar and Moreno, 1994; Moreno, 1995; Clavero, 1996; Hickey-Vargas et al., 1989; Tormey et al., 1991). Reasons for the unusual style of mafic explosive activity at Volcan Villarrica are unclear. Clavero (1996), based upon an exemplary thesis-study of the physical volcanology and petrology of the PI, suggests it formed in response to a sequence of events beginning with injection of a shallow basaltic andesite magma chamber by hotter basaltic magma. In his model mixing and heat transfer between the two magmas initiated a violent Strombolian eruption that destabilized the chamber causing infiltration of large amounts of meteoric-water saturated country rocks. The Pucon Ignimbrite formed in response to subsequent phreatomagmatic interactions. In contrast, Lopez-Escobar and Moreno (1994) infer on geochemical grounds that volatiles leading to the explosive

  8. The Origin of Silicic Arc Crust - Insights from the Northern Pacific Volcanic Arcs through Space and Time

    Science.gov (United States)

    Straub, S. M.; Kelemen, P. B.

    2016-12-01

    The remarkable compositional similarities of andesitic crust at modern convergent margins and the continental crust has long evoked the hypothesis of similar origins. Key to understanding either genesis is understanding the mode of silica enrichment. Silicic crust cannot be directly extracted from the upper mantle. Hence, in modern arcs, numerous studies - observant of the pervasive and irrefutable evidence of melt mixing - proposed that arc andesites formed by mixing of mantle-derived basaltic melts and fusible silicic material from the overlying crust. Mass balance requires the amount of silicic crust in such hybrid andesites to be on the order to tens of percent, implying that their composition to be perceptibly influenced by the various crustal basements. In order to test this hypothesis, major and trace element compositions of mafic and silicic arc magmas with arc-typical low Ce/PbMexico) were combined with Pb isotope ratios. Pb isotope ratios are considered highly sensitive to crustal contamination, and hence should reflect the variable composition of the oceanic and continental basement on which these arcs are constructed. In particular, in thick-crust continental arcs where the basement is isotopically different from the mantle and crustal assimilation thought to be most prevalent, silicic magmas must be expected to be distinct from those of the associated mafic melts. However, in a given arc, the Pb isotope ratios are constant with increasing melt silica regardless of the nature of the basement. This observation argues against a melt origin of silicic melts from the crustal basement and suggest them to be controlled by the same slab flux as their co-eval mafic counterparts. This inference is validated by the spatial and temporal pattern of arc Pb isotope ratios along the Northern Pacific margins and throughout the 50 million years of Cenozoic evolution of the Izu Bonin Mariana arc/trench system that are can be related to with systematic, `real

  9. The Mafic Lower Crust of Neoproterozoic age beneath Western Arabia: Implications for Understanding African Lower Crust

    Science.gov (United States)

    Stern, R. J.; Mooney, W. D.

    2011-12-01

    ) and Cr (435 vs. 117 ppm). Despite high Mg# in pyroxene-rich xenoliths, mineral compositions of labradoritic plagioclase (mean ~An64) and relatively Fe-rich pyroxenes (mean OPX ~En63; mean CPX~ WO48 En35 Fs17) indicate that these are somewhat fractionated. Trace element patterns are similar to those expected for convergent-margin magmatic suites. Nd-model ages define a mean of 0.76±0.08 Ga, similar to the age of exposed Arabian Shield upper crust. An isochron plot (147Sm/144Nd vs. 143Nd/144Nd) is consistent with formation in Neoproterozoic time. Lower crust of Arabia clearly formed during Neoproterozoic time, about the same time as its upper crust complement; a similar origin for the lower crust beneath the broad expanses of Neoproterozoic crust in N and E Africa is likely. There is no evidence that any of the mafic lower crust of Arabia formed due to underplating by Cenozoic magmas, which may also be true for NE Africa and perhaps mafic lower crust on the flanks of the East African Rift. Such an interpretation predicts a strong lower crust for those regions underlain by anhydrous mafic lower crust of Neoproterozoic age.

  10. Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric 10Be/9Be ratios

    Science.gov (United States)

    Dannhaus, N.; Wittmann, H.; Krám, P.; Christl, M.; von Blanckenburg, F.

    2018-02-01

    Quantifying rates of weathering and erosion of mafic rocks is essential for estimating changes to the oceans alkalinity budget that plays a significant role in regulating atmospheric CO2 levels. In this study, we present catchment-wide rates of weathering, erosion, and denudation measured with cosmogenic nuclides in mafic and ultramafic rock. We use the ratio of the meteoric cosmogenic nuclide 10Be, deposited from the atmosphere onto the weathering zone, to stable 9Be, a trace metal released by silicate weathering. We tested this approach in stream sediment and water from three upland forested catchments in the north-west Czech Republic. The catchments are underlain by felsic (granite), mafic (amphibolite) and ultramafic (serpentinite) lithologies. Due to acid rain deposition in the 20th century, the waters in the granite catchment exhibit acidic pH, whereas waters in the mafic catchments exhibit neutral to alkaline pH values due to their acid buffering capability. The atmospheric depositional 10Be flux is estimated to be balanced with the streams' dissolved and particulate meteoric 10Be export flux to within a factor of two. We suggest a correlation method to derive bedrock Be concentrations, required as an input parameter, which are highly heterogeneous in these small catchments. Derived Earth surface metrics comprise (1) Denudation rates calculated from the 10Be/9Be ratio of the "reactive" Be (meaning sorbed to mineral surfaces) range between 110 and 185 t km-2 y-1 (40 and 70 mm ky-1). These rates are similar to denudation rates we obtained from in situ-cosmogenic 10Be in quartz minerals present in the bedrock or in quartz veins in the felsic and the mafic catchment. (2) The degree of weathering, calculated from the fraction of 9Be released from primary minerals as a new proxy, is about 40-50% in the mafic catchments, and 10% in the granitic catchment. Lastly, (3) erosion rates were calculated from 10Be concentrations in river sediment and corrected for sorting

  11. Understanding the monotonous life of open vent mafic volcanoes

    Science.gov (United States)

    Costa Rodriguez, F.; Ruth, D. C. S.; Bornas, M.; Rivera, D. J. V. I.

    2016-12-01

    Mafic open vent volcanoes display prominent degassing plumes during quiescence but also erupt frequently, every few months or years. Their small and mildly explosive eruptions (volatile contents indicate that the magma reservoir system extends at least to 5 km depth. Mg/Fe pyroxene zoning and diffusion modeling suggests that mafic magma intrusion in a shallow, crystal-rich and more evolved reservoir has occurred repeatedly. The time scale for this process is the same for all 9 events, starting about 2 years prior and continuing up to eruption. We estimate the relative proportions of injecting to resident magma that vary from about 0.2 to 0.7, probably reflecting the local crystal-melt interaction during intrusion. The near constant magma composition is probably the result of buffering of new incoming magma by a crystal-rich upper reservoir, and erupted magmas are physical mixtures. However, we do not find evidence of large-scale crystal recycling from one eruption to another, implying the resetting of the system after each event. The recurrent eruptions and intrusions could be driven by the near continuous degassing of the volcano that induces a mass imbalance which leads to magma movement from depth to the shallow system [e.g., 1]. [1] Girona et al. (2016). Science Reports doi:10.1038/srep18212

  12. Field and Experimental Constraints on the Dynamics of Replenished Silicic Magma Chambers

    Science.gov (United States)

    Bain, A. A.; Jellinek, M.

    2008-12-01

    The underlying causes of catastrophic caldera-forming volcanic eruptions remain poorly understood. However, the occurrence of magma mixing within bimodal systems has become increasingly linked with such eruptions. In particular, buoyancy effects related to unstable density contrasts arising as a result of silicic- basaltic magma interactions may play an important role in the growth, differentiation and catastrophic eruption of silicic magma chambers. Evidence of such magmatic interactions can be found in layered intrusions from the Coastal Maine Magmatic Province (USA), where well-exposed cross-sections reveal hundreds of laterally-extensive basaltic sheets, apparently injected as intrusive lava flows onto the growing floors of silicic magma chambers. Interfaces between mafic and silicic layers are commonly sharply defined and exhibit deformation parallel to the inferred direction of palaeo-gravity. Our field observations suggest that the cooling, settling and buckling of gravitationally-unstable mafic replenishments may have driven large-scale (basalt layer depth) and small- scale (crystal diameter) upwelling and/or overturning of underlying buoyant silicic cumulate material. In order to characterize the full range of buoyancy effects, we carried out extensive spectral analysis of high- resolution digital field measurements from the Pleasant Bay and Mount Desert Island intrusions. In many cases, Rayleigh-Taylor theory and the longest measured wavelength of deformation indicate that a large and potentially-quantifiable fraction of the original, pre-replenishment silicic cumulate thickness may be missing, implying that vertical mass transfer has occurred. In addition, the shortest wavelengths of deformation are generally consistent with observed length-scales of crystals and clumps of crystals at these localities. With the aim of understanding the initial conditions that gave rise to these field observations, we conduct a series of laboratory experiments in which we

  13. Geochemical characteristics of granitoids and related mafic granulites from the Pan-African Dahomeyide belt, southeastern Ghana

    International Nuclear Information System (INIS)

    Aidoo, F.

    2012-07-01

    -23%) and sometimes sericite and microline. The mafic granulites contain SiO 2 content of 43.10-49.40 wt. % with low to moderate Mg# of 37-60. They exhibit fractionated REE patterns with (La/Sm) N = 1.80-5.85 and (La/Yb) N = 3.76-76.30, and negative and positive Eu anomalies (Eu/Eu*'' = 0.68-2.10). The mafic granulites show total REEs content of 17.86-1245.13 ppm with Eu/Eu*'' between 1.01 and 1.36. Two types of mafic granulites are identified with one type displaying un-fractionated (flat), MORB-like REE patterns whereas the other shows slightly fractionated to highly fractionated, IAT-like REE patterns. The primitive mantle-normalised trace element patterns of the granulites show subduction-related geochemical characteristics. The LREE-enriched type show pronounced negative Th, U, Ta, Nb, Zr and Hf anomalies and positive l3a and Sr I) pical arc roots, whereas the un-fractionated type show pronounced Th-U trough, but slightly negative Ta, Nb, Hf, Ti anomalies and positive Ba and Sr anomalies, suggesting subduction inputs in the protolith of the MORB-like granulites. Thus, the mafic granulites show both N-MORB and IAT imprints. The ultramafic rock, AD6, associated with the mafic granulites is composed mainly of pyroxene (60%), plagioclase (13%), olivine (12%), hornblende (6%) and sericite (4%). It contains SiO 2 content of 52.80 wt. %; low TiO 2 (0.25 wt. %) and has very high Mg# of 84. The ultramaf-ic rock also shows total REEs content of 64.85 ppm, very high Cr of 3520 ppm and Ni of 48I ppm. The ultramafic rocks also show typical IAT signatures. In general, the mafic granulites and ultramafic rocks from the suture zone assemblages of the Dahomeyide belt suggest subduction zone magmatism with oceanic crust forming in either a back-arc basin or intra-arc basin environment. The geochemical characteristics of the granitoid gneisses from the external nappes (basement complex) also show subduction-related magmatic activity. Therefore, all the rocks studied

  14. Drilling the Bushveld Complex- the world's largest layered mafic intrusion

    Science.gov (United States)

    Ashwal, L. D.; Webb, S. J.; Trumbull, R. B.

    2013-12-01

    The fact that surprising new discoveries can be made in layered mafic intrusions (e.g., subtle 100-150 m cyclicity in apparently homogeneous cumulates over 1000s of m) means that we are still in the first-order characterization phase of understanding these objects. Accordingly, we have secured funding from ICDP for a planning workshop to be held in Johannesburg in early 2014, aimed at scientific drilling of the Bushveld Complex, the world's largest layered mafic intrusion. Science objectives include, but are not limited to: 1. Magma chamber processes & melt evolution. How many melts/magmas/mushes were involved, what were their compositions and how did they interact? What, if anything, is missing from the Complex, and where did it go? Did Bushveld magmatism have an effect upon Earth's atmosphere at 2 Ga? 2. Crust-mantle interactions & origin of Bushveld granitoids. Are Bushveld granites & rhyolites crustal melts, differentiates from the mafic magmas or products of immiscibility? How can the evolved isotopic signatures in the mafic rocks (e.g., epsilon Nd to -8) be understood? 3. Origin of ore deposits. What were the relative roles of gravity settling, magma mixing, immiscibility and hydrothermal fluid transport in producing the PGE, Cr and V deposits? We have identified 3 potential drilling targets representing a total of ~12 km of drill core. Exact locations of drill sites are to be discussed at the workshop. Target A- East-Central Bushveld Complex. We propose 3 overlapping 3 km boreholes that will provide the first roof-to-floor continuous coverage of the Rustenburg Layered Suite. These boreholes will represent a curated, internationally available reference collection of Bushveld material for present and future research. Target B- Southeastern Bushveld Complex. We propose a single borehole of ~2 km depth, collared in Rooiberg felsite, and positioned to intersect the Roof Zone, Upper Zone, Main Zone and floor of the Complex. Amongst other things, this site will

  15. Silicate glasses. Chapter 1

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e. borosilicate glass. A historical overview of waste form development programs in nine countries is followed by a summary of the design criteria for borosilicate glass compositions glass compositions. In the sections on glass properties the waste form is characterized in terms of potential alterations under the influence of heat, thermal gradients, radiation, aqueous solutions and combinations thereof. The topics are phase transformations, mechanical properties, radiation effects and chemical durability. The results from studies of volcanic glasses, as natural analogues for borosilicate nuclear waste glasses in order to verify predictions obtained from short-term tests in the laboratory, have been compiled in a special section on natural analogues. A special section on advanced vitrification techniques summarizes the various actual and potential processing schemes and describes the facilities. The literature has been considered until 1985. (author). 430 refs.; 68 figs.; 29 tabs

  16. Radioanalysis of siliceous materials

    International Nuclear Information System (INIS)

    Das, H.A.

    2003-01-01

    Both natural and induced radioactivity as well as man-made radiotracers may be applied to assess quality and its maintenance a widely varying range of siliceous materials. One example of industrial application is given for each of these three branches. Natural Radioactivity: The measurement of 222-Rn emanation from building material components serves the determination of the internal diffusion and thus of the effective porosity as well as the usual environmental control. Radiotracers: The specific surface area of silica components can be obtained from measurements of the chemisorptions of fluoride and its kinetics, using acid fluoride solutions and carrier-free 18-F, Tl/2 = 110 min, as the radiotracer. This also enables the determination of fluoride in drinking water at the (sub-) ppm level by spiking isotope dilution and substoichiometric adsorption to small glass beads. Neutron activation analysis (NAA): Concentration profiles down to the micro m-range of trace elements in small electronic components of irregular shape are derived from combination of NAA with controlled sequential etching flux in dilute HF-solutions. The cases of Na, Mn, Co and Se by instrumental NAA and that of W by chemical isolation from the reagent solution are considered. (author)

  17. Thermal diffusivity of felsic to mafic granulites at elevated temperatures

    Science.gov (United States)

    Ray, Labani; Förster, H.-J.; Schilling, F. R.; Förster, A.

    2006-11-01

    The thermal diffusivity of felsic and intermediate granulites (charnockites, enderbites), mafic granulites, and amphibolite-facies gneisses has been measured up to temperatures of 550 °C using a transient technique. The rock samples are from the Archean and Pan-African terranes of the Southern Indian Granulite Province. Thermal diffusivity at room temperature ( DRT) for different rock types ranges between 1.2 and 2.2 mm 2 s - 1 . For most of the rocks, the effect of radiative heat transfer is observed at temperatures above 450 °C. However, for few enderbites and mafic granulites, radiative heat transfer is negligible up to 550 °C. In the temperature range of conductive heat transfer, i.e., between 20 ° and 450 °C, thermal diffusivity decreases between 35% and 45% with increasing temperature. The temperature dependence of the thermal diffusivity is directly correlated with the thermal diffusivity at room temperature, i.e., the higher the thermal diffusivity at room temperature, DRT, the greater is its temperature dependence. In this temperature range i.e., between 20 and 450 °C, thermal diffusivity can be expressed as D = 0.7 mm 2 s -1 + 144 K ( DRT - 0.7 mm 2 s -1 ) / ( T - 150 K), where T is the absolute temperature in Kelvin. At higher temperatures, an additional radiative contribution is observed according to CT3, where C varies from 10 - 9 to 10 - 10 depending on intrinsic rock properties (opacity, absorption behavior, grain size, grain boundary, etc). An equation is presented that describes the temperature and pressure dependence thermal diffusivity of rocks based only on the room-temperature thermal diffusivity. Room-temperature thermal diffusivity and its temperature dependence are mainly dependent on the major mineralogy of the rock. Because granulites are important components of the middle and lower continental crust, the results of this study provide important constraints in quantifying more accurately the thermal state of the deeper continental

  18. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  19. 21 CFR 172.410 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  20. Contamination in mafic mineral-rich calc-alkaline granites: a geochemical and Sr-Nd isotope study of the Neoproterozoic Piedade Granite, SE Brazil

    Directory of Open Access Journals (Sweden)

    Leite Renato J.

    2006-01-01

    Full Text Available The Piedade Granite (~600 Ma was emplaced shortly after the main phase of granite magmatism in the Agudos Grandes batholith, Apiaí-Guaxupé Terrane, SE Brazil. Its main units are: mafic mineral-rich porphyritic granites forming the border (peraluminous muscovite-biotite granodiorite-monzogranite MBmg unit and core (metaluminous titanite-bearing biotite monzogranite BmgT unit and felsic pink inequigranular granite (Bmg unit between them. Bmg has high LaN/YbN (up to 100, Th/U (>10 and low Rb, Nb and Ta, and can be a crustal melt derived from deep-seated sources with residual garnet and biotite. The core BmgT unit derived from oxidized magmas with high Mg# (~45, Ba and Sr, fractionated REE patterns (LaN/YbN= 45, 87Sr/86Sr(t~ 0.710, epsilonNd(t ~ -12 to -14, interpreted as being high-K calc-alkaline magmas contaminated with metasedimentary rocks that had upper-crust signature (high U, Cs, Ta. The mafic-rich peraluminous granites show a more evolved isotope signature (87Sr/86Sr(t = 0.713-0.714; epsilonNd(t= -14 to -16, similar to Bmg, and Mg# and incompatible trace-element concentrations intermediate between Bmg and BmgT. A model is presented in whichMBmgis envisaged as the product of contamination between a mafic mineral-rich magma consanguineous with BmgT and pure crustal melts akin to Bmg.

  1. Early Cretaceous high-Ti and low-Ti mafic magmatism in Southeastern Tibet: Insights into magmatic evolution of the Comei Large Igneous Province

    Science.gov (United States)

    Wang, Yaying; Zeng, Lingsen; Asimow, Paul D.; Gao, Li-E.; Ma, Chi; Antoshechkina, Paula M.; Guo, Chunli; Hou, Kejun; Tang, Suohan

    2018-01-01

    The Dala diabase intrusion, at the southeastern margin of the Yardoi gneiss dome, is located within the outcrop area of the 132 Ma Comei Large Igneous Province (LIP), the result of initial activity of the Kerguelen plume. We present new zircon U-Pb geochronology results to show that the Dala diabase was emplaced at 132 Ma and geochemical data (whole-rock element and Sr-Nd isotope ratios, zircon Hf isotopes and Fe-Ti oxide mineral chemistry) to confirm that the Dala diabase intrusion is part of the Comei LIP. The Dala diabase can be divided into a high-Mg/low-Ti series and a low-Mg/high-Ti series. The high-Mg/low-Ti series represents more primitive mafic magma compositions that we demonstrate are parental to the low-Mg/high-Ti series. Fractionation of olivine and clinopyroxene, followed by plagioclase within the low-Mg series, lead to systematic changes in concentrations of mantle compatible elements (Cr, Co, Ni, and V), REEs, HFSEs, and major elements such as Ti and P. Some Dala samples from the low-Mg/high-Ti series contain large ilmenite clusters and show extreme enrichment of Ti with elevated Ti/Y ratios, likely due to settling and accumulation of ilmenite during the magma chamber evolution. However, most samples from throughout the Comei LIP follow the Ti-evolution trend of the typical liquid line of descent (LLD) of primary OIB compositions, showing strong evidence of control of Ti contents by differentiation processes. In many other localities, however, primitive magmas are absent and observed Ti contents of evolved magmas cannot be quantitatively related to source processes. Careful examination of the petrogenetic relationship between co-existing low-Ti and high-Ti mafic rocks is essential to using observed rock chemistry to infer source composition, location, and degree of melting.

  2. Devonian granitoids and their hosted mafic enclaves in the Gorny Altai terrane, northwestern Central Asian Orogenic Belt: crust-mantle interaction in a continental arc setting

    Science.gov (United States)

    Chen, Ming; Sun, Min

    2016-04-01

    Granitoids are a major component in the upper continental crust and hold key information on how did the continental crust grow and differentiate. This study focuses on the Yaloman intrusive complex from the Gorny Altai terrane, northwestern Central Asian Orogenic Belt (CAOB). The association of granitoids and mafic enclaves can provide important clues on the source nature, petrogenetic processes and geodynamic setting of the Yaloman intrusive complex, which in turn will shed light on the crustal evolution in the northwestern CAOB. Zircon U-Pb dating shows that the granitoids, including quartz diorites and granodiorites, were emplaced in ca. 389-387 Ma. The moderate Na2O + K2O contents and low A/CNK values indicate that these rocks belong to the sub-alkaline series with metaluminous to weakly peraluminous compositions. The granitoids yield two-stage zircon Hf model ages of ca. 0.79-1.07 Ga and whole-rock Nd model ages of ca. 0.90-0.99 Ga, respectively, implying that they were mainly sourced from Neoproterozoic juvenile crustal materials. The mafic enclaves show an almost identical crystallization age of ca. 389 Ma. The identification of coarse-grained xenocrysts and acicular apatites, together with the fine-grained texture, makes us infer that these enclaves are likely to represent magmatic globules commingled with the host magmas. The low SiO2 and high MgO contents of the mafic enclaves further suggest that substantial mantle-derived mafic melts were probably involved in their formation. Importantly, the SiO2 contents of the granitoids and mafic enclaves are well correlated with other major elements and most of the trace elements. Also a broadly negative correlation exists between the SiO2 contents and whole-rock epsilon Nd (390 Ma) values of the granitoids. Given the observation of reversely zoned plagioclases within the granitoids and the common occurrence of igneous mafic enclaves, we propose that magma mixing probably played an important role in the formation

  3. Mafic Materials in Scott Crater? A Test for Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Cooper, Bonnie L.

    2007-01-01

    Clementine 750 nm and multispectral ratio data, along with Lunar Orbiter and radar data, were used to study the crater Scott in the lunar south polar region. The multispectral data provide evidence for mafic materials, impact melts, anorthositic materials, and a small pyroclastic deposit. High-resolution radar data and Lunar Orbiter photography for this area show differences in color and surface texture that correspond with the locations of the hypothesized mafic and anorthositic areas on the crater floor. This region provides a test case for the upcoming Lunar Reconnaissance Orbiter. Verification of the existence of a mafic deposit at this location is relevant to future lunar resource utilization planning.

  4. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... with a spectacular improvement up to 300 % in impact strength were obtained. In the second part of this study, layered silicate bio-nanomaterials were obtained starting from natural compounds and taking into consideration their biocompatibility properties. These new materials may be used for drug delivery systems...... and as biomaterials due to their high biocompatible properties, and because they have the advantage of being biodegradable. The intercalation process of natural compounds within silicate platelets was investigated. By uniform dispersing of binary nanohybrids in a collagen matrix, nanocomposites with intercalated...

  5. On crystallochemistry of uranil silicates

    International Nuclear Information System (INIS)

    Sidorenko, G.A.; Moroz, I.Kh.; Zhil'tsova, I.G.

    1975-01-01

    A crystallochemical analysis has been made of uranil silicates. It is shown that on crystallochemical grounds it is justified to distinguish among them uranophane-kasolite, soddyite and viksite groups differing in the uranil-anion [SiO 4 ] -4 ratio and, as a consequence, in their crystallochemical structures. Widespread silicates of the uranophane-kasolite group is the formation of polytype modifications where, depending on the interlaminar cation, crystalline structures are formed with various packing of single-type uranil-anion layers. It has been shown experimentally that silicates of the uranophanekasolite group contain no oxonium ion in their crystalline structures. Minerals of the viksite group belong to a group of isostructural (homeotypic) laminated formation apt to form phases of different degrees of hydration. Phases with a smaller interlaminar cation form hydrates with a greater number of water molecules in the formulas unit

  6. NON-AUTOCLAVE SILICATE BRICK

    Directory of Open Access Journals (Sweden)

    V. N. Yaglov

    2015-01-01

    Full Text Available The paper proposes a technology for obtaining bricks on the basis of lime-silica mixtures where chemical interactions are practically completely realized in dispersive state at the stage of preparation of binding contact maturing and raw mixture as a whole. The role of forming operation (moulding is changed in principle because in this case conversion of dispersive system into a rock-like solid occurs and due to this the solid obtains complete water-resistance in contact with water immediately after forming operation. Theoretical basis for the developed technology is capability of silicate dispersive substances (hydrated calcium silicate to transit in non-stable state, to form a rock-like water-resistant solid in the moment of mechanical load application during forming process. Specific feature of the proposed method is an exclusion of additional operations for autoclaving of products from the process of obtaining a silicate brick.Synthetic hydrated calcium silicate in contrast to natural ones are more uniform in composition and structure, they contain less impurities and they are characterized by dispersive composition and due to the mentioned advantages they find wider practical application. Contact-condensation binders permit to manipulate product properties on their basis and ensure maximum correspondence to the requirements of the concrete application. Raw material sources for obtaining synthetic hydrated calcium silicates are practically un-limited because calcium-silicon containing substances are found as in various technogenic wastes so in natural compounds as well. So the problem for obtaining hydrated calcium silicates having contact-condensation ability for structure formation becomes more and more actual one. This transition is considered as dependent principally on arrangement rate of substance particles which determined the level of its instability.

  7. Possible Mafic Patches in Scott Crater Highlight the Need for Resource Exploration on the Lunar South Polar Region

    Science.gov (United States)

    Cooper, Bonnie L.

    2007-01-01

    Possible areas of mafic material on the rim and floor of Scott crater (82.1 deg S, 48.5 deg E) are suggested by analysis of shadow-masked Clementine false-color-ratio images. Mafic materials common in mare and pyroclastic materials can produce more oxygen than can highlands materials, and mafic materials close to the south pole may be important for propellant production for a future lunar mission. If the dark patches are confirmed as mafic materials, this finding would suggest that other mafic patches may exist, even closer to the poles, which were originally mapped as purely anorthositic.

  8. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus.

    Science.gov (United States)

    Shellnutt, J Gregory

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra.

  9. Antibacterial Activity of Silicate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; NING Congqin; ZHOU Yue; CHEN Lei; LIN Kaili; CHANG Jiang

    2011-01-01

    Four kinds of pure silicate ceramic particles, CaSiO3, Ca3SiO5, bredigite and akermanite were prepared and their bactericidal effects were systematically investigated. The phase compositions of these silicate ceramics were characterized by XRD. The ionic concentration meas urement revealed that the Calcium (Ca) ion concentration were relatively higher in Ca3SiO5 and bredigite, and much lower in CaSiO3 and akermanite. Accordingly, the pH values of the four silicate ceramics extracts showed a positive correlation with the particle concentrations. Meanwhile, by decreasing the particle size, higher Ca ion concentrations can be achieved, leading to the increase of aqueous pH value as well. In summary, all of the four silicate ceramics tested in our study showed antibacterial effect in a dose-dependent manner. Generally, the order of their antibacterial activity against E.coli from strong to weak is Ca3SiO5, bredigite, CaSiO3 and akermanite.

  10. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where

  11. Mafic inclusions in Yosemite granites and Lassen Pk lavas: records of complex crust-mantle interactions

    Energy Technology Data Exchange (ETDEWEB)

    Reid, J.B. Jr.; Flinn, J.E.

    1985-01-01

    This study compares three small-scale magmatic systems dominated by mafic/felsic interaction that appear to be analogs to the evolution of their larger host systems: mafic inclusions from modern Lassen Pk lavas along with inclusions and related synplutonic dike materials from granitoids in the Tuolumne Intrusive Series. Each system represents quickly chilled mafic melt previously contaminated by digestion of rewarmed, super-solidus felsic hosts. Contaminants occur in part as megacrysts of reworked oligoclase with lesser hb and biot. Within each group MgO-variation diagrams for Fe, Ca, Ti, Si are strikingly linear (r>.96); alkalis are decidedly less regular, and many hybrid rocks show a curious, pronounced Na enrichment. Field data, petrography, and best fit modeling suggests this may result from flow concentration of oligoclase xenocrysts within contaminated synplutonic dikes, and is preserved in the inclusions when dike cores chill as pillows in their felsic host. Dissolution of mafic inclusions erases these anomalies and creates a more regular series of two-component mafic-felsic mixtures in the large host system. The inclusions and dikes thus appear to record a variety of late-stage mafic-felsic interactive processes that earlier and on a larger scale created much of the compositional variety of their intermediate host rocks.

  12. 21 CFR 182.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  13. 21 CFR 582.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  14. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    International Nuclear Information System (INIS)

    Yan, F; McKay, B J; Fan, Z; Chen, M F

    2012-01-01

    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg 2 Si particles evenly distributed throughout an α-Al matrix with a β-Al 3 Mg 2 fully divorced eutectic phase observed in interdendritic regions. The Mg 2 Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg 2 Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al 3 Mg 2 eutectic phase with no evidence of any effect on the primary Mg 2 Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  15. Viruses Occur Incorporated in Biogenic High-Mg Calcite from Hypersaline Microbial Mats

    Science.gov (United States)

    De Wit, Rutger; Gautret, Pascale; Bettarel, Yvan; Roques, Cécile; Marlière, Christian; Ramonda, Michel; Nguyen Thanh, Thuy; Tran Quang, Huy; Bouvier, Thierry

    2015-01-01

    Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake “La Salada de Chiprana”, Spain, contain viruses with a diameter of 50–80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>1010 viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 109 viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as “nanobacteria” and that viruses may play a role in initiating calcification. PMID:26115121

  16. An essential factor for high Mg2+ tolerance of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Joshua Armitano

    2016-11-01

    Full Text Available Internal bacterial concentration of Mg2+, the most abundant divalent cation in living cells, is estimated to be in the single millimolar range. However, many bacteria will thrive in media with only micromolars of Mg2+, by using a range of intensely studied and highly efficient import mechanisms, as well as in media with very high magnesium concentration, presumably mediated by currently unknown export mechanisms. Staphylococcus aureus has a particularly high Mg2+ tolerance for a pathogen, growing unimpaired in up to 770 mM Mg2+, and we here identify SA0657, a key factor in this tolerance. The predicted domain structure of SA0657 is shared with a large number of proteins in bacteria, archaea and even eukarya, for example CorB from Salmonella and the human CNNM protein family. One of the shared domains, a CBS pair potentially involved in Mg2+ sensing, contains the conserved Glycine326 which we establish to be a key residue for SA0657 function. In light of our findings, we propose the name MpfA, Magnesium Protection Factor A, for SA0657.

  17. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland

    Science.gov (United States)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna

    2014-05-01

    The xenoliths of peridotites representing the subcontinental lithospheric mantle (SCLM) beneath SW Poland and adjacent parts of Germany occur in the Cenozoic alkaline volcanic rocks. Our study is based on detailed characterization of xenoliths occurring in 7 locations (Steinberg in Upper Lusatia, Księginki, Pilchowice, Krzeniów, Wilcza Góra, Winna Góra and Lutynia in Lower Silesia). One of the two major lithologies occurring in the xenoliths, which we call the "B" lithology, comprises peridotites (typically harzburgites) with olivine containing from 90.5 to 84.0 mole % of forsterite. The harzburgites contain no clinopyroxene or are poor in that mineral (eg. in Krzeniów the group "B" harzburgites contain pfu in ortho-, and pfu in clinopyroxene). The exception are xenoliths from Księginki, which contain pyroxenes characterised by negative correlation between mg# and Al. The REE patterns of both ortho- and clinopyroxene in the group "B" peridotites suggest equilibration with silicate melt. The rocks of "B" lithology were formed due to alkaline silicate melt percolation in the depleted peridotitic protolith. The basaltic melts formed at high pressure are usually undersaturated in both ortho- and clinopyroxene at lower pressures (Kelemen et al. 1992). Because of cooling and dissolution of ortho- and clinopyroxene the melts change their composition and become saturated in one or both of those phases. Experimental results (e.g. Tursack & Liang 2012 and references therein) show that the same refers to alkaline basaltic silicate melts and that its reactive percolation in the peridotitic host leads to decrease of Mg/(Mg+Fe) ratios of olivine and pyroxenes. Thus, the variation of relative volumes of olivine and orthopyroxene as well as the decrease of mg# of rock-forming silicates is well explained by reactive melt percolation in the peridotitic protolith consisting of high mg# olivine and pyroxenes (in the area studied by us that protolith was characterised by olivine

  18. Late Neoproterozoic layered mafic intrusion of arc-affinity in the Arabian-Nubian Shield: A case study from the Shahira layered mafic intrusion, southern Sinai, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Azer, M.K.; Obeid, M.A.; Gahalan, H.A.

    2016-07-01

    The Shahira Layered Mafic Intrusion (SLMI), which belongs to the late Neoproterozoic plutonic rocks of the Arabian-Nubian Shield, is the largest layered mafic intrusion in southern Sinai. Field relations indicate that it is younger than the surrounding metamorphic rocks and older than the post-orogenic granites. Based on variation in mineral paragenesis and chemical composition, the SLMI is distinguished into pyroxene-hornblende gabbro, hornblende gabbro and diorite lithologies. The outer zone of the mafic intrusion is characterized by fine-grained rocks (chilled margin gabbroic facies), with typical subophitic and/or microgranular textures. Different rock units from the mafic intrusion show gradational boundaries in between. They show some indications of low grade metamorphism, where primary minerals are transformed into secondary ones. Geochemically, the Shahira layered mafic intrusion is characterized by enrichment in LILE relative to HFSE (e.g. Nb, P, Zr, Ti, Y), and LREE relative to HREE [(La/Lu)n= 4.75–8.58], with subalkaline characters. It has geochemical characteristics of pre-collisional arc-type environment. The geochemical signature of the investigated gabbros indicates partial melting of mantle wedge in a volcanic-arc setting, being followed by fractional crystallization and crustal contamination. Fractional crystallization processes played a vital role during emplacement of the Shahira intrusion and evolution of its mafic and intermediate rock units. The initial magma was evolved through crystallization of hornblende which was caused by slight increasing of H2O in the magma after crystallization of liquidus olivine, pyroxene and Ca-rich plagioclase. The gabbroic rocks crystallized at pressures between 4.5 and 6.9kbar (~15–20km depth). Whereas, the diorites yielded the lowest crystallization pressure between 1.0 to 4.4Kbar (<10km depth). Temperature was estimated by several geothermometers, which yielded crystallization temperatures ranging from 835

  19. Intraplate mafic magmatism: New insights from Africa and N. America

    Science.gov (United States)

    Ebinger, C. J.; van der Lee, S.; Tepp, G.; Pierre, S.

    2017-12-01

    Plate tectonic concepts consider that continental interiors are stable, with magmatism and strain localized to plate boundaries. We re-evaluate the role of pre-existing and evolving lithospheric heterogeneities in light of perspectives afforded by surface to mantle results from active and ancient rift zones in Africa and N. America. Our process-oriented approach addresses the localization of strain and magmatism and stability of continental plate interiors. In both Africa and N. America, geophysical imaging and xenolith studies reveal that thick, buoyant, and chemically distinct Archaean cratons with deep roots may deflect mantle flow, and localize magmatism and strain over many tectonic cycles. Studies of the Colorado Plateau and East African rift reveal widespread mantle metasomatism, and high levels of magma degassing along faults and at active volcanoes. The volcanoes and magmatic systems show a strong dependence on pre-existing heterogeneities in plate structure. Syntheses of the EarthScope program ishow that lateral density contrasts and migration of volatiles that accumulated during subduction can refertilize mantle lithosphere, and enable volatile-rich magmatism beneath relatively thick continental lithosphere. For example, the passive margin of eastern N. America shows uplift and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of coupling between the lithosphere, asthenosphere, and deeper mantle. As demonstrated by the East African Rift, the Mid-Continent Rift, and other active and ancient rift zones, the interiors of continents, including thick, cold Archaean cratons are not immune to mafic magmatism and tectonism. Recent studies in N. America and Africa reveal ca. 1000 km-wide zones of dynamic uplift, low upper mantle velocities, and broadly distributed strain. The distribution of magmatism and volatile release, in combination with geophysical signals, indicates a potentially convective origin for widespread

  20. Modifying Silicates for Better Dispersion in Nanocomposites

    Science.gov (United States)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces

  1. Properties of Tricalcium Silicate Sealers.

    Science.gov (United States)

    Khalil, Issam; Naaman, Alfred; Camilleri, Josette

    2016-10-01

    Sealers based on tricalcium silicate cement aim at an interaction of the sealer with the root canal wall, alkalinity with potential antimicrobial activity, and the ability to set in a wet field. The aim of this study was to characterize and investigate the properties of a new tricalcium silicate-based sealer and verify its compliance to ISO 6876 (2012). A new tricalcium silicate-based sealer (Bio MM; St Joseph University, Beirut, Lebanon), BioRoot RCS (Septodont, St Maure de Fosses, France), and AH Plus (Dentsply, DeTrey, Konstanz, Germany) were investigated. Characterization using scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis was performed. Furthermore, sealer setting time, flow, film thickness, and radiopacity were performed following ISO specifications. pH and ion leaching in solution were assessed by pH analysis and inductively coupled plasma. Bio MM and BioRoot RCS were both composed of tricalcium silicate and tantalum oxide in Bio MM and zirconium oxide in BioRoot RCS. In addition, the Bio MM contained calcium carbonate and a phosphate phase. The inorganic components of AH Plus were calcium tungstate and zirconium oxide. AH Plus complied with the ISO norms for both flow and film thickness. BioRoot RCS and Bio MM exhibited a lower flow and a higher film thickness than that specified for sealer cements in ISO 6876. All test sealers exhibited adequate radiopacity. Bio MM interacted with physiologic solution, thus showing potential for bioactivity. Sealer properties were acceptable and comparable with other sealers available clinically. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Silicate enamel for alloyed steel

    International Nuclear Information System (INIS)

    Ket'ko, K.K.

    1976-01-01

    The use of silicate enamels in the metallurgical industry is discussed. Presented are the composition and the physico-chemical properties of the silicate enamel developed at the factory 'Krasnyj Oktyabr'. This enamel can be used in the working conditions both in the liquid and the solid state. In so doing the enamel is melted at 1250 to 1300 deg C, granulated and then reduced to a fraction of 0.3 to 0.5 mm. The greatest homogeneity is afforded by a granulated enamel. The trials have shown that the conversion of the test ingots melted under a layer of enamel leads to the smaller number of the ingots rejected for surface defect reasons and the lower metal consumption for slab cleaning. The cost of the silicate enamel is somewhat higher than that of synthetic slags but its application to the melting of stainless steels is still economically beneficial and technologically reasonable. Preliminary calculations only for steel EhI4IEh have revealed that the use of this enamel saves annually over 360000 roubles [ru

  3. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth

    Science.gov (United States)

    Chowdhury, Priyadarshi; Gerya, Taras; Chakraborty, Sumit

    2017-09-01

    The rock record and geochemical evidence indicate that continental recycling has been occurring since the early history of the Earth. The stabilization of felsic continents in place of Earth's early mafic crust about 3.0 to 2.0 billion years ago, perhaps due to the initiation of plate tectonics, implies widespread destruction of mafic crust during this time interval. However, the physical mechanisms of such intense recycling on a hotter, (late) Archaean and presumably plate-tectonic Earth remain largely unknown. Here we use thermomechanical modelling to show that extensive recycling via lower crustal peeling-off (delamination but not eclogitic dripping) during continent-continent convergence was near ubiquitous during the late Archaean to early Proterozoic. We propose that such destruction of the early mafic crust, together with felsic magmatism, may have caused both the emergence of silicic continents and their subsequent isostatic rise, possibly above the sea level. Such changes in the continental character have been proposed to influence the Great Oxidation Event and, therefore, peeling-off plate tectonics could be the geodynamic trigger for this event. A transition to the slab break-off controlled syn-orogenic recycling occurred as the Earth aged and cooled, leading to reduced recycling and enhanced preservation of the continental crust of present-day composition.

  4. The Teles Pires volcanic province: A paleogeoproterozoic silicic-dominated large igneous province in southwest Amazon craton and tectonic implications

    International Nuclear Information System (INIS)

    Leite, Jayme Alfredo Dexheimer; Saes, Gerson Souza; Macambira, Moacir Jose Buenano

    2001-01-01

    Large Igneous Provinces (LIPs) are important features of the Earth history especially recognized during Paleo to Mezosoic times when they are related to the break up of supercontinents (Coffin and Eldhom, 1994). These provinces occur in several different tectonic settings such as volcanic passive margins, submarine ridges and continental and oceanic plateaux. Mafic-dominanted provinces are the most well known among the LIPs and the best examples are the Karoo, Kerguelem and Ontong-Java. LIPs including an important silicic component have been described in some basaltic provinces of southern Africa (Milner et al. 1992). More recently, silicic-dominated LIPs have been recognized in eastern Australia (Bryan et al., 2000), in southern South America (Pankhurst et al. 1998) and in Antartica Penninsula (Riley and Leat, 1999). The common characteristics of this kind of LIP include: 1) large volume of silicic rocks with dominance of ignimbrites, 2) active over 40 to 50 m.y.; and 3) spatially and temporally associated with plate break up. In this paper we present the main geologic and geochronologic characteristics of the Teles Pires volcanic province from southwest Amazon Craton, which allow its classification as a Paleoprotorozoic silicic-dominated LIP. Geologic implications of this suggestion includes the existence of a large cratonic plate as old as 1.81Ga for the Amazon Craton, therefore the proposed 1.85-1.55 Ga magmatic arc of Rio Negro-Juruena Province should be reviewed (au)

  5. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  6. Silicate bonded ceramics of laterites

    International Nuclear Information System (INIS)

    Wagh, A.S.; Douse, V.

    1989-05-01

    Sodium silicate is vacuum impregnated in bauxite waste (red mud) at room temperature to develop ceramics of mechanical properties comparable to the sintered ceramics. For a concentration up to 10% the fracture toughness increases from 0.12 MNm -3/2 to 0.9 MNm -3/2 , and the compressive strength from 7 MNm -2 to 30 MNm -2 . The mechanical properties do not deteriorate, when soaked in water for an entire week. The viscosity and the concentration of the silicate solution are crucial, both for the success of the fabrication and the economics of the process. Similar successful results have been obtained for bauxite and lime stone, even though the latter has poor weathering properties. With scanning electron microscopy and energy dispersive analysis, an attempt is made to identify the crystals formed in the composite, which are responsible for the strength. The process is an economic alternative to the sintered ceramics in the construction industry in the tropical countries, rich in lateritic soils and poor in energy. Also the process has all the potential for further development in arid regions abundant in limestone. (author). 6 refs, 20 figs, 3 tabs

  7. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  8. Geochemistry of PGE in mafic rocks of east Khasi Hills, Shillong ...

    Indian Academy of Sciences (India)

    study area. The studied mafic rocks of east Khasi Hills cover an area of about 4 km2 and represent .... In contrast to the global scenario, attempts for ..... chemical. Sp. no. structural mo de. Mineral comp o sition classification. M g#*. (wt%). (wt%).

  9. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  10. 50 Myr of pulsed mafic magmatism in the High Arctic Large Igneous Province

    Science.gov (United States)

    Pearson, D. G.; Dockman, D. M.; Heaman, L. M.; Gibson, S. A.; Sarkar, C.

    2017-12-01

    Extensive and voluminous Cretaceous mafic magmatism in the Sverdrup Basin of Arctic Canada forms the circum-Arctic High Arctic Large Igneous Province (HALIP). The small number of published high-precision ages for this LIP indicate its eruption over a considerable timespan raising concerns over whether the HALIP can be strictly defined as a single LIP and questioning the role of a single or multiple plumes in its genesis. Here we present an integrated geochemical and geochronological study to better constrain the timing and cause of mafic magma genesis in the Canadian HALIP. Six new U-Pb and four 40Ar/39Ar ages of mafic lavas and intrusive sheets range from 121 Ma to 78 Ma. The U-Pb ages are the first analyzed from the mafic intrusions of Axel Heiberg and Ellesmere Islands. The new geochronology, combined with other published high-precision ages, reveal a > 50 Myr duration of mafic magmatism in the HALIP defined by three main pulses. Tholeiites dominate the initial 25 Myr of magmatism, transitioning to coeval emplacement of alkali and tholeiitic basalts. Whole-rock Sr-Nd isotope ratios indicate that both magma types are derived from a similar source dominated by convecting mantle. Rare-earth-element inversion models reveal that the alkalic and tholeiitic magmas were generated beneath a bimodal lithospheric `lid' thickness of 65 ± 5 and 45 ± 4 km, respectively. We suggest that the early 128 - 122 Ma tholeiitic event is primarily plume-generated and correlates across the circum-Arctic with the other HALIP tholeiites. Younger HALIP magmatism, with coeval alkalic and tholeiitic magmas erupting over 25 Myr, may be explained by alternating modes of edge-driven mantle convection as the primary control on magma genesis. A distal plume may have intensified magma production by edge-driven convection.

  11. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  12. Source characteristics and tectonic setting of mafic-ultramafic intrusions in North Xinjiang, NW China: Insights from the petrology and geochemistry of the Lubei mafic-ultramafic intrusion

    Science.gov (United States)

    Chen, Bao-Yun; Yu, Jin-Jie; Liu, Shuai-Jie

    2018-05-01

    The newly discovered Lubei sulfide-bearing mafic-ultramafic intrusion forms the western extension of the Huangshan-Jin'erquan mafic-ultramafic intrusion belt in East Tianshan, NW China. The Lubei intrusion comprises hornblende peridotite, lherzolite, and harzburgite in its southern portion, gabbro in its middle portion, and hornblende gabbro in its northern portion. Intrusive relationships indicate that three magma pulses were involved in the formation of the intrusion, and that they were likely evolved from a common primitive magma. Estimated compositions of the Lubei primitive magma are similar to those of island arc calc-alkaline basalt except for the low Na2O and CaO contents of the Lubei primitive magma. This paper reports on the mineral compositions, whole-rock major and trace element contents, and Rb-Sr and Sm-Nd isotopic compositions of the Lubei intrusion, and a zircon LA-MC-ICP-MS U-Pb age for hornblende gabbro. The Lubei intrusion is characterized by enrichment in large-ion lithophile elements, depletion in high-field-strength elements, and marked negative Nb and Ta anomalies, with enrichment in chondrite-normalized light rare earth elements. It exhibits low (87Sr/86Sr)i ratios of 0.70333-0.70636 and low (143Nd/144Nd)i ratios of 0.51214-0.51260, with positive εNd values of +4.01 to +6.33. LA-ICP-MS U-Pb zircon ages yielded a weighted-mean age of 287.9 ± 1.6 Ma for the Lubei intrusion. Contemporaneous mafic-ultramafic intrusions in different tectonic domains in North Xinjiang show similar geological and geochemical signatures to the Lubei intrusion, suggesting a source region of metasomatized mantle previously modified by hydrous fluids from the slab subducted beneath the North Xinjiang region in the early Permian. Metasomatism of the mantle was dominated by hydrous fluids and was related to subduction of the Paleo-Asian oceanic lithosphere during the Paleozoic. Sr-Nd-Pb isotopic compositions suggest that the mantle source was a mixture of depleted mid

  13. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Sargent, B. A., E-mail: sfogerty@pas.rochester.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  14. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I.; Sargent, B. A.

    2016-01-01

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.

  15. Partitioning of Cu between mafic minerals, Fe-Ti oxides and intermediate to felsic melts

    Science.gov (United States)

    Liu, Xingcheng; Xiong, Xiaolin; Audétat, Andreas; Li, Yuan

    2015-02-01

    This study used improved capsule technique i.e., Pt95Cu05 or Au95Cu05 alloy capsules as Cu sources to determine Cu partitioning between mafic minerals, Fe-Ti oxides and intermediate to felsic melts at 0.5-2.5 GPa, 950-1100 °C and various oxygen fugacities (fO2). In combination with the data from the mafic composition systems, the results demonstrate that Cu is generally highly incompatible in mafic minerals and moderately incompatible to compatible in Fe-Ti oxides. The general order of mineral/melt Cu partition coefficients (DCu) is garnet (0.01-0.06) ⩽ olivine (0.04-0.20) ≈ opx (0.04-0.24) ≈ amphibole (0.04-0.20) ⩽ cpx (0.04-0.45) ⩽ magnetite, titanomagnetite and Cr-spinel (0.18-1.83). The variations in DCu depend mainly on temperature, fO2 or mineral composition. In general, DCu for olivine (and perhaps opx) increases with decreasing temperature and increasing fO2. DCu increases for cpx with Na+ (pfu) in cpx, for magnetite and Cr-spinel with Fe3+ (pfu) in these phases and for titanomagnetite with Ti4+ (pfu) in this phase. The large number of DCu data (99 pairs) serves as a foundation for quantitatively understanding the behavior of Cu during magmatic processes. The generation of intermediate to felsic magmas via fractional crystallization or partial melting of mafic rocks (magmas) at deep levels of crust involves removal of or leaving assemblages of mafic minerals + Fe-Ti oxides ± sulfides. With our DCu data on mafic minerals and Fe-Ti oxides, DCubulk values around 0.2 were obtained for the sulfide-free assemblages. Cu will thus be concentrated efficiently in the derived melts during these two processes if sulfides are absent or negligible, explaining that high fO2 and sulfide-destabilization are favorable to formation of the porphyry Cu system.

  16. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengrong [Yale Univ., New Haven, CT (United States); Qiu, Lin [Yale Univ., New Haven, CT (United States); Zhang, Shuang [Yale Univ., New Haven, CT (United States); Bolton, Edward [Yale Univ., New Haven, CT (United States); Bercovici, David [Yale Univ., New Haven, CT (United States); Ague, Jay [Yale Univ., New Haven, CT (United States); Karato, Shun-Ichiro [Yale Univ., New Haven, CT (United States); Oristaglio, Michael [Yale Univ., New Haven, CT (United States); Zhu, Wen-Iu [Univ. of Maryland, College Park, MD (United States); Lisabeth, Harry [Univ. of Maryland, College Park, MD (United States); Johnson, Kevin [Univ. of Hawaii, Honolulu, HI (United States)

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawai‘i, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trapping carbon dioxide (CO2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200°C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg2SiO4) reacting with CO2 brines in the form of sodium bicarbonate (NaHCO3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount

  17. High-MgO Vitric Ash in Upper Kulanaokuaiki Tephra, Kilauea Volcano, Hawai`i: A Preliminary Description

    Science.gov (United States)

    Rose, T. R.; Fiske, R. S.; Swanson, D.

    2011-12-01

    Small, well-formed Pele's tears containing anomalously high values of MgO were recently discovered in outcrops of the upper Kulanaokuaiki Tephra at and near the base of Uwekahuna Bluff, the western wall of Kilauea Caldera. Electron microprobe analyses of more than 60 high-MgO tears, which are 1-3 mm in diameter, show that most contain 11 to 12 wt. % MgO with a few approaching 13 % MgO. Separate microprobe analyses for sulfur and chlorine of 20 grains revealed no appreciable amounts of either, indicating the magma was largely degassed. Polished-section studies employing an analytical scanning electron microscope show most tears are composed of pure microvesicular glass with scattered skeletal olivine crystals and rare chromite. The abundance of skeletal olivine appears to increase with decreasing MgO content of the glass. These tears contain among the highest known MgO values of any material erupted subaerially from Kilauea. The high-MgO tears occur in a 1-6 cm thick layer of medium-coarse lithic-crystal-vitric ash. The top of this layer consists of 2-3 mm of very fine lithic-crystal ash. The lithics and many of the olivine crystals in this layer are highly oxidized. This deposit is at the top of a sequence of several lithic beds that are interspersed with thinner vitric units totaling about 75 cm in thickness. It is overlain by 9-13 cm of medium pumice lapilli and coarse vitric ash at the top of the "Bluff base" and "mid-Bluff" tephra sections described by Fiske et al. (2009). This high-MgO glass layer has been found thus far in only one other locality, a 2 m-deep soils study pit within Kipuka Puaulu, 3.5 km northwest of the caldera. Based upon stratigraphic relationships and preliminary microprobe data, a few other likely exposures of the high-MgO deposit have been identified north and west of the caldera. The high-MgO vitric ash in the upper Kulanaokuaiki Tephra has a primitive composition that suggests little if any shallow level storage of magma. Instead, the

  18. Physical ageing of silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nemilov, S.V. [S. I. Vavilov State Optical Inst., St. Petersburg (Russian Federation)

    2003-02-01

    The presented review has been devoted to the problem of volume-determined properties relaxation of silicate glasses at room temperature. It is shown that the experimental data are described by the simple Debye exponential law or by a superposition of two exponents. Their parameters are calculated and systematized. A molecular-kinetic model is proposed for these ageing processes. It proceeds from the possibility of volume relaxation due to the cooperative β-relaxation mechanism with no change in the system's topology. The characteristic ageing times can be calculated according to equations obtained based on the viscosity data in the glass transition range. The precision of the calculations is about {+-} 15% at the time variations from a few weeks up to about 15 years. The system of calculated parameters is proposed which characterizes the completeness of ageing and its rate at any glass age. Optical and thermometric glasses have been ranked by their tendency to ageing. The scheme of future investigations predetermined by practice is defined. (orig.)

  19. Magnetic properties of sheet silicates

    International Nuclear Information System (INIS)

    Ballet, O.; Coey, J.M.D.

    1982-01-01

    Susceptibility, magnetisation and Moessbauer measurements are reported for a representative selection of 2:1 layer phyllosilicates. Eight samples from the mica, vermiculite and smectite groups include examples diluted in iron which are paramagnetic at all temperatures, as well as iron-rich silicates which order magnetically below 10 K. Anisotropic susceptibility of crystals of muscovite, biotite and vermiculite is quantitatively explained with a model where the Fe 2+ ions lie in sites of effective trigonal symmetry, the trigonal axis lying normal to the sheets. The ferrous ground state is an orbital singlet. Ferric iron gives an isotropic contribution to the susceptibility. Fe 2+ -Fe 2+ exchange interactions are ferromagnetic with Gapprox. equal to2 K, whereas Fe 3+ -Fe 3+ coupling is antiferromagnetic in the purely ferric minerals. A positive paramagnetic Curie temperature for glauconite may be attributable to Fe 2+ → Fe 3+ charge transfer. Magnetic order was found to set in inhomogeneously for glauconite at 1-7 K. One biotite sample showed an antiferromagnetic transition at Tsub(N) = 7 K marked by a well-defined susceptibility maximum. Its magnetic structure, consisting of ferromagnetic sheets with moments in their planes coupled antiferromagnetically by other, weak interactions, resembles that found earlier for the 1:1 mineral greenalite. (orig.)

  20. Paleomagnetic record of a geomagnetic field reversal from late miocene mafic intrusions, southern nevada.

    Science.gov (United States)

    Ratcliff, C D; Geissman, J W; Perry, F V; Crowe, B M; Zeitler, P K

    1994-10-21

    Late Miocene (about 8.65 million years ago) mafic intrusions and lava flows along with remagnetized host rocks from Paiute Ridge, southern Nevada, provide a high-quality paleomagnetic record of a geomagnetic field reversal. These rocks yield thermoremanent magnetizations with declinations of 227 degrees to 310 degrees and inclinations of -7 degrees to 49 degrees , defining a reasonably continuous virtual geomagnetic pole path over west-central Pacific longitudes. Conductive cooling estimates for the intrusions suggest that this field transition, and mafic magmatism, lasted only a few hundred years. Because this record comes principally from intrusive rocks, rather than sediments or lavas, it is important in demonstrating the longitudinal confinement of the geomagnetic field during a reversal.

  1. Adsorption of aqueous silicate on hematite

    International Nuclear Information System (INIS)

    Taylor, P.; Ticknor, K.V.

    1997-08-01

    During radioisotope sorption studies, adsorption of silicate from synthetic groundwaters by synthetic hematite was observed. To further investigate this observation, the adsorption of silicate onto hematite (α-Fe 2 O 3 ) powder from a neutral, aqueous NaC1 solution (0.1 mol/dm 3 ), containing 2.56 x 10 -4 mol/dm 3 of Si added as Na 2 SiO 3 ·9H 2 O, was measured at ∼21 deg C. Equilibrium adsorption of silicate amounted to ∼1.93 μmol/m 2 (one Si(O,OH) 4 moiety per 86 A 2 ). It is important to take this adsorption into account when evaluating the ability of iron oxides to adsorb other species, especially anions, from groundwaters. Silicate adsorption is known to diminish the ability of iron oxides to adsorb other anions. (author)

  2. Evolution of silicic magmas in the Kos-Nisyros volcanic center: cycles associated with caldera collapse

    Science.gov (United States)

    Ruprecht, J. S.; Bachmann, O.; Deering, C. D.; Huber, C.; Skopelitis, A.; Schnyder, C.

    2010-12-01

    Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~ 3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). Over the course of this period, magmas have changed from hornblende-biotite rich units with low eruption temperatures (≤750-800 °C; Kefalos and Kos units) to hotter (>800-850 °C), pyroxene-bearing units (Nisyros units) and are transitioning back to colder magmas (Yali units). Using bulk-rock compositions, mineral chemistry, and zircon Hf isotopes, we show that the two different types of silicic magmas followed the same differentiation trend; they all evolved by crystal fractionation (and minor assimilation) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ky Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew most of the eruptible magma out and partly froze the silicic magma source zone in the upper crust due to rapid unloading, decompression and resulting crystallization. Therefore, the system had to reinstate a shallow silicic production zone from more mafic parents, recharged at temperatures typically around 850-900 °C from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were thus slightly hotter and less evolved than the Kefalos-Kos package. However, with time, the upper crustal intermediate mush grew and cooled, leading to interstitial melt compositions reaching again the highly-evolved, cold state that prevailed prior to the Kefalos-Kos. The recent (albeit not precisely dated) eruption of the high-SiO2 rhyolite of Yali suggests that another large, potentially explosive magma chamber is presently building

  3. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  4. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China

    Science.gov (United States)

    Zheng, Rongguo; Xiao, Wenjiao; Li, Jinyi; Wu, Tairan; Zhang, Wen

    2018-03-01

    The Beishan orogenic belt is a key region for deciphering the accretionary processes of the southern Central Asian Orogenic Belt. Here in this paper we present new zircon U-Pb ages, bulk-rock major and trace element, and zircon Hf isotopic data for the Baitoushan, and Bagelengtai plutons in the western Central Beishan region to address the accretionary processes. The Baitoushan pluton consists of quartz diorites, monzonites and K-feldspar granites, with zircon LA-ICP-MS U-Pb ages of 435 Ma, 421 Ma and 401 Ma, respectively. The Baitoushan quartz diorites and quartz monzonites exhibit relatively high MgO contents and Mg# values (63-72), display enrichments in LILEs and LREEs, and exhibit high Ba (585-1415 ppm), Sr (416-570 ppm) and compatible element (such as Cr and Ni) abundances, which make them akin to typical high-Mg andesites. The Baitoushan quartz diorites and quartz monzonites were probably generated by the interaction of subducted oceanic sediment-derived melts and mantle peridotites. The Baitoushan K-feldspar granites are ascribed to fractionated I-type granites with peraluminous and high-K calc-alkaline characteristics. They exhibit positive εHf(t) values (2.43-7.63) and Mesoproterozoic-Neoproterozoic zircon Hf model ages (0.92-1.60 Ga). Those early Devonian granites, including Baitoushan K-feldspar granite and Gongpoquan leucogranites (402 Ma), are derived from melting of the mafic lower crust and/or sediments by upwelling of hot asthenospheric mantle. The Bagelengtai granodiorites exhibit similar geochemical signatures with that of typical adakites, with a zircon SHRIMP U-Pb age of 435 Ma. They exhibit relatively high Sr (502-628 ppm) and Al2O3 (16.40-17.40 wt.%) contents, and low MgO (1.02-1.29 wt.%), Y (3.37-6.94 ppm) and HREEs contents, with relatively high Sr/Y and (La/Yb)N ratios. The Bagelengtai granodiorites were derived from partial melting of subducted young oceanic crust, with significant contributions of subducted sediments, subsequently

  5. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    Rouse, C.G.; Lemos Guenaga, C.M. de

    1984-01-01

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt

  6. The kinetic fragility of natural silicate melts

    International Nuclear Information System (INIS)

    Giordano, Daniele; Dingwell, Donald B

    2003-01-01

    Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts

  7. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.; Chae, S. R.; Benmore, C. J.; Wenk, H. R.; Monteiro, P. J. M.

    2010-01-01

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  8. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  9. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    Science.gov (United States)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement

  10. Hydrogeochemistry of deep groundwaters of mafic and ultramafic rocks in Finland

    International Nuclear Information System (INIS)

    Ruskeeniemi, T.; Blomqvist, R.; Lindberg, A.; Ahonen, L.; Frape, S.

    1996-12-01

    The present work reports and interprets the hydrogeochemical and hydrogeological data obtained from deep groundwaters in various mafic-ultramafic formations in Finland. The work is mainly based on the results of the research project 'Geochemistry of deep groundwaters' financed by the Ministry of Trade and Industry and the Geological Survey of Finland. Five sites were selected for this study: (1) Juuka, (2) Keminmaa, (3) Maentsaelae, (4) Ranua, and (5) Ylivieska. Keminmaa and Ranua are located in Early Proterozoic layered intrusions dated at 2.44 Ga. The Juuka site lies within the massive Miihkali serpentinite, which is thought to represent the ultramafic part of a Proterozoic (1.97 Ga) ophiolite complex. The Maentsaelae gabbro represents the deep parts of the Svecofennian volcanic sequence, while the Ylivieska mafic-ultramafic intrusion is one of a group of Svecokarelian Ni-potential intrusions 1.9 Ga in age. For reference, groundwaters from four other sites are also briefly described. Three of these sites are located within the nickel mining regions of Enonkoski, Kotalahti and Vammala, while the fourth is a small Ni mineralization at Hyvelae, Noormarkku. The four reference sites are all of Svecokarelian age. (refs.)

  11. Rare-earth element geochemistry in the Luanga Mafic-Ultramafic Complex, Para

    International Nuclear Information System (INIS)

    Suita, M.T.F.; Nilson, A.A.

    1989-01-01

    Six whole-rock samples (harzburgite, orthopyroxenic and norite) of the Luanga Mafic-Ultramafic Complex (Para) were analysed for rare-earth elements (REE) through plasma spectrometry. The Luanga Complex is a deformed and metamorphosed layered mafic-ultramafic body of Archaean age. The Complex underwent medium-grade metamorphism in three stages. The first stage (medium grade) involved local formation of tremolite and reduction of Ca content in plagioclase. The second stage (low grade) consisted of serpentinization of amphibole or ortopyroxene forming bastile and generation of albite + epidote + white mica + actinolite from plagioclase. The third stage involved renewed serpentinization and/or talcification of pre-existing minerals (including serpentine) along fracture and fault surfaces. The analysed rocks display light rare-earth element (LREE) enrichment up to sixty times the composition of the Leedly chondrite and La/Yb ratios from 6.2 to 20.0 they are low in medium rare-earth elements (MREE), displaying discrete to strong negative Eu anomaly even in plagioclase cumulates and are slightly enriched in heavy rare-earth elements (HREE), usually higher than chondrite values. The low MREE area related to the occurrence of orthopyroxene (bronzite) in a way similar to the pattern of alpine periodotites, while HREE enrichment is compatible with the presence of bronzite and Mg-olivine, probably an inherited igneous feature. (author) [pt

  12. Hydrogeochemistry of deep groundwaters of mafic and ultramafic rocks in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ruskeeniemi, T.; Blomqvist, R.; Lindberg, A.; Ahonen, L. [Geological Survey of Finland, Espoo (Finland); Frape, S. [Waterloo Univ., ON (Canada)

    1996-12-01

    The present work reports and interprets the hydrogeochemical and hydrogeological data obtained from deep groundwaters in various mafic-ultramafic formations in Finland. The work is mainly based on the results of the research project `Geochemistry of deep groundwaters` financed by the Ministry of Trade and Industry and the Geological Survey of Finland. Five sites were selected for this study: (1) Juuka, (2) Keminmaa, (3) Maentsaelae, (4) Ranua, and (5) Ylivieska. Keminmaa and Ranua are located in Early Proterozoic layered intrusions dated at 2.44 Ga. The Juuka site lies within the massive Miihkali serpentinite, which is thought to represent the ultramafic part of a Proterozoic (1.97 Ga) ophiolite complex. The Maentsaelae gabbro represents the deep parts of the Svecofennian volcanic sequence, while the Ylivieska mafic-ultramafic intrusion is one of a group of Svecokarelian Ni-potential intrusions 1.9 Ga in age. For reference, groundwaters from four other sites are also briefly described. Three of these sites are located within the nickel mining regions of Enonkoski, Kotalahti and Vammala, while the fourth is a small Ni mineralization at Hyvelae, Noormarkku. The four reference sites are all of Svecokarelian age. (refs.).

  13. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    sorbable and durable materials for orthopaedic and dental implants, that are capable of bearing high stress ... Other studies showed that these silicate ceramics also possess good in vivo bioactivity (Hench 1998; ... ceramic powders without the intermediate decomposition and/or calcining steps has attracted a good deal of ...

  14. Synthesis of non-siliceous mesoporous oxides.

    Science.gov (United States)

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  15. Dielectric properties of plasma sprayed silicates

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Neufuss, Karel; Dubský, Jiří; Chráska, Pavel

    -, č. 31 (2005), s. 315-321 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GA202/03/0708 Institutional research plan: CEZ:AV0Z20430508 Keywords : Optical microscopy * electrical properties * silicates * insulators * plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.702, year: 2005

  16. Selective silicate-directed motility in diatoms

    DEFF Research Database (Denmark)

    Bondoc, Karen Grace V.; Heuschele, Jan; Gillard, Jeroen

    2016-01-01

    the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under d...

  17. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  18. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  19. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Sodium silicate was dissolved in water in either a monomer form or polymer form; the effects of both forms of sodium silicate aqueous solution on rose powdery mildew and root rot diseases of miniature rose were examined. Both forms of sodium silicate aqueous solution were applied to the roots of the miniature rose.

  20. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  1. Physical volcanology of the mafic segment of the subaqueous New Senator caldera, Abitibi greenstone belt, Quebec, Canada

    International Nuclear Information System (INIS)

    Moore, Lyndsay N; Mueller, Wulf U

    2008-01-01

    Archean calderas provide valuable insight into internal geometries of subaqueous calderas. The New Senator caldera, Abitibi greenstone belt, Canada, is an Archean example of a subaqueous nested caldera with a basal stratigraphy dominated by gabbro-diorite dykes and sills, ponded magmas and basalt and andesite lava flows. The aim of our study is to focus on the use of physical volcanology to differentiate between the various mafic units found at the base of the New Senator caldera. Differentiation between these various mafic units is important from an exploration point of view because in modern subaqueous summit calders (e.g. Axial Seamount) margins of ponded magmas are often sites of VMS formation.

  2. Physical volcanology of the mafic segment of the subaqueous New Senator caldera, Abitibi greenstone belt, Quebec, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lyndsay N; Mueller, Wulf U [Universite du Quebec a Chicoutimi, 555 boul. du l' Universite, Chicoutimi, Quebec, G7H2B1 (Canada)], E-mail: lyndsay.moore@uqac.ca

    2008-10-01

    Archean calderas provide valuable insight into internal geometries of subaqueous calderas. The New Senator caldera, Abitibi greenstone belt, Canada, is an Archean example of a subaqueous nested caldera with a basal stratigraphy dominated by gabbro-diorite dykes and sills, ponded magmas and basalt and andesite lava flows. The aim of our study is to focus on the use of physical volcanology to differentiate between the various mafic units found at the base of the New Senator caldera. Differentiation between these various mafic units is important from an exploration point of view because in modern subaqueous summit calders (e.g. Axial Seamount) margins of ponded magmas are often sites of VMS formation.

  3. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  4. PALEOARCHEAN MAFIC ROCKS OF THE SOUTHWESTERN SIBERIAN CRATON: PRELIMINARY GEOCHRONOLOGY AND GEOCHEMICAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2017-01-01

    Full Text Available The Siberian craton consists of Archean blocks, which were welded up into the same large unit by ca 1.9 Ga [Gladkochub et al., 2006; Rojas-Agramonte et al., 2011]. The history of the constituent Archean blocks is mosaic because of limited number of outcrops, insufficient sampling coverage because of their location in remote regions and deep forest and difficulties with analytical studies of ancient rocks, which commonly underwent metamorphic modifications and secondary alterations. In this short note, we report data on discovery of unusual for Archean mafic rocks of ultimate fresh appearance. These rocks were discovered within southwestern Siberian craton in a region near a boundary between Kitoy granulites of the Sharyzhalgai highgrade metamorphic complex and Onot green-schist belt (Fig. 1. Here we present preliminary data on geochronology of these rocks and provide their geochemical characterization.

  5. Insight into silicate-glass corrosion mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cailleteau, C; Angeli, F; Gin, S; Jollivet, P [CEA VALRHO, DEN, Lab Etude Comportement Long Terme, F-30207 Bagnols Sur Ceze, (France); Devreux, F [Ecole Polytech, CNRS, Lab Phys Mat Condensee, F-91128 Palaiseau, (France); Jestin, J [CEA, CNRS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Spalla, O [CEA, DSM, Lab Interdisciplinaire Org Nanometr et Supramol, F-91191 Gif Sur Yvette, (France)

    2008-07-01

    The remarkable chemical durability of silicate glass makes it suitable for a wide range of applications. The slowdown of the aqueous glass corrosion kinetics that is frequently observed at long time is generally attributed to chemical affinity effects (saturation of the solution with respect to silica). Here, we demonstrate a new mechanism and highlight the impact of morphological transformations in the alteration layer on the leaching kinetics. A direct correlation between structure and reactivity is revealed by coupling the results of several structure-sensitive experiments with numerical simulations at mesoscopic scale. The sharp drop in the corrosion rate is shown to arise from densification of the outer layers of the alteration film, leading to pore closure. The presence of insoluble elements in the glass can inhibit the film restructuring responsible for this effect. This mechanism may be more broadly applicable to silicate minerals. (authors)

  6. Sorption of Europium in zirconium silicate

    International Nuclear Information System (INIS)

    Garcia R, G.

    2004-01-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  7. Effects of ionization on silicate glasses

    International Nuclear Information System (INIS)

    Primak, W.

    1982-02-01

    This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures

  8. Stability constants for silicate adsorbed to ferrihydrite

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten

    1994-01-01

    Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...... experiments in 0.01 m NaNO3 electrolyte (pH 3-6). The surface equilibrium constants were calculated according to the two-layer model by Dzombak & Morel (1990). Near equilibrium between protons/hydroxyls in solution and the ferrihydrite surface was obtained within minutes while equilibration with silicate...

  9. Genesis of Soils Formed from Mafic Igneous Rock in the Atlantic Forest Environment

    Directory of Open Access Journals (Sweden)

    Adailde do Carmo Santos

    2016-01-01

    Full Text Available ABSTRACT Different parent materials participate in the formation of soils in the hilly landscape of “Mar de Morros” in the Atlantic Forest environment. Those derived from mafic igneous rock (gabbro frequently show erosion problems because of land use, which is aggravated by the mountainous relief and soil attributes. This study evaluated the main pedogenic processes of soils formed from mafic igneous rock (gabbro in a toposequence in Pinheiral (RJ by characterizing physical, chemical, mineralogical and micromorphological attributes. The profiles are located at different sections in the toposequence: summit (P1, shoulder (P2, backslope (P3 and footslope (P4.They were classified according to the Brazilian System of Soil Classification (SiBCS and correlated to Soil Taxonomy. The soil morphology of profiles P2, P3 and P4 is expressed by a brownish-red color, blocky structure with high to moderate development, clay films and clay loam to clay texture, with a textural B horizon. P1 shows less development, with a shallow profile and the sequence of horizons A-C-Cr. The soils have a slightly low degree of weathering, identified by the presence of pyroxenes and feldspars in the sand fraction and montorillonite in the clay fraction; the sum of bases is from 15 to 24 cmolc kg-1; and cation exchange capacity (CEC is from 12 to 22 cmolc kg-1. A significant presence of clay skins was observed in the field and was confirmed by thin section analysis, which showed features such as argillans, ferriargillans and iron nodules. The soil profile at the summit (P1 was classified as Neossolo Regolítico Órtico (Typic Udorthents, and the other profiles as Chernossolo Argilúvicos Órticos (Typic Argiudolls.

  10. SILICATE EVOLUTION IN BROWN DWARF DISKS

    International Nuclear Information System (INIS)

    Riaz, B.

    2009-01-01

    We present a compositional analysis of the 10 μm silicate spectra for brown dwarf disks in the Taurus and Upper Scorpius (UppSco) star-forming regions, using archival Spitzer/Infrared Spectrograph observations. A variety in the silicate features is observed, ranging from a narrow profile with a peak at 9.8 μm, to nearly flat, low-contrast features. For most objects, we find nearly equal fractions for the large-grain and crystalline mass fractions, indicating both processes to be active in these disks. The median crystalline mass fraction for the Taurus brown dwarfs is found to be 20%, a factor of ∼2 higher than the median reported for the higher mass stars in Taurus. The large-grain mass fractions are found to increase with an increasing strength in the X-ray emission, while the opposite trend is observed for the crystalline mass fractions. A small 5% of the Taurus brown dwarfs are still found to be dominated by pristine interstellar medium-like dust, with an amorphous submicron grain mass fraction of ∼87%. For 15% of the objects, we find a negligible large-grain mass fraction, but a >60% small amorphous silicate fraction. These may be the cases where substantial grain growth and dust sedimentation have occurred in the disks, resulting in a high fraction of amorphous submicron grains in the disk surface. Among the UppSco brown dwarfs, only usd161939 has a signal-to-noise ratio high enough to properly model its silicate spectrum. We find a 74% small amorphous grain and a ∼26% crystalline mass fraction for this object.

  11. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-12-01

    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  12. Lead-silicate glass optical microbubble resonator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  13. Study on Nd and Sr isotopes of Yianshanian mafic rocks in east Lanling area and their implication

    International Nuclear Information System (INIS)

    Zhang Shuming; Wu Jianhua; Zhou Weixun

    2003-01-01

    East Nanling's Yianshanian mafic magna activity can be divided into four phase. The four phase are the Middle Jurassic, the Late Jurassic, the Early Cretaceous and the Late Cretaceous. They are also four important episodes of extensional activities. The four phase mafic rock possess similar Nd-Sr isotope characteristics, high I Sr (commonly from 0.705 to 0.710) and ε Nd values change range wide (from -7.90 to 5.16). It shows crust-mantle mixed magma origin character. The mafic rock possess the character of within-plate basalts,indicated that they are formed within-plate, and showed there were post-orogenic phase at the early Yianshanian's Middle Jurassic in east Nanling area. The rocks formed pattern is mafic magma rise to the crust bottom, were contaminate by crustal materials, and formed in the setting of lithosphere extended and crust extension. East Nanling's Yianshanian magna activity is mainly magma event concern with mantle magma underplating. (authors)

  14. Geochemistry of Late Mesozoic mafic dykes in western Fujian Province of China:Sr-Nd isotope and trace element constraints

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Bancun diabase dyke and the Bali hornblende gabbro dyke in western Fuiian Province were emplaced in the Early and Late Cretaceous periods,respectively;the former is designated to calc-alkaline series and the latter to K-high-calc-alkaline rock series.Both the dykes are characterized by such geochemical characteristics as high Al and Na2O>K2O.As for the Bancun dyke,A12O3=16.32%-17.54%and K2O/Na2O=0.65-0.77;as for the Bali dyke,A12O3=16.89%-17.81%and K2O,Na2O=O.93-O.99.Both the Bancun and Bali mafic dykes are relatively endched in LILE and LREE,but depleted in HSFE, displaying the geochemical characteristics of continental marginal arc,with high initial Sr isotopic ratios and low εNd values,The (87Sr/86Sr)i ratios of the Bancun diabase dyke are within the range of 0.708556-0.70903 and their εNd(t)values vary between-6.8 and-6.3;those of the Bali hornblende dyke are within the range of 0.708556-0.710746 and their εNd(t) values are -4.7--4.7,showing the characteristics of enriched mantle EM Ⅱ.The isotope and trace element data showed that the mafic dykes have not experienced obvious crustal contamination,and metasomatism caused by subduction fluids is the main factor leading to LILE and UREE enrichments.The enriched mantle is the source region for the mafic dykes,and mixing of subduction fluid metasomatized enriched mantle and EM Ⅱ-type mantle constituted the mantle source region of both the Bancun and Bali mafic dykes.Upwelling of the asthenosphere mantle provided sufficient heat energy for the generation of magmas.In accordance with the discrimination diagram of their tectonic settings as well as their trace element geochemical characteristics,it is considered that the dykes both at Bancun and Bali possess the characteristics of continental marginal arc,revealing the tectonic environment of formation of the mafic dykes,the continental dynamic background as an intraplate tensional belt in which the mafic dykes were emplaced.Meanwhile,it is also indicated

  15. The genesis of Mo-Cu deposits and mafic igneous rocks in the Senj area, Alborz magmatic belt, Iran

    Science.gov (United States)

    Nabatian, Ghasem; Li, Xian-Hua; Wan, Bo; Honarmand, Maryam

    2017-11-01

    The geochemical and isotopic investigations were provided on the Upper Eocene Senj mafic intrusion and Mo-Cu mineralization to better understand the tectono-magmatic evolution and metallogeny of the central part of the Alborz magmatic belt. The Senj mafic intrusion is composed of gabbro to monzodiorite and monzonite in lithology, and intruded as a sill into volcano-sedimentary rocks of the Eocene Karaj Formation. The Karaj Formation consists of volcano-sedimentary rocks, such as altered crystalline to shaly tuffs. The Senj intrusion (39.7 ± 0.4 Ma) shows LILE and LREE enrichment and negative anomaly of Nb, Ta and Ti, the geochemical signatures similar to those from subduction-related mafic magmas. The Hf-O zircon analyses yield ɛHf(t) values of + 4.1 to + 11.1 and δ18O values of + 4.8 to + 6.2‰. The zircon isotopic signatures together with shoshonitic affinity in the Senj mafic samples suggest partial melting of an enriched lithospheric mantle that had already been metasomatized by slab-derived melts and fluids. The Mo-Cu mineralization mainly occurs as veins and veinlets in the volcano-sedimentary rocks of the Karaj Formation and is dominated by molybdenite with minor amounts of chalcopyrite, bornite, pyrite and tetrahedrite-tennantite. The associated gangue minerals are tremolite, actinolite, quartz, calcite, chlorite and epidote. The Senj Mo-Cu deposit formed in volcano-sedimentary rocks following the emplacement of the Late Eocene Senj sill. The source of molybdenite in the Senj deposit is dominantly from crustal materials as it is revealed by Re contents in the molybdenite minerals (0.5 to 0.7 ppm). In fact, the molybdenite occurrence may be a remobilization process related to the emplacement of the Senj mafic magma.

  16. Geochemical and isotopic evidence for Carboniferous rifting: mafic dykes in the central Sanandaj-Sirjan zone (Dorud-Azna, West Iran

    Directory of Open Access Journals (Sweden)

    Shakerardakani Farzaneh

    2017-06-01

    Full Text Available In this paper, we present detailed field observations, chronological, geochemical and Sr–Nd isotopic data and discuss the petrogenetic aspects of two types of mafic dykes, of alkaline to subalkaline nature. The alkaline mafic dykes exhibit a cumulate to foliated texture and strike NW–SE, parallel to the main trend of the region. The 40Ar/39Ar amphibole age of 321.32 ± 0.55 Ma from an alkaline mafic dyke is interpreted as an indication of Carboniferous cooling through ca. 550 °C after intrusion of the dyke into the granitic Galeh-Doz orthogneiss and Amphibolite-Metagabbro units, the latter with Early Carboniferous amphibolite facies grade metamorphism and containing the Dare-Hedavand metagabbro with a similar Carboniferous age. The alkaline and subalkaline mafic dykes can be geochemically categorized into those with light REE-enriched patterns [(La/YbN = 8.32–9.28] and others with a rather flat REE pattern [(La/YbN = 1.16] and with a negative Nb anomaly. Together, the mafic dykes show oceanic island basalt to MORB geochemical signature, respectively. This is consistent, as well, with the (Tb/YbPM ratios. The alkaline mafic dykes were formed within an enriched mantle source at depths of ˃ 90 km, generating a suite of alkaline basalts. In comparison, the subalkaline mafic dykes were formed within more depleted mantle source at depths of ˂ 90 km. The subalkaline mafic dyke is characterized by 87Sr/86Sr ratio of 0.706 and positive ɛNd(t value of + 0.77, whereas 87Sr/86Sr ratio of 0.708 and ɛNd(t value of + 1.65 of the alkaline mafic dyke, consistent with the derivation from an enriched mantle source. There is no evidence that the mafic dykes were affected by significant crustal contamination during emplacement. Because of the similar age, the generation of magmas of alkaline mafic dykes and of the Dare-Hedavand metagabbro are assumed to reflect the same process of lithospheric or asthenospheric melting. Carboniferous back-arc rifting is

  17. Regularities in Low-Temperature Phosphatization of Silicates

    Science.gov (United States)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  18. New silicates of rare earths and calcium

    International Nuclear Information System (INIS)

    Andreev, I.F.; Shevyakov, A.M.; Smorodina, T.P.; Semenov, N.E.

    1975-01-01

    The complex silicates of the third subgroup elements of lanthanides and calcium were synthesized: Ca 3 Er 2 Si 6 O 18 , Ca 3 Lu 2 Si 6 O 18 and Ca 3 Yb 2 Si 6 O 18 . To specify these compounds their physical and chemical properties were studied by means of roentgenographic, IR spectroscopic and crystaloptical methods. The values of Ng, Np,Δn,m,p were determined, the elementary cell parameters: a,b,c,α,β,γ were computed. Existence of such compounds and their analogy in ternary systems MeO-Ln 2 O 3 -SiO 2 were forcasted

  19. Tribo-exoemission from some silicate materials

    International Nuclear Information System (INIS)

    Holzapfel, G.; Lesz, J.; Otto, W.

    1983-01-01

    The tribo-exoemission from some minerals has been investigated in view of applications in the porcelain industries. Milling and sample preparation were performed under defined (liquid and solvent free) conditions. Quartz and the members of the alumo-silicate family feldspar, kaolin, and pegmatite are characterised by a strongly overlapped TSEE-peak between 100 0 C and 200 0 C, growing strongly with the mechanical dispersion of the powders. Thermal (TSEE) as well as optical (OSEE) stimulation reveal pegmatite as the strongest emitter with a very low fading of the tribo-signal at room temperature. (author)

  20. Structure peculiarities of mixed alkali silicate glasses

    International Nuclear Information System (INIS)

    Bershtein, V.A.; Gorbachev, V.V.; Egorov, V.

    1980-01-01

    The thermal porperties and structure of alkali and mixed alkali (Li, Na, K) silicate glasses by means of differential scanning calorimetry (DSC), the positron annihilation method, X-ray fluorescence and infrared (300-30 cm -1 ) spectroscopy were studied. Introduction of different alkali cations in glass results in nonadditive change in their electron structure (bond covalence degree growth) and the thermal behaviour. The different manifestations of mixed alkali effect can be explained by the lessening of long distance Coulomb interactions and strengthening the short-range forces in the mixed alkali glasses. (orig.)

  1. Cl-rich hydrous mafic mineral assemblages in the Highiș massif, Apuseni Mountains, Romania

    Science.gov (United States)

    Bonin, Bernard; Tatu, Mihai

    2016-08-01

    The Guadalupian (Mid-Permian) Highiș massif (Apuseni Mountains, Romania) displays a bimodal igneous suite of mafic (gabbro, diorite) and A-type felsic (alkali feldspar granite, albite granite, and hybrid granodiorite) rocks. Amphibole is widespread throughout the suite, and yields markedly high chlorine contents. Three groups are identified: Cl-rich potassic hastingsite (2.60-3.40 wt% Cl) within A-type felsic rocks and diorite, mildly Cl-rich pargasite to hornblende (0.80-1.90 wt% Cl) within gabbro, and low F-Cl hornblende within gabbro and hybrid granodiorite. Coexisting biotite is either Cl-rich within diorite, or F-Cl-poor to F-rich within A-type felsic rocks. Chlorine and fluorine are distributed in both mafic phases, according to the F-Fe and Cl-Mg avoidance rules. The low-Ti contents suggest subsolidus compositions. Cl-rich amphibole within diorite and A-type felsic rocks yields a restricted temperature range - from 575 °C down to 400 °C, whereas mildly Cl-rich amphibole within gabbro displays the highest range - from 675 to 360 °C. Temperatures recorded by Cl-rich biotite within diorite range from 590 to 410 °C. Biotite within A-type felsic rocks yields higher temperatures than amphibole: the highest values- from 640 to 540 °C - are recorded in low-F-Cl varieties, whereas the lowest values- from 535 to 500 °C - are displayed by F-rich varieties. All data point to halogen-rich hydrothermal fluids at upper greenschist facies conditions percolating through fractures and shear zones and pervasively permeating the whole Highiș massif, with F precipitating as interstitial fluorite and Cl incorporating into amphibole, during one, or possibly several, hydrothermal episodes that would have occurred during a ~ 150 My-long period of time extending from the Guadalupian (Mid-Permian) to the Albian (Mid-Cretaceous).

  2. Geophysical evidence for an extensive Pie de Palo Complex mafic-ultramafic belt, San Juan, Argentina

    Science.gov (United States)

    Chernicoff, Carlos J.; Vujovich, Graciela I.; van Staal, Cees R.

    2009-12-01

    The recent completion of a high-resolution aeromagnetic survey over the Pie de Palo uplift of the western Sierras Pampeanas has revealed an area of large magnetic anomalies associated with the Pie de Palo Complex. The Las Pirquitas thrust, which has transported and uplifted the Pie de Palo Complex, is recognized for at least 30 km in a roughly NE direction along the western boundary of the Pie de Palo Complex, beyond its limited outcrop. The type of sediments of the Caucete Group in the footwall of the Las Pirquitas thrust, which are regarded as the leading edge of the Precordillera terrane, are associated with much less pronounced magnetic anomalies. In addition, a conspicuous, NNE trending, broad magnetic high stands out in the survey, several kilometers to the east of the main outcrops of the Pie de Palo Complex; this broad magnetic anomaly bisects the Pie de Palo basement block, and continues further south at least as far as 32°S, the southern boundary of the latest aeromagnetic survey. This magnetic anomaly is interpreted to represent a structure corresponding to the Grenvillian Precordillera-Pie de Palo tectonic boundary zone, and would comprise the buried largest part of the mafic-ultramafic belt. The geophysical model of the magnetic data indicates that the boundary zone dips to the east, possibly suggesting the existence of a set of synthetic east dipping, west-verging thrusts, of which only one major structure (Las Pirquitas thrust) is exposed; the possibility of other slivers of upthrust boundary zone material cannot be excluded. It is considered that the Pie de Palo Complex represents a small sliver upthrust from the unexposed boundary zone material (containing highly magnetic mafic-ultramafic rocks). The east-dipping, west verging structures associated with the Pie de Palo Complex are suggested to represent an Ordovician reactivation of a Grenvillian suture zone developed when the Precordillera basement and Pie de Palo terrane docked; this

  3. LABORATORY INVESTIGATIONS OF SILICATE MUD CONTAMINATION WITH CALCIUM

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2004-12-01

    Full Text Available The silicate-based drilling fluid is a low solids KCl/polymer system with the addition of soluble sodium or potassium silicate to enhance inhibition and wellbore stability. Silicate-based drilling fluids exhibit remarkable shale and chalk stabilizing properties, resulting in gauge hole and the formation of firm cuttings when drilling reactive shales and soft chalks. Silicates protect shales by in-situ gellation when exposed to the neutral pore fluid and precipitation, which occurs on contact with divalent ions present at the surface of the shale. Also, silicates prevent the dispersion and washouts when drilling soft chalk by reacting with the Ca2+ ions present on chalk surfaces of cutting and wellbore to form a protective film. The silicate-based drilling fluid can be used during drilling hole section through shale interbeded anhydrite formations because of its superior shale stabilizing characteristics. However, drilling through the anhydrite can decrease the silicate concentration and change rheological and filtration fluid properties. So, the critical concentration of calcium ions should be investigated by lab tests. This paper details the mechanism of shale inhibition using silicate-based drilling fluid, and presents results of lab tests conducted to ascertain the effect of Ca2+ ions on silicate level in the fluid and the fluid properties.

  4. Location of silicic caldera formation in arc settings

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Gwyneth R; Mahood, Gail A [Department of Geological and Environmental Sciences, Stanford University, 450 Serra, Mall, Building 320, Stanford, CA 94305-2115 (United States)

    2008-10-01

    Silicic calderas are the surface expressions of silicic magma chambers, and thus their study may yield information about what tectonic and crustal features favor the generation of evolved magma. The goal of this study is to determine whether silicic calderas in arc settings are preferentially located behind the volcanic front. After a global analysis of young, arc-related calderas, we find that silicic calderas at continental margins do form over a wide area behind the front, as compared to other types of arc volcanoes.

  5. Tip-induced nanoreactor for silicate

    Science.gov (United States)

    Gao, Ming; Ma, Liran; Liang, Yong; Gao, Yuan; Luo, Jianbin

    2015-09-01

    Nanoscale scientific issues have attracted an increasing amount of research interest due to their specific size-effect and novel structure-property. From macro to nano, materials present some unique chemical reactivity that bulk materials do not own. Here we introduce a facile method to generate silicate with nanoscale control based on the establishment of a confined space between a meso/nanoscale tungsten tip and a smooth silica/silicon substrate. During the process, local water-like droplets deposition can be obviously observed in the confinement between the Si/SiO2 surfaces and the KOH-modified tungsten tip. By the combination of in-situ optical microscopy and Raman spectroscopy, we were able to take a deep insight of both the product composition and the underlying mechanism of such phenomena. It was indicated that such nanoreactor for silicate could be quite efficient as a result of the local capillarity and electric field effect, with implications at both nano and meso scales.

  6. Thermochemistry of dense hydrous magnesium silicates

    Science.gov (United States)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  7. Evidence for seismogenic fracture of silicic magma.

    Science.gov (United States)

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.

  8. Geochronology and geochemistry of mafic dykes from the precambrians of Keonjhar, Orissa

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, A K; Sarkar, Amitabha [Geological Survey of India, Calcutta (India). Geochronology and Isotope Geology Division

    1994-01-01

    Two generations of mafic dolerite dykes with distinct geochemical signatures are recorded in the Champua-Keonjhargarh area of Keonjhar district in the eastern Indian precambrian craton (EIPC) on the basis of geochemical and K-Ar isotopic studies. The younger group-II dykes (ca. 1250 Ma) are mostly Fe-tholeiities, whereas the older group-I dykes (2100 +/- 100 Ma) show a wider compositional spectrum from Mg-Fe tholeiites to komatiitic basalts. The group-I dolerites show higher MgO content, Mg value. CaO/(Na){sub 2}O + K{sub 2}O and lower Fe{sub 2}O{sub 3}(T) and TiO{sub 2} contents compared to those in the group-II dykes. Consistent with their comparatively evolved nature, the group-II dolerites have lower Cr, Ni, total REE, Rb/Sr ratio and incompatible element abundances than those in the group-I dolerite rocks. Both the generations of dolerites, however, reveal enrichment in compatible elements and in this respect are similar to proterozoic dykes elsewhere in the world. Both groups of dykes reveal Fe-enrichment trend typical of tholeiitic intrusions in the FMA diagram- a feature mimicked by plots in the (Y + Zr) - 100 x TiO{sub 2} - Cr diagram. The available isotopic age data pertaining to the newer dolerite suite of Singhbhum - Keonjhar region of the EIPC are reviewed. (author). 29 refs., 15 figs., 4 tabs.

  9. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber.

    Science.gov (United States)

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-12-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ(57)Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ(57)Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ(57)Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted.

  10. Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: a petrological cycle associated with caldera collapse

    Science.gov (United States)

    Bachmann, Olivier; Deering, Chad D.; Ruprecht, Janina S.; Huber, Christian; Skopelitis, Alexandra; Schnyder, Cedric

    2012-01-01

    Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (≤750-800°C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800-850°C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100°C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos

  11. Spectral properties of porphyrins in the systems with layered silicates

    International Nuclear Information System (INIS)

    Ceklovsky, A.

    2009-03-01

    This work is focused on investigation of hybrid materials based on layered silicates, representing host inorganic component, and porphyrin dyes as organic guest. Aqueous colloidal dispersions, as well as thin solid films of layered silicate/porphyrin systems were studied. Modification of photophysical properties, such as absorption and fluorescence of molecules, adsorbed or incorporated in layered silicate hosts, were studied mainly to spread the knowledge about the environments suitable for incorporating aromatic compounds, providing photoactive properties of potential technological interest. TMPyP cations interact with the surfaces of layered silicates via electrostatic interactions. The extent of dye adsorption on colloidal particles of the silicates is influenced by the CEC values and swelling ability of silicates. Interaction of porphyrins with layered silicate hosts leads to significant changes of dye spectral properties. One of the key parameters that has a crucial impact on this interaction is the layer charge of silicate template. Other factors influence the resulting spectral properties of hybrid systems, such as the method of hybrid material preparation, the material's type (colloid, film), and the modification of the silicate host. Molecular orientation studies using linearly-polarized spectroscopies in VIS and IR regions revealed that TMPyP molecules were oriented in almost parallel fashion with respect to the silicate surface plane. Slightly higher values of the orientation angle of TMPyP transition moment were observed for the TMPyP/FHT system. Thus, flattening of the guest TMPyP molecules is the next important factor (mainly in the systems with lower layer charge), influencing its spectral properties upon the interaction with layered silicates. Fluorescence was effectively quenched in the systems based on solid films prepared from the high concentration of the dye (10-3 mol.dm-3). The quenching is most probably related to the structure of the

  12. Stress-corrosion mechanisms in silicate glasses

    International Nuclear Information System (INIS)

    Ciccotti, Matteo

    2009-01-01

    The present review is intended to revisit the advances and debates in the comprehension of the mechanisms of subcritical crack propagation in silicate glasses almost a century after its initial developments. Glass has inspired the initial insights of Griffith into the origin of brittleness and the ensuing development of modern fracture mechanics. Yet, through the decades the real nature of the fundamental mechanisms of crack propagation in glass has escaped a clear comprehension which could gather general agreement on subtle problems such as the role of plasticity, the role of the glass composition, the environmental condition at the crack tip and its relation to the complex mechanisms of corrosion and leaching. The different processes are analysed here with a special focus on their relevant space and time scales in order to question their domain of action and their contribution in both the kinetic laws and the energetic aspects.

  13. Cesium titanium silicate and method of making

    Science.gov (United States)

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  14. Radiation effects on lead silicate glass surfaces

    International Nuclear Information System (INIS)

    Wang, P.W.; Zhang, L.P.; Borgen, N.; Pannell, K.

    1996-01-01

    Radiation-induced changes in the microstructure of lead silicate glass were investigated in situ under Mg K α irradiation in an ultra-high vacuum (UHV) environment by X-ray photoelectron spectroscopy (XPS). Lead-oxygen bond breaking resulting in the formation of pure lead was observed. The segregation, growth kinetics and the structural relaxation of the lead, with corresponding changes in the oxygen and silicon on the glass surfaces were studied by measuring the time-dependent changes in concentration, binding energy shifts, and the full width at half maximum. A bimodal distribution of the oxygen XPS signal, caused by bridging and non-bridging oxygens, was found during the relaxation process. All experimental data indicate a reduction of the oxygen concentration, a phase separation of the lead from the glass matrix, and the metallization of the lead occurred during and after the X-ray irradiation. (author)

  15. Mafic enclaves in dacitic domes and their relation with La Poruña scoria cone, Central Andes, northern Chile

    Science.gov (United States)

    González-Maurel, O. P.; Gallmeyer, G.; Godoy, B.; Menzies, A.; le Roux, P. J.; Harris, C.

    2017-12-01

    Chao Dacite, Chillahuita, Cerro Pabellón, Chanka, Chac-Inca, and Cerro La Torta (or Tocorpuri) are dacitic domes of late Pleistocene age (30 to 140 ka; Renzulli et al., 2006; Tierney et al., 2016) located in Northern Chilean Central Andean province (NCCA; 17°20'S - 27°40'S). While, La Poruña is a 180 m high basaltic-andesite scoria cone erupted ca. 100 ka (Wörner et al., 2000). This scoria cone is also located at the NCCA, 26 km to the SW of Chanka and 45 km to the NW of Chao Dacite. The dacitic domes are generally porphyritic and highly crystalline lavas (30 - 50 vol % phenocrysts, plagioclase > biotite > amphibole > quartz ≥ accessory), with hyalopilitic or intersertal groundmass. These domes contain mafic enclaves, mostly andesite in composition, with plagioclase > amphibole > biotite ≥ clinopyroxene ≥ olivine ≥ accessory phenocryst (10 - 20 vol %) in a lightly oxidized groundmass with intersertal or intergranular textures. In contrast, La Poruña rocks are mostly aphanitic (75 - 85 vol % groundmass) and highly vesicular, with plagioclase > olivine ≥ clinopyroxene ≥ orthopyroxene phenocrysts in an intersertal or hyalopilitic groundmass. Although petrographically different, the composition (57 wt % SiO2; 580 ppm Sr, 87Sr/86Sr = 0.7066) of mafic enclaves from Cerro Pabellón dome are similar to the lava flows and pyroclastic blocks of La Poruña scoria cone (55 - 59 wt % SiO2; 560 - 610 ppm Sr; 0.7062 - 0.7066 87Sr/86Sr). Based on this data and the eruption ages of these volcanic structures, we suggest that the mafic enclaves and La Poruña magmas are co-genetic. Thus, we propose that the genesis of these mafic enclaves is associated with the origin of less evolved parental magmas erupted in the NCCA, such as those from La Poruña. In this case, the mafic enclaves would represent batches of less evolved magmas that ascended from deeper sources and probably contributed in the eruption of the dacitic domes. Renzulli et al., 2006. In XI Congreso Geol

  16. Redox kinetics and mechanism in silicate melts

    International Nuclear Information System (INIS)

    Cochain, B.

    2009-12-01

    This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)

  17. Paleomagnetism of Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana

    Science.gov (United States)

    Trindade, Ricardo I. F.; D'Agrella-Filho, Manoel S.; Epof, Igor; Brito Neves, Benjamim B.

    2006-04-01

    Paleomagnetic analysis on 15 early Cambrian mafic dikes from Itabaiana (Paraíba State) yielded a southern (northwestern) direction with steep upward (downward) inclination ( Dm = 167.5°, Im = - 63.7°, α95 = 7.3°). AF and Thermal demagnetization, thermomagnetic curves, and hysteresis results suggest that this component is dominantly carried by fine-grained SD magnetite. The high stability of this component and positive baked contact tests on three dikes indicate it represents a primary thermoremanent magnetization. Ar-Ar analysis on whole-rock samples from two sites provides a strong constraint on the age of the Itabaiana paleomagnetic pole (134.6° E, 34.9° S; A95 = 7.3, K = 28) defined by plateau ages of 525 ± 5 and 526 ± 4 Ma. This pole completely satisfies six out of the seven quality criteria proposed by Van der Voo [R. Van der Voo, The reliability of paleomagnetic data, Tectonophysics 184 (1990) 1-9.] and permits a tight constraint on the Early Cambrian sector of the Gondwana apparent polar wander path. Paleogeographic reconstructions consistent with the available paleomagnetic and geological record show that Gondwana was sutured along three major orogenies, the Mozambique (Brasilano/Pan-African) Orogeny (800-650 Ma), the Kuunga Orogeny (570-530 Ma) and the Pampean-Araguaia Orogeny (540-520 Ma). We suggest that after rifting away from Laurentia at the end of the Neoproterozoic, opening the Iapetus ocean, the Amazonian craton and minor adjoining blocks, such as Rio Apa and Pampia, collided with the proto-Gondwana by Cambrian times at ca. 530-520 Ma. Unless for small adjustments, Gondwana was completely formed by 525 Ma whose paleogeography is defined by the Itabaiana pole.

  18. Shallow magma diversions during explosive maar-diatreme eruptions in mafic volcanic fields

    Science.gov (United States)

    Le Corvec, N.; Muirhead, J.; White, J. D. L.

    2017-12-01

    Maar-diatremes are inverted conical structures formed by subterranean excavation and remobilization of country rocks during explosive volcanism and common in mafic volcanic fields. We focus on impacts of excavation and filling of maar-diatremes on the local state of stress, and its subsequent influence on underlying feeder dikes, which are critical for understanding the development of intrusive networks that feed surface eruptions. We address this issue using finite element models in COMSOL Multiphysics®. Inverted conical structures of varying sizes are excavated in a gravitationally loaded elastic half-space, and then progressively filled with volcaniclastic material, resulting in changes in the orientations and magnitudes of stresses generated within surrounding rocks and within the filling portion of the maar-diatreme. Our results show that rapid unloading during maar-diatreme excavation generates a horizontal compressive stress state beneath diatremes. These stresses allow magma to divert laterally as saucer-shaped sills and circumferential dikes at varying depths in the shallow feeder system, and produce intrusion geometries consistent with both field observations from exhumed volcanic fields and conceptual models of diatreme growth. Stresses generated in these models also provide an explanation for the evolving locations of fragmentation zones over the course of diatreme's filling. In particular, results from this study suggest that: (1) extensional stresses at the base of the diatreme fill favor magma ascent in the lower half of the structure, and possibly promote volatile exsolution and magma fragmentation; and (2) increased filling of diatremes creates a shallow compressive stress state that can inhibit magma ascent to the surface, promoting widespread intra-diatreme explosions, efficient mixing of host rock, and upward widening of the diatreme structure.

  19. Silicic, high- to extremely high-grade ignimbrites and associated deposits from the Paraná Magmatic Province, southern Brazil

    Science.gov (United States)

    Luchetti, Ana Carolina F.; Nardy, Antonio J. R.; Madeira, José

    2018-04-01

    The Cretaceous trachydacites and dacites of Chapecó type (ATC) and dacites and rhyolites of Palmas type (ATP) make up 2.5% of the 800.000 km3 of volcanic pile in the Paraná Magmatic Province (PMP), emplaced at the onset of Gondwana breakup. Together they cover extensive areas in southern Brazil, overlapping volcanic sequences of tholeiitic basalts and andesites; occasional mafic units are also found within the silicic sequence. In the central region of the PMP silicic volcanism comprises porphyritic ATC-type, trachydacite high-grade ignimbrites (strongly welded) overlying aphyric ATP-type, rhyolite high- to extremely high-grade ignimbrites (strongly welded to lava-like). In the southwestern region strongly welded to lava-like high-grade ignimbrites overlie ATP lava domes, while in the southeast lava domes are found intercalated within the ignimbrite sequence. Characteristics of these ignimbrites are: widespread sheet-like deposits (tens to hundreds of km across); absence of basal breccias and basal fallout layers; ubiquitous horizontal to sub-horizontal sheet jointing; massive, structureless to horizontally banded-laminated rock bodies locally presenting flow folding; thoroughly homogeneous vitrophyres or with flow banding-lamination; phenocryst abundance presenting upward and lateral decrease; welded glass blobs in an 'eutaxitic'-like texture; negligible phenocryst breakage; vitroclastic texture locally preserved; scarcity of lithic fragments. These features, combined with high eruption temperatures (≥ 1000 °C), low water content (≤ 2%) and low viscosities (104-7 Pa s) suggest that the eruptions were characterized by low fountaining, little heat loss during collapse, and high mass fluxes producing extensive deposits.

  20. Lattice thermal conductivity of silicate glasses at high pressures

    Science.gov (United States)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  1. Effects of interaction between ultramafic tectonite and mafic magma on Nd-Pb-Sr isotopic systems in the Neoproterozoic Chaya Massif, Baikal-Muya ophiolite belt

    Science.gov (United States)

    Amelin, Yuri V.; Ritsk, Eugeni Yu.; Neymark, Leonid A.

    1997-04-01

    Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/ 144Nd- 143Nd/ 144Nd and 238U/ 204Pb- 206Pb/ 204Pb mineral isochrons, corresponding to ages of 640 ± 58 Ma (95% confidence level) and 620 ± 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ± 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites withɛ Nd = +6.6 to +7.1 andɛ Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit:ɛ Nd = +4.6 to +6.1 andɛ Sr = -8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/ 204Pb= 16.994 ± 0.023 and 207Pb/ 204Pb= 15.363 ± 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with

  2. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

    Science.gov (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing

    2017-12-01

    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  3. Chemistry of the subalkalic silicic obsidians

    Science.gov (United States)

    MacDonald, Ray; Smith, Robert L.; Thomas, John E.

    1992-01-01

    Nonhydrated obsidians are quenched magmatic liquids that record in their chemical compositions details of the tectonic environment of formation and of the differentiation mechanisms that affected their subsequent evolution. This study attempts to analyze, in terms of geologic processes, the compositional variations in the subalkalic silicic obsidians (Si02≥70 percent by weight, molecular (Na2O+K20)>Al2O3). New major- and trace-element determinations of 241 samples and a compilation of 130 published major-element analyses are reported and interpreted. Obsidians from five different tectonic settings are recognized: (1) primitive island arcs, (2) mature island arcs, (3) continental margins, (4) continental interiors, and (5) oceanic extensional zones. Tectonomagmatic discrimination between these groups is successfully made on Nb-Ta, Nb-FeOt and Th-Hf-Ta plots, and compositional ranges and averages for each group are presented. The chemical differences between groups are related to the type of crust in which magmas were generated. With increasingly sialic (continental type) crust, the obsidians show overall enrichment in F, Be, Li, Mo, Nb, Rb, Sn, Ta, U, W, Zn, and the rare-earth elements, and depletion in Mg, Ca, Ba, Co, Sc, Sr, and Zr. They become more potassic, have higher Fe/Mg and F/Cl ratios, and lower Zr/Hf, Nb/Ta, and Th/U ratios. Higher values of total rare-earth elements are accompanied by light rare-earth-element enrichment and pronounced negative Eu anomalies. An attempt is made to link obsidian chemistry to genetic mechanlism. Two broad groups of rocks are distinguished: one generated where crystal-liquid processes dominated (CLPD types), which are the products of crustal anatexis, possibly under conditions of low halogen fugacity, ± crystal fractionation ± magma mixing; and a second group represented by rocks formed in the upper parts of large magma chambers by interplays of crystal fractionation, volatile transfer, magma mixing, and possibly various

  4. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  5. Large Igneous Provinces, Their Giant Mafic Dyke Swarms, and Links to Metallogeny

    Science.gov (United States)

    Jowitt, S.; Ernst, R. E.

    2017-12-01

    The relationships between large igneous provinces (LIPs), their giant dyke swarms and differing metallogenic systems can be condensed into five distinct although partially overlapping classifications: (1) LIP magmas that directly generate mineral deposits such as orthomagmatic Ni-Cu-PGE sulfides. Many carbonatites (Nb, Ta REE deposits) and kimberlites (diamonds) are also often LIP related. On the other hand, LIP-related thermal pulses (from a mantle plume) can sometimes destroy diamond potential in the overlying lithosphere. A key locus for Ni-Cu-PGE mineralization is within a few hundred km of the plume center region and plume centers are best located using giant radiating dyke swarms. Dyke subswarms with chalcophile element depletions can also be tracked "upstream" toward the plume center to identify exploration targets. (2) LIP magmas that provide energy, fluids, and/or metals for ore types such as hydrothermal volcanogenic massive sulfide (VMS) and iron oxide-copper-gold (IOCG) deposits. Heat loss from the margins of dykes and sills can also generate local enrichments in key metals (e.g. Co) within the surrounding sedimentary rocks. (3) LIP rocks (particularly sills and dykes) can act barriers to fluid flow and/or as reaction zones that control mineralizing events, act as structural traps within hydrocarbon systems, and form impermeable barriers that control water flow and hence aquifer formation (4) surficial effects, such as the formation of Ni-Co laterites and Al bauxites from tropical weathering of LIP mafic-ultramafic rocks (including volcanics fed by radiating dykes as well as the dykes themselves). This category also includes LIP-related anoxia events that generate hydrocarbon source rocks; and (5) indirect links between LIPs and ore deposits, where continental breakup-related LIP events define a `barcode' record (usually dominated by dyke swarms) that can be used to correlate and reconstruct Precambrian supercontinents. This fifth classification type

  6. Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths

    Science.gov (United States)

    Stracke, A.; Tipper, E. T.; Klemme, S.; Bizimis, M.

    2018-04-01

    , the clearly resolvable inter-mineral Mg isotope differences imply that crystallization or preferential melting of isotopically distinct minerals such garnet, spinel, and clinopyroxene should cause Mg isotope fractionation between bulk melt and residue. Calculated Mg isotope variations during partial mantle melting indeed predict differences between melt and residue, but these are analytically resolvable only for melting of mafic lithologies, that is, garnet pyroxenites. Contributions from garnet pyroxenite melts may thus account for some of the isotopically light δ26Mg observed in ocean island basalts and trace lithological mantle heterogeneity. Consequently, applications for high-temperature Mg isotope fractionations are promising and diverse, and recent advances in analytical precision may allow the full petrogenetic potential inherent in the sub per mill variations in δ26Mg in magmatic rocks to be exploited.

  7. An isotopic study of mafic microgranular enclaves in the Katsuragi adakitic tonalite, southwestern Japan.

    Science.gov (United States)

    Tezuka, N.; Tsuboi, M.; Asahara, Y.

    2017-12-01

    The Cretaceous Katsuragi tonalite in southwestern Japan has been regarded as adakite formed by the partial melting of lower crust a) b). The tonalite is 10 x 15 km in areal extent, is composed of hornblende-biotite tonalite with a mineral assemblage of plagioclase, biotite, quartz and hornblende, and contains mafic microgranular enclaves (MME). The MME has dioritic composition with a mineral assemblage of plagioclase, biotite, hornblende and quartz. The boundary between the tonalite and the MME is sharp. To reveal the relationship between the MME and adakitic feature of the host tonalite, we have focused on the chemical and Sr-Nd isotopic compositions of the MME in the Katsuragi tonalite. Three models have been proposed for the origin of MME: restite, magma-mixing, and cumulate c). In the restite model, MME is regarded as a residual material of partial melting, and therefore chemical compositions of MME and host should show a linear trend on the Harker's diagram. However, the Katsuragi tonalite and its MME do not show one linear trend. Based on mixing of two magmas, initial 87Sr/86Sr (SrI) value of MME is basically different from that of its host. However, the SrI value of the MME is 0.70725-0.70749 and is identical to the value of 0.70728 in the Katsuragi tonalite d), indicating one magma source for the MME and its host. According to the cumulate model, MME forms from cumulate piles by subsequent feeding of congenetic magma immediately after the early crystallized minerals are solidified. The concordance of the age and SrI between the Katsuragi tonalite and its MME strongly indicate the cumulate origin c). Furthermore, the mineral assemblage of the MME resembles with the common mineral assemblage of andesitic cumulate such as plagioclase, hornblende and quartz c), and this is consistent with the cumulate model. Based on the cumulate origin of the MME, the adakitic feature of chemical composition in the host rock is potentially formed by the separation of cumulate

  8. An Integrated Geochronological, Petrological, Geochemical and Paleomagnetic Study of Paleoproterozoic and Mesoproterozoic Mafic Dyke Swarms in the Nain Craton, Labrador

    Science.gov (United States)

    Sahin, Tugce

    The Nain craton comprises the western, Labrador segment of the larger North Atlantic craton (NAC) which exposes Early through Late Archean gneisses. The NAC is bounded on all sides by Paleoproterozoic collisional orogens that involved either considerable structural reworking (Torngat-Nagssugtoqidian-Lewisian) or the accretion of juvenile arc magmas (Ketilidian-Makkovik). The NAC remains poorly understood compared to other Archean crustal blocks now dispersed globally. Compounding this problem is a lack of reliable paleomagnetic poles for NAC units that predate its assembly into the supercontinent Laurentia by ca. 1800 Ma, which could be used to test neighboring relationships with other cratonic fragments. In order to understand the history of the NAC as part of a possible, larger supercontinent, the record of mafic dyke swarms affecting the craton, particularly those that postdate the Late Archean terrane assembly, were examined in this study. Diabase or gabbroic dyke swarms are invaluable in such studies because their geometries offer possible locus points, they often have a punctuated emplacement and precisely datable crystallization histories, and they have cooling histories and oxide mineralogy amenable to recovering robust paleopoles. Coastal Labrador exposes a number of mafic dykes, some of which are demonstrably Paleoproterozoic (e.g. 2235 Ma Kikkertavak dykes; 2121 Ma Tikkigatsiagak dykes) or Mesoproterozoic (e.g. 1280-1270 Ma Nain and Harp dykes) in age (U-Pb; baddeleyite or zircon). The southern half of the Nain craton (Hopedale block) in particular preserves a rich array of mafic dykes. Dyke cross-cutting relationships are numerous and relatively well exposed, permitting multiple opportunities for paleomagnetic field tests (e.g. baked contact). The results presented here allow understanding of the tectonic evolution of the NAC with implications for strengthened Labrador-Greenland correlations, and testing possible Paleoproterozoic supercontinent

  9. Rb-Sr and Nd-Sr isotope geochemistry and petrogenesis of the Misho Mountains mafic dikes (NW Iran

    Directory of Open Access Journals (Sweden)

    Maryam Ahankoub

    2017-02-01

    Full Text Available Introduction There are some theories about the Paleotethys event during the Paleozoic that have been proposed by geologists (Metcalfe, 2006. Some scientist offered some pieces of evidence about the northern margin of Gondwana (Zhu et al., 2010. The Paleotethys Ocean and Hercynian orogenic report first in Iran, have been Offered from the Morrow and Misho Mountain (Eftekharnejad, 1981. Misho Mountains is located between the north and south Misho faults and cause the formation of a positive flower structure (Moayyed and Hossainzade, 2011. There is theory about Misho southern fault as the best candidate of the Paleotethys suture zone (Moayyed and Hossainzade, 2011. Geochemistry and Sr –Nd isotopic data of the A2 granitic and Synite rocks of the East Misho, indicate that the magmatism post collision has occurred in the active continental margin by extensional zones of the following the closure of the Paleotethys (Ahankoub, 2012. Granite and syenite rocks have been cut by mafic dikes. Mafic dikes are often formed in extensional tectonic settings related to mantle plume or continental break –up (Zhu et al., 2009. In this paper, we use the geochemistry and Nd-Sr isotope data to determined petrogenesis, tectono-magmatic setting and age of Misho mafic dikes. Materials and methods After petrography study of 30 thin sections of mafic dike rocks, 8 samples were selected for whole-rock chemical analyses using ICP-MS and ICP-AES instruments by ACME Company in Vancouver, Canada. We prepared 6 sample For Sm-Nd and Rb-Sr analysis. Sr and Nd isotope ratios were measured with a thermal ionization mass spectrometer, VG Sector 54–30 at the Nagoya University. The isotope abundances of Rb, Sr, Nd, and Sm were measured by the ID method with a Finnigan MAT Thermoquad THQ thermal ionization quadrupole mass spectrometer at the Nagoya University. NBS987 and JNdi-1 were measured as natural Sr and Nd isotope ratio standards (Tanaka et al., 2000. Averages and 2σ errors

  10. Mafic and ultramafic rocks, and platinum mineralisation potential, in the Longwood Range, Southland, New Zealand

    International Nuclear Information System (INIS)

    Ashley, P.; Craw, D.; Mackenzie, D.; Rombouts, M.; Reay, A.

    2012-01-01

    Intrusive rocks in the Longwood Range represent a component of the Permian Brook Street Terrane. They include diffusely layered, cumulate-textured olivine gabbro, troctolite, and gabbro, and gradations into non-cumulate gabbro and gabbronorite. Volumetrically small ultramafic layers occur (plagioclase wehrlite), and thin veins of felsic rocks ranging from quartz diorite to trondhjemite. Primary olivine, plagioclase, clinopyroxene, and subordinate orthopyroxene and hornblende are commonly altered or metamorphosed to amphiboles, minor spinel, magnetite, chlorite, biotite and clinozoisite, and serpentine in olivine-rich rocks. Accessory primary Ti-bearing magnetite and ilmenite occur, and trace Cr-magnetite is characteristic of olivine-rich rocks. Trace pyrrhotite, chalcopyrite, pentlandite, and pyrite could reflect equilibrated late magmatic, and alteration-derived phases. Key petrochemical characteristics of the rock suite are high Mg, Al, Ca, and Sr contents, and low alkali, LILE, and sulfur contents. Platinum and Pd are locally enriched in drill-hole intercepts, but zones appear unrelated to rock type, magnetic properties, or to S, Cu, Ni, Cr, or Au values. Local platinum group element (PGE) enrichment in altered rocks implies metamorphic and/or hydrothermal redistribution. Pervasive PGE enrichment in Longwood rocks is an indicator of potential 'fertility', but evidence is currently lacking for the precipitation of primary stratiform PGE accumulations from a sulfide liquid saturated magma. (author). 41 refs., 11 figs., 2 tabs.

  11. Electronic structure calculations of calcium silicate hydrates

    International Nuclear Information System (INIS)

    Sterne, P.A.; Meike, A.

    1995-11-01

    Many phases in the calcium-silicate-hydrate system can develop in cement exposed over long periods of time to temperatures above 25 C. As a consequence, chemical reactions involving these phases can affect the relative humidity and water chemistry of a radioactive waste repository that contains significant amounts of cement. In order to predict and simulate these chemical reactions, the authors are developing an internally consistent database of crystalline Ca-Si-hydrate structures. The results of first principles electronic structure calculations on two such phases, wollastonite (CaSiO 3 ) and xonotlite (Ca 6 Si 6 O 17 (OH) 2 ), are reported here. The calculated ground state properties are in very good agreement with experiment, providing equilibrium lattice parameters within about 1--1.4% of the experimentally reported values. The roles of the different types of oxygen atoms, which are fundamental to understanding the energetics of crystalline Ca-Si-hydrates are briefly discussed in terms of their electronic state densities. The good agreement with experiment for the lattice parameters and the consistency of the electronic density of states features for the two structures demonstrate the applicability of these electronic structure methods in calculating the fundamental properties of these phases

  12. Calcium Isotopic Composition of Bulk Silicate Earth

    Science.gov (United States)

    Kang, J.; Ionov, D. A.; Liu, F.; Zhang, C.; Zhang, Z.; Huang, F.

    2016-12-01

    Ca isotopes are used to study the accretion history of the Earth and terrestrial planets, but, Ca isotopic composition of the Bulk Silicate Earth (BSE) remains poorly constrained [1]. To better understand the Ca isotopic composition of BSE, we analyzed 22 well studied peridotite xenoliths from Tariat (Mongolia), Vitim (southern Siberia) and Udachnaya (Siberian Craton). These samples include both fertile and highly depleted garnet and spinel peridotites that show no or only minor post-melting metasomatism or alteration. Ca isotope measurements were done on a Triton-TIMS using double spike method at the Guangzhou Institute of Geochemistry, CAS. The data are reported as δ44/40Ca (relative to NIST SRM 915a). Results for geostandards are consistent with those from other laboratories. 2 standard deviations of SRM 915a analyses are 0.13‰ (n=48). δ44/40Ca of both and fertile and refractory peridotites range from 0.79 to 1.07‰ producing an average of 0.93±0.12‰ (2SD). This value defines the Ca isotopic composition of the BSE, which is consistent with the average δ44/40Ca of oceanic basalts ( 0.90‰)[2,3]. [1] Huang et al (2010) EPSL 292; [2] Valdes et al (2014) EPSL 394; [3]DePaolo (2004) RMG 55.

  13. Suppressive effects of a polymer sodium silicate solution on ...

    African Journals Online (AJOL)

    Mohsen

    2015-10-21

    Oct 21, 2015 ... suppressive effects of sodium silicate in the polymer form were confirmed against powdery mildew and ... crops (such as rice) controls diseases and could reduce ... negative charge and sodium ions with a positive charge.

  14. Conversion of rice hull ash into soluble sodium silicate

    Directory of Open Access Journals (Sweden)

    Edson Luiz Foletto

    2006-09-01

    Full Text Available Sodium silicate is used as raw material for several purposes: silica gel production, preparation of catalysts, inks, load for medicines, concrete hardening accelerator, component of detergents and soaps, refractory constituent and deflocculant in clay slurries. In this work sodium silicate was produced by reacting rice hull ash (RHA and aqueous sodium hydroxide, in open and closed reaction systems. The studied process variables were time, temperature of reaction and composition of the reaction mixture (expressed in terms of molar ratios NaOH/SiO2 and H2O/SiO2. About 90% silica conversion contained in the RHA into sodium silicate was achieved in closed system at 200 °C. The results showed that sodium silicate production from RHA can generate aggregate value to this residue.

  15. Early Jurassic mafic dykes from the Aigao uranium ore deposit in South China: Geochronology, petrogenesis and relationship with uranium mineralization

    Science.gov (United States)

    Zhang, Di; Zhao, Kui-Dong; Chen, Wei; Jiang, Shao-Yong

    2018-05-01

    Mafic dykes are abundant and widely distributed in many granite-hosted uranium ore deposits in South China. However, their geochronology, petrogenesis and relationship with uranium mineralization were poorly constrained. In this study, apatite U-Pb dating, whole-rock major and trace element and Sr-Nd-Pb isotope analysis were conducted for the dolerite dykes from the Aigao uranium ore deposit. Apatite U-Pb isotopic data indicate that the mafic dykes were emplaced at Early Jurassic (189 ± 4 Ma), which provides new evidence for the rarely identified Early Jurassic magmatism in South China. Pyroxene from the dykes is mainly augite, and plagioclase belongs to albite. The dolerite samples have relatively low SiO2 contents (45.33-46.79 wt%), relatively high total alkali contents (K2O + Na2O = 4.11-4.58 wt%) and Al2O3 contents (13.39-13.80 wt%), and medium MgO contents (4.29-5.16 wt%). They are enriched in Nb, Ta, Ti, rare earth elements and depleted in Rb, K, Sr, Th, showing the typical OIB-like geochemical affinity. All the dolerite samples show homogeneous Sr-Nd-Pb isotopic compositions, with (87Sr/86Sr)i varying from 0.706049 to 0.707137, εNd(t) from +4.6 to +5.2, 206Pb/204Pb from 19.032 to 19.126 and 207Pb/204Pb from 15.641 to 15.653. The mafic dykes in the Aigao deposit should be derived from the partial melting of the asthenospheric mantle and formed in a within-plate extensional environment. The emplacement age of the mafic dykes is older than the uranium mineralization age. Therefore, CO2 in ore-forming fluids couldn't originate from the basaltic magma as suggested by previous studies. The dolerite dykes might only provide a favorable reducing environment to promote the precipitation of uraninite from oxidize hydrothermal fluids.

  16. Geochemical characteristics and tectonic setting of the Tuerkubantao mafic-ultramafic intrusion in West Junggar, Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Yufeng Deng

    2015-03-01

    Full Text Available Mineral chemistry, whole-rock major oxide, and trace element compositions have been determined for the Tuerkubantao mafic-ultramafic intrusion, in order to understand the early Paleozoic tectonic evolution of the West Junggar orogenic belt at the southern margin of the Central Asian orogenic belt. The Tuerkubantao mafic-ultramafic intrusion is a well-differentiated complex comprising peridotite, olivine pyroxenite, gabbro, and diorite. The ultramafic rocks are mostly seen in the central part of the intrusion and surrounded by mafic rocks. The Tuerkubantao intrusive rocks are characterized by enrichment of large ion lithophile elements and depleted high field strength elements relative to N-MORB. In addition, the Tuerkubantao intrusion displays relatively low Th/U and Nb/U (1.13–2.98 and 2.53–7.02, respectively and high La/Nb and Ba/Nb (1.15–4.19 and 37.7–79.82, respectively. These features indicate that the primary magma of the intrusion was derived from partial melting of a previously metasomatized mantle source in a subduction setting. The trace element patterns of peridotites, gabbros, and diorite in the Tuerkubantao intrusion have sub-parallel trends, suggesting that the different rock types are related to each other by differentiation of the same primary magma. The intrusive contact between peridotite and gabbro clearly suggest that the Tuerkubantao is not a fragment of an ophiolite. However, the Tuerkubantao intrusion displays many similarities with Alaskan-type mafic-ultramafic intrusions along major sutures of Phanerozoic orogenic belts. Common features include their geodynamic setting, internal lithological zoning, and geochemistry. The striking similarities indicate that the middle Devonian Tuerkubantao intrusion likely formed in a subduction-related setting similar to that of the Alaskan-type intrusions. In combination with the Devonian magmatism and porphyry mineralization, we propose that subduction of the oceanic slab has

  17. U-Pb zircon geochronology of Late Devonian to Early Carboniferous extension-related silicic volcanism in the northern New England Fold Belt

    International Nuclear Information System (INIS)

    Bryan, S.E.; Holcombe, R.J.; Fielding, C.R.; Allen, C.M.

    2004-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis of zircons confirm a Late Devonian to Early Carboniferous age (ca 360-350 Ma) for silicic volcanic rocks of the Campwyn Volcanics and Yarrol terrane of the northern New England Fold Belt (Queensland). These rocks are coeval with silicic volcanism recorded elsewhere in the fold belt at this time (Connors Arch, Drummond Basin). The new U-Pb zircon ages, in combination with those from previous studies, show that silicic magmatism was both widespread across the northern New England Fold Belt (>250 000 km 2 and >500 km inboard of plate margin) and protracted, occurring over a period of -15 million years. Zircon inheritance is commonplace in the Late Devonian - Early Carboniferous volcanics, reflecting anatectic melting and considerable reworking of continental crust. Inherited zircon components range from ca 370 to ca 2050 Ma, with Middle Devonian (385-370 Ma) zircons being common to almost all dated units. Precambrian zircon components record either Precambrian crystalline crust or sedimentary accumulations that were present above or within the zone of magma formation This contrasts with a lack of significant zircon inheritance in younger Permo-Carboniferous igneous rocks intruded through,and emplaced on top of, the Devonian-Carboniferous successions. The inheritance data and location of these volcanic rocks at the eastern margins of the northern New England Fold Belt, coupled with Sr-Nd, Pb isotopic data and depleted mantle model ages for Late Palaeozoic and Mesozoic magmatism, imply that Precambrian mafic and felsic crustal materials (potentially as old as 2050 Ma), or at the very least Lower Palaeozoic rocks derived from the reworking of Precambrian rocks, comprise basement to the eastern parts of the fold belt. This crustal basement architecture may be a relict from the Late Proterozoic breakup of the Rodinian supercontinent. Copyright (2004) Geological Society of Australia

  18. Synthesis of the Tube Silicate Litidionite and Structural Relationships between It and Some Other Silicates.

    Science.gov (United States)

    1982-02-17

    CuSi4015 Others are agrellite, NaCa2Si4O0oF, 1 6 narsarsukite, Na2TiSi4O 1 7 miserite, KCa5 i2 07 Si601 5 (OH)F,18 and probably canasite , Na4K2Ca 5...and canasite are rare. Litidionite is apparently very rare, the only reported occurrence of it being in the crater of Mt. Vesuvius. Both litidionite1...narsarsukite, miserite, and probably canasite contain, like 13-19 lititionite, tube silicate ions. The first three contain ions that are the same as that in

  19. Incorporation of Mg, Sr, Ba, U, and B in High-Mg Calcite Benthic Foraminifers Cultured Under Controlled pCO2

    Science.gov (United States)

    Not, C.; Thibodeau, B.; Yokoyama, Y.

    2018-01-01

    Measurement of elemental ratios (E/Ca) has been performed in two symbiont-bearing species of high-Mg calcite benthic foraminifers (hyaline, Baculogypsina sphaerulata and porcelaneous, Amphisorus hemprichii), cultured under five pCO2 levels, representing preindustrial, modern, and three predicted future values. E/Ca ratios were analyzed by Laser Ablation coupled with Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). We measured several E/Ca, such as Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca simultaneously. We observed that high-Mg calcite benthic foraminifers possess higher E/Ca than low-Mg calcite foraminifers, irrespective of their calcification mode (hyaline or porcelaneous). In both modes of calcification, Mg, Sr, Ba, U, and B incorporation could be controlled by Rayleigh fractionation. However, more data are needed to validate and quantify the relative importance of this process and closely investigate the presence/absence of other mechanism. Therefore, it highlights the need for a multielemental approach when looking at trace element incorporation. Finally, no significant relationship was observed between the different ratios and the pCO2 of the water, suggesting that none of the Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca is sensitive to bottom water pCO2 or pH for these species.

  20. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  1. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  2. Comparison of silicon nanoparticles and silicate treatments in fenugreek.

    Science.gov (United States)

    Nazaralian, Sanam; Majd, Ahmad; Irian, Saeed; Najafi, Farzaneh; Ghahremaninejad, Farrokh; Landberg, Tommy; Greger, Maria

    2017-06-01

    Silicon (Si) fertilization improves crop cultivation and is commonly added in the form of soluble silicates. However, most natural plant-available Si originates from plant formed amorphous SiO 2 particles, phytoliths, similar to SiO 2 -nanoparticles (SiNP). In this work we, therefore, compared the effect by sodium silicate and that of SiNP on Si accumulation, activity of antioxidative stress enzymes catalase, peroxidase, superoxide dismutase, lignification of xylem cell walls and activity of phenylalanine ammonia-lyase (PAL) as well as expression of genes for the putative silicon transporter (PST), defensive (Tfgd 1) and phosphoenolpyruvate carboxykinase (PEPCK) and protein in fenugreek (Trigonella foenum-graecum L.) grown in hydroponics. The results showed that Si was taken up from both silicate and SiNP treatments and increasing sodium silicate addition increased the translocation of Si to the shoot, while this was not shown with increasing SiNP addition. The silicon transporter PST was upregulated at a greater level when sodium silicate was added compared with SiNP addition. There were no differences in effects between sodium silicate and SiNP treatments on the other parameters measured. Both treatments increased the uptake and accumulation of Si, xylem cell wall lignification, cell wall thickness, PAL activity and protein concentration in seedlings, while there was no effect on antioxidative enzyme activity. Tfgd 1 expression was strongly downregulated in leaves at Si addition. The similarity in effects by silicate and SiNP would be due to that SiNP releases silicate, which may be taken up, shown by a decrease in SiNP particle size with time in the medium. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. PETROLOGY AND GEOCHEMISTRY OF CALC-SILICATE SCHISTS ...

    African Journals Online (AJOL)

    DR OKONKOWO

    2012-02-29

    silicate reaction bands have higher contents of CaO and Sr and lower concentrations of K2O, Rb, Ni, and Ba relative to the calc-silicate schists; and relatively higher SiO2, TiO2, Al2O3, Fe2O3, MgO, Na2O, K2O and P2O5 and lower ...

  4. Recognizing subtle evidence for silicic magma derivation from petrochemically-similar arc crust: Isotopic and chemical evidence for the bimodal volcanic series of Gorely Volcanic Center, Kamchatka, Russia

    Science.gov (United States)

    Seligman, A. N.; Bindeman, I. N.; Ellis, B. S.; Ponomareva, V.; Leonov, V.

    2012-12-01

    The Kamchatka Peninsula is home to some of the most prolific subduction related volcanic activity in the world. Gorely caldera and its central volcano are located in the rear of its currently active Eastern Volcanic Front. Recent work determined the presence of explosive ignimbrite eruptions sourced from Gorely volcano during the Pleistocene. We studied 32 eruptive units, including tephrochronologically-dated Holocene tephra, stratigraphically-arranged ignimbrites, as well as pre- and post-caldera lavas. We analyzed oxygen isotope ratios of pyroxene and plagioclase grains by laser fluorination, and major and trace element compositions of whole rocks. In addition, we determined 87Sr/86Sr and 143Nd/144Nd ratios of caldera-forming ignimbrite eruptions. Chemical compositions show that Gorely eruptive units range from basalt to basaltic andesite in the "Pra-Gorely" stages prior to caldera formation and the modern Gorely stages forming its current edifice. In contrast, eruptive material from earlier ignimbrites exposed at Opasny Ravine consists primarily of dacite. Whole rock analyses for Gorely indicate that silicic rocks and ignimbrites volumetrically dominate all other products, forming separate bimodal peaks in our SiO2-frequency diagram. In addition, trace element concentrations and ratios define two trends, one for more silicic and another for more mafic material. δ18Omelt values range from a low of 4.85 up to 6.22‰, where the lowest value was found in the last caldera forming eruption, suggesting incorporation of hydrothermally-altered material from earlier eruptions. 87Sr/86Sr and 143Nd/144Nd ratios range from 0.70328 to 0.70351 and from 0.51303 to 0.51309 respectively, with higher and more diverse values being characteristic of earlier ignimbrite units; again suggesting incorporation of surrounding crustal material. In contrast to these results, MELTS modeling using a variety of likely primitive basalts from Gorely shows it is possible to obtain silicic

  5. Study of the mining possibilities in the surroundings of Mahoma - Guaycuru phase I Feasibility of the mafic body of Mahoma-Guaycuru and of the complex mafic - Stratified ultramafic of the Cerros Negros and San Jose and Colonia provinces

    International Nuclear Information System (INIS)

    Coronel, N.; Techera, J.; Ramos, E.; Pineyro, G.

    1990-01-01

    In Mahoma - Guaycuru area has been carried out regional cartography to place the geologic context, mainly the Mahoma bodies magmatic intrusive s, Guaycuru and Cerros Negros. The area has good mining possibilities due to their geologic environment. They exist also geochemical anomalies in the area that they should be taken as base for future works in the same one. In this environment studies were begun with the bodies magmatic mafic and ultramafic, due to its feasibility in Platino ides, Chromium, Nickel, Cobalt . It intent to adjust in a following stage (it Leaves II) a work methodology in an occurrence of minerals metallic. for future works,la occurrence of metallic minerals it lacks elements of economic interest in concentrations high, just as it demonstrates it the geochemical of rocks carried out, and the lack of anomalies in the geochemical of active silts and of floors. As element of interest single Gold appears in samples alluvial deposits but their source would not be the mafic rocks. Other occurrence of metallic minerals appears

  6. The application of silicon and silicates in dentistry: a review.

    Science.gov (United States)

    Lührs, A-K; Geurtsen, Werner

    2009-01-01

    Silicates and silicate-based compounds are frequently used materials in dentistry. One of their major applications is their use as fillers in different dental filling materials such as glass-ionomer cements, compomers, composites, and adhesive systems. In these materials, the fillers react with acids during the setting process or they improve the mechanical properties by increasing physical resistance, thermal expansion coefficient and radiopacity in acrylic filling materials. They also reduce polymerization shrinkage, and increase esthetics as well as handling properties. Furthermore, silicates are used for the tribochemical silication of different surfaces such as ceramics or alloys. The silicate layer formed in this process is the chemical basis for silanes that form a bond between this layer and the organic composite matrix. It also provides a micromechanical bond between the surface of the material and the composite matrix. Silicates are also a component of dental ceramics, which are frequently used in dentistry, for instance for veneers, inlays, and onlays, for denture teeth, and for full-ceramic crowns or as crown veneering materials.

  7. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  8. Origin of the mafic microgranular enclaves (MMEs) and their host granitoids from the Tagong pluton in Songpan-Ganze terrane: An igneous response to the closure of the Paleo-Tethys ocean

    Science.gov (United States)

    Chen, Qiong; Sun, Min; Zhao, Guochun; Yang, Fengli; Long, Xiaoping; Li, Jianhua; Wang, Jun; Yu, Yang

    2017-10-01

    The Songpan-Ganze terrane is mainly composed of a Triassic sedimentary sequence and late Triassic-Jurassic igneous rocks. A large number of plutons were emplaced as a result of tectono-magmatic activity related to the late stages of Paleo-Tethys ocean closure and ensuing collision. Granitoids and their hosted mafic enclaves can provide important constraints on the crust-mantle interaction and continental crustal growth. Mesozoic magmatism of Songpan-Ganze remains enigmatic with regard to their magma generation and geodynamic evolution. The Tagong pluton (209 Ma), in the eastern part of the Songpan-Ganze terrane, consists mainly of monzogranite and granodiorite with abundant coeval mafic microgranular enclaves (MMEs) (ca. 208-209 Ma). The pluton comprises I-type granitoid that possesses intermediate to acidic compositions (SiO2 = 61.6-65.8 wt.%), high potassium (K2O = 3.2-4.1 wt.%), and high Mg# (51-54). They are also characterized by arc-type enrichment of LREEs and LILEs, depletion of HFSEs (e.g. Nb, Ta, Ti) and moderate Eu depletions (Eu/Eu* = 0.46-0.63). Their evolved zircon Hf and whole-rock Nd isotopic compositions indicate that their precursor magmas were likely generated by melting of old lower continental crust. Comparatively, the MMEs have lower SiO2 (53.4-58.2 wt.%), higher Mg# (54-67) and show covariation of major and trace elements, coupled with field and petrographic observations, such as the disequilibrium textures of plagioclase and amphibole, indicating that the MMEs and host granitoids were originated from different magma sources but underwent mafic-felsic magma mixing process. Geochemical and isotopic data further suggest that the precursor magma of the MMEs was formed in the continental arc setting, mainly derived from an ancient metasomatized lithospheric mantle wedge. The Triassic granitoids from the Songpan-Ganze terrane show remarkable temporal-spatial-petrogenetic affinities to the counterparts of subduction zones in the Yidun and Kunlun arc

  9. Effect of moisture and chitosan layered silicate on morphology and properties of chitosan/layered silicates films

    International Nuclear Information System (INIS)

    Silva, J.R.M.B. da; Santos, B.F.F. dos; Leite, I.F.

    2014-01-01

    Thin chitosan films have been for some time an object of practical assessments. However, to obtain biopolymers capable of competing with common polymers a significant improvement in their properties is required. Currently, the technology of obtaining polymer/layered silicates nanocomposites has proven to be a good alternative. This work aims to evaluate the effect of chitosan content (CS) and layered silicates (AN) on the morphology and properties of chitosan/ layered silicate films. CS/AN bionanocomposites were prepared by the intercalation by solution in the proportion 1:1 and 5:1. Then were characterized by infrared spectroscopy (FTIR), diffraction (XRD) and X-ray thermogravimetry (TG). It is expected from the acquisition of films, based on different levels of chitosan and layered silicates, choose the best composition to serve as a matrix for packaging drugs and thus be used for future research. (author)

  10. Potassium silicate and calcium silicate on the resistance of soybean to Phakopsora pachyrhizi infection

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Cruz

    2013-01-01

    Full Text Available The control of Asian Soybean Rust (ASR, caused by Phakopsora pachyrhizi, has been difficult due to the aggressiveness of the pathogen and the lack of resistant cultivars. The objective of this study was to evaluate the effects of spray of potassium silicate (PS and soil amendment with calcium silicate (CS on soybean resistance to ASR. The PS solution was sprayed to leaves 24 hours prior to fungal inoculation while CS was amended to the soil at thirty-five days before sowing. The infection process of P. pachyrhizi was investigated by scanning electron microscopy. The uredia on leaves of plants sprayed with PS were smaller and more compact than those observed on the leaves of plants grown in soil amended with CS or in soil non-amended with CS (control treatment. On leaves of plants from the control treatment, uredia produced many urediniospores at 9 days after inoculation, and the ASR severity was 15, 8 and 9%, respectively, for plants from control, PS and CS treatments. In conclusion, the spray of PS contributed to reduce the number of uredia per cm² of leaf area and both PS spray and CS resulted in lower ASR symptoms.

  11. Fine-grained sheet silicate rocks

    International Nuclear Information System (INIS)

    Weaver, C.E.

    1977-09-01

    Considerable interest has been shown in the possibility of using shales as repositories for radioactive waste and a variety of other waste products, and it appears that over the next few years much money and effort will be expended to investigate and test a wide variety of shales. If shales are to be studied in detail by a large number of investigators, it is important that all concerned have the same concept of what constitutes a shale. The term shale and other terms for fine-grained rocks have been used for many years and have been continually redefined. Most definitions predate the development of modern instrumentation and are based on field observations and intuition; however, the main problem is the diversity of definitions. An attempt is made here to develop a simple, rational classification of fine-grained sediments, and it is hoped that this classification will eliminate some of the present ambiguity. In order that the classification be pertinent, mineral composition and textural data were compiled and evaluated. The data on unconsolidated and consolidated sediments were contrasted and the effects of burial diagenesis assessed. It was found necessary to introduce a new term, physil, to describe all sheet silicate minerals. In contrast to the term clay mineral, the term physil has no size connotation. A simple classification is proposed that is based on the percentage of physils and grain size. In Part II the fine-grained physil rocks are classified on the basis of physil type, non-physil minerals, and texture. Formations are listed which have the mineral and textural characteristics of the most important rock types volumetrically. Selected rock types, and the formations in which they can be found, are recommended for laboratory study to determine their suitability for the storage of high-level radioactive waste

  12. Paleomagnetic Results of the 925 Ma Mafic Dykes From the North China Craton: Implications for the Neoproterozoic Paleogeography of Rodinia

    Science.gov (United States)

    Zhao, X.; Peng, P.

    2017-12-01

    Precambrian mafic dyke swarms are useful geologic records for Neoproterozoic paleogeographic reconstruction. We present a paleomagnetic study of the 925 Ma Dashigou dyke swarm from 3 widely separated locations in the central and northern parts of the North China Craton, which are previously unsampled regions. Stepwise thermal and alternating field demagnetizations were successful in isolating two magnetic components. The lower unblocking temperature component represents the recent Earth magnetic field. The higher unblocking temperature component is the characteristic remanent magnetization and yields positive baked contact test. Results from detailed rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier in these rocks. There was no regional event that has reset the remanent magnetization of all the dyke sites, as indicated by the magnetization directions of both overlying and underlying strata. The similarity of the virtual paleomagnetic poles for the 3 sampled regions also argues that the characteristic remanent magnetizations are primary magnetization when the dykes were emplaced. The paleomagnetic poles from the Dashigou dyke swarm of the North China Craton are not similar to those of the identical aged Bahia dykes from the São Francisco Craton, Brazil, indicating that these mafic dykes may be not parts of a common regional magmatic event that affected North China Craton and NE Brazil at about 925 Ma.

  13. Petrogenetic evolution of the felsic and mafic volcanic suite in the Siang window of Eastern Himalaya, Northeast India

    Directory of Open Access Journals (Sweden)

    A. Krishnakanta Singh

    2012-09-01

    Full Text Available The Abor volcanics outcroping in the core of the Siang window in the Eastern Himalaya comprise voluminous mafic volcanics (47%–56% w(SiO2, with subordinate felsic volcanics (67%–75% w(SiO2. The felsic volcanics are dacitic to rhyolitic in composition and are typically enriched in LREE (La/SmN = 3.09–3.90 with high REE contents (256–588 ppm, moderately fractionated REE patterns (CeN/YbN = 6.54–9.52 and pronounced negative Eu anomalies (Eu/Eu* = 0.55–0.72. Wide variations in Rb/Zr, K/Rb and La/Sm ratios suggest that they were derived from magmas which were randomly contaminated with crustal material. Chemical characteristics and petrogenetic modelling indicate that the dacites were generated by ∼15% partial melting of a mafic source leaving a residue with 55% plagioclase, 14% orthoclase, 18% clinopyroxene, 5% orthopyroxene, 8% hornblende. The silica-rich rhyodacites and rhyolites were derived from a dacite magma source by a higher degree (>45% fractional crystallization of an assemblage consisting of 70% plagioclase, 12% clinopyroxene, 7% amphibole and 11% magnetite. The associated LREE-LILE enrichment and pronounced negative anomalies for HFSE (Nb, P, and Ti exhibited by these felsic volcanics are characteristic of continental rift volcanism, implying that they were emplaced during lithospheric extension.

  14. COMPARISON OF SOL-GEL SILICATE COATINGS ON Ti SUBSTRATE

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2012-12-01

    Full Text Available The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver and silver in combination with brushite.

  15. An example of post-collisional mafic magmatism: the gabbro-anorthosite layered complex from the Tin Zebane area (western Hoggar, Algeria)

    Science.gov (United States)

    Aı̈t-Djafer, Saı̈da; Ouzegane, Khadidja; Paul-Liégeois, Jean; Kienast, Jean Robert

    2003-10-01

    The Tin Zebane gabbro-anorthosite layered mafic intrusion represented by plagioclase-rich cumulates forms a set of small lenticular to round-shaped mainly undeformed bodies intruding the Pan-African high-pressure metamorphic rocks from western Hoggar (Tuareg shield, southwest Algeria). The coarse-grained anorthosites are mainly made of slightly zoned bytownite (An 86-74) with the higher anorthite content at the cores. Anorthosites are interlayered with leucogabbros and gabbros that show preserved magmatic structures and with olivine gabbros characterised by coronitic textures. The primary assemblage in gabbros includes plagioclase (An 93-70), olivine (Fo 77-70), zoned clinopyroxene (En 43-48Fs 05-13Wo 41-49 with Al 2O 3 up to 4.3 wt.%) and rare orthopyroxene (En 73-78). Pyroxenes and olivine are commonly surrounded by Ca-amphibole. The olivine-plagioclase contact is usually marked by a fine orthopyroxene-Cr-spinel-amphibole symplectite. A magnesian pigeonite (En 70-75Fs 19-20Wo 6-10) is also involved in corona. The coronitic minerals have equilibrated with the primary mineral rims at P- T- aH2O conditions of 797 ± 42 °C for aH2O=0.5 and 808 ± 44 °C for aH2O=0.6 at 6.2 ± 1.4 kbar. The Tin Zebane gabbroic rocks are depleted in REE with a positive Eu anomaly, high Sr (>10 ∗ chondrite) and Al 2O 3 concentrations (17-33%) that support plagioclase accumulation with the extreme case represented by the anorthosites. The REE patterns can be modelised using plagioclase, clinopyroxene and orthopyroxene REE signature, without any role played by accessory minerals. High MgO content points to olivine as a major cumulate phase. Anorthositic gabbros Sr and Nd isotopic initial ratios are typical of a depleted mantle source (Sr i=0.70257-0.70278; ɛNd=+5.9 to +7.8). This isotopic signature is identical to that of the 10-km wide 592 Ma old dyke complex composed of alkaline to peralkaline granites and tholeiitic gabbros and one single bimodal complex can be inferred. The source

  16. A subsurface Fe-silicate weathering microbiome

    Science.gov (United States)

    Napieralski, S. A.; Buss, H. L.; Roden, E. E.

    2017-12-01

    Traditional models of microbially mediated weathering of primary Fe-bearing minerals often invoke organic ligands (e.g. siderophores) used for nutrient acquisition. However, it is well known that the oxidation of Fe(II) governs the overall rate of Fe-silicate mineral dissolution. Recent work has demonstrated the ability of lithtrophic iron oxidizing bacteria (FeOB) to grow via the oxidation of structural Fe(II) in biotite as a source of metabolic energy with evidence suggesting a direct enzymatic attack on the mineral surface. This process necessitates the involvement of dedicated outer membrane proteins that interact with insoluble mineral phases in a process known as extracellular electron transfer (EET). To investigate the potential role FeOB in a terrestrial subsurface weathering system, samples were obtained from the bedrock-saprolite interface (785 cm depth) within the Rio Icacos Watershed of the Luquillo Mountains in Puerto Rico. Prior geochemical evidence suggests the flux of Fe(II) from the weathering bedrock supports a robust lithotrophic microbial community at depth. Current work confirms the activity of microorganism in situ, with a marked increase in ATP near the bedrock-saprolite interface. Regolith recovered from the interface was used as inoculum to establish enrichment cultures with powderized Fe(II)-bearing minerals serving as the sole energy source. Monitoring of the Fe(II)/Fe(total) ratio and ATP generation suggests growth of microorganisms coupled to the oxidation of mineral bound Fe(II). Analysis of 16S rRNA gene and shotgun metagenomic libraries from in situ and enrichment culture samples lends further support to FeOB involvement in the weathering process. Multiple metagenomic bins related to known FeOB, including Betaproteobacteria genera, contain homologs to model EET systems, including Cyc2 and MtoAB. Our approach combining geochemistry and metagenomics with ongoing microbiological and genomic characterization of novel isolates obtained

  17. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust

    Science.gov (United States)

    Tomkins, Andrew G.; Evans, Katy A.

    2015-10-01

    Liberation of fluids during subduction of oceanic crust is thought to transfer sulfur into the overlying sub-arc mantle. However, despite the importance of sulfur cycling through magmatic arcs to climate change, magma oxidation and ore formation, there has been little investigation of the metamorphic reactions responsible for sulfur release from subducting slabs. Here, we investigate the relative stability of anhydrite (CaSO4) and pyrite (FeS2) in subducted basaltic oceanic crust, the largest contributor to the subducted sulfur budget, to place constraints on the processes controlling sulfur release. Our analysis of anhydrite stability at high pressures suggests that this mineral should dominantly dissolve into metamorphic fluids released across the transition from blueschist to eclogite facies (∼450-650 °C), disappearing at lower temperatures on colder geothermal trajectories. In contrast, we suggest that sulfur release via conversion of pyrite to pyrrhotite occurs at temperatures above 750 °C. This higher temperature stability is indicated by the preservation of pyrite-bornite inclusions in coesite-bearing eclogites from the Sulu Belt in China, which reached temperatures of at least 750 °C. Thus, sulfur may be released from subducting slabs in two separate pulses; (1) varying proportions of SO2, HSO4- and H2S are released via anhydrite breakdown at the blueschist-eclogite transition, promoting oxidation of remaining silicates in some domains, and (2) H2S is released via pyrite breakdown well into the eclogite facies, which may in some circumstances coincide with slab melting or supercritical liquid generation driven by influx of serpentinite-derived fluids. These results imply that the metallogenic potential in the sub-arc mantle above the subducting slab varies as a function of subduction depth, having the greatest potential above the blueschist-eclogite transition given the association between oxidised magmas and porphyry Cu(-Au-Mo) deposits. We speculate

  18. Geochronology, geochemistry, and petrogenesis of late Permian to early Triassic mafic rocks from Darongshan, South China: Implications for ultrahigh-temperature metamorphism and S-type granite generation

    Science.gov (United States)

    Xu, Wang-Chun; Luo, Bi-Ji; Xu, Ya-Jun; Wang, Lei; Chen, Qi

    2018-05-01

    The role of the mantle in generating ultrahigh-temperature metamorphism and peraluminous S-type granites, and the extent of crust-mantle interaction are topics fundamental to our understanding of the Earth's evolution. In this study we present geochronological, geochemical, and Sr-Nd-Hf isotopic data for dolerites and mafic volcanic rocks from the Darongshan granite complex belt in western Cathaysia, South China. LA-ICP-MS U-Pb zircon analyses yielded magma crystallization ages of ca. 250-248 Ma for the dolerites, which are coeval with eruption of the mafic volcanic rocks, ultrahigh-temperature metamorphism, and emplacement of S-type granites in the Darongshan granite complex belt. The mafic volcanic rocks are high-K calc-alkaline or shoshonitic, enriched in Th, U, and light rare earth elements, and depleted in Nb, Ta and Ti. The dolerites are characterized by high Fe2O3tot (11.61-20.39 wt%) and TiO2 (1.62-3.17 wt%), and low MgO (1.73-4.38 wt%), Cr (2.8-10.8 ppm) and Ni (2.5-11.4 ppm). Isotopically, the mafic volcanic rocks have negative whole-rock εNd(t) values (-6.7 to -9.0) and high ISr values (0.71232 to 0.71767), which are slightly depleted compared with the dolerite samples (εNd(t) = -10.3 to -10.4 and ISr = 0.71796 to 0.71923). Zircons in the dolerites have εHf(t) values of -7.6 to -10.9. The mafic volcanic rocks are interpreted to have resulted from the partial melting of an enriched lithospheric mantle source with minor crustal contamination during ascent, whereas the dolerites formed by late-stage crystallization of enriched lithospheric mantle-derived magmas after fractionation of olivine and pyroxene. The formation of these mantle-derived mafic rocks may be attributed to transtension along a NE-trending strike-slip fault zone that was related to oblique subduction of the Paleo-Pacific plate beneath South China. Such underplated mafic magmas would provide sufficient heat for the generation of ultrahigh-temperature metamorphism and S-type granites, and

  19. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    Science.gov (United States)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  20. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    Directory of Open Access Journals (Sweden)

    Keita Ino

    Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

  1. Relationships between mineralization and silicic volcanism in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Halls, C.; Baker, M.C.W.

    1983-10-01

    Studies of late Tertiary silicic volcanic centers in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth.

  2. Mafic microgranular enclave swarms in the Chenar granitoid stock, NW of Kerman, Iran: evidence for magma mingling

    Science.gov (United States)

    Arvin, M.; Dargahi, S.; Babaei, A. A.

    2004-10-01

    Mafic microgranular enclaves (MME) are common in the Early to Middle Miocene Chenar granitoid stock, northwest of Kerman, which is a part of Central Iranian Eocene volcanic belt. They occur individually and in homogeneous or heterogeneous swarms. The MME form a number of two-dimensional structural arrangements, such as dykes, small rafts, vortices, folded lens-shapes and late swarms. The enclaves are elongated, rounded to non-elongated and subrounded in shape and often show some size-sorting parallel to direction of flow. Variation in the elongation of enclaves could reflect variations in the viscosity of the enclave, the time available for enclave deformation and differential strain during flow of the host granitoid magma. The most effective mechanism in the formation of enclave swarms in the Chenar granitoid stock was velocity gradient-related convection currents in the granitoid magma chamber. Gravitational sorting and the break-up of heterogeneous dykes also form MME swarms. The MME (mainly diorite to diorite gabbro) have igneous mineralogy and texture, and are marked by sharp contacts next to their host granitoid rocks. The contact is often marked by a chilled margin with no sign of solid state deformation. Evidence of disequilibrium is manifested in feldspars by oscillatory zoning, resorbed rims, mantling and punctuated growth, together with overgrowth of clinopyroxene/amphibole on quartz crystals, the acicular habit of apatites and the development of Fe-Ti oxides along clinopyroxene cleavages. These observations suggest that the MMEs are derived from a hybrid-magma formed as a result of the intrusion of a mafic magma into the base of a felsic magma chamber. The density contrast between hybrid-magma and the overlying felsic magma was reduced by the release of dissolved fluids and the ascent of exsolved gas bubbles from the mafic magma into the hybrid zone. Further convection in the magma chamber dispersed the hybridized magma as globules in the upper parts of

  3. Steam based conversion coating on AA6060 alloy: Effect of sodium silicate chemistry and corrosion performance

    Science.gov (United States)

    Din, Rameez Ud; Bordo, Kirill; Tabrizian, Naja; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-11-01

    Surface treatment of aluminium alloy AA6060 using an industrially applicable pilot steam jet system with and without silicate chemistry has been investigated. Treatment using steam alone and steam with silicate, resulted in an oxide layer formation with thickness ∼425 nm and ∼160 nm, respectively. Moreover, the use of sodium silicate resulted in the formation of distinct microstructure and incorporation of silicate into the oxide film. These oxide films reduced the anodic activity 4 times, while the corrosion protection by silicate containing oxide was the function of its concentration. Further, in acid salt spray and filiform corrosion tests, oxide layer containing silicate exhibited two times higher corrosion resistance.

  4. Rubber curing chemistry governing the orientation of layered silicate

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available The effect of curing systems on the orientation and the dispersion of the layered silicates in acrylonitrile butadiene rubber nanocomposite is reported. Significant differences in X-ray diffraction pattern between peroxide curing and sulfur curing was observed. Intense X-ray scattering values in the XRD experiments from peroxide cured vulcanizates indicate an orientation of the layers in a preferred direction as evinced by transmission electron micrographs. However, sulfur cured vulcanizates show no preferential orientation of the silicate particles. Nevertheless, a closer inspection of transmission electron microscopy (TEM images of peroxide and sulfur cured samples shows exfoliated silicate layers in the acrylonitrile butadiene rubber (NBR matrix. It was revealed in the prevailing study that the use of an excess amount of stearic acid in the formulation of the sulfur curing package leads to almost exfoliated type X-ray scattering pattern.

  5. Crystallochemical characteristics of alkali calcium silicates from charoitites

    International Nuclear Information System (INIS)

    Rozhdestvenskaya, I.V.; Nikishova, L.V.

    2002-01-01

    The characteristic features of the crystal structures of alkali calcium silicates from various deposits are considered. The structures of these minerals, which were established by single-crystal X-ray diffraction methods, are described as the combinations of large construction modules, including the alternating layers of alkali cations and tubular silicate radicals (in canasite, frankamenite, miserite, and agrellite) and bent ribbons linked through hydrogen bonds in the layers (in tinaksite and tokkoite). The incorporation of impurities and the different ways of ordering them have different effects on the structures of these minerals and give rise to the formation of superstructures accompanied by a change of the space group (frankamenite-canasite), leading, in turn, to different mutual arrangements of the layers of silicate tubes and the formation of pseudopolytypes (agrellites), structure deformation, and changes in the unit-cell parameters (tinaksite-tokkoite)

  6. Petrophysical Analysis of Siliceous Ooze Sediments, Ormen Lange Field, Norway

    DEFF Research Database (Denmark)

    Awedalkarim, Ahmed; Fabricius, Ida Lykke

    , but apparent porosity indications in any other lithology, such as siliceous ooze, are wrong and they should be corrected. The apparent bulk density log should be influenced by the hydrogen in opal as also the neutron porosity tools because they are sensitive to the amount of hydrogen in a formation...... present in the solid. Some minerals of siliceous ooze, such as opal, have hydrogen in their structures which influences the measured hydrogen index (HI). The neutron tool obtains the combined signal of the HI of the solid phase and of the water that occupies the true porosity. The HI is equal to true...... to interpret lithology and the unusual physical properties of the studied intervals. The integration of all these data revealed that the studied siliceous ooze is a mixture of opal and non-opal (shale). Our results proved to be reasonably consistent. The studied intervals apparently do not contain hydrocarbons....

  7. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  8. Synthesis and luminescence properties of erbium silicate thin films

    International Nuclear Information System (INIS)

    Miritello, Maria; Lo Savio, Roberto; Iacona, Fabio; Franzo, Giorgia; Bongiorno, Corrado; Priolo, Francesco

    2008-01-01

    We have studied the structure and the room temperature luminescence of erbium silicate thin films deposited by rf magnetron sputtering. Films deposited on silicon oxide layers are characterized by good structural properties and excellent stability. The optical properties of these films are strongly improved by rapid thermal annealing processes performed in the range of temperature 800-1250 deg. C. In fact through the reduction of the defect density of the material, a very efficient room temperature photoluminescence at 1535 nm is obtained. We have also investigated the influence of the annealing ambient, by finding that treatments in O 2 atmosphere are significantly more efficient in improving the optical properties of the material with respect to processes in N 2 . Upconversion effects become effective only when erbium silicate is excited with high pump powers. The evidence that all Er atoms (about 10 22 cm -3 ) in erbium silicate films are optically active suggests interesting perspectives for optoelectronic applications of this material

  9. Charnockitic ortho gneisses and mafic granulites of Cerro Olivo complex, proterozoic basement of SE Uruguay, Part 1: Geology

    International Nuclear Information System (INIS)

    Masquelin, H.

    2008-01-01

    Charnockitic ortho gneisses and mafic granulite s exposed in the Cerro Bori Block, in the center of Punta del Este terrain, were the first document occurrence of granulitic rocks from SE sector of the Uruguayan Shield. We present here their main geological features, with the purpose to suggest some petrologic and structural interesting problems for a future lithogeochemical, mineral chemistry, stable isotopes and fluid inclusion studies about these rocks. We propose some speculation form field-based studies considering a cognate magmatic origin of both kinds of rocks, previous to a homogeneous granulitic metamorphism. Some structural evidences indicate that after their uplift, these rocks were located on over thickened crust, at great to medium deepness. A cataclasis during anatexis and amphibolite-facies mineral association stabilization are common phenomena. Other evidences suggest a polycyclic character for the regional geologic evolution

  10. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie

    2016-01-01

    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  11. Spinels of Variscan olivine hornblendites related to the Montnegre granitoids revisited (NE Spain): petrogenetic evidence of mafic magma mixing

    Energy Technology Data Exchange (ETDEWEB)

    Galán, G.; Enrique, P.; Butjosa, L.; Fernández-Roig, L.

    2017-07-01

    Olivine hornblendites (cortlandtites) form part of the Montnegre mafic complex related to late-Variscan I-type granitoids in the Catalan Coastal Ranges. Two generations of spinel are present in these hornblendites: Spl1 forms euhedral crystals included in both olivine and Spl2. Spl2 forms euhedral to anhedral crystals associated with phlogopite and fibrous colourless amphibole forming pseudomorphs after olivine. Compositions of Spl1 are picotite-Al chromite (Fe#: 77.78-66.60; Cr#: 30.12-52.22; Fe3+/R3+: 6.99-21.89; 0.10< TiO2%< 0.62). Compositions of Spl2 are pleonaste (Fe#: 37.86-52.12; Cr#: 1.00-15.45; Fe3+/R3+: 0.31-5.21; TiO2% <0.10%). The two types of spinel follow a CrAl trend, mainly due to the substitution (Fe2+)-1Cr-1= MgAl, which is interpreted as the result of mixing between two different mantle-derived melts. The compositions of early Spl1 crystals included in olivine are characteristic of Al-rich basalts. More aluminous Spl2 would result from reaction of olivine with a less evolved, Al and K-rich mantle-derived melt after new refilling of the magma chamber or channel. As a whole, spinels from similar examples of Variscan olivine hronblendites also follow a CrAl trend with high Fe# and starting at higher Cr# than other trends of this type. Cr# heterogeneity in the early spinels from these Variscan hornblendites would be inherited from the variable Al content of the mafic melts involved in their genesis.

  12. Postmagmatic magnetite-apatite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia

    Science.gov (United States)

    Apukhtina, Olga B.; Kamenetsky, Vadim S.; Ehrig, Kathy; Kamenetsky, Maya B.; McPhie, Jocelyn; Maas, Roland; Meffre, Sebastien; Goemann, Karsten; Rodemann, Thomas; Cook, Nigel J.; Ciobanu, Cristiana L.

    2016-01-01

    An assemblage of magnetite and apatite is common worldwide in different ore deposit types, including disparate members of the iron-oxide copper-gold (IOCG) clan. The Kiruna-type iron oxide-apatite deposits, a subtype of the IOCG family, are recognized as economic targets as well. A wide range of competing genetic models exists for magnetite-apatite deposits, including magmatic, magmatic-hydrothermal, hydrothermal(-metasomatic), and sedimentary(-exhalative). The sources and mechanisms of transport and deposition of Fe and P remain highly debatable. This study reports petrographic and geochemical features of the magnetite-apatite-rich vein assemblages in the dolerite dykes of the Gairdner Dyke Swarm (~0.82 Ga) that intruded the Roxby Downs Granite (~0.59 Ga), the host of the supergiant Olympic Dam IOCG deposit. These symmetrical, only few mm narrow veins are prevalent in such dykes and comprise besides usually colloform magnetite and prismatic apatite also further minerals (e.g., calcite, quartz). The genetic relationships between the veins and host dolerite are implied based on alteration in the immediate vicinity (~4 mm) of the veins. In particular, Ti-magnetite-ilmenite is partially to completely transformed to titanite and magmatic apatite disappears. We conclude that the mafic dykes were a local source of Fe and P re-concentrated in the magnetite-apatite veins. Uranium-Pb ages for vein apatite and titanite associated with the vein in this case study suggest that alteration of the dolerite and healing of the fractures occurred shortly after dyke emplacement. We propose that in this particular case the origin of the magnetite-apatite assemblage is clearly related to hydrothermal alteration of the host mafic magmatic rocks.

  13. Petrological constraints on the high-Mg basalts from Capo Marargiu (Sardinia, Italy): Evidence of cryptic amphibole fractionation in polybaric environments

    Science.gov (United States)

    Tecchiato, Vanni; Gaeta, Mario; Mollo, Silvio; Scarlato, Piergiorgio; Bachmann, Olivier; Perinelli, Cristina

    2018-01-01

    This study deals with the textural and compositional characteristics of the calc-alkaline stratigraphic sequence from Capo Marargiu Volcanic District (CMVD; Sardinia island, Italy). The area is dominated by basaltic to intermediate hypabyssal (dikes and sills) and volcanic rocks (lava flows and pyroclastic deposits) emplaced during the Oligo-Miocene orogenic magmatism of Sardinia. Interestingly, a basaltic andesitic dome hosts dark-grey, crystal-rich enclaves containing up 50% of millimetre- to centimetre-sized clinopyroxene and amphibole crystals. This mineral assemblage is in equilibrium with a high-Mg basalt recognised as the parental magma of the entire stratigraphic succession at CMVD. Analogously, centimetre-sized clots of medium- and coarse-grained amphibole + plagioclase crystals are entrapped in andesitic dikes that ultimately intrude the stratigraphic sequence. Amphibole-plagioclase cosaturation occurs at equilibrium with a differentiated basaltic andesite. Major and trace element modelling indicates that the evolutionary path of magma is controlled by a two-step process driven by early olivine + clinopyroxene and late amphibole + plagioclase fractionation. In this context, enclaves represent parts of a cumulate horizon segregated at the early stage of differentiation of the precursory high-Mg basalt. This is denoted by i) resorption effects and sharp transitions between Mg-rich and Mg-poor clinopyroxenes, indicative of pervasive dissolution phenomena followed by crystal re-equilibration and overgrowth, and ii) reaction minerals found in amphibole coronas formed at the interface with more differentiated melts infiltrating within the cumulate horizon, and carrying the crystal-rich material with them upon eruption. Coherently, the mineral chemistry and phase relations of enclaves indicate crystallisation in a high-temperature, high-pressure environment under water-rich conditions. On the other hand, the upward migration and subsequent fractionation of the

  14. Leaf application of silicic acid to upland rice and corn

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol

    2013-12-01

    Full Text Available This study aimed to evaluate the effect of Si (stabilized silicic acid, Silamol® leaf application on mineral nutrition and yield in upland rice and corn crops. The treatments were the control (without Si and Si foliar split spraying using 2 L ha-1 of the Silamol® commercial product, with 0.8% soluble Si as concentrated stabilized silicic acid. Silicon leaf application increased the concentrations of K, Ca and Si in rice and corn leaves, the number of panicles per m2 of rice and the number of grains per ear of corn; accordingly, the Si leaf application provided a higher grain yield in both crops.

  15. A Thermodynamic Approach for Modeling H2O-CO2 Solubility in Alkali-rich Mafic Magmas at Mid-crustal Pressures

    Science.gov (United States)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2017-12-01

    Volatile solubility in magmas is dependent on several factors, including composition and pressure. Mafic (basaltic) magmas with high concentrations of alkali elements (Na and K) are capable of dissolving larger quantities of H2O and CO2 than low-alkali basalt. The exsolution of abundant gases dissolved in alkali-rich mafic magmas can contribute to large explosive eruptions. Existing volatile solubility models for alkali-rich mafic magmas are well calibrated below 200 MPa, but at greater pressures the experimental data is sparse. To allow for accurate interpretation of mafic magmatic systems at higher pressures, we conducted a set of mixed H2O-CO2 volatile solubility experiments between 400 and 600 MPa at 1200 °C in six mafic compositions with variable alkali contents. Compositions include magmas from volcanoes in Italy, Antarctica, and Arizona. Results from our experiments indicate that existing volatile solubility models for alkali-rich mafic magmas, if extrapolated beyond their calibrated range, over-predict CO2 solubility at mid-crustal pressures. Physically, these results suggest that volatile exsolution can occur at deeper levels than what can be resolved from the lower-pressure experimental data. Existing thermodynamic models used to calculate volatile solubility at different pressures require two experimentally derived parameters. These parameters represent the partial molar volume of the condensed volatile species in the melt and its equilibrium constant, both calculated at a standard temperature and pressure. We derived these parameters for each studied composition and the corresponding thermodynamic model shows good agreement with the CO2 solubility data of the experiments. A general alkali basalt solubility model was also constructed by establishing a relationship between magma composition and the thermodynamic parameters. We utilize cation fractions from our six compositions along with four compositions from the experimental literature in a linear

  16. Obtainment and characterization of pure and doped gadolinium oxy ortho silicates with terbium III, precursor of luminescent silicates with sulphur

    International Nuclear Information System (INIS)

    Simoneti, J.A.

    1992-01-01

    Silicate and sulfide lattices are uniquely efficient luminescent materials to excitation by cathodic rays and furthermore the cathodoluminescence study of these compounds have been few investigated. In this work it has been prepared, characterized and investigated some spectroscopic properties of pure and Tb a+ - activated Gd 2 Si O 3 system and it has been tried to substitute oxygen by sulphur in order to obtain this or sulfide-silicate lattices. Products were characterized by vibrational infrared spectroscopy, powder X-ray diffraction patterns and electronic emission in UV-VIS region. (author)

  17. Non-conservative controls on distribution of dissolved silicate in Cochin Backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Sankaranarayanan, V.N.; Joseph, T.; Nair, M.

    Cochin backwater system was studied with regard to dissolved silicate (DSi) to understand its seasonal distribution and behaviour during estuarine mixing. Silicate had a linear relationship with salinity during the high river discharge period...

  18. Wind-Eroded Silicate as a Source of Hydrogen Peroxide on Mars

    Science.gov (United States)

    Bak, E. N.; Merrison, J. P.; Jensen, S. K.; Nørnberg, P.; Finster, K.

    2014-07-01

    Laboratory simulations show that wind-eroded silicate can be a source of hydrogen peroxide. The ubiquitous, fine-grained silicate dust might thus explain the oxidizing properties of the martian soil and affect the preservation of organic compounds.

  19. SILICATE TECHNOLOGY CORPORATION'S SOLIDIFICATION/ STABILIZATION TECHNOLOGY FOR ORGANIC AND INORGANIC CONTAMINANTS IN SOILS - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...

  20. E-Beam-Cured Layered-Silicate and Spherical Silica Epoxy Nanocomposites (Preprint)

    National Research Council Canada - National Science Library

    Chen, Chenggang; Anderson, David P

    2007-01-01

    .... The nanofillers can be two dimensional (layered-silicate) and zero dimensional (spherical silica). Both the spherical silica epoxy nanocomposite and the layered-silicate epoxy nanocomposite can be cured to a high degree of curing...

  1. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey

    Science.gov (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin

    2017-08-16

    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  2. Dielectric properties of plasma sprayed silicates subjected to additional annealing

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Nevrlá, Barbara; Neufuss, Karel

    2017-01-01

    Roč. 10, č. 2 (2017), s. 105-114 ISSN 2008-2134 Institutional support: RVO:61389021 Keywords : Annealing * Dielectric properties * Plasma spraying * Silicates * Electrical properties * Insulators Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films http://pccc.icrc.ac.ir/Articles/1/18/990/

  3. Decreased water flowing from a forest amended with calcium silicate

    Science.gov (United States)

    Mark B. Green; Amey S. Bailey; Scott W. Bailey; John J. Battles; John L. Campbell; Charles T. Driscoll; Timothy J. Fahey; Lucie C. Lepine; Gene E. Likens; Scott V. Ollinger; Paul G. Schaberg

    2013-01-01

    Acid deposition during the 20th century caused widespread depletion of available soil calcium (Ca) throughout much of the industrialized world. To better understand how forest ecosystems respond to changes in a component of acidification stress, an 11.8-ha watershed was amended with wollastonite, a calcium silicate mineral, to restore available soil Ca to preindustrial...

  4. Preparation of β-belite using liquid alkali silicates

    International Nuclear Information System (INIS)

    Koutník, P.

    2017-01-01

    The aim of this study is the preparation of β-belite by a solid-state reaction using powdered limestone, amorphous silica and liquid alkali silicates. The raw materials were blended, the mixtures were agglomerated and then burnt. The resulting samples were characterized by X-ray diffraction analysis and scanning electron microscopy. Free lime content in the β-belite samples was also determined. The effects of CaO/SiO2 ratio (1.6–2.1), burning temperature (800–1400 °C), utilization of different raw materials (silica fume, synthetic silica, potassium silicate, sodium silicate, potassium hydroxide) and burning time (0.5–16 h) on free lime content and mineralogical composition were investigated. The purest ?-belite samples were prepared from a mixture of powdered limestone, silica fume and liquid potassium silicate with a ratio CaO/SiO2 = 2 by burning at temperatures between 1100 and 1300 °C for more than 2 h. Decreasing of the CaO/SiO2 ratio led to rankinite formation and lower a burning temperature led to the formation of wollastonite. [es

  5. Silicon K-edge XANES spectra of silicate minerals

    Science.gov (United States)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  6. Preparation and characterization of magnesium–aluminium–silicate ...

    Indian Academy of Sciences (India)

    A three-stage heating schedule involving calcination, nucleation and crystallization, has been evolved for the preparation of magnesium aluminium silicate (MAS) glass ceramic with MgF2 as a nucleating agent. The effect of sintering temperature on the density of compacted material was studied. Microstructure and ...

  7. Effect of antioxidants and silicates on peroxides in povidone.

    Science.gov (United States)

    Narang, Ajit S; Rao, Venkatramana M; Desai, Divyakant S

    2012-01-01

    Reactive peroxides in povidone often lead to degradation of oxidation-labile drugs. To reduce peroxide concentration in povidone, the roles of storage conditions, antioxidants, and silicates were investigated. Povidone alone and its physical mixtures with ascorbic acid, propyl gallate, sodium sulfite, butylated hydroxyanisole (BHA), or butylated hydroxytoluene (BHT) were stored at 25 °C and 40 °C, at 11%, 32%, and 50% relative humidity. In addition, povidone solution in methanol was equilibrated with silicates (silica gel and molecular sieves), followed by solvent evaporation to recover povidone powder. Peroxide concentrations in povidone were measured. The concentration of peroxides in povidone increased under very-low-humidity storage conditions. Among the antioxidants, ascorbic acid, propyl gallate, and sodium sulfite reduced the peroxide concentration in povidone, whereas BHA and BHT did not. Water solubility appeared to determine the effectiveness of antioxidants. Also, some silicates significantly reduced peroxide concentration in povidone without affecting its functionality as a tablet binder. Porosity of silicates was critical to their ability to reduce the peroxide concentration in povidone. A combination of these approaches can reduce the initial peroxide concentration in povidone and minimize peroxide growth under routine storage conditions. Copyright © 2011 Wiley-Liss, Inc.

  8. Mineralogy and trace element chemistry of the Siliceous Earth of ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    We report the presence of a 3–5 cm thick loose fragmental layer in the Siliceous Earth at Matti ka. Gol in the Barmer basin of Rajasthan. Petrographic, chemical and mineralogical study reveals the presence of abundant volcanic debris such as glass shards, agglutinates, hollow spheroids, kinked biotites, feldspars showing ...

  9. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  10. In vitro bioactivity and cytocompatibility of tricalcium silicate

    Indian Academy of Sciences (India)

    tricalcium silicate powder showed that it could induce bone- like apatite formation after ... ated by soaking them in SBF, cell adhesion and MTT assay, respectively. 2. .... tibility, which might be used as one of the bioactive coating materials and ...

  11. Effects of Mixed Alkaline Earth Oxides in Potash Silicate Glass ...

    African Journals Online (AJOL)

    The aim of this work is to investigate the effects of mixed alkaline earth oxide in potash silicate glasses with regards to their physical properties. More recently; there has been an increase in the demand for light weight glasses which retains their physical and chemical properties for both domestic and industrial applications.

  12. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  13. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina; Yamauchi, Kazuo; Li, Zongjin; Zhang, Xixiang; Ma, Hongyan; Ge, Shenguang

    2017-01-01

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10

  14. Decomposition of pre calcined aluminium silicate ores of Afghanistan by hydrochloric acid

    International Nuclear Information System (INIS)

    Khomidi, A.K.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to decomposition of pre calcined aluminium silicate ores of Afghanistan by hydrochloric acid. The physicochemical properties of initial aluminium silicate ores were studied by means of X-ray phase, differential thermal and silicate analysis. The chemical composition of aluminium containing ores was determined. The optimal conditions of interaction of initial and pre calcined siallites with hydrochloric acid were defined. The kinetics of acid decomposition of aluminium silicate ores was studied as well.

  15. Silicate Dispersion and Mechanical Reinforcement in Polysiloxane/Layered Silicate Nanocomposites

    KAUST Repository

    Schmidt, Daniel F.

    2010-01-12

    We report the first in-depth comparison of the mechanical properties and equilibrium solvent uptake of a range of polysiloxane nanocomposites based on treated and untreated montmorillonite and fumed silica nanofillers. We demonstrate the ability of equilibrium solvent uptake data (and, thus, overall physical and chemical cross-link density) to serve as a proxy for modulus (combining rubber elasticity and Flory-Rehner theory), hardness (via the theory of Boussinesq), and elongation at break, despite the nonideal nature of these networks. In contrast, we find that tensile and tear strength are not well-correlated with solvent uptake. Interfacial strength seems to dominate equilibrium solvent uptake and the mechanical properties it predicts. In the montmorillonite systems in particular, this results in the surprising consequence that equilibrium solvent uptake and mechanical properties are independent of dispersion state. We conclude that edge interactions play a more significant role than degree of exfoliation, a result unique in the field of polymer nanocomposites. This demonstrates that even a combination of polymer/nanofiller compatibility and thermodynamically stable nanofiller dispersion levels may not give rise to reinforcement. These findings provide an important caveat when attempting to connect structure and properties in polymer nanocomposites, and useful guidance in the design of optimized polymer/layered silicate nanocomposites in particular. © 2009 American Chemical Society.

  16. Transition metal ions in silicate melts. I. Manganese in sodium silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C; White, W B

    1980-01-01

    Optical absorption spectra obtained on glasses quenched from sodium silicate melts show Mn/sup 3 +/ to be the dominant species for melts heated in air and Mn/sup 2 +/ to be the dominant species for melts heated at P/sub O/sub 2// = 10/sup -17/ bar. The absorption spectrum of Mn/sup 3 +/ consists of an intense band at 20,000 cm/sup -1/ with a 15,000 cm/sup -1/ satellite possibly arising from the Jahn-Teller effect. The independence of the spectrum from melt composition and the high band intensity is offered as evidence for a distinct Mn/sup 3 +/ complex in the melt. The spectrum of Mn/sup 2 +/ is weak and many expected bands are not observed. A two-band luminescence spectrum from Mn/sup 2 +/ has been tentatively interpreted as due to Mn/sup 2 +/ in interstitial sites in the network and Mn/sup 2 +/ coordiated by non-bridging oxygens.

  17. Silicate-Oxide Equilibria in the Wilson Lake Terrane, Labrador - Evidence for a Pre- Metamorphic Oxidizing Event

    Science.gov (United States)

    Korhonen, F. J.; Stout, J. H.

    2006-05-01

    The presence of Fe3+ and Ti in silicates and their presumed equilibration with Fe2+-Fe3+-Ti oxide minerals has long been recognized as an important factor in metamorphic phase equilibria. The Red Wine Mountains massif is a granulite facies unit in the Wilson Lake terrane of central Labrador, where this equilibration is especially important for estimating both temperature and fO2 during peak metamorphism. Peak assemblages are sapphirine + quartz, and orthopyroxene + sillimanite + quartz. The coexisting oxides, which are largely responsible for the pronounced aeromagnetic high of the massif, consist of nearly pure magnetite and an exsolved titanohematite. Estimates of fO2 based on magnetite + integrated titanohematite compositions are slightly below that defined by the pure magnetite-hematite buffer. This assemblage is also responsible for the magnetic signature of metagabbro and metanorite dikes, a fact which challenges the conventional wisdom that the high Fe3+ content of the host paragneisses was inherited from a highly oxidized ferruginous shale. We suggest here that prior to granulite facies metamorphism, an oxidizing hydrothermal event either coeval or following the emplacement of mafic dikes into the paragneiss host was responsible for the highly oxidized nature of the massif as a whole. Subsequent metamorphism then produced the observed assemblages. This scenario is supported by recent U-Pb zircon and monazite ages of ca. 1626 ± 10 Ma, which indicate that both metagabbro dikes and host paragneiss were metamorphosed at the same time. Dike emplacement and the oxidizing event must have preceded 1626 Ma. The implications of this pre-metamorphic oxidizing event is that Fe3+ becomes an inherent and fixed component in the chemical system during metamorphism. Phase relationships, preliminary thermodynamic modeling, and geothermobarometric constraints indicate that peak temperatures are lower than those previously determined for Fe3+-absent systems. More appropriate

  18. Energetics of silicate melts from thermal diffusion studies. Final report

    International Nuclear Information System (INIS)

    Walker, D.

    1997-01-01

    Initially this project was directed towards exploiting Soret diffusion of silicate liquids to learn about the internal energetics of the constituents of the liquids. During the course of this project this goal was realized at the same time a series of intellectual and technical developments expanded the scope of the undertaking. Briefly recapping some of the highlights, the project was initiated after the discovery that silicate liquids were strongly Soret-active. It was possible to observe the development of strong diffusive gradients in silicate liquid composition in response to laboratory-imposed thermal gradients. The character of the chemical separations was a direct window into the internal speciation of the liquids; the rise time of the separation was a useful entree to quantitatively measuring chemical diffusivity; and the steady state magnitude of the separation proved to be an excellent determinant of the constituents' mixing energies. A comprehensive program was initiated to measure the separations, rise times, and mixing energies of a range of geologically and technically interesting silicate liquids. An additional track of activities in the DOE project has run in parallel to the Soret investigation of single-phase liquids in a thermal gradient. This additional track is the study of liquid-plus-crystal systems in a thermal gradient. In these studies solubility-driven diffusion introduced many useful effects, some quite surprising. In partially molten silicate liquids the authors applied their experiments to understanding magmatic cumulate rocks. They have also applied their understanding of these systems to aspects of evaporite deposits in the geological record. They also undertook studies of this sort in systems with retrograde solubility in order to form the basis for understanding remediation for brine migration problems in evaporite-hosted nuclear waste repositories such as the WIPP

  19. Wastewater reuse in liquid sodium silicate manufacturing in alexandria, egypt.

    Science.gov (United States)

    Ismail, Gaber A; Abd El-Salam, Magda M; Arafa, Anwar K

    2009-01-01

    Soluble sodium silicates (waterglass) are liquids containing dissolved glass which have some water like properties. They are widely used in industry as sealants, binders, deflocculants, emulsifiers and buffers. Their most common applications in Egypt are in the pulp and paper industry (where they improve the brightness and efficiency of peroxide bleaching) and the detergent industry, in which they improve the action of the detergent and lower the viscosity of liquid soaps. The survey results showed that the production was carried out batch-wise, in an autoclave (dissolver). Sodium silicate in the state of crushed glass was charged in an autoclave (dissolver) with sodium hydroxide and water. The product is filtered through a press. The left over sludge (mud and silicates impurities) is emptied into the local sewer system. Also, sludge (silica gel) was discharged from the neutralization process of the generated alkaline wastewater and consequently clogging the sewerage system. So this study was carried out to modify the current wastewater management system which eliminates sludge formation, the discharge of higher pH wastewater to the sewer system, and to assess its environmental and economic benefits. To assess the characteristics of wastewater to be reused, physico-chemical parameters of 12 samples were tested using standard methods. The survey results showed that a total capacity of the selected enterprise was 540 tons of liquid sodium silicates monthly. The total amount of wastewater being discharged was 335 m3/month. Reusing of wastewater as feed autoclave water reduced water consumption of 32.1% and reduced wastewater discharge/month that constitutes 89.6% as well as saving in final product of 6 ton/month. It was concluded that reusing of wastewater generated from liquid sodium silicate manufacturing process resulted in cheaper and environmental-friendly product.

  20. Silicate Phases on the Surfaces of Trojan Asteroids

    Science.gov (United States)

    Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.

    2017-10-01

    Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt

  1. The origin and evolution of silicic magmas during continental rifting: new constraints from trace elements and oxygen isotopes from Ethiopian volcanoes

    Science.gov (United States)

    Hutchison, W.; Boyce, A.; Mather, T. A.; Pyle, D. M.; Yirgu, G.; Gleeson, M. L.

    2017-12-01

    The petrologic diversity of rift magmas is generated by two key processes: interaction with the crust via partial melting or assimilation; and closed-system fractional crystallization of the parental magma. It is not yet known whether these two petrogenetic processes vary spatially between different rift settings, and whether there are any significant secular variations during rift evolution. The Ethiopian Rift is the ideal setting to test these hypotheses because it captures the transition from continental rifting to sea-floor spreading and has witnessed the eruption of large volumes of mafic and silicic volcanic rocks since 30 Ma. We use new oxygen isotope (δ18O) and trace element data to fingerprint fractional crystallisation and partial crustal melting processes in Ethiopia and evaluate spatial variations between three active rift segments. δ18O measurements are used to examine partial crustal melting processes. We find that most δ18O data from basalts to rhyolites fall within the bounds of modelled fractional crystallization trajectories (i.e., 5.5-6.5 ‰). Few samples deviate from this trend, emphasising that fractional crystallization is the dominant petrogenetic processes and that little fusible Precambrian crustal material (δ18O of 7-18 ‰) remain to be assimilated beneath the magmatic segments. Trace element systematics (e.g., Ba, Sr, Rb, Th and Zr) further underscore the dominant role of fractional crystallization but also reveal important variations in the degree of melt evolution between the volcanic systems. We find that the most evolved silicic magmas, i.e., those with greatest peralkalinity (molar Na2O+K2O>Al2O3), are promoted in regions of lowest magma flux off-axis and along rift. Our findings provide new information on the nature of the crust beneath Ethiopia's active magmatic segments and also have relevance for understanding ancient rift zones and the geotectonic settings that promote genesis of economically-valuable mineral deposits.

  2. Petrography and trace element signatures in silicates and Fe-Ti-oxides from the Lanjiahuoshan deposit, Panzhihua layered intrusion, Southwest China

    Science.gov (United States)

    Gao, Wenyuan; Ciobanu, Cristiana L.; Cook, Nigel J.; Huang, Fei; Meng, Lin; Gao, Shang

    2017-12-01

    Permian mafic-ultramafic layered intrusions in the central part of the Emeishan Large Igneous Province (ELIP), Southwestern China, host Fe-Ti-V-oxide ores that have features which distinguish them from other large layered intrusion-hosted deposits. The origin of these ores is highly debated. Careful petrographic examination, whole rock analysis, electron probe microanalysis, and measurement and mapping of trace element concentrations by laser ablation inductively coupled plasma mass spectrometry in all major and minor minerals (clinopyroxene, plagioclase, olivine, amphibole, titanomagnetite, ilmenite, pleonaste and pyrrhotite) has been undertaken on samples from the Lanjiahuoshan deposit, representing the Middle, Lower and Marginal Zone of the Panzhihua intrusion. Features are documented that impact on interpretation of intrusion petrology and with implications for genesis of the Fe-Ti-V-oxide ores. Firstly, there is evidence, as symplectites between clinopyroxene and plagioclase, for introduction of complex secondary melts. Secondly, reaction between a late hydrothermal fluid and clinopyroxene is recognized, which has led to formation of hydrated minerals (pargasite, phlogopite), as well as a potassium metasomatic event, postdating intrusion solidification, which led to formation of K-feldspar. Lastly, partitioning of trace elements between titanomagnetite and silicates needs to consider scavenging of metals by ilmenite (Mn, Sc, Zr, Nb, Sn, Hf and Ta) and sulfides, as well as the marked partitioning of Co, Ni, Zn, Ga, As and Sb into spinels exsolved from titanomagnetite. The role of these less abundant phases may have been understated in previous studies, highlighting the importance of petrographic examination of complex silicate-oxide-sulfide assemblages, as well as the need for a holistic approach to trace element analysis, acknowledging all minerals within the assemblage.

  3. Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels

    Science.gov (United States)

    Mastalska-Popiawska, J.; Izak, P.

    2017-01-01

    The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.

  4. Suspension hydration of tricalcium silicate at constant pH. I. Variation of particle size and tricalcium silicate content

    NARCIS (Netherlands)

    McCurdy, K.G.; Stein, H.N.

    1973-01-01

    Calcium and silicate ion concentrations during suspension hydration of C3S indicate that at pH 11.5 an equilibrium is established between one of the hydrates and the solution during about 80 minutes. The concentrations found in this period are indipendent of the particle size of the C3S and (within

  5. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    Directory of Open Access Journals (Sweden)

    Jurkić Lela Munjas

    2013-01-01

    Full Text Available Abstract Silicon (Si is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4, as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K, the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel, silica gel (amorphous silicon dioxide, and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4 in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  6. Solution-mass transfer and grain boundary sliding in mafic shear zones - comparison between experiments and nature

    Science.gov (United States)

    Marti, Sina; Heilbronner, Renée; Stünitz, Holger; Plümper, Oliver; Drury, Martyn

    2017-04-01

    Grain size sensitive creep (GSSC) mechanisms are widely recognized to be the most efficient deformation mechanisms in shear zones. With or without initial fracturing and fluid infiltration, the onset of heterogeneous nucleation leading to strong grain size reduction is a frequently described process for the initiation of GSSC. Phase mixing due to reaction and heterogeneous nucleation during GSSC impedes grain growth, sustaining small grain sizes as a prerequisite for GSSC. Here we present rock deformation experiments on 'wet' plagioclase - pyroxene mixtures at T=800°C, P=1.0 and 1.5GPa and strain rates of 2e-5 - 2e-6 1/s, performed with a Griggs-type solid medium deformation apparatus. Microstructural criteria are used to show that both, grain boundary sliding (GBS) and solution-mass transfer processes are active and are interpreted to be the dominant strain accommodating processes. Displacement is localized within shear bands formed by fine-grained ( 300 - 500nm) plagioclase (Pl) and the syn-kinematic reaction products amphibole (Amph), quartz (Qz) and zoisite (Zo). We compare our experiments with a natural case - a sheared mafic pegmatite (P-T during deformation 0.7 - 0.9 GPa, 610 - 710 °C; Getsinger et al., 2013) from Northern Norway. Except for the difference in grain size of the experimental and natural samples, microstructures are strikingly alike. The experimental and natural P- and especially T-conditions are very similar. Consequently, extrapolation from experiments to nature must be made without a significant 'temperature-time' trade-off, which is normally taken advantage of when relating experimental to natural strain rates. We will discuss under which assumptions extrapolation to nature in our case is likely feasible. Syn-kinematic reactions during GBS and solution-mass transport are commonly interpreted to result in an ordered (anticlustered) phase mixture. However, phase mixing in our case is restricted: Mixing is extensive between Pl + Zo + Qz and

  7. Geological setting, emplacement mechanism and igneous evolution of the Atchiza mafic-ultramafic layered suite in north-west Mozambique

    Science.gov (United States)

    Ibraimo, Daniel Luis; Larsen, Rune B.

    2015-11-01

    The Atchiza mafic and ultramafic-layered suite (hereafter, "Atchiza Suite) crops out in an area 330 km2 west of the Mozambican Tete province. In an early account of the geology of this intrusion, it was considered the continuation of the Great Dyke of Zimbabwe, an idea that was aborted after detailed studies. Nevertheless, the Ni concentrations in the Atchiza outcrop rocks are considerable. Our investigation used field evidence, hand specimens and petrography descriptions, mineral chemistry studies using electron microprobe analysis and tectonic analysis to arrive at a plausible mineralogical composition and understanding of the tectonic setting for the igneous evolution. The mineral composition from the Atchiza Suite indicates that these are cumulates. The magmatic segregation from the petrographic and mineral composition reasoning indicates that dunite-lherzolitic peridotite-olivine gabbro-gabbronorite-gabbro-pegmatitic gabbro is the rock formation sequence. Olivine and chromite were the first phases formed, followed by pyroxene and plagioclase. In addition, it is shown that these minerals are near-liquidus crystallization products of basaltic magma with olivine Fo: 87.06 in dunite, mean values of clinopyroxene are (Wo: 36.4, En: 48.0, Fs: 15.2), orthopyroxene (Wo: 2.95, En: 73.0, Fs: 24.2) and plagioclase An: 71.3, respectively. Opaque minerals comprise Fe-Ti oxides and (Fe, Cr) spinel up to 4.8 vol.%, but chromitite layers are not present. Most of the opaque minerals are interstitial to pyroxene. Sulphides are common in gabbros, with pyrrhotite, pentlandite, chalcopyrite, pyrite and covellite together comprising 0.4-2.0 vol.%. The whole rock Rare Earth Element (REE) concentrations are mainly a result of differentiation, but slight crustal contamination/assimilation contributed to the REE contents. In addition, they also show Eu enrichment, suggesting that plagioclase fractionation was important in the rock. The Atchiza Suite preserves a deep-seated plumbing

  8. Wind-eroded silicate as a source of hydrogen peroxide on Mars

    DEFF Research Database (Denmark)

    Bak, Ebbe Norskov; Merrison, Jonathan P.; Jensen, Svend Knak

    -sists of silicates [4] that due to wind erosion has a very fine grained texture. Based on the composition of the surface material and investigations showing that crushing of silicates can give rise to reactive oxygen species [5], we hypothesized that wind erosion of silicates can explain the reactivity of Martian...... soil. Wind-erosion of silicate could thus be one of several causes of the soil’s reactivity. As our experiments show, the globally distributed wind eroded silicate dust can lead to the production of hydrogen peroxide which might explain the reactivity of the Martian soil. The reactivity of eroded...

  9. Metamorphic P-T path and zircon U-Pb dating of HP mafic granulites in the Yushugou granulite-peridotite complex, Chinese South Tianshan, NW China

    Science.gov (United States)

    Zhang, Lu; Zhang, Lifei; Xia, Bin; Lü, Zeng

    2018-03-01

    Co-existing granulite and peridotite may represent relics of the paleo-suture zone and provides an optimal opportunity for better understanding of orogeny between two blocks. In this study, we carried out petrological and U-Pb zircon dating investigation on the HP mafic granulites associated with peridotite complex at Yushugou in Chinese South Tianshan. The studied samples include garnet-bearing high-pressure mafic granulites which can be subdivided into two types: Type I orthopyroxene-free and Type II orthopyroxene-bearing granulites and amphibolite. Type I granulite (Y21-2) has a mineral assemblage of garnet (33 vol.%), clinopyroxene (32 vol.%) and plagioclase (30 vol.%); and Type II granulite (Y18-8) has a mineral assemblage of garnet (22 vol.%), clinopyroxene (10 vol.%), orthopyroxene (14 vol.%), plagioclase (45 vol.%) and quartz. Garnet in both granulites exhibits core-rim structure characterized by increasing grossular and decreasing pyrope from core to rim. Petrographic observations and phase equilibrium modeling using THERMOCALC in the NCFMASHTO system for the mafic granulites (Y21-2 and Y18-8) show three stages of metamorphism: Stage I (granulite facies) was recognized by the large porphyroblastic garnet core, with P-T conditions of 9.8-10.4 Kbar and 860-900 °C (Y21-2) and 9.9-10.6 Kbar and 875-890 °C (Y18-8), respectively; Stage II (HP granulite facies) has peak P-T conditions of 12.1 Kbar at 755 °C (Y21-2) and 13.8 Kbar at 815 °C (Y18-8) using mineral assemblages combining with garnet rim compositions with maximum grossular and minimum pyrope contents; Stage III (amphibolite facies) was characterized by the development of calcic amphibole in granulites with temperature of 446-563 °C. Therefore, an anticlockwise P-T path characterized by simultaneous temperature-decreasing and pressure-increasing was inferred for the Yushugou HP mafic granulite. Studies of zircon morphology and inclusions, combined with zircon U-Pb dating and REE geochemistry

  10. Fluid Inclusion Study of Quartz Xenocrysts in Mafic Dykes from Kawant Area, Chhota Udaipur District, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Randive Kirtikumar

    2015-09-01

    Full Text Available Unusual mafic dykes occur in the proximity of the Ambadongar Carbonatite Complex, Lower Narmada Valley, Gujarat, India. The dykes contain dense population of quartz xenocrysts within the basaltic matrix metasomatised by carbonate-rich fluids. Plagioclase feldspars, relict pyroxenes, chlorite, barite, rutile, magnetite, Fe-Ti oxides and glass were identified in the basaltic matrix. Quartz xenocrysts occur in various shapes and sizes and form an intricate growth pattern with carbonates. The xenocrysts are fractured and contain several types of primary and secondary, single phase and two-phase fluid inclusions. The two-phase inclusions are dominated by aqueous liquid, whereas the monophase inclusions are composed of carbonic gas and the aqueous inclusions homogenize to liquid between 226°C and 361°C. Majority of the inclusions are secondary in origin and are therefore unrelated to the crystallization of quartz. Moreover, the inclusions have mixed carbonic-aqueous compositions that inhibit their direct correlation with the crustal or mantle fluids. The composition of dilute CO2-rich fluids observed in the quartz xenocrysts appear similar to those exsolved during the final stages of evolution of the Amba Dongar carbonatites. However, the carbonates are devoid of fluid inclusions and therefore their genetic relation with the quartz xenocrysts cannot be established.

  11. Calc-silicate mineralization in active geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.

    1983-01-01

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.

  12. Charge trapping and dielectric breakdown in lead silicate glasses

    International Nuclear Information System (INIS)

    Weeks, R.A.; Kinser, D.L.; Lee, J.M.

    1976-01-01

    When irradiated with beams of energetic electrons or gamma rays, many insulating glasses and plastics exhibit a spontaneous electrical discharge producing permanent patterns in the materials (Lichtenberg figures). In the case of inorganic glasses, this effect is not observed in pure silicate, germanate, or phosphate glasses nor in their crystalline forms and has only been reported in mixed-oxide glasses with low alkali content. In a series of lead silicate glasses of composition [PbO]/sub (x)/[SiO 2 ]/sub [1-(x)]/, the effect is observed only for 0 less than x less than or equal to 0.40. Changes in electrical properties are related to structural changes in these glasses. Electron microscopy of these glasses confirms the existence of microphase separation in the range 0.2 less than or equal to x less than or equal to 0.5

  13. Chemical bonding and structural ordering of cations in silicate glasses

    International Nuclear Information System (INIS)

    Calas, G.; Cormier, L.; Galoisy, L.; Ramos, A.; Rossano, St.

    1997-01-01

    The specific surrounding of cations in multicomponent silicate glasses is briefly presented. Information about interatomic distances and site geometry may be gained by using spectroscopic methods among which x-ray absorption spectroscopy may be used for the largest number of glass components. Scattering of x-rays and neutrons may also be used to determine the importance of medium range order around specific cations. All the existing data show that cations occur in sites with a well-defined geometry, which are in most cases connected to the silicate polymeric network. Medium range order has been detected around cations such as Ti, Ca and Ni, indicating that these elements have an heterogeneous distribution within the glassy matrix. (authors)

  14. Silica from triethylammonium tris (oxalato) silicate (IV) thermal decomposition

    International Nuclear Information System (INIS)

    Ferracin, L.C.; Ionashiro, M.; Davolos, M.R.

    1990-01-01

    Silica can be obtained from differents precursors by differents methods. In this paper it has been investigated the thermal decomposition of triethylammonium tris (oxalato) silicate (IV) to render silica. Among the trisoxalato-complexes of silicon preparation methods reviewed it has been used the Bessler's one with the reflux adaptaded in microwave oven. Thermal decomposition analysis of the compound has been made by TG-DTG and DTA curves. Silica powders obtained and heated between 300 to 900 0 C in a oven were characterized by infrared vibrational spectroscopy, X-ray powder difraction and nitrogen adsorption isotherm (BET). The triethylammonium tris (oxalato) silicate (IV) thermal decomposition takes place at 300 0 C and the silica powder obtained is non cristalline with impurities that are eliminated with heating at 400 0 C. (author) [pt

  15. An optical fibre-type silicate glass thermoluminescent detector

    International Nuclear Information System (INIS)

    Zheng Zheng; Dai Honggui; Hu Shangze; Liu Jian; Fang Jie

    1991-01-01

    A description of dosimetric properties and the preparation method of an optical fibre-type silicate glass thermoluminescent detector (TLD) is presented. Results showed that this new phosphor is a good one which could be used as a routine dosimeter in the range 10 -1 -10 3 Gy. The preparation method is a new one which differs greatly from all previous ones. Furthermore this kind of detector is small and of low weight. (orig.)

  16. Cracking phenomena in lithium-di-silicate glass ceramics

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Lithium-di-silicate glass ceramic (Li2O, SiO2) with uniformly oriented crystals was placed on a. Vickers indentation with extrusion axis horizontally parallel to the base axis. The material was rotated through. 0°– 90° and at each angle a 20 N load was applied to ascertain the crack path. It was observed that the crack.

  17. Strength and impermeability recovery of siliceous mudstone from complete failure

    International Nuclear Information System (INIS)

    Sugita, Yutaka; Sanada, Masanori; Fujita, Tomoo; Hashiba, Kimihiro; Fukui, Katsunori; Okubo, Seisuke

    2013-01-01

    Radionuclide migration can be undesirably increased by weakening the mechanical properties of a rock mass in the excavated disturbed zone (EDZ) around the tunnels of a geological disposal facility for high level radioactive waste. Laboratory testing of loading stress and loading time on failed siliceous mudstone specimens has identified the potential for the long-term recovery of the strength and impermeability of the rock mass in the EDZ. (author)

  18. Structure change of soda-silicate glass by mechanical milling

    International Nuclear Information System (INIS)

    Iwao, M; Okuno, M

    2010-01-01

    Structure change of ground soda-silicate glass (SiO 2 -Na 2 O binary systems) was investigated using X-ray diffraction (XRD) and infrared spectroscopy. The measurement results were discussed comparison to that of SiO 2 glass. With increasing Na 2 O concentrations, the XRD intensity around 2θ = 22 0 decreased and the intensity around 32 0 increased. The intensity around 22 0 and 32 0 maybe attributed to SiO 2 glass structure unit and soda-silicate glass unit, respectively. The peaks of Na 2 CO 3 crystal for 2SiO 2 -Na 2 O glass were observed with increasing milling time. This crystallization was suggested that Na + ion on 2SiO 2 -Na 2 O glass surface connected CO 2 in air. The intensity around 22 0 and 32 0 decreased and the intensity around 30 0 increased with increasing milling time. These may indicate that SiO 2 glass structure unit and soda-silicate glass structure unit were mixed by milling. In addition, IR absorption band near v = 1100 cm -1 was separated to two bands near 940 cm -1 and 1070 cm -1 with increasing Na 2 O concentrations. The band near 940 cm -1 decreased and the band near 1070 cm -1 increased with increasing milling time. These spectra changes were suggested due to decrease of Na 2 O concentrations in 2SiO 2 -Na 2 O glass with Na 2 CO 3 crystallization.

  19. Development of Li+ alumino-silicate ion source

    International Nuclear Information System (INIS)

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-01-01

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  20. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.

    Science.gov (United States)

    Elsaka, Shaymaa E; Elnaghy, Amr M

    2016-07-01

    The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (Pglass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (Pglass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. The thermodynamic activity of ZnO in silicate melts

    Science.gov (United States)

    Reyes, R. A.; Gaskell, D. R.

    1983-12-01

    The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.

  2. Proton tunneling in low dimensional cesium silicate LDS-1

    Science.gov (United States)

    Matsui, Hiroshi; Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-01

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi2O5), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm-1 are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O-O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm-1, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm-1 are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm-1) and asymmetric mode (155 and 1220 cm-1). The broad absorption at 100-600 cm-1 reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs+ but also with the proton oscillation relevant to the second excited state (n = 2).

  3. Silicate bonding properties: Investigation through thermal conductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzini, M; Cesarini, E; Cagnoli, G; Campagna, E; Losurdo, G; Martelli, F; Piergiovanni, F; Vetrano, F [INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Haughian, K; Hough, J; Martin, I; Reid, S; Rowan, S; Veggel, A A van, E-mail: lorenzini@fi.infn.i [SUPA, University of Glasgow, Department of Physics and Astronomy, Kelvin Building G12 8QQ Glasgow, Scotland (United Kingdom)

    2010-05-01

    A direct approach to reduce the thermal noise contribution to the sensitivity limit of a GW interferometric detector is the cryogenic cooling of the mirrors and mirrors suspensions. Future generations of detectors are foreseen to implement this solution. Silicon has been proposed as a candidate material, thanks to its very low intrinsic loss angle at low temperatures and due to its very high thermal conductivity, allowing the heat deposited in the mirrors by high power lasers to be efficiently extracted. To accomplish such a scheme, both mirror masses and suspension elements must be made of silicon, then bonded together forming a quasi-monolithic stage. Elements can be assembled using hydroxide-catalysis silicate bonding, as for silica monolithic joints. The effect of Si to Si bonding on suspension thermal conductance has therefore to be experimentally studied. A measurement of the effect of silicate bonding on thermal conductance carried out on 1 inch thick silicon bonded samples, from room temperature down to 77 K, is reported. In the explored temperature range, the silicate bonding does not seem to affect in a relevant way the sample conductance.

  4. Lithium concentration dependence of implanted helium retention in lithium silicates

    Energy Technology Data Exchange (ETDEWEB)

    Szocs, D.E., E-mail: szocsd@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Szilagyi, E.; Bogdan, Cs.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Horvath, Z.E. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, P.O. Box 49 (Hungary)

    2010-06-15

    Helium ions of 500 keV were implanted with a fluence of 1.4 x 10{sup 17} ion/cm{sup 2} into various lithium silicates to investigate whether a threshold level of helium retention exists in Li-containing silicate ceramics similar to that found in SiO{sub x} in previous work. The composition and phases of the as prepared lithium silicates were determined by proton backscattering spectrometry (p-BS) and X-ray diffraction (XRD) methods with an average error of {+-}10%. Electrostatic charging of the samples was successfully eliminated by wrapping the samples in Al foil. The amounts of the retained helium within the samples were determined by subtracting the non-implanted spectra from the implanted ones. The experimental results show a threshold in helium retention depending on the Li concentration. Under 20 at.% all He is able to escape from the material; at around 30 at.% nearly half of the He, while over 65 at.% all implanted He is retained. With compositions expressed in SiO{sub 2} volume percentages, a trend similar to those reported of SiO{sub x} previously is found.

  5. SEM-MLA-based Investigation of the Composition of Mafic Volcaniclastic Deposits from the Paraná Large Igneous Province, Brazil

    Science.gov (United States)

    Höfig, D. F.; Höfig, T. W.; Licht, O. A. B.; Haser, S.; Valore, L.

    2017-12-01

    Mafic volcaniclastic deposits (MVDs) have been widely reported in Large Igneous Provinces around the world, except for the Paraná Province (review by Ross et al., 2005: J Volcanol Geotherm Res, 145, pp. 281-314). Recent geochemical classification for this unit highlights, however, the occurrence of such deposits, connected to basic lava flows, mostly those High Ti - High P ones (Licht.: J Volcanol Geotherm Res, in press). In southern Brazil, MVDs intercalated with lava flows have been reported at 680 sites, showing conspicuous poorly sorted polymictic breccia at the base, grading to tuff breccias and red silicified tuffs at the top. Newly sampled rocks of Paraná mafic volcanoclastic deposits unravel important information about the composition utilizing Scanning Electron Microscopy-based Mineral Liberation Analysis. Overall, they show similar mineralogy presenting obsidian (25-40%), different phases of iron oxide (5-20%), quartz (10-25%), plagioclase (5-25%), celadonite (5-25%), and chlorite (5-10%). The breccias reveal a greater content of celadonite due to the presence of altered hypohyaline and hypocrystalline basaltic shards, whereas the tuffs are more enriched in glass. Different generations of plagioclase are attributed to various basalt shards and clasts as well vitroclasts found in the matrix. It is proposed that the MVDs were generated by explosive events due the interaction between the ascending mafic magma and deep aquifer systems and its siliciclastic matrix represents the country rock, i.e., the underneath Paleozoic sedimentary sequence of Paraná Basin.

  6. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    Science.gov (United States)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  7. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    International Nuclear Information System (INIS)

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan

    2016-01-01

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO_2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  8. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    Science.gov (United States)

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  9. The Magma Chamber Simulator: Modeling the Impact of Wall Rock Composition on Mafic Magmas during Assimilation-Fractional Crystallization

    Science.gov (United States)

    Creamer, J. B.; Spera, F. J.; Bohrson, W. A.; Ghiorso, M. S.

    2012-12-01

    Although stoichiometric titration is often used to model the process of concurrent Assimilation and Fractional Crystallization (AFC) within a compositionally evolving magma body, a more complete treatment of the problem involves simultaneous and self-consistent determination of stable phase relationships and separately evolving temperatures of both Magma (M) and Wall Rock (WR) that interact as a composite M-WR system. Here we present results of M-WR systems undergoing AFC forward modeled with the Magma Chamber Simulator (MCS), which uses the phase modeling capabilities of MELTS (Ghiorso & Sack 1995) as the thermodynamic basis. Simulations begin with one of a variety of mafic magmas (e.g. HAB, MORB, AOB) intruding a set mass of Wall Rock (e.g. lherzolite, gabbro, diorite, granite, metapelite), and heat is exchanged as the M-WR system proceeds towards thermal equilibrium. Depending on initial conditions, the early part of the evolution can involve closed system FC while the WR heats up. The WR behaves as a closed system until it is heated beyond the solidus to critical limit for melt fraction extraction (fc), ranging between 0.08 and 0.12 depending on WR characteristics including composition and, rheology and stress field. Once fc is exceeded, a portion of the anatectic liquid is assimilated into the Magma. The MCS simultaneously calculates mass and composition of the mineral assemblage (Magma cumulates and WR residue) and melt (anatectic and Magma) at each T along the equilibration trajectory. Sensible and latent heat lost or gained plus mass gained by the Magma are accounted for by the MCS via governing Energy Constrained- Recharge Assimilation Fractional Crystallization (EC-RAFC) equations. In a comparison of two representative MCS results, consider a granitic WR intruded by HAB melt (51 wt. % SiO2) at liquidus T in shallow crust (0.1 GPa) with a WR/M ratio of 1.25, fc of 0.1 and a QFM oxygen buffer. In the first example, the WR begins at a temperature of 100o

  10. Reconstruction of multiple P-T-t stages from retrogressed mafic rocks: Subduction versus collision in the Southern Brasília orogen (SE Brazil)

    Science.gov (United States)

    Tedeschi, Mahyra; Lanari, Pierre; Rubatto, Daniela; Pedrosa-Soares, Antônio; Hermann, Jörg; Dussin, Ivo; Pinheiro, Marco Aurélio P.; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2017-12-01

    The identification of markers of subduction zones in orogenic belts requires the estimation of paleo-geothermal gradients through pressure-temperature-time (P-T-t) estimates in mafic rocks that potentially derive from former oceanic units once. However, such markers are rare in supracrustal sequences specially in deeply eroded and weathered Precambrian orogens, and reconstructing their metamorphic history is challenging because they are commonly retrogressed and only preserve a few mineral relicts of high-pressure metamorphism. Metamorphosed mafic rocks from Pouso Alegre region of the Neoproterozoic Southern Brasília Orogen outcrop as rare lenses within continental gneisses. They have previously been classified as retrograde eclogites, based on the presence of garnet and the characteristic symplectitic texture replacing omphacite. These rocks were interpreted to mark the suture zone between the Paranapanema and São Francisco cratons. To test the possible record of eclogitic conditions in the Pouso Alegre mafic rocks, samples including the surrounding felsic rocks have been investigated using quantitative compositional mapping, forward thermodynamic modeling and in-situ dating of accessory minerals to refine their P-T-t history. In the metamorphosed mafic rocks, the peak pressure assemblage of garnet and omphacite (Jd20, reconstructed composition) formed at 690 ± 35 °C and 13.5 ± 3.0 kbar, whereas local retrogression into symplectite or corona occurred at 595 ± 25 °C and 4.8 ± 1.5 kbar. The two reactions were coupled and thus took place at the same time. A zircon U-Pb age of 603 ± 7 Ma was obtained for metamorphic rims and linked to the retrogression stage. Monazite and metamorphic zircon U-Th-Pb ages for the surrounding rocks are at ca. 630 Ma and linked to peak pressure conditions similar to the one recorded by the mafic rocks. The low maximal pressure of 14 kbar and the high geothermal gradient do not necessarily support subduction process

  11. Peridotites and mafic igneous rocks at the foot of the Galicia Margin: an oceanic or continental lithosphere? A discussion

    Energy Technology Data Exchange (ETDEWEB)

    Korprobst, J.; Chazot, G.

    2016-10-01

    An ultramafic/mafic complex is exposed on the sea floor at the foot of the Galicia Margin (Spain and Portugal). It comprises various types of peridotites and pyroxenites, as well as amphibole-diorites, gabbros, dolerites and basalts. For chronological and structural reasons (gabbros were emplaced within peridotites before the continental break-up) this unit cannot be assigned to the Atlantic oceanic crust. The compilation of all available petrological and geochemical data suggests that peridotites are derived from the sub-continental lithospheric mantle, deeply transformed during Cretaceous rifting. Thus, websterite dykes extracted from the depleted MORB mantle reservoir (DMM), were emplaced early within the lithospheric harzburgites; subsequent boudinage and tectonic dispersion of these dykes in the peridotites, during deformation stages at the beginning of rifting, resulted in the formation of fertile but isotopically depleted lherzolites. Sterile but isotopically enriched websterites, would represent melting residues in the peridotites, after significant partial melting and melt extraction related to the thermal erosion of the lithosphere. The latter melts are probably the source of brown amphibole metasomatic crystallization in some peridotites, as well as of the emplacement of amphibole-diorite dykes. Melts directly extracted from the asthenosphere were emplaced as gabbro within the sub-continental mantle. Mixing these DMM melts together with the enriched melts extracted from the lithosphere, provided the intermediate isotopic melt-compositions - in between the DMM and Oceanic Islands Basalts reservoir - observed for the dolerites and basalts, none of which are characterized by a genuine N-MORB signature. An enriched lithospheric mantle, present prior to rifting of the Galicia margin, is in good agreement with data from the Messejana dyke (Portugal) and more generally, with those of all continental tholeiites of the Central Atlantic Magmatic Province (CAMP

  12. Steam based conversion coating on AA6060 alloy: Effect of sodium silicate chemistry and corrosion performance

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Bordo, Kirill; Tabrizian, Naja

    2017-01-01

    . Moreover, the use of sodium silicate resulted in the formation of distinct microstructure and incorporation of silicate into the oxide film. These oxide films reduced the anodic activity 4 times, while the corrosion protection by silicate containing oxide was the function of its concentration. Further......Surface treatment of aluminium alloy AA6060 using an industrially applicable pilot steam jet system with and without silicate chemistry has been investigated. Treatment using steam alone and steam with silicate, resulted in an oxide layer formation with thickness ∼425 nm and ∼160 nm, respectively......, in acid salt spray and filiform corrosion tests, oxide layer containing silicate exhibited two times higher corrosion resistance....

  13. Structure and properties of polymer-silicate nanocomposites based on polytetrafluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Sleptsova, Sardana A.; Okhlopkova, Aitalina A. [North-Eastern Federal University, Yakutsk (Russian Federation)

    2011-07-01

    The results of physicomechanical, tribological , and structural investigation of polytetrafluoroethylene based polymers and natural layered silicates are reported. It is shown that the tribological behaviour of the composites can be significantly improved by introducing a small amount of activated silicates. The results of structural examination of the composite friction surfaces by scanning-probe microscopy and IR spectroscopy are discussed. Key words: polytetrafluoroethylene, layered silicates, wear resistance, friction coefficient, structure, IR-spectrum.

  14. Application of Sodium Silicate Enhances Cucumber Resistance to Fusarium Wilt and Alters Soil Microbial Communities

    Directory of Open Access Journals (Sweden)

    Xingang Zhou

    2018-05-01

    Full Text Available Exogenous silicates can enhance plant resistance to pathogens and change soil microbial communities. However, the relationship between changes in soil microbial communities and enhanced plant resistance remains unclear. Here, effects of exogenous sodium silicate on cucumber (Cucumis sativus L. seedling resistance to Fusarium wilt caused by the soil-borne pathogen Fusarium oxysporum f.sp. cucumerinum Owen (FOC were investigated by drenching soil with 2 mM sodium silicate. Soil bacterial and fungal community abundances and compositions were estimated by real-time PCR and high-throughput amplicon sequencing; then, feedback effects of changes in soil biota on cucumber seedling resistance to FOC were assessed. Moreover, effects of sodium silicate on the growth of FOC and Streptomyces DHV3-2, an antagonistic bacterium to FOC, were investigated both in vitro and in the soil environment. Results showed that exogenous sodium silicate enhanced cucumber seedling growth and resistance to FOC. In bare soil, sodium silicate increased bacterial and fungal community abundances and diversities. In cucumber-cultivated soil, sodium silicate increased bacterial community abundances, but decreased fungal community abundances and diversities. Sodium silicate also changed soil bacterial and fungal communality compositions, and especially, decreased the relative abundances of microbial taxa containing plant pathogens but increased these with plant-beneficial potentials. Moreover, sodium silicate increased the abundance of Streptomyces DHV3-2 in soil. Soil biota from cucumber-cultivated soil treated with sodium silicate decreased cucumber seedling Fusarium wilt disease index, and enhanced cucumber seedling growth and defense-related enzyme activities in roots. Sodium silicate at pH 9.85 inhibited FOC abundance in vitro, but did not affect FOC abundance in soil. Overall, our results suggested that, in cucumber-cultivated soil, sodium silicate increased cucumber seedling

  15. Conduction mechanism in bismuth silicate glasses containing titanium

    International Nuclear Information System (INIS)

    Dult, Meenakshi; Kundu, R.S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-01-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO 2 –(60−x)Bi 2 O 3 –40SiO 2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10 −1 Hz to 10 MHz and in the temperature range 623–703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σ dc ), so called crossover frequency (ω H ), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (H f ) and enthalpy of migration (H m ) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti 3+ and Ti 4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses

  16. New candidates for carbon stars with silicate features

    Science.gov (United States)

    Chan, S. J.; Kwok, Sun

    1991-01-01

    All stars in the General Catalog of Cool Galactic Carbon Stars with IRAS 12-micron fluxes greater than 10 Jy were searched for Low-Resolution-Spectrometer (LRS) spectra in the IRAS LRS data base. Out of the 532 spectra examined, 11 were found to show the 9.7-micron silicate emission feature. Four of these are identified for the first time. This group of carbon stars may represent transition objects between oxygen-rich and carbon-rich stars on the asymptotic giant branch.

  17. VISION: a Versatile and Innovative SIlicOn tracking system

    CERN Document Server

    Lietti, Daniela; Vallazza, Erik

    This thesis work focuses on the study of the performance of different tracking and profilometry systems (the so-called INSULAB, INSUbria LABoratory, and VISION, Versatile and Innovative SIlicON, Telescopes) used in the last years by the NTA-HCCC, the COHERENT (COHERENT effects in crystals for the physics of accelerators), ICE-RAD (Interaction in Crystals for Emission of RADiation) and CHANEL (CHAnneling of NEgative Leptons) experiments, four collaborations of the INFN (Istituto Nazionale di Fisica Nucleare) dedicated to the research in the crystals physics field.

  18. High-temperature silicate volcanism on Jupiter's moon Io

    Science.gov (United States)

    McEwen, A.S.; Keszthelyi, L.; Spencer, J.R.; Schubert, G.; Matson, D.L.; Lopes-Gautier, R.; Klaasen, K.P.; Johnson, T.V.; Head, J.W.; Geissler, P.; Fagents, S.; Davies, A.G.; Carr, M.H.; Breneman, H.H.; Belton, M.J.S.

    1998-01-01

    Infrared wavelength observations of Io by the Galileo spacecraft show that at last 12 different vents are erupting lavas that are probably hotter than the highest temperature basaltic eruptions on Earth today. In at least one case, the eruption near Pillan Patea, two independent instruments on Galileo show that the lava temperature must have exceeded 1700 kelvin and may have reached 2000 kelvin. The most likely explanation is that these lavas are ultramafic (magnesium-rich) silicates, and this idea is supported by the tentative identification of magnesium-rich orthopyroxene in lava flows associated with thse high-temperature hot spots.

  19. Minerals ontology: application in the environmental field to silicates

    International Nuclear Information System (INIS)

    Galan Saulnier, A.; Garcia Gimenez, R.

    2010-01-01

    The aim of this paper is to describe the application of an ontology, or up-to-date computerized tool, developed in the field of artificial intelligence and in particular of knowledge engineering, to inert elements, in this case the silicate class, which are minerals of scientific, technical and economic interest. The importance of applying ontology to minerals lies in the fact that these substances are capable of causing negative environmental impacts upon other variables in the natural environment, such as the atmosphere and the hydrosphere, and possible subsequent effects on human health. (Author) 37 refs.

  20. The Evolution of Land Plants and the Silicate Weathering Feedback

    Science.gov (United States)

    Ibarra, D. E.; Caves Rugenstein, J. K.; Bachan, A.; Baresch, A.; Lau, K. V.; Thomas, D.; Lee, J. E.; Boyce, C. K.; Chamberlain, C. P.

    2017-12-01

    It has long been recognized that the advent of vascular plants in the Paleozoic must have changed silicate weathering and fundamentally altered the long-term carbon cycle. Efforts to quantify these effects have been formulated in carbon cycle models that are, in part, calibrated by weathering studies of modern plant communities. In models of the long-term carbon cycle, plants play a key role in controlling atmospheric CO2, particularly in the late Paleozoic. We test the impact of some established and recent theories regarding plant-enhanced weathering by coupling a one-dimensional vapor transport model to a reactive transport model of silicate weathering. In this coupled model, we evaluate consequences of plant evolutionary innovation that have not been mechanistically incorporated into most existing models: 1) the role of evolutionary shifts in plant transpiration in enhancing silicate weathering by increasing downwind transport and recycling of water vapor to continental interiors; 2) the importance of deeply-rooted plants and their associated microbial communities in increasing soil CO2 and weathering zone length scales; and, 3) the cumulative effect of these processes. Our modeling approach is framed by energy/supply constraints calibrated for minimally vegetated-, vascular plant forested-, and angiosperm-worlds. We find that the emergence of widespread transpiration and associated inland vapor recycling approximately doubles weathering solute concentrations when deep-rooted vascular plants (Devonian-Carboniferous) fully replace a minimally vegetated (pre-Devonian) world. The later evolution of angiosperms (Cretaceous and Cenozoic) and subsequent increase in transpiration fluxes increase weathering solute concentrations by approximately an additional 20%. Our estimates of the changes in weatherability caused by land plant evolution are of a similar magnitude, but explained with new process-based mechanisms, than those used in existing carbon cycle models. We

  1. Theoretical and practical aspects of aqueous solution sodium silicate modifying

    Directory of Open Access Journals (Sweden)

    Mizuryaev Sergey

    2016-01-01

    Full Text Available This research deals with the use of liquid glass in industry particularly for porous filler production. The aim of this paper is to show the necessity liquid glass modification for the purpose of its rheological characteristics change for raw granules formation and providing given structure after porization. Data on chemical liquid glass modification are provided by adding sodium chloride. Moreover, inert mineral additives influence on porous filler properties are shown in this paper. The basic principles of light concrete composition selection are specified. Test results of light concrete on the developed porous sodium silicate filler are given.

  2. Infrared Spectroscopy and Stable Isotope Geochemistry of Hydrous Silicate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stolper, Edward

    2007-03-05

    The focus of this DOE-funded project has been the study of volatile components in magmas and the atmosphere. Over the twenty-one year period of this project, we have used experimental petrology and stable isotope geochemistry to study the behavior and properties of volatile components dissolved in silicate minerals and melts and glasses. More recently, we have also studied the concentration and isotopic composition of CO2 in the atmosphere, especially in relation to air quality issues in the Los Angeles basin.

  3. Surface charges and Np(V) sorption on amorphous Al- and Fe- silicates

    International Nuclear Information System (INIS)

    Del Nero, M.; Assada, A.; Barillon, R.; Duplatre, G.; Made, B.

    2005-01-01

    Full text of publication follows: Sorption onto Si-rich alteration layers of crystalline minerals and nuclear glasses, and onto amorphous secondary silicates of rocks and soils, are expected to retard the migration of actinides in the near- and far-field of HLW repositories. We present experimental and modeling studies on the effects of silicate structure and bulk chemistry, and of solution chemistry, on charges and adsorption of neptunyl ions at surfaces of synthetic, amorphous or poorly ordered silica, Al-silicates and Fe-silicates. The Al-silicates display similar pH-dependent surface charges characterized by predominant Si-O - Si sites, and similar surface affinities for neptunyl ions, irrespective to their Si/Al molar ratio (varying from 10 to 4.3). Such experimental features are explained by incorporation of Al atoms in tetrahedral position in the silicate lattice, leading to only trace amounts of high-affinity Al-OH surface groups due to octahedral Al. By contrast, the structure of the Fe-silicates ensures the occurrence of high-affinity Fe-OH surface groups, whose concentration is shown by proton adsorption measurements to increase with decreasing of the silicate Si/Fe molar ratio (from 10 to 2.3). Nevertheless, experimental data of the adsorption of neptunyl and electrolyte ions show unexpectedly weak effect of the Si/Fe ratio, and suggest predominant Si-OH surface groups. A possible explanation is that aqueous silicate anions, released by dissolution, adsorb at OH Fe - surface groups and / or precipitate as silica gel coatings, because experimental solutions were found at near-equilibrium with respect to amorphous silica. Therefore, the environmental sorption of Np(V) onto Si-rich, amorphous or poorly ordered Al-silicates may primarily depend on pH and silicate specific surface areas, given the low overall chemical affinity of such phases for dissolved metals. By contrast, the sorption of Np(V) on natural, amorphous or poorly ordered Fe-silicates may be a

  4. Serpentinization and fluid-rock interaction in Jurassic mafic and ultramafic sea-floor: constraints from Ligurian ophiolite sequences

    Science.gov (United States)

    Vogel, Monica; Früh-Green, Gretchen L.; Boschi, Chiara; Schwarzenbach, Esther M.

    2014-05-01

    The Bracco-Levanto ophiolitic complex (Eastern Liguria) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge, such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of deformation processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to modern oceanic hydrothermal systems, such as the Lost City Hydrothermal Field hosted in ultramafic rocks on the Atlantis Massif. A focus is on investigating mass transfer and fluid flow paths during high and low temperature hydrothermal activity, and on processes leading to hydrothermal carbonate precipitation and the formation of ophicalcites, which are characteristic of the Bracco-Levanto sequences. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread SiO2 metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater and high fluid-rock ratios in the shallow ultramafic-dominated portions of the Jurassic seafloor. We observe regional variations in MgO, SiO2 and Al2O3, suggesting Si-flux towards stratigraphically higher units. In general, the ophicalcites have higher Si, Al and Fe concentrations and lower Mg than the serpentinite basement rocks or serpentinites with minimal carbonate veins. Bulk rock trace element data and Sr isotope ratios indicate seawater reacting with rocks of more mafic composition, then channeled towards stratigraphically higher

  5. Linking precious metal enrichment and halogen cycling in mafic magmatic systems: insights from the Rum layered intrusion, NW Scotland

    Science.gov (United States)

    Kelly, A. P.; O'Driscoll, B.; Clay, P. L.; Burgess, R.

    2017-12-01

    Layered intrusions host the world's largest known concentrations of the platinum-group elements (PGE). Emphasis has been attached to the role of halogen-bearing fluids in concentrating the precious metals, but whether this occurs at the magmatic stage, or via subsequent metasomatism, is actively debated. One obstacle to progress has been the analytical difficulty of measuring low abundances of the halogens in the cumulate products of layered intrusions. To elucidate the importance of the halogens in facilitating PGE-mineralisation, as well as fingerprint halogen provenance and assess the importance of halogen cycling in mafic magma systems more generally, a suite of samples encompassing different stages of activity of the Palaeogene Rum layered intrusion was investigated. Halogen abundances were measured by neutron irradiation noble gas mass spectrometric analysis, permitting the detection of relatively low (ppm-ppb) abundances of Cl, Br and I in mg-sized samples. The samples include PGE-enriched chromite seams, various cumulates (e.g., peridotites), picrites (approximating the Rum parental magma), and pegmatites representing volatile-rich melts that circulated the intrusion at a late-stage in its solidification history. The new data reveal that PGE-bearing chromite seams contain relatively low Cl concentrations (2-3 ppm), with high molar ratios of Br/Cl and I/Cl (0.005 and 0.009, respectively). The picrites and cumulates have Br/Cl and I/Cl ratios close to sub-continental lithospheric mantle values of approximately 0.0013 and 0.00002, respectively, and thus likely reflect the Rum magma source region. A positive correlation between Cl and Br signifies comparable partitioning behaviour in all samples. However, I is more variable, displaying a positive correlation with Cl for more primitive samples (e.g. picrite and peridotite), and seemingly decoupling from Br and Cl in chromite seams and pegmatites. The relative enrichment of I over Cl in the chromite seams points

  6. The structure of the Okavango giant mafic dyke swarm in the Karoo magmatic province of North Botswana

    Science.gov (United States)

    Le Gall, B.; Tshoso, G.; Tiercelin, J. J.; Dyment, J.; Aubourg, C.; Feraud, G.; Jourdan, F.; Bertrand, H.

    2003-04-01

    Field structural measurements combined to magnetic dataset (including both aero- and ground magnetic records) allow a systematic investigation of the structure of the Okavango giant (2000 x 100 km) mafic dyke swarm in N Botswana. The results are discussed about a 55 km-long projected section lying perpendicular to the densest zone of the swarm and cutting through Proterozoic granito-gneissic host-rocks. A total dyke population of 423 (magnetic records) or 171 (field data) individual intrusions is identified and consists principally of basalts and dolerites. New high-precision dating (Jourdan et al., this congress) demonstrates the composite nature of the Okavango swarm that includes Karoo dykes (70%) and additional (30%) Proterozoic intrusions. The two dyke populations lie with a similar strike and show no discriminant petro-structural features in the field. These new results make it difficult 1) discriminating Karoo versus Proterozoic dyke groups within the total population derived from magnetics, and 2) defining their respective structural characteristics. About the Karoo dyke population (360 intrusions), field structural observations help to constrain the statistical analysis of some of its geometrical parameters, such as the strike (N110°E), dip (vertical), lenght (ca. 5 km), thickness (18-20 m), spacing, or direction of dyke opening. The dyke-induced crustal dilatation is estimated to 6-10% across the 55 km-long reference section. Structural observations also emphazise the control exerted by preexisting basement fabrics (brittle joints and dykes) on Karoo dyke emplacement. Synmagmatic deformation is restricted to wall-parallel tensile joint networks with no evidence for extensional faulting. The Karoo part of the Okavango giant dyke swam is inferred to have been emplaced under an unidirectional extensional stress field (N70°E). Furthermore, analyzing the anisotropy of magnetic susceptibility of a number of dykes (Tshoso et al., this congress) indicates an

  7. Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Ponte Nova alkaline mafic-ultramafic massif, SE Brazil

    Science.gov (United States)

    Azzone, Rogério Guitarrari; Montecinos Munoz, Patricio; Enrich, Gaston Eduardo Rojas; Alves, Adriana; Ruberti, Excelso; Gomes, Celsode Barros

    2016-09-01

    Crustal assimilation plus crystal fractionation processes of different basanite magma batches control the evolution of the Ponte Nova cretaceous alkaline mafic-ultramafic massif in SE Brazil. This massif is composed of several intrusions, the main ones with a cumulate character. Disequilibrium features in the early-crystallized phases (e.g., corrosion and sieve textures in cores of clinopyroxene crystals, spongy-cellular-textured plagioclase crystals, gulf corrosion texture in olivine crystals) and classical hybridization textures (e.g., blade biotite and acicular apatite crystals) provide strong evidence of open-system behavior. All samples are olivine- and nepheline-normative rocks with basic-ultrabasic and potassic characters and variable incompatible element enrichments. The wide ranges of whole-rock 87Sr/86Sri and 143Nd/144Ndi ratios (0.70432-0.70641 and 0.512216-0.512555, respectively) are indicative of crustal contribution from the Precambrian basement host rocks. Plagioclase and apatite 87Sr/86Sr ratios (0.70422-0.70927) obtained for the most primitive samples of each intrusion indicate disequilibrium conditions from early- to principal-crystallization stages. Isotope mixing-model curves between the least contaminated alkaline basic magma and heterogeneous local crustal components indicate that each intrusion of the massif is differentiated from the others by varied degrees of crustal contribution. The primary mechanisms of crustal contribution to the Ponte Nova massif involve the assimilation of host rock xenoliths during the development of the chamber environment and the assimilation of partial melts from the surrounding host rocks. Thermodynamic models using the melts algorithm indicate that parental alkaline basic magmas can be strongly affected by contamination processes subsequently to their initial stages of crystallization when there is sufficient energy to assimilate partial melts of crustal host rocks. The assimilation processes are considered to

  8. NMR study of hydrated calcium silicates; Etude par RMN de la structure des silicates de calcium hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Klur, I

    1996-02-26

    Radioactive wastes storage methods are developed by the CEA. As cements are important materials as well for hours living radioisotopes than for years living radioisotopes, a better knowledge of this material will allow to anticipate its behaviour and to obtain safer storage methods. The structure of calcium silicates (C-S-H) (main constituent of cements) have then been determined in this thesis by nuclear magnetic resonance. This method has allow to explain in structural terms, the different calcium rates that can be measured in the C-S-H too. (O.M.) 101 refs.

  9. Polymer-Layered Silicate Nanocomposites for Cryotank Applications

    Science.gov (United States)

    Miller, Sandi G.; Meador, Michael A.

    2007-01-01

    Previous composite cryotank designs have relied on the use of conventional composite materials to reduce microcracking and permeability. However, revolutionary advances in nanotechnology derived materials may enable the production of ultra-lightweight cryotanks with significantly enhanced durability and damage tolerance, as well as reduced propellant permeability. Layered silicate nanocomposites are especially attractive in cryogenic storage tanks based on results that have been reported for epoxy nanocomposite systems. These materials often exhibit an order of magnitude reduction in gas permeability when compared to the base resin. In addition, polymer-silicate nanocomposites have been shown to yield improved dimensional stability, strength, and toughness. The enhancement in material performance of these systems occurs without property trade-offs which are often observed in conventionally filled polymer composites. Research efforts at NASA Glenn Research Center have led to the development of epoxy-clay nanocomposites with 70% lower hydrogen permeability than the base epoxy resin. Filament wound carbon fiber reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate than the corresponding tanks made without clay. The pronounced reduction observed with the tank may be due to flow induced alignment of the clay layers during processing. Additionally, the nanocomposites showed CTE reductions of up to 30%, as well as a 100% increase in toughness.

  10. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  11. Ultrafast Carbon Dioxide Sorption Kinetics Using Lithium Silicate Nanowires.

    Science.gov (United States)

    Nambo, Apolo; He, Juan; Nguyen, Tu Quang; Atla, Veerendra; Druffel, Thad; Sunkara, Mahendra

    2017-06-14

    In this paper, the Li 4 SiO 4 nanowires (NWs) were shown to be promising for CO 2 capture with ultrafast kinetics. Specifically, the nanowire powders exhibited an uptake of 0.35 g g -1 of CO 2 at an ultrafast adsorption rate of 0.22 g g -1 min -1 at 650-700 °C. Lithium silicate (Li 4 SiO 4 ) nanowires and nanopowders were synthesized using a "solvo-plasma" technique involving plasma oxidation of silicon precursors mixed with lithium hydroxide. The kinetic parameter values (k) extracted from sorption kinetics obtained using NW powders are 1 order of magnitude higher than those previously reported for the Li 4 SiO 4 -CO 2 reaction system. The time scales for CO 2 sorption using nanowires are approximately 3 min and two orders magnitude faster compared to those obtained using lithium silicate powders with spherical morphologies and aggregates. Furthermore, Li 4 SiO 4 nanowire powders showed reversibility through sorption-desorption cycles indicating their suitability for CO 2 capture applications. All of the morphologies of Li 4 SiO 4 powders exhibited a double exponential behavior in the adsorption kinetics indicating two distinct time constants for kinetic and the mass transfer limited regimes.

  12. In vitro bioactivity of a tricalcium silicate cement

    Energy Technology Data Exchange (ETDEWEB)

    Morejon-Alonso, L.; Bareiro, O.; Santos, L.A. dos, E-mail: loreley.morejon@ufrgs.b [Universidade Federal do Rio Grande do Sul (UFRG), Porto Alegre, RS (Brazil). Escola de Engenharia. Dep. de Materiais; Carrodeguas R, Garcia [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio. Dept. de Ceramica

    2009-07-01

    Tricalcium silicate is the major constituent of Portland cement and the responsible for their mechanical strength at early stages. In order to be used as and additive of conventional calcium phosphate cement (CPC), in vitro bioactivity of a calcium silicate cement (CSC) after soaking in simulated body fluid (SBF) for 14 days was study. The cement was obtained by mixing Ca{sub 3}SiO{sub 5}, obtained by sol-gel process, and a Na{sub 2}HPO{sub 4} solution. The morphological and structural changes of the material before and after soaking were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed the formation of a layer of a Hydroxyapatite (HA) onto the CSC cement after soaking for 1h in SBF that became denser with the increase of soaking time. The study suggests that Ca{sub 3}SiO{sub 5} would be an effective additive to improve the bioactivity and long term strength of conventional CPC. (author)

  13. The structure of alkali silicate gel by total scattering methods

    KAUST Repository

    Benmore, C.J.

    2010-06-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  14. A study of redox kinetic in silicate melt

    International Nuclear Information System (INIS)

    Magnien, V.

    2005-12-01

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  15. The structure of alkali silicate gel by total scattering methods

    KAUST Repository

    Benmore, C.J.; Monteiro, Paulo J.M.

    2010-01-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO2. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi2O5:3H2O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested. © 2010.

  16. Formation mechanisms of colloidal silica via sodium silicate

    International Nuclear Information System (INIS)

    Tsai, M.-S.; Huang, P.Y.; Yang, C.-H.

    2006-01-01

    Colloidal silica is formed by titrating active silicic acid into a heated KOH with seed solution. The colloidal silica formation mechanisms are investigated by sampling the heated solution during titration. In the initial stage, the added seeds were dissolved. This might due to the dilution of seed concentration, the addition of potassium hydroxide (KOH) and the heating at 100 deg. C. Homogenous nucleation and surface growth occur simultaneously in the second stage of colloidal silica formation. Homogenous nucleation is more important when the seed concentration is relatively low. On the other hand, surface growth plays an important role when the seed concentration is increased. In the middle seed concentration, the seed particles grow up and some new small particles are born by the homogenous nucleation process to form a bimodal size distribution product. As the titrating volume of active silicic acid exceeds a specific value in the last stage the particle size increases rapidly and the particle number decreases, which may be caused by the aggregation of particles. The intervals between each stage were varied with the seed concentration. Increasing the seed concentration led to the formation of uniform particle size colloidal silica

  17. Anionic silicate organic frameworks constructed from hexacoordinate silicon centres

    Science.gov (United States)

    Roeser, Jérôme; Prill, Dragica; Bojdys, Michael J.; Fayon, Pierre; Trewin, Abbie; Fitch, Andrew N.; Schmidt, Martin U.; Thomas, Arne

    2017-10-01

    Crystalline frameworks composed of hexacoordinate silicon species have thus far only been observed in a few high pressure silicate phases. By implementing reversible Si-O chemistry for the crystallization of covalent organic frameworks, we demonstrate the simple one-pot synthesis of silicate organic frameworks based on octahedral dianionic SiO6 building units. Clear evidence of the hexacoordinate environment around the silicon atoms is given by 29Si nuclear magnetic resonance analysis. Characterization by high-resolution powder X-ray diffraction, density functional theory calculation and analysis of the pair-distribution function showed that those anionic frameworks—M2[Si(C16H10O4)1.5], where M = Li, Na, K and C16H10O4 is 9,10-dimethylanthracene-2,3,6,7-tetraolate—crystallize as two-dimensional hexagonal layers stabilized in a fully eclipsed stacking arrangement with pronounced disorder in the stacking direction. Permanent microporosity with high surface area (up to 1,276 m2 g-1) was evidenced by gas-sorption measurements. The negatively charged backbone balanced with extra-framework cations and the permanent microporosity are characteristics that are shared with zeolites.

  18. Laser ablation of silicate glasses doped with transuranic actinides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1998-01-01

    Direct sampling laser ablation plasma mass spectrometry (DS-LAMS) was applied to silica glasses doped with 237 Np, 242 Pu or 241 Am using a unique instrument recently installed into a transuranic glovebox. The primary goal was to assess the utility of mass spectrometry of directly ablated ions for facile evaluation of actinide (An) constituents of silicate glass immobilization matrices used for encapsulation of radionuclides. The instrument and general procedures have been described elsewhere. Three high-purity silicate glasses prepared by a sol-gel process (SG) and one conventional high-temperature (HT; melting point ∼ 1,450 C) borosilicate glass were studied. These glasses comprised the following constituents, with compositions expressed in mass percentages: Np-HT ∼ 30% SiO 2 + 6% B 2 O 3 + 3% BaO + 13% Al 2 O 3 + 10% PbO + 30% La 2 O 3 + 8% 237 NpO 2 ; Np-SG ∼ 70% SiO 2 + 30% 237 NpO 2 ; Pu-SG ∼ 70% SiO 2 + 30% 242 PuO 2 ; Am-SG ∼ 85% SiO 2 + 15% 241 AmO 2

  19. Development of alumino-silicate refractories in Ghana

    International Nuclear Information System (INIS)

    Kisiedu, A. K.; Tetteh, D.M.B.; Obiri, H. A.; Brenya, E. F.; Ayensu, A.

    2008-01-01

    Alumino-silicate (bauxite), andalusite, kaolin and clay were investigated for suitability in production of alumina, mullite and fireclay brick refractories. The raw materials were characterized by X-ray diffraction, differential thermal and silicate analyses. The x-ray diffraction analysis of alumina and mullite refractories fired at 1450 0 C, and fireclay bricks fired at 1350 0 C, indicated presence of corundum and alpha-alumina crystals. The values of thermal (fired) shrinkage, crushing, strength, porosity, water absorption and bulk density determined were 31.1%, 2.3 x 10 3 kg/m 3 , 4.86 x 10 6 N/m 2 and 13.2 % for mullite; 30.2%, 2.4 x 10 3 kg/m 3 , 3.20 x 10 6 N/m 2 and W = 12.8 % for alumina; and 25.2 %, 2.1 x 10 3 kg/m 3 , 2.61 x 10 6 N/m 2 and W = 11.8% for fireclay, respectively. Bauxite, andalusite and special kaolin were identified as potential raw materials for developing alumina and mullite refractories for construction of high temperature kilns and furnaces operating at 1350 0 C. The clay and kaolin minerals could be used to produce fireclay refractories for construction of incinerators operating at maximum temperatures of about 1000 0 C. The performance of the refractories was demonstrated by producing bricks to construct kilns and incinerators for the ceramic industry and hospitals. (au)

  20. Siliceous Shrubs in Yellowstone's Hot Springs: Implications for Exobiological Investigations

    Science.gov (United States)

    Guidry, S. A.; Chafetz, H. S.

    2003-01-01

    Potential relict hot springs have been identified on Mars and, using the Earth as an analog, Martian hot springs are postulated to be an optimal locality for recognizing preserved evidence of extraterrestrial life. Distinctive organic and inorganic biomarkers are necessary to recognize preserved evidence of life in terrestrial and extraterrestrial hot spring accumulations. Hot springs in Yellowstone National Park, Wyoming, U.S.A., contain a wealth of information about primitive microbial life and associated biosignatures that may be useful for future exobiological investigations. Numerous siliceous hot springs in Yellowstone contain abundant, centimeter-scale, spinose precipitates of opaline silica (opal-A). Although areally extensive in siliceous hot spring discharge channel facies, these spinose forms have largely escaped attention. These precipitates referred to as shrubs, consist of porous aggregates of spinose opaline silica that superficially resemble miniature woody plants, i.e., the term shrubs. Shrubs in carbonate precipitating systems have received considerable attention, and represent naturally occurring biotically induced precipitates. As such, shrubs have great potential as hot spring environmental indicators and, more importantly, proxies for pre-existing microbial life.

  1. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  2. 6Li-doped silicate glass for thermal neutron shielding

    International Nuclear Information System (INIS)

    Stone, C.A.; Blackburn, D.H.; Kauffman, D.A.; Cranmer, D.C.; Olmez, I.

    1994-01-01

    Glass formulations are described that contain high concentrations of 6 Li and are suitable for use as thermal neutron shielding. One formulation contained 31 mol% of 6 Li 2 O and 69 mol% of SiO 2 . Studies were performed on a second formulation that contained as much as 37 mol% of 6 Li 2 O and 59 mol% of SiO 2 , with 4 mol% Al 2 O 3 added to prevent crystallization at such high 6 Li 2 O concentrations. These lithium silicate glasses can be formed into a variety of shapes using conventional glass fabrication techniques. Examples include flat plates, disks, hollow cylinders, and other more complex geometries. Both in-beam and in-core experiments have been performed to study the use and durability of Li silicate glasses. In-core experiments show the glass can withstand the intense radiation fields near the core of a reactor. The neutron attenuation of the glasses used in these studies was 90%/mm. In-beam studies show that the glass is effective for reducing the gamma-ray and neutron fields near experiments. ((orig.))

  3. Genesis of the Permian Kemozibayi sulfide-bearing mafic-ultramafic intrusion in Altay, NW China: Evidence from zircon geochronology, Hf and O isotopes and mineral chemistry

    Science.gov (United States)

    Tang, Dongmei; Qin, Kezhang; Xue, Shengchao; Mao, Yajing; Evans, Noreen J.; Niu, Yanjie; Chen, Junlu

    2017-11-01

    The recently discovered Kemozibayi mafic-ultramafic intrusion and its associated magmatic Cu-Ni sulfide deposits are located at the southern margin of the Chinese Altai Mountain, Central Asian Orogenic Belt in north Xinjiang, NW China. The intrusion is composed of olivine websterite, norite, gabbro and diorite. Disseminated and net-textured Ni-Cu sulfide ores are hosted in the center of the gabbro. In this work, new zircon U-Pb ages, Hf-O isotopic and sulfide S isotopic data, and whole rock and mineral chemical analyses are combined in order to elucidate the characteristics of the mantle source, nature of subduction processes, degree of crustal contamination, geodynamic setting of bimodal magmatism in the region, and the metallogenic potential of economic Cu-Ni sulfide deposit at depth. SIMS zircon U-Pb dating of the gabbro yields Permian ages (278.3 ± 1.9 Ma), coeval with the Kalatongke Cu-Ni deposit and with Cu-Ni deposits in the Eastern Tianshan and Beishan areas. Several lines of evidence (positive εHf(t) from + 7.1 to + 13.3, Al2O3, TiO2 and SiO2 contents in clinopyroxene from olivine websterite, high whole rock TiO2 contents) suggest that the primary magma of the Kemozibayi intrusion was a calc-alkaline basaltic magma derived from depleted mantle, and that the degree of partial melting in the magma source was high. The evolution of the Kemozibayi mafic-ultramafic complex was strongly controlled by fractional crystallization and the crystallization sequence was olivine websterite, norite, and then gabbro. This is evidenced by whole rock Fe2O3 contents that are positively correlated with MgO and negatively correlated with Al2O3, CaO and Na2O, similar LREE enrichment and negative Nb, Ta, Hf anomalies in chondrite and primitive mantle-normalized patterns, and a decrease in total REE and trace elements contents and magnetite content from gabbro through to norite and olivine websterite. Varied and low εHf(t) (+ 7.1 to + 13.3) and high δ18O values (+ 6.4‰ to

  4. Interaction of dispersed polyvynil acetate with silicate in finishing materials

    Directory of Open Access Journals (Sweden)

    Runova, R. F.

    1996-12-01

    Full Text Available This article focuses on the processes of interaction between calcium silicate hydrates and dispersed polyvinyl acetate in tight films with the aim of developing compounds meant for restoration and finishing works. The basis of this development relies on the concept concerning the determining role of the crystal-chemical factor of the silicate phase in the formation of organic-mineral compounds of increased durability. The characteristics of dispersed calcium silicate hydrates are portrayed. The preparation conditions, accounting for the synthesis of the product of submicrocrystalline structure, conforming with the stoichiometry CaO∙SiO2 =0.8-2.0 have been determined. The interaction has been studied for compounds achieved by mixing ingredients in a rapid whirling mixer, and subjected to hardening at T=20+2 T. With the aid of XRD, DTA and Infra-Red Spectrometry methods the formation process of the sophisticated polymer silicate phase in the material was observed for a period of 90 days. The properties of the film were investigated and its high resistance against the influence of external factors was established. On this basis a conclusion concerning the quite high effectiveness of substituting portland cement with dispersed calcium silicate hydrate in polymer cement compounds has been made. White colour and other various special properties determine the suitability for repair and finishing works on facades of buildings.

    Este artículo está orientado a estudiar los procesos de interacción entre los silicatos cálcicos hidratados y el acetato de polivinilo disperso en capas impermeables, con el objeto de desarrollar compuestos destinados para la restauración. El fundamento de estos estudios es determinar el papel que los factores cristaloquímicos de las fases silicato tienen en la formación de compuestos órganominerales de elevada durabilidad. Se han descrito las características de los silicatos cálcicos hidratados

  5. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids

    Science.gov (United States)

    Feng, Jianyun; Xiao, Wenjiao; Windley, Brian; Han, Chunming; Wan, Bo; Zhang, Ji'en; Ao, Songjian; Zhang, Zhiyong; Lin, Lina

    2013-12-01

    The time of termination of orogenesis for the southern Altaids has been controversial. Systematic investigations of field geology, geochronology and geochemistry on newly discriminated mafic-ultramafic rocks from northern Alxa in the southern Altaids were conducted to address the termination problem. The mafic-ultramafic rocks are located in the Bijiertai, Honggueryulin, and Qinggele areas, stretching from west to east for about 100 km. All rocks occur high-grade gneisses as tectonic lenses that are composed of peridotite, pyroxenite, gabbro, and serpentinite, most of which have undergone pronounced alteration, i.e., serpentinization and chloritization. Geochemically, the rocks are characterized by uniform compositional trends, i.e., with low SiO2-contents (42.51-52.21 wt.%) and alkalinity (Na2O + K2O) (0.01-5.45 wt.%, mostly less than 0.8 wt.%), and enrichments in MgO (7.37-43.36 wt.%), with Mg# = 52.75-91.87. As the rocks have been strongly altered and have a wide range of loss-on-ignition (LOI: 0.44-14.07 wt.%) values, they may have been subjected to considerable alteration by either seawater or metamorphic fluids. The REE and trace element patterns show a relatively fractionated trend with LILE enrichment and HFSE depletion, similar to that of T-MORB between N-MORB and E-MORB, indicating that the parental melt resulted from the partial melting of oceanic lithospheric mantle overprinted by fluid alteration of island-arc origin. The ultramafic rocks are relics derived from the magma after a large degree of partial melting of oceanic lithospheric mantle with superposed island arc processes under the influence of mid-ocean-ridge magmatism. LA-ICP MS U-Pb zircon ages of gabbros from three spots are 274 ± 3 Ma (MSWD = 0.35), 306 ± 3 Ma (MSWD = 0.49), 262 ± 5 Ma (MSWD = 1.2), respectively, representing the formation ages of the mafic-ultramafic rocks. Therefore, considering other previously published data, we suggest that the mafic-ultramafic rocks were products of

  6. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs

    Science.gov (United States)

    Dai, S.; Wang, X.; Chen, W.; Li, D.; Chou, C.-L.; Zhou, Y.; Zhu, Chen; Li, H.; Zhu, Xudong; Xing, Y.; Zhang, W.; Zou, J.

    2010-01-01

    The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis.The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (Sp,d=8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids.Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO2/Al2O3 (1.13) but a higher Al2O3/Na2O (80.1) value and is significantly enriched in trace elements including Sc (13.5??g/g), V (121??g/g), Cr (33.6??g/g), Co (27.2??g/g), Ni (83.5??g/g), Cu (48.5??g/g), Ga (17.3??g/g), Y (68.3??g/g), Zr (444??g/g), Nb (23.8??g/g), and REE (392??g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO2/Al2O3 and Al2O3/Na2O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for incompatible elements and chondrite-normalized diagram for rare earth elements) of coal and tuff, indicated that

  7. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shifeng; Wang, Xibo; Chen, Wenmei [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, (China); Li, Dahua [Research Center of State Key Laboratory of Coal Resources and Safe Mining, Chongqing 400042, (China); Chou, Chen-Lin [Illinois State Geological Survey (Emeritus), 615 East Peabody Drive, Champaign, IL 61820, (United States); Zhou, Yiping [Yunnan Institute of Coal Geology Prospection, Kunming 650218, (China); Zhu, Changsheng; Li, Hang [Research Center of State Key Laboratory of Coal Resources and Safe Mining, Chongqing 400042, (China); Zhu, Xingwei; Xing, Yunwei; Zhang, Weiguo; Zou, Jianhua [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, (China)

    2010-09-01

    The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis. The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (S{sub p,d} 8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids. Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO{sub 2}/Al{sub 2}O{sub 3} (1.13) but a higher Al{sub 2}O{sub 3}/Na{sub 2}O (80.1) value and is significantly enriched in trace elements including Sc (13.5 {mu}g/g), V (121 {mu}g/g), Cr (33.6 {mu}g/g), Co (27.2 {mu}g/g), Ni (83.5 {mu}g/g), Cu (48.5 {mu}g/g), Ga (17.3 {mu}g/g), Y (68.3 {mu}g/g), Zr (444 {mu}g/g), Nb (23.8 {mu}g/g), and REE (392 {mu}g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO{sub 2}/Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/Na{sub 2}O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for

  8. A study of redox kinetic in silicate melt; Etude cinetique des reactions d'oxydoreduction dans les silicates

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V

    2005-12-15

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  9. A study of redox kinetic in silicate melt; Etude cinetique des reactions d'oxydoreduction dans les silicates

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V

    2005-12-15

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  10. [Isotope tracer studies of diffusion in silicates and of geological transport processes using actinide elements

    International Nuclear Information System (INIS)

    Wasserburg, G.J.

    1991-01-01

    This report consists of sections entitled resonance ionization mass spectrometry of Os, Mg self-diffusion in spinel and silicate melts, neotectonics: U-Th ages of solitary corals from the California coast, uranium-series evidence on diagenesis and hydrology of carbonates of Barbados, diffusion of H 2 O molecules in silicate glasses, and development of an extremely high abundance sensitivity mass spectrometer

  11. FT-IR and 29 Si-NMR for evaluating aluminium silicate precursors for geopolymers

    NARCIS (Netherlands)

    Valcke, S.L.A.; Pipilikaki, P.; Fischer, H.R.; Verkuijlen, M.H.W.; Eck, E.R.H.

    2014-01-01

    Geopolymers are systems of inorganic binders that can be used for sustainable, cementless concrete and are formed by alkali activation of an aluminium–silicate precursor (often secondary resources like fly ash or slag). The type of aluminium– silicate precursor and its potential variations within

  12. EFFECT OF SILICATE ON GRAM STAINING AND VIABILITY OF PNEUMOCOCCI AND OTHER BACTERIA

    Science.gov (United States)

    MacLeod, Colin M.; Roe, Amy S.

    1956-01-01

    Application of silicate solutions to living or heat-killed pneumococci and to certain "viridans" streptococci causes their conversion from a Gram-positive to a Gram-negative state. The original staining properties can be restored by suspending the silicate-treated bacteria in alkaline solutions of various salts but not by simple washing in water. Living pneumococci and the strains of streptococci whose staining properties are similarly affected are killed when suspended in silicate solutions. In other Gram-positive species silicate causes conversion to Gram negativity but restoration to positivity occurs upon washing in water. In a third group of Gram-positive organisms silicate has no effect on the Gram reaction. The viability of organisms in these two groups is unaffected by silicate under the conditions employed. No effect on staining or viability of Gram-negative bacteria has been observed. The effects of silicate on staining and viability are inhibited by nutrient broth or whole serum but not by purified serum albumin. Lecithin, choline, and other substituted ammonium compounds also inhibit the effects of silicate on pneumococci. PMID:13306854

  13. KINETICS OF A SILICATE COMPOSITION GELATION IN PRESENCE OF REACTION RATE REGULATING COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Olga Titova

    2013-12-01

    Full Text Available The influence of organic and inorganic additions on the formation rate of the silicate gels standard systems – sodium silicate solution in model fresh water was studied. As a result of the experiments were selected optimum concentrations of additives - gelation time regulators

  14. Impact of Micro Silica Surface Hydroxyl Groups on the Properties of Calcium Silicate Products

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Jørgensen, Bianca; Yu, Donghong

    2017-01-01

    Porous calcium silicates are widely used in insulating systems for high temperature applications. In the production of porous calcium silicates, quicklime and micro silica have been utilized as key raw materials. In the reaction between SiO2 and CaO, the dissolution of SiO2 has been proven...

  15. Controlled structure and properties of silicate nanoparticle networks for incorporation of biosystem components

    International Nuclear Information System (INIS)

    Sakai-Kato, Kumiko; Kawanishi, Toru; Hasegawa, Toshiaki; Takaoka, Akio; Kato, Masaru; Toyo'oka, Toshimasa; Utsunomiya-Tate, Naoko

    2011-01-01

    Inorganic nanoparticles are of technological interest in many fields. We created silicate nanoparticle hydrogels that effectively incorporated biomolecules that are unstable and involved in complicated reactions. The size of the silicate nanoparticles strongly affected both the physical characteristics of the resulting hydrogel and the activity of biomolecules incorporated within the hydrogel. We used high-resolution transmission electron microscopy (TEM) to analyze in detail the hydrogel network patterns formed by the silicate nanoparticles. We obtained clear nanostructured images of biomolecule-nanoparticle composite hydrogels. The TEM images also showed that larger silicate nanoparticles (22 nm) formed more loosely associated silicate networks than did smaller silicate nanoparticles (7 nm). The loosely associated networks formed from larger silicate nanoparticles might facilitate substrate diffusion through the network, thus promoting the observed increased activity of the entrapped biomolecules. This doubled the activity of the incorporated biosystems compared with that of biosystems prepared by our own previously reported method. We propose a reaction scheme to explain the formation of the silicate nanoparticle networks. The successful incorporation of biomolecules into the nanoparticle hydrogels, along with the high level of activity exhibited by the biomolecules required for complicated reaction within the gels, demonstrates the nanocomposites' potential for use in medical applications.

  16. Sodium Silicate Behavior in Porous Media Applied for In-Depth Profile Modifications

    Directory of Open Access Journals (Sweden)

    Hossein A. Akhlaghi Amiri

    2014-03-01

    Full Text Available This paper addresses alkaline sodium silicate (Na-silicate behavior in porous media. One of the advantages of the Na-silicate system is its water-like injectivity during the placement stage. Mixing Na-silicate with saline water results in metal silicate precipitation as well as immediate gelation. This work demonstrated that low salinity water (LSW, sea water diluted 25 times could be used as a pre-flush in flooding operations. A water override phenomenon was observed during gel formation which is caused by gravity segregation. Dynamic adsorption tests in the sand-packed tubes showed inconsiderable adsorbed silicon density (about 8.5 × 10−10 kg/cm3 for a solution with 33 mg/L silicon content, which is less than the estimated mono-layer adsorption density of 1.4 × 10−8 kg/cm3. Na-silicate enhanced water sweep efficiency after application in a dual-permeability sand-pack system, without leak off into the oil-bearing low permeability (LP zone. Field-scale numerical sensitivity studies in a layered reservoir demonstrated that higher permeability and viscosity contrasts and lower vertical/horizontal permeability ratio result in lower Na-silicate leakoff into the matrix. The length of the mixing zone between reservoir water and the injected Na-silicate solution, which is formed by low salinity pre-flush, acts as a buffer zone.

  17. LUMINESCENT PROPERTIES OF SILICATE GLASSES WITH CERIUM IONS AND ANTIMONY

    Directory of Open Access Journals (Sweden)

    A. M. Klykova

    2014-05-01

    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  18. Silicate reduces cadmium uptake into cells of wheat

    International Nuclear Information System (INIS)

    Greger, Maria; Kabir, Ahmad H.; Landberg, Tommy; Maity, Pooja J.; Lindberg, Sylvia

    2016-01-01

    Cadmium (Cd) is a health threat all over the world and high Cd content in wheat causes high Cd intake. Silicon (Si) decreases cadmium content in wheat grains and shoot. This work investigates whether and how silicate (Si) influences cadmium (Cd) uptake at the cellular level in wheat. Wheat seedlings were grown in the presence or absence of Si with or without Cd. Cadmium, Si, and iron (Fe) accumulation in roots and shoots was analysed. Leaf protoplasts from plants grown without Cd were investigated for Cd uptake in the presence or absence of Si using the fluorescent dye, Leadmium Green AM. Roots and shoots of plants subjected to all four treatments were investigated regarding the expression of genes involved in the Cd uptake across the plasma membrane (i.e. LCT1) and efflux of Cd into apoplasm or vacuole from the cytosol (i.e. HMA2). In addition, phytochelatin (PC) content and PC gene (PCS1) expression were analysed. Expression of iron and metal transporter genes (IRT1 and NRAMP1) were also analysed. Results indicated that Si reduced Cd accumulation in plants, especially in shoot. Si reduced Cd transport into the cytoplasm when Si was added both directly during the uptake measurements and to the growth medium. Silicate downregulated LCT1 and HMA2 and upregulated PCS1. In addition, Si enhanced PC formation when Cd was present. The IRT1 gene, which was downregulated by Cd was upregulated by Si in root and shoot facilitating Fe transport in wheat. NRAMP1 was similarly expressed, though the effect was limited to roots. This work is the first to show how Si influences Cd uptake on the cellular level. - Highlights: • Si decreases accumulation and translocation of Cd in plants at tissue level. • This work is the first to show how Si influences Cd uptake. • Si decreases Cd uptake into cell and downregulates heavy metal transporter LCT1. • Si downregulates HMA2 transporter, which regulates Cd transport from root to shoot. • Si increases phytochelatin formation

  19. The mitochondrial activation of silicate and its role in silicosis, black lung disease and lung cancer.

    Science.gov (United States)

    Hadler, H I; Cook, G L

    1979-01-01

    Silicate substitutes for phosphate in the transitory uncoupling of rat liver mitochondria induced by hydrazine when beta-hydroxy-butyrate is the substrate. Uncoupling is blocked by rutamycin. Just as in the case when phosphate is combined with hydrazine, ATP, ADP, PPi, and Mg++ protect against hydrazine when silicate is combined with hydrazine. A high level of ADP in the absence of added phosphate, but in the presence of silicate, induces a pseudo state three of the mitochondria. Silicate, like sulfate and arsenate which have been reported previously, is activated by the enzymes which mediate oxidative phosphorylation. These results serve to explain a role for silicate in silicosis, black lung disease, and cancer. In addition, since there is suggestive evidence in the literature that lung tissue solubilizes asbestos fibers, these results not only expand the confluence between oxidative phosphorylation and chemical carcinogenesis but are correlated with the synergistic carcinogenicity of asbestos and smoking observed by epidemiologists.

  20. SOFT X-RAY IRRADIATION OF SILICATES: IMPLICATIONS FOR DUST EVOLUTION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Ciaravella, A.; Cecchi-Pestellini, C.; Jiménez-Escobar, A. [INAF—Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy); Chen, Y.-J.; Huang, C.-H. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Muñoz Caro, G. M. [Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain); Venezia, A. M., E-mail: aciaravella@astropa.unipa.it [ISMN—CNR, Via Ugo La Malfa 153, I-90146 Palermo (Italy)

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol–gel technique. Its chemical composition reflects the Mg{sub 2}SiO{sub 4} stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

  1. Identification of an Extremely 180-Rich Presolar Silicate Grain in Acfer 094

    Science.gov (United States)

    Nguyen, A. N.; Messenger, S.

    2009-01-01

    Presolar silicate grains have been abundantly identified since their first discovery less than a decade ago [1,2,3]. The O isotopic compositions of both silicate and oxide stardust indicate the vast majority (>90%) condensed around Orich asymptotic giant branch (AGB) stars. Though both presolar phases have average sizes of 300 nm, grains larger than 1 m are extremely uncommon for presolar silicates. Thus, while numerous isotopic systems have been measured in presolar oxide grains [4], very few isotopic analyses for presolar silicates exist outside of O and Si [2,5]. And still, these measurements suffer from isotopic dilution with surrounding matrix material [6]. We conduct a search for presolar silicates in the primitive carbonaceous chondrite Acfer 094 and in some cases obtain high spatial resolution, high precision isotopic ratios.

  2. Effect of temperature on hydration kinetics and polymerization of tricalcium silicate in stirred suspensions of CaO-saturated solutions

    International Nuclear Information System (INIS)

    Grant, Steven A.; Boitnott, Ginger E.; Korhonen, Charles J.; Sletten, Ronald S.

    2006-01-01

    Tricalcium silicate was hydrated at 274, 278, 283, 298, and 313 K in stirred suspensions of saturated CaO solutions under a nitrogen-gas atmosphere until the end of deceleratory period. The suspension conductivities and energy flows were measured continuously. The individual reaction rates for tricalcium silicate dissolution, calcium silicate hydrate precipitation, and calcium hydroxide precipitation were calculated from these measurements. The results suggest that the proportion of tricalcium silicate dissolved was determined by the rate of tricalcium silicate dissolution and the time to very rapid calcium hydroxide precipitation. The time to very rapid calcium hydroxide precipitation was more sensitive to changes in temperature than was the rate of tricalcium silicate dissolution, so that the proportion of tricalcium silicate hydration dissolved by the deceleratory period increased with decreasing temperature. The average chain length of the calcium silicate hydrate ascertained by magic-angle spinning nuclear magnetic resonance spectroscopy increased with increasing temperature

  3. Role of organically modified layered silicate both as an active interfacial modifier and nanofiller for immiscible polymer blends.

    CSIR Research Space (South Africa)

    Ray, SS

    2007-05-01

    Full Text Available ) revealed efficient mixing of the polymers in the presence of organically modified layered silicate. X-ray diffraction (XRD) patterns and transmission electron microscopic (TEM) observations showed that silicate layers were either intercalated or exfoliated...

  4. TECHNOLOGY EVALUATION REPORT: SILICATE TECHNOLOGY CORPORATION - SOLIDIFICATION/STABILIZATION OF PCP AND INORGANIC CONTAMINANTS IN SOILS - SELMA, CA

    Science.gov (United States)

    This Technolgy Evaluation Report evaluates the solidification/stabilization process of Silicate Technology Corporation (STC) for the on-site treatment of contaminated soil The STC immobilization technology uses a proprietary product (FMS Silicate) to chemically stabilize and ...

  5. A major 2.1 Ga event of mafic magmatism in west Africa: An Early stage of crustal accretion

    Science.gov (United States)

    Abouchami, Wafa; Boher, Muriel; Michard, Annie; Albarede, Francis

    1990-10-01

    Birimian terranes from West Africa (Mauritania, Senegal, Ivory Coast, Burkina Faso, Niger) comprise two major units: a dominantly mafic bimodal volcanic unit and a volcano-detrital unit with mostly felsic to intermediate protolith. Stratigraphic relationships of these units are still a matter of debate but current work suggest that they both formed in a short time interval around 2.1 Ga. Widespread basaltic magmas from the bimodal unit have been analyzed for REE distributions and Sr-Nd isotopes. Three Sm-Nd isochrons on tholeiitic lavas were obtained at 2.229±0.042 Ga and initial ɛNd = 3.6±1.0 for Mauritania, 2.126±0.024 Ga and initial ɛNd = 2.9±0.7 for Burkina Faso, 2.063±0.041 Ga and initial ɛNd = 3.1± .0 for Eastern Senegal, data which compare with the age of 2.11±0.09 Ga and initial ɛNd = 2.1±1.8 obtained in Guyana by Gruau et al. (1985). Samples from other localities (Ivory Coast, Niger) give generally similar results. Although the variations of Sm/Nd ratios and the scatter of ɛNd(T) values from +1.2 to +4.3 preclude a single origin for these magmas, initial isotopic heterogeneities are unlikely to bias significantly the ages given by the isochrons which are in good agreement with U-Pb zircon ages (Boher et al., 1989; unpublished data, 1990). Presence of lavas with frequent pillow structures and sediments virtually free of older recycled components suggests that Birimian terranes formed in ocean basins far from continental influence. The isotopic heterogeneities are not consistent with a MORB-like mantle source. Most lavas are slightly depleted in LREE and inversion of the data through a melting model suggests 5-15 percent melting of a slightly depleted Iherzolite. Strong depletion (Burkina Faso) and slight enrichment (Senegal) are occasionally observed. With a noticeable trend of Ti enrichment with differentiation intermediate between that of MORB and IAT, the geochemical signature of Birimian basalts does not fit the best known geodynamic

  6. Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel.

    Science.gov (United States)

    Parker, Alexander S; Patel, Anisha N; Al Botros, Rehab; Snowden, Michael E; McKelvey, Kim; Unwin, Patrick R; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo

    2014-06-01

    To investigate the formation of hydroxyapatite (HAP) from calcium silicate and the deposition of calcium silicate onto sound and acid eroded enamel surfaces in order to investigate its repair and protective properties. Calcium silicate was mixed with phosphate buffer for seven days and the resulting solids analysed for crystalline phases by Raman spectroscopy. Deposition studies were conducted on bovine enamel surfaces. Acid etched regions were produced on the enamel surfaces using scanning electrochemical cell microscopy (SECCM) with acid filled pipettes and varying contact times. Following treatment with calcium silicate, the deposition was visualised with FE-SEM and etch pit volumes were measured by AFM. A second set of bovine enamel specimens were pre-treated with calcium silicate and fluoride, before acid exposure with the SECCM. The volumes of the resultant acid etched pits were measured using AFM and the intrinsic rate constant for calcium loss was calculated. Raman spectroscopy confirmed that HAP was formed from calcium silicate. Deposition studies demonstrated greater delivery of calcium silicate to acid eroded than sound enamel and that the volume of acid etched enamel pits was significantly reduced following one treatment (penamel was 0.092 ± 0.008 cm/s. This was significantly reduced, 0.056 ± 0.005 cm/s, for the calcium silicate treatments (penamel surfaces. Calcium silicate can provide significant protection of sound enamel from acid challenges. Calcium silicate is a material that has potential for a new approach to the repair of demineralised enamel and the protection of enamel from acid attacks, leading to significant dental hard tissue benefits. © 2014 Elsevier Ltd. All rights reserved.

  7. Structural relaxation dynamics and annealing effects of sodium silicate glass.

    Science.gov (United States)

    Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann

    2013-05-09

    Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.

  8. Tribological properties of silicate materials on nano and microscale

    International Nuclear Information System (INIS)

    Tordjeman, Ph.; Morel, N.; Ramonda, M.

    2009-01-01

    We studied the friction properties of four model silicate materials at the nanoscale and microscale. From nanotribology, we characterized the tribological properties at single asperity contact scale and from microtribology, we characterized the tribological properties at multi asperity contact scale. First, for each material we measured chemical composition by XPS, Young's modulus by acoustical microscopy and roughness σ by atomic force microscopy (AFM). Second, we measured the nanofriction coefficients with an AFM and the microfriction coefficients with a ball probe tribometer, for three hardnesses of the ball probe. We identified one friction mechanism at the nanoscale (sliding friction) and two friction mechanisms at the microscale (sliding friction and yielding friction). Comparison of the nano and microfriction coefficients at the same sliding friction regime shown, that the tribological properties of these materials didn't depend on roughness.

  9. Inheritance of silicate differentiation during lunar origin by giant impact

    Science.gov (United States)

    Warren, Paul H.

    1992-01-01

    It is pointed out that the implication of the popular giant impact model of lunar origin (e.g., Hartmann and Davis, 1975; Cameron and Ward, 1976; Stevenson, 1987) is that any depth-related silicate differentiation within the impactor (and/or the earth) at the time of the impact must be partly inherited by the preferentially peripheral matter that forms the moon. This paper presents calculations of the magnitude of the net differentiation of the protolunar matter for a variety of elements and scenarios, with different assumptions regarding the geometries of the 'sampled' peripheral zones, the relative proportions of the earth-derived to impactor-derived matter in the final moon, and the degree to which the impactor mantle had crystallized prior to the giant impact. It is shown that these differention effects constrain the overall plausibility of the giant impact hypothesis.

  10. Discrete element modeling of calcium-silicate-hydrate

    International Nuclear Information System (INIS)

    Chandler, Mei Qiang; Peters, John F; Pelessone, Daniele

    2013-01-01

    The discrete element method (DEM) was used to model calcium-silicate-hydrate (C-S-H) at the nanoscale. The C-S-H nanoparticles were modeled as spherical particles with diameters of approximately 5 nm. Interparticle forces included traditional mechanical contact forces, van der Waals forces and ionic correlation forces due to negatively charged C-S-H nanoparticles and ion species in the nanopores. Previous work by the authors demonstrated the DEM method was feasible in studying the properties of the C-S-H nanostructures. In this work, the simulations were performed to look into the effects of nanoparticle packing, nanoparticle morphology, interparticle forces and nanoparticle properties on the deformation mechanisms and mechanical properties of the C-S-H matrix. This work will provide insights into possible ways to improve the properties of the C-S-H matrix. (paper)

  11. Beneficiation studies of an uranium siliceous - phosphate ore

    International Nuclear Information System (INIS)

    Bruno, J.B.; Santos, A.T.; Santos Benedetto, J. dos

    1980-01-01

    The consolidation of the beneficiation studies of a low-grade uranium siliceous - phosphate ore (11% P 2 O 5 ) from Itataia region in the Northeast of Brazil, owned by Empresas Nucleares Brasileiras S.A. - NUCLEBRAS, are presented. Laboratory studies using froth flotation technique and applying statistical methods for data evaluation were made. Pilot plant tests in a 120 Kg/h scale were conducted as a consequence of the bench scale tests. The developed process using tall-oil as collector and starch as depressant gave a total yield of 80% for the P 2 O 5 and 71% the U 3 O 8 , for a 33% P 2 O 5 phosphate concentrate. (Author) [pt

  12. COMPACTION OF LITHIUM-SILICATE CERAMICS USING SPARK PLASMA SINTERING

    Directory of Open Access Journals (Sweden)

    Tomas Frantisek Kubatik

    2016-12-01

    Full Text Available This paper deals with the compaction of ceramics based on lithium-silicate by spark plasma sintering (SPS. The initial powder was prepared by calcination in a resistance furnace at a temperature of 1300 °C with the ratio of Li/Si = 1. Compacting by SPS was carried out at temperatures of 800 - 1000 °C with a maximum pressure of 80 MPa. Samples with open porosity of less than 1 % were prepared at the temperature of 1000 °C. According to the quantitative Rietveld refinement of x-ray diffraction data, the dominant phases in all samples were Li₂Si₂O₅ and Li₂SiO₃, together representing over 80 wt. % of the sintered material.

  13. Calcium silicate-based cements: composition, properties, and clinical applications.

    Science.gov (United States)

    Dawood, Alaa E; Parashos, Peter; Wong, Rebecca H K; Reynolds, Eric C; Manton, David J

    2017-05-01

    Mineral trioxide aggregate (MTA) is a calcium silicate-based cement (CSC) commonly used in endodontic procedures involving pulpal regeneration and hard tissue repair, such as pulp capping, pulpotomy, apexogenesis, apexification, perforation repair, and root-end filling. Despite the superior laboratory and clinical performance of MTA in comparison with previous endodontic repair cements, such as Ca(OH) 2 , MTA has poor handling properties and a long setting time. New CSC have been commercially launched and marketed to overcome the limitations of MTA. The aim of the present review was to explore the available literature on new CSC products, and to give evidence-based recommendations for the clinical use of these materials. Within the limitations of the available data in the literature regarding the properties and performance of the new CSC, the newer products could be promising alternatives to MTA; however, further research is required to support this assumption. © 2015 Wiley Publishing Asia Pty Ltd.

  14. High-dose dosimetry using natural silicate minerals

    International Nuclear Information System (INIS)

    Carmo, Lucas S. do; Mendes, Leticia; Watanabe, Shigueo; Rao, Gundu; Lucas, Natasha; Sato, Karina; Barbosa, Renata F.

    2015-01-01

    In the present study, certain natural silicate minerals such as aquamarine (AB), morganite (PB), goshenite (WB), white jadeite (JW), green jadeite (JG), pink tourmaline (PT) and two varieties of jadeite-like quartz, denoted here by JQ1 and JQ2, were investigated using the thermoluminescence technique to evaluate their potential for use as very-high- and high-dose dosimeters. These minerals respond to high doses of γ-rays of up to 1000 kGy and often to very high doses of up to 3000 kGy. The TL response of these minerals may be considered to be satisfactory for applications in high-dose dosimetry. Investigations of electron paramagnetic resonance and optically stimulated luminescence dosimetry are in progress. (author)

  15. Predicting the dissolution kinetics of silicate glasses using machine learning

    Science.gov (United States)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  16. Determination of phosphorus in silicate rocks by activation analysis

    International Nuclear Information System (INIS)

    Khalil, S.O.

    1974-01-01

    A neutron activation method for the determination of phosphorus from ammonium phosphomolibdate precipitate is applied to silicate rocks. Ammonium phosphate is added as carrier to the irradiated rock powder and the phosphorus is recovered as ammonium phosphomolibdate, which is precipitated several times in the presence of appropriate holdback carriers to ensure its radiochemical purity and then finally dissolved and reprecipitated as AgTlPO 4 for weighing and counting. The samples were irradiated for 3 1/2 days in a thermal flux of 2.10 10 n.s -1 .cm -2 and the β-activities were measured by an end-window Geiger-Mueller counter. The results for rock standards granite G-1 and diabase W-1 are given. (K.A.)

  17. Calorimetric signature of structural heterogeneity in a ternary silicate glass

    DEFF Research Database (Denmark)

    Zhang, Yanfei; Yang, G.; Yue, Yuanzheng

    2013-01-01

    We investigate the structural heterogeneity in a silicate glass by hyperquenching–annealing–calorimetry approach. The results show a striking phenomenon: two separated sub-Tg relaxation peaks appear on the calorimetric curve of the hyperquenched CaO–MgO–SiO2 glass, implying the existence of two...... distinct structural domains of higher and lower potential energies, respectively. The higher energy domains in nanoscale are so unstable that they become ordered during hyperquenching. This is verified by the high-resolution transmission electron microscopy image exhibiting nanoordered domains in the glass...... matrix. The higher energy domains relax similar to a strong glass phase, whereas the lower energy domains do similar to a fragile one....

  18. About Fundamental Problems of Hydrosphere and Silicate Karst

    Directory of Open Access Journals (Sweden)

    A. Ya. Gayev

    2017-09-01

    Full Text Available Rationale of hydrosphere model with two regions of supply and discharge reveals regularities of ground water formation reflecting the special features of system water – rock – gas – living material and character of interaction of hydrosphere with the other spheres of the Earth. It is necessary to concentrate the development of endogenous hy-drogeology fundamentals with the study of silicate karst on investigation of “white and black smokers”, the structure and isotope composition of water in different phase condi-tions, and on modeling of situation in hydrometagenese zone. It will support the development of geotechnology and providing the humanity with mineral and energetic resources in future.

  19. High-dose dosimetry using natural silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Lucas S. do; Mendes, Leticia, E-mail: isatiro@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Watanabe, Shigueo; Rao, Gundu; Lucas, Natasha; Sato, Karina, E-mail: lacifid@if.usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica. Departamento de Fisica Nuclear; Barbosa, Renata F., E-mail: profcelta@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), Santos, SP (Brazil). Departamento de Ciencias do Mar

    2015-07-01

    In the present study, certain natural silicate minerals such as aquamarine (AB), morganite (PB), goshenite (WB), white jadeite (JW), green jadeite (JG), pink tourmaline (PT) and two varieties of jadeite-like quartz, denoted here by JQ1 and JQ2, were investigated using the thermoluminescence technique to evaluate their potential for use as very-high- and high-dose dosimeters. These minerals respond to high doses of γ-rays of up to 1000 kGy and often to very high doses of up to 3000 kGy. The TL response of these minerals may be considered to be satisfactory for applications in high-dose dosimetry. Investigations of electron paramagnetic resonance and optically stimulated luminescence dosimetry are in progress. (author)

  20. The role of silicate surfaces on calcite precipitation kinetics

    DEFF Research Database (Denmark)

    Stockmann, Gabrielle J.; Wolff-Boenisch, Domenik; Bovet, Nicolas Emile

    2014-01-01

    The aim of this study is to illuminate how calcite precipitation depends on the identity and structure of the growth substrate. Calcite was precipitated at 25°C from supersaturated aqueous solutions in the presence of seeds of either calcite or one of six silicate materials: augite, enstatite......, labradorite, olivine, basaltic glass and peridotite rock. Calcite saturation was achieved by mixing a CaCl2-rich aqueous solution with a NaHCO3-Na2CO3 aqueous buffer in mixed-flow reactors containing 0.5-2g of mineral, rock, or glass seeds. This led to an inlet fluid calcite saturation index of 0.6 and a p...

  1. Formation of siliceous sediments in brandy after diatomite filtration.

    Science.gov (United States)

    Gómez, J; Gil, M L A; de la Rosa-Fox, N; Alguacil, M

    2015-03-01

    Brandy is quite a stable spirit but sometimes light sediment appears. This sediment was separated and analysed by IR and SEM-EDX. It was revealed that the sediment is composed mostly of silica and residual organic matter. Silica was present as an amorphous phase and as microparticles. In an attempt to reproduce the formation of the sediment, a diatomite extract was prepared with an ethanol/water mixture (36% vol.) and a calcined diatomite similar to that used in brandy filtration. This extract was added to unfiltered brandy in different amounts. After 1 month, the Si concentration decreased in all samples and sediments with similar compositions and features to those found in the unstable brandy appeared. The amounts of sediment obtained were directly related to the decrease in Si concentration in solution. Consequently, it can be concluded that siliceous sediment in brandy originates from Si released during diatomite filtration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. High-performance polymer/layered silicate nanocomposites

    Science.gov (United States)

    Heidecker, Matthew J.

    High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the

  3. Ferroan Dolomitization by Seawater Interaction with Mafic Igneous Dikes and Carbonate Host Rock at the Latemar Platform, Dolomites, Italy: Numerical Modeling of Spatial, Temporal, and Temperature Data

    Directory of Open Access Journals (Sweden)

    K. Blomme

    2017-01-01

    Full Text Available Numerous publications address the petrogenesis of the partially dolomitized Latemar carbonate platform, Italy. A common factor is interpretation of geochemical data in terms of heating via regional igneous activity that provided kinetically favorable conditions for replacement dolomitization. New field, petrographic, XRD, and geochemical data demonstrate a spatial, temporal, and geochemical link between replacement dolomite and local mafic igneous dikes that pervasively intrude the platform. Dikes are dominated by strongly altered plagioclase and clinopyroxene. Significantly, where ferroan dolomite is present, it borders dikes. We hypothesize that seawater interacted with mafic minerals, causing Fe enrichment in the fluid that subsequently participated in dolomitization. This hypothesis was tested numerically through thermodynamic (MELTS, Arxim-GEM and reactive flow (Arxim-LMA simulations. Results confirm that seawater becomes Fe-enriched during interaction with clinopyroxene (diopside-hedenbergite and plagioclase (anorthite-albite-orthoclase solid solutions. Reaction of modified seawater with limestone causes ferroan and nonferroan replacement dolomitization. Dolomite quantities are strongly influenced by temperature. At 40 to 80°C, ferroan dolomite proportions decrease with increasing temperature, indicating that Latemar dolomitization likely occurred at lower temperatures. This relationship between igneous dikes and dolomitization may have general significance due to the widespread association of carbonates with rifting-related igneous environments.

  4. Hydration behaviors of calcium silicate-based biomaterials.

    Science.gov (United States)

    Lee, Yuan-Ling; Wang, Wen-Hsi; Lin, Feng-Huie; Lin, Chun-Pin

    2017-06-01

    Calcium silicate (CS)-based biomaterials, such as mineral trioxide aggregate (MTA), have become the most popular and convincing material used in restorative endodontic treatments. However, the commercially available CS-based biomaterials all contain different minor additives, which may affect their hydration behaviors and material properties. The purpose of this study was to evaluate the hydration behavior of CS-based biomaterials with/without minor additives. A novel CS-based biomaterial with a simplified composition, without mineral oxides as minor additives, was produced. The characteristics of this biomaterial during hydration were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The hydration behaviors of commercially available gray and white MTAs with mineral oxide as minor additives were also evaluated for reference. For all three test materials, the XRD analysis revealed similar diffraction patterns after hydration, but MTAs presented a significant decrease in the intensities of Bi 2 O 3 -related peaks. SEM results demonstrated similar porous microstructures with some hexagonal and facetted crystals on the outer surfaces. In addition, compared to CS with a simplified composition, the FTIR plot indicated that hydrated MTAs with mineral oxides were better for the polymerization of calcium silicate hydrate (CSH), presenting Si-O band shifting to higher wave numbers, and contained more water crystals within CSH, presenting sharper bands for O-H bending. Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level. Copyright © 2016. Published by Elsevier B.V.

  5. Modified tricalcium silicate cement formulations with added zirconium oxide.

    Science.gov (United States)

    Li, Xin; Yoshihara, Kumiko; De Munck, Jan; Cokic, Stevan; Pongprueksa, Pong; Putzeys, Eveline; Pedano, Mariano; Chen, Zhi; Van Landuyt, Kirsten; Van Meerbeek, Bart

    2017-04-01

    This study aims to investigate the effect of modifying tricalcium silicate (TCS) cements on three key properties by adding ZrO 2 . TCS powders were prepared by adding ZrO 2 at six different concentrations. The powders were mixed with 1 M CaCl 2 solution at a 3:1 weight ratio. Biodentine (contains 5 wt.% ZrO 2 ) served as control. To evaluate the potential effect on mechanical properties, the mini-fracture toughness (mini-FT) was measured. Regarding bioactivity, Ca release was assessed using ICP-AES. The component distribution within the cement matrix was evaluated by Feg-SEM/EPMA. Cytotoxicity was assessed using an XTT assay. Adding ZrO 2 to TCS did not alter the mini-FT (p = 0.52), which remained in range of that of Biodentine (p = 0.31). Ca release from TSC cements was slightly lower than that from Biodentine at 1 day (p > 0.05). After 1 week, Ca release from TCS 30 and TCS 50 increased to a level that was significantly higher than that from Biodentine (p  0.05). EPMA revealed a more even distribution of ZrO 2 within the TCS cements. Particles with an un-reacted core were surrounded by a hydration zone. The 24-, 48-, and 72-h extracts of TCS 50 were the least cytotoxic. ZrO 2 can be added to TCS without affecting the mini-FT; Ca release was reduced initially, to reach a prolonged release thereafter; adding ZrO 2 made TCS cements more biocompatible. TCS 50 is a promising cement formulation to serve as a biocompatible hydraulic calcium silicate cement.

  6. Trace element analysis of silicate rocks by XRF. Pt. 2

    International Nuclear Information System (INIS)

    Orihashi, Yuji; Yuhara, Masaki; Kagami, Hiroo; Honma, Hiroji

    1993-01-01

    Quantitative X-ray fluorescence analysis of six trace elements (Ce, Ba, Ga, Co, Cr, V) in silicate rocks has been investigated, using pressed powder pellets. Ga analysis was performed using a Cr tube, whereas a Au tube was used for the remaining five elements. Corrections were made for the interference of BaKα on CeKα, FeKβ on CoKα, CrKα on VKβ and VKα on TiKβ. Mass absorption functions were estimated from background intensities at 2θ=35.5deg and that of FeKα at wavelengths longer than the iron absorption edge for a Au tube, and from the value of net intensity/background one for a Cr tube. Calibration lines were constructed using twenty-four U.S. Geological Survey and Geological Survey of Japan igneous rock reference samples. For each line, the correction coefficient is greater than 0.993 except for Ga and Ce (>0.985), indicating that the correction and calibration procedures are appropriate for accurate analysis over a wide compositional range. Analytical results for igneous, sedimentary and metamorphic reference samples (U. S. Geological Survey, Institute of Geophysical and Geochemical Exploration, South-African Bureau of Standards) accord well with recommended or proposed values, respectively. The results of this study and those of Orihashi et al. (1993) show Ce, Ba, Nb, Zr, Y, Sr, Rb, Th, Ga, Zn, Cu, Ni, Co, Cr and V in silicate rocks can be quantitatively determined by XRF at ISEI. (author)

  7. Formation of Silicate and Titanium Clouds on Hot Jupiters

    Science.gov (United States)

    Powell, Diana; Zhang, Xi; Gao, Peter; Parmentier, Vivien

    2018-06-01

    We present the first application of a bin-scheme microphysical and vertical transport model to determine the size distribution of titanium and silicate cloud particles in the atmospheres of hot Jupiters. We predict particle size distributions from first principles for a grid of planets at four representative equatorial longitudes, and investigate how observed cloud properties depend on the atmospheric thermal structure and vertical mixing. The predicted size distributions are frequently bimodal and irregular in shape. There is a negative correlation between the total cloud mass and equilibrium temperature as well as a positive correlation between the total cloud mass and atmospheric mixing. The cloud properties on the east and west limbs show distinct differences that increase with increasing equilibrium temperature. Cloud opacities are roughly constant across a broad wavelength range, with the exception of features in the mid-infrared. Forward-scattering is found to be important across the same wavelength range. Using the fully resolved size distribution of cloud particles as opposed to a mean particle size has a distinct impact on the resultant cloud opacities. The particle size that contributes the most to the cloud opacity depends strongly on the cloud particle size distribution. We predict that it is unlikely that silicate or titanium clouds are responsible for the optical Rayleigh scattering slope seen in many hot Jupiters. We suggest that cloud opacities in emission may serve as sensitive tracers of the thermal state of a planet’s deep interior through the existence or lack of a cold trap in the deep atmosphere.

  8. Evaluation of apatite silicates as solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)

    2010-05-01

    Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)

  9. Calcium isotope fractionation in a silicate dominated Cenozoic aquifer system

    Science.gov (United States)

    Li, Junxia; DePaolo, Donald J.; Wang, Yanxin; Xie, Xianjun

    2018-04-01

    To understand the characteristics of Ca isotope composition and fractionation in silicate-dominated Quaternary aquifer system, hydrochemical and isotope studies (87Sr/86Sr, 13CDIC and 44/40Ca) were conducted on groundwater, sediment and rock samples from the Datong basin, China. Along the groundwater flow path from the basin margin to the center, groundwater hydrochemical type evolves from Ca-HCO3 to Na-HCO3/Na-Cl type, which results from aluminosilicate hydrolysis, vertical mixing, cation exchange between CaX2 and NaX, and calcite/dolomite precipitation. These processes cause the decrease in groundwater Ca concentration and the associated modest fractionation of groundwater Ca isotopes along the flowpath. The groundwater δ44/40Ca value varies from -0.11 to 0.49‰. The elevated δ44/40Ca ratios in shallow groundwater are attributed to vertical mixing involving addition of irrigation water, which had the average δ44/40Ca ratio of 0.595‰. Chemical weathering of silicate minerals and carbonate generates depleted δ44/40Ca signatures in groundwater from Heng Mountain (east area) and Huanghua Uplift (west area), respectively. Along the groundwater flow path from Heng Mountain to central area of east area, cation exchange between CaX2 and NaX on clay mineral results in the enrichment of heavier Ca isotope in groundwater. All groundwater samples are oversaturated with respect to calcite and dolomite. The groundwater environment rich in organic matter promotes the precipitation of carbonate minerals via the biodegradation of organic carbon, thereby further promoting the elevation of groundwater δ44/40Ca ratios.

  10. A-thermal elastic behavior of silicate glasses.

    Science.gov (United States)

    Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique

    2016-02-24

    Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm(-1) in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si(4+) ions by Al(3+) and Na(+) ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.

  11. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    Science.gov (United States)

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

    2014-04-01

    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. © 2013 Wiley Periodicals, Inc.

  12. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    International Nuclear Information System (INIS)

    Wurth, R.; Pascual, M.J.; Mather, G.C.; Pablos-Martín, A.; Muñoz, F.; Durán, A.; Cuello, G.J.; Rüssel, C.

    2012-01-01

    A base glass of composition 3.5 Li 2 O∙0.15 Na 2 O∙0.2 K 2 O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al 2 O 3 ∙67.2 SiO 2 ∙2.6 TiO 2 ∙1.7 ZrO 2 ∙1.2 As 2 O 3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi 2 O 6 with nanoscaled crystals forms at 750 °C. Quantitative Rietveld refinement of samples annealed at 750 °C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2 × 2 × 2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 ± 20 kJ mol −1 . - Highlights: ► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2 × 2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.

  13. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    Science.gov (United States)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence

  14. On the Relation of Silicates and SiO Maser in Evolved Stars

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiaming; Jiang, Biwei, E-mail: bjiang@bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2017-04-01

    The SiO molecule is one of the candidates for the seed of silicate dust in the circumstellar envelope of evolved stars, but this opinion is challenged. In this work we investigate the relation of the SiO maser emission power and the silicate dust emission power. With both our own observation by using the PMO/Delingha 13.7 m telescope and archive data, a sample is assembled of 21 SiO v  = 1, J  = 2 − 1 sources and 28 SiO v  = 1, J  = 1 − 0 sources that exhibit silicate emission features in the ISO /SWS spectrum as well. The analysis of their SiO maser and silicate emission power indicates a clear correlation, which is not against the hypothesis that the SiO molecules are the seed nuclei of silicate dust. On the other hand, no correlation is found between SiO maser and silicate crystallinity, which may imply that silicate crystallinity does not correlate with mass-loss rate.

  15. Valence determination of rare earth elements in lanthanide silicates by L 3-XANES spectroscopy

    International Nuclear Information System (INIS)

    Kravtsova, Antonina N; Guda, Alexander A; Soldatov, Alexander V; Goettlicher, Joerg; Taroev, Vladimir K; Suvorova, Lyudmila F; Tauson, Vladimir L; Kashaev, Anvar A

    2016-01-01

    Lanthanide silicates have been hydrothermally synthesized using Cu and Ni containers. Chemical formulae of the synthesized compounds correspond to K 3 Eu[Si 6 O 15 ] 2H 2 O, HK 6 Eu[Si 10 O 25 ], K 7 Sm 3 [Si 12 O 32 ], K 2 Sm[AlSi 4 O 12 ] 0.375H 2 O, K 4 Yb 2 [Si 8 O 21 ], K 4 Ce 2 [Al 2 Si 8 O 24 ]. The oxidation state of lanthanides (Eu, Ce, Tb, Sm, Yb) in these silicates has been determined using XANES spectroscopy at the Eu, Ce, Tb, Sm, Yb, L 3 - edges. The experimental XANES spectra were recorded using the synchrotron radiation source ANKA (Karlsruhe Institute of Technology) and the X-ray laboratory spectrometer Rigaku R- XAS. By comparing the absorption edge energies and white line intensities of the silicates with the ones of reference spectra the oxidation state of lanthanides Eu, Ce, Tb, Sm, Yb has been found to be equal to +3 in all investigated silicates except of the Ce-containing silicate from the run in Cu container where the cerium oxidation state ranges from +3 (Ce in silicate apatite and in a KCe silicate with Si 12 O 32 layers) to +4 (starting CeO 2 or oxidized Ce 2 O 3 ). (paper)

  16. Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill − Part 1

    Directory of Open Access Journals (Sweden)

    M. Kermani

    2015-06-01

    Full Text Available In this paper, the mechanical properties of sodium silicate-fortified backfill, called Gelfill, were investigated by conducting a series of laboratory experiments. Two configurations were tested, i.e. Gelfill and cemented hydraulic fill (CHF. The Gelfill has an alkali activator such as sodium silicate in its materials in addition to primary materials of mine backfill which are tailings, water and binders. Large numbers of samples of Gelfill and CHF with various mixture designs were cast and cured for over 28 d. The mechanical properties of samples were investigated using uniaxial compression test, and the results were compared with those of reference samples made without sodium silicate. The test results indicated that the addition of an appropriate amount of an alkali activator such as sodium silicate can enhance the mechanical (uniaxial compressive strength and physical (water retention properties of backfill. The microstructure analysis conducted by mercury intrusion porosimetry (MIP revealed that the addition of sodium silicate can modify the pore size distribution and total porosity of Gelfill, which can contribute to the better mechanical properties of Gelfill. It was also shown that the time and rate of drainage in the Gelfill specimens are less than those in CHF specimens made without sodium silicate. Finally, the study showed that the addition of sodium silicate can reduce the required setting time of mine backfill, which can contribute to increase mine production in accordance with the mine safety.

  17. Synthesis and characterization of silica gel from siliceous sands of southern Tunisia

    Directory of Open Access Journals (Sweden)

    Ali Sdiri

    2014-09-01

    Full Text Available The present work aimed to achieve valorization of Albian sands for the preparation of sodium silicates that are commonly used as a precursor to prepare silica gel. A siliceous sand sample was mixed with sodium carbonate and heated at a high temperature (1060 °C to prepare sodium silicates. The sodium silicates were dissolved in distilled water to obtain high quality sodium silicate solution. Hydrochloric acid was then slowly added to the hydrated sodium silicates to obtain silica gel. The collected raw siliceous sands, as well as the prepared silica gels, were characterized by different techniques, such as X-ray fluorescence (XRF, X-ray diffraction (XRD, scanning electron microscopy (SEM and thermal analysis (DSC. XRF confirmed that the detrital sand deposits of southern Tunisia contain high amounts of silica, with content ranging from 88.8% to 97.5%. The internal porosity varied between 17% and 22%, and the specific surface area was less than 5 m2/g. After the treatment described above, it was observed that the porosity of the obtained silica gel reached 57% and the specific surface area exceeded 340 m2/g. Nitrogen adsorption isotherms showed that the prepared silica gels are microporous and mesoporous materials with high adsorption capacities. These results suggest that the obtained silica gels are promising materials for numerous environmental applications.

  18. Evolution of silicate dust in interstellar, circumstellar and cometary environments: the role of irradiation and temperature

    International Nuclear Information System (INIS)

    Davoisne, Carine

    2006-01-01

    Due to the development of observational and analytical tools, our knowledge of the silicate dust has considerably increased these last years. Dust is formed around evolved stars and injected in the interstellar medium (ISM) in which it travels. Dust is then incorporated in the proto-planetary disks around young stars. During its life cycle, the silicate dust is subjected by numerous processes. The aim of this PhD work is firstly to study the chemical and morphological modifications of silicate dust in supernovae shock waves then to indicate its evolution when it is incorporated around young stars. We have developed low energy ion irradiations in situ in a photoelectron spectrometer (XPS). The chemical and morphological changes have been measured respectively by XPS and atomic force microscopy. We have also carried out thermal annealing under controlled atmosphere of amorphous silicates. The structural and chemical modifications have been observed by analytical transmission electron microscopy. We have shown that ion irradiation induces chemical and morphological changes in silicate. In the ISM, supernovae shock waves are thus a major process which could affect the silicate dust evolution. The microstructure obtained after thermal annealing strongly depends on oxygen fugacity. They often offer a good comparison with those observed in primitive materials present in our solar system. The recrystallization of amorphous interstellar precursors in the inner accretion disk is thus an efficient process to form crystalline silicates which are furthermore incorporated in small parent bodies (asteroids or comets). (author) [fr

  19. Trace element characteristics of mafic and ultramafic meta-igneous rocks from the 3.5 Ga. Warrawoona group: evidence for plume-lithosphere interaction beneath Archaean continental crust

    International Nuclear Information System (INIS)

    Bolhar, R.; Hergt, J.; Woodhead, J.

    1999-01-01

    compositionally similar volcanic greenstones in the Superior Province (Canada). However, this concept is problematic for two reasons: (1) Modern oceanic crust is typically associated with overlying terrigenous/ pelagic sediments, both of which are introduced into the mantle via subduction. Mixing with mantle and subsequent partial melting invariably produces compositions with HFSE depletion and LREE enrichment at low to moderate degrees of melting. (2) Mixing of subduction-modified lithosphere into the mantle followed by melting should be detectable in volcanic rocks with strong depletions in elements such as Nb and Ti, but increased abundances in the LILE and LREE (La/Sm pm >> 1). Compositionally, the Warrawoona meta-igneous rocks resemble compositions found in modern oceanic plateaus (e.g. Broken Ridge) which incorporated variable amounts of continental lithospheric mantle (CLM). Variability in trace element ratios (e.g. Nb/Ta, Ce/Pb, and Nb/U) may reflect source heterogeneity or the coexistence of tectonically accreted oceanic fragments with differing petrogenetic histories. However, well-defined co-variations in major and trace elements of samples from all three major stratigraphic units point to a common magmatic origin. In an attempt to link Archaean rocks to present day analogues, we conclude that the spatial association of ultramafic and mafic volcanics and crustally contaminated high-Mg, Fe rocks most resembles melting of a plume head with incorporation of CLM-components and volcanic outpouring within a (rifted?) continental environment. Support for the existence of pre-existing continental crust comes from published studies which report on xenocrystic zircons in basalts, underlying granitoids and sediments of pre-Warrawoona age and mafic inclusions within granitoid bodies. Temporal decreases in La/Sm pm and Nb/Th pm ratios, along with unfractionated HREE may be interpreted as adiabatic upwelling of plume material and a decreasing influence of the lithospheric component

  20. A model of sulphur solubility for hydrous mafic melts: application to the determination of magmatic fluid compositions of Italian volcanoes

    Directory of Open Access Journals (Sweden)

    M. Pichavant

    2005-06-01

    Full Text Available We present an empirical model of sulphur solubility that allows us to calculate f S2 if P, T, fO2 and the melt composition, including H2O and S, are known. The model is calibrated against three main experimental data bases consisting in both dry and hydrous silicate melts. Its prime goal is to calculate the f S2 of hydrous basalts that currently lack experimental constraints of their sulphur solubility behaviour. Application of the model to Stromboli, Vesuvius, Vulcano and Etna eruptive products shows that the primitive magmas found at these volcanoes record f S2 in the range 0.1-1 bar. In contrast, at all volcanoes the magmatic evolution is marked by dramatic variations in f S2 that spreads over up to 9 orders of magnitude. The f S2 can either increase during differentiation or decrease during decompression to shallow reservoirs, and seems to be related to closed versus open conduit conditions, respectively. The calculated f S2 shows that the Italian magmas are undersaturated in a FeS melt, except during closed conduit conditions, in which case differentiation may eventually reach conditions of sulphide melt saturation. The knowledge of f S2, fO2 and fH2O allows us to calculate the fluid phase composition coexisting with magmas at depth in the C-O-H-S system. Calculated fluids show a wide range in composition, with CO2 mole fractions of up to 0.97. Except at shallow levels, the fluid phase is generally dominated by CO2 and H2O species, the mole fractions of SO2 and H2S rarely exceeding 0.05 each. The comparison between calculated fluid compositions and volcanic gases shows that such an approach should provide constraints on both the depth and mode of degassing, as well as on the amount of free fluid in magma reservoirs. Under the assumption of a single step separation of the gas phase in a closed-system condition, the application to Stromboli and Etna suggests that the main reservoirs feeding the eruptions and persistent

  1. Occurrence model for magmatic sulfide-rich nickel-copper-(platinum-group element) deposits related to mafic and ultramafic dike-sill complexes: Chapter I in Mineral deposit models for resource assessment

    Science.gov (United States)

    Schulz, Klaus J.; Woodruff, Laurel G.; Nicholson, Suzanne W.; Seal, Robert R.; Piatak, Nadine M.; Chandler, Val W.; Mars, John L.

    2014-01-01

    Magmatic sulfide deposits containing nickel (Ni) and copper (Cu), with or without (±) platinum-group elements (PGE), account for approximately 60 percent of the world’s nickel production. Most of the remainder of the Ni production is derived from lateritic deposits, which form by weathering of ultramafic rocks in humid tropical conditions. Magmatic Ni-Cu±PGE sulfide deposits are spatially and genetically related to bodies of mafic and/or ultramafic rocks. The sulfide deposits form when the mantle-derived mafic and/or ultramafic magmas become sulfide-saturated and segregate immiscible sulfide liquid, commonly following interaction with continental crustal rocks.

  2. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    Science.gov (United States)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  3. Carbonate formation in non-aqueous environments by solid-gas carbonation of silicates

    Science.gov (United States)

    Day, S. J.; Thompson, S. P.; Evans, A.; Parker, J. E.

    2012-02-01

    We have produced synthetic analogues of cosmic silicates using the Sol Gel method, producing amorphous silicates of composition Mg(x)Ca(1-x)SiO3. Using synchrotron X-ray powder diffraction on Beamline I11 at the Diamond Light Source, together with a newly-commissioned gas cell, real-time powder diffraction scans have been taken of a range of silicates exposed to CO2 under non-ambient conditions. The SXPD is complemented by other techniques including Raman and Infrared Spectroscopy and SEM imaging.

  4. New Silicate Phosphors for a White LED(Electronic Displays)

    OpenAIRE

    Toda, Kenji; Kawakami, Yoshitaka; Kousaka, Shin-ichiro; Ito, Yutaka; Komeno, Akira; Uematsu, Kazuyoshi; Sato, Mineo

    2006-01-01

    We focus on the development of new silicate phosphors for a white LED. In the europium doped silicate system, four LED phosphor candidates-Li_2SrSiO_4:Eu^, Ba_9Sc_2Si_6O_:Eu^, Ca_3Si_2O_7:Eu^ and Ba_2MgSi_2O_7:Eu^ were found. Luminescent properties under near UV and visible excitation were investigated for the new Eu^ doped LED silicate phosphors. These new phosphors have a relatively strong absorption band in a long wavelength region.

  5. USE OF LOCAL NATURAL SILICEOUS RAW MATERIAL AND WASTES FOR PRODUCTION OF HEAT-INSULATING FOAMCONCRETE

    Directory of Open Access Journals (Sweden)

    V. U. Matsapulin

    2015-01-01

    Full Text Available The article analyzes the resource base, reserves and the use of siliceous rocks, their economic feasibility of the use for production of building materials of new generation with low-energy and other costs. Presented are the results of laboratory research and testing technology of production of insulating foam from a composition based on an aqueous solution of sodium silicate obtained from the local siliceous rocks (diatomite and the liquid alkali component - soapstock, hardener from ferrochrome slag and waste carbonate rock able to harden at a low temperature processing ( 100-110 ° C.

  6. The size-isotopic evolution connection among layered mafic instrusions: Clues from a Sr-Nd isotopic study of a small complex

    Science.gov (United States)

    Poitrasson, Franck; Pin, Christian; Duthou, Jean-Louis; Platevoet, Bernard

    1994-05-01

    Several theoretical and experimental works have focused on the processes occuring in continental mafic magma chambers. In contrast, systematic isotopic studies of natural remnants of these latter remain scarce, although they can give fundamental constraints for theoretical studies. This is especially true if different layered complex with contrasting characteristics (e.g., different size) are compared. For this reason, we present the results of a Sr-Nd isotopic profile across a small layered mafic intrusion of Permian age exposed near Fozzano (SW Corsica). In the main zone of the layered section, decreasing Sr-87/Sr(sub i)-86 and increasing Nd-143/Nd(sub i)-144 are observed from less evolved (bottom) to more evolved (top) rocks. This peculiar pattern precludes assimilation and fractional crystallization (AFC) as a dominant mechanism in the petrogenesis of this body. Instead, we interpret this trend as reflecting the dilution of an early stage contaminated magma by several reinjections of fresh basalt in the chamber. In agreement with mineralogical and structural data, every cyclic unit is interpreted as a new magmatic input. On the basis of rough refill and fractional crystallization (RFC) calculations, the average volume for each reinjection is estimated to have been about 0.04 cu km. The cumulative volume of these injections would amount to about 75% of the total volume of the layered complex. This implies that reinjections were accompanied by an important increase of the volume of the chamber or by magma withdrawal by surface eruptions. The RFC mechanism documented within this small layered body constrasts with the isotopic pattern observed between several intrusions at the regional scale in SW Corsica, and within large continental mafic magma chambers elsewhere. In these cases the isotopic evolution is dominated by AFC processes, and there is no clear isotopic evidence for reinjections, unless major influx of fresh magma occurred. It is suggested that there is

  7. Interactions between mafic eruptions and glacial ice or snow: implications of the 2010 Eyjafjallajökull, Iceland, eruption for hazard assessments in the central Oregon Cascades

    Science.gov (United States)

    McKay, D.; Cashman, K. V.

    2010-12-01

    The 2010 eruption of Eyjafjallajökull, Iceland, demonstrated the importance of addressing hazards specific to mafic eruptions in regions where interactions with glacial ice or snow are likely. One such region is the central Oregon Cascades, where there are hundreds of mafic vents, many of which are Holocene in age. Here we present field observations and quantitative analyses of tephra deposits from recent eruptions at Sand Mountain, Yapoah Cone, and Collier Cone (all advance, which lasted from ~2 to 8 ka in the central Oregon Cascades (Marcott et al., 2009). During the Neoglacial, winter snowfall was likely ~23% greater and summer temperatures ~1.4°C cooler than present (Marcott, 2009). Although ice did not advance to the elevation of the Sand Mountain vents during this time, the eruption could have occurred through several meters of snow. We have also seen very fine-grained tephra at Yapoah Cone, which is located at a higher elevation and may have interacted with glacial ice. In addition to being characterized by unusually fine grainsize, the Yapoah tephra blanket is deposited directly on top of hyaloclastite in several locations. Tephra from Collier Cone is not characterized by unusually fine grainsize, but several sections of the deposit exhibit features that suggest deposition on top of, or interbedding with, snow that later melted away. Identification of features in mafic tephra that suggest interactions with glacial ice or snow has significant implications for regional volcanic hazard assessments. Specifically, the unique hazards posed by Eyjafjallajökull, especially hazards to air travel caused by unusually fine-grained tephra, could be repeated in the Cascades. Although glacial ice is presently limited to elevations above ~2300 m in the central Oregon Cascades, winter snowpack can exceed 5 m at elevations of ~1800 m and above. If a cinder cone eruption were to occur during winter months, interaction with snow could generate phreatomagmatic activity and

  8. Integrated elemental and Sr-Nd-Pb-Hf isotopic studies of Mesozoic mafic dykes from the eastern North China Craton: implications for the dramatic transformation of lithospheric mantle

    Science.gov (United States)

    Liu, Shen; Feng, Caixia; Santosh, M.; Feng, Guangying; Coulson, Ian M.; Xu, Mengjing; Guo, Zhuang; Guo, Xiaolei; Peng, Hao; Feng, Qiang

    2018-02-01

    Evolution of the lithospheric mantle beneath the North China Craton (NCC) from its Precambrian cratonic architecture until Paleozoic, and the transformation to an oceanic realm during Mesozoic, with implications on the destruction of cratonic root have attracted global attention. Here we present geochemical and isotopic data on a suite of newly identified Mesozoic mafic dyke swarms from the Longwangmiao, Weijiazhuang, Mengjiazhuang, Jiayou, Huangmi, and Xiahonghe areas (Qianhuai Block) along the eastern NCC with an attempt to gain further insights on the lithospheric evolution of the region. The Longwangmiao dykes are alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 4.3) and EM1-like Sr-Nd-Pb-Hf isotopic signature ((87Sr/86Sr) i > 0.706; ε Nd (t) 16.6, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.8, ε Hf (t) 3.7), and display similar EM1-like isotopic features ((87Sr/86Sr) i > 0.706; ε Nd (t) 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) 2.4) and EM1-like isotopic features((87Sr/86Sr) i > 0.706; ε Nd (t) 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) 3.7) and EM1-like Sr-Nd-Pb-Hf isotopic features ((87Sr/86Sr) i > 0.706; ε Nd(t) 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) 9.3) and EM1-like isotopic composition ((87Sr/86Sr) i > 0.705; ε Nd (t) 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36.9, ε Hf (t) 0.705; ε Nd (t) 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36.9, ε Hf (t) < -8.6). Our data from the various mafic dyke suites suggest that the magmas were derived from EM1-like lithospheric mantle, corresponding to lithospheric mantle modified by the previously foundered lower crust beneath the eastern NCC. Our results suggest contrasting lithospheric evolution from Triassic (212 Ma) to Cretaceous (123 Ma) beneath the NCC. These mafic dykes mark an important phase of lithospheric thinning in the eastern North China Craton.

  9. Geodynamic interpretation of the 40Ar/39Ar dating of ophiolitic and arc-related mafics and metamafics of the northern part of the Anadyr-Koryak region

    Science.gov (United States)

    Palandzhyan, S.A.; Layer, P.W.; Patton, W.W.; Khanchuk, A.I.

    2011-01-01

    Isotope datings of amphibole-bearing mafics and metamafics in the northern part of the Anadyr-Koryak region allow clarification of the time of magmatic and metamorphic processes, which are synchronous with certain stages of the geodynamic development of the northwest segment of the Pacific mobile belt in the Phanerozoic. To define the 40Ar/39Ar age of amphiboles, eight samples of amphibole gabbroids and metamafics were selected during field work from five massifs representing ophiolites and mafic plutons of the island arc. Rocks from terranes of three foldbelts: 1) Pekulnei (Chukotka region), 2) Ust-Belaya (West Koryak region), and 3) the Tamvatnei and El'gevayam subterranes of the Mainits terrane (Koryak-Kamchatka region), were studied. The isotope investigations enabled us to divide the studied amphiboles into two groups varying in rock petrographic features. The first was represented by gabbroids of the Svetlorechensk massif of the Pekulnei Range and by ophiolites of the Tamvatnei Mts.; their magmatic amphiboles show the distribution of argon isotopes in the form of clearly distinguished plateau with an age ranging within 120-129 Ma. The second group includes metamorphic amphiboles of metagabbroids and apogabbro amphibolites of the Ust-Belaya Mts., Pekulnei and Kenkeren ranges (El'gevayam subterranes). Their age spectra show loss of argon and do not provide well defined plateaus the datings obtained for them are interpreted as minimum ages. Dates of amphiboles from the metagabbro of the upper tectonic plate of the Ust-Belaya allochthon points to metamorphism in the suprasubduction environment in the fragment of Late Neoproterozoic oceanic lithosphere in Middle-Late Devonian time, long before the Uda-Murgal island arc system was formed. The amphibolite metamorphism in the dunite-clinopyroxenite-metagabbro Pekulnei sequence was dated to occur at the Permian-Triassic boundary. The age of amphiboles from gabbrodiorites of the Kenkeren Range was dated to be Early

  10. Radiation response of cubic mesoporous silicate and borosilicate thin films

    Science.gov (United States)

    Manzini, Ayelén; Alurralde, Martín; Luca, Vittorio

    2018-01-01

    The radiation response has been studied of cubic mesoporous silicate and borosilicate thin films having different boron contents prepared using the block copolymer template Brij 58 and the dip coating technique. The degree of pore ordering of the films was analysed using low-angle X-ray diffraction and film thickness measured by X-ray reflectivity. For films calcined at 350 °C, the incorporation of boron resulted in a reproducible oscillatory variation in the d-spacing and intensity of the primary reflection as a function of boron content. A clear peak was observed in the d-spacing at 5-10 mol% boron incorporation. For borosilicate films of a given composition an overall suppression of d-spacing was observed as a function of aging time relative to films that did not contain boron. This was ascribed to a slow condensation process. The films were irradiated in pile with neutrons and with iodine ions at energies of 180 keV and 70 MeV. Neutron irradiation of the silicate thin films for periods up to 30 days and aged for 400 days resulted in little reduction in either d-spacing or intensity of the primary low-angle X-ray reflection indicating that the films retained their mesopore ordering. In contrast borosilicate films for which the B (n, α) reaction was expected to result in enhanced displacement damage showed much larger variations in X-ray parameters. For these films short irradiation times resulted in a reduction of the d-spacing and intensity of the primary reflections considerably beyond that observed through aging. It is concluded that prolonged neutron irradiation and internal α irradiation have only a small, although measurable, impact on mesoporous borosilicate thin films increasing the degree of condensation and increasing unit cell contraction. When these borosilicate films were irradiated with iodine ions, more profound changes occurred. The pore ordering of the films was significantly degraded when low energy ions were used. In some cases the degree

  11. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2012-06-15

    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  12. Influence of the type of aqueous sodium silicate on the stabilization and rheology of kaolin clay suspensions

    Science.gov (United States)

    Izak, Piotr; Ogłaza, Longin; Mozgawa, Włodzimierz; Mastalska-Popławska, Joanna; Stempkowska, Agata

    2018-05-01

    To avoid agglomeration and sedimentation of grains, ceramic slurries should be modified by stabilizers in order to increase the electrostatic interactions between the dispersed particles. In this study we present the spectral analysis of aqueous sodium silicates obtained by different synthesis methods and their influence on the rheological properties of kaolin based slurries. Infrared and Raman spectra can be used to describe the structure of silicate structural units present in aqueous sodium silicates. It was confirmed that the best stabilization results possess aqueous sodium silicates of the silicate moduli of about 2 and the optimal concentration of the used fluidizer is 0.3 wt% to the kaolin clay dry mass. One of the most important conclusions is that the synthesis method of the fluidizer has no significant effect on its stabilization properties but used medium does create adequate stabilization mechanism depending on the silicate structures present in the sodium silicate solution.

  13. Natural penetrating radiation inside silicate dwellings in Chengdu and recommendation on permissible limits for radioactivity of building material made of silicate cinders

    International Nuclear Information System (INIS)

    Li Guangzao

    1984-01-01

    This paper reports the results of external exposure rate of penetrating radiation inside silicate dwellings in Chengdu. The average exposure rate was 24.3+-3.5 R/h. It was evidently higher than of red brick dwellings. The average effective equivalent of the population in silicate dwellings was 123.4+-10.4 mrem/y and the average additional dose was 29.5+-12.5 mrem/y. The permissible limits recommended for silicate building material would be 6 pCi/g, 7 pCi/g and 102 pCi/g for 226 Ra, 232 Th and 40 K, respectively. The total activity must fulfill the formula of Csub(Ra)/6 + Csub(Th)/7 + Csub(k)/102 1. Under ordinary condition the exposure rate (10+background) R/h of penetrating radiation from the surface of dry building material might be taken as the permissible limit for dwellings and other public buildings

  14. Source and Enrichment of Toxic Elements in Coal Seams around Mafic Intrusions: Constraints from Pyrites in the Yuandian Coal Mine in Anhui, Eastern China

    Directory of Open Access Journals (Sweden)

    Yanfei An

    2018-04-01

    Full Text Available Pyrite, a mineral that can cause potential environmental issues in coal mining, is commonly found in coal seams around intrusions. In this paper, pyrites from the Yuandian Coal Mine (Huaibei Coalfield, Anhui, Eastern China were studied using SEM, Raman and LA-ICP-MS. The pyrite morphologic and geochemical data suggest that (1 four pyrite generations are present (framboidal sedimentary pyrites (Py I in the original coal, coarse-grained magmatic pyrites (Py II in the intruding diabase, fine-grained metamorphic pyrites (Py III in the intrusive contact aureole, and spheroid/vein hydrothermal pyrites (Py IV in the cokeite; and (2 concentrations of cobalt, nickel, arsenic, selenium, lead and copper in the metamorphic pyrites are much higher than the other pyrite generations. We propose that mafic magmatism is the main contributor of the toxic elements to the intrusion-related cokeite at Yuandian.

  15. Immobilisation of active concrete debris using soluble sodium silicates

    International Nuclear Information System (INIS)

    Field, S.N.; Jull, S.P.

    1991-01-01

    Demolition of concrete biological shields will generate large quantities of active demolition debris. The size distribution of such concrete may range from pieces of size less than one tonne down to dust. Handling and disposal methods for this material are still the subject of current research. Although the literature indicates that the mechanisms of silicate/concrete interaction are not well understood, successful setting of the smaller size fraction of concrete demolition debris can be achieved at laboratory scale. Hardened properties of the set slurry are also acceptable. A study of the full scale process has resulted in an outline design for a suitable on-site plant. Estimated capital costs of the equipment are of the order of pounds 1.1M. The project has shown that the material of less than 5mm particle size can be set by this technique. Whilst this meets the original objectives of immobilising dust, it had been hoped that the 10mm size material, (which will require removal from the larger debris before grouting can take place) could also be disposed of by the slurry setting technique. Co-disposal of slurry and large active items in the same container is unlikely to be worthwhile. 14 tabs., 5 figs., 30 refs

  16. Zeta potentials in the flotation of oxide and silicate minerals.

    Science.gov (United States)

    Fuerstenau, D W; Pradip

    2005-06-30

    Adsorption of collectors and modifying reagents in the flotation of oxide and silicate minerals is controlled by the electrical double layer at the mineral-water interface. In systems where the collector is physically adsorbed, flotation with anionic or cationic collectors depends on the mineral surface being charged oppositely. Adjusting the pH of the system can enhance or prevent the flotation of a mineral. Thus, the point of zero charge (PZC) of the mineral is the most important property of a mineral in such systems. The length of the hydrocarbon chain of the collector is important because of chain-chain association enhances the adsorption once the surfactant ions aggregate to form hemimicelles at the surface. Strongly chemisorbing collectors are able to induce flotation even when collector and the mineral surface are charged similarly, but raising the pH sufficiently above the PZC can repel chemisorbing collectors from the mineral surface. Zeta potentials can be used to delineate interfacial phenomena in these various systems.

  17. Silicate grout curtains behaviour for the protection of coastal aquifers

    International Nuclear Information System (INIS)

    Elektorowicz, M.; Chifrina, R.; Hesnawi, R.

    1997-01-01

    Tests were performed to evaluate the behaviour of silicate grout with different reagents (ethylacetate - formamide SA and calcium chloride SC) in pure silica sand and natural soils from coastal areas containing organic matter, clayey soil and silica sand. The grouted specimens were tested with simulated fresh and salt water. The setting process during chemical grouting in the soil and sand was studied. The grouting of soil and sand with SA caused a transfer to the environment of some compounds: sodium formate, sodium acetate, ammonia and part of the initial ethylacetate and formamide. This process had a tendency to decrease for approximately 4 months. The stability of specimens was low. The grouting of soil and sand with SC caused no significant contamination of the environment. The increase of pH of environmental water was even less than with SA grouting. Also, the stability of specimens is higher in comparison with SA grouting. Salt water protected the specimens grouted with SA and SC from destruction and prevented contamination

  18. Fabrication of large diameter alumino-silicate K+ sources

    International Nuclear Information System (INIS)

    Baca, D.; Chacon-Golcher, E.; Kwan, J.W.; Wu, J.K.

    2003-01-01

    Alumino-silicate K + sources have been used in HIF experiments for many years. For example the Neutralized Transport Expt. (NTX) and the High Current Transport Expt. (HCX) are now using this type of ion source with diameters of 2.54 cm and 10 cm respectively. These sources have demonstrated ion currents of 80 mA and 700 mA, for typical HIF pulse lengths of 5-10 (micro)s. The corresponding current density is ∼ 10-15 mA/cm 2 , but much higher current density has been observed using smaller size sources. Recently we have improved our fabrication techniques and, therefore, are able to reliably produce large diameter ion sources with high quality emitter surface without defects. This note provides a detailed description of the procedures employed in the fabrication process. The variables in the processing steps affecting surface quality, such as substrate porosity, powder size distribution, coating technique on large area concave surfaces, drying, and heat firing temperature have been investigated

  19. Mechanical behavior of a composite interface: Calcium-silicate-hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Palkovic, Steven D.; Moeini, Sina; Büyüköztürk, Oral, E-mail: obuyuk@mit.edu [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Yip, Sidney [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-07-21

    The generalized stacking fault (GSF) is a conceptual procedure historically used to assess shear behavior of defect-free crystalline structures through molecular dynamics or density functional theory simulations. We apply the GSF technique to the spatially and chemically complex quasi-layered structure of calcium-silicate-hydrates (C-S-H), the fundamental nanoscale binder within cementitious materials. A failure plane is enforced to calculate the shear traction-displacement response along a composite interface containing highly confined water molecules, hydroxyl groups, and calcium ions. GSF simulations are compared with affine (homogeneous) shear simulations, which allow strain to localize naturally in response to the local atomic environment. Comparison of strength and deformation behavior for the two loading methods shows the composite interface controls bulk shear deformation. Both models indicate the maximum shear strength of C-S-H exhibits a normal-stress dependency typical of cohesive-frictional materials. These findings suggest the applicability of GSF techniques to inhomogeneous structures and bonding environments, including other layered systems such as biological materials containing organic and inorganic interfaces.

  20. A New Biphasic Dicalcium Silicate Bone Cement Implant

    Directory of Open Access Journals (Sweden)

    Fausto Zuleta

    2017-07-01

    Full Text Available This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23 obtained higher bone-to-implant contact (BIC percentage values (better quality, closer contact in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic. The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.

  1. Relationships between mineralization and silicic volcanism in the central Andes

    Science.gov (United States)

    Francis, P. W.; Halls, C.; Baker, M. C. W.

    1983-01-01

    Existing models for the genesis of porphyry copper deposits indicate that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. It is noted that sites of porphyry-type subvolcanic tin mineralization in the Eastern Cordillera of Bolivia are distinguished by the absence of such andesitic structures. The surface expression of a typical subvolcanic porphyry tin deposit is thought to be an extrusive dome of quartz latite porphyry, sometimes related to a larger caldera structure. Evidence from the El Salvador porphyry copper deposit in the Eocene magmatic belt in Chile indicates that it too may be more closely related to a silicic volcanic structure than to an andesitic stratovolcano. The dome of La Soufriere, Guadeloupe is offered as a modern analog for the surface expression of subvolcanic mineralization processes, with the phreatic eruptions there indicating the formation of hydrothermal breccia bodies in depths. It is pointed out that the occurrence of mineralized porphyries, millions of years after caldera formation, does not necessarily indicate that tin intrusions and mineralization are not genetically related to the subcaldera pluton, but may be a consequence of the long thermal histories (1-10 million years) of the lowermost parts of large plutons.

  2. Chemical interactions and configurational disorder in silicate melts

    Directory of Open Access Journals (Sweden)

    G. Ottonello

    2005-06-01

    Full Text Available The Thermodynamics of quasi-chemical and polymeric models are briefly reviewed. It is shown that the two classes are mutually consistent, and that opportune conversion of the existing quasi-chemical parameterization of binary interactions in MO-SiO2 joins to polymeric models may be afforded without substantial loss of precision. It is then shown that polymeric models are extremely useful in deciphering the structural and reactive properties of silicate melts and glasses. They not only allow the Lux-Flood character of the dissolved oxides to be established, but also discriminate subordinate strain energy contributions to the Gibbs free energy of mixing from the dominant chemical interaction terms. This discrimination means that important information on the short-, medium- and long-range periodicity of this class of substances can be retrieved from thermodynamic analysis. Lastly, it is suggested that an important step forward in deciphering the complex topology of the inhomogeneity ranges observed at high SiO2 content can be performed by applying SCMF theory and, particularly, Matsen-Schick spectral analysis, hitherto applied only to rubberlike materials.

  3. Edge dislocations in dicalcium silicates: Experimental observations and atomistic analysis

    International Nuclear Information System (INIS)

    Shahsavari, Rouzbeh; Chen, Lu; Tao, Lei

    2016-01-01

    Understanding defects and influence of dislocations on dicalcium silicates (Ca 2 SiO 4 ) is a challenge in cement science. We report a high-resolution transmission electron microscopy image of edge dislocations in Ca 2 SiO 4 , followed by developing a deep atomic understanding of the edge dislocation-mediated properties of five Ca 2 SiO 4 polymorphs. By decoding the interplay between core dislocation energies, core structures, and nucleation rate of reactivity, we find that γ-C2S and α-C2S polymorphs are the most favorable polymorphs for dislocations in Ca 2 SiO 4 , mainly due to their large pore channels which take away majority of the distortions imposed by edge dislocations. Furthermore, in the context of edge dislocation, while α-C2S represents the most active polymorph for reactivity and crystal growth, β-C2S represents the most brittle polymorph suitable for grinding. This work is the first report on the atomistic-scale analysis of edge dislocation-mediated properties of Ca 2 SiO 4 and may open up new opportunities for tuning fracture and reactivity processes of Ca 2 SiO 4 and other cement components.

  4. Structural and hydration properties of amorphous tricalcium silicate

    International Nuclear Information System (INIS)

    Mori, K.; Fukunaga, T.; Shiraishi, Y.; Iwase, K.; Xu, Q.; Oishi, K.; Yatsuyanagi, K.; Yonemura, M.; Itoh, K.; Sugiyama, M.; Ishigaki, T.; Kamiyama, T.; Kawai, M.

    2006-01-01

    Mechanical milling was carried out to synthesize amorphous tricalcium silicate (Ca 3 SiO 5 ) sample, where Ca 3 SiO 5 is the most principal component of Portland cement. The partial phase transformation from the crystalline to the amorphous state was observed by X-ray and neutron diffractions. Moreover, it was found that the structural distortion on the Ca-O correlation exists in the milled Ca 3 SiO 5 . The hydration of the milled Ca 3 SiO 5 with D 2 O proceeds as follows: the formation of hydration products such as Ca(OD) 2 rapidly occurs in the early hydration stage, and then proceeds slowly after about 15 h. The induction time for the hydration of the milled Ca 3 SiO 5 is approximately one half shorter than that for the hydration of the unmilled one. This result means that the mechanical milling brings about the chemical activity of Ca 3 SiO 5 for hydration, and may be particularly useful for increasing the reactivity in the early hydration stage

  5. Intraplate mantle oxidation by volatile-rich silicic magmas

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Audrey M.; Médard, Etienne; Righter, Kevin; Lanzirotti, Antonio

    2017-11-01

    The upper subcontinental lithospheric mantle below the French Massif Central is more oxidized than the average continental lithosphere, although the origin of this anomaly remains unknown. Using iron oxidation analysis in clinopyroxene, oxybarometry, and melt inclusions in mantle xenoliths, we show that widespread infiltration of volatile (HCSO)-rich silicic melts played a major role in this oxidation. We propose the first comprehensive model of magmatism and mantle oxidation at an intraplate setting. Two oxidizing events occurred: (1) a 365–286 Ma old magmatic episode that produced alkaline vaugnerites, potassic lamprophyres, and K-rich calc-alkaline granitoids, related to the N–S Rhenohercynian subduction, and (2) < 30 Ma old magmatism related to W–E extension, producing carbonatites and hydrous potassic trachytes. These melts were capable of locally increasing the subcontinental lithospheric mantle fO2 to FMQ + 2.4. Both events originate from the melting of a metasomatized lithosphere containing carbonate + phlogopite ± amphibole. The persistence of this volatile-rich lithospheric source implies the potential for new episodes of volatile-rich magmatism. Similarities with worldwide magmatism also show that the importance of volatiles and the oxidation of the mantle in intraplate regions is underestimated.

  6. Nanoporous Calcium Silicate and PLGA Bio composite for Bone Repair

    International Nuclear Information System (INIS)

    Su, J.; Wang, Z.; Wu, Y.; Cao, L.; Ma, Y.; Yu, B.; Li, M.; Yan, Y.

    2010-01-01

    Nanoporous calcium silicate (n-CS) with high surface area was synthesized using the mixed surfactants of EO20PO70EO20 (polyethylene oxide)20(polypropylene oxide)70(polyethylene oxide)20, P123) and hexadecyltrimethyl ammonium bromide (CTAB) as templates, and its composite with poly(lactic acid-co-glycolic acid) (PLGA) were fabricated. The results showed that the n-CS/PLGA composite (n-CPC) with 20 wt% n-CS could induce a dense and continuous layer of apatite on its surface after soaking in simulated body fluid (SBF) for 1 week, suggesting the excellent in vitro bioactivity. The n-CPC could promote cell attachment on its surfaces. In addition, the proliferation ratio of MG63 cells on n-CPC was significantly higher than PLGA; the results demonstrated that n-CPC had excellent cytocompatibility. We prepared n-CPC scaffolds that contained open and interconnected macroporous ranging in size from 200 to 500 μ m. The n-CPC scaffolds were implanted in femur bone defect of rabbits, and the in vivo biocompatibility and osteogenicity of the scaffolds were investigated. The results indicated that n-CPC scaffolds exhibited good biocompatibility, degradability, and osteogenesis in vivo. Collectively, these results suggested that the incorporation of n-CS in PLGA produced biocomposites with improved bioactivity and biocompatibility.

  7. Mid-Infrared Silicate Dust Features in Seyfert 1 Spectra

    Science.gov (United States)

    Thompson, Grant D.; Levenson, N. A.; Sirocky, M. M.; Uddin, S.

    2007-12-01

    Silicate dust emission dominates the mid-infrared spectra of galaxies, and the dust produces two spectral features, at 10 and 18 μm. These features' strengths (in emission or absorption) and peak wavelengths reveal the geometry of the dust distribution, and they are sensitive to the dust composition. We examine mid-infrared spectra of 32 Seyfert 1 active galactic nuclei (AGN), observed with the Infrared Spectrograph aboard the Spitzer Space Telescope. In the spectra, we typically find the shorter-wavelength feature in emission, at an average peak wavelength of 10.0 μm, although it is known historically as the "9.7 μm" feature. In addition, peak wavelength increases with feature strength. The 10 and 18 μm feature strengths together are sensitive to the dust geometry surrounding the central heating engine. Numerical calculations of radiative transfer distinguish between clumpy and smooth distributions, and we find that the surroundings of these AGN (the obscuring "tori" of unified AGN schemes) are clumpy. Polycyclic aromatic hydrocarbon (PAH) features are associated with star formation, and we find strong PAH emission (luminosity ≥ 1042 erg/s) in only four sources, three of which show independent evidence for starbursts. We will explore the effects of luminosity on dust geometry and chemistry in a comparison sample of quasars. We acknowledge work supported by the NSF under grant number 0237291.

  8. A hybrid composite dike suite from the northern Arabian Nubian Shield, southwest Jordan: Implications for magma mixing and partial melting of granite by mafic magma

    Science.gov (United States)

    Jarrar, Ghaleb H.; Yaseen, Najel; Theye, Thomas

    2013-03-01

    The Arabian Nubian Shield is an exemplary juvenile continental crust of Neoproterozoic age (1000-542 Ma). The post-collisional rift-related stage (~ 610 to 542 Ma) of its formation is characterized among others by the intrusion of several generations of simple and composite dikes. This study documents a suite of hybrid composite dikes and a natural example of partial melting of granite by a mafic magma from the northernmost extremity of Arabian Nubian Shield in southwest Jordan. The petrogenesis of this suite is discussed on the basis of field, petrographic, geochemical, and Rb/Sr isotopic data. These dikes give spectacular examples of the interaction between basaltic magma and the granitic basement. This interaction ranges from brecciation, partial melting of the host alkali feldspar granite to complete assimilation of the granitic material. Field structures range from intrusive breccia (angular partially melted granitic fragments in a mafic groundmass) to the formation of hybrid composite dikes that are up to 14 m in thickness. The rims of these dikes are trachyandesite (latite) with alkali feldspar ovoids (up to 1 cm in diameter); while the central cores are trachydacite to dacite and again with alkali feldspar ovoids and xenoliths from the dike rims. The granitic xenoliths in the intrusive breccia have been subjected to at least 33% partial melting. A seven-point Rb/Sr isochron from one of these composite dikes yields an age of 561 ± 33 Ma and an initial 87Sr/86Sr ratio of 0.70326 ± 0.0003 (2σ) and MSWD of 0.62. Geochemical modeling using major, trace, rare earth elements and isotopes suggests the generation of the hybrid composite dike suite through the assimilation of 30% to 60% granitic crustal material by a basaltic magma, while the latter was undergoing fractional crystallization at different levels in the continental crust.

  9. K-Ar geochronology of mafic dyke swarms from the meridional part of Sao Francisco craton and implications on tectonic context

    International Nuclear Information System (INIS)

    Teixeira, W.; Kawashita, K.; Pecchio, M.; Tame, N.R.

    1988-01-01

    The southern region of the Sao Francisco Craton is made up of gneissic-granitoid terranes (mainly of amphibolite facies) associated with supracrustals, which can be separed into two crustal provinces, the oldest formed during the Archean (3-2-2.6 Ga.), and the youngest in the Early Proterozoic (2.4-2.0 Ga.). Mafic dyke swarms inject the basement complexes in the area west of Belo Horizonte city, but not the Late proterozoic Bambui sedimentary cover. These dykes show NNW, NW, WNW, NNE and ENE trends and are of anorogenic character. Most dykes are tholeiitic in composition. Metamorphic recrystallization at greenschist to amphibolite facies as well as minor hidrothermal and/or deuteric transformations are characteristics in the majority of the these dykes. About sixty K/Ar determinations have been performed on plagioclases, amphiboles and whole rocks. They are interpretated combining the use of K/Ar diagrams and histogram, and according to the crustal evolution proposed for the craton. The available radiometric data suggest that the main period of mafic intrusions took place in the Early proterozoic as supported by the apparent ages on amphiboles. However, the beginning of the Middle Proterozoic (1.7-1.5 Ga.) probably corresponds to a period of tensional tectonics as well. On the other hand, most ages obtained on plagioclases and whole rocks, can be associated with Late Proterozoic processes of argon gain or loss. The results are tectonicaly associated with crustal rifting of the continental mass. This two radiometric groupings are characteristic for the evolution of the Early proterozoic crustal provine and of the Mid-Proterozoic intracratonic Espinhaco System respectively. The youngest Late Proterozoic apparent ages associated with the reflections of the contemporaneous evolution of the Braziliano marginal mobile belt which is also suggested by the partial resetting of the K/Ar ages of basement rocks within the eastern part of the Sao Francisco Craton. (author) [pt

  10. Constraints from geochemistry and oxygen isotopes for the hydrothermal origin of orthoamphibole mafic gneiss in the New Jersey Highlands, north-central Appalachians, USA

    Science.gov (United States)

    Volkert, Richard A.; Peck, William H.

    2017-12-01

    Rare exposures of orthoamphibole mafic (Oam) gneiss of Mesoproterozoic age in the north-central Appalachians are confined to the northwestern New Jersey Highlands where they form thin lens-shaped bodies composed of gedrite and sparse anthophyllite, oligoclase (An13-An20), biotite, magnetite, and local fluorapatite, rutile, and ilmenite. The gneiss is penetratively foliated and has sharp, conformable contacts against enclosing supracrustal paragneiss and marble. Orthoamphibole mafic gneiss is characterized by low SiO2 (48 ± 2.5 wt%), CaO (1.9 ± 1.3 wt%), and high Al2O3 (18 ± 1.2 wt%), Fe2O3 (10.5 ± 1.6 wt%), and MgO (12 ± 2.3 wt%). Trace element abundances overlap those of unaltered amphibolites in the study area and, coupled with δ18O values of 9.45 ± 0.6‰ (VSMOW) from gedrite separates, support an origin from a basalt protolith. The geochemical and isotopic data are consistent with the formation of Oam gneiss through sea floor hydrothermal alteration of basalt at low temperature of 150-200 °C. Mass-balance calculations indicate gains during alteration mainly in MgO and Al2O3 and losses in CaO, Sr, and light rare earth elements. Our results are compatible with the pre-metamorphic alteration of the basalt protoliths through chloritization and plagioclase dissolution that produced a Mg-rich and Ca-poor rock. Subsequent metamorphism of this chlorite-rich rock to the current mineral assemblage of Oam gneiss took place at ca. 1045 Ma, during the Ottawan phase of the Grenvillian Orogeny. The close spatial association in the study area of Oam gneiss bodies and sulfide occurrences suggests an affinity to the style of mineralization associated with volcanogenic massive sulfide (VMS)-type deposits.

  11. Geotechnical properties of two siliceous cores from the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khadge, N.H.

    Physical properties of the siliceous sediments from the Central Indian Basin are measured on two short cores. The properties such as water content, Atterberg limits, porosity specific gravity, wet density show the medium to high plastic sediment...

  12. Polymer Derived Rare Earth Silicate Nanocomposite Protective Coatings for Nuclear Thermal Propulsion Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging a rapidly evolving state-of-the-art technical base empowered by Phase I NASA SBIR funding, NanoSonic's polymer derived rare earth silicate EBCs will...

  13. Dynamic shear stiffness and damping ratio of marine calcareous and siliceous sands

    Science.gov (United States)

    Javdanian, Hamed; Jafarian, Yaser

    2018-03-01

    Shear stiffness and damping ratio of two marine calcareous and siliceous sands were evaluated through an experimental program. Resonant column and cyclic triaxial experiments were conducted to measure the dynamic properties of the sands in small and large shear strain amplitudes. The tests were conducted under various initial stress-density conditions. The influence of effective confining pressure on the dynamic properties of the sands was assessed and compared in a preceding paper. It was shown that the calcareous sand has higher shear stiffness and lower damping ratio in comparison to the siliceous sand. In this note, the results are presented in more details and the dynamic behavior curves of the studied sands are compared with some available models, mostly developed based on the laboratory data of siliceous sands. This comparative study reveals that the previous models predict the dynamic properties of the calcareous sand in less precision than those of the siliceous sand.

  14. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.; Beard, James S.

    2017-08-01

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  15. Imaging the Oxygen-Rich Disk Toward the Silicate Carbon Star EU Andromedae

    National Research Council Canada - National Science Library

    Ohnaka, K; Boboltz, D. A

    2007-01-01

    .... We present multi-epoch, high-angular resolution observations of 22 GHz H2O masers toward the silicate carbon star EU And to probe the spatio-kinematic distribution of oxygen-rich material. Methods...

  16. Some observations on use of siliceous mineral waters in reduction of corrosion in RCC structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venugopal, C.

    The corrosion-resisting characteristics of reinforcement in cement blended with siliceous mineral wastes viz. gold tailing and flyash have been evaluated by using an accelerated corrosion technique. The additions of these mineral admixtures...

  17. Polymer Derived Rare Earth Silicate Nanocomposite Protective Coatings for Nuclear Thermal Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I SBIR program is to develop polymer derived rare earth silicate nanocomposite environmental barrier coatings (EBC) for providing...

  18. Analyses and predictions of the thermodynamic properties and phase diagrams of silicate systems

    Energy Technology Data Exchange (ETDEWEB)

    Blander, M. (Argonne National Lab., IL (United States)); Pelton, A.; Eriksson, G. (Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering)

    1992-01-01

    Molten silicates are ordered solutions which can not be well represented by the usual polynomial representation of deviations from ideal solution behavior (i.e. excess free energies of mixing). An adaptation of quasichemical theory which is capable of describing the properties of ordered solutions represents the measured properties of binary silicates over broad ranges of composition and temperature. For simple silicates such as the MgO-FeO-SiO{sub 2} ternary system, in which silica is the only acid component, a combining rule generally leads to good predictions of ternary solutions from those of the binaries. In basic solutions, these predictions are consistent with those of the conformal ionic solution theory. Our results indicate that our approach could provide a potentially powerful tool for representing and predicting the properties of multicomponent molten silicates.

  19. Analyses and predictions of the thermodynamic properties and phase diagrams of silicate systems

    Energy Technology Data Exchange (ETDEWEB)

    Blander, M. [Argonne National Lab., IL (United States); Pelton, A.; Eriksson, G. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Metallurgy and Materials Engineering

    1992-07-01

    Molten silicates are ordered solutions which can not be well represented by the usual polynomial representation of deviations from ideal solution behavior (i.e. excess free energies of mixing). An adaptation of quasichemical theory which is capable of describing the properties of ordered solutions represents the measured properties of binary silicates over broad ranges of composition and temperature. For simple silicates such as the MgO-FeO-SiO{sub 2} ternary system, in which silica is the only acid component, a combining rule generally leads to good predictions of ternary solutions from those of the binaries. In basic solutions, these predictions are consistent with those of the conformal ionic solution theory. Our results indicate that our approach could provide a potentially powerful tool for representing and predicting the properties of multicomponent molten silicates.

  20. Polymer Derived Yttrium Silicate Ablative TPS Materials for Next-Generation Exploration Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Through the proposed NASA SBIR program, NanoSonic will optimize its HybridSil® derived yttrium silicates to serve as next-generation reinforcement for carbon and...

  1. Solidification of low-level radioactive liquid waste using a cement-silicate process

    International Nuclear Information System (INIS)

    Grandlund, R.W.; Hayes, J.F.

    1979-01-01

    Extensive use has been made of silicate and Portland cement for the solidification of industrial waste and recently this method has been successfully used to solidify a variety of low level radioactive wastes. The types of wastes processed to date include fuel fabrication sludges, power reactor waste, decontamination solution, and university laboratory waste. The cement-silicate process produces a stable solid with a minimal increase in volume and the chemicals are relatively inexpensive and readily available. The method is adaptable to either batch or continuous processing and the equipment is simple. The solid has leaching characteristics similar to or better than plain Portland cement mixtures and the leaching can be further reduced by the use of ion-exchange additives. The cement-silicate process has been used to solidify waste containing high levels of boric acid, oils, and organic solvents. The experience of handling the various types of liquid waste with a cement-silicate system is described

  2. Mid-infrared spectra of cometary dust: the evasion of its silicate mineralogy

    Science.gov (United States)

    Kimura, H.; Chigai, T.; Yamamoto, T.

    2008-04-01

    Infrared spectra of dust in cometary comae provide a way to identify its silicate constituents, and this is crucial for correctly understanding the condition under which our planetary system is formed. Recent studies assign a newly detected peak at a wavelength of 9.3 μm to pyroxenes and regard them as the most abundant silicate minerals in comets. Here we dispense with this pyroxene hypothesis to numerically reproduce the infrared features of cometary dust in the framework of our interstellar dust models. Presolar interstellar dust in a comet is modeled as fluffy aggregates consisting of submicrometer-sized organic grains with an amorphous-silicate core that undergoes nonthermal crystallization in a coma. We assert that forsterite (Mg2SiO4) is the carrier of all the observed features, including the 9.3 μm peak and that the major phase of iron is sulfides rather than iron-rich silicates.

  3. Observations on the morphological diversity and distribution of two siliceous nannoplankton genera, Hyalolithus and Petasaria

    DEFF Research Database (Denmark)

    Jordan, Richard W.; Abe, Kent; Cruz, Jarret

    2016-01-01

    Scale-bearing siliceous nannoplankton are occasionally encountered in surface seawater samples, but are rarely identified or illustrated. In this study, the morphological diversity of the haptophyte Hyalolithus neolepis and the enigmatic Petasaria heterolepis are investigated in scanning...

  4. Himalayan sedimentary pulses recorded by silicate detritus within a ferromanganese crust from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Galy, A.; Sukumaran, N.P.; Parthiban, G.; Volvaiker, A.Y.

    A Central Indian Ocean deep-water seamount hydrogenous ferromanganese crust (SS663-Crust) contains variable (7-23%) amounts of detrital material (silicate-detritus). Taking into account the growth rate of the authigenic component, the accumulation...

  5. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations

    KAUST Repository

    Kim, Wun-gwi; Lee, Jong Suk; Bucknall, David G.; Koros, William J.; Nair, Sankar

    2013-01-01

    Nanoporous layered silicate/polymer composite membranes are of interest because they can exploit the high aspect ratio of exfoliated selective flakes/layers to enhance molecular sieving and create a highly tortuous transport path for the slower

  6. X-ray emission spectroscopy study of iron silicate catalyst FeZSM-5

    International Nuclear Information System (INIS)

    Csencsits, R.; Lyman, C.E.; Gronsky, R.

    1988-03-01

    Iron silicate analogs of the zeolite ZMS-5 may be directly synthesized from iron silicate gels in a manner which differs slightly from the alumino-silicate ZSM-5. The resultant white, crystalline iron silicate is referred to as FeZSM-5 in the as-synthesized form. Thermal treatment removes the organic crystal-directing agent and moves some of the framework iron into non-framework sites producing the calcined form of the molecular sieve FeZSM-5. Homogeneity in the distribution of catalytic iron throughout the particles is desired in an optimal catalyst. Distribution of the iron throughout the framework in the as-synthesized forms would affect the final distribution of catalytic iron in the calcined and steamed forms; thus, the iron distribution throughout the as-synthesized and calcined forms of FeZSM-5 were studied using the high spatial resolution on the analytical electron microscope. 7 refs., 3 figs

  7. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette; Krøyer, Hanne

    2008-01-01

    Pozzolanic submicron-sized silica fume and the non-pozzolanic micron- and nano-sized layer silicates (clay minerals) kaolinite, smectite and palygorskite have been used as additives in Portland cement pastes and mortars. These layer silicates have different particle shape (needles and plates......), surface charge, and size (micron and nano). The structure of the resulting cement pastes and mortars has been investigated by atomic force microscopy (AFM), helium porosimetry, nitrogen adsorption (specific surface area and porosity), low-temperature calorimetry (LTC) and thermal analysis. The main result...... is that the cement paste structure and porosity can be engineered by addition of selected layer silicates having specific particle shapes and surface properties (e.g., charge and specific surface area). This seems to be due to the growth of calcium-silicate hydrates (C-S-H) on the clay particle surfaces...

  8. Methylated silicates may explain the release of chlorinated methane from Martian soil

    Science.gov (United States)

    Bak, Ebbe N.; Jensen, Svend J. Knak; Nørnberg, Per; Finster, Kai

    2016-01-01

    The only organic compounds that have been detected in the Martian soil are simple chlorinated compounds released from heated surface material. However, the sources of the organic carbon are in dispute. Wind abraded silicates, which are widespread on the Martian surface, can sequester atmospheric methane which generates methylated silicates and thus could provide a mechanism for accumulation of reduced carbon in the surface soil. In this study we show that thermal volatilization of methylated silicates in the presence of perchlorate leads to the production of chlorinated methane. Thus, methylated silicates could be a source of the organic carbon released as chlorinated methane upon thermal volatilization of Martian soil samples. Further, our experiments show that the ratio of the different chlorinated compounds produced is dependent on the mass ratio of perchlorate to organic carbon in the soil.

  9. Swelling, Functionalization, and Structural Changes of the Nanoporous Layered Silicates AMH-3 and MCM-22

    KAUST Repository

    Kim, Wun-gwi; Choi, Sunho; Nair, Sankar

    2011-01-01

    Nanoporous layered silicate materials contain 2D-planar sheets of nanoscopic thickness and ordered porous structure. In comparison to porous 3D-framework materials such as zeolites, they have advantages such as significantly increased surface area

  10. Carbonation of metal silicates for long-term CO2 sequestration

    Science.gov (United States)

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  11. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Palmer, Donald A [Oliver Springs, TN; Anovitz, Lawrence M [Knoxville, TN; Beard, James S [Martinsville, VA

    2012-02-14

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  12. Non-Topotactic Transformation of Silicate Nanolayers into Mesostructured MFI Zeolite Frameworks During Crystallization.

    Science.gov (United States)

    Berkson, Zachariah J; Messinger, Robert J; Na, Kyungsu; Seo, Yongbeom; Ryoo, Ryong; Chmelka, Bradley F

    2017-05-02

    Mesostructured MFI zeolite nanosheets are established to crystallize non-topotactically through a nanolayered silicate intermediate during hydrothermal synthesis. Solid-state 2D NMR analyses, with sensitivity enhanced by dynamic nuclear polarization (DNP), provide direct evidence of shared covalent 29 Si-O- 29 Si bonds between intermediate nanolayered silicate moieties and the crystallizing MFI zeolite nanosheet framework. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  14. Multiple ways of producing intermediate and silicic rocks within Thingmúli and other Icelandic volcanoes

    DEFF Research Database (Denmark)

    Charreteur, Gilles; Tegner, Christian; Haase, Karsten

    2013-01-01

    Major and trace element compositions of rocks and coexisting phenocrysts of the ThingmA(0)li volcano suggest a revision of the existing models for the formation of intermediate and silicic melts in Iceland. The new data define two compositional tholeiitic trends with a significant gap between the...... between the compositions of intermediate and silicic rocks and plate tectonic setting, therefore, should be avoided....

  15. Spectroscopic study of silicate glass structure. Application to the case of iron and magnesium

    International Nuclear Information System (INIS)

    Rossano, Stephanie

    2008-01-01

    During the last 10 years, I focused my research topics on silicate glass structure. More specifically I have been interested by two main components of natural and technological silicate glasses, Fe and Mg. Using solid state spectroscopic methods adapted to the disordered nature of glass coupled to molecular dynamics simulation and modeling or ab initio calculation, I have studied the environment of iron and magnesium and their impact on glass properties. Information on the distribution of environments in glasses have been extracted. (author)

  16. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    OpenAIRE

    Ruengsri, Suwimon

    2014-01-01

    Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of th...

  17. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    Science.gov (United States)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  18. Zoning and exsolution in cumulate alkali feldspars from the eruption (12.9 Ka) of Laacher see volcano (Western Germany) as an indicator of time-scales and dynamics of carbonate-silicate unmixing

    Science.gov (United States)

    Sourav Rout, Smruti; Wörner, Gerhard

    2017-04-01

    Time-scales extracted from the detailed analysis of chemically zoned minerals provide insights into crystal ages, magma storage and compositional evolution, including mixing and unmixing events. This allows having a better understanding of pre-eruptive history of large and potentially dangerous magma chambers. We present a comprehensive study of chemical diffusion across zoning and exsolution patterns of alkali feldspars in carbonatite-bearing cognate syenites from the 6.3 km3 (D.R.E) phonolitic Laacher See Tephra (LST) eruption 12.9 ka ago. The Laacher See volcano is located in the Quaternary East Eifel volcanic field of the Paleozoic Rhenish Massif in Western Germany and has produced a compositionally variable sequence in a single eruption from a magma chamber that was zoned from mafic phonolite at the base to highly evolved, actively degassing phonolite magma at the top. Diffusion chronometry is applied to major and trace element compositions obtained on alkali feldspars from carbonate-bearing syenitic cumulates. Methods used were laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) in combination with energy-dispersive and wavelength-dispersive electron microprobe analyses (EDS & WDS-EMPA). The grey scale values extracted from multiple accumulations of back-scattered electron images represent the K/Na ratio owing to the extremely low concentrations of Ba and Sr (transition and phase separation). A distinctive uphill diffusive analysis is used specifically for the phase separation in the case of exsolution features (comprising of albite- and orthoclase-rich phases) in sanidines. The error values are aggregates of propagated error through calculations and the uncertainty in temperature values. Trace element compositional data of distinct feldspar compositions that are assumed to have grown before and after silicate-carbonate unmixing are used to estimate partition coefficients between carbonate and silicate melt. The resulting values correlate

  19. Geochemistry and origin of metamorphosed mafic rocks from the Lower Paleozoic Moretown and Cram Hill Formations of North-Central Vermont: Delamination magmatism in the western New England appalachians

    Science.gov (United States)

    Coish, Raymond; Kim, Jonathan; Twelker, Evan; Zolkos, Scott P.; Walsh, Gregory J.

    2015-01-01

    The Moretown Formation, exposed as a north-trending unit that extends from northern Vermont to Connecticut, is located along a critical Appalachian litho-tectonic zone between the paleomargin of Laurentia and accreted oceanic terranes. Remnants of magmatic activity, in part preserved as metamorphosed mafic rocks in the Moretown Formation and the overlying Cram Hill Formation, are a key to further understanding the tectonic history of the northern Appalachians. Field relationships suggest that the metamorphosed mafic rocks might have formed during and after Taconian deformation, which occurred at ca. 470 to 460 Ma. Geochemistry indicates that the sampled metamorphosed mafic rocks were mostly basalts or basaltic andesites. The rocks have moderate TiO2 contents (1–2.5 wt %), are slightly enriched in the light-rare earth elements relative to the heavy rare earths, and have negative Nb-Ta anomalies in MORB-normalized extended rare earth element diagrams. Their chemistry is similar to compositions of basalts from western Pacific extensional basins near volcanic arcs. The metamorphosed mafic rocks of this study are similar in chemistry to both the pre-Silurian Mount Norris Intrusive Suite of northern Vermont, and also to some of Late Silurian rocks within the Lake Memphremagog Intrusive Suite, particularly the Comerford Intrusive Complex of Vermont and New Hampshire. Both suites may be represented among the samples of this study. The geochemistry of all samples indicates that parental magmas were generated in supra-subduction extensional environments during lithospheric delamination.

  20. AC electrical breakdown phenomena of epoxy/layered silicate nanocomposite in needle-plate electrodes.

    Science.gov (United States)

    Park, Jae-Jun; Lee, Jae-Young

    2013-05-01

    Epoxy/layered silicate nanocomposite for the insulation of heavy electric equipments were prepared by dispersing 1 wt% of a layered silicate into an epoxy matrix with a homogenizing mixer and then AC electrical treeing and breakdown tests were carried out. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that nano-sized monolayers were exfoliated from a multilayered silicate in the epoxy matrix. When the nano-sized silicate layers were incorporated into the epoxy matrix, the breakdown rate in needle-plate electrode geometry was 10.6 times lowered than that of the neat epoxy resin under the applied electrical field of 520.9 kV/mm at 30 degrees C, and electrical tree propagated with much more branches in the epoxy/layered silicate nanocomposite. These results showed that well-dispersed nano-sized silicate layers retarded the electrical tree growth rate. The effects of applied voltage and ambient temperature on the tree initiation, growth, and breakdown rate were also studied, and it was found that the breakdown rate was largely increased, as the applied voltage and ambient temperature increased.

  1. Uranium-thorium silicates, with specific reference to the species in the Witwatersrand reefs

    International Nuclear Information System (INIS)

    Smits, G.

    1987-01-01

    (U,Th)-silicates form two complete series of anhydrous and hydrated species with general formulae (U,Th)SiO 4 and (U,Th)SiO 4 .nH 2 O respectively. The end-members of the anhydrous series are anhydrous coffinite and thorite, and those of the hydrated series, coffinite and thorogummite. Although the silicates are relatively rare in nature, coffinite is a common ore mineral in uranium deposits of the sandstone type. In the Witwatersrand reefs, (U,Th)-silicates are extremely rare in most reefs, except for the Elsburg Reefs on the West Rand Goldfield and the Dominion Reef. In these reefs detrital uraninite has been partly or entirely transformed to (U,Th)-silicates of coffinite composition, but thorite and thorogummite of detrital origin are also found in the Dominion Reef. In leaching tests on polished sections of rock samples containing (U,Th)-silicates, a dilute sulphuric acid solution, to which ferric iron had been added, was used as the lixiviant. It appeared that the dissolution of coffinite is less rapid than that of uraninite and uraniferous leucoxene. However, the reaction of silicates of high thorium content is much slower, and was not completed during the tests

  2. Revisiting classical silicate dissolution rate laws under hydrothermal conditions

    Science.gov (United States)

    Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand

    2015-04-01

    apparent modification of silicate dissolution rate over time. In addition, we evidenced that the relation between K-spar dissolution rate and ΔG depends on the crystallographic orientation of the altered surface, and differs from the transition state theory currently implemented into geochemical codes. Importantly, this theoretical curve overestimates the dissolution rates measured in close-to-equilibrium conditions. Taken together, the new findings show promise as a means for improving the accuracy of geochemical simulations. [1] Schott, J., Pokrovsky, O. S., and Oelkers, E. H., 2009. The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry. Rev Mineral Geochem 70, 207-258. [2] Daval, D., Hellmann, R., Saldi, G. D., Wirth, R., and Knauss, K. G., 2013. Linking nm-scale measurements of the anisotropy of silicate surface reactivity to macroscopic dissolution rate laws: New insights based on diopside. Geochim Cosmochim Acta 107, 121-134.

  3. Water-bearing, high-pressure Ca-silicates

    Science.gov (United States)

    Németh, Péter; Leinenweber, Kurt; Ohfuji, Hiroaki; Groy, Thomas; Domanik, Kenneth J.; Kovács, István J.; Kovács, Judit S.; Buseck, Peter R.

    2017-07-01

    Water-bearing minerals provide fundamental knowledge regarding the water budget of the mantle and are geophysically significant through their influence on the rheological and seismic properties of Earth's interior. Here we investigate the CaO-SiO2-H2O system at 17 GPa and 1773 K, corresponding to mantle transition-zone condition, report new high-pressure (HP) water-bearing Ca-silicates and reveal the structural complexity of these phases. We document the HP polymorph of hartrurite (Ca3SiO5), post-hartrurite, which is tetragonal with space group P4/ncc, a = 6.820 (5), c = 10.243 (8) Å, V = 476.4 (8) Å3, and Z = 4, and is isostructural with Sr3SiO5. Post-hartrurite occurs in hydrous and anhydrous forms and coexists with larnite (Ca2SiO4), which we find also has a hydrous counterpart. Si is 4-coordinated in both post-hartrurite and larnite. In their hydrous forms, H substitutes for Si (4H for each Si; hydrogrossular substitution). Fourier transform infrared (FTIR) spectroscopy shows broad hydroxyl absorption bands at ∼3550 cm-1 and at 3500-3550 cm-1 for hydrous post-hartrurite and hydrous larnite, respectively. Hydrous post-hartrurite has a defect composition of Ca2.663Si0.826O5H1.370 (5.84 weight % H2O) according to electron-probe microanalysis (EPMA), and the Si deficiency relative to Ca is also observed in the single-crystal data. Hydrous larnite has average composition of Ca1.924Si0.851O4H0.748 (4.06 weight % H2O) according to EPMA, and it is in agreement with the Si occupancy obtained using X-ray data collected on a single crystal. Superlattice reflections occur in electron-diffraction patterns of the hydrous larnite and could indicate crystallographic ordering of the hydroxyl groups and their associated cation defects. Although textural and EPMA-based compositional evidence suggests that hydrous perovskite may occur in high-Ca-containing (or low silica-activity) systems, the FTIR measurement does not show a well-defined hydroxyl absorption band for this

  4. Sodium silicate solutions from dissolution of glasswastes. Statistical analysis

    Directory of Open Access Journals (Sweden)

    Torres-Carrasco, M.

    2014-05-01

    Full Text Available It has studied the solubility process of four different waste glasses (with different particle sizes, 125 µm in alkaline solutions (NaOH and NaOH/Na₂CO₃ and water as a reference and under different conditions of solubility (at room temperature, at 80°C and a mechano-chemical process. Have established the optimal conditions of solubility and generation of sodium silicates solutions, and these were: the smaller particle size (Se ha estudiado el proceso de solubilidad de cuatro diferentes residuos vítreos (con distintas granulometrías, 125 µm en disoluciones alcalinas de NaOH y NaOH/Na₂CO₃ y agua como medio de referencia y bajo distintas condiciones de solubilidad (a temperatura ambiente, a 80°C y con un proceso mecano-químico. Se han establecido las condiciones óptimas de solubilidad y generación de disoluciones de silicato sódico, y estas son: menor tamaño de partícula del residuo vítreo (inferior a 45 µm, con la disolución de NaOH/Na₂CO₃ y tratamiento térmico a 80°C durante 6 horas de agitación. El análisis estadístico realizado a los resultados obtenidos da importancia a las variables estudiadas y a las interacciones de las mismas. A través de ²⁹Si RMN MAS se ha confirmado la formación, tras los procesos de disolución, de un silicato monomérico, apto para su utilización como activador en la preparación de cementos y hormigones alcalinos.

  5. Modeling Silicate Weathering for Elevated CO2 and Temperature

    Science.gov (United States)

    Bolton, E. W.

    2016-12-01

    A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.

  6. Aluminosilicate Dissolution and Silicate Carbonation during Geologic CO2 Sequestration

    Science.gov (United States)

    Min, Yujia

    Geologic CO2 sequestration (GCS) is considered a promising method to reduce anthropogenic CO2 emission. Assessing the supercritical CO2 (scCO2) gas or liquid phase water (g, l)-mineral interactions is critical to evaluating the viability of GCS processes. This work contributes to our understanding of geochemical reactions at CO 2-water (g, l)-mineral interfaces, by investigating the dissolution of aluminosilicates in CO2-acidified water (l). Plagioclase and biotite were chosen as model minerals in reservoir rock and caprock, respectively. To elucidate the effects of brine chemistry, first, the influences of cations in brine including Na, Ca, and K, have been investigated. In addition to the cations, the effects of abundant anions including sulfate and oxalate were also examined. Besides the reactions in aqueous phase, we also examine the carbonation of silicates in water (g)-bearing supercritical CO2 (scCO2) under conditions relevant to GCS. For the metal carbonation, in particular, the effects of particle sizes, water, temperature, and pressure on the carbonation of wollastonite were systematically examined. For understanding the cations effects in brine, the impacts of Na concentrations up to 4 M on the dissolution of plagioclase and biotite were examined. High concentrations of Na significantly inhibited plagioclase dissolution by competing adsorption with proton and suppressing proton-promoted dissolution. Ca has a similar effect to Na, and their effects did not suppress each other when Na and Ca co-existed. For biotite, the inhibition effects of Na coupled with an enhancing effect due to ion exchange reaction between Na and interlayer K, which cracked the basal surfaces of biotite. The K in aqueous phase significantly inhibited the dissolution. If the biotite is equilibrated with NaCl solutions initially, the biotite dissolved faster than the original biotite and the dissolution was inhibited by Na and K in brine. The outcomes improve our current knowledge of

  7. Experimental evidence for Mo isotope fractionation between metal and silicate liquids

    Science.gov (United States)

    Hin, Remco C.; Burkhardt, Christoph; Schmidt, Max W.; Bourdon, Bernard; Kleine, Thorsten

    2013-10-01

    Stable isotope fractionation of siderophile elements may inform on the conditions and chemical consequences of core-mantle differentiation in planetary objects. The extent to which Mo isotopes fractionate during such metal-silicate segregation, however, is so far unexplored. We have therefore investigated equilibrium fractionation of Mo isotopes between liquid metal and liquid silicate to evaluate the potential of Mo isotopes as a new tool to study core formation. We have performed experiments at 1400 and 1600 °C in a centrifuging piston cylinder. Tin was used to lower the melting temperature of the Fe-based metal alloys to double spike technique. In experiments performed at 1400 °C, the 98Mo/95Mo ratio of silicate is 0.19±0.03‰ (95% confidence interval) heavier than that of metal. This fractionation is not significantly affected by the presence or absence of carbon. Molybdenum isotope fractionation is furthermore independent of oxygen fugacity in the range IW -1.79 to IW +0.47, which are plausible values for core formation. Experiments at 1600 °C show that, at equilibrium, the 98Mo/95Mo ratio of silicate is 0.12±0.02‰ heavier than that of metal and that the presence or absence of Sn does not affect this fractionation. Equilibrium Mo isotope fractionation between liquid metal and liquid silicate as a function of temperature can therefore be described as ΔMoMetal-Silicate98/95=-4.70(±0.59)×105/T2. Our experiments show that Mo isotope fractionation may be resolvable up to metal-silicate equilibration temperatures of about 2500 °C, rendering Mo isotopes a novel tool to investigate the conditions of core formation in objects ranging from planetesimals to Earth sized bodies.

  8. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    Science.gov (United States)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  9. EXPERIMENTAL INVESTIGATION OF IRRADIATION-DRIVEN HYDROGEN ISOTOPE FRACTIONATION IN ANALOGS OF PROTOPLANETARY HYDROUS SILICATE DUST

    Energy Technology Data Exchange (ETDEWEB)

    Roskosz, Mathieu; Remusat, Laurent [IMPMC, CNRS UMR 7590, Sorbonne Universités, Université Pierre et Marie Curie, IRD, Muséum National d’Histoire Naturelle, CP 52, 57 rue Cuvier, Paris F-75231 (France); Laurent, Boris; Leroux, Hugues, E-mail: mathieu.roskosz@mnhn.fr [Unité Matériaux et Transformations, Université Lille 1, CNRS UMR 8207, Bâtiment C6, F-59655 Villeneuve d’Ascq (France)

    2016-11-20

    The origin of hydrogen in chondritic components is poorly understood. Their isotopic composition is heavier than the solar nebula gas. In addition, in most meteorites, hydrous silicates are found to be lighter than the coexisting organic matter. Ionizing irradiation recently emerged as an efficient hydrogen fractionating process in organics, but its effect on H-bearing silicates remains essentially unknown. We report the evolution of the D/H of hydrous silicates experimentally irradiated by electrons. Thin films of amorphous silica, amorphous “serpentine,” and pellets of crystalline muscovite were irradiated at 4 and 30 keV. For all samples, irradiation leads to a large hydrogen loss correlated with a moderate deuterium enrichment of the solid residue. The entire data set can be described by a Rayleigh distillation. The calculated fractionation factor is consistent with a kinetically controlled fractionation during the loss of hydrogen. Furthermore, for a given ionizing condition, the deuteration of the silicate residues is much lower than the deuteration measured on irradiated organic macromolecules. These results provide firm evidence of the limitations of ionizing irradiation as a driving mechanism for D-enrichment of silicate materials. The isotopic composition of the silicate dust cannot rise from a protosolar to a chondritic signature during solar irradiations. More importantly, these results imply that irradiation of the disk naturally induces a strong decoupling of the isotopic signatures of coexisting organics and silicates. This decoupling is consistent with the systematic difference observed between the heavy organic matter and the lighter water typically associated with minerals in the matrix of most carbonaceous chondrites.

  10. Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol-gel route

    International Nuclear Information System (INIS)

    Nallamuthu, N.; Prakash, I.; Satyanarayana, N.; Venkateswarlu, M.

    2011-01-01

    Research highlights: → Nanocrystalline La 10 Si 6 O 27 material was synthesized by sol-gel method. → TG/DTA curves predicted the thermal behavior of the material. → FTIR spectra confirmed the formation of SiO 4 and La-O network in the La 10 Si 6 O 27 . → XRD patterns confirmed the formation of pure crystalline La 10 Si 6 O 27 phase. → The grain interior and the grain boundary conductivities are evaluated. - Abstract: Nanocrystalline apatite type structured lanthanum silicate (La 10 Si 6 O 27 ) sample was synthesized by sol-gel process. Thermal behavior of the dried gel of lanthanum silicate sample was studied using TG/DTA. The structural coordination of the dried gel of lanthanum silicate, calcined at various temperatures, was identified from the observed FTIR spectral results. The observed XRD patterns of the calcined dried gel were compared with the ICDD data and confirmed the formation of crystalline lanthanum silicate phase. The average crystalline size of La 10 Si 6 O 27 was calculated using the Scherrer formula and it is found to be ∼80 nm. The observed SEM images of the lanthanum silicate indicate the formation of the spherical particles and the existence of O, Si and La in the lanthanum silicate are confirmed from the SEM-EDX spectrum. The grain and grain boundary conductivities are evaluated by analyzing the measured impedance data, using winfit software, obtained at different temperatures, of La 10 Si 6 O 27 sample. Also, the observed grain and grain boundary conductivity behaviors of the La 10 Si 6 O 27 sample are analysed using brick layer model. The electrical permittivity and electrical modulus were calculated from the measured impedance data and were analyzed by fitting through the Havriliak and Negami function to describe the dielectric relaxation behavior of the nanocrystalline lanthanum silicate.

  11. Multiple magmatism in an evolving suprasubduction zone mantle wedge: The case of the composite mafic-ultramafic complex of Gaositai, North China Craton

    Science.gov (United States)

    Yang, Fan; Santosh, M.; Tsunogae, T.; Tang, Li; Teng, Xueming

    2017-07-01

    The suprasubduction zone mantle wedge of active convergent margins is impregnated by melts and fluids leading to the formation of a variety of magmatic and metasomatic rock suites. Here we investigate a composite mafic-ultramafic intrusion at Gaositai, in the northern margin of the North China Craton (NCC). The hornblende gabbro-serpentinite-dunite-pyroxenite-gabbro-diorite suite surrounded by hornblendites of this complex has long been considered to represent an "Alaskan-type" zoned pluton. We present petrologic, mineral chemical, geochemical and zircon U-Pb and Lu-Hf data from the various rock types from Gaositai including hornblende gabbro, serpentinite, dunite, pyroxenite, diorite and the basement hornblendite which reveal the case of multiple melt generation and melt-peridotite interaction. Our new mineral chemical data from the mafic-ultramafic suite exclude an "Alaskan-type" affinity, and the bulk geochemical features are consistent with subduction-related magmatism with enrichment of LILE (K, Rb, and Ba) and LREE (La and Ce), and depletion of HFSE (Nb, Ta, Zr, and Hf) and HREE. Zircon U-Pb geochronology reveals that the hornblendites surrounding the Gaositai complex are nearly 2 billion years older than the intrusive complex and yield early Paleoproterozoic emplacement ages (2433-2460 Ma), followed by late Paleoproterozoic metamorphism (1897 Ma). The serpentinites trace the history of a long-lived and replenished ancient sub-continental lithospheric mantle with the oldest zircon population dated as 2479 Ma and 1896 Ma, closely corresponding with the ages obtained from the basement rock, followed by Neoproterozoic and Phanerozoic zircon growth. The oldest member in the Gaositai composite intrusion is the dunite that yields emplacement age of 755 Ma, followed by pyroxenite formed through the interaction of slab melt and wedge mantle peridotite at 401 Ma. All the rock suites also carry multiple population of younger zircons ranging in age from Paleozoic to

  12. Orogenic potassic mafic magmatism, a product of alkaline-peraluminous mixing ? Variscan 'calc-alkaline' rocks from the Central Iberian and Ossa Morena Zones, Central Spain.

    Science.gov (United States)

    Scarrow, Jane H.; Cambeses, Aitor; Bea, Fernando; Montero, Pilar; Molina, José F.; Moreno, Juan Antonio

    2013-04-01

    Orogenic magmatic rocks provide information about mantle and crust melt-generation and -interaction processes. In this context, minor potassic mafic stocks which are formed of enriched mantle and crustal components and are common as late-orogenic intrusions in granitic plutons give insight into the timing of new crust formation and crustal recycling. Potassic mafic stocks are prevalent, albeit low volume, constituents of granite batholiths all through the European Variscan (350-280 Ma). In the Central Iberia Zone, Spanish Central System, crustal-melt, S-type, granitoid plutons are intruded by minor concomitant ultramafic-intermediate appinitic-vaugneritic stocks. Notwithstanding their whole-rock calc-alkaline composition, the stocks apparently did not have a subduction-related origin. Recent studies have attributed their genesis to mixing of alkaline mantle and peraluminous crustal melts. Their primary alkaline character, as indicated by amphibole and biotite mineral chemistry data, points, rather, towards an extension-related genesis. In the Ossa Morena Zone, south of the Central Iberian Zone, the igneous rocks also have a whole-rock calc-alkaline composition which has been considered to be the result of northward subduction of the South Portuguese Zone. Nevertheless, identification of a 'sill' of significant volume of mafic magma in the middle crust, the ´IBERSEIS reflective body', in a seismic profile across the Ossa Morena and South Portuguese Zones has cast doubt upon the calc-alkaline magmatism-subduction model; leading, instead, to the magmatism being attributed to intra-orogenic extension related to a mantle plume active from 340 Ma to 330 Ma. The aim here, then, is to reinvestigate the petrogenesis and age of the calc-alkaline rocks of the Ossa Morena Zone to determine their tectonomagmatic context be it subduction-, plume- or extension-related, and establish what they may reveal about mantle-crust interactions. Focussing, initially, on the Valencia del

  13. Creep of Sylramic-iBN Fiber Tows at Elevated Temperature in Air and in Silicic Acid-Saturated Steam

    Science.gov (United States)

    2015-06-01

    CREEP OF SYLRAMIC-iBN FIBER TOWS AT ELEVATED TEMPERATURE IN AIR AND IN SILICIC ACID-SATURATED STEAM ...protection in the United States. AFIT-ENY-15-J-46 CREEP OF SYLRAMIC-iBN FIBER TOWS AT ELEVATED TEMPERATURE IN AIR AND IN SILICIC ACID-SATURATED STEAM ...DISTRIBUTION UNLIMITED. AFIT-ENY-15-J-46 CREEP OF SYLRAMIC-iBN FIBER TOWS AT ELEVATED TEMPERATURE IN AIR AND IN SILICIC ACID-SATURATED STEAM

  14. High-Temperature Thermal Diffusivity Measurements of Silicate Glasses

    Science.gov (United States)

    Pertermann, M.; Hofmeister, A. M.; Whittington, A. G.; Spera, F. J.; Zayac, J.

    2005-12-01

    Transport of heat in geologically relevant materials is of great interest because of its key role in heat transport, magmatism and volcanic activity on Earth. To better understand the thermal properties of magmatic materials at high temperatures, we measured the thermal diffusivity of four synthetic end-member silicate glasses with the following compositions: albite (NaAlSi3O8), orthoclase (KAlSi3O8), anorthite (CaAl2Si2O8), and diopside (CaMgSi2O6). Thermal diffusivity measurements were conducted with the laser-flash technique and data were acquired from room temperature to a maximum temperature near 1100°C, depending on the glass transition temperature. The presence of sub-mm sized bubbles in one of the orthoclase samples had no discernable effect on measured diffusivities. At room temperature, the three feldspar-type glasses have thermal diffusivity (D) values of 0.58-0.61 mm2/s, whereas the diopside glass has 0.52 mm2/s. With increasing temperature, D decreases by 5-10% (relative) for all samples and becomes virtually constant at intermediate temperatures. At higher temperatures, the anorthite and diopside glasses exhibit significant drops in thermal diffusivity over a 50-100°C interval, correlating with previously published heat capacity changes near the glass transition for these compositions. For anorthite, D (in mm2/s) decreases from 0.48 at 750-860°C to 0.36 at 975-1075°C; for diopside, D changes from 0.42 at 630-750°C to 0.30 at 850-910°C, corresponding to relative drops of 24 and 29%, respectively. Albite and orthoclase glasses do not exhibit this change and also lack significant changes in heat capacity near the glass transition. Instead, D is constant at 400-800°C for albite, and for orthoclase values go through a minimum at 500-600°C before increasing slightly towards 1100°C but it never exceeds the room temperature D. Our data on thermal diffusivity correlate closely with other thermophysical properties. Thus, at least in case of simple

  15. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide

  16. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts

    Science.gov (United States)

    Liu, Yanan; Samaha, Naji-Tom; Baker, Don R.

    2007-04-01

    The sulfur concentration in silicate melts at sulfide saturation (SCSS) was experimentally investigated in a temperature range from 1150 to 1450 °C and a pressure range from 500 MPa to 1 GPa in a piston-cylinder apparatus. The investigated melt compositions varied from rhyolitic to basaltic and water concentrations varied from 0 to ˜9 wt%. All experiments were saturated with FeS melt or pyrrhotite crystals. Temperature was confirmed to have a positive effect on the SCSS. Experimental oxygen fugacities were either near the carbon-carbon monoxide buffer or one log unit above the nickel-nickel oxide buffer, and found to positively affect the SCSS. Combining our results with data from the literature we constructed a model to predict the SCSS in melts ranging in composition from komatiitic to rhyolitic, with water concentrations from 0 to 9 wt%, at pressures from 1 bar to 9 GPa and oxygen fugacities between ˜2 log units below the fayalite-magnetite-quartz buffer to ˜2 log units above it. The coefficients were obtained by multiple linear regression of experimental data and the best model found for the prediction of the SCSS is: ln(Sinppm)=11.35251-{4454.6}/{T}-0.03190{P}/{T}+0.71006ln(MFM)-1.98063[(MFM)(XO)]+0.21867ln(XO)+0.36192lnX where P is in bar, T is in K, MFM is a compositional parameter describing the melt based upon cation mole fractions: MFM={Na+K+2(Ca+Mg+Fe)}/{Si×(Al+Fe)}, XO is the mole fraction of water in the melt, and X is the mole fraction of FeO in the melt. This model was independently tested against experiments performed on anhydrous and hydrous melts in the temperature range from 800 to 1800 °C and 1-9 GPa. The model typically predicts the measured values of the natural log of the SCSS (in ppm) for komatiitic to rhyolitic (˜42 to ˜74 wt% SiO 2) melts to within 5% relative, but is less accurate for high-silica (>76 wt% SiO 2) rhyolites, especially those with molar ratios of iron to sulfur below 2. We demonstrate how this model can be used with

  17. Silicic magma differentiation in ascent conduits. Experimental constraints

    Science.gov (United States)

    Rodríguez, Carmen; Castro, Antonio

    2017-02-01

    Crystallization of water-bearing silicic magmas in a dynamic thermal boundary layer is reproduced experimentally by using the intrinsic thermal gradient of piston-cylinder assemblies. The standard AGV2 andesite under water-undersaturated conditions is set to crystallize in a dynamic thermal gradient of about 35 °C/mm in 10 mm length capsules. In the hotter area of the capsule, the temperature is initially set at 1200 °C and decreases by programmed cooling at two distinct rates of 0.6 and 9.6 °C/h. Experiments are conducted in horizontally arranged assemblies in a piston cylinder apparatus to avoid any effect of gravity settling and compaction of crystals in long duration runs. The results are conclusive about the effect of water-rich fluids that are expelled out the crystal-rich zone (mush), where water saturation is reached by second boiling in the interstitial liquid. Expelled fluids migrate to the magma ahead of the solidification front contributing to a progressive enrichment in the fluxed components SiO2, K2O and H2O. The composition of water-rich fluids is modelled by mass balance using the chemical composition of glasses (quenched melt). The results are the basis for a model of granite magma differentiation in thermally-zoned conduits with application of in-situ crystallization equations. The intriguing textural and compositional features of the typical autoliths, accompanying granodiorite-tonalite batholiths, can be explained following the results of this study, by critical phenomena leading to splitting of an initially homogeneous magma into two magma systems with sharp boundaries. Magma splitting in thermal boundary layers, formed at the margins of ascent conduits, may operate for several km distances during magma transport from deep sources at the lower crust or upper mantle. Accordingly, conduits may work as chromatographic columns contributing to increase the silica content of ascending magmas and, at the same time, leave behind residual mushes that

  18. The Effect of Al on the Compressibility of Silicate Perovskite

    Science.gov (United States)

    Walter, M. J.; Kubo, A.; Yoshino, T.; Koga, K. T.; Ohishi, Y.

    2003-12-01

    Experimental data on compressibility of aluminous silicate perovskite show widely disparate results. Several studies show that Al causes a dramatic increase in compressibility1-3, while another study indicates a mild decrease in compressibility4. Here we report new results for the effect of Al on the room-temperature compressibility of perovskite using in situ X-ray diffraction in the diamond anvil cell from 30 to 100 GPa. We studied compressibility of perovskite in the system MgSiO3-Al2O3 in compositions with 0 to 25 mol% Al. Perovskite was synthesized from starting glasses using laser-heating in the DAC, with KBr as a pressure medium. Diffraction patterns were obtained using monochromatic radiation and an imaging plate detector at beamline BL10XU, SPring8, Japan. Addition of Al into the perovskite structure causes systematic increases in orthorhombic distortion and unit cell volume at ambient conditions (V0). Compression of the perovskite unit cell is anisotropic, with the a axis about 25% and 3% more compressive than the b and c axes, respectively. The magnitude of orthorhombic distortion increases with pressure, but aluminous perovskite remains stable to at least 100 GPa. Our results show that Al causes only a mild increase in compressibility, with the bulk modulus (K0) decreasing at a rate of 0.7 GPa/0.01 XAl. This increase in compressibility is consistent with recent ab initio calculations if Al mixes into both the 6- and 8-coordinated sites by coupled substitution5, where 2 Al3+ = Mg2+ + Si4+. Our results together with those of [4] indicate that this substitution mechanism predominates throughout the lower mantle. Previous mineralogic models indicating the upper and lower mantle are compositionally similar in terms of major elements remain effectively unchanged because solution of 5 mol% Al into perovskite has a minor effect on density. 1. Zhang & Weidner (1999). Science 284, 782-784. 2. Kubo et al. (2000) Proc. Jap. Acad. 76B, 103-107. 3. Daniel et al

  19. I-Xe dating of silicate and troilite from IAB iron meteorites

    International Nuclear Information System (INIS)

    Niemeyer, S.

    1978-01-01

    The IAB iron meteorites may be related to the chondrites; siderophile elements in the metal matrix have chondritic abundances, and the abundant silicate inclusions are chondritic both in mineralogy and in chemical composition. Silicate and troilite (FeS) and IAB irons were analyzed by the I-Xe technique. Four IAB silicate samples gave well-defined I-Xe ages [in millions of years relative to Bjurboele; the monitor error (+-2.5 m.y.) is not included]: -3.7 +- 0.3 for Woodbine, -0.7 +- 0.6 for Mundrabilla, +1.4 +- 0.7 for Copiapo, and +2.6 +- 0.6 for Landes. The ( 129 Xe/ 132 Xe)/sub trapped/ ratios are consistent with previous values for chondrites, with the exception of Landes which has an extraordinary trapped ratio of 3.5 +- 0.2. Both analyses of silicate from Pitts gave anomalous I-Xe patterns: intermediate-temperature points defined good correlations but higher-temperature (greater than or equal to 1400 0 C) points lay above (extra 129 Xe) these lines. The two correlations have different slopes, so it cannot be assigned a definite I-Xe age to Pitts silicate. Troilite samples from Mundrabilla and Pitts were also analyzed: Pitts troilite gave a complex I-Xe pattern, which suggests an age of +17 m.y.; Mundrabilla troilite defined a good I-Xe correlation, which after correction for neutron capture on 128 Te an age of -10.8 +- 0.7 m.y. Thus, surprisingly, low-melting troilite substantially predates high-melting silicate in Mundrabilla. Abundances of Ga, Ge, and Ni in metal from these meteorites are correlated with I-Xe ages of the silicate (referred to henceforth as the metal-silicate correlation). After exploring possible relationships between the I-Xe ages and other properties of the IAB group, it was concluded that the metal-silicate correlation, the old Mundrabilla troilite, and other results favor a nebular formation model (e.g. Wasson, 1970a)

  20. I-Xe dating of silicate and troilite from IAB iron meteorites

    International Nuclear Information System (INIS)

    Niemeyer, S.

    1979-01-01

    Silicate and troilite (FeS) from IAB irons were analyzed by the I-Xe technique. Four IAB silicate samples gave well-defined I-Xe ages [in millions of years relative to Bjurbole: - 3.7 +- 0.3 for Woodbine, -0.7 +- 0.6 for Mundrabilla, + 1.4 +- 0.7 for Copiapo, and +2.6 +- 0.6 for Landes. The ( 129 Xe/ 132 Xe)sub(trapped) ratios are consistent with previous values for chondrites, with the exception of Landes which has an extraordinary trapped ratio of 3.5 +- 0.2. Both analyses of silicate from Pitts gave anomalous I-Xe patterns. Troilite samples were also analyzed: Pitts troilite gave a complex I-Xe pattern, which suggests an age of +17 Myr; Mundrabilla troilite defined a good I-Xe correlation, which after correction for neutron capture on 128 Te gave an age of -10.8 +- 0.7 Myr. Thus, low-melting troilite predates high-melting silicate in Mundrabilla. Abundances of Ga, Ge, and Ni in metal from these meteorites are correlated with I-Xe ages of the silicate; meteorites with older silicates have greater Ni contents. No model easily accounts for this result as well as other properties of IAB irons; nevertheless, these results, taken at face value, favour a nebular formation model. The great age of troilite from Mundrabilla suggests that this troilite formed in a different nebular region from the silicate and metal, and was later mechanically mixed with these other phases. The correlation between the trace elements in the metal and the I-Xe ages of the silicate provides one of the first known instances in which another well-defined meteoritic property correlates with I-Xe ages. In addition, almost all the 129 Xe in Mundrabilla silicate (etched in acid) was correlated with 128 Xe. These two results further support the validity of the I-Xe dating method. (author)

  1. Effects of Bacterial Siderophore and Biofilm Synthesis on Silicate Mineral Dissolution Kinetics: Results from Experiments with Targeted Mutants

    Science.gov (United States)

    Van Den Berghe, M. D.; West, A. J.; Nealson, K. H.

    2018-05-01

    This project aims to characterize and quantify the specific microbial mechanisms and metabolic pathways responsible for silicate mineral dissolution and micronutrient acquisition directly from mineral phases.

  2. The preparation of zinc silicate/ZnO particles and their use as an efficient UV absorber

    Energy Technology Data Exchange (ETDEWEB)

    Podbrscek, Peter [National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana (Slovenia); Drazic, Goran [Department for Nanostructured Materials, Jozef Stefan Institute, Jamova 39, SI 1000 Ljubljana (Slovenia); Anzlovar, Alojz [National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana (Slovenia); Center of Excellence for Polymer Materials and Technologies, Tehnoloski Park 24, 1000 Ljubljana (Slovenia); Orel, Zorica Crnjak, E-mail: zorica.crnjak.orel@ki.si [National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana (Slovenia); Center of Excellence for Polymer Materials and Technologies, Tehnoloski Park 24, 1000 Ljubljana (Slovenia)

    2011-11-15

    Highlights: {yields} We used innovative gel-route in order to prepare zinc silicate/ZnO nano-particles. {yields} Continuous reactor was efficient for synthesizing ZnO and zinc silicate/ZnO precursors. {yields} Introduction of Si into reaction mixture influenced on particle size and their photoactivity. {yields} Prepared particles are appropriate for UV absorbers in polymers. -- Abstract: The formation of zinc silicate/ZnO particles synthesized by a two-step method and their incorporation into PMMA is presented. In the first step a segmented-flow tubular reactor was used for the continuous room-temperature preparation of a zinc silicate/Zn(OH){sub 2} gel that was thermally treated after rinsing and drying in the second step. The same preparation procedure was also employed for the synthesis of pure ZnO and pure zinc silicate particles. It was found that the presence of the zinc silicate phase significantly influenced the final particle size, decreased the degree of crystallization and reduced the particles' UV absorption capabilities. The reduced photocatalytic activity of the zinc silicate/ZnO particles indicated that the majority of ZnO crystallites were formed inside the zinc silicate matrix. The nanocomposite prepared from zinc silicate/ZnO particles (0.04 wt.%) and PMMA showed high UV shielding and at the same time sufficient transmittance in the visible-light region.

  3. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    Science.gov (United States)

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Water purification from cesium-137 and strontium-90 using natural and activated laminar and laminar-band silicates

    International Nuclear Information System (INIS)

    Kornilovich, B.Yu.; Pshinko, G.N.; Kosorukov, A.A.; Mas'ko, A.N.; Spasenova, L.N.; Dregval', T.N.

    1991-01-01

    Cesium-137 and strontium-90 radionuclides are studied for the process of their sorption from natural waters by basic representatives of disperse silicates: kaolinites of Glukhovetskoe and Glukhovskoe deposits (Ukraine), montmorillonites of the Cherkassy (Ukraine) and Oglanlin (Turkmenia) deposits, palygorskite and natural mixture of montmorillonite and palygorskite of the Cherkassy deposit. The best sorption properties are revealed for laminated silicates with a swelling structure (montmorillonites) and high-dispersive laminar-band silicates (palygorskite). It proved possible to improve sorption properties of silicate minerals for radionuclides by means of their mechanochemical activation

  5. The preparation of zinc silicate/ZnO particles and their use as an efficient UV absorber

    International Nuclear Information System (INIS)

    Podbrscek, Peter; Drazic, Goran; Anzlovar, Alojz; Orel, Zorica Crnjak

    2011-01-01

    Highlights: → We used innovative gel-route in order to prepare zinc silicate/ZnO nano-particles. → Continuous reactor was efficient for synthesizing ZnO and zinc silicate/ZnO precursors. → Introduction of Si into reaction mixture influenced on particle size and their photoactivity. → Prepared particles are appropriate for UV absorbers in polymers. -- Abstract: The formation of zinc silicate/ZnO particles synthesized by a two-step method and their incorporation into PMMA is presented. In the first step a segmented-flow tubular reactor was used for the continuous room-temperature preparation of a zinc silicate/Zn(OH) 2 gel that was thermally treated after rinsing and drying in the second step. The same preparation procedure was also employed for the synthesis of pure ZnO and pure zinc silicate particles. It was found that the presence of the zinc silicate phase significantly influenced the final particle size, decreased the degree of crystallization and reduced the particles' UV absorption capabilities. The reduced photocatalytic activity of the zinc silicate/ZnO particles indicated that the majority of ZnO crystallites were formed inside the zinc silicate matrix. The nanocomposite prepared from zinc silicate/ZnO particles (0.04 wt.%) and PMMA showed high UV shielding and at the same time sufficient transmittance in the visible-light region.

  6. Improved mechanical and corrosion properties of nickel composite coatings by incorporation of layered silicates

    Energy Technology Data Exchange (ETDEWEB)

    Tientong, J. [University of North Texas, Department of Chemistry, 1155 Union Circle #305070, Denton, TX 76203 (United States); Ahmad, Y.H. [Center for Advanced Materials, P.O. Box 2713, Qatar University, Doha (Qatar); Nar, M.; D' Souza, N. [University of North Texas, Department of Mechanical and Energy Engineering, Denton, TX 76207 (United States); Mohamed, A.M.A. [Center for Advanced Materials, P.O. Box 2713, Qatar University, Doha (Qatar); Golden, T.D., E-mail: tgolden@unt.edu [University of North Texas, Department of Chemistry, 1155 Union Circle #305070, Denton, TX 76203 (United States)

    2014-05-01

    Layered silicates as exfoliated montmorillonite are incorporated into nickel films by electrodeposition, enhancing both corrosion resistance and hardness. Films were deposited onto stainless steel from a plating solution adjusted to pH 9 containing nickel sulfate, sodium citrate, and various concentrations of exfoliated montmorillonite. The presence of the incorporated layered silicate was confirmed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The composite films were also compact and smooth like the pure nickel films deposited under the same conditions as shown by scanning electron microscopy. X-ray diffraction results showed that incorporation of layered silicates into the film do not affect the nickel crystalline fcc structure. The nanocomposite films exhibited improved stability and adhesion. Pure nickel films cracked and peeled from the substrate when immersed in 3.5% NaCl solution within 5 days, while the nanocomposite films remained attached even after 25 days. The corrosion resistance of the nickel nanocomposites was also improved compared to nickel films. Nickel-layered silicate composites showed a 25% increase in Young's modulus and a 20% increase in hardness over pure nickel films. - Highlights: • 0.05–2% of layered silicates are incorporated into crystalline nickel films. • Resulting composite films had improved stability and adhesion. • Corrosion resistance improved for the composite films. • Hardness improved 20% and young's modulus improved 25% for the composite films.

  7. Polymer/Silicate Nanocomposites Developed for Improved Strength and Thermal Stability

    Science.gov (United States)

    Campbell, Sandi G.

    2003-01-01

    Over the past decade, polymer-silicate nanocomposites have been attracting considerable attention as a method of enhancing polymer properties. The nanometer dimensions of the dispersed silicate reinforcement can greatly improve the mechanical, thermal, and gas barrier properties of a polymer matrix. In a study at the NASA Glenn Research Center, the dispersion of small amounts (less than 5 wt%) of an organically modified layered silicate (OLS) into the polymer matrix of a carbon-fiber-reinforced composite has improved the thermal stability of the composite. The enhanced barrier properties of the polymer-clay hybrid are believed to slow the diffusion of oxygen into the bulk polymer, thereby slowing oxidative degradation of the polymer. Electron-backscattering images show cracking of a nanocomposite matrix composite in comparison to a neat resin matrix composite. The images show that dispersion of an OLS into the matrix resin reduces polymer oxidation during aging and reduces the amount of cracking in the matrix significantly. Improvements in composite flexural strength, flexural modulus, and interlaminar shear strength were also obtained with the addition of OLS. An increase of up to 15 percent in these mechanical properties was observed in composites tested at room temperature and 288 C. The best properties were seen with low silicate levels, 1 to 3 wt%, because of the better dispersion of the silicate in the polymer matrix.

  8. Development of Silicate Extraction Method for Detection of Irradiated Potatoes by Thermoluminescence

    International Nuclear Information System (INIS)

    Teerasarn, Wannapha; Sudprasert, Wanwisa

    2009-07-01

    Full text: Thermoluminescence (TL) is a promising technique used for detection of irradiated foods. In practice, silicate minerals are first isolated from foods by density gradient with sodium poly tungstate of a density 2.0 g/cm 3 , which is very expensive. The study was carried out to develop a new low-cost reagent for silicate extraction. The silicate minerals were extracted from irradiated potatoes (at doses of 0, 0.05, 0.15, 0.25, 0.5 and 1 kGy) using potassium carbonate of a density 2 g/cm 3 . X-ray diffraction spectroscopy (XRD) was employed to investigate the types of silicate minerals present in the extracts. The TL measurement was performed to identify the irradiation status of the samples using a TL reader. The results showed that quartz was found as the major mineral of the samples. The TL analysis of glow curve showed that irradiated potatoes exhibited a maximum glow peak between 208-280 c degree, where as non-irradiated potatoes exhibited a maximum glow peak between 289-351 C degree. The results clearly indicated that the silicate minerals can effectively be isolated from potatoes by using potassium carbonate instead of sodium poly tungstate for the purpose of irradiation identification. In this sense, the cost of irradiation identification will be reduced at least 20 times comparing to using the conventional extraction reagent

  9. Production of a calcium silicate cement material from alginate impression material.

    Science.gov (United States)

    Washizawa, Norimasa; Narusawa, Hideaki; Tamaki, Yukimichi; Miyazaki, Takashi

    2012-01-01

    The purpose of this study was to synthesize biomaterials from daily dental waste. Since alginate impression material contains silica and calcium salts, we aimed to synthesize calcium silicate cement from alginate impression material. Gypsum-based investment material was also investigated as control. X-ray diffraction analyses revealed that although firing the set gypsum-based and modified investment materials at 1,200°C produced calcium silicates, firing the set alginate impression material did not. However, we succeeded when firing the set blend of pre-fired set alginate impression material and gypsum at 1,200°C. SEM observations of the powder revealed that the featured porous structures of diatomite as an alginate impression material component appeared useful for synthesizing calcium silicates. Experimentally fabricated calcium silicate powder was successfully mixed with phosphoric acid solution and set by depositing the brushite. Therefore, we conclude that the production of calcium silicate cement material is possible from waste alginate impression material.

  10. Influence of iron on crystallization behavior and thermal stability of the insulating materials - porous calcium silicates

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Yu, Donghong; Yue, Yuanzheng

    2017-01-01

    The properties of porous calcium silicate for high temperature insulation are strongly influenced by impurities. In this work we determine the influence of Fe3+ on the crystallization behavior and thermal stability of hydrothermally derived calcium silicate. We synthesize porous calcium silicate...... with Ca/Si molar ratio of 1, to which Fe2O3 is added with Fe/Si molar ratios of 0.1, 0.5, 0.7, 1.0, and 1.3%. Structure and morphology of the porous calcium silicate, with different iron concentrations, are investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). FTIR...... measurements reveal a pronounced decrease in the number of Q3 sites in the calcium silicate with an increase of Fe3+, and thereby lower the crystal fraction of xonotlite (Ca6Si6O17(OH)2) phase, and increase the crystal fractions of tobermorite(Ca5Si6O16(OH)2·4H2O) and calcite (CaCO3) phases, as confirmed...

  11. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    Science.gov (United States)

    Friederichs, Robert J; Chappell, Helen F; Shepherd, David V; Best, Serena M

    2015-07-06

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite

    Science.gov (United States)

    Friederichs, Robert J.; Chappell, Helen F.; Shepherd, David V.; Best, Serena M.

    2015-01-01

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100°C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. PMID:26040597

  13. Q-Speciation and Network Structure Evolution in Invert Calcium Silicate Glasses.

    Science.gov (United States)

    Kaseman, Derrick C; Retsinas, A; Kalampounias, A G; Papatheodorou, G N; Sen, S

    2015-07-02

    Binary silicate glasses in the system CaO-SiO2 are synthesized over an extended composition range (42 mol % ≤ CaO ≤ 61 mol %), using container-less aerodynamic levitation techniques and CO2-laser heating. The compositional evolution of Q speciation in these glasses is quantified using (29)Si and (17)O magic angle spinning nuclear magnetic resonance spectroscopy. The results indicate progressive depolymerization of the silicate network upon addition of CaO and significant deviation of the Q speciation from the binary model. The equilibrium constants for the various Q species disproportionation reactions for these glasses are found to be similar to (much smaller than) those characteristic of Li (Mg)-silicate glasses, consistent with the corresponding trends in the field strengths of these modifier cations. Increasing CaO concentration results in an increase in the packing density and structural rigidity of these glasses and consequently in their glass transition temperature Tg. This apparent role reversal of conventional network-modifying cations in invert alkaline-earth silicate glasses are compared and contrasted with that in their alkali silicate counterparts.

  14. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.

    Science.gov (United States)

    Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F

    2011-05-31

    Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.

  15. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    Science.gov (United States)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  16. Energetically benign synthesis of lanthanum silicate through “silica garden” route and its characterization

    International Nuclear Information System (INIS)

    Parmar, Kavita; Bhattacharjee, Santanu

    2017-01-01

    Lanthanum silicate synthesis through “silica garden” route has been reported as an alternative to energy intensive milling procedure. Under optimum conditions lanthanum chloride crystals react with water glass (sodium silicate) to produce self generating hollow lanthanum silicate precipitation tube(s) (LaSPT). The micro tubes are irregular, thick, white coloured and amorphous but are hierarchically built from smaller tubules of 10–20 nm diameters. They retain their amorphous nature on being heated up to 600 °C beyond which crystallization starts. The major phase in the LaSPT heated at 900 °C is La_2Si_2O_7. “As synthesized” LaSPT is heterogeneous and comprises non stoichiometric phases. The exterior and interior surfaces of these tubes are remarkably different in their morphology and chemical composition. LaSPT sintered at 1200 and 1300 °C show fair amount of ionic conductivity. - Graphical abstract: Lanthanum silicate precipitation tube (LaSPT) produced through ‘silica garden’ route offers a green alternative to energy intensive milling procedure. - Highlights: • La-silicate precipitation tube (LaSPT) synthesized via silica garden route. • The microtubes are irregular, thick, white coloured and amorphous. • They are hierarchically built from smaller tubules of 10–20 nm diameters. • The major phase in the LaSPT heated at 900 °C is La_2Si_2O_7. • LaSPT sintered at 1200 °C is fairly conducting.

  17. Geochemistry and geochronology of the ∼0.82 Ga high-Mg gabbroic dykes from the Quanji Massif, southeast Tarim Block, NW China: Implications for the Rodinia supercontinent assembly

    Science.gov (United States)

    Liao, Fanxi; Wang, Qinyan; Chen, Nengsong; Santosh, M.; Xu, Yixian; Mustafa, Hassan Abdelsalam

    2018-05-01

    The role of the Tarim Block in the reconstruction of the Neoproterozoic supercontinent Rodinia remains contentious. Here we report a suite of high-Mg gabbroic dykes from the Yingfeng area in northwestern Quanji Massif, which is considered as a fragment of the Tarim Block in NW China. Magmatic zircons from these dykes yield to have a weighted mean 206Pb/238U age of 822.2 ± 5.3 Ma, recording the timing of their emplacement. The gabbros have high MgO (9.91-13.09 wt%), Mg numbers (69.89-75.73) and CaO (8.41-13.55 wt%), medium FeOt (8.50-9.67 wt%) and TiO2 (0.67-0.93 wt%), variable Al2O3 (13.04-16.07 wt%), and high Cr (346.14-675.25 ppm), but relatively low Ni (138.72-212.94 ppm), suggestive of derivation from a primary magma. The rocks display chondrite-normalized LREE patterns with weak fractionation but flat HREE patterns relative to those of the N-MORB. Their primitive mantle normalized trace elemental patterns show positive Rb, Ba and U but negative Th, Nb, Ti and Zr anomalies, carrying characteristics of both mid-ocean ridge basalts and arc basalts. The εHf(t) values of the zircons from these rocks vary from +4.7 to +13.5 with depleted mantle model ages (TDM) of 1.23-0.85 Ga, and the youngest value nearly approaching that for the coeval depleted mantle, suggesting significant addition of juvenile materials. Our data suggest that the strongly depleted basaltic magma was probably sourced from a depleted mantle source that had undergone metasomatism by subduction-related components in a back-arc setting. Accordingly we postulate that a subduction-related tectonic regime possibly prevailed at ∼0.8 Ga along the southeastern margin of the Tarim Block. Combining with available information from the northern Tarim Block, we propose an opposite verging double-sided subduction model for coeval subduction of the oceanic crust beneath both the southern and northern margins of the Tarim Block during early Neoproterozoic.

  18. The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from Western Alpine ophiolites

    Science.gov (United States)

    Inglis, Edward C.; Debret, Baptiste; Burton, Kevin W.; Millet, Marc-Alban; Pons, Marie-Laure; Dale, Christopher W.; Bouilhol, Pierre; Cooper, Matthew; Nowell, Geoff M.; McCoy-West, Alex J.; Williams, Helen M.

    2017-07-01

    Arc lavas display elevated Fe3+/ΣFe ratios relative to MORB. One mechanism to explain this is the mobilization and transfer of oxidized or oxidizing components from the subducting slab to the mantle wedge. Here we use iron and zinc isotopes, which are fractionated upon complexation by sulfide, chloride, and carbonate ligands, to remark on the chemistry and oxidation state of fluids released during prograde metamorphism of subducted oceanic crust. We present data for metagabbros and metabasalts from the Chenaillet massif, Queyras complex, and the Zermatt-Saas ophiolite (Western European Alps), which have been metamorphosed at typical subduction zone P-T conditions and preserve their prograde metamorphic history. There is no systematic, detectable fractionation of either Fe or Zn isotopes across metamorphic facies, rather the isotope composition of the eclogites overlaps with published data for MORB. The lack of resolvable Fe isotope fractionation with increasing prograde metamorphism likely reflects the mass balance of the system, and in this scenario Fe mobility is not traceable with Fe isotopes. Given that Zn isotopes are fractionated by S-bearing and C-bearing fluids, this suggests that relatively small amounts of Zn are mobilized from the mafic lithologies in within these types of dehydration fluids. Conversely, metagabbros from the Queyras that are in proximity to metasediments display a significant Fe isotope fractionation. The covariation of δ56Fe of these samples with selected fluid mobile elements suggests the infiltration of sediment derived fluids with an isotopically light signature during subduction.

  19. A Low Viscosity Lunar Magma Ocean Forms a Stratified Anorthitic Flotation Crust With Mafic Poor and Rich Units: Lunar Magma Ocean Viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Dygert, Nick [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville TN USA; Lin, Jung-Fu [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Marshall, Edward W. [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Kono, Yoshio [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne IL USA; Gardner, James E. [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA

    2017-11-21

    Much of the lunar crust is monomineralic, comprising >98% plagioclase. The prevailing model argues the crust accumulated as plagioclase floated to the surface of a solidifying lunar magma ocean (LMO). Whether >98% pure anorthosites can form in a flotation scenario is debated. An important determinant of the efficiency of plagioclase fractionation is the viscosity of the LMO liquid, which was unconstrained. Here we present results from new experiments conducted on a late LMO-relevant ferrobasaltic melt. The liquid has an exceptionally low viscosity of 0.22 $+0.11\\atop{-0.19}$to 1.45 $+0.46\\atop{-0.82}$ Pa s at experimental conditions (1,300–1,600°C; 0.1–4.4 GPa) and can be modeled by an Arrhenius relation. Extrapolating to LMO-relevant temperatures, our analysis suggests a low viscosity LMO would form a stratified flotation crust, with the oldest units containing a mafic component and with very pure younger units. Old, impure crust may have been buried by lower crustal diapirs of pure anorthosite in a serial magmatism scenario.

  20. Upper Triassic mafic dykes of Lake Nyos, Cameroon (West Africa) I: K-Ar age evidence within the context of Cameroon Line magmatism, and the tectonic significance

    Science.gov (United States)

    Aka, Festus Tongwa; Hasegawa, Takeshi; Nche, Linus Anye; Asaah, Asobo Nkengmatia Elvis; Mimba, Mumbfu Ernestine; Teitchou, Isidore; Ngwa, Caroline; Miyabuchi, Yasuo; Kobayashi, Tetsuo; Kankeu, Boniface; Yokoyama, Tetsuya; Tanyileke, Gregory; Ohba, Takeshi; Hell, Joseph Victor; Kusakabe, Minoru

    2018-05-01

    The hydrodynamic fragmentation that formed Lake Nyos in northwest Cameroon did not only make it the most unpopular lake in the world from a gas disaster perspective, it also opened a rare and formidable window through which much of the geology of Cameroon can be studied in a single locality. The Cambrian quartz monzonite cliff excavated by the maar-forming explosion and exposed in its northeastern shore is intruded by mafic dykes, two of which we dated. Even though close to one another, the dykes are different in composition. The alkaline dyke yields a slightly older (Carnian) K-Ar fedspar age of 231.1 ± 4.8 Ma, while the sub alkaline dyke yields an age of 224.8 ± 4.7 Ma (Norian). Based on radioisotopic age data available over the last 48 years (347 data) for the Cameroon Line magmatism comprising eruptives and volcano-plutonic complexes, the Nyos dykes are way older than the Cameroon Line, and even pre-date the Lower Cretaceous initiation of west Gondwana fragmentation in Equatorial Atlantic domain. They would therefore not have been directly linked to the formation of the Cameroon Line. Alternatively, they might be associated with the development of intra-continental rift systems in West Central Africa that pre-dated west Gondwana breakup to form the Atlantic Ocean.

  1. Electrophoretic deposition of magnesium silicates on titanium implants: Ion migration and silicide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Afshar-Mohajer, M. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yaghoubi, A., E-mail: yaghoubi@siswa.um.edu.my [Center for High Impact Research, University of Malaya, Kuala Lumpur 50603 (Malaysia); Ramesh, S., E-mail: ramesh79@um.edu.my [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R.; Chin, K.M.C.; Tin, C.C. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chiu, W.S. [Low Dimensional Materials Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2014-07-01

    Magnesium silicates (Mg{sub x}SiO{sub y}) and in particular forsterite (Mg{sub 2}SiO{sub 4}) owing to their low thermal expansion mismatch with metals are promising materials for bioactive coating of implants. Here, we report the electrophoretic deposition (EPD) of forsterite onto titanium substrates using different precursors. Unlike bulk samples which achieve full stoichiometry only beyond 1400 °C, non-stoichiometric magnesium silicate rapidly decomposes into magnesium oxide nanowires during sintering. Elemental mapping and X-ray diffraction suggest that oxygen diffusion followed by ion exchange near the substrate leads to formation of an interfacial Ti{sub 5}Si{sub 3} layer. Pre-annealed forsterite powder on the other hand shows a comparatively lower diffusion rate. Overall, magnesium silicate coatings do not exhibit thermally induced microcracks upon sintering as opposed to calcium phosphate bioceramics which are currently in use.

  2. New Silica Magnetite Sorbent: The Influence of Variations of Sodium Silicate Concentrations on Silica Magnetite Character

    Science.gov (United States)

    Azmiyawati, C.; Pratiwi, P. I.; Darmawan, A.

    2018-04-01

    The adsorption capacity of an adsorbent is determined by the adsorbent and the adsorbate properties. The character of the adsorbent will play a major role in its ability to adsorb the corresponding adsorbate. Therefore, in this study we looked at the effects of variations of sodium silicate concentrations on the resulting magnetite silica adsorbent properties. The application of silica coating on the magnetite was carried out through a sol-gel process with sodium silicate and HCl precursors. Based on the characterization data obtained, it was found that the silica coating on magnetite can increase the resistance to acid leaching, increase the particle size, but decrease the magnetic properties of the magnetite. Based on Gas Sorption Analyzer (GSA) and X-ray Difraction (XRD) data it can successively be determined that increase in concentration of sodium silicate will increase the surface area and amorphous structure of the Silica Magnetie.

  3. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  4. Eu-, Tb-, and Dy-Doped Oxyfluoride Silicate Glasses for LED Applications

    DEFF Research Database (Denmark)

    Zhu, C.F.; Wang, J.; Zhang, M.M.

    2014-01-01

    Luminescence glass is a potential candidate for the light-emitting diodes (LEDs) applications. Here, we study the structural and optical properties of the Eu-, Tb-, and Dy-doped oxyfluoride silicate glasses for LEDs by means of X-ray diffraction, photoluminescence spectra, Commission Internationale...... de L’Eclairage (CIE) chromaticity coordinates, and correlated color temperatures (CCTs). The results show that the white light emission can be achieved in Eu/Tb/Dy codoped oxyfluoride silicate glasses under excitation by near-ultraviolet light due to the simultaneous generation of blue, green, yellow......, and red-light wavelengths from Tb, Dy, and Eu ions. The optical performances can be tuned by varying the glass composition and excitation wavelength. Furthermore, we observed a remarkable emission spectral change for the Tb3+ single-doped oxyfluoride silicate glasses. The 5D3 emission of Tb3+ can...

  5. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  6. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    International Nuclear Information System (INIS)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-01-01

    We report results on lithium alumino-silicate ion source development in preparation for warm-dense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCX-II). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ∼1275 C, a space-charge-limited Li + beam current density of J ∼1 mA/cm 2 was obtained. The lifetime of the ion source was ∼50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 (micro) s.

  7. Porous Silicates Modified with Zirconium Oxide and Sulfate Ions for Alcohol Dehydration Reactions

    Directory of Open Access Journals (Sweden)

    Heriberto Esteban Benito

    2015-01-01

    Full Text Available Porous silicates were synthesized by a nonhydrothermal method, using sodium silicate as a source of silica and cetyltrimethylammonium bromide as a template agent. Catalysts were characterized using thermogravimetric analysis, N2 physisorption, X-ray diffraction, FTIR spectroscopy, pyridine adsorption, potentiometric titration with n-butylamine, scanning electronic microscopy, and transmission electronic microscopy. The surface area of the materials synthesized was greater than 800 m2/g. The introduction of zirconium atoms within the porous silicates increased their acid strength from −42 to 115 mV, while the addition of sulfate ions raised this value to 470 mV. The catalytic activity for the dehydration of alcohols yields conversions of up to 70% for ethanol and 30% for methanol.

  8. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

    Science.gov (United States)

    Shen, Xiao-liang; Wang, Yue; Zhu, Qi-feng; Lü, Peng; Li, Wei-nan; Liu, Chun-xiao

    2018-03-01

    The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.

  9. To the question of peculiarities of thermal activation of natural siliceous raw material

    Directory of Open Access Journals (Sweden)

    Chumachenko Natalya

    2017-01-01

    Full Text Available The results of research of activity enhancement of natural siliceous raw material are given in the article. Fossil meal of Khotynetsky deposit, diatomite of Sharlovsky deposit, silica clay of Balasheika deposit were used as natural active mineral admixtures. The influence of heat-treating temperature and dispersion on activity of different types of siliceous raw material is studied. The increase of activity of fixation of Ca(OH2 in several times is traced after heat-treating at a certain temperature in the range from 100 to 800°C. The type of activity change is discovered. Explanation is given connected with the change of silica structure in the surface layer. Parameters of the highest activity are defined for every type of siliceous raw material.

  10. Shear-peel strength comparison of orthodontic band cements including novel calcium silicate

    DEFF Research Database (Denmark)

    Leo, Mariantonietta; Løvschall, Henrik

    calcium silicate with fluoride and fast-setting, Glass ionomer, and Zinc phosphate cement, used for luting of orthodontic bands on molars kept one month in phosphate buffering solution (PBS). Materials and methods: The roots of 35 extracted human molars were embedded in acryl. Three groups were allocated....... An orthodontic band (AO) was fitted on the free crown. Each group of the teeth (n>10) was cemented with novel calcium silicate (Protooth), Glass ionomer (Orthocem), or Zinc phosphate (DeTrey Zinc). The cements were mixed according to the manufacturers instructions. Samples were stored at 37ºC in humid chamber...... Silicate (Protooth) and Zinc phosphate cement (DeTrey Zinc) were significantly higher than Glass ionomer cement (Orthocem) when looking for the force (N, p

  11. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    Directory of Open Access Journals (Sweden)

    Suwimon Ruengsri

    2014-01-01

    Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.

  12. Rapid screening of nuclear grade zirconium silicate without separation of hafnium from the bulk matrix

    International Nuclear Information System (INIS)

    Venkatesh, Manisha; Sharma, P.K.; Avhad, D.K.; Basu, H.; Singhal, R.K.; Reddy, A.V.R.

    2014-01-01

    Zirconium silicate, also zirconium orthosilicate, (ZrSiO 4 ) is a chemical compound, and occurs in nature as zircon, a silicate mineral. The concentration of Hafnium in nuclear grade Zirconium must be less than 0.2% w/w of Zr. In view of this it must be accurately chemically characterized before issuing a certification for export under non nuclear category. As the chemistry of Zr and Hf is similar, it is difficult to separate Hf by direct wet chemical method. During this work, concentration of Hf in zirconium silicate was measured by Field Portable X-ray Fluorescence (FPXRF) and results obtained were validated by using detailed chemical method. FPXRF spectrometry has become a common analytical technique for on-site screening and fast turnaround analysis of contaminant elements in environmental samples

  13. ION-INDUCED PROCESSING OF COSMIC SILICATES: A POSSIBLE FORMATION PATHWAY TO GEMS

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, C.; Sabri, T. [Max Planck Institute for Astronomy, Heidelberg, Laboratory Astrophysics and Cluster Physics Group, Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany); Wendler, E. [Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany); Henning, Th., E-mail: cornelia.jaeger@uni-jena.de [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-11-01

    Ion-induced processing of dust grains in the interstellar medium and in protoplanetary and planetary disks plays an important role in the entire dust cycle. We have studied the ion-induced processing of amorphous MgFeSiO{sub 4} and Mg{sub 2}SiO{sub 4} grains by 10 and 20 keV protons and 90 keV Ar{sup +} ions. The Ar{sup +} ions were used to compare the significance of the light protons with that of heavier, but chemically inert projectiles. The bombardment was performed in a two-beam irradiation chamber for in situ ion-implantation at temperatures of 15 and 300 K and Rutherford Backscattering Spectroscopy to monitor the alteration of the silicate composition under ion irradiation. A depletion of oxygen from the silicate structure by selective sputtering of oxygen from the surface of the grains was observed in both samples. The silicate particles kept their amorphous structure, but the loss of oxygen caused the reduction of ferrous (Fe{sup 2+}) ions and the formation of iron inclusions in the MgFeSiO{sub 4} grains. A few Si inclusions were produced in the iron-free magnesium silicate sample pointing to a much less efficient reduction of Si{sup 4+} and formation of metallic Si inclusions. Consequently, ion-induced processing of magnesium-iron silicates can produce grains that are very similar to the glassy grains with embedded metals and sulfides frequently observed in interplanetary dust particles and meteorites. The metallic iron inclusions are strong absorbers in the NIR range and therefore a ubiquitous requirement to increase the temperature of silicate dust grains in IR-dominated astrophysical environments such as circumstellar shells or protoplanetary disks.

  14. Silicate fertilization of tropical soils: silicon availability and recovery index of sugarcane

    Directory of Open Access Journals (Sweden)

    Mônica Sartori de Camargo

    2013-10-01

    Full Text Available Sugarcane is considered a Si-accumulating plant, but in Brazil, where several soil types are used for cultivation, there is little information about silicon (Si fertilization. The objectives of this study were to evaluate the silicon availability, uptake and recovery index of Si from the applied silicate on tropical soils with and without silicate fertilization, in three crops. The experiments in pots (100 L were performed with specific Si rates (0, 185, 370 and 555 kg ha-1 Si, three soils (Quartzipsamment-Q, 6 % clay; Rhodic Hapludox-RH, 22 % clay; and Rhodic Acrudox-RA, 68 % clay, with four replications. The silicon source was Ca-Mg silicate. The same Ca and Mg quantities were applied to all pots, with lime and/or MgCl2, when necessary. Sugarcane was harvested in the plant cane and first- and second-ratoon crops. The silicon rates increased soil Si availability and Si uptake by sugarcane and had a strong residual effect. The contents of soluble Si were reduced by harvesting and increased with silicate application in the following decreasing order: Q>RH>RA. The silicate rates promoted an increase in soluble Si-acetic acid at harvest for all crops and in all soils, except RA. The amounts of Si-CaCl2 were not influenced by silicate in the ratoon crops. The plant Si uptake increased according to the Si rates and was highest in RA at all harvests. The recovery index of applied Si (RI of sugarcane increased over time, and was highest in RA.

  15. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    Science.gov (United States)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2016-03-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the main objective of this study was to ameliorate soil acidity in rice-cropped soil. The secondary objective was to study the effects of calcium silicate amendment on soil acidity, exchangeable Al, exchangeable Ca, and Si content. The soil was treated with 0, 1, 2, and 3 Mg ha-1 of calcium silicate under submerged conditions and the soil treatments were sampled every 30 days throughout an incubation period of 120 days. Application of calcium silicate induced a positive effect on soil pH and exchangeable Al; soil pH increased from 2.9 (initial) to 3.5, while exchangeable Al was reduced from 4.26 (initial) to 0.82 cmolc kg-1. Furthermore, the exchangeable Ca and Si contents increased from 1.68 (initial) to 4.94 cmolc kg-1 and from 21.21 (initial) to 81.71 mg kg-1, respectively. Therefore, it was noted that calcium silicate was effective at alleviating Al toxicity in acid sulfate, rice-cropped soil, yielding values below the critical level of 2 cmolc kg-1. In addition, application of calcium silicate showed an ameliorative effect as it increased soil pH and supplied substantial amounts of Ca and Si.

  16. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Feng, Jinkui, E-mail: jinkui@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Ci, Lijie [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Xiong, Shenglin [School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.

  17. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    Science.gov (United States)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The inhibitory effects of potassium chloride versus potassium silicate application on 137Cs uptake by rice

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-01-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of 137 Cs by rice plants in two pot experiments. The 137 Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K + ) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K + concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K + for rice plants in the soil, which led to a greater uptake of 137 Cs after the potassium silicate application than after the application of potassium chloride. The 137 Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. - Highlights: • Potassium application reduced 137 Cs uptake by rice grown in pot experiments. • Readily available K fertilizer more effectively decreased brown rice 137 Cs concentration. • Potassium should be applied before heading to reduce brown rice 137 Cs concentration.

  19. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    Science.gov (United States)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

  20. Thirteen million years of silicic magma production in Iceland: Links between petrogenesis and tectonic settings

    Science.gov (United States)

    Martin, E.; Sigmarsson, O.

    2010-04-01

    The origin of the Quaternary silicic rocks in Iceland is thought to be linked to the thermal state of the crust, which in turn depends on the regional tectonic settings. This simple model is tested here on rocks from the Miocene to present, both to suggest an internally consistent model for silicic magma formation in Iceland and to constrain the link between tectonic settings and silicic magma petrogenesis. New major and trace-element compositions together with O-, Sr- and Nd-isotope ratios have been obtained on silicic rocks from 19 volcanic systems ranging in age from 13 Ma to present. This allows us to trace the spatial and temporal evolution of both magma generation and the corresponding sources. Low δ18O (geothermal gradient. But later than 5.5 Ma they were produced in a flank zone environment by fractional crystallisation alone, probably due to decreasing geothermal gradient, of basalts derived from a mantle source with lower 143Nd/ 144Nd. This is in agreement with an eastwards rift-jump, from Snæfellsnes towards the present Reykjanes Rift Zone, between 7 and 5.5 Ma. In the South Iceland Volcanic Zone (SIVZ), the intermediate Nd-signature observed in silicic rocks from the Torfajökull central volcano reflects the transitional character of the basalts erupted at this propagating rift segment. Therefore, the abundant evolved rocks at this major silicic complex result from partial melting of the transitional alkaline basaltic crust (Iceland can, therefore, be used for deciphering past geodynamic settings characterized by rift- and off-rift zones resulting from interaction of a mantle plume and divergent plate boundaries.

  1. Silicates Eroded under Simulated Martian Conditions Effectively Kill Bacteria-A Challenge for Life on Mars.

    Science.gov (United States)

    Bak, Ebbe N; Larsen, Michael G; Moeller, Ralf; Nissen, Silas B; Jensen, Lasse R; Nørnberg, Per; Jensen, Svend J K; Finster, Kai

    2017-01-01

    The habitability of Mars is determined by the physical and chemical environment. The effect of low water availability, temperature, low atmospheric pressure and strong UV radiation has been extensively studied in relation to the survival of microorganisms. In addition to these stress factors, it was recently found that silicates exposed to simulated saltation in a Mars-like atmosphere can lead to a production of reactive oxygen species. Here, we have investigated the stress effect induced by quartz and basalt abraded in Mars-like atmospheres by examining the survivability of the three microbial model organisms Pseudomonas putida, Bacillus subtilis , and Deinococcus radiodurans upon exposure to the abraded silicates. We found that abraded basalt that had not been in contact with oxygen after abrasion killed more than 99% of the vegetative cells while endospores were largely unaffected. Exposure of the basalt samples to oxygen after abrasion led to a significant reduction in the stress effect. Abraded quartz was generally less toxic than abraded basalt. We suggest that the stress effect of abraded silicates may be caused by a production of reactive oxygen species and enhanced by transition metal ions in the basalt leading to hydroxyl radicals through Fenton-like reactions. The low survivability of the usually highly resistant D. radiodurans indicates that the effect of abraded silicates, as is ubiquitous on the Martian surface, would limit the habitability of Mars as well as the risk of forward contamination. Furthermore, the reactivity of abraded silicates could have implications for future manned missions, although the lower effect of abraded silicates exposed to oxygen suggests that the effects would be reduced in human habitats.

  2. Preparation and properties of isotropic Nd-Fe-B bonded magnets with sodium silicate binder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q.; Hu, R.J.; Yue, M., E-mail: yueming@bjut.edu.cn; Yin, Y.X.; Zhang, D.T.

    2017-08-01

    Graphical abstract: To improve the working temperature of bonded Nd-Fe-B magnets, the heat-resistant binder, sodium silicate, was used to prepare new type bonded Nd-Fe-B magnets. The three-dimensional Si-O-Si structure formed in the curing process has excellent strength; it can ensure that the bonded magnets have a certain shape and usable magnetic properties when working at 200 °C. - Highlights: • Sodium silicate enables bonded Nd-Fe-B magnets to be used for higher operation temperatures. • The sodium silicate bonded magnets exhibit usable maximum energy product of 4.057 MGOe at 200 °C. • The compressive strength of sodium silicate bonded magnets is twice bigger than that of epoxy resin bonded magnets. - Abstract: In present study, sodium silicate, a kind of heat-resistant binder, was used to prepare bonded Nd-Fe-B magnets with improved thermal stability and mechanical strength. Effect of curing temperature and curing time of the new binder to the magnetic properties, microstructure, and mechanical strength of the magnets was systematically investigated. Fracture surface morphology observation show that sodium silicate in bonded magnets could completely be cured at 175 °C for 40 min, and the magnets prepared under this condition exhibit optimal properties. They exhibit usable magnetic properties of B{sub r} of 4.66 kGs, H{sub cj} of 4.84 kOe, and (BH){sub max} of 4.06 MGOe at 200 °C. Moreover, the magnets possess high compressive strength of 63 MPa.

  3. Silicates Eroded under Simulated Martian Conditions Effectively Kill Bacteria—A Challenge for Life on Mars

    Directory of Open Access Journals (Sweden)

    Ebbe N. Bak

    2017-09-01

    Full Text Available The habitability of Mars is determined by the physical and chemical environment. The effect of low water availability, temperature, low atmospheric pressure and strong UV radiation has been extensively studied in relation to the survival of microorganisms. In addition to these stress factors, it was recently found that silicates exposed to simulated saltation in a Mars-like atmosphere can lead to a production of reactive oxygen species. Here, we have investigated the stress effect induced by quartz and basalt abraded in Mars-like atmospheres by examining the survivability of the three microbial model organisms Pseudomonas putida, Bacillus subtilis, and Deinococcus radiodurans upon exposure to the abraded silicates. We found that abraded basalt that had not been in contact with oxygen after abrasion killed more than 99% of the vegetative cells while endospores were largely unaffected. Exposure of the basalt samples to oxygen after abrasion led to a significant reduction in the stress effect. Abraded quartz was generally less toxic than abraded basalt. We suggest that the stress effect of abraded silicates may be caused by a production of reactive oxygen species and enhanced by transition metal ions in the basalt leading to hydroxyl radicals through Fenton-like reactions. The low survivability of the usually highly resistant D. radiodurans indicates that the effect of abraded silicates, as is ubiquitous on the Martian surface, would limit the habitability of Mars as well as the risk of forward contamination. Furthermore, the reactivity of abraded silicates could have implications for future manned missions, although the lower effect of abraded silicates exposed to oxygen suggests that the effects would be reduced in human habitats.

  4. Corrosion of low Si-alloyed steels in aqueous solution at 90 deg. C. Inhibitive action of silicates; Corrosion d'aciers faiblement allies au silicium en solution aqueuse a 90 deg. C. Action inhibitrice des silicates

    Energy Technology Data Exchange (ETDEWEB)

    Giordana, S

    2002-02-01

    Low-Si alloyed steels, with Si content ranging from 0.25 to 3.2 wt%, as potential candidate materials for high-level nuclear waste disposal containers, have been studied four the point of view of their corrosion behaviour at 90 deg C in an aqueous solution simulating groundwater (0.1 M NaCl borate-buffered solution with a pH of 8.5) both in reducing and in aerated conditions. The influence of silicate addition to the solution is examined so as to represent the silicon of groundwater, coming from the clay dissolution. When no silicate was added to the solution, silicon as an alloying element was proved to degrade in the first moments the steel ability to passivate. For longer immersion times, protective effects developed most efficiently on the steel containing 3.2 wt% silicon both in reducing an in aerating conditions, Infrared spectroscopy, EDSX, XRD and Raman microprobe were applied to characterise the oxide layer composition, which was found to be a mixture of magnetite and maghemite. In the presence of silicate in the solution, clay-like iron silicates appeared in the corrosion layer. Electrochemical tests results show that adding silicate into solution resulted in increasing the steel ability to passivate. In the short term, the inhibiting effect of silicate was confirmed by mass loss tests, but the tendency was inverse in the long term. Silicate iron layers were eventually less protective than the magnetite layers formed in the absence of silicate. (author)

  5. U-Pb dating of deformed mafic dyke and host gneiss: implications for understanding reworking processes on the western margin of the Archaean U3o8 Block, NE Sao Francisco Craton, Brazil

    International Nuclear Information System (INIS)

    Oliveira, Elson Paiva

    2000-01-01

    U-Pb ages of deformed mafic dyke and host migmatitic grey gneiss from the transition zone between the Archaen Uaua Block and the Caldeirao Belt are presented. Titanites from the metamorphic dyke's margin and zircons from the gneiss were dated at 2,039 ± 2 Ma and 2,956 ± 39 Ma, respectively. The Sm-Nd data (T DM =2,965 Ma and ε Nd(t) =1.69) on the gneiss, coupled with the U-Pb data on both dyke and gneiss, suggest than an Archaen granodioritic batholith, probably originated at an andean-type continental margin, was intruded by mafic dykes, and subsequently was reworked during the Paleoproterozoic collisional event associated with the development of the Salvador-Curaca Orogen. (author)

  6. Electrophoretic deposition of calcium silicate-reduced graphene oxide composites on titanium substrate

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Akhiani, Amir Reza; Talebian, Sepehr

    2016-01-01

    Calcium silicate (CS)/graphene coatings have been used to improve the biological and mechanical fixation of metallic prosthesis. Among the extraordinary features of graphene is its very high mechanical strength, which makes it an attractive nanoreinforcement material for composites. Calcium...... silicate-reduced graphene oxide (CS-rGO) composites were synthesized, using an in situ hydrothermal method. CS nanowires were uniformly decorated on the rGO, with an appropriate interfacial bonding. The CS-rGO composites behaved like hybrid composites when deposited on a titanium substrate by cathodic...

  7. Anthropogenic Origin of Siliceous Scoria Droplets from Pleistocene and Holocene Archeaological Sites in Northern Syria

    DEFF Research Database (Denmark)

    Thy, Peter; Willcox, George; Barfod, Gry

    2015-01-01

    Siliceous scoria droplets, measuring from 1 to 10 mm, from one late Pleistocene and four early Holocene archaeological sites in northern Syria are compared to similar droplets previously suggested to be the result of a cosmic impact at the onset of the Younger Dryas global cooling event. The !ndi......Siliceous scoria droplets, measuring from 1 to 10 mm, from one late Pleistocene and four early Holocene archaeological sites in northern Syria are compared to similar droplets previously suggested to be the result of a cosmic impact at the onset of the Younger Dryas global cooling event...

  8. Evolution of permeability in siliceous rocks induced by mineral dissolution and precipitation

    International Nuclear Information System (INIS)

    Yasuhara, Hideaki; Kinoshita, Naoki; Kurikami, Hiroshi; Nakashima, Shinichiro; Kishida, Kiyoshi

    2007-01-01

    A conceptual model is presented to follow the evolution of permeability in siliceous rocks mediated by pressure solution. Specifically, the main minerals of siliceous rocks that are quartz, cristobalite, and amorphous silica, are focused to examine differences of the permeability evolutions among them at effective pressures of 1, 5, and 10 MPa, and temperatures of 20 and 90degC. The rates and magnitudes of permeability reduction increase with increases of the pressures and temperatures applied. Ultimate permeabilities reduced by the order of 90 % at the completion of dissolution-mediated compaction at 10 MPa and 90degC. Precipitation may augment more degradation of flow transport in time. (author)

  9. Distribution regularities and prospecting of carbonate-siliceous-argillitic rock type uranium deposit in China

    International Nuclear Information System (INIS)

    Zhao Fengmin; Pan Yan

    2012-01-01

    The carbonate-siliceous-argillitic rock type uranium deposit is one of the important types of uranium deposits in China. Exogenic permeability type and hydrothermal type are dominated in genetic type. Four mineralization zones, two independent mineralization districts, two potential mineralization zones can be classified in China, uranium mineralization districts can be classified further. They are classified as four levels through the potential metallogenic evaluation on the mineralization districts, an important prospective area in the near future. In order to develop and make use of carbonate-siliceous-argillitic rock type uranium resources, exploration and study should be listed in the development planning on uranium geology. (authors)

  10. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    Science.gov (United States)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  11. Application of siliceous metal product for preliminary deoxidizing of metal in open-hearth furnaces

    International Nuclear Information System (INIS)

    Luk'yanenko, A.A.; Evdokimov, A.V.; Kornilov, V.N.; Il'in, V.I.; Kuleshov, Yu.V.

    1995-01-01

    Metal wastes of abrasive processes-concomitant product of synthetic corundum production containing approximately 10 % Si - were tested for preliminary deoxidizing of metal in furnace to reduce manganese loss in burning and to increase the steel deoxidizing. The technology of preliminary deoxidizing of metal by siliceous metal product was mastered in the course of low carbon steel melting (st3sp, st4sp). The results of the study has shown that the use of siliceous metal product permits reducing the consumption of manganese-containing ferroalloys. 1 tab

  12. Polymer/Silicate Nanocomposites Developed for Improved Thermal Stability and Barrier Properties

    Science.gov (United States)

    Campbell, Sandi G.

    2001-01-01

    The nanoscale reinforcement of polymers is becoming an attractive means of improving the properties and stability of polymers. Polymer-silicate nanocomposites are a relatively new class of materials with phase dimensions typically on the order of a few nanometers. Because of their nanometer-size features, nanocomposites possess unique properties typically not shared by more conventional composites. Polymer-layered silicate nanocomposites can attain a certain degree of stiffness, strength, and barrier properties with far less ceramic content than comparable glass- or mineral-reinforced polymers. Reinforcement of existing and new polyimides by this method offers an opportunity to greatly improve existing polymer properties without altering current synthetic or processing procedures.

  13. Universality of the high-temperature viscosity limit of silicate liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, John C.; Ellison, Adam J.

    2011-01-01

    We investigate the high-temperature limit of liquid viscosity by analyzing measured viscosity curves for 946 silicate liquids and 31 other liquids including metallic, molecular, and ionic systems. Our results show no systematic dependence of the high-temperature viscosity limit on chemical...... composition for the studied liquids. Based on theMauro-Yue-Ellison-Gupta-Allan (MYEGA) model of liquid viscosity, the high-temperature viscosity limit of silicate liquids is 10−2.93 Pa·s. Having established this value, there are only two independent parameters governing the viscosity-temperature relation...

  14. Phosphorus Elimination at Sodium Silicate from Quartz Sand Roasted with Complexation using Chitosan-EDTA

    Science.gov (United States)

    Wahyuningsih, S.; Ramelan, A. H.; Suharty, N. S.; Handayani, M.; Firdiyono, F.; Sulistiyono, E.; Munawaroh, H.; Sari, P. P.; Kristiawan, Y. R.

    2018-03-01

    A phosphorus elimination from sodium silicate solution has been studied. Phosphorus elimination was performed by adding chitosan-EDTA to remove cation phosphorus. Characterization of chitosan-EDTA material was performed using FT-IR, while the decreasing level of phosphorus content was analyzed by quantitative analysis using spectrophotometer UV-Vis refers to SNI 06-6989-2004. The results showed that the content of the sodium silicate can be reduced up to 67.1% through Chitosan-EDTA complexation with phosphorus.

  15. Correlations between silicic volcanic rocks of the St Mary's Islands (southwestern India) and eastern Madagascar

    DEFF Research Database (Denmark)

    Melluso, Leone; Sheth, Hetu C.; Mahoney, John J.

    2009-01-01

    The St Mary's, Islands (southwestern India) expose silicic volcanic and sub-volcanic rocks (rhyolites and granophyric dacites) emplaced contemporaneously with the Cretaceous igneous province of Madagascar, roughly 88-90 Ma ago. I he St Mary's Islands rocks have phenocrysts of plagioclase...... and isotopic Compositions very close to those of rhyolites exposed between Vatomandry Ilaka and Mananjary in eastern Madagascar, and are distinctly different from rhyolites front other sectors of the Madagascan province. We therefore postulate that the St Mary's and the Vatomandry-Ilaka Mananjary silicic rock...

  16. The LithicUB project: A virtual lithotheque of siliceous rocks at the University of Barcelona

    Directory of Open Access Journals (Sweden)

    Marta Sánchez

    2014-03-01

    Full Text Available The LithicUB project began in 2009 with two main objectives. The first objective was to make available to the scientific community the description and classification of a set of siliceous rocks that had been recovered from different surveys. The second to make public the lithotheque as a useful tool for archaeological research, related to the procurement and management of lithic raw materials in Prehistory. Thanks to several research projects that have been carried out, the number of samples is steadily increasing and diversifying, including siliceous rocks collected in Spain, Portugal, France, Jordan and Israel.

  17. A back-arc setting for mafic rocks of the Honeysuckle Beds, southeastern N.S.W.: the use of trace and rare earth element abundances determined by INAA

    Energy Technology Data Exchange (ETDEWEB)

    Dadd, K A [University of Technology, Sydney, NSW (Australia)

    1994-12-31

    Major, trace and rare earth elements abundance in mafic rocks of the Honeysuckle Beds was determined by x-ray fluorescence and neutron activation analysis . A comparison with typical mid-ocean ridge basalt compositions reveals an enrichment in light rare earths elements (Ba, Rb, and Th) and depletion in Nb, Ta and Ti, consistent with modifications of the source by subduction-related fluids. 9 refs., 6 figs.

  18. A back-arc setting for mafic rocks of the Honeysuckle Beds, southeastern N.S.W.: the use of trace and rare earth element abundances determined by INAA

    Energy Technology Data Exchange (ETDEWEB)

    Dadd, K.A. [University of Technology, Sydney, NSW (Australia)

    1993-12-31

    Major, trace and rare earth elements abundance in mafic rocks of the Honeysuckle Beds was determined by x-ray fluorescence and neutron activation analysis . A comparison with typical mid-ocean ridge basalt compositions reveals an enrichment in light rare earths elements (Ba, Rb, and Th) and depletion in Nb, Ta and Ti, consistent with modifications of the source by subduction-related fluids. 9 refs., 6 figs.

  19. 40 CFR 721.3100 - Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine. 721.3100 Section 721.3100 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3100 Oligomeric silicic acid ester compound with a...

  20. Experimental determination of the Mo isotope fractionation factor between metal and silicate liquids

    Science.gov (United States)

    Hin, R. C.; Burkhardt, C.; Schmidt, M. W.; Bourdon, B.

    2011-12-01

    The conditions and chemical consequences of core formation have mainly been reconstructed from experimentally determined element partition coefficients between metal and silicate liquids. However, first order questions such as the mode of core formation or the nature of the light element(s) in the Earth's core are still debated [1]. In addition, the geocentric design of most experimental studies leaves the conditions of core formation on other terrestrial planets and asteroids even more uncertain than for Earth. Through mass spectrometry, records of mass-dependent stable isotope fractionation during high-temperature processes such as metal-silicate segregation are detectable. Stable isotope fractionation may thus yield additional constrains on core formation conditions and its consequences for the chemical evolution of planetary objects. Experimental investigations of equilibrium mass-dependent stable isotope fractionation have shown that Si isotopes fractionate between metal and silicate liquids at temperatures of 1800°C and pressures of 1 GPa, while Fe isotopes leave no resolvable traces of core formation processes [2,3]. Molybdenum is a refractory and siderophile trace element in the Earth, and thus much less prone to complications arising from mass balancing core and mantle and from potential volatile behaviour than other elements. To determine equilibrium mass-dependent Mo isotope fractionation during metal-silicate segregation, we have designed piston cylinder experiments with a basaltic silicate composition and an iron based metal with ~8 wt% Mo, using both graphite and MgO capsules. Metal and silicate phases are completely segregated by the use of a centrifuging piston cylinder at ETH Zurich, thus preventing analysis of mixed metal and silicate signatures. Molybdenum isotope compositions were measured using a Nu Instruments 1700 MC-ICP-MS at ETH Zurich. To ensure an accurate correction of analytical mass fractionation a 100Mo-97Mo double spike was admixed

  1. Topotactic conversion of β-helix-layered silicate into AST-type zeolite through successive interlayer modifications.

    Science.gov (United States)

    Asakura, Yusuke; Takayama, Ryosuke; Shibue, Toshimichi; Kuroda, Kazuyuki

    2014-02-10

    AST-type zeolite with a plate morphology can be synthesized by topotactic conversion of a layered silicate (β-helix-layered silicate; HLS) by using N,N-dimethylpropionamide (DPA) to control the layer stacking of silicate layers and the subsequent interlayer condensation. Treatment of HLS twice with 1) hydrochloric acid/ethanol and 2) dimethylsulfoxide (DMSO) are needed to remove interlayer hydrated Na ions and tetramethylammonium (TMA) ions in intralayer cup-like cavities (intracavity TMA ions), both of which are introduced during the preparation of HLS. The utilization of an amide molecule is effective for the control of the stacking sequence of silicate layers. This method could be applicable to various layered silicates that cannot be topotactically converted into three-dimensional networks by simple interlayer condensation by judicious choice of amide molecules. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determination of some main elements and traces by x-ray fluorescence analysis in silicate rocks: a comparative study of two analytical techniques

    International Nuclear Information System (INIS)

    Andrade, M.D. de.

    1977-01-01

    The determinations of silicon, magnesium, iron, potassium, calcium, titanium, manganese, barium, strontium, rubidium, zirconium and scandium in felsic and mafic rocks, by X ray fluorescence analysis are presented. (author)

  3. Impact on the deep biosphere of CO2 geological sequestration in (ultra)mafic rocks and retroactive consequences on its fate

    Science.gov (United States)

    Ménez, Bénédicte; Gérard, Emmanuelle; Rommevaux-Jestin, Céline; Dupraz, Sébastien; Guyot, François; Arnar Alfreősson, Helgi; Reynir Gíslason, Sigurőur; Sigurőardóttir, Hólmfríiur

    2010-05-01

    Due to their reactivity and high potential of carbonation, mafic and ultramafic rocks constitute targets of great interest to safely and permanently sequestrate anthropogenic CO2 and thus, limit the potential major environmental consequences of its increasing atmospheric level. In addition, subsurface (ultra)mafic environments are recognized to harbor diverse and active microbial populations that may be stimulated or decimated following CO2 injection (± impurities) and subsequent acidification. However, the nature and amplitude of the involved biogeochemical pathways are still unknown. To avoid unforeseen consequences at all time scales (e.g. reservoir souring and clogging, bioproduction of H2S and CH4), the impact of CO2 injection on deep biota with unknown ecology, and their retroactive effects on the capacity and long-term stability of CO2 storage sites, have to be determined. We present here combined field and experimental investigations focused on the Icelandic pilot site, implemented in the Hengill area (SW Iceland) at the Hellisheidi geothermal power plant (thanks to the CarbFix program, a consortium between the University of Iceland, Reykjavik Energy, the French CNRS of Toulouse and Columbia University in N.Y., U.S.A. and to the companion French ANR-CO2FIX project). This field scale injection of CO2 charged water is here designed to study the feasibility of storing permanently CO2 in basaltic rocks and to optimize industrial methods. Prior to the injection, the microbiological initial state was characterized through regular sampling at various seasons (i.e., October '08, July '09, February '10). DNA was extracted and amplified from the deep and shallow observatory wells, after filtration of 20 to 30 liters of groundwater collected in the depth interval 400-980 m using a specifically developed sampling protocol aiming at reducing contamination risks. An inventory of living indigenous bacteria and archaea was then done using molecular methods based on the

  4. Upper Paleozoic mafic and intermediate volcanic rocks of the Mount Pleasant caldera associated with the Sn-W deposit in southwestern New Brunswick (Canada): Petrogenesis and metallogenic implications

    Science.gov (United States)

    Dostal, Jaroslav; Jutras, Pierre

    2016-10-01

    Upper Paleozoic ( 365 Ma) mafic and intermediate volcanic rocks of the Piskahegan Group constitute a subordinate part of the Mount Pleasant caldera, which is associated with a significant polymetallic deposit (tungsten-molybdenum-bismuth zones 33 Mt ore with 0.21% W, 0.1% Mo and 0.08% Bi and tin-indium zones 4.8 Mt with 0.82% Sn and 129 g/t In) in southwestern New Brunswick (Canada). The epicontinental caldera complex formed during the opening of the late Paleozoic Maritimes Basin in the northern Appalachians. The mafic and intermediate rocks make up two compositionally distinct associations. The first association includes evolved rift-related continental tholeiitic basalts, and the second association comprises calc-alkaline andesites, although both associations were emplaced penecontemporaneously. The basalts have low Mg# 0.34-0.40, smooth chondrite-normalized REE patterns with (La/Yb)n 5-6, primitive mantle-normalized trace element patterns without noticeable negative Nb-Ta anomalies, and their ɛNd(T) ranges from + 2.5 to + 2.2. The basalts were generated by partial melting of a transition zone between spinel and garnet mantle peridotite at a depth of 70-90 km. The calc-alkaline andesites of the second association have chondrite-normalized REE patterns that are more fractionated, with (La/Yb)n 7-8.5, but without significant negative Eu anomalies. Compared to the basaltic rocks, they have lower ɛNd(T) values, ranging from + 0.5 to + 1.9, and their mantle-normalized trace element plots show negative Nb-Ta anomalies. The ɛNd(T) values display negative correlations with indicators of crustal contamination, such as Th/La, Th/Nb and SiO2. The andesitic rocks are interpreted to have formed by assimilation-fractional crystallization processes, which resulted in the contamination of a precursor basaltic magma with crustal material. The parent basaltic magma for both suites underwent a different evolution. The tholeiitic basalts experienced shallow-seated fractional

  5. Lettuce production in greenhouse under fertirrgation with nitrogen and potassium silicate

    Directory of Open Access Journals (Sweden)

    Renan Soares de Souza

    2017-04-01

    Full Text Available The objective of this study was to evaluate the effect of nitrogen and potassium silicate on the productive and commercial aspects of curly lettuce, Vera cultivar. The experimental design was completely randomized (CRD, with ten treatments and three replications. The treatments, arranged in a factorial design according to the Plan Puebla III matrix (Turrent & Laird, 1975, consisted of the combination of five doses of nitrogen (9; 54; 90; 126 and 171 kg ha-1 and five doses of potassium silicate (1.15; 6.90; 11.50; 16.10 and 21.85 kg ha-1. A control treatment without application of nitrogen and potassium silicate was also inserted. The crop was grown in a greenhouse and the doses were applied as sidedressing using drip micro-irrigation system. Total fresh matter, commercial fresh matter, non-commercial fresh matter, number of leaves and commercial trade index were evaluated. The commercial fresh matter and the number of commercial leaves per plant were affected only by nitrogen fertigation and increased linearly with the increase in the nitrogen dose of N, with the best responses observed at the highest dose of this element (171 kg ha-1. Potassium silicate had effect only in non-commercial fresh matter, not influencing the other characteristics.

  6. Reduced Young modulus and hardness of electron irradiated binarypotassium-silicate glass

    Czech Academy of Sciences Publication Activity Database

    Gedeon, O.; Lukeš, J.; Jurek, Karel

    2012-01-01

    Roč. 275, MAR (2012), s. 7-10 ISSN 0168-583X R&D Projects: GA ČR GA104/09/1269 Institutional research plan: CEZ:AV0Z10100521 Keywords : electron radiation * silicate glass * mechanical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.266, year: 2012

  7. Analysis of the color alteration and radiopacity promoted by bismuth oxide in calcium silicate cement.

    Science.gov (United States)

    Marciano, Marina Angélica; Estrela, Carlos; Mondelli, Rafael Francisco Lia; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro

    2013-01-01

    The aim of the study was to determine if the increase in radiopacity provided by bismuth oxide is related to the color alteration of calcium silicate-based cement. Calcium silicate cement (CSC) was mixed with 0%, 15%, 20%, 30% and 50% of bismuth oxide (BO), determined by weight. Mineral trioxide aggregate (MTA) was the control group. The radiopacity test was performed according to ISO 6876/2001. The color was evaluated using the CIE system. The assessments were performed after 24 hours, 7 and 30 days of setting time, using a spectrophotometer to obtain the ΔE, Δa, Δb and ΔL values. The statistical analyses were performed using the Kruskal-Wallis/Dunn and ANOVA/Tukey tests (poxide was added showed radiopacity corresponding to the ISO recommendations (>3 mm equivalent of Al). The MTA group was statistically similar to the CSC/30% BO group (p>0.05). In regard to color, the increase of bismuth oxide resulted in a decrease in the ΔE value of the calcium silicate cement. The CSC group presented statistically higher ΔE values than the CSC/50% BO group (poxide has no relation to the color alteration of calcium silicate-based cements.

  8. Attributes of the soil fertilized with sewage sludge and calcium and magnesium silicate

    Directory of Open Access Journals (Sweden)

    Geraldo R. Zuba Junio

    2015-11-01

    Full Text Available ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L., variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca and magnesium (Mg silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1 and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis. Soil organic matter (OM, pH, sum of bases (SB, effective cation exchange capacity (CEC(t, total cation exchange capacity (CEC(T, base saturation (V% and potential acidity (H + Al were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.

  9. Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory

    Science.gov (United States)

    Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert

    2018-02-01

    Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.

  10. Spiculogenesis in the siliceous sponge Lubomirskia baicalensis studied with fluorescent staining.

    Science.gov (United States)

    Annenkov, Vadim V; Danilovtseva, Elena N

    2016-04-01

    Siliceous sponges are the most primitive multicellular animals whose skeleton consists of spicules - needle-like constructions from silicon dioxide surrounding organic axial filaments. Mechanisms of spicule formation have been intensively studied due to the high ecological importance of sponges and their interest to materials science. Light and electron microscopy are not appropriate enough to display the process from silicon-enriched cells to mature spicules because of composite structure of the sponge tissues. In this article, spiculogenesis in the siliceous sponge has been studied for the first time with the use of fluorescent microscopy. Fluorescent vital dye NBD-N2 was applied to stain growing siliceous structures in the sponge and primmorph cell system. The main stages of spicule growth in the fresh-water sponge Lubomirskia baicalensis (Pallas, 1773) were visualized: silicon accumulation in sclerocytes; formation of an organic filament protruding from the cell; further elongation of the filament and growth of the spicule in a spindle-like form with enlargement in the center; merger with new sclerocytes and formation of the mature spicule. Fluorescent microscopy combined with SEM allows us to overcome the virtual differentiation between intra- and extracellular mechanisms of spicule growth. The growing spicule can capture silicic acid from the extracellular space and merge with new silicon-enriched cells. Visualization of the growing spicules with the fluorescent dye allows us to monitor sponge viability in ecological or toxicological experiments and to apply genomic, proteomic and biochemical techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Core–shell Au/Ag nanoparticles embedded in silicate sol–gel ...

    Indian Academy of Sciences (India)

    Administrator

    Dedicated to the memory of the late Professor S K Rangarajan. *For correspondence. Core–shell Au/Ag nanoparticles embedded in silicate sol–gel network for sensor .... An immediate colour change was observed for the mixed solution, indicating the dis- persion of metal nanoparticles in the MTMOS sol– gel matrix.

  12. Some regularities of halide adoption by alkali-silicate glasses with two glass-former

    International Nuclear Information System (INIS)

    Kiprianov, A.A.

    2006-01-01

    Results of synthesis and investigation of volume thermal and electrical properties of oxyhalide alkali-silicate glasses with two net-formers M 2 O-R 2 O 3 -SiO 2 +Hal (M - Li, Na, K; r - B, Al; Hal - F, Cl) are presented [ru

  13. Effect of magnesium aluminum silicate glass on the thermal shock resistance of BN matrix composite ceramics

    NARCIS (Netherlands)

    Cai, Delong; Jia, Dechang; Yang, Zhihua; Zhu, Qishuai; Ocelik, Vaclav; Vainchtein, Ilia D.; De Hosson, Jeff Th M.; Zhou, Yu

    The effects of magnesium aluminum silicate (MAS) glass on the thermal shock resistance and the oxidation behavior of h-BN matrix composites were systematically investigated at temperature differences from 600 degrees C up to 1400 degrees C. The retained strength rate of the composites rose with the

  14. Grain growth across protoplanetary discs: 10 μm silicate feature versus millimetre slope

    NARCIS (Netherlands)

    Lommen, D.J.P.; van Dishoeck, E.F.; Wright, C.M.; Min, M.

    2010-01-01

    Context. Young stars are formed with dusty discs around them. The dust grains in the disc are originally of the same size as interstellar dust, i.e., of the order of 0.1 μm. Models predict that these grains will grow in size through coagulation. Observations of the silicate features around 10 and 20

  15. Effects of production parameters on the structure of resol type phenolic resin/layered silicate nanocomposites

    NARCIS (Netherlands)

    Kaynak, C.; Tasan, C.C.

    2006-01-01

    Polymer/layered silicate nanocomposites belong to one of the most promising group of materials of the past few decades and most probably for the near future. Following the pioneering works of Toyota Research Group in the 1980s, the interest on these materials increased rapidly and research is now

  16. Activation of Ca(OH){sub 2} using different siliceous materia