WorldWideScience

Sample records for high-level waste calcine

  1. Fluidized-bed calcination of simulated commercial high-level radioactive wastes

    International Nuclear Information System (INIS)

    Freeby, W.A.

    1975-11-01

    Work is in progress at the Idaho Chemical Processing Plant to verify process flowsheets for converting simulated commercial high-level liquid wastes to granular solids using the fluidized-bed calcination process. Primary emphasis in the series of runs reported was to define flowsheets for calcining simulated Allied-General Nuclear Services (AGNS) waste and to evaluate product properties significant to calcination, solids storage, or post treatment. Pilot-plant studies using simulated high-level acid wastes representative of those to be produced by Nuclear Fuel Services, Inc. (NFS) are also included. Combined AGNS high-level and intermediate-level waste (0.26 M Na in blend) was successfully calcined when powdered iron was added (to result in a Na/Fe mole ratio of 1.0) to the feed to prevent particle agglomeration due to sodium nitrate. Long-term runs (approximately 100 hours) showed that calcination of the combined waste is practical. Concentrated AGNS waste containing sodium at concentrations less than 0.2 M were calcined successfully; concentrated waste containing 1.13 M Na calcined successfully when powdered iron was added to the feed to suppress sodium nitrate formation. Calcination of dilute AGNS waste by conventional fluid-bed techniques was unsuccessful due to the inability to control bed particle size--both particle size and bed level decreased. Fluid-bed solidification of AGNS dilute waste at conditions in which most of the calcined solids left the calciner vessel with the off-gas was successful. In such a concept, the steady-state composition of the bed material would be approximately 22 wt percent calcined solids deposited on inert particles. Calcination of simulated NFS acid waste indicated that solidification by the fluid-bed process is feasible

  2. Talc-silicon glass-ceramic waste forms for immobilization of high- level calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    Talc-silicon glass-ceramic waste forms are being evaluated as candidates for immobilization of the high level calcined waste stored onsite at the Idaho Chemical Processing Plant. These glass-ceramic waste forms were prepared by hot isostatically pressing a mixture of simulated nonradioactive high level calcined waste, talc, silicon and aluminum metal additives. The waste forms were characterized for density, chemical durability, and glass and crystalline phase compositions. The results indicate improved density and chemical durability as the silicon content is increased

  3. Preparation of plutonium waste forms with ICPP calcined high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Staples, B.A.; Knecht, D.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); O`Holleran, T.P. [Argonne National Lab.-West, Idaho Falls, ID (United States)] [and others

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce{sup +4}) as a surrogate for plutonium (Pu{sup +4}) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study.

  4. Preparation of plutonium waste forms with ICPP calcined high-level waste

    International Nuclear Information System (INIS)

    Staples, B.A.; Knecht, D.A.; O'Holleran, T.P.

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce +4 ) as a surrogate for plutonium (Pu +4 ) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study

  5. Development of Concentration and Calcination Technology For High Level Liquid Waste

    International Nuclear Information System (INIS)

    Pande, D.P.

    2006-01-01

    The concentrated medium and high-level liquid radio chemicals effluents contain nitric acid, water along with the dissolved chemicals including the nitrates of the radio nuclides. High level liquid waste contain mainly nitrates of cesium, strontium, cerium, zirconium, chromium, barium, calcium, cobalt, copper, pickle, iron etc. and other fission products. This concentrated solution requires further evaporation, dehydration, drying and decomposition in temperature range of 150 to 700 deg. C. The addition of the calcined solids in vitrification pot, instead of liquid feed, helps to avoid low temperature zone because the vaporization of the liquid and decomposition of nitrates do not take place inside the melter. In our work Differential and thermo gravimetric studies has been carried out in the various stages of thermal treatment including drying, dehydration and conversion to oxide forms. Experimental studies were done to characterize the chemicals present in high-level radioactive waste. A Rotary Ball Kiln Calciner was used for development of the process because this is amenable for continuous operation and moderately good heat transfer can be achieved inside the kiln. This also has minimum secondary waste and off gases generation. The Rotary Ball Kiln Calciner Demonstration facility system was designed and installed for the demonstration of calcination process. The Rotary Ball Kiln Calciner is a slowly rotating slightly inclined horizontal tube that is externally heated by means of electric resistance heating. The liquid feed is sprayed onto the moving bed of metal balls in a slowly rotating calciner by a peristaltic type-metering pump. The vaporization of the liquid occurs in the pre-calcination zone due to counter current flow of hot gases. The dehydration and denitration of the solids occurs in the calcination zone, which is externally heated by electrical furnace. The calcined powder is cooled in the post calcination portion. It has been demonstrated that the

  6. Silicon-Polymer Encapsulation of High-Level Calcine Waste for Transportation or Disposal

    International Nuclear Information System (INIS)

    Loomis, G.G.; Miller, C.M.; Giansiracusa, J.A.; Kimmel, R.; Prewett, S.V.

    2000-01-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: (1) a characterization of the pilot calcine waste; (2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, (3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test

  7. Process Design Concepts for Stabilization of High Level Waste Calcine

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Thomas; A. K. Herbst

    2005-06-01

    The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels

  8. Pyrochemical treatment of Idaho Chemical Processing Plant high-level waste calcine

    International Nuclear Information System (INIS)

    Todd, T.A.; DelDebbio, J.A.; Nelson, L.O.; Sharpsten, M.R.

    1993-01-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1951 to recover uranium, krypton-85, and isolated fission products for interim treatment and immobilization. The acidic radioactive high-level liquid waste (HLLW) is routinely stored in stainless steel tanks and then, since 1963, calcined to form a dry granular solid. The resulting high-level waste (HLW) calcine is stored in seismically hardened stainless steel bins that are housed in underground concrete vaults. A research and development program has been established to determine the feasibility of treating ICPP HLW calcine using pyrochemical technology.This technology is described

  9. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    International Nuclear Information System (INIS)

    Larson, D.E.

    1980-09-01

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application

  10. Applied laboratory research of high-level waste denitration and calcination technologies

    International Nuclear Information System (INIS)

    Napravnik, J.

    1977-01-01

    Denitration and calcination processes are assessed for model solutions of high-level radioactive wastes. The kinetics was studied of the reaction of HNO 3 with HCOOH with respect to the final composition of the gaseous product. A survey is presented of used denitration agents and of reaction processes. Calcination was studied both as associated with denitration in a single technological step and separately. Also studied was the pyrolysis and chemical decomposition of sodium nitrate which forms an indecomposable melt in the temperature region of 320 to 850 degC under normal conditions. Based on the experiments a laboratory unit was designed and produced for the denitration and calcination of model solutions of high-level radioactive wastes operating in a temperature range of 100 to 550 degC with a capacity of 1000 ml/h. A boiler type stirred evaporator with electric heating (3 kW) was chosen for the denitration unit while a vertical calcinator modified from a film evaporator with a thermal input of 4 kW was chosen for the calcination unit. (B.S.)

  11. Microwave energy for post-calcination treatment of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary

  12. Fluidized bed system for calcination of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Pande, D P; Prasad, T L; Yadgiri, N K; Theyyunni, T K [Process Engineering and Systems Development Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    During the operation of nuclear facilities significant quantities of radiochemical liquid effluents of different concentrations and varying chemical compositions are generated. These effluents contain activated radionuclides, corrosion products and fission products. The advantage of feeding the waste in solid form into the vitrifying equipment are multifold. Efforts are therefore made in many countries to calcine the high level waste, and obtain waste in the oxide form before the same is mixed with glass forming additives and fed into the melter unit. An experimental rig for fluidized bed calcination is constructed for carrying out the detailed investigation of this process, in order to adopt the same for plant scale application. To achieve better gas-solid contact and avoid raining down of solids, a distributor of bubble cap type was designed. A review of existing experience at various laboratories and design of new experimental facility for development of calciners are given. (author). 11 refs., 5 figs.

  13. New Waste Calciner High Temperature Operation

    International Nuclear Information System (INIS)

    Swenson, M.C.

    2000-01-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm

  14. Spray calcination of nuclear wastes

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-01-01

    The spray calciner is a relatively simple machine; operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of all commercial fuel reprocessor high-level liquid wastes and mixed high and intermediate-level wastes have been demonstrated. Wastes have been calcined containing over 2M sodium. Thus waste generated during plant startup and shutdown can be blended with normal waste and calcined. Spray calcination of ILLW has also been demonstrated. A remotely replaceable atomizing nozzle has been developed for use in plant scale equipment. The 6 mm (0.25 inch) orifice and ceramic tip offer freedom from plugging and erosion thus nozzle replacement should be required only after several months operation. Calciner capacity of over 75 l/h (20 gal/h) has been demonstrated in pilot scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. Since such a small amount of radionuclides escape the calciner the volume of recycle required from the effluent treatment system is very small. The noncondensable off-gas volume is also low, less than 0.5 m 3 /min (15 scfm) for a liquid feedrate of 75 l/hr (20 gal/hr). Calcine holdup in the calciner is less than 1 kg, thus the liquid feedrate is directly relatable to calcine flowrate. The calcine produced is very fine and reactive. Successful remote operation and maintenance of a heated wall spray calciner has been demonstrated while processing actual high-level waste. During these operations radionuclide volatilization from the calciner was acceptably low. 8 figures

  15. Pyrochemical separation of radioactive components from inert materials in ICPP high-level calcined waste

    International Nuclear Information System (INIS)

    Del Debbio, J.A.; Nelson, L.O.; Todd, T.A.

    1995-05-01

    Since 1963, calcination of aqueous wastes from reprocessing of DOE-owned spent nuclear fuels has resulted in the accumulation of approximately 3800 m 3 of high-level waste (HLW) at the Idaho Chemical Processing Plant (ICPP). The waste is in the form of a granular solid called calcine and is stored on site in stainless steel bins which are encased in concrete. Due to the leachability of 137 Cs and 90 Sr and possibly other radioactive components, the calcine is not suitable for final disposal. Hence, a process to immobilize calcine in glass is being developed. Since radioactive components represent less than 1 wt % of the calcine, separation of actinides and fission products from inert components is being considered to reduce the volume of HLW requiring final disposal. Current estimates indicate that compared to direct vitrification, a volume reduction factor of 10 could result in significant cost savings. Aqueous processes, which involve calcine dissolution in nitric acid followed by separation of actinide and fission products by solvent extraction and ion exchange methods, are being developed. Pyrochemical separation methods, which generate small volumes of aqueous wastes and do not require calcine dissolution, have been evaluated as alternatives to aqueous processes. This report describes three proposed pyrochemical flowsheets and presents the results of experimental studies conducted to evaluate their feasibility. The information presented is a consolidation of three reports, which should be consulted for experimental details

  16. Design and performance of atomizing nozzles for spray calcination of high-level wastes

    International Nuclear Information System (INIS)

    Miller, F.A.; Stout, L.A.

    1981-05-01

    A key aspect of high-level liquid-waste spray calcination is waste-feed atomization by using air atomizing nozzles. Atomization substantially increases the heat transfer area of the waste solution, which enhances rapid drying. Experience from the spray-calciner operations has demonstrated that nozzle flow conditions that produce 70-μ median-volume-diameter or smaller spray droplets are required for small-scale spray calciners (drying capacity less than 80 L/h). For large-scale calciners (drying capacity greater than 300 L/h), nozzle flow conditions that produce 100-μ median-volume-diameter or smaller spray droplets are required. Mass flow ratios of 0.2 to 0.4, depending on nozzle size, are required for proper operation of internal-mix atomizing nozzles. Both internal-mix and external-mix nozzles have been tested at PNL. Due to the lower airflow requirements and fewer large droplets produced, the internal-mix nozzle has been chosen for primary development in the spray calciner program at PNL. Several nozzle air-cap materials for internal-mix nozzles have been tested for wear resistance. Results show that nozzle air caps of stainless steel and Cer-vit (a machineable glass ceramic) are suceptible to rapid wear by abrasive slurries, whereas air caps of alumina and reaction-bonded silicon nitride show only slow wear. Longer-term testing is necessary to determine more accurately the actual frequency of nozzle replacement. Atomizing nozzle air caps of alumina are subject to fracture from thermal shock, whereas air caps of silicon nitride and Cer-vit are not. Fractured nozzles are held in place by the air-cap retaining ring and continue to atomize satisfactorily. Therefore, fractures caused by thermal shocking do not necessarily result in nozzle failure

  17. Effect of aluminum and silicon reactants and process parameters on glass-ceramic waste form characteristics for immobilization of high-level fluorinel-sodium calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    In this report, the effects of aluminum and silicon reactants, process soak time and the initial calcine particle size on glass-ceramic waste form characteristics for immobilization of the high-level fluorinel-sodium calcined waste stored at the Idaho Chemical Processing Plant (ICPP) are investigated. The waste form characteristics include density, total and normalized elemental leach rates, and microstructure. Glass-ceramic waste forms were prepared by hot isostatically pressing (HIPing) a pre-compacted mixture of pilot plant fluorinel-sodium calcine, Al, and Si metal powders at 1050 degrees C, 20,000 psi for 4 hours. One of the formulations with 2 wt % Al was HIPed for 4, 8, 16 and 24 hours at the same temperature and pressure. The calcine particle size range include as calcined particle size smaller than 600 μm (finer than -30 mesh, or 215 μm Mass Median Diameter, MMD) and 180 μm (finer than 80 mesh, or 49 μm MMD)

  18. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    Science.gov (United States)

    Knox, C. A.; Farnsworth, R. K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.

  19. Screening Level Risk Assessment for the New Waste Calcining Facility

    Energy Technology Data Exchange (ETDEWEB)

    M. L. Abbott; K. N. Keck; R. E. Schindler; R. L. VanHorn; N. L. Hampton; M. B. Heiser

    1999-05-01

    This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidify (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.

  20. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    International Nuclear Information System (INIS)

    Knox, C.A.; Farnsworth, R.K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In this facility, which is installed in a radiochemical cell, small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. Initial operations were completed with nonradioactive, simulated waste solutions (Knox, Siemens and Berger 1981). The first radioactive operations in this facility were performed with a simulated, commercial waste composition containing tracer levels of 99 Tc and 131 I. This report describes the facility and test operations and presents the results of the behavior of 131 I and 99 Tc during solidification of radioactive liquid wastes. During the spray calcination of commercial high-level liquid waste spiked with 99 Tc and 131 I, there was a 0.3 wt% loss of particulates, a 0.15 wt% loss of 99 Tc and a 31 wt% loss of 131 I past the sintered-metal filters. These filters and a venturi scrubber were very efficient in removing particulates and 99 Tc from the off-gas stream. Liquid scrubbers were not efficient in removing 131 I, as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents will be needed to remove iodine. For all future RLSWTF operations where iodine is present, a silver zeolite adsorber will be used

  1. Design and performance of a full-scale spray calciner for nonradioactive high-level-waste-vitrification studies

    International Nuclear Information System (INIS)

    Miller, F.A.

    1981-06-01

    In the spray calcination process, liquid waste is spray-dried in a heated-wall spray dryer (termed a spray calciner), and then it may be combined in solid form with a glass-forming frit. This mixture is then melted in a continuous ceramic melter or in an in-can melter. Several sizes of spray calciners have been tested at PNL- laboratory scale, pilot scale and full scale. Summarized here is the experience gained during the operation of PNL's full-scale spray calciner, which has solidified approx. 38,000 L of simulated acid wastes and approx. 352,000 L of simulated neutralized wastes in 1830 h of processing time. Operating principles, operating experience, design aspects, and system descriptions of a full-scale spray calciner are discussed. Individual test run summaries are given in Appendix A. Appendices B and C are studies made by Bechtel Inc., under contract by PNL. These studies concern, respectively, feed systems for the spray calciner process and a spray calciner vibration analysis. Appendix D is a detailed structural analysis made at PNL of the spray calciner. These appendices are included in the report to provide a complete description of the spray calciner and to include all major studies made concerning PNL's full-scale spray calciner

  2. High-Level Waste Vitrification Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Lopez

    1999-08-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035.

  3. High-Level Waste Vitrification Facility Feasibility Study

    International Nuclear Information System (INIS)

    D. A. Lopez

    1999-01-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035

  4. Heat transfer in high-level waste management

    International Nuclear Information System (INIS)

    Dickey, B.R.; Hogg, G.W.

    1979-01-01

    Heat transfer in the storage of high-level liquid wastes, calcining of radioactive wastes, and storage of solidified wastes are discussed. Processing and storage experience at the Idaho Chemical Processing Plant are summarized for defense high-level wastes; heat transfer in power reactor high-level waste processing and storage is also discussed

  5. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Staiger

    1999-06-01

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  6. Method for calcining radioactive wastes

    International Nuclear Information System (INIS)

    Bjorklund, W.J.; McElroy, J.L.; Mendel, J.E.

    1979-01-01

    A method for the preparation of radioactive wastes in a low leachability form involves calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix

  7. Chemistry of proposed calcination/dissolution processing of Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1995-01-01

    Plans exist to separate radioactive waste stored in underground tanks at the US Department of Energy's Hanford Site in south central Washington State into low-level and high-level fractions, and to immobilize the separate fractions in high-integrity vitrified forms for long-term disposal. Calcination with water dissolution has been proposed as a possible treatment for achieving low/high-level separation. Chemistry development activities conducted since 1992 with simulated and genuine tank waste show that calcination/dissolution destroys organic carbon and converts nitrate and nitrite to hydroxide and benign offgases. The process also dissolves significant quantities of bulk chemicals (aluminum, chromium, and phosphate), allowing their redistribution from the high-level to the low-level fraction. Present studies of the chemistry of calcination/dissolution processing of genuine wastes, conducted in the period October 1993 to September 1994, show the importance of sodium fluoride phosphate double salt in controlling phosphate dissolution. Peptization of waste solids is of concern if extensive washing occurs. Strongly oxidizing conditions imposed by calcination reactions were found to convert transition metals to soluble anions in the order chromate > manganate > > ferrate. In analogy with manganese behavior, plutonium dissolution, presumably by oxidation to more soluble anionic species, also occurs by calcination/dissolution. Methods to remove plutonium from the product low-level solution stream must be developed

  8. Calcination/dissolution residue treatment

    International Nuclear Information System (INIS)

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O'Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination

  9. Summary of Waste Calcination at INTEC

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Barry Henry; Newby, Bill Joe

    2000-10-01

    Fluidized-bed calcination at the Idaho Nuclear Technologies and Engineering Center (INTEC, formally called the Idaho Chemical Processing Plant) has been used to solidify acidic metal nitrate fuel reprocessing and incidental wastes wastes since 1961. A summary of waste calcination in full-scale and pilot plant calciners has been compiled for future reference. It contains feed compositions and operating conditions for all the processing campaigns for the original Waste Calcining Facility (WCF), the New Waste Calcining Facility (NWCF) started up in 1982, and numerous small scale pilot plant tests for various feed types. This summary provides a historical record of calcination at INTEC, and will be useful for evaluating calcinability of future wastes.

  10. Technology status of spray calcination--vitrification of high-level liquid waste for full-scale application

    International Nuclear Information System (INIS)

    Keeley, R.B.; Bonner, W.F.; Larson, D.E.

    1977-01-01

    Spray calcination and vitrification technology for stabilization of high-level nuclear wastes has been developed to the point that initiation of technology transfer to an industrial-sized facility could begin. This report discusses current process and equipment development status together with additional R and D studies and engineering evaluations needed. Preliminary full-scale process and equipment descriptions are presented. Technology application in a full-scale plant would blend three distinct maintenance design philosophies, depending on service life anticipated: (1) totally remote maintenance with limited viewing and handling equipment, (2) totally remote maintenance with extensive viewing and handling equipment, and (3) contact maintenance

  11. Process description and plant design for preparing ceramic high-level waste forms

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKisson, R.L.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes

  12. Process for solidifying high-level nuclear waste

    Science.gov (United States)

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  13. Vitrification of radioactive high-level waste by spray calcination and in-can melting

    Science.gov (United States)

    Hanson, M. S.; Bjorklund, W. J.

    1980-07-01

    After several nonradioactive test runs, radioactive waste from the processing of 1.5 t of spent, light water reactor fuel was successfully concentrated, dried and converted to a vitreous product. A total of 97 L of waste glass (in two stainless steel canisters) was produced. The spray calcination process coupled to the in-can melting process, as developed at Pacific Northwest Labortory, was used to vitrify the waste. An effluent system consisting of a variety of condensation of scrubbing steps more than adequately decontaminated the process off gas before it was released to the atmosphere.

  14. Comparison of the rotary calciner-metallic melter and the slurry-fed ceramic melter technologies for vitrifying West Valley high-level wastes

    International Nuclear Information System (INIS)

    Chapman, C.C.

    1983-01-01

    Two processes which are believed applicable and available for vitrification of West Valley's high-level (HLW) wastes were technically evaluated and compared. The rotary calciner-metallic melter (AVH) and the slurry-fed ceramic melter (SFCM) were evaluated under the following general categories: process flow sheet, remote operability, safety and environmental considerations, and estimated cost and schedules

  15. Waste Calcining Facility remote inspection report

    International Nuclear Information System (INIS)

    Patterson, M.W.; Ison, W.M.

    1994-08-01

    The purpose of the Waste Calcining Facility (WCF) remote inspections was to evaluate areas in the facility which are difficult to access due to high radiation fields. The areas inspected were the ventilation exhaust duct, waste hold cell, adsorber manifold cell, off-gas cell, calciner cell and calciner vessel. The WCF solidified acidic, high-level mixed waste generated during nuclear fuel reprocessing. Solidification was accomplished through high temperature oxidation and evaporation. Since its shutdown in 1981, the WCFs vessels, piping systems, pumps, off-gas blowers and process cells have remained contaminated. Access to the below-grade areas is limited due to contamination and high radiation fields. Each inspection technique was tested with a mock-up in a radiologically clean area before the equipment was taken to the WCF for the actual inspection. During the inspections, essential information was obtained regarding the cleanliness, structural integrity, in-leakage of ground water, indications of process leaks, indications of corrosion, radiation levels and the general condition of the cells and equipment. In general, the cells contain a great deal of dust and debris, as well as hand tools, piping and miscellaneous equipment. Although the building appears to be structurally sound, the paint is peeling to some degree in all of the cells. Cracking and spalling of the concrete walls is evident in every cell, although the east wall of the off-gas cell is the worst. The results of the completed inspections and lessons learned will be used to plan future activities for stabilization and deactivation of the facility. Remote clean-up of loose piping, hand tools, and miscellaneous debris can start immediately while information from the inspections is factored into the conceptual design for deactivating the facility

  16. Calcined solids storage facility closure study

    International Nuclear Information System (INIS)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C.

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a open-quotes Settlement Agreementclose quotes (or open-quotes Batt Agreementclose quotes) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed

  17. Calcined solids storage facility closure study

    Energy Technology Data Exchange (ETDEWEB)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  18. Design criteria for the new waste calcining facility at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Anderson, F.H.; Bingham, G.E.; Buckham, J.A.; Dickey, B.R.; Slansky, C.M.; Wheeler, B.R.

    1976-01-01

    The New Waste Calcining Facility (NWCF) at the Idaho Chemical Processing Plant (ICPP) is being built to replace the existing fluidized-bed, high-level waste calcining facility (WCF). Performance of the WCF is reviewed, equipment failures in WCF operation are examined, and pilot-plant studies on calciner improvements are given in relation to NWCF design. Design features of the NWCF are given with emphasis on process and equipment improvements. A major feature of the NWCF is the use of remote maintenance facilities for equipment with high maintenance requirements, thereby reducing personnel exposures during maintenance and reducing downtime resulting from plant decontamination. The NWCF will have a design net processing rate of 11.36 m 3 of high-level waste per day, and will incorporate in-bed combustion of kerosene for heating the fluidized bed calciner. The off-gas cleaning system will be similar to that for the WCF

  19. Formulation Efforts for Direct Vitrification of INEEL Blend Calcine Waste Simulate: Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Vienna, John D.; Peeler, David K.; Reamer, I. A.

    2001-03-30

    This report documents the results of glass formulation efforts for Idaho National Engineering and Environmental Laboratory (INEEL) high level waste (HWL) calcine. Two waste compositions were used during testing. Testing started by using the Run 78 calcine composition and switched to simulated Blend calcine composition when it became available. The goal of the glass formulation efforts was to develop a frit composition that will accept higher waste loading that satisfies the glass processing and product acceptance constraints. 1. Melting temperature of 1125 ? 25?C 2. Viscosity between 2 and 10 Pa?s at the melting temperature 3. Liquidus temperature at least 100?C below the melting temperature 4. Normalized release of B, Li and Na each below 1 g/m2 (per ASTM C 1285-97) Glass formulation efforts tested several frit compositions with variable waste loadings of Run 78 calcine waste simulant. Frit 107 was selected as the primary candidate for processing since it met all process and performance criteria up to 45 mass% waste loading. When the simulated Blend calcine waste composition became available Frits 107 and 108 compositions were retested and again Frit 107 remained the primary candidate. However, both frits suffered a decrease in waste loading when switching from the Run 78 calcine to simulated Blend calcine waste composition. This was due to increase concentrations of both F and Al2O3 along with a decrease in CaO and Na2O in the simulate Blend calcine waste all of which have strong impacts on the glass properties that limit waste loading of this type of waste.

  20. Remote ignitability analysis of high-level radioactive waste

    International Nuclear Information System (INIS)

    Lundholm, C.W.; Morgan, J.M.; Shurtliff, R.M.; Trejo, L.E.

    1992-09-01

    The Idaho Chemical Processing Plant (ICPP), was used to reprocess nuclear fuel from government owned reactors to recover the unused uranium-235. These processes generated highly radioactive liquid wastes which are stored in large underground tanks prior to being calcined into a granular solid. The Resource Conservation and Recovery Act (RCRA) and state/federal clean air statutes require waste characterization of these high level radioactive wastes for regulatory permitting and waste treatment purposes. The determination of the characteristic of ignitability is part of the required analyses prior to calcination and waste treatment. To perform this analysis in a radiologically safe manner, a remoted instrument was needed. The remote ignitability Method and Instrument will meet the 60 deg. C. requirement as prescribed for the ignitability in method 1020 of SW-846. The method for remote use will be equivalent to method 1020 of SW-846

  1. Calcination/dissolution testing for Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack

  2. Hot isostatically-pressed aluminosilicate glass-ceramic with natural crystalline analogues for immobilizing the calcined high-level nuclear waste at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Raman, S.

    1993-12-01

    The additives Si, Al, MgO, P 2 O 5 were mechanically blended with fluorinelsodium calcine in varying proportions. The batches were vacuum sealed in stainless steel canisters and hot isostatically pressed at 20,000 PSI and 1000 C for 4 hours. The resulting suite of glass-ceramic waste forms parallels the natural rocks in microstructural and compositional heterogeneity. Several crystalline phases ar analogous in composition and structure to naturally occurring minerals. Additional crystalline phases are zirconia and Ca-Mg borate. The glasses are enriched in silica and alumina. Approximately 7% calcine elements occur dissolved in this glass and the total glass content in the waste forms averages 20 wt%. The remainder of the calcine elements are partitioned into crystalline phases at 75 wt% calcine waste loading. The waste forms were tested for chemical durability in accordance with the MCC1-test procedure. The leach rates are a function of the relative proportions of additives and calcine, which in turn influence the composition and abundances of the glass and crystalline phases. The DOE leach rate criterion of less than 1 g/m 2 -day is met by all the elements B, Cs and Na are increased by lowering the melt viscosity. This is related to increased crystallization or devitrification with increases in MgO addition. This exploratory work has shown that the increases in waste loading occur by preferred partitioning of the calcine components among crystalline and glass phases. The determination of optimum processing parameters in the form of additive concentration levels, homogeneous blending among the components, and pressure-temperature stabilities of phases must be continued to eliminate undesirable effects of chemical composition, microstructure and glass devitrification

  3. Determination of the Rate of Formation of Hydroceramic Waste Forms made with INEEL Calcined Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Barry Scheetz; Johnson Olanrewaju

    2001-10-15

    The formulation, synthesis, characterization and hydration kinetics of hydroceramic waste forms designed as potential hosts for existing INEEL calcine high-level wastes have been established as functions of temperature and processing time. Initial experimentations were conducted with several aluminosilicate pozzolanic materials, ranging from fly ash obtained from various power generating coal and other combustion industries to reactive alumina, natural clays and ground bottled glass powders. The final selection criteria were based on the ease of processing, excellent physical properties and chemical durability (low-leaching) determined from the PCT test produced in hydroceramic. The formulation contains vermiculite, Sr(NO32), CsC1, NaOH, thermally altered (calcined natural clay) and INEEL simulated calcine high-level nuclear wastes and 30 weight percent of fluorinel blend calcine and zirconia calcine. Syntheses were carried out at 75-200 degree C at autogeneous water pressure (100% relative humidity) at various time intervals. The resulting monolithic compact products were hard and resisted breaking when dropped from a 5 ft height. Hydroceramic host mixed with fluorinel blend calcine and processed at 75 degree C crumbled into rice hull-side grains or developed scaly flakes. However, the samples equally possessed the same chemical durability as their unbroken counterparts. Phase identification by XRD revealed that hydroceramic host crystallized type zeolite at 75-150 degree C and NaP1 at 175-200 degree C in addition to the presence of quartz phase originating from the clay reactant. Hydroceramic host mixed with either fluorinel blend calcine or zirconia calcine crystallized type A zeolite at 75-95 degree C, formed a mixture of type A zeolite and hydroxysodalite at 125-150 degree C and hydroxysodalite at 175-200 degree C. Quartz, calcium fluoride and zirconia phases from the clay reactant and the two calcine wastes were also detected. The PCT test solution

  4. Determination of the Rate of Formation of Hydroceramic Waste Forms made with INEEL Calcined Wastes; FINAL

    International Nuclear Information System (INIS)

    Barry Scheetz; Johnson Olanrewaju

    2001-01-01

    The formulation, synthesis, characterization and hydration kinetics of hydroceramic waste forms designed as potential hosts for existing INEEL calcine high-level wastes have been established as functions of temperature and processing time. Initial experimentations were conducted with several aluminosilicate pozzolanic materials, ranging from fly ash obtained from various power generating coal and other combustion industries to reactive alumina, natural clays and ground bottled glass powders. The final selection criteria were based on the ease of processing, excellent physical properties and chemical durability (low-leaching) determined from the PCT test produced in hydroceramic. The formulation contains vermiculite, Sr(NO32), CsC1, NaOH, thermally altered (calcined natural clay) and INEEL simulated calcine high-level nuclear wastes and 30 weight percent of fluorinel blend calcine and zirconia calcine. Syntheses were carried out at 75-200 degree C at autogeneous water pressure (100% relative humidity) at various time intervals. The resulting monolithic compact products were hard and resisted breaking when dropped from a 5 ft height. Hydroceramic host mixed with fluorinel blend calcine and processed at 75 degree C crumbled into rice hull-side grains or developed scaly flakes. However, the samples equally possessed the same chemical durability as their unbroken counterparts. Phase identification by XRD revealed that hydroceramic host crystallized type zeolite at 75-150 degree C and NaP1 at 175-200 degree C in addition to the presence of quartz phase originating from the clay reactant. Hydroceramic host mixed with either fluorinel blend calcine or zirconia calcine crystallized type A zeolite at 75-95 degree C, formed a mixture of type A zeolite and hydroxysodalite at 125-150 degree C and hydroxysodalite at 175-200 degree C. Quartz, calcium fluoride and zirconia phases from the clay reactant and the two calcine wastes were also detected. The PCT test solution

  5. Alternative calcination development status report

    International Nuclear Information System (INIS)

    Boardman, R.D.

    1997-12-01

    The Programmatic Spent Nuclear Fuel and (INEEL) Environmental Restoration and Waste Management Programs Environmental Impact Statement Record of Decision, dated June 1, 1995, specifies that high-level waste stored in the underground tanks at the ICPP continue to be calcined while other options to treat the waste are studied. Therefore, the High-Level Waste Program has funded a program to develop new flowsheets to increase the liquid waste processing rate. Simultaneously, a radionuclide separation process, as well as other options, are also being developed, which will be compared to the calcination treatment option. Two alternatives emerged as viable candidates; (1) elevated temperature calcination (also referred to as high temperature calcination), and (2) sugar-additive calcination. Both alternatives were determined to be viable through testing performed in a lab-scale calcination mockup. Subsequently, 10-cm Calciner Pilot Plant scoping tests were successfully completed for both flowsheets. The results were compared to the standard 500 C, high-ANN flow sheet (baseline flowsheet). The product and effluent streams were characterized to help elucidate the process chemistry and to investigate potential environmental permitting issues. Several supplementary tests were conducted to gain a better understanding of fine-particles generation, calcine hydration, scrub foaming, feed makeup procedures, sugar/organic elimination, and safety-related issues. Many of the experiments are only considered to be scoping tests, and follow-up experiments will be required to establish a more definitive understanding of the flowsheets. However, the combined results support the general conclusion that flowsheet improvements for the NWCF are technically viable

  6. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Boardman; B. H. O& #39; Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing

  7. Review of high-level waste form properties

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison

  8. Durability, mechanical, and thermal properties of experimental glass-ceramic forms for immobilizing ICPP high level waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1990-01-01

    The high-level liquid waste generated at the Idaho Chemical Processing Plant (ICPP) is routinely solidified into granular calcined high-level waste (HLW) and stored onsite. Research is being conducted at the ICPP on methods of immobilizing the HLW, including developing a durable glass-ceramic form which has the potential to significantly reduce the final waste volume by up to 60% compared to a glass form. Simulated, pilot plant, non-radioactive, calcines similar to the composition of the calcined HLW and glass forming additives are used to produce experimental glass-ceramic forms. The objective of the research reported in this paper is to study the impact of ground calcine particle size on durability and mechanical and thermal properties of experimental glass-ceramic forms

  9. Volume reduction of low- and medium-level waste by incineration/calcination

    International Nuclear Information System (INIS)

    Buzonniere, A. de; Gauthey, J.C.

    1993-01-01

    Nuclear installations generate large quantities of low- and medium-level radwaste. This waste comes from various installations in the fuel cycle, reactor operation, research institute, hospitals, nuclear plate dismantling, etc.. TECHNICATOME did the project development work for the incineration plant of PIERRELATE (France) on behalf of COGEMA (Compagnie Generale des d'Etudes Technique). This plant has been in active service since November 1987. In addition, TECHNICATOME was in charge of the incinerator by a turnkey contract. This incinerator was commissioned in 1992. For a number of years, TECHNICATOME has been examining, developing and producing incineration and drying/calcination installations. They are used for precessing low- and medium-level radwaste

  10. Design features of a full-scale high-level waste vitrification system

    International Nuclear Information System (INIS)

    Siemens, D.H.; Bonner, W.F.

    1976-08-01

    A system has been designed and is currently under construction for vitrification of commercial high-level waste. The process consists of a spray calciner coupled to an in-can melter. Due to the high radiation levels expected, this equipment is designed for totally remote operation and maintenance. The in-cell arrangement of this equipment has been developed cooperatively with a nuclear fuel reprocessor. The system will be demonstrated both full scale with nonradioactive simulated waste and pilot scale with actual high-level waste

  11. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  12. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Staiger, M. Daniel; Swenson, Michael C.

    2011-01-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  13. Review of metal-matrix encapsulation of solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-05-01

    Literature describing previous and current work on the encapsulation of solidified high-level waste forms in a metal matrix was reviewed. Encapsulation of either stabilized calcine pellets or glass beads in alloys by casting techniques was concluded to be the most developed and direct approach to fabricating solid metal-matrix waste forms. Further characterizations of the physical and chemical properties of metal-matrix waste forms are still needed to assess the net attributes of metal-encapsulation alternatives. Steady-state heat transfer properties of waste canisters in air and water environments were calculated for four reference waste forms: (1) calcine, (2) glass monoliths, (3) metal-encapsulated calcine, and (4) metal-encapsulated glass beads. A set of criteria for the maximum allowable canister centerline and surface temperatures and heat generation rates per canister at the time of shipment to a Federal repository was assumed, and comparisons were made between canisters of these reference waste forms of the shortest time after reactor discharge that canisters could be filled and the subsequent ''interim'' storage times prior to shipment to a Federal repository for various canister diameters and waste ages. A reference conceptual flowsheet based on existing or developing technology for encapsulation of stabilized calcine pellets is discussed. Conclusions and recommendations are presented

  14. Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory's Bench -Scale Cold Crucible Induction Melter

    International Nuclear Information System (INIS)

    Maio, Vince

    2011-01-01

    This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing

  15. Pilot-plant development of a Rover waste calcination flowsheet

    International Nuclear Information System (INIS)

    Birrer, S.A.

    1978-04-01

    Results of eight runs, six using the 10-cm dia and two using the 30-cm dia pilot-plant calciners, in which simulated first-cycle Rover waste was calcined, are described. Results of the tests showed that a feed blend consisting of one volume simulated first-cycle Rover waste and one or two volumes simulated first-cycle zirconium waste could not be successfully calcined. 5 figs., 8 tables

  16. Fixation of calcined waste by bituminization or cementation

    International Nuclear Information System (INIS)

    Napravnik, J.; Kyrs, M.; Ditl, P.

    1983-01-01

    The overall concept is given of the combination of calcination with fixation into bitumen, cement etc. The design is shown of a calciner with the capacity of 10 L/h which was tested on real radioactive wastes for 2000 h. The geometrical and operating parameters of the apparatus have been optimized based on a statistical evaluation of the experiments. Wastes containing nitrates are calcined at 300-550 deg. C, yielding oxides. Wastes containing sulphates, carbonates, KMnO 4 , or borates are calcined at 150-330 deg. C, yielding soluble salts. The content of H 3 BO 4 and Na 2 B 4 O 7 and in some cases of sulphates in the calcinate retards hardening of the mixture with cement. Nitrates and detergents also interfere. The effect of the above components on the products mixed with bitumen is much less. Detergents can be decomposed at 200-300 deg. C; organic acids can be reacted with A1 salts to form insoluble substances lowering the leaching rate of Sr and Cs; small amounts of SiO 2 eliminate the effect of borates on cement hardening. The drawbacks of bituminization with bitumen emulsions are the complicated preparation of the emulsion, higher leaching rate of the product and low stability of the emulsion against breaking. The leachability was determined (1-50 days) of different products containing LWR wastes: 33% of concentrated waste in cement of calcination product stabilized with PVA exhibit approx. 8x10 - 3 g/cm 2 per day, 33% of calcine in cement approx. 3x10 - 3 ; 40% concentrate fixed with bitumen emulsion approx. 9x10 - 4 ; 50% calcine stabilized with PVA in bitumen, pilot-plant scale approx. 2x10 - 5 ; the same but on a laboratory scale approx. 1.10 - 5 . (author)

  17. Remotely replaceable fuel and feed nozzles for the new waste calcining facility calciner vessel

    International Nuclear Information System (INIS)

    Fletcher, R.D.; Carter, J.A.; May, K.W.

    1978-01-01

    The development and testing of remotely replaceable fuel and feed nozzles for calcination of liquid radioactive wastes in the calciner vessel of the New Waste Calcining Facility being built at the Idaho National Engineering Laboratory is described. A complete fuel nozzle assembly was fabricated and tested at the Remote Maintenance Development Facility to evolve design refinements, identify required support equipment, and develop handling techniques. The design also provided for remote replacement of the nozzle support carriage and adjacent feed and fuel pipe loops using two pairs of master-slave manipulators

  18. Volatilities of ruthenium, iodine, and technetium on calcining fission product nitrate wastes

    International Nuclear Information System (INIS)

    Rimshaw, S.J.; Case, F.N.

    1980-01-01

    Various high-level nitrate wastes were subjected to formic acid denitration. Formic acid reacts with the nitrate anion to yield noncondensable, inert gases according to the following equation: 4 HCOOH + 2 HNO 3 → N 2 O + 4 CO 2 + 5 H 2 O. These gases can be scrubbed free of 106 Ru, 131 I, and 99 Tc radioactivities prior to elimination from the plant by passage through HEPA filters. The formation of deleterious NO/sub x/ is avoided. Moreover, formic acid reduces ruthenium to a lower valence state with a sharp reduction in RuO 4 volatility during subsequent calcination of the pretreated waste. It is shown that a minimum of 3% of RuO 4 in an off-gas stream reacts with Davison silica gel (Grade 40) to give a fine RuO 2 aerosol having a particle size of 0.5 μ. This RuO 2 aerosol passes through water or weak acid scrub solutions but is trapped by a caustic scrub solution. Iodine volatilizes almost completely on calcining an acidic waste, and the iodine volatility increases with increasing calcination temperature. On calcining an alkaline sodium nitrate waste the iodine volatility is about an order of magnitude lower, with a relatively low iodine volatility of 0.39% at a calcination temperature of 250 0 C and a moderate volatility of 9.5% at 600 0 C. Volatilities of 99 Tc were generally 0 C. Data are presented to indicate that 99 Tc concentrates in the alkaline sodium nitrate supernatant waste, with approx. 10 mg 99 Tc being associated with each curie of 137 Cs present in the waste. It is shown that lutidine (2,4 dimethyl-pyridine) extracts Tc(VII) quantitatively from alkaline supernatant wastes. The distribution coefficient (K/sub D/) for Tc(VII) going into the organic phase in the above system is 102 for a simulated West Valley waste and 191 for a simulated Savannah River Plant (SRP) waste

  19. New Waste Calcining Facility (NWCF) Waste Streams

    International Nuclear Information System (INIS)

    K. E. Archibald

    1999-01-01

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF

  20. Volatility of ruthenium-106, technetium-99, and iodine-129, and the evolution of nitrogen oxide compounds during the calcination of high-level, radioactive nitric acid waste

    International Nuclear Information System (INIS)

    Rimshaw, S.J.; Case, F.N.; Tompkins, J.A.

    1980-02-01

    The nitrate anion is the predominant constituent in all high-level nuclear wastes. Formic acid reacts with the nitrate anion to yield noncondensable, inert gases (N 2 or N 2 O), which can be scrubbed free of 106 Ru, 129 I, and 99 Tc radioactivities prior to elimination from the plant by passing through HEPA filters. Treatment of a high-level authentic radioactive waste with two moles of formic acid per mole of nitrate anion leads to a low RuO 4 volatility of about 0.1%, which can be reduced to an even lower level of 0.007% on adding a 15% excess of formic acid. Without pretreatment of the nitrate waste with formic acid, a high RuO 4 volatility of approx. 35% is observed on calcining a 4.0 N HNO 3 solution in quartz equipment at 350 0 C. The RuO 4 volatility falls to approx. 1.0% on decreasing the initial HNO 3 concentration to 1.0 N or lower. It is postulated that thermal denitration of a highly nitrated ruthenium complex leads to the formation of volatile RuO 4 , while decarboxylation of a ruthenium-formate complex leads to the formation of nonvolatile RuO 2 . Wet scrubbing with water is used to remove RuO 4 from the off-gas stream. In all glass equipment, small amounts of particulate RuO 2 are formed in the gas phase by decomposition of RuO 4 . The 99 Tc volatility was found to vary from 0.2 to 1.4% on calcining HNO 3 and HCOOH (formic acid) solutions over the temperature range of 250 to 600 0 C. These unexpectedly low volatilities of 99 Tc are correlated to the high thermal stability limits of various metal pertechnetates and technetates. Iodine volatilities were high, varying from a low of 30% at 350 0 C to a high of 97% at 650 0 C. It is concluded that with a proper selection of pretreatment and operating conditions the 106 Ru and 99 Tc activities can be retained in the calcined solid with recycle of the wet scrubbing solution

  1. Design and development of a rotary calciner for radiochemical waste

    International Nuclear Information System (INIS)

    Pande, D.P.; Sutar, V.D.; Sengar, P.B.S.

    1997-01-01

    Present experience and knowledge in handling of radioactive waste has led to identification of major thrust areas in the development of the treatment processes. In order to reduce evaporation and volatility losses in the vitrification facility, it is advantageous to carry out evaporation and calcination steps in another equipment like rotary calciner. Efforts have been directed for the engineering development of a Rotary Ball Kiln calciner. This paper highlights the important design features of the Rotary Ball Kiln Calciner for the radioactive waste. In this work, an attempt has been made to systematically evaluate the influence of process and design parameters. The results obtained on calcination will provide a design basis and rational methodology for the optimum utilization of these processes and equipment for volume reduction and calcination of the liquid waste

  2. Attrition, elutriation, and growth of particles produced in fluidized-bed waste calciners

    International Nuclear Information System (INIS)

    McDonald, F.N.

    1982-09-01

    The Idaho Chemical Processing Plant reduces the volume of high-level liquid radioactive wastes in a fluidized bed to produce a granular calcine product. In the past, difficulties have been experienced in controlling the product's particle size when processing certain blends of sodium-bearing waste. Therefore, experiments in attrition, elutriation, and particle growth were done to characterize how best to control these three parameters. 15 figures, 16 tables

  3. ICPP radioactive liquid and calcine waste technologies evaluation final report and recommendation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Using a formalized Systems Engineering approach, the Latched Idaho Technologies Company developed and evaluated numerous alternatives for treating, immobilizing, and disposing of radioactive liquid and calcine wastes at the Idaho Chemical Processing Plant. Based on technical analysis data as of March, 1995, it is recommended that the Department of Energy consider a phased processing approach -- utilizing Radionuclide Partitioning for radioactive liquid and calcine waste treatment, FUETAP Grout for low-activity waste immobilization, and Glass (Vitrification) for high-activity waste immobilization -- as the preferred treatment and immobilization alternative.

  4. Review of high-level waste form properties. [146 bibliographies

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison.

  5. Application of SYNROC to high-level defense wastes

    International Nuclear Information System (INIS)

    Tewhey, J.D.; Hoenig, C.L.; Newkirk, H.W.; Rozsa, R.B.; Coles, D.G.; Ryerson, F.J.

    1981-01-01

    The SYNROC method for immobilization of high-level nuclear reactor wastes is currently being applied to US defense wastes in tank storage at Savannah River, South Carolina. The minerals zirconolite, perovskite, and hollandite are used in SYNROC D formulations to immobilize fission products and actinides that comprise up to 10% of defense waste sludges and coexisting solutions. Additional phase in SYNROC D are nepheline, the host phase for sodium; and spinel, the host for excess aluminum and iron. Up to 70 wt % of calcined sludge can be incorporated with 30 wt % of SYNROC additives to produce a waste form consisting of 10% nepheline, 30% spinel, and approximately 20% each of the radioactive waste-bearing phases. Urea coprecipitation and spray drying/calcining methods have been used in the laboratory to produce homogeneous, reactive ceramic powders. Hot pressing and sintering at temperatures from 1000 to 1100 0 C result in waste form products with greater than 97% of theoretical density. Hot isostatic pressing has recently been implemented as a processing alternative. Characterization of waste-form mineralogy has been done by means of XRD, SEM, and electron microprobe. Leaching of SYNROC D samples is currently being carried out. Assessment of radiation damage effects and physical properties of SYNROC D will commence in FY81

  6. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    International Nuclear Information System (INIS)

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs

  7. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs.

  8. Mobile calcination and cementation unit for solidification of concentrated radioactive wastes

    International Nuclear Information System (INIS)

    Napravnik, J.; Sazavsky, P.; Skaba, V.; Skvarenina, R.; Ditl, P.

    1985-01-01

    Mobile experimental unit MESA-1 was developed and manufactured for processing radioactive concentrates by direct cementation. The unit is mainly designed for processing low-level liquid wastes from nuclear power plants and other nuclear installations, in which the level of radioactivity does not exceed 10 10 Bq/m 3 , the salt content of liquid solutions does not exceed 500 kg/m 3 and the maximum amount of boric acid is 130 kg/m 3 . The equipment is built into three modules which may be assembled and dismantled in a short time and transported separately. The unit without the calciner module was tested in non-radioactive mode and in operation with actual radioactive wastes from the V-1 nuclear power plant. The course and results of the tests are described in detail. All project design values were achieved, a total of 18 dm 3 model solutions were processed and 1 m 3 of actual wastes with a salt content of 450 kg/m 3 . The test showed that with regard to the radiation level reached it will be necessary in the process of calcination to increase the shielding of certain exposed points. The calciner module is being assembled for completion. (Z.M.)

  9. Final report, Task 2: alternative waste management options, Nuclear Fuel Services, Inc., high level waste

    International Nuclear Information System (INIS)

    1978-01-01

    Of the alternatives considered for disposal of the high-level waste in tanks 8D2 and 8D4, the following process is recommended: homogenization of the contents of tank 8D2, centrifugation of the sludge and supernate, mixing of the 8D4 acid waste with the centrifuged sludge, and converting the mixture to a borosilicate glass using the Hanford spray calciner/in-can melter

  10. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  11. Engineering-scale vitrification of commercial high-level waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Bjorklund, W.J.; Hanson, M.S.; Knowlton, D.E.

    1980-04-01

    To date, technology for immobilizing commercial high-level waste (HLW) has been extensively developed, and two major demonstration projects have been completed, the Waste Solidification Engineering Prototypes (WSEP) Program and the Nuclear Waste Vitrification Project (NWVP). The feasibility of radioactive waste solidification was demonstrated in the WSEP program between 1966 and 1970 (McElroy et al. 1972) using simulated power-reactor waste composed of nonradioactive chemicals and HLW from spent, Hanford reactor fuel. Thirty-three engineering-scale canisters of solidified HLW were produced during the operations. In early 79, the NWVP demonstrated the vitrification of HLW from the processing of actual commercial nuclear fuel. This program consisted of two parts, (1) waste preparation and (2) vitrification by spray calcination and in-can melting. This report presents results from the NWVP

  12. Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E. [CH2M-WG Idaho, LLC. The Idaho Cleanup Project at the Idaho National Laboratory (United States)

    2012-07-01

    This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera arm will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the

  13. Volatilization behavior of semivolatile elements in vitrification of high-level liquid waste

    International Nuclear Information System (INIS)

    Igarashi, Hiroshi; Kato, Koh; Takahashi, Takeshi

    1991-11-01

    The effect of temperature on the volatilization of ruthenium, technetium, and selenium was observed in calcination experiments with simulated high-level liquid waste. Technetium and selenium were more volatile as calcining temperature increased. Ruthenium was less volatile when temperature exceeded 300degC. More than 80% of ruthenium that volatilized from room temperature to 500degC occurred between 200 and 300degC. A small amount of ruthenium volatilized above 300degC as well as below 135degC. (author)

  14. High level waste facilities - Continuing operation or orderly shutdown

    International Nuclear Information System (INIS)

    Decker, L.A.

    1998-04-01

    Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed

  15. Solidification of highly active wastes

    International Nuclear Information System (INIS)

    Morris, J.B.

    1984-11-01

    Final reports are presented on work on the following topics: glass technology; enhancement of off-gas aerosol collection; formation and trapping of volatile ruthenium; volatilisation of caesium, technetium and tellurium in high-level waste vitrification; deposition of ruthenium; and calcination of high-level waste liquors. (author)

  16. Proposed Atomic Energy of Canada Ltd. 99Mo waste calcination process

    International Nuclear Information System (INIS)

    Ramey, D.W.; Haas, P.A.; Malkemus, D.W.; McGinnis, C.P.; Meyers, E.S.; Patton, B.D.; Birdwell, J.F.; Jubin, R.T.; Coltharp, K.A.

    1994-10-01

    Atomic Energy of Canada Limited (AECL), at its Chalk River Laboratory, generates from 3000 to 5000 L/year of high-level fissile waste solution from the production of 99 Mo. In this Mo process, highly enriched uranium (93 wt % 235 U, total uranium basis) contained in uranium-aluminum alloy target rods is irradiated to produce the 99 Mo product. The targets are removed from the reactor and dissolved in a mercury nitrate-catalyzed reaction with nitric acid. The 99 Mo product is then recovered by passing the solution through an alumina (Al 2 O 3 ) column. During discussions with personnel from the Oak Ridge National Laboratory (ORNL) on September 10, 1992, the ORNL-developed technology formerly applied to the solidification of aqueous uranium waste (Consolidated Edison Uranium Solidification Program or CEUSP) was judged potentially applicable to the AECL 99 Mo waste. Under a Work-for-Others contract (no. ERD-92-1132), which began May 24, 1993, ORNL was tasked to determine the feasibility of applying the CEUSP (or a similar) calcination process to solidify AECL's 99 Mo waste for > 30 years of safe dry storage. This study was to provide sufficient detailed information on the applicability of a CEUSP-type waste solidification process to allow AECL to select the process which best suited its needs. As with the CEUSP process, evaporation of the waste and a simultaneously partial destruction of acid by reaction with formaldehyde followed by in situ waste can thermal denitration waste was chosen as the best means of solidification. Unlike the CEUSP material, the 99 Mo waste has a considerable number of problem volatile and semivolatile constituents which must be recovered in the off-gas treatment system. Mercury removal before calcination was seen as the best option

  17. Alternative processes for managing existing commercial high-level radioactive wastes

    International Nuclear Information System (INIS)

    1976-04-01

    A number of alternatives are discussed for managing high-level radioactive waste presently stored at the West Valley, New York, plant owned by Nuclear Fuel Services, Inc. These alternatives (liquid storage, conversion to cement, shale fracturing, shale cement, calcination, aqueous silicate, conversion to glass, and salt cake) are limited to concepts presently under active investigation by ERDA. Each waste management option is described and examined regarding the status of the technology; its applications to managing NFS waste; its advantages and disadvantages; the research and development needed to implement the option; safety considerations; and estimated costs and time to implement the process

  18. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables.

  19. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables

  20. Bin Set 1 Calcine Retrieval Feasibility Study

    International Nuclear Information System (INIS)

    Adams, R.D.; Berry, S.M.; Galloway, K.J.; Langenwalter, T.A.; Lopez, D.A.; Noakes, C.M.; Peterson, H.K.; Pope, M.I.; Turk, R.J.

    1999-01-01

    At the Department of Energy's Idaho Nuclear Technology and Engineering Center, as an interim waste management measure, both mixed high-level liquid waste and sodium bearing waste have been solidified by a calculation process and are stored in the Calcine Solids Storage Facilities. This calcined product will eventually be treated to allow final disposal in a national geologic repository. The Calcine Solids Storage Facilities comprise seven ''bit sets.'' Bin Set 1, the first to be constructed, was completed in 1959, and has been in service since 1963. It is the only bin set that does not meet current safe-shutdown earthquake seismic criteria. In addition, it is the only bin set that lacks built-in features to aid in calcine retrieval. One option to alleviate the seismic compliance issue is to transport the calcine from Bin Set 1 to another bin set which has the required capacity and which is seismically qualified. This report studies the feasibility of retrieving the calcine from Bi n Set 1 and transporting it into Bin Set 6 which is located approximately 650 feet away. Because Bin Set 1 was not designed for calcine retrieval, and because of the high radiation levels and potential contamination spread from the calcined material, this is a challenging engineering task. This report presents preconceptual design studies for remotely-operated, low-density, pneumatic vacuum retrieval and transport systems and equipment that are based on past work performed by the Raytheon Engineers and Constructors architectural engineering firm. The designs presented are considered feasible; however, future development work will be needed in several areas during the subsequent conceptual design phase

  1. Bin Set 1 Calcine Retrieval Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    R. D. Adams; S. M. Berry; K. J. Galloway; T. A. Langenwalter; D. A. Lopez; C. M. Noakes; H. K. Peterson; M. I. Pope; R. J. Turk

    1999-10-01

    At the Department of Energy's Idaho Nuclear Technology and Engineering Center, as an interim waste management measure, both mixed high-level liquid waste and sodium bearing waste have been solidified by a calculation process and are stored in the Calcine Solids Storage Facilities. This calcined product will eventually be treated to allow final disposal in a national geologic repository. The Calcine Solids Storage Facilities comprise seven ''bit sets.'' Bin Set 1, the first to be constructed, was completed in 1959, and has been in service since 1963. It is the only bin set that does not meet current safe-shutdown earthquake seismic criteria. In addition, it is the only bin set that lacks built-in features to aid in calcine retrieval. One option to alleviate the seismic compliance issue is to transport the calcine from Bin Set 1 to another bin set which has the required capacity and which is seismically qualified. This report studies the feasibility of retrieving the calcine from Bi n Set 1 and transporting it into Bin Set 6 which is located approximately 650 feet away. Because Bin Set 1 was not designed for calcine retrieval, and because of the high radiation levels and potential contamination spread from the calcined material, this is a challenging engineering task. This report presents preconceptual design studies for remotely-operated, low-density, pneumatic vacuum retrieval and transport systems and equipment that are based on past work performed by the Raytheon Engineers and Constructors architectural engineering firm. The designs presented are considered feasible; however, future development work will be needed in several areas during the subsequent conceptual design phase.

  2. Immobilisation of high level nuclear reactor wastes in SYNROC

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E; Kesson, S E; Ware, N G; Hibberson, W; Major, A [Australian National Univ., Canberra. Inst. of Advanced Studies

    1979-03-15

    It is stated that the elements occurring in high-level nuclear reactor wastes can be safely immobilised by incorporating them within the crystal lattices of the constituent minerals of a synthetic rock (SYNROC). The preferred form of SYNROC can accept up to 20% of high level waste calcine to form dilute solid solutions. The constituent minerals, or close structural analogues, have survived in a wide range of geochemical environments for periods of 20 to 2,000 Myr whilst immobilising the same elements present in nuclear wastes. SYNROC is unaffected by leaching for 24 hours in pure water or 10 wt % NaCl solution at high temperatures and pressure whereas borosilicate glasses completely decompose in a few hours in much less severe hydrothermal conditions. The combination of these leaching results with the geological evidence of long-term stability indicates that SYNROC would be vastly superior to glass in its capacity to safely immobilise nuclear wastes, when buried in a suitable geological repository. A dense, compact, mechanically strong form of SYNROC suitable for geological disposal can be produced by a process as economical as that which incorporates radioactive waste in borosilicate glasses.

  3. Fluidized-bed calcination of LWR fuel-reprocessing HLLW: requirements and potential for off-gas cleanup

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1979-01-01

    Fluidized-bed solidification (calcination) was developed on a pilot scale for a variety of simulated LWR high-level liquid-waste (HLLW) and blended high-level and intermediate-level liquid-waste (ILLW) compositions. It has also been demonstrated with ICPP fuel-reprocessing waste since 1963 in the Waste Calcining Facility (WCF) at gross feed rates of 5 to 12 m 3 /day. A fluidized-bed calciner produces a relatively large volume of off-gas. A calciner solidifying 6 m 3 /day of liquid waste would generate about 13 standard m 3 /min of off-gas containing 10 to 20 g of entrained solids per standard m 3 of off-gas. Use of an off-gas system similar to that of the WCF could provide an overall process decontamination factor for particulates of about 2 x 10 10 . A potential advantage of fluidized-bed calcination over other solidification methods is the ability to control ruthenium volatilization from the calciner at less than 0.01% by calcining at 500 0 C or above. Use of an off-gas system similar to that of the WCF would provide an overall process decontamination factor for volatile ruthenium of greater than 1.6 x 10 7

  4. Powder technological vitrification of simulated high-level waste

    International Nuclear Information System (INIS)

    Gahlert, S.

    1988-03-01

    High-level waste simulate from the reprocessing of light water reactor and fast breeder fuel was vitrified by powder technology. After denitration with formaldehyde, the simulated HLW is mixed with glass frit and simultaneously dried in an oil-heated mixer. After 'in-can calcination' for at least 24 hours at 850 or 950 K (depending on the type of waste and glass), the mixture is hot-pressed in-can for several hours at 920 or 1020 K respectively, at pressures between 0.4 and 1.0 MPa. The technology has been demonstrated inactively up to diameters of 30 cm. Leach resistance is significantly enhanced when compared to common borosilicate glasses by the utilization of glasses with higher silicon and aluminium content and lower sodium content. (orig.) [de

  5. Solidification of highly active wastes

    International Nuclear Information System (INIS)

    Morris, J.B.

    1986-07-01

    This document contains the annual reports for the contracts: (A) Glass Technology; (B) Calcination of Highly Active Waste Liquors; (C) Formation and Trapping of Volatile Ruthenium; (D) Deposition of Ruthenium; (E) Enhancement of Off-Gas Aerosol Collection; (F) Volatilisation of Cs, Tc and Te in High Level Waste Vitrification. (author)

  6. Immobilization of high-level wastes into sintered glass: 1

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    In order to immobilize the high-level radioactive wastes from fuel elements reprocessing, borosilicate glass was adopted. Sintering experiments are described with the variety VG 98/12 (SiO 2 , TiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO and Na 2 O) (which does not present devitrification problems) mixed with simulated calcinated wastes. The hot pressing line (sintering under pressure) was explored in two variants 1: In can; 2: In graphite matrix with sintered pellet extraction. With scanning electron microscopy it is observed that the simulated wastes do not disolve in the vitreous matrix, but they remain dispersed in the same. The results obtained point out that the leaching velocities are independent from the density and from the matrix type employed, as well as from the fact that the wastes do no dissolve in the matrix. (M.E.L.) [es

  7. Pilot plant experience on high-level waste solidification and design of the engineering prototype VERA

    Energy Technology Data Exchange (ETDEWEB)

    Guber, W; Diefenbacher, W; Hild, W; Krause, H; Schneider, E; Schubert, G

    1972-11-01

    In the present paper the solidification process for highly active waste solutions as developed in the Karlsruhe Nuclear Research Center is presented. Its principal steps are: denitration, calcination in a spray calciner operated with superheated steam, melting of the calcine with appropriate additives to borosilicate glass in an induction-heated melting furnace. The operational experiences gained so far in the inactive 1:1 pilot plant are reported. Furthermore, a description is given of the projected multi-purpose experimental facility VERA 2 which is provided for processing the highly active waste solutions from the first German reprocessing plant WAK.

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    Slansky, C.M.

    1975-01-01

    High-level radioactive waste is produced at Idaho Chemical Processing Plant (ICPP) during the recovery of spent highly enriched nuclear fuels. Liquid waste is stored safely in doubly contained tanks made of steel. The liquid waste is calcined to a solid and stored safely in a retrievable form in doubly contained underground bins. The calcine can be treated further or left untreated in anticipation of ultimate storage. Fluidized bed calcination has been applied to many kinds of high-level waste. The environmental impact of high-level waste management at the ICcP has been negligible and should continue to be negligible. 13 refs

  9. Ninth Processing Campaign in the Waste Calcining Facility

    International Nuclear Information System (INIS)

    Childs, K.F.; Donovan, R.I.; Swenson, M.C.

    1982-04-01

    This report discusses the Ninth (and final) Processing Campaign at the Waste Calcining Facility. Several processing interruptions were experienced during this campaign and the emphasis of this report is on process and equipment performance with operating problems and corrective actions discussed in detail

  10. Vitrification of high-level alumina nuclear waste

    International Nuclear Information System (INIS)

    Brotzman, J.R.

    1979-01-01

    Borophosphate glass compositions have been developed for the vitrification of a high-alumina calcined defense waste. The effect of substituting SiO 2 , P 2 O 5 and CuO for B 2 O 3 on the viscosity and leach resistance was measured. The effect of the alkali to borate ratio and the Li 2 O:Na 2 O ratio on the melt viscosity and leach resistance was also measured

  11. In Vitro Studies Evaluating Leaching of Mercury from Mine Waste Calcine Using Simulated Human Body Fluids

    OpenAIRE

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almad?n, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute prim...

  12. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids

    Science.gov (United States)

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  13. Design and operation of high level waste vitrification and storage facilities

    International Nuclear Information System (INIS)

    1992-01-01

    The conversion of high level wastes (HLW) into solids has been studied for the past 30 years, primarily in those countries engaged in the reprocessing of nuclear fuels. Production and demonstration calcination and solidification plants have been operated by using waste solutions from fuels irradiated at various burnup rates, depending on the reactor type. Construction of more advanced solidification processes is now in progress in several countries to permit the handling of high burnup power reactor fuel wastes. The object of this report is to provide detailed information and references for those vitrification systems in advanced stages of implementation. Some less detailed information will be provided for previously developed immobilization systems. The report will examine the HLLW arising from the various locations, the features of each process as well as the stage of development, scale-up potential and flexibility of the processes. Since the publication of IAEA Technical Reports Series No. 176, Techniques for the Solidification of High-Level Wastes great progress on this subject has been made. The AVM in France has been operated successfully for 11 years and France has completed construction at La Hague of two vitrification plants that are based on the AVM rotary calciner/metallic melter process. A similar plant is under construction at Sellafield. The ceramic melter process has been chosen by several countries. Germany has successfully operated the PAMELA vitrification plant. Since 1986, Belgoprocess has continued to operate this facility. The former USSR operated the EP-500 plant from 1986 to 1988. In addition, two ceramic melter vitrification plants are nearing completion in the USA at Savannah River and West Valley and plans are being made to use this technology at Hanford as well as in Japan, Germany and India. This major progress attests to the maturity of these technologies for vitrifying HLLW to make a borosilicate glass for disposal of the waste. 67

  14. Optimization of Calcine Blending During Retrieval from Binsets

    International Nuclear Information System (INIS)

    Nelson, Lee Orville; Mohr, Charles Milton; Taylor, Dean Dalton

    2000-01-01

    This report documents a study performed during advanced feasibility studies for the INTEC Technology Development Facility (ITDF). The study was commissioned to provide information about functional requirements for the ITDF related to development of equipment and procedures for retrieving radioactive calcine from binset storage at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). Calcine will be retrieved prior to treating it for permanent disposal in a national repository for high level waste. The objective this study was to estimate the degree of homogenization of the calcine that might be achieved through optimized retrieval and subsequent blending. Such homogenization has the potential of reducing the costs for treatment of the calcine and for qualifying of the final waste forms for acceptance at the repository. Results from the study indicate that optimized retrieval and blending can reduce the peak concentration variations of key components (Al, Zr, F) in blended batches of retrieved calcine. During un-optimized retrieval these variations are likely to be 81-138% while optimized retrieval can reduce them to the 5-10% range

  15. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst

    International Nuclear Information System (INIS)

    Sirisomboonchai, Suchada; Abuduwayiti, Maidinamu; Guan, Guoqing; Samart, Chanatip; Abliz, Shawket; Hao, Xiaogang; Kusakabe, Katsuki; Abudula, Abuliti

    2015-01-01

    Highlights: • Calcined scallop shell was used as low-cost and effective catalyst for biodiesel production. • BDF yield from waste cooking oil reached 86% at 65 °C with a catalyst loading amount of 5 wt%. • Calcined scallop shell showed good reusability. • Calcium glyceroxide played an important role on the reusability of calcined scallop shell. • Water in the waste cooking oil had negative effect on the catalytic activity of calcined scallop shell. - Abstract: Transesterification of waste cooking oil (WCO) and methanol by using calcined scallop shell (CSS) as catalyst was carried out in a closed system for biodiesel fuel (BDF) production. It is found that the optimum calcination temperature for the preparation of CSS was 1000 °C. The effects of transesterification temperature, reaction time, methanol/oil molar ratio and catalyst loading amount on the BDF yield were investigated. Compared with the commercial CaO, CSS showed higher catalytic activity and the BDF yield reached 86% at 65 °C with a catalyst loading amount of 5 wt% (WCO basis) and a reaction time of 2 h. The catalyst was reused for 5 cycles whilst the BDF yield decreased 23%. It is found that CaO in CSS was transferred to calcium glyceroxide after the transesterification reaction, and calcium glyceroxide also showed good catalytic activity and reusability. Furthermore, Water content in WCO had negative effect on BDF yield. It is found that BDF yield reduced 15% due to the occurring of saponification when the water content was increased from 0.64% to 2.48%. It is expected that CCS can be used as an alternative and cheap catalyst for the biodiesel production

  16. Spray solidification of nuclear waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-08-01

    The spray calciner is a relatively simple machine. Operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of high-level and mixed high- and intermediate-level liquid wastes has been demonstrated. Waste concentrations of from near infinite dilution to less than 225 liters per tonne of fuel are calcinable. Wastes have been calcined containing over 2M sodium. Feed concentration, composition, and flowrate can vary rapidly by over a factor of two without requiring operator action. Wastes containing mainly sodium cations can be spray calcined by addition of finely divided silica to the feedstock. A remotely replaceable atomizing nozzle has been developed for use in plant-scale equipment. Calciner capacity of over 75 l/h has been demonstrated in pilot-scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. The volume of recycle required from the effluent treatment system is very small. Vibrator action maintains the calcine holdup in the calciner at less than 1 kg. Successful remote operation and maintenance of a heated-wall spray calciner have been demonstrated while processing high-level waste. Radionuclide volatilization was acceptably low

  17. Post treatment of high-level nuclear fuel wastes

    International Nuclear Information System (INIS)

    Berreth, J.R.; Cole, H.S.; Hoskins, A.P.; Lewis, L.C.; Samsel, E.G.

    1975-01-01

    The glass-ceramic product prepared from fluidized-bed calcined synthetic commercial wastes, based on data obtained to date, has many of the properties desired for long-term storage. Although more characterization is necessitated, the product's high-calcine content will decrease the number of storage canisters required and use a minimum of product-forming additives, resulting in significant process cost savings. The product remains in a solid, nonflowing form at temperatures close to the preparation temperature and yet is prepared at relatively low temperatures. The product has void spaces to accommodate radiolytic gas formation, but is hard and dense and has very low leach rates. Process features, such as no direct product contact with furnace or storage canisters, will minimize corrosion of both process equipment and storage canisters

  18. Ceramic process and plant design for high-level nuclear waste immobilization

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKisson, R.L.; De Wames, R.E.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    In the last 3 years, significant advances in ceramic technology for high-level nuclear waste solidification have been made. Product quality in terms of leach-resistance, compositional uniformity, structural integrity, and thermal stability promises to be superior to borosilicate glass. This paper addresses the process effectiveness and preliminary designs for glass and ceramic immobilization plants. The reference two-step ceramic process utilizes fluid-bed calcination (FBC) and hot isostatic press (HIP) consolidation. Full-scale demonstration of these well-developed processing steps has been established at DOE and/or commercial facilities for processing radioactive materials. Based on Savannah River-type waste, our model predicts that the capital and operating cost for the solidification of high-level nuclear waste is about the same for the ceramic and glass options. However, when repository costs are included, the ceramic option potentially offers significantly better economics due to its high waste loading and volume reduction. Volume reduction impacts several figures of merit in addition to cost such as system logistics, storage, transportation, and risk. The study concludes that the ceramic product/process has many potential advantages, and rapid deployment of the technology could be realized due to full-scale demonstrations of FBC and HIP technology in radioactive environments. Based on our finding and those of others, the ceramic innovation not only offers a viable backup to the glass reference process but promises to be a viable future option for new high-level nuclear waste management opportunities

  19. Calcine production and management

    International Nuclear Information System (INIS)

    Dickey, B.R.; Hogg, G.W.; Berreth, J.R.

    1979-01-01

    The process technology related to calcination of power reactor wastes is summarized. The primary calcination processes developed are spray calcination, fluidized-bed calcination, and rotary kiln calcination. Calcines from the spray calciner and rotary kiln are fed directly to a glassification process. The fluidized-bed product can either be fed to a waste form conversion process or stored. The major process steps for calcinations are feed preparation, calcination and product handling, and off-gas cleanup. Feed systems for the three processes are basically similar. Gravity flow and pump pressurized systems have been used successfully. The major problems are fatigue failure of feed valve bellows, plugging by undissolved solids, and calibration of flowmeters. Process heat input is by electrical resistance heating for the spray and rotary kiln calciners and in-bed combustion or in-bed heat exchange for the fluidized-bed system. Low-melting solids which can cause scaling or solids agglomeration in any of the processes is a major calcination problem; however, feed blending, process operating conditions, and equipment design have successfully controlled solids agglomeration. Primary off-gas cleanup devices for particulates are cyclones, sintered metal filters, venturi scrubbers, and HEPA filters. Scrubbers, condensers, and solid adsorbents are used successfully for volatile ruthenium removal. The years of pilot-plant and plant-scale calcination testing and operation of the three systems have shown that reactor wastes can be calcined safely and practically. 11 figures, 2 tables

  20. Long-lived legacy: Managing high-level and transuranic waste at the DOE Nuclear Weapons Complex. Background paper

    International Nuclear Information System (INIS)

    1991-05-01

    The document focuses on high-level and transuranic waste at the DOE nuclear weapons complex. Reviews some of the critical areas and aspects of the DOE waste problem in order to provide data and further analysis of important issues. Partial contents, High-Level Waste Management at the DOE Weapons Complex, are as follows: High-Level Waste Management: Present and Planned; Amount and Distribution; Current and Potential Problems; Vitrification; Calcination; Alternative Waste Forms for the Idaho National Engineering Laboratory; Technologies for Pretreatment of High-Level Waste; Waste Minimization; Regulatory Framework; Definition of High-Level Waste; Repository Delays and Contingency Planning; Urgency of High-Level Tank Waste Treatment; Technologies for High-Level Waste Treatment; Rethinking the Waste Form and Package; Waste Form for the Idaho National Engineering Laboratory; Releases to the Atmosphere; Future of the PUREX Plant at Hanford; Waste Minimization; Tritium Production; International Cooperation; Scenarios for Future HLW Production. Partial contents of Chapter 2, Managing Transuranic Waste at the DOE Nuclear Weapons Complex, are as follows: Transuranic Waste at Department of Energy Sites; Amount and Distribution; Waste Management: Present and Planned; Current and Potential Problems; Three Technologies for Treating Retrievably Stored Transuranic Waste; In Situ Vitrification; The Applied Research, Development, Demonstration, Testing, and Evaluation Plan (RDDT ampersand E); Actinide Conversion (Transmutation); Waste Minimization; The Regulatory Framework; Definition of, and Standards for, Disposal of Transuranic Waste; Repository Delays; Alternative Storage and Disposal Strategies; Remediation of Buried Waste; The Waste Isolation Pilot Plant; Waste Minimization; Scenarios for Future Transuranic Waste Production; Conditions of No-Migration Determination

  1. Radiant-heat spray-calcination process for the solid fixation of radioactive waste. Part 1, Non-radioactive pilot unit

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Johnson, B.M. Jr.

    1960-11-14

    The fixation of radioactive waste in a stable solid media by means of calcination of these aqueous solutions has been the subject of considerable-effort throughout the U. S. Atomic Energy Commission and by atomic energy organizations in other countries. Several methods of doing this on a continuous or semi-continuous basis have been devised, and a fev have been demonstrated to be feasible for the handling of non-radioactive, or low-activity, simulated wastes. Notable among methods currently under development are: (a) batch-operated pot calcination of waste generated from reprocessing stainless steel clad fuel elements (Darex process) and Purex waste, (b) combination rotary kiln and ball mill calcination of aluminum nitrate (TBP-25 and Redox process), and (c) fluidized bed calcination of TBP-25 and Purex wastes. Although a considerable amount of engineering experience has been obtained on the calcination of dissolved salts in a fluidized bed, and the other methods have been the subjects of a great deal of study, none of them have been developed to-the extent which would rule out the desirability of further investigation of other possible methods of calcination.

  2. Retrofit design of remotely removable decontamination spray nozzles for the new waste calcining facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Gay, J.A.

    1988-01-01

    High level radioactive liquid waste is converted to a solid form at the Idaho Chemical Processing Plant (ICPP). The conversion is done by a fluidized bed combustion process in the calciner vessel. The interior decontamination system for the calciner vessel uses a common header bolted to four decontamination nozzles around the upper head. The retrofit was required to eliminate hands-on maintenance and difficulty in nozzle removal because of nozzle plugging. The retrofit design for this project demonstrates the solution of problems associated with thermal phenomena, structural supports, seismic requirements, remote handling and installations into extremely restricted spaces

  3. Optimization of Calcine Blending During Retrieval From Binsets

    International Nuclear Information System (INIS)

    Taylor, D.D.; Mohr, C.M.; Nelson, L.O.

    2000-01-01

    This report documents a study performed during advanced feasibility studies for the INTEC Technology Development Facility (ITDF). The study was commissioned to provide information about functional requirements for the ITDF related to development of equipment and procedures for retrieving radioactive calcine from binset storage at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). Calcine will be retrieved prior to treating it for permanent disposal in a national repository for high level waste. The objective this study was to estimate the degree of homogenization of the calcine that might be achieved through optimized retrieval and subsequent blending. Such homogenization has the potential of reducing the costs for treatment of the calcine and for qualifying of the final waste forms for acceptance at the repository. Results from the study indicate that optimized retrieval and blending can reduce the peak c oncentration variations of key components (Al, Zr, F) in blended batches of retrieved calcine. During un-optimized retrieval these variations are likely to be 81-138% while optimized retrieval can reduce them to the 5-10% range

  4. Long-term high-level waste technology. Composite quarterly technical report: April-June 1981

    International Nuclear Information System (INIS)

    Cornman, W.R.

    1981-12-01

    This series of reports summarizes research and development studies on the immobilization of high-level wastes from the chemical reprocessing of nuclear reactor fuels. The reports are grouped under the following tasks: (1) program management and support; (2) waste preparation; (3) waste fixation; and (4) final handling. Some of the highlights are: leaching properties were obtained for titanate and tailored ceramic materials being developed at ICPP to immobilize zirconia calcine; comparative leach tests, hot-cell tests, and process evaluations were conducted of waste form alternatives to borosilicate glass for the immobilization of SRP high-level wastes, experiments were run at ANL to qualify neutron activation analysis and radioactive tracers for measuring leach rates from simulated waste glasses; comparative leach test samples of SYNROC D were prepared, characterized, and tested at LLNL; encapsulation of glass marbles with lead or lead alloys was demonstrated on an engineering scale at PNL; a canister for reference Commercial HLW was designed at PNL; a study of the optimization of salt-crete was completed at SRL; a risk assessment showed that an investment for tornado dampers in the interim storage building of the DWPF is unjustified

  5. Other-than-high-level waste

    International Nuclear Information System (INIS)

    Bray, G.R.

    1976-01-01

    The main emphasis of the work in the area of partitioning transuranic elements from waste has been in the area of high-level liquid waste. But there are ''other-than-high-level wastes'' generated by the back end of the nuclear fuel cycle that are both large in volume and contaminated with significant quantities of transuranic elements. The combined volume of these other wastes is approximately 50 times that of the solidified high-level waste. These other wastes also contain up to 75% of the transuranic elements associated with waste generated by the back end of the fuel cycle. Therefore, any detailed evaluation of partitioning as a viable waste management option must address both high-level wastes and ''other-than-high-level wastes.''

  6. High-level radioactive waste isolation by incorporation in silicate rock

    International Nuclear Information System (INIS)

    Schwartz, L.L.; Cohen, J.J.; Lewis, A.E.; Braun, R.L.

    1978-01-01

    A number of technical possibilities for isolating high-level radioactive materials have been theoretically investigated at various times and places. Isolating such wastes deep underground to ensure long term removal from the biosphere is one such possibility. The present concept involves as a first step creating the necessary void space at considerable depth, say 2 to 5 km, in a very-low-permeability silicate medium such as shale. Waste in dry, calcined or vitrified form is then lowered into the void space, and the access hole or shaft sealed. Energy released by the radioactive decay raises the temperature to a point where the surrounding rock begins to melt. The waste is then dissolved in it. The extent of this melt region grows until the heat generated is balanced by conduction away from the molten zone. Resolidification then begins, and ends when the radioactive decay has progressed to the point that the temperature falls below the melting point of the rock-waste solution. Calculations are presented showing the growth and resolidification process. A nuclear explosion is one way of creating the void space. (author)

  7. Processing of concentrated radioactive wastes into cement and bitumens following calcination

    International Nuclear Information System (INIS)

    Napravnik, J.; Sazavsky, P.; Ditl, P.; Prikryl, P.

    1985-01-01

    A brief characteristic is presented of the most frequently used processes of solidification of liquid radioactive wastes, viz., bituminization, cementation and their combination with calcination. The effect of individual parameters is assessed on the choice of the type of solidification process as is their importance in the actual process, in temporary storage, during transportation and under conditions of long-term storage. It has been found that a combination of the procedures could lead to a modular system of methods and equipment. This would allow to approach optimal solidification of wastes in the present period and to establish a research reserve for the development of more modern, economically advantageous and safer procedures. A rough estimate is made of the costs of the solidification of 1 m 3 of radioactive concentrate from the V-1 power plant at a production of 380 m 3 /year, this for the cementation-calcination and bituminization-calcination procedures. The said rough economic analysis only serves to identify the major operating components which have the greatest effect on the economic evaluation of the solidification procedures. (Z.M.)

  8. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.

    2003-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  9. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Jeffrey Bryant

    2008-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  10. Physical, Chemical and Structural Evolution of Zeolite - Containing Waste Forms Produced from Metakaolinite and Calcined HLW

    International Nuclear Information System (INIS)

    Grutzeck, Michael

    2005-01-01

    During the seventh year of the current grant (DE-FG02-05ER63966) we completed an exhaustive study of cold calcination and began work on the development of tank fill materials to fill empty tanks and control residuals. Cold calcination of low and high NOx low activity waste (LAW) SRS Tank 44 and Hanford AN-107 simulants, respectively with metallic Al + Si powders was evaluated. It was found that a combination of Al and Si powders could be used as reducing agents to reduce the nitrate and nitrite content of both low and high NOx LAW to low enough levels to allow the LAW to be solidified directly by mixing it with metakaolin and allowing it to cure at 90 C. During room temperature reactions, NOx was reduced and nitrogen was emitted as N2 or NH3. This was an important finding because now one can pretreat LAW at ambient temperatures which provides a low-temperature alternative to thermal calcination. The significant advantage of using Al and Si metals for denitration/denitrition of the LAW is the fact that the supernate could potentially be treated in situ in the waste tanks themselves. Tank fill materials based upon a hydroceramic binder have been formulated from mixtures of metakaolinite, Class F fly ash and Class C flue gas desulphurization (FGD) ash mixed with various concentrations of NaOH solution. These harden over a period of hours or days depending on composition. A systematic study of properties of the tank fill materials (leachability) and ability to adsorb and hold residuals is under way

  11. Design and operation of off-gas cleaning systems at high level liquid waste conditioning facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The immobilization of high level liquid wastes from the reprocessing of irradiated nuclear fuels is of great interest and serious efforts are being undertaken to find a satisfactory technical solution. Volatilization of fission product elements during immobilization poses the potential for the release of radioactive substances to the environment and necessitates effective off-gas cleaning systems. This report describes typical off-gas cleaning systems used in the most advanced high level liquid waste immobilization plants and considers most of the equipment and components which can be used for the efficient retention of the aerosols and volatile contaminants. In the case of a nuclear facility consisting of several different facilities, release limits are generally prescribed for the nuclear facility as a whole. Since high level liquid waste conditioning (calcination, vitrification, etc.) facilities are usually located at fuel reprocessing sites (where the majority of the high level liquid wastes originates), the off-gas cleaning system should be designed so that the airborne radioactivity discharge of the whole site, including the emission of the waste conditioning facility, can be kept below the permitted limits. This report deals with the sources and composition of different kinds of high level liquid wastes and describes briefly the main high level liquid waste solidification processes examining the sources and characteristics of the off-gas contaminants to be retained by the off-gas cleaning system. The equipment and components of typical off-gas systems used in the most advanced (large pilot or industrial scale) high level liquid waste solidification plants are described. Safety considerations for the design and safe operation of the off-gas systems are discussed. 60 refs, 31 figs, 17 tabs

  12. Analysis of capital and operating costs associated with high level waste solidification processes

    International Nuclear Information System (INIS)

    Heckman, R.A.; Kniazewycz, B.G.

    1978-03-01

    An analysis was performed to evaluate the sensitivity of annual operating costs and capital costs of waste solidification processes to various parameters defined by the requirements of a proposed Federal waste repository. Five process methods and waste forms examined were: salt cake, spray calcine, fluidized bed calcine, borosilicate glass, and supercalcine multibarrier. Differential cost estimates of the annual operating and maintenance costs and the capital costs for the five HLW solidification alternates were developed

  13. Optimization of Calcine Blending During Retrieval From Binsets; TOPICAL

    International Nuclear Information System (INIS)

    Taylor, D.D.; Mohr, C.M.; Nelson, L.O.

    2000-01-01

    This report documents a study performed during advanced feasibility studies for the INTEC Technology Development Facility (ITDF). The study was commissioned to provide information about functional requirements for the ITDF related to development of equipment and procedures for retrieving radioactive calcine from binset storage at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). Calcine will be retrieved prior to treating it for permanent disposal in a national repository for high level waste. The objective this study was to estimate the degree of homogenization of the calcine that might be achieved through optimized retrieval and subsequent blending. Such homogenization has the potential of reducing the costs for treatment of the calcine and for qualifying of the final waste forms for acceptance at the repository. Results from the study indicate that optimized retrieval and blending can reduce the peak c oncentration variations of key components (Al, Zr, F) in blended batches of retrieved calcine. During un-optimized retrieval these variations are likely to be 81-138% while optimized retrieval can reduce them to the 5-10% range

  14. Analysis of factors influencing the reliability of retrievable storage canisters for containment of solid high-level radioactive waste

    International Nuclear Information System (INIS)

    Mecham, W.J.; Seefeldt, W.B.; Steindler, M.J.

    1976-08-01

    The reliability of stainless steel type 304L canisters for the containment of solidified high-level radioactive wastes in the glass and calcine forms was studied. A reference system, drawn largely from information furnished by Battelle Northwest Laboratories and Atlantic Richfield Hanford Company is described. Operations include filling the canister with the appropriate waste form, interim storage at a reprocessing plant, shipment in water to a Retrievable Surface Storage Facility (RSSF), interim storage at the RSSF, and shipment to a final disposal facility. The properties of stainless steel type 304L, fission product oxides, calcine, and glass were reviewed, and mechanisms of corrosion were identified and studied. The modes of corrosion important for reliability were stress-corrosion cracking, internal pressurization of the canister by residual impurities present, intergranular attack at the waste-canister interface, and potential local effects due to migration of fission products. The key role of temperature control throughout canister lifetime is considered together with interactive effects. Methods of ameliorating adverse effects and ensuring high reliability are identified and described. Conclusions and recommendations are presented

  15. Simulation and characterization of a Hanford high-level waste slurry

    International Nuclear Information System (INIS)

    Russell, R.L.; Smith, H.D.

    1996-09-01

    The baseline waste used for this simulant is a blend of wastes from tanks 101-AZ, 102-AZ, 106-C, and 102-AY that have been through water washing. However, the simulant used in this study represents a combination of tank waste slurries and should be viewed as an example of the slurries that might be produced by blending waste from various tanks. It does not imply that this is representative of the actual waste that will be delivered to the privatization contractor(s). This blended waste sludge simulant was analyzed for grain size distribution, theological properties both as a function of concentration and aging, and calcining characteristics. The grain size distribution allows a comparison with actual waste with respect to theological properties. Slurries with similar grain size distributions of the same phases are expected to exhibit similar theological properties. Rheological properties may also change because of changes in the slurry's particulate supernate chemistry due to aging. Low temperature calcination allows the potential for hazardous gas generation to be investigated

  16. Low-risk alternative waste forms for problematic high-level and long-lived nuclear wastes

    International Nuclear Information System (INIS)

    Stewart, M.W.A.; Begg, B.D.; Moricca, S.; Day, R.A.

    2006-01-01

    Full text: The highest cost component the nuclear waste clean up challenge centres on high-level waste (HLW) and consequently the greatest opportunity for cost and schedule savings lies with optimising the approach to HLW cleanup. The waste form is the key component of the immobilisation process. To achieve maximum cost savings and optimum performance the selection of the waste form should be driven by the characteristics of the specific nuclear waste to be immobilised, rather than adopting a single baseline approach. This is particularly true for problematic nuclear wastes that are often not amenable to a single baseline approach. The use of tailored, high-performance, alternative waste forms that include ceramics and glass-ceramics, coupled with mature process technologies offer significant performance improvements and efficiency savings for a nuclear waste cleanup program. It is the waste form that determines how well the waste is locked up (chemical durability), and the number of repository disposal canisters required (waste loading efficiency). The use of alternative waste forms for problematic wastes also lowers the overall risk by providing high performance HLW treatment alternatives. The benefits tailored alternative waste forms bring to the HLW cleanup program will be briefly reviewed with reference to work carried out on the following: The HLW calcines at the Idaho National Laboratory; SYNROC ANSTO has developed a process utilising a glass-ceramic combined with mature hot-isostatic pressing (HIP) technology and has demonstrated this at a waste loading of 80 % and at a 30 kg HIP scale. The use of this technology has recently been estimated to result in a 70 % reduction in waste canisters, compared to the baseline borosilicate glass technology; Actinide-rich waste streams, particularly the work being done by SYNROC ANSTO with Nexia Solutions on the Plutonium-residues wastes at Sellafield in the UK, which if implemented is forecast to result in substantial

  17. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  18. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    International Nuclear Information System (INIS)

    1997-01-01

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns

  19. Calcination of Fluorinel-sodium waste blends using sugar as a feed additive (formerly WINCO-11879)

    International Nuclear Information System (INIS)

    Newby, B.J.; Thomson, T.D.; O'Brien, B.H.

    1992-06-01

    Methods were studied for using sugar as a feed additive for converting the sodium-bearing wastes stored at the Idaho Chemical Processing Plant into granular, free flowing solids by fluidized-bed calcination at 500 degrees C. All methods studied blended sodium-bearing wastes with Fluorinel wastes but differed in the types of sugar (sucrose or dextrose) that were added to the blend. The most promising sugar additive was determined to be sucrose, since it is converted more completely to inorganic carbon than is dextrose. The effect of the feed aluminum-to-alkali metal mole ratio on calcination of these blends with sugar was also investigated. Increasing the aluminum-to-alkali metal ratio from 0.6 to 1.0 decreased the calcine product-to-fines ratio from 3.0 to 1.0 and the attrition index from 80 to 15%. Further increasing the ratio to 1.25 had no effect

  20. The management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Lennemann, Wm.L.

    1979-01-01

    The definition of high-level radioactive wastes is given. The following aspects of high-level radioactive wastes' management are discussed: fuel reprocessing and high-level waste; storage of high-level liquid waste; solidification of high-level waste; interim storage of solidified high-level waste; disposal of high-level waste; disposal of irradiated fuel elements as a waste

  1. Chemical reactivity of precursor materials during synthesis of glasses used for conditioning high-level radioactive waste: Experiments and models

    International Nuclear Information System (INIS)

    Monteiro, A.

    2012-01-01

    The glass used to store high-level radioactive waste is produced by reaction of a solid waste residue and a glassy precursor (glass frit). The waste residue is first dried and calcined (to lose water and nitrogen respectively), then mixed with the glass frit to enable vitrification at high temperature. In order to obtain a good quality glass of constant composition upon cooling, the chemical reactions between the solid precursors must be complete while in the liquid state, to enable incorporation of the radioactive elements into the glassy matrix. The physical and chemical conditions during glass synthesis (e.g. temperature, relative proportions of frit and calcine, amount of radioactive charge) are typically empirically adjusted to obtain a satisfactory final product. The aim of this work is to provide new insights into the chemical and physical interactions that take place during vitrification and to provide data for a mathematical model that has been developed to simulate the chemical reactions. The consequences of the different chemical reactions that involve solid, liquid and gaseous phases are described (thermal effects, changes in crystal morphology and composition, variations in melt properties and structure). In a first series of experiments, a simplified analogue of the calcine (NaNO 3 -Al 2 O 3 ± MoO 3 /Nd 2 O 3 ) has been studied. In a second series of experiments, the simplified calcines have been reacted with a simplified glass frit (SiO 2 -Na 2 O-B 2 O 3 -Al 2 O 3 ) at high temperature. The results show that crystallization of the calcine may take place before interaction with the glass frit, but that the reactivity with the glass at high temperature is a function of the nature and stoichiometry of the crystalline phases which form at low temperature. The results also highlight how the mixing of the starting materials, the physical properties of the frit (viscosity, glass transition temperature) and the Na 2 O/Al 2 O 3 of the calcine but also its

  2. Waste disposal options report. Volume 2

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k eff for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes

  3. Waste disposal options report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  4. Redox calcination study of Synroc D powder containing simulated SRL waste

    International Nuclear Information System (INIS)

    Chen, C.

    1982-01-01

    According to Ringwood [A.E. Ringwood, W. Sinclair, and G.M. McLaughlin, Nuclear Waste Immobilization, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-15147 (1979)], the iron oxidation state is important in controlling, the spinel mineralogy and composition if the amount of titania (TiO 2 ) consumed in spinel formation is to be minimized in favor of the formation of the Synroc phases, zirconolite, perovskite, and nepheline. In our redox calcination studies we observed that the iron oxidation state of FeO/Fe 2 O 3 can be controlled by the redoxcalcining atmosphere. In a CO atmosphere, the oxidation state was reduced to less than 7 wt % Fe 2 O 3 . With appropriate CO 2 /CO gas mixtures the resultant iron oxidation states were in the range of 45 to 59 wt % Fe 2 O 3 . Direct rotary redox calcination of spray dried powder at 600 0 C, without prior air calcination, showed increased redox efficiency when compared to powder that had been previously air calcined at 650 0 C. We believe this is caused by a reduction in particle size. Rotary calcination at 800 0 C in argon has no measurable reduction affect on the iron oxidation state of Synroc D powder

  5. Low-level waste volume reduction--physicochemical systems

    International Nuclear Information System (INIS)

    Ferrigno, D.P.

    1980-01-01

    In some cases, volume reduction (VR) equipment may be called upon to reduce noncombustible liquid wastes to essentially dry salts and/or oxides. In other cases, it may be called upon to reduce combustible solids and liquids to ashes and innocuous gases. In brand terms, four kinds of processes are available to further reduce the volume of waste generated at nuclear facilities. These include high-solids evaporation, alternative evaporative designs, extruders/mixers, and calciner/incinerators. This paper discusses the following VR processes for radioactive wastes at nuclear facilities: evaporator/crystallizer; fluid bed dryer/incinerator; fluid bed calciner/incinerator; inert carrier radwaste processor; and molten glass incinerator

  6. French industrial plant AVM for continuous vitrification of high level radioactive wastes

    International Nuclear Information System (INIS)

    Bonniaud, Roger; Sombret, Claude; Barbe, Alain

    1975-01-01

    The A.V.M. plant is a continuous process plant now under construction at Marcoule and intended for vitrifying the whole of fission product solutions from the C.E.A. (Commissariat a l'Energie Atomique) - Marcoule reprocessing plant. The outset of the construction took place in the second 1974 half year; the first radioactive run is scheduled in July 1977. The two steps of the process are shown: first a continuous calcination then a continuous glass making from the calcined product and suitable additives. The plant consists in two parts: vitrification and storage facilities. Some wastes will be continuously produced day after day due to gas clean up and worn out materials. Characteristics of the solutions processed, calcined products, glass composition, and expected liquid wastes are given in tables [fr

  7. Nuclear waste solidification

    Science.gov (United States)

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  8. Nuclear waste solidification

    International Nuclear Information System (INIS)

    Bjorklund, W.J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition

  9. Calcination under negative atmosphere for SYNROC preparation

    International Nuclear Information System (INIS)

    Ambashta, R.D.; Wattal, P.K.; Govindankutty, K.V.

    2006-01-01

    SYNROC-C is a ceramic waste formulation designed to immobilise reprocessing waste from fast breeder reactor. This formulation is capable of incorporating noble metals, other fission products, corrosion products and activation products in its multiphase assemblage. Calcination is an important step of SYNROC preparation for decomposition of nitrates of the radioactive waste and conversion to oxide precursors. This paper presents a comparison between properties of calcine prepared under different calcination procedures to obtain product suitable for compaction

  10. Volatilization and trapping of ruthenium during calcination of nitric acid solutions

    International Nuclear Information System (INIS)

    Klein, M.; Weyers, C.; Goossens, W.R.A.; Smet, M. de; Trine, J.

    1983-01-01

    Solid radioactive aerosols and semi-volatile fission products e.g. Ru, Cs, Sb are generated during high level liquid waste calcination and vitrification processes. The retention of Ruthenium was studied because of its strong tendency to form volatile compounds in oxidative media. Since RuO 4 was the suspected form for high temperature processes, the study was carried out on the behaviour of RuO 4 and its retention on adsorbants and catalysts for various gas compositions. The behaviour of volatilized Ru species obtained by calcination of nitrosyl Ru compounds was then compared with the RuO 4 case

  11. Pelleted waste form for high-level ICPP wastes

    International Nuclear Information System (INIS)

    Lamb, K.M.; Priebe, S.J.; Cole, H.S.; Taki, B.D.

    1979-01-01

    Simulated zirconia type calcined waste is pelletized on a 41-cm dia disc pelletizer using 5% bentonite, 2% metakaolin, and 2% boric acid as a solid binder and 7M phosphoric plus 4M nitric acid as a liquid binder. After heat treatment at 800 0 C for 2 hours, the pellets are impact resistant and have a leach resistance of 10 -4 g/cm 2 /day, based on Soxhlet leaching for 100 hours at 95 0 C with distilled water. An integrated pilot plant is being fabricated to verify the process. 1 figure, 4 tables

  12. Pelleted waste form for high-level ICPP wastes

    International Nuclear Information System (INIS)

    Lamb, K.M.; Priebe, S.J.; Cole, H.S.; Taki, B.d.

    1979-01-01

    Simulated zirconia-type calcined waste is pelletized on a 41-cm diameter disc pelletizer using 5% bentonite, 2% metakaolin, and 2% boric acid as a solid binder and 7M phosphoric plus 4M nitric acid as a liquid binder. After heat treatment at 800 0 C for 2 hours the pellets are impact resistant and have a leach resistance of 10 -4 g/cm 2 . day, based on Soxhlet leaching for 100 hours at 95 0 C with distilled water. An integrated pilot plant is being fabricated to verify the process. 1 figure, 4 tables

  13. High-Level Radioactive Waste.

    Science.gov (United States)

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  14. Connecting section and associated systems concept for the spray calciner/in-can melter process

    International Nuclear Information System (INIS)

    Petkus, L.L.; Gorton, P.S.; Blair, H.T.

    1981-06-01

    For a number of years, researchers at the Pacific Northwest Laboratory have been developing processes and equipment for converting high-level liquid wastes to solid forms. One of these processes is the Spray Calciner/In-Can Melter system. To immobilize high-level liquid wastes, this system must be operated remotely, and the calcine must be reliably conveyed from the calciner to the melting furnace. A concept for such a remote conveyance system was developed at the Pacific Northwest Laboratory, and equipment was tested under full-scale, nonradioactive conditions. This concept and the design of demonstration equipment are described, and the results of equipment operation during experimental runs of 7 d are presented. The design includes a connecting section and its associated systems - a canister sypport and alignment concept and a weight-monitoring system for the melting furnace. Overall, the runs demonstrated that the concept design is an acceptable method of connecting the two pieces of process equipment together. Although the connecting section has not been optimized in all areas of concern, it provides a first-generation design of a production-oriented system

  15. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  16. Dissolution of two NWCF calcines: Extent of dissolution and characterization of undissolved solids

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.

    1995-01-01

    A study was undertaken to determine the dissolution characteristics of two NWCF calcine types. A two-way blended calcine made from 4 parts nonradioactive aluminum nitrate and one part WM-102 was studied to determine the extent of dissolution for aluminum-type calcines. A two-way blend of 3.5 parts fluorinel waste from WM-187 and 1 part sodium waste from WM-185 was used to determine the extent of dissolution for zirconium-type calcines. This study was necessary to develop suitable aqueous separation flowsheets for the partitioning of actinides and fission products from ICPP calcines and to determine the disposition of the resulting undissolved solids (UDS). The dissolution flowsheet developed by Herbst was used to dissolve these two NWCF calcine types. Results show that greater than 95 wt% of aluminum and zirconium calcine types were dissolved after a single batch contact with 5 M HNO 3 . A characterization of the UDS indicates that the weight percent of TRU elements in the UDS resulting from both calcine type dissolutions increases by approximately an order of magnitude from their concentrations prior to dissolution. Substantial activities of cesium and strontium are also present in the UDS resulting from the dissolution of both calcine types. Multiple TRU, Cs, and Sr analyses of both UDS types show that these solids are relatively homogeneous. From this study, it is estimated that between 63.5 and 635 cubic meters of UDS will be generated from the dissolution of 3800 M 3 of calcine. The significant actinide and fission product activities in these UDS will preclude their disposal as low-level waste. If the actinide and fission activity resulting from the UDS is the only considered source in the dissolved calcine solutions, an estimated 99.9 to 99.99 percent of the solids must be removed from this solution for it to meet non-TRU Class A low-level waste

  17. Remote process connectors for the new waste calcining facility

    International Nuclear Information System (INIS)

    Jacobs, R.T.; Carter, J.A.; Hohback, A.C.

    1978-01-01

    The remote process connectors developed, used, and tested at the Remote Maintenance Development Facility are described. These connectors, including the three-bolt kinematic-graphite flange and watertight electrical connectors, are assembled on master jigs (holding-welding fixture) to form interchangeable pump and valve loop assemblies. These assemblies, with their guide-in platforms, make possible a method of performing remote maintenance at the New Waste Calcining Facility which is a departure from methods that until now have been the standard of the industry

  18. An Assessment of Using Vibrational Compaction of Calcined HLW and LLW in DWPF Canisters

    International Nuclear Information System (INIS)

    Yi, Yun-Bo; Amme, Robert C.; Shayer, Zeev

    2008-01-01

    Since 1963, the INEL has calcined almost 8 million gallons of liquid mixed waste and liquid high-level waste, converting it to some 1.1 million gallons of dry calcine (about 4275.0 m3), which consists of alumina-and zirconia-based calcine and zirconia-sodium blend calcine. In addition, if all existing and projected future liquid wastes are solidified, approximately 2,000 m3 of additional calcine will be produced primarily from sodium-bearing waste. Calcine is a more desirable material to store than liquid radioactive waste because it reduces volume, is much less corrosive, less chemically reactive, less mobile under most conditions, easier to monitor and more protective of human health and the environment. This paper describes the technical issue involved in the development of a feasible solution for further volume reduction of calcined nuclear waste for transportation and long term storage, using a standard DWPF canister. This will be accomplished by developing a process wherein the canisters are transported into a vibrational machine, for further volume reduction by about 35%. The random compaction experiments show that this volume reduction is achievable. The main goal of this paper is to demonstrate through computer modeling that it is feasible to use volume reduction vibrational machine without developing stress/strain forces that will weaken the canister integrity. Specifically, the paper presents preliminary results of the stress/strain analysis of the DWPF canister as a function of granular calcined height during the compaction and verifying that the integrity of the canister is not compromised. This preliminary study will lead to the development of better technology for safe compactions of nuclear waste that will have significant economical impact on nuclear waste storage and treatment. The preliminary results will guide us to find better solutions to the following questions: 1) What are the optimum locations and directions (vertical versus horizontal or

  19. High-level-waste immobilization

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1982-01-01

    Analysis of risks, environmental effects, process feasibility, and costs for disposal of immobilized high-level wastes in geologic repositories indicates that the disposal system safety has a low sensitivity to the choice of the waste disposal form

  20. Alternatives for conversion to solid interim waste forms of the radioactive liquid high-level wastes stored at the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    Vogler, S.; Trevorrow, L.E.; Ziegler, A.A.; Steindler, M.J.

    1981-08-01

    Techniques for isolating and solidifying the nuclear wastes in the storage tanks at the Western New York Nuclear Service Center plant have been examined. One technique involves evaporating the water and forming a molten salt containing the precipitated sludge. The salt is allowed to solidify and is stored in canisters until processing into a final waste form is to be done. Other techniques involve calcining the waste material, then agglomerating the calcine with sodium silicate to reduce its dispersibility. This option can also involve a prior separation and decontamination of the supernatant salt. The sludge and all resins containing fission-product activity are then calcined together. The technique of removing the water and solidifying the salt may be the simplest method for removing the waste from the West Valley Plant

  1. Inductive classification of operating data from a fluidized bed calciner

    International Nuclear Information System (INIS)

    O'Brien, B.H.

    1990-01-01

    A process flowsheet expert system for a fluidized bed calciner which solidifies high-level radioactive liquid waste was developed from pilot-plant data using a commercial, inductive classification program. After initial classification of the data, the resulting rules were inspected and adjusted to match existing knowledge of process chemistry. The final expert system predicts performance of process flowsheets based upon the chemical composition of the calciner feed and has been successfully used to identify potential operational problems prior to calciner pilot-plant testing of new flowsheets and to provide starting parameters for pilot-plant tests. By using inductive classification techniques to develop the initial rules from the calciner pilot-plant data and using existing process knowledge to verify the accuracy of these rules, an effective expert system was developed with a minimum amount of effort. This method may be applied for developing expert systems for other processes where numerous operating data are available and only general process chemistry effects are known

  2. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    International Nuclear Information System (INIS)

    Boehmer, Ann M.

    2009-01-01

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  3. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Ann M.

    2009-05-31

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  4. Physical and chemical characterization of synthetic calcined sludge

    International Nuclear Information System (INIS)

    Slates, R.V.; Mosley, W.C. Jr.; Tiffany, B.; Stone, J.A.

    1982-03-01

    Calcined synthetic sludge was chemically characterized in support of engineering studies to design a processing plant to solidify highly radioactive waste at the Savannah River Plant. An analytical technique is described which provides quantitative data by mass spectrometric analysis of gases evolved during thermogravimetric analysis without measurements of gas flow rates or mass spectrometer sensitivities. Scanning electron microprobe analysis, Mossbauer spectroscopy, and several other common analytical methods were also used. Calcined sludge consists primarily of amorphous particles of hydrous oxides with iron, manganese, nickel, and calcium distributed fairly uniformly throughout the powder. Iron, manganese, nickel, and calcium exist in forms that are highly insoluble in water, but aluminum, sulfate, nitrate, and sodium exhibit relative water solubilities that increase in the given order from 60% to 94%. Evolved gas analysis in a helium atmosphere showed that calcined sludge is completely dehydrated by heating to 400 0 C, carbon dioxide is evolved between 100 to 700 0 C with maximum evolution at 500 0 C, and oxygen is evolved between 400 and 1000 0 C. Evolved gas analyses are also reported for uncalcined sludge. A spinel-type oxide similar to NiFe 2 O 4 was detected by x-ray diffraction analysis at very low-level in calcined sludge

  5. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  6. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM

  7. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system.

  8. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-01-01

    The national high-level waste disposal plans for France, the Federal Republic of Germany, Japan, and the United States are covered. Three conclusions are reached. The first conclusion is that an excellent technology already exists for high-level waste disposal. With appropriate packaging, spent fuel seems to be an acceptable waste form. Borosilicate glass reprocessing waste forms are well understood, in production in France, and scheduled for production in the next few years in a number of other countries. For final disposal, a number of candidate geological repository sites have been identified and several demonstration sites opened. The second conclusion is that adequate financing and a legal basis for waste disposal are in place in most countries. Costs of high-level waste disposal will probably add about 5 to 10% to the costs of nuclear electric power. The third conclusion is less optimistic. Political problems remain formidable in highly conservative regulations, in qualifying a final disposal site, and in securing acceptable transport routes

  9. Disposal of high level and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1991-01-01

    The waste products from the nuclear industry are relatively small in volume. Apart from a few minor gaseous and liquid waste streams, containing readily dispersible elements of low radiotoxicity, all these products are processed into stable solid packages for disposal in underground repositories. Because the volumes are small, and because radioactive wastes are latecomers on the industrial scene, a whole new industry with a world-wide technological infrastructure has grown up alongside the nuclear power industry to carry out the waste processing and disposal to very high standards. Some of the technical approaches used, and the Regulatory controls which have been developed, will undoubtedly find application in the future to the management of non-radioactive toxic wastes. The repository site outlined would contain even high-level radioactive wastes and spent fuels being contained without significant radiation dose rates to the public. Water pathway dose rates are likely to be lowest for vitrified high-level wastes with spent PWR fuel and intermediate level wastes being somewhat higher. (author)

  10. An alternative waste form for the final disposal of high-level radioactive waste (HLW) on the basis of a survey of solidification and final disposal of HLW

    International Nuclear Information System (INIS)

    Bauer, C.

    1982-01-01

    The dissertation comprises two separate parts. The first part presents the basic conditions and concepts of the process leading to the development of a waste form, such as:origin, composition and characteristics of the high-level radioactive waste; evaluation of the methods available for the final disposal of radioactive waste, especially the disposal in a geological formation, including the resulting consequences for the conditions of state in the surroundings of the waste package; essential option for the conception of a waste form and presentation of the waste forms developed and examined on an international level up to now. The second part describes the production of a waste form on TiO 2 basis, in which calcined radioactive waste particles in the submillimeter range are embedded in a rutile matrix. That waste form is produced by uniaxial pressure sintering in the temperature range of 1223 K to 1423 K and pressures between 5 MPa and 20 MPa. Microstructure, mechanical properties and leaching rates of the waste form are presented. Moreover, a method is explained allowing compacting of the rutile matrix and also integration of a wasteless overpack of titanium or TiO 2 into the waste form. (orig.) [de

  11. Idaho National Engineering Laboratory High-Level Waste Roadmap

    International Nuclear Information System (INIS)

    1993-08-01

    The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ''where we are now'' to ''where we want and need to be.'' The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment. By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues

  12. Overview: Defense high-level waste technology program

    International Nuclear Information System (INIS)

    Shupe, M.W.; Turner, D.A.

    1987-01-01

    Defense high-level waste generated by atomic energy defense activities is stored on an interim basis at three U.S. Department of Energy (DOE) operating locations; the Savannah River Plant in South Carolina, the Hanford Site in Washington, and the Idaho National Engineering Laboratory in Idaho. Responsibility for the permanent disposal of this waste resides with DOE's Office of Defense Waste and Transportation Management. The objective of the Defense High-Level Wast Technology Program is to develop the technology for ending interim storage and achieving permanent disposal of all U.S. defense high-level waste. New and readily retrievable high-level waste are immobilized for disposal in a geologic repository. Other high-level waste will be stabilized in-place if, after completion of the National Environmental Policy Act (NEPA) process, it is determined, on a site-specific basis, that this option is safe, cost effective and environmentally sound. The immediate program focus is on implementing the waste disposal strategy selected in compliance with the NEPA process at Savannah River, while continuing progress toward development of final waste disposal strategies at Hanford and Idaho. This paper presents an overview of the technology development program which supports these waste management activities and an assessment of the impact that recent and anticipated legal and institutional developments are expected to have on the program

  13. 40 CFR 227.30 - High-level radioactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste from...

  14. Long-term high-level waste technology program

    International Nuclear Information System (INIS)

    1980-04-01

    The Department of Energy (DOE) is conducting a comprehensive program to isolate all US nuclear wastes from the human environment. The DOE Office of Nuclear Energy - Waste (NEW) has full responsibility for managing the high-level wastes resulting from defense activities and additional responsiblity for providing the technology to manage existing commercial high-level wastes and any that may be generated in one of several alternative fuel cycles. Responsibilities of the Three Divisions of DOE-NEW are shown. This strategy document presents the research and development plan of the Division of Waste Products for long-term immobilization of the high-level radioactive wastes resulting from chemical processing of nuclear reactor fuels and targets. These high-level wastes contain more than 99% of the residual radionuclides produced in the fuels and targets during reactor operations. They include essentially all the fission products and most of the actinides that were not recovered for use

  15. Acid fractionation for low level liquid waste cleanup and recycle

    International Nuclear Information System (INIS)

    Gombert, D. II; McIntyre, C.V.; Mizia, R.E.; Schindler, R.E.

    1990-01-01

    At the Idaho Chemical Processing Plant, low level liquid wastes containing small amounts of radionuclides are concentrated via a thermosyphon evaporator for calcination with high level waste, and the evaporator condensates are discharged with other plant wastewater to a percolation pond. Although all existing discharge guidelines are currently met, work has been done to reduce all waste water discharges to an absolute minimum. In this regard, a 15-tray acid fractionation column will be used to distill the mildly acidic evaporator condensates into concentrated nitric acid for recycle in the plant. The innocuous overheads from the fractionator having a pH greater than 2, are superheated and HEPA filtered for atmospheric discharge. Nonvolatile radionuclides are below detection limits. Recycle of the acid not only displaces fresh reagent, but reduces nitrate burden to the environment, and completely eliminates routine discharge of low level liquid wastes to the environment

  16. Alternatives for long-term management of defense high-level radioactive waste, Hanford Reservations, Richland, Washington

    International Nuclear Information System (INIS)

    1977-09-01

    The objective of this document is to provide information or alternatives that are being considered for the long-term management of defense high-level radioactive waste stored at Hanford in underground tanks and in stainless steel-lined concrete basins. For purposes of basic programmatic decision making, four major alternatives based on disposal location are considered. The steps leading to placement of the waste in the following locations are illustrated: existing waste tanks; onsite engineered surface facilities; onsite geologic repository; and offsite geologic repository. The four major disposal alternatives are expanded into 27 alternative plans by considering: (1) variations in the final form of the high-level fraction (with radionuclide removal) to include glass, concrete, and powder; (2) variations in the final form of the dehydrated waste product to include glass, calcined clay, and powder; and (3) variations in the treatment and handling of encapsulated waste to include packaging of capsules in canisters and conversion of the strontium fluoride and cesium chloride to glass; canisters stored in sealed casks on the surface are disposed of in a surface vault after the radionuclides have decayed sufficiently to avoid a heat-transfer problem. A description of the technology, a preliminary risk assessment, and preliminary cost estimates for each of these 27 plans are presented. The technology required to implement any of the 27 alternative plans has not been developed to the point where any plan can be considered completely technically sound and feasible

  17. Idaho Chemical Processing Plant low-level waste grout stabilization development program FY-96 status report

    International Nuclear Information System (INIS)

    Herbst, A.K.

    1996-09-01

    The general purpose of the Grout Stabilization Development Program is to solidify and stabilize the liquid low-level wastes (LLW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LLW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste; (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines; (3) facility decontamination processes; and (4) process equipment waste. The main tasks completed this fiscal year as part of the program were chromium stabilization study for sodium-bearing waste and stabilization and solidification of LLW from aluminum and zirconium calcines. The projected LLW will be highly acidic and contain high amounts of nitrates. Both of these are detrimental to Portland cement chemistry; thus, methods to precondition the LLW and to cure the grout were explored. A thermal calcination process, called denitration, was developed to solidify the waste and destroy the nitrates. A three-way blend of Portland cement, blast furnace slag, and fly ash was successfully tested. Grout cubes were prepared at various waste loadings to maximize loading while meeting compressive strength and leach resistance requirements. For the sodium LLW, a 25% waste loading achieves a volume reduction of 3.5 and a compressive strength of 2,500 pounds per square inch while meeting leach, mix, and flow requirements. It was found that the sulfur in the slag reduces the chromium leach rate below regulatory limits. For the aluminum LLW, a 15% waste loading achieves a volume reduction of 8.5 and a compressive strength of 4,350 pounds per square inch while meeting leach requirements. Likewise for zirconium LLW, a 30% waste loading achieves a volume reduction of 8.3 and a compressive strength of 3,570 pounds per square inch

  18. High-level waste immobilization program: an overview

    International Nuclear Information System (INIS)

    Bonner, W.R.

    1979-09-01

    The High-Level Waste Immobilization Program is providing technology to allow safe, affordable immobilization and disposal of nuclear waste. Waste forms and processes are being developed on a schedule consistent with national needs for immobilization of high-level wastes stored at Savannah River, Hanford, Idaho National Engineering Laboratory, and West Valley, New York. This technology is directly applicable to high-level wastes from potential reprocessing of spent nuclear fuel. The program is removing one more obstacle previously seen as a potential restriction on the use and further development of nuclear power, and is thus meeting a critical technological need within the national objective of energy independence

  19. Borosilicate glass as a matrix for immobilization of SRP high-level waste

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1980-01-01

    Approximately 22 million gallons of high-level radioactive defense waste are currently being stored in large underground tanks located on the Savannah River Plant (SRP) site in Aiken, South Carolina. One option now being considered for long-term management of this waste involves removing the waste from the tanks, chemically processing the waste, and immobilizing the potentially harmful radionuclides in the waste into a borosilicate glass matrix. The technology for producing waste glass forms is well developed and has been demonstrated on various scales using simulated as well as radioactive SRP waste. Recently, full-scale prototypical equipment has been made operational at SRP. This includes both a joule-heated ceramic melter and an in-can melter. These melters are a part of an integrated vitrification system which is under evaluation and includes a spray calciner, direct liquid feed apparatus, and various elements of an off-gas system. Two of the most important properties of the waste glass are mechanical integrity and leachability. Programs are in progress at SRL aimed at minimizing thermally induced cracking by carefully controlling cooling cycles and using ceramic liners or coatings. The leachability of SRP waste glass has been studied under many different conditions and consistently found to be low. For example, the leachability of actual SRP waste glass was found to be 10 -6 to 10 -5 g/(cm 2 )(day) initially and decreasing to 10 -9 to 10 -8 g/(cm 2 )(day) after 100 days. Waste glass is also being studied under anticipated storage conditions. In brine at 90 0 C, the leachability is about 5 x 10 -8 g/(cm 2 )(day) after 60 days. The effects of other geological media including granite, basalt, shale, and tuff are also being studied as part of the multibarrier isolation system

  20. Cost Comparison for the Transfer of Select Calcined Waste Canisters to the Monitored Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Michael B. Heiser; Clark B. Millet

    2005-01-01

    This report performs a life-cycle cost comparison of three proposed canister designs for the shipment and disposition of Idaho National Laboratory high-level calcined waste currently in storage at the Idaho Nuclear Technology and Engineering Center to the proposed national monitored geologic repository at Yucca Mountain, Nevada. Concept A (2 x 10-ft) and Concept B (2 x 15-ft) canisters are comparable in design, but they differ in size and waste loading options and vary proportionally in weight. The Concept C (5.5 x 17.5-ft) canister (also called the ''super canister''), while similar in design to the other canisters, is considerably larger and heavier than Concept A and B canisters and has a greater wall thickness. This report includes estimating the unique life-cycle costs for the three canister designs. Unique life-cycle costs include elements such as canister purchase and filling at the Idaho Nuclear Technology and Engineering Center, cask preparation and roundtrip consignment costs, final disposition in the monitored geologic repository (including canister off-loading and placement in the final waste disposal package for disposition), and cask purchase. Packaging of the calcine ''as-is'' would save $2.9 to $3.9 billion over direct vitrification disposal in the proposed national monitored geologic repository at Yucca Mountain, Nevada. Using the larger Concept C canisters would use 0.75 mi less of tunnel space, cost $1.3 billion less than 10-ft canisters of Concept A, and would be complete in 6.2 years

  1. Radiation transport in high-level waste form

    International Nuclear Information System (INIS)

    Arakali, V.S.; Barnes, S.M.

    1992-01-01

    The waste form selected for vitrifying high-level nuclear waste stored in underground tanks at West Valley, NY is borosilicate glass. The maximum radiation level at the surface of a canister filled with the high-level waste form is prescribed by repository design criteria for handling and disposition of the vitrified waste. This paper presents an evaluation of the radiation transport characteristics for the vitreous waste form expected to be produced at West Valley and the resulting neutron and gamma dose rates. The maximum gamma and neutron dose rates are estimated to be less than 7500 R/h and 10 mRem/h respectively at the surface of a West Valley canister filled with borosilicate waste glass

  2. Effects of Coke Calcination Level on Pore Structure in Carbon Anodes

    Science.gov (United States)

    Fang, Ning; Xue, Jilai; Lang, Guanghui; Bao, Chongai; Gao, Shoulei

    2016-02-01

    Effects of coke calcination levels on pore structure of carbon anodes have been investigated. Bench anodes were prepared by 3 types of cokes with 4 calcination temperatures (800°C, 900°C, 1000°C and 1100°C). The cokes and anodes were characterized using hydrostatic method, air permeability determination, mercury porosimetry, image analysis and confocal microscopy (CSLM). The cokes with different calcination levels are almost the same in LC values (19-20 Å) and real density (1.967-1.985 g/cm3), while the anode containing coke calcined at 900°C has the lowest open porosity and air permeability. Pore size distribution (represented by Anode H sample) can be roughly divided into two ranges: small and medium pores in diameter of 10-400 μm and large pores of 400-580 μm. For the anode containing coke calcined at 800°C, a number of long, narrow pores in the pore size range of 400-580 μm are presented among cokes particles. Formation of these elongated pores may be attributed to coke shrinkages during the anode baking process, which may develop cracking in the anode under cell operations. More small or medium rounded pores with pore size range of 10-400 μm emerge in the anodes with coke calcination temperatures of 900°C, 1000°C and 1100°C, which may be generated due to release of volatiles from the carbon anode during baking. For the anode containing coke calcined at 1100°C, it is found that many rounded pores often closely surround large coke particles, which have potential to form elongated, narrow pores.

  3. Practical results of the MESA 1 line calcinator trial operation

    International Nuclear Information System (INIS)

    Napravnik, J.; Sazavsky, P.; Skaba, V.; Zahalka, F.; Vild, J.; Kulovany, J.

    1987-01-01

    Mobile calcination and cementation unit MESA 1 was designed and built by UJV Rez in cooperation with many enterprises, mainly with the Kralovopolske Strojirny Brno. This facility for direct fixation of liquid radioactive wastes was experimentally tested using model non-radioactive solutions and model and actual wastes from the Jaslovske Bohunice nuclear power plant. The calciner was run in trial operation at the Kralovopolske SAtrojirny Brno. A total of 1.3 m 3 of model solutions was processed into 180 kg of calcinate. The fixation of the calcinate in cement, the times of solidification and of hardening and the moisture content of concrete blocks were studied. The application was also tested of the calciner in drying ion exchangers from WWER-440 prior to their bituminization. Following the despatch of the cementation module to the Chernobyl nuclear power plant, the direct calcination module was tested at Dukovany together with an auxiliary module which makes possible self-contained calciner operation. Model non-radioactive solutions from the Dukovany nuclear power plant were treated containing H 3 BO 3 and NaNO 3 as main components. The usability in actual conditions of the mobile calcination and cementation unit for radioactive wastes was tested in a total of about 70 operating hours. (E.S.). 2 figs., 2 refs

  4. The solidification of high-level liquid wastes in glass and ceramics

    International Nuclear Information System (INIS)

    Krause, H.

    1989-01-01

    In spent nuclear fuel reprocessing a highly radioactive waste solution is produced. It must be converted into a solid product, which binds the radionuclides, be hydrolytic as well as radiation and temperature resistant. Borosilicate glasses fulfil these requirements and, jointly with the barriers of a repository, they prevent inadmissible amounts of radionuclides from escaping into the biocycle. Two techniques were developed for industrial-scale vitrification: a rotary kiln calciner combined with an induction heated metallic melter and the electrode heated ceramic melters. Both techniques were already demonstrated on an industrial scale and under radioactive conditions. (AVM, Marcoule and PAMELA, Mol). (orig./MM) [de

  5. Ramifications of defining high-level waste

    International Nuclear Information System (INIS)

    Wood, D.E.; Campbell, M.H.; Shupe, M.W.

    1987-01-01

    The Nuclear Regulatory Commission (NRC) is considering rule making to provide a concentration-based definition of high-level waste (HLW) under authority derived from the Nuclear Waste Policy Act (NWPA) of 1982 and the Low Level Waste Policy Amendments Act of 1985. The Department of Energy (DOE), which has the responsibility to dispose of certain kinds of commercial waste, is supporting development of a risk-based classification system by the Oak Ridge National Laboratory to assist in developing and implementing the NRC rule. The system is two dimensional, with the axes based on the phrases highly radioactive and requires permanent isolation in the definition of HLW in the NWPA. Defining HLW will reduce the ambiguity in the present source-based definition by providing concentration limits to establish which materials are to be called HLW. The system allows the possibility of greater-confinement disposal for some wastes which do not require the degree of isolation provided by a repository. The definition of HLW will provide a firm basis for waste processing options which involve partitioning of waste into a high-activity stream for repository disposal, and a low-activity stream for disposal elsewhere. Several possible classification systems have been derived and the characteristics of each are discussed. The Defense High Level Waste Technology Lead Office at DOE - Richland Operations Office, supported by Rockwell Hanford Operations, has coordinated reviews of the ORNL work by a technical peer review group and other DOE offices. The reviews produced several recommendations and identified several issues to be addressed in the NRC rule making. 10 references, 3 figures

  6. SYNROC production using a fluid bed calciner

    International Nuclear Information System (INIS)

    Ackerman, F.J.; Grens, J.Z.; Ryerson, F.J.; Hoenig, C.L.; Bazan, F.; Campbell, J.H.

    1982-01-01

    SYNROC is a titanate-based ceramic developed for immobilization of high-level nuclear reactor wastes in solid form. Fluid-bed SYNROC production permits slurry drying, calcining and redox to be carried out in a single unit. We present results of studies from two fluid beds; the Idaho Exxon internally-heated unit and the externally-heated unit constructed at Lawrence Livermore National laboratory. Bed operation over a range of temperature, feed rate, fluidizing rate and redox conditions indicate that high density, uniform particle-size SYNROC powders are produced which facilitate the densification step and give HUP parts with dense, well-developed phases and good leaching characteristics. 3 figures, 3 tables

  7. Current high-level waste solidification technology

    International Nuclear Information System (INIS)

    Bonner, W.F.; Ross, W.A.

    1976-01-01

    Technology has been developed in the U.S. and abroad for solidification of high-level waste from nuclear power production. Several processes have been demonstrated with actual radioactive waste and are now being prepared for use in the commercial nuclear industry. Conversion of the waste to a glass form is favored because of its high degree of nondispersibility and safety

  8. Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from Metakaolinite and Calcined HLW

    International Nuclear Information System (INIS)

    Grutzeck, Michael; Jantzen, Carol M.

    1999-01-01

    Natural and synthetic zeolites are extremely versatile materials. They can adsorb a variety of liquids and gases, and also take part in cation exchange reactions. Zeolites are easy to synthesize from a wide variety of natural and man made materials. One combination of starting materials that exhibits a great deal of promise is a mixture of metakaolinite and/or Class F fly ash and concentrated sodium hydroxide solution. Once these ingredients are mixed and cured at elevated temperatures, they react to form a hard, dense, ceramic-like material that contains significant amounts of crystalline tectosilicates (zeolites and feldspathoids). Zeolites have the ability to sequester ions in lattice positions or within their networks of channels and voids. As such they are nearly perfect waste forms, the zeolites can host alkali, alkaline earth and a variety of higher valance cations. In addition to zeolites, it has been found that the zeolites are accompanied by an alkali aluminosilicate hydrate matrix that is a host, not only to the zeolites, but to residual amounts of insoluble hydroxide phases as well. A previous publication has established the fact that a mixture of a calcined equivalent ICPP waste (sodium aluminate/hydroxide solution containing ∼3:1 Na:Al) and fly ash and/or metakaolinite could be cured at various temperatures to produce a monolith containing Zeolite A (80 C) or Na-P1 plus hydroxy sodalite (130 C) crystals dispersed in an alkali aluminosilicate hydrate matrix. Dissolution tests have shown these materials (so-called hydroceramics) to have superior retention for alkali, alkaline earth and heavy metal ions. The zeolitization process is a simple one. Metakaolinite and/or Class F fly ash is mixed with a caustic sodium-bearing calcine and enough water to make a thick paste. The paste is transferred to a metal canister and ''soaked'' for a few hours at 70-80 C prior to steam autoclaving the sample at ∼200 C for 6-8 hours. The waste form produced in this

  9. Handbook of high-level radioactive waste transportation

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government's system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government's program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project

  10. Potential dispositioning flowsheets for ICPP SNF and wastes

    Energy Technology Data Exchange (ETDEWEB)

    Olson, A.L. [ed.; Anderson, P.A.; Bendixsen, C.L. [and others

    1995-11-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1953. This activity resulted mainly in the recovery of uranium and the management of the resulting wastes. The acidic radioactive high-level liquid waste was routinely stored in stainless steel tanks and then calcined to form a dry granular solid. The calcine is stored in stainless steel bins that are housed in underground concrete vaults. In April 1992, the DOE discontinued the practice of reprocessing irradiated nuclear fuels. This decision has left a legacy of 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3800 cubic meters of calcine waste, and 289 metric tons of heavy metal within unprocessed spent nuclear fuel (SNF) left in inventory at the ICPP. The nation`s radioactive waste policy has been established by the Nuclear Waste Policy Act (NWPA), which requires the final disposal of SNF and radioactive waste in accordance with US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) standards. In accordance with these regulations and other legal agreements between the State of Idaho and the DOE, the DOE must, among other requirements, (1) complete a final Environmental Impact Statement by April 30, 1995, (2) evaluate and test sodium-bearing waste pre-treatment technologies, (3) select the sodium-bearing and calcine waste pre-treatment technology, if necessary, by June 1, 1995, and (4) select a technology for converting calcined waste into an appropriate disposal form by June 1, 1995.

  11. Potential dispositioning flowsheets for ICPP SNF and wastes

    International Nuclear Information System (INIS)

    Olson, A.L.; Anderson, P.A.; Bendixsen, C.L.

    1995-11-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1953. This activity resulted mainly in the recovery of uranium and the management of the resulting wastes. The acidic radioactive high-level liquid waste was routinely stored in stainless steel tanks and then calcined to form a dry granular solid. The calcine is stored in stainless steel bins that are housed in underground concrete vaults. In April 1992, the DOE discontinued the practice of reprocessing irradiated nuclear fuels. This decision has left a legacy of 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3800 cubic meters of calcine waste, and 289 metric tons of heavy metal within unprocessed spent nuclear fuel (SNF) left in inventory at the ICPP. The nation's radioactive waste policy has been established by the Nuclear Waste Policy Act (NWPA), which requires the final disposal of SNF and radioactive waste in accordance with US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) standards. In accordance with these regulations and other legal agreements between the State of Idaho and the DOE, the DOE must, among other requirements, (1) complete a final Environmental Impact Statement by April 30, 1995, (2) evaluate and test sodium-bearing waste pre-treatment technologies, (3) select the sodium-bearing and calcine waste pre-treatment technology, if necessary, by June 1, 1995, and (4) select a technology for converting calcined waste into an appropriate disposal form by June 1, 1995

  12. Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: Properties and hydration characteristics

    International Nuclear Information System (INIS)

    Zhang Na; Liu Xiaoming; Sun Henghu; Li Longtu

    2011-01-01

    Red mud is generated from alumina production, and its disposal is currently a worldwide problem. In China, large quantities of red mud derived from bauxite calcination method are being discharged annually, and its utilization has been an urgent topic. This experimental research was to evaluate the feasibility of blends red mud derived from bauxite calcination method with other industrial wastes for use as a cementitious material. The developed cementitious material containing 30% of the bauxite-calcination-method red mud possessed compressive strength properties at a level similar to normal Portland cement, in the range of 45.3-49.5 MPa. Best compressive strength values were demonstrated by the specimen RSFC2 containing 30% bauxite-calcination-method red mud, 21% blast-furnace slag, 10% fly ash, 30% clinker, 8% gypsum and 1% compound agent. The mechanical and physical properties confirm the usefulness of RSFC2. The hydration characteristics of RSFC2 were characterized by XRD, FTIR, 27 Al MAS-NMR and SEM. As predominant hydration products, ettringite and amorphous C-S-H gel are principally responsible for the strength development of RSFC2. Comparing with the traditional production for ordinary Portland cement, this green technology is easier to be implemented and energy saving. This paper provides a key solution to effectively utilize bauxite-calcination-method red mud.

  13. Disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Glasby, G.P.

    1977-01-01

    Although controversy surrounding the possible introduction of nuclear power into New Zealand has raised many points including radiation hazards, reactor safety, capital costs, sources of uranium and earthquake risks on the one hand versus energy conservation and alternative sources of energy on the other, one problem remains paramount and is of global significance - the storage and dumping of the high-level radioactive wastes of the reactor core. The generation of abundant supplies of energy now in return for the storage of these long-lived highly radioactive wastes has been dubbed the so-called Faustian bargain. This article discusses the growth of the nuclear industry and its implications to high-level waste disposal particularly in the deep-sea bed. (auth.)

  14. The immobilization of High Level Waste Into Glass

    International Nuclear Information System (INIS)

    Aisyah; Martono, H.

    1998-01-01

    High level liquid waste is generated from the first step extraction in the nuclear fuel reprocessing. The waste is immobilized with boro-silicate glass. A certain composition of glass is needed for a certain type of waste, so that the properties of waste glass would meet the requirement either for further process or for disposal. The effect of waste loading on either density, thermal expansion, softening point and leaching rate has been studied. The composition of the high level liquid waste has been determined by ORIGEN 2 and the result has been used to prepare simulated high level waste. The waste loading in the waste glass has been set to be 19.48; 22.32; 25.27; and 26.59 weight percent. The result shows that increasing the waste loading has resulted in the higher density with no thermal expansion and softening point significant change. The increase in the waste loading increase that leaching rate. The properties of the waste glass in this research have not shown any deviation from the standard waste glass properties

  15. Evaluation of radionuclide concentrations in high-level radioactive wastes

    International Nuclear Information System (INIS)

    Fehringer, D.J.

    1985-10-01

    This report describes a possible approach for development of a numerical definition of the term ''high-level radioactive waste.'' Five wastes are identified which are recognized as being high-level wastes under current, non-numerical definitions. The constituents of these wastes are examined and the most hazardous component radionuclides are identified. This report suggests that other wastes with similar concentrations of these radionuclides could also be defined as high-level wastes. 15 refs., 9 figs., 4 tabs

  16. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    1983-01-01

    This report deals with certain aspects of the management of one of the most important wastes, i.e. the handling and storage of conditioned (immobilized and packaged) high-level waste from the reprocessing of spent nuclear fuel and, although much of the material presented here is based on information concerning high-level waste from reprocessing LWR fuel, the principles, as well as many of the details involved, are applicable to all fuel types. The report provides illustrative background material on the arising and characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The report introduces the principles important in conditioned high-level waste storage and describes the types of equipment and facilities, used or studied, for handling and storage of such waste. Finally, it discusses the safety and economic aspects that are considered in the design and operation of handling and storage facilities

  17. High level nuclear wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.

    1987-01-01

    The transformations involved in the nuclear fuels during the burn-up at the power nuclear reactors for burn-up levels of 33.000 MWd/th are considered. Graphs and data on the radioactivity variation with the cooling time and heat power of the irradiated fuel are presented. Likewise, the cycle of the fuel in light water reactors is presented and the alternatives for the nuclear waste management are discussed. A brief description of the management of the spent fuel as a high level nuclear waste is shown, explaining the reprocessing and giving data about the fission products and their radioactivities, which must be considered on the vitrification processes. On the final storage of the nuclear waste into depth geological burials, both alternatives are coincident. The countries supporting the reprocessing are indicated and the Spanish programm defined in the Plan Energetico Nacional (PEN) is shortly reviewed. (author) 8 figs., 4 tabs

  18. Characteristics of solidified high-level waste products

    International Nuclear Information System (INIS)

    1979-01-01

    The object of the report is to contribute to the establishment of a data bank for future preparation of codes of practice and standards for the management of high-level wastes. The work currently in progress on measuring the properties of solidified high-level wastes is being studied

  19. National high-level waste systems analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy.

  20. National high-level waste systems analysis report

    International Nuclear Information System (INIS)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy

  1. High-Level Waste Melter Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  2. Cermets for high level waste containment

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1978-01-01

    Cermet materials are currently under investigation as an alternate for the primary containment of high level wastes. The cermet in this study is an iron--nickel base metal matrix containing uniformly dispersed, micron-size fission product oxides, aluminosilicates, and titanates. Cermets possess high thermal conductivity, and typical waste loading of 70 wt % with volume reduction factors of 2 to 200 and low processing volatility losses have been realized. Preliminary leach studies indicate a leach resistance comparable to other candidate waste forms; however, more quantitative data are required. Actual waste studies have begun on NFS Acid Thorex, SRP dried sludge and fresh, unneutralized SRP process wastes

  3. Final repositories for high-level radioactive waste; Endlagerung hochradioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-10-15

    The brochure on final repositories for high-level radioactive waste covers the following issues: What is the origin of radioactive wastes? How large are the waste amounts? What is going to happen with the wastes? What is the solution for the Waste disposal? A new site search is started. Safety requirements for the final disposal of high-level radioactive wastes. Comparison of host rocks. Who is responsible and who will pay? Final disposal of high-level radioactive wastes worldwide. Short summary: History of the search for a final repository for high-level radioactive wastes in Germany.

  4. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    Heafield, W.

    1984-01-01

    This paper deals with certain aspects of the management of one of the most important radioactive wastes arising from the nuclear fuel cycle, i.e. the handling and storage of conditioned high-level wastes. The paper is based on an IAEA report of the same title published during 1983 in the Technical Reports Series. The paper provides illustrative background material on the characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The principles important in the storage of high-level wastes are reviewed in conjunction with the radiological and socio-political considerations involved. Four fundamentally different storage concepts are described with reference to published information and the safety aspects of particular storage concepts are discussed. Finally, overall conclusions are presented which confirm the availability of technology for constructing and operating conditioned high-level waste storage facilities for periods of at least several decades. (author)

  5. Impact of partitioning and transmutation on high-level waste disposal for the fast breeder reactor fuel cycle

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Oigawa, Hiroyuki; Nakayama, Shinichi; Ono, Kiyoshi; Shiotani, Hiroki

    2010-01-01

    The impact of partitioning and/or transmutation (PT) technology on high-level waste management was investigated for the equilibrium state of several potential fast breeder reactor (FBR) fuel cycles. Three different fuel cycle scenarios involving PT technology were analyzed: 1) partitioning process only (separation of some fission products), 2) transmutation process only (separation and transmutation of minor actinides), and 3) both partitioning and transmutation processes. The conventional light water reactor (LWR) fuel cycle without PT technology, on which the current repository design is based, was also included for comparison. We focused on the thermal constraints in a geological repository and determined the necessary predisposal storage quantities and time periods (by defining a storage capacity index) for several predefined emplacement configurations through transient thermal analysis. The relation between this storage capacity index and the required repository emplacement area was obtained. We found that the introduction of the FBR fuel cycle without PT can yield a 35% smaller repository per unit electricity generation than the LWR fuel cycle, although the predisposal storage period is prolonged from 50 years for the LWR fuel cycle to 65 years for the FBR fuel cycle without PT. The introduction of the partitioning-only process does not result in a significant reduction of the repository emplacement area from that for the FBR fuel cycle without PT, but the introduction of the transmutation-only process can reduce the emplacement area by a factor of 5 when the storage period is extended from 65 to 95 years. When a coupled partitioning and transmutation system is introduced, the repository emplacement area can be reduced by up to two orders of magnitude by assuming a predisposal storage of 60 years for glass waste and 295 years for calcined waste containing the Sr and Cs fraction. The storage period of 295 years for the calcined waste does not require a large

  6. Leaching properties and chemical compositions of calcines produced at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Staples, B.A.; Paige, B.E.; Rhodes, D.W.; Wilding, M.W.

    1980-01-01

    No significant chemical differences were determined between retrieved and fresh calcine based on chemical and spectrochemical analyses. Little can be derived from the amounts of the radioisotopes present in the retrieved calcine samples other than the ratios of strontium-90 to cesium-137 are typical of aged fission product. The variations in concentrations of radionuclides within the composite samples of each bin also reflect the differences in compositions of waste solutions calcined. In general the leaching characteristics of both calcines by distilled water are similar. In both materials the radionuclides of cesium and strontium were selectively leached at significant rates, although cesium leached much more completely from the alumina calcine than from the zirconia calcine. Cesium and strontium are probably contained in both calcines as nitrate salts and also as fluoride salts in zirconia calcine, all of which are at least slightly soluble in water. Radionuclides of cerium, ruthenium, and plutonium in both calcines were highly resistant to leaching and leached at rates similar to or less than those of the matrix elements. These elements exist as polyvalent metal ions in the waste solutions before calcination and they probably form insoluble oxides and fluorides in the calcine. The relatively slow leaching of nitrate ion from zirconia calcine and radiocesium from both calcines suggests that the calcine matrix in some manner prevents complete or immediate contact of the soluble ions with water. Whether radiostrontium forms slightly fluoride salts or forms nitrate salts which are protected in the same manner as radiocesium is unknown. Nevertheless, selective leaching of cesium and strontim is retarded in some manner by the calcine matrix

  7. Overview of high-level waste management accomplishments

    International Nuclear Information System (INIS)

    Lawroski, H.; Berreth, J.R.; Freeby, W.A.

    1980-01-01

    Storage of power reactor spent fuel is necessary at present because of the lack of reprocessing operations particularly in the U.S. By considering the above solidification and storage scenario, there is more than reasonable assurance that acceptable, stable, low heat generation rate, solidified waste can be produced, and safely disposed. The public perception of no waste disposal solutions is being exploited by detractors of nuclear power application. The inability to even point to one overall system demonstration lends credibility to the negative assertions. By delaying the gathering of on-line information to qualify repository sites, and to implement a demonstration, the actions of the nuclear power detractors are self serving in that they can continue to point out there is no demonstration of satisfactory high-level waste disposal. By maintaining the liquid and solidified high-level waste in secure above ground storage until acceptable decay heat generation rates are achieved, by producing a compatible, high integrity, solid waste form, by providing a second or even third barrier as a compound container and by inserting the enclosed waste form in a qualified repository with spacing to assure moderately low temperature disposal conditions, there appears to be no technical reason for not progressing further with the disposal of high-level wastes and needed implementation of the complete nuclear power fuel cycle

  8. Pecularities of carrying out radioactive wastes vitrification process without preliminary calcination of wastes

    International Nuclear Information System (INIS)

    Konstantinovich, A.A.; Kulichenko, V.V.; Bel'tyukov, V.A.; Nikiforov, A.S.; Nikipelov, B.V.; Stepanov, S.E.; Baskov, L.I.; Kulakov, S.I.

    1978-01-01

    Vitrification technology is considered for liquid radioactive wastes by means of electric furnace where heating of glass-paste is done by electric current passing through the melt. Continious process of gehydration, calcination and vitrification is going on in one apparatus. Testing if the method has been performed by use of a model solution, containing sodium and aluminium nitrates. To obtain phosphoric acid has been added into the solution. Lay-out of the device and its description as well as technical parameters of the electric furnace are given. The results are stated for determination of the optimum operation conditions for the device. To reduce entrainment of solid components, molasses has been added in the solution. Parameters are given for the process of the solution containing 80 g/l molasses processing. It has been shown that edding molasses to the solution permitted to reduse power consumption of the process due to the heat generation during oxidation-reduction reaction on the melt surface. The results are given for investigations of the nitrogen oxides catching in scrubbers. These results have shown that introduction of molasses reduces nitrigen oxides concentration. The results of the experimental works have shown the possibility of the continious process of dehydration, calcination and vitrification in single device with application of remote control and monitoring by means of automatics. (I.T.) [ru

  9. Evaluation of conditioned high-level waste forms

    International Nuclear Information System (INIS)

    Mendel, J.E.; Turcotte, R.P.; Chikalla, T.D.; Hench, L.L.

    1983-01-01

    The evaluation of conditioned high-level waste forms requires an understanding of radiation and thermal effects, mechanical properties, volatility, and chemical durability. As a result of nuclear waste research and development programs in many countries, a good understanding of these factors is available for borosilicate glass containing high-level waste. The IAEA through its coordinated research program has contributed to this understanding. Methods used in the evaluation of conditioned high-level waste forms are reviewed. In the US, this evaluation has been facilitated by the definition of standard test methods by the Materials Characterization Center (MCC), which was established by the Department of Energy (DOE) in 1979. The DOE has also established a 20-member Materials Review Board to peer-review the activities of the MCC. In addition to comparing waste forms, testing must be done to evaluate the behavior of waste forms in geologic repositories. Such testing is complex; accelerated tests are required to predict expected behavior for thousands of years. The tests must be multicomponent tests to ensure that all potential interactions between waste form, canister/overpack and corrosion products, backfill, intruding ground water and the repository rock, are accounted for. An overview of the status of such multicomponent testing is presented

  10. Idaho National Engineering Laboratory High-Level Waste Roadmap. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ``where we are now`` to ``where we want and need to be.`` The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment. By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues.

  11. Hanford long-term high-level waste management program overview

    International Nuclear Information System (INIS)

    Reep, I.E.

    1978-05-01

    The objective is the long-term disposition of the defense high-level radioactive waste which will remain upon completion of the interim waste management program in the mid-1980s, plus any additional high-level defense waste resulting from the future operation of N Reactor and the Purex Plant. The high-level radioactive waste which will exist in the mid-1980s and is addressed by this plan consists of approximately 3,300,000 ft 3 of damp salt cake stored in single-shell and double-shell waste tanks, 1,500,000 ft 3 of damp sludge stored in single-shell and double-shell waste tanks, 11,000,000 gallons of residual liquor stored in double-shell waste tanks, 3,000,000 gallons of liquid wastes stored in double-shell waste tanks awaiting solidification, and 2,900 capsules of 90 SR and 137 Cs compounds stored in water basins. Final quantities of waste may be 5 to 10% greater, depending on the future operation of N Reactor and the Purex Plant and the application of waste treatment techniques currently under study to reduce the inventory of residual liquor. In this report, the high-level radioactive waste addressed by this plan is briefly described, the major alternatives and strategies for long-term waste management are discussed, and a description of the long-term high-level waste management program is presented. Separate plans are being prepared for the long-term management of radioactive wastes which exist in other forms. 14 figures

  12. Evaluation of solidified high-level waste forms

    International Nuclear Information System (INIS)

    1981-01-01

    One of the objectives of the IAEA waste management programme is to coordinate and promote development of improved technology for the safe management of radioactive wastes. The Agency accomplished this objective specifically through sponsoring Coordinated Research Programmes on the ''Evaluation of Solidified High Level Waste Products'' in 1977. The primary objectives of this programme are to review and disseminate information on the properties of solidified high-level waste forms, to provide a mechanism for analysis and comparison of results from different institutes, and to help coordinate future plans and actions. This report is a summary compilation of the key information disseminated at the second meeting of this programme

  13. Partitioning of high level liquid waste: experiences in plant level adoption

    International Nuclear Information System (INIS)

    Manohar, Smitha; Kaushik, C.P.

    2016-01-01

    High Level Radioactive Wastes are presently vitrified in borosilicate matrices in all our back end facilities in our country. This is in accordance with internationally endorsed methodology for the safe management of high level radioactive wastes. Recent advancements in the field of partitioning technology in our group, has presented us with an opportunity to have a fresh perspective on management of high level liquid radioactive wastes streams, that emanate from reprocessing operations. This paper will highlight our experiences with respect to both partitioning studies and vitrification practices, with a focus on waste volume reduction for final disposal. Incorporation of this technique has led to the implementation of the concept of recovering wealth from waste, a marked decrease on the load of disposal in deep geological repositories and serve as a step towards the vision of transmutation of long lived radionuclides

  14. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. It represents a major update and expansion of the Analysis presented to Congress in our summary report, Managing Commercial High-Level Radioactive Waste, published in April of 1982 (NWPA). This new report is intended to contribute to the implementation of NWPA, and in particular to Congressional review of three major documents that DOE will submit to the 99th Congress: a Mission Plan for the waste management program; a monitored retrievable storage (MRS) proposal; and a report on mechanisms for financing and managing the waste program. The assessment was originally focused on the ocean disposal of nuclear waste. OTA later broadened the study to include all aspects of high-level waste disposal. The major findings of the original analysis were published in OTA's 1982 summary report

  15. Technetium Chemistry in High-Level Waste

    International Nuclear Information System (INIS)

    Hess, Nancy J.

    2006-01-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry

  16. Performance assessment of the direct disposal in unsaturated tuff of spent nuclear fuel and high-level waste owned by U.S. Department of Energy. Volume 1: Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.] [Sandia National Labs., Albuquerque, NM (United States). WIPP Performance Assessment Dept.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservation. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2,100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9,200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM. A source term model was developed to study the wide variety of waste forms, which included radionuclides residing in 10 different matrices and up to 8 nested layers of material that might react with water. The possibility and consequences of critical conditions occurring in or near containers of highly enriched uranium spent nuclear fuel were also studied.

  17. Techniques for the solidification of high-level wastes

    International Nuclear Information System (INIS)

    1977-01-01

    The problem of the long-term management of the high-level wastes from the reprocessing of irradiated nuclear fuel is receiving world-wide attention. While the majority of the waste solutions from the reprocessing of commercial fuels are currently being stored in stainless-steel tanks, increasing effort is being devoted to developing technology for the conversion of these wastes into solids. A number of full-scale solidification facilities are expected to come into operation in the next decade. The object of this report is to survey and compare all the work currently in progress on the techniques available for the solidification of high-level wastes. It will examine the high-level liquid wastes arising from the various processes currently under development or in operation, the advantages and disadvantages of each process for different types and quantities of waste solutions, the stages of development, the scale-up potential and flexibility of the processes

  18. Waste package designs for disposal of high-level waste in salt formations

    International Nuclear Information System (INIS)

    Basham, S.J. Jr.; Carr, J.A.

    1984-01-01

    In the United States of America the selected method for disposal of radioactive waste is mined repositories located in suitable geohydrological settings. Currently four types of host rocks are under consideration: tuff, basalt, crystalline rock and salt. Development of waste package designs for incorporation in mined salt repositories is discussed. The three pertinent high-level waste forms are: spent fuel, as disassembled and close-packed fuel pins in a mild steel canister; commercial high-level waste (CHLW), as borosilicate glass in stainless-steel canisters; defence high-level waste (DHLW), as borosilicate glass in stainless-steel canisters. The canisters are production and handling items only. They have no planned long-term isolation function. Each waste form requires a different approach in package design. However, the general geometry and the materials of the three designs are identical. The selected waste package design is an overpack of low carbon steel with a welded closure. This container surrounds the waste forms. Studies to better define brine quantity and composition, radiation effects on the salt and brines, long-term corrosion behaviour of the low carbon steel, and the leaching behaviour of the spent fuel and borosilicate glass waste forms are continuing. (author)

  19. Timing of High-level Waste Disposal

    International Nuclear Information System (INIS)

    2008-01-01

    This study identifies key factors influencing the timing of high-level waste (HLW) disposal and examines how social acceptability, technical soundness, environmental responsibility and economic feasibility impact on national strategies for HLW management and disposal. Based on case study analyses, it also presents the strategic approaches adopted in a number of national policies to address public concerns and civil society requirements regarding long-term stewardship of high-level radioactive waste. The findings and conclusions of the study confirm the importance of informing all stakeholders and involving them in the decision-making process in order to implement HLW disposal strategies successfully. This study will be of considerable interest to nuclear energy policy makers and analysts as well as to experts in the area of radioactive waste management and disposal. (author)

  20. Manufacture of barium hexaferrite (BaO3.98Fe2O3) from iron oxide waste of grinding process by using calcination process

    Science.gov (United States)

    Idayanti, N.; Dedi; Kristiantoro, T.; Mulyadi, D.; Sudrajat, N.; Alam, G. F. N.

    2018-03-01

    The utilization of iron oxide waste of grinding process as raw materials for making barium hexaferrite has been completed by powder metallurgy method. The iron oxide waste was purified by roasting at 800 °C temperature for 3 hours. The method used varying calcination temperature at 1000, 1100, 1200, and 1250 °C for 3 hours. The starting iron oxide waste (Fe2O3) and barium carbonate (BaCO3) were prepared by mol ratio of Fe2O3:BaCO3 from the formula BaO3.98Fe2O3. Some additives such as calcium oxide (CaO), silicon dioxide (SiO2), and polyvinyl alcohol (PVA) were added after calcination process. The samples were formed at the pressure of 2 ton/cm2 and sintered at the temperature of 1250 °C for 1 hour. The formation of barium hexaferrite compounds after calcination is determined by X-Ray diffraction. The magnetic properties were observed by Permagraph-Magnet Physik with the optimum characteristic at calcination temperature of 1250 °C with the induction of remanence (Br) = 1.38 kG, coercivity (HcJ) = 4.533 kOe, product energy maximum (BHmax) = 1.086 MGOe, and density = 4.33 g/cm3.

  1. Multipurpose optimization models for high level waste vitrification

    International Nuclear Information System (INIS)

    Hoza, M.

    1994-08-01

    Optimal Waste Loading (OWL) models have been developed as multipurpose tools for high-level waste studies for the Tank Waste Remediation Program at Hanford. Using nonlinear programming techniques, these models maximize the waste loading of the vitrified waste and optimize the glass formers composition such that the glass produced has the appropriate properties within the melter, and the resultant vitrified waste form meets the requirements for disposal. The OWL model can be used for a single waste stream or for blended streams. The models can determine optimal continuous blends or optimal discrete blends of a number of different wastes. The OWL models have been used to identify the most restrictive constraints, to evaluate prospective waste pretreatment methods, to formulate and evaluate blending strategies, and to determine the impacts of variability in the wastes. The OWL models will be used to aid in the design of frits and the maximize the waste in the glass for High-Level Waste (HLW) vitrification

  2. Product removal and solids transport from fluidized-bed calciners

    International Nuclear Information System (INIS)

    Grimmett, E.S.; Munger, D.H.

    1978-09-01

    Methods of removing the solid product from pilot-plant and production fluidized-bed calciners, and transporting product to underground storage vaults are reported here. Testing of dense-phase solids transport systems in test loops during development of a 15-cm-diam. and 30-cm-diam. calciner are described. A lean-phase solid transport system is used with the Waste Calcining Facility. The results of some recent tests done in a lean-phase transport system connected to the 30-cm-diam. calciner are included in this report

  3. High-level waste-form-product performance evaluation

    International Nuclear Information System (INIS)

    Bernadzikowski, T.A.; Allender, J.S.; Stone, J.A.; Gordon, D.E.; Gould, T.H. Jr.; Westberry, C.F. III.

    1982-01-01

    Seven candidate waste forms were evaluated for immobilization and geologic disposal of high-level radioactive wastes. The waste forms were compared on the basis of leach resistance, mechanical stability, and waste loading. All forms performed well at leaching temperatures of 40, 90, and 150 0 C. Ceramic forms ranked highest, followed by glasses, a metal matrix form, and concrete. 11 tables

  4. Properties and characteristics of high-level waste glass

    International Nuclear Information System (INIS)

    Ross, W.A.

    1977-01-01

    This paper has briefly reviewed many of the characteristics and properties of high-level waste glasses. From this review, it can be noted that glass has many desirable properties for solidification of high-level wastes. The most important of these include: (1) its low leach rate; (2) the ability to tolerate large changes in waste composition; (3) the tolerance of anticipated storage temperatures; (4) its low surface area even after thermal shock or impact

  5. High-level waste management technology program plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  6. High-level waste management technology program plan

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs

  7. Direct cementitious waste option study report

    International Nuclear Information System (INIS)

    Dafoe, R.E.; Losinski, S.J.

    1998-02-01

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste and casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032

  8. Direct cementitious waste option study report

    Energy Technology Data Exchange (ETDEWEB)

    Dafoe, R.E.; Losinski, S.J.

    1998-02-01

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste and casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032.

  9. High-level radioactive wastes

    International Nuclear Information System (INIS)

    Grissom, M.C.

    1982-10-01

    This bibliography contains 812 citations on high-level radioactive wastes included in the Department of Energy's Energy Data Base from January 1981 through July 1982. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  10. Hot isostatic press waste option study report

    International Nuclear Information System (INIS)

    Russell, N.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy and the State of Idaho mandates that all high-level radioactive waste now stored at the Idaho Chemical Processing Plant be treated so that it is ready to move out of Idaho for disposal by the target date of 2035. This study investigates the immobilization of all Idaho Chemical Processing Plant calcine, including calcined sodium bearing waste, via the process known as hot isostatic press, which produces compact solid waste forms by means of high temperature and pressure (1,050 C and 20,000 psi), as the treatment method for complying with the settlement agreement. The final waste product would be contained in stainless-steel canisters, the same type used at the Savannah River Site for vitrified waste, and stored at the Idaho National Engineering and Environmental Laboratory until a national geological repository becomes available for its disposal. The waste processing period is from 2013 through 2032, and disposal at the High Level Waste repository will probably begin sometime after 2065

  11. Hot isostatic press waste option study report

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy and the State of Idaho mandates that all high-level radioactive waste now stored at the Idaho Chemical Processing Plant be treated so that it is ready to move out of Idaho for disposal by the target date of 2035. This study investigates the immobilization of all Idaho Chemical Processing Plant calcine, including calcined sodium bearing waste, via the process known as hot isostatic press, which produces compact solid waste forms by means of high temperature and pressure (1,050 C and 20,000 psi), as the treatment method for complying with the settlement agreement. The final waste product would be contained in stainless-steel canisters, the same type used at the Savannah River Site for vitrified waste, and stored at the Idaho National Engineering and Environmental Laboratory until a national geological repository becomes available for its disposal. The waste processing period is from 2013 through 2032, and disposal at the High Level Waste repository will probably begin sometime after 2065.

  12. Fluidized bed calciner

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    A unique way to convert radioactive scrap into useful nuclear fuel products was developed for the Department of Energy at Hanford. An advanced, fluidized bed calciner is used to convert metallic nitrate scrap or waste solutions into benign, solid and gaseous products. There are broad potential applications of this concept beyond those in the nuclear industry

  13. Materials Science of High-Level Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  14. Characterization of norm sources in petroleum coke calcining processes - 16314

    International Nuclear Information System (INIS)

    Hamilton, Ian S.; Halter, Donald A.; Fruchtnicht, Erich H.; Arno, Matthew G.; Haumann, Donald F

    2009-01-01

    Petroleum coke, or 'petcoke', is a waste by-product of the oil refining industry. The majority of petcoke consumption is in energy applications; catalyst coke is used as refinery fuel, anode coke for electricity conduction, and marketable coke for heating cement kilns. Roskill has predicted that long-term growth in petroleum coke production will be maintained, and may continue to increase slightly through 2012. Petcoke must first be calcined to drive off any undesirable petroleum by-products that would shorten the coke product life cycle. As an example, the calcining process can take place in large, rotary kilns heated to maximum temperatures as high as approximately 1400-1540 deg. C. The kilns and combustion/settling chambers, as well as some cooler units, are insulated with refractory bricks and other, interstitial materials, e.g., castable refractory materials, to improve the efficiency of the calcining process. The bricks are typically made of 70-85-percent bauxite, and are slowly worn away by the calcining process; bricks used to line the combustion chambers wear away, as well, but at a slower rate. It has been recognized that the refractory materials contain slight amounts of naturally occurring radioactive materials (NORM) from the uranium- and thorium-decay series. Similarly, low levels of NORM could be present in the petcoke feed stock given the nature of its origin. Neither the petcoke nor the refractory bricks represent appreciable sources of radiation or radioactive waste. However, some of the demolished bricks that have been removed from service because of the aforementioned wearing process have caused portal alarms to activate at municipal disposal facilities. This has lead to the current investigation into whether there is a NORM concentrating mechanism facilitated by the presence of the slightly radioactive feed stock in the presence of the slightly radioactive refractory materials, at calcining-zone temperatures. Research conducted to date has been

  15. Remotely replaceable fuel and feed nozzles for the NWCF calciner vessel

    International Nuclear Information System (INIS)

    Fletcher, R.D.; Carter, J.A.; May, K.W.

    1978-01-01

    The development and testing of remotely replaceable fuel and feed nozzles for calcination of liquid radioactive wastes in the calciner vessel of the New Waste Calcining Facility (NWCF) being built at the Idaho National Engineering Laboratory are described. A complete fuel nozzle assembly was fabricated and tested at the Remote Maintenance Development Facility to evolve design refinements, identify required support equipment, and develop handling techniques. The design also provided for remote replacement of the nozzle support carriage and adjacent feed and fuel pipe loops using two pairs of master-slave manipulators

  16. Design and installation of a laboratory-scale system for radioactive waste treatment

    International Nuclear Information System (INIS)

    Berger, D.N.; Knox, C.A.; Siemens, D.H.

    1980-05-01

    Described are the mechanical design features and remote installation of a laboratory-scale radiochemical immobilization system which is to provide a means at Pacific Northwest Laboratory of studying effluents generated during solidification of high-level liquid radioactive waste. Detailed are the hot cell, instrumentation, two 4-in. and 12-in. service racks, the immobilization system modules - waste feed, spray calciner unit, and effluent - and a gamma emission monitor system for viewing calcine powder buildup in the spray calciner/in-can melter

  17. Radioactive Waste Management Research Program Plan for high-level waste: 1987

    International Nuclear Information System (INIS)

    1987-05-01

    This plan will identify and resolve technical and scientific issues involved in the NRC's licensing and regulation of disposal systems intended to isolate high level hazardous radioactive wastes (HLW) from the human environment. The plan describes the program goals, discusses the research approach to be used, lays out peer review procedures, discusses the history and development of the high level radioactive waste problem and the research effort to date and describes study objectives and research programs in the areas of materials and engineering, hydrology and geochemistry, and compliance assessment and modeling. The plan also details the cooperative interactions with international waste management research programs. Proposed Earth Science Seismotectonic Research Program plan for radioactive waste facilities is appended

  18. Final safety-analysis report for the Fifth Calcined Solids Storage Facility

    International Nuclear Information System (INIS)

    1982-01-01

    Radioactive aqueous wastes generated by the solvent extraction of uranium from expended fuels at ICPP will be calcined in the New Waste Calcining Facility (NWCF). The calcined solids are pneumatically transferred to stainless steel bins enclosed in concrete vaults for interim storage of up to 500 years. The Fifth Calcined Solids Storage Facility (CSSF) provides 1000 m 3 of storage and consists of seven annular stainless steel bins inside a reinforced concrete vault set on bedrock. Storage of calcined solids is essentially a passive operation with very little opportunity for release of radionuclides and with no potential for criticality. There will be no potential for fire or explosion. Shielding has been designed to assure that the radiation levels at the vault exterior surfaces will be limited to less than 0.5 mRem/h. A sump in the vault floor will collect any in-leakage that may occur. Any water that collects in the sump will be sampled then removed with the sump jet. There will be an extremely small chance of release of radioactive particulates into the atmosphere as a result of a bin leak. The Design Basis Accident (DBA) postulates the spill of solids from an eroded fill line into the vault coupled with a failure of the vault cooling air radiation monitor. For the DBA, the maximum calculated radiation dose to an exposed individual near the site boundary is less than 1.2 μRem to the bone and lung

  19. Final report on cermet high-level waste forms

    International Nuclear Information System (INIS)

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures

  20. High-Level Waste System Process Interface Description

    International Nuclear Information System (INIS)

    D'Entremont, P.D.

    1999-01-01

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment

  1. Effect of the heat curing on strength development of self-compacting mortars containing calcined silt of dams and Ground Brick Waste

    Directory of Open Access Journals (Sweden)

    B. Safi

    2013-01-01

    Full Text Available The strength development of self-compacting mortars (SCM containing calcined silt (CS and ground brick waste (GWB was investigated. The variables are the nature of addition (CS and GWB in the binder and the heat curing at different temperatures (20 ºC and 60 ºC at 7 and 14 days of curing. Two temperatures 20 and 60 ºC were applied to samples with intermediate levels (depending on the drying method applied to precast for 18 hours in total. In this study, a Portland cement (CEMII, Calcined silt (750 ºC for 5 hours, ground waste brick, were used in the binders of SCM. The results show that the compressive strength to 14 days of mortars, increases with annealing (60 ºC compared to that measured at 20 ºC. Also, values of compressive strength of mortars at 14 days that are close to those obtained without 28 days curing treatment. Indeed, a strength gain of about 20.5% and 27.3% was obtained respectively for the SCM with GWB and the SCM with CS. However, a small change in mass recorded for both types of mortars.

  2. Vitrified waste option study report

    International Nuclear Information System (INIS)

    Lopez, D.A.; Kimmitt, R.R.

    1998-02-01

    A open-quotes Settlement Agreementclose quotes between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This report investigates vitrification treatment of all ICPP calcine, including the existing and future HLW calcine resulting from calcining liquid Sodium-Bearing Waste (SBW). Currently, the SBW is stored in the tank farm at the ICPP. Vitrification of these wastes is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the calcined waste and casting the vitrified mass into stainless steel canisters that will be ready to be moved out of the Idaho for disposal by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a HLW national repository. The operating period for vitrification treatment will be from 2013 through 2032; all HLW will be treated and in storage by the end of 2032

  3. Vitrified waste option study report

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, D.A.; Kimmitt, R.R.

    1998-02-01

    A {open_quotes}Settlement Agreement{close_quotes} between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This report investigates vitrification treatment of all ICPP calcine, including the existing and future HLW calcine resulting from calcining liquid Sodium-Bearing Waste (SBW). Currently, the SBW is stored in the tank farm at the ICPP. Vitrification of these wastes is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the calcined waste and casting the vitrified mass into stainless steel canisters that will be ready to be moved out of the Idaho for disposal by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a HLW national repository. The operating period for vitrification treatment will be from 2013 through 2032; all HLW will be treated and in storage by the end of 2032.

  4. Conversion of highly active waste to solids

    International Nuclear Information System (INIS)

    Scheffler, K.

    Borosilicate glasses were selected as matrix material for solidification of highly radioactive wastes. Current laboratory work on the VERA process is described. Goals were met by a five-component glass VG-38 and a glass-ceramic VC-15. The VERA process is described: flowsheet, denitration, calcinator, fusion facility

  5. Production and properties of solidified high-level waste

    International Nuclear Information System (INIS)

    Brodersen, K.

    1980-08-01

    Available information on production and properties of solidified high-level waste are presented. The review includes literature up to the end of 1979. The feasibility of production of various types of solidified high-level wast is investigated. The main emphasis is on borosilicate glass but other options are also mentioned. The expected long-term behaviour of the materials are discussed on the basis of available results from laboratory experiments. Examples of the use of the information in safety analysis of disposal in salt formations are given. The work has been made on behalf of the Danish utilities investigation of the possibilities of disposal of high-level waste in salt domes in Jutland. (author)

  6. Cermet high level waste forms: a pregress report

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1978-06-01

    The fixation of high level radioactive waste from both commercial and DOE defense sources as cermets is currently under study. This waste form consists of a continuous iron-nickel base metal matrix containing small particles of fission product oxides. Preliminary evaluations of cermets fabricated from a variety of simulated wastes indicate they possess properties providing advantages over other waste forms presently being considered, namely thermal conductivity, waste loading levels, and leach resistance. This report describes the progress of this effort, to date, since its initiation in 1977

  7. Treatment technologies for non-high-level wastes (USA)

    International Nuclear Information System (INIS)

    Cooley, C.R.; Clark, D.E.

    1976-06-01

    Non-high-level waste arising from operations at nuclear reactors, fuel fabrication facilities, and reprocessing facilities can be treated using one of several technical alternatives prior to storage. Each alternative and the associated experience and status of development are summarized. The technology for treating non-high-level wastes is generally available for industrial use. Improved techniques applicable to the commercial nuclear fuel cycle are being developed and demonstrated to reduce the volume of waste and to immobilize it for storage. 36 figures, 59 references

  8. PAIRWISE BLENDING OF HIGH LEVEL WASTE

    International Nuclear Information System (INIS)

    CERTA, P.J.

    2006-01-01

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending

  9. Microwave calcination for plutonium immobilization and residue stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Harris, M.J.; Rising, T.L.; Roushey, W.J.; Sprenger, G.S. [Kaiser-Hill Co., Golden, CO (United States)

    1995-12-01

    In the late 1980`s development was begun on a process using microwave energy to vitrify low level mixed waste sludge and transuranic mixed waste sludge generated in Building 374 at Rocky Flats. This process was shown to produce a dense, highly durable waste form. With the cessation of weapons production at Rocky Flats, the emphasis has changed from treatment of low level and TRU wastes to stabilizaiton of plutonium oxide and residues. This equipment is versatile and can be used as a heat source to calcine, react or vitrify many types of residues and oxides. It has natural economies in that it heats only the material to be treated, significantly reducing cycle times over conventional furnaces. It is inexpensive to operate in that most of the working components remain outside of any necessary contamination enclosure and therefore can easily be maintained. Limited testing has been successfully performed on cerium oxide (as a surrogate for plutonium oxide), surrogate electrorefining salts, surrogate residue sludge and residue ash. Future plans also include tests on ion exchange resins. In an attempt to further the usefullness of this technology, a mobile, self-contained microwave melting system is currently under development and expected to be operational at Rocky Flats Enviromental Technology Site by the 4th quarter of FY96.

  10. Microwave calcination for plutonium immobilization and residue stabilization

    International Nuclear Information System (INIS)

    Harris, M.J.; Rising, T.L.; Roushey, W.J.; Sprenger, G.S.

    1995-01-01

    In the late 1980's development was begun on a process using microwave energy to vitrify low level mixed waste sludge and transuranic mixed waste sludge generated in Building 374 at Rocky Flats. This process was shown to produce a dense, highly durable waste form. With the cessation of weapons production at Rocky Flats, the emphasis has changed from treatment of low level and TRU wastes to stabilizaiton of plutonium oxide and residues. This equipment is versatile and can be used as a heat source to calcine, react or vitrify many types of residues and oxides. It has natural economies in that it heats only the material to be treated, significantly reducing cycle times over conventional furnaces. It is inexpensive to operate in that most of the working components remain outside of any necessary contamination enclosure and therefore can easily be maintained. Limited testing has been successfully performed on cerium oxide (as a surrogate for plutonium oxide), surrogate electrorefining salts, surrogate residue sludge and residue ash. Future plans also include tests on ion exchange resins. In an attempt to further the usefullness of this technology, a mobile, self-contained microwave melting system is currently under development and expected to be operational at Rocky Flats Enviromental Technology Site by the 4th quarter of FY96

  11. ONDRAF/NIRAS and high-level radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Decamps, F.

    1993-01-01

    The National Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, is a public body with legal personality in charge of managing all radioactive waste on Belgian territory, regardless of its origin and source. It is also entrusted with tasks related to the management of enriched fissile materials, plutonium containing materials and used or unused nuclear fuel, and with certain aspects of the dismantling of closed down nuclear facilities. High-level radioactive waste management comprises essentially and for the time being the storage of high-level liquid waste produced by the former EUROCHEMIC reprocessing plant and of high-level and very high-level heat producing waste resulting from the reprocessing in France of Belgian spent fuel, as well as research and development (R and D) with regard to geological disposal in clay of this waste type

  12. High-level waste program. Progress report, October 1, 1978--March 31, 1979

    International Nuclear Information System (INIS)

    Blanco, R.E.; Lotts, A.L.

    1979-05-01

    Development of a low-level waste management analysis computer code has been initiated. As part of an ongoing update of the ORIGEN code, models of PWRs fueled with denatured 233 U and denatured 235 U in ThO 2 are being developed. Information on waste management for 18 alternative fuel cycles has been assembled for use by NASAP. Documentation of experimental and calculational work done for the assessment of partitioning and transmutation is progressng, while the conceptual design, cost estimation, and risk analysis of partitioning and waste disposal facilities are scheduled for completion in September 1979. Assuming diffusion control, leach studies with FUETAP concretes indicate effective diffusivities in the order of less than or equal to 10 -10 cm 2 /s for plutonium, cesium, and strontium, respectively. Hydrogen and oxygen combine rapidly at ambient temperature in the presence of FUETAP concrete. A spray calciner is currently being fabricated and installed in a trailer laboratory. New cermet sintering techniques have been developed which drastically reduce the sintering temperatures and times required to achieve satisfactory densification. The radioisotope volatility losses observed during the processing of actual wastes to form cermets were very low. Conversions of actual SRP acid and dried sludge wastes to cermets have been performed. A series of cermet leach tests conducted by PNL have been completed, and the samples are currently being examined at ORNL. Results indicate that cermets exhibit promising leach resistance and durability

  13. US program for the immobilization of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1979-01-01

    A program has been developed for long-term management of high-level nuclear waste. The Savannah River Operations Office of the US Department of Energy is acting as the lead office for this program with technical advice from the E.I. du Pont de Nemours and Company. The purpose of the long-term program is to immobilize the DOE high-level waste in forms that act as highly efficient barriers against radionuclide release to the disposal site and to provide technology for similar treatment of commercial high-level waste in case reprocessing of commercial nuclear fuels is ever resumed. Descriptions of existing DOE and commercial wastes, program strategy, program expenditures, development of waste forms, evaluation and selection of waste forms, regulatory aspects of waste form selection, project schedules, and cost estimates for immobilization facilities are discussed

  14. High-level waste melter alternatives assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program`s (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant`s melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy.

  15. High-level waste melter alternatives assessment report

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program's (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant's melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy

  16. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip [Department of Chemistry, Faculty of Arts and Science, University of Dumlupinar, Kuetahya (Turkey); Olgun, Asim [Department of Chemistry, Faculty of Arts and Science, University of Dumlupinar, Kuetahya (Turkey)]. E-mail: aolgun@dumlupinar.edu.tr

    2007-07-19

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW.

  17. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    International Nuclear Information System (INIS)

    Atar, Necip; Olgun, Asim

    2007-01-01

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW

  18. Determination of total cyanide in Hanford Site high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States); Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States)

    1994-05-01

    Nickel ferrocyanide compounds (Na{sub 2-x}Cs{sub x}NiFe (CN){sub 6}) were produced in a scavenging process to remove {sup 137}Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described.

  19. Determination of total cyanide in Hanford Site high-level wastes

    International Nuclear Information System (INIS)

    Winters, W.I.; Pool, K.H.

    1994-05-01

    Nickel ferrocyanide compounds (Na 2-x Cs x NiFe (CN) 6 ) were produced in a scavenging process to remove 137 Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described

  20. Selection of a glass-ceramic formulation to immobilize fluorinel- sodium calcine

    International Nuclear Information System (INIS)

    Staples, B.A.; Wood, H.C.

    1994-12-01

    One option for immobilizing calcined high level wastes produced by nuclear fuel reprocessing activities at the Idaho Chemical Processing Plant (ICPP) is conversion to a glass-ceramic form through hot isostatic pressing. Calcines exist in several different chemical compositions, and thus candidate formulations have been developed for converting each to glass-ceramic forms which are potentially resistant to aqueous corrosion and stable enough to qualify for repository storage. Fluorinel/Na, a chemically complex calcine type, is one of the types being stored at ICPP, and development efforts have identified three formulations with potential for immobilizing it. These are a glass forming additive that uses aluminum metal to enhance reactivity, a second glass forming additive that uses titanium metal to enhance reactivity and a third that uses not only a combination of silicon and titanium metals but enough phosphorous pentoxide to form a calcium phosphate host phase in the glass-ceramic product. Glass-ceramics of each formulation performed well in restricted characterization tests. However, none of the three was subjected to rigorous testing that would provide information on whether each was processable, that is able to retain favorable characteristics over a practical range of processing conditions

  1. Solidification of Savannah River Plant high level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Kelley, J.A.; Zeyfang, R.W.

    1981-11-01

    Authorization for construction of the Defense Waste Processing Facility (DWPF) is expected in FY 83. The optimum time for stage 2 authorization is about three years later. Detailed design and construction will require approximately five years for stage 1, with stage 2 construction completed about two to three years later. Production of canisters of waste glass would begin in 1988, and the existing backlog of high level waste sludge stored at SRP would be worked off by about the year 2000. Stage 2 operation could begin in 1990. The technology and engineering are ready for construction and eventual operation of the DWPF for immobilizing high level radioactive waste at Savannah River Plant (SRP). Proceeding with this project will provide the public, and the leadership of this country, with a crucial demonstration that a major quantity of existing high level nuclear wastes can be safely and permanently immobilized. Early demonstration will both expedite and facilitate rational decision making on this aspect of the nuclear program. Delay in providing these facilities will result in significant DOE expenditures at SRP for new tanks just for continued temporary storage of wastes, and would probably result in dissipation of the intellectual and planning momentum that has built up in developing the project

  2. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1993-01-01

    The Nuclear Waste Policy Act of 1982 mandated that all high-level waste (HLW) be sent to a federal geologic repository for permanent disposal. DOE published the Environmental Assessment in 1982 which identified borosilicate glass as the chosen HLW form. 1 In 1985 the Department of Energy instituted a Waste Acceptance Process to assure that DWPF glass waste forms would be acceptable to such a repository. This assurance was important since production of waste forms will precede repository construction and licensing. As part of this Waste Acceptance Process, the DOE Office of Civilian Radioactive Waste Management (RW) formed the Waste Acceptance Committee (WAC). The WAC included representatives from the candidate repository sites, the waste producing sites and DOE. The WAC was responsible for developing the Waste Acceptance Preliminary Specifications (WAPS) which defined the requirements the waste forms must meet to be compatible with the candidate repository geologies

  3. High level waste at Hanford: Potential for waste loading maximization

    International Nuclear Information System (INIS)

    Hrma, P.R.; Bailey, A.W.

    1995-09-01

    The loading of Hanford nuclear waste in borosilicate glass is limited by phase-related phenomena, such as crystallization or formation of immiscible liquids, and by breakdown of the glass structure because of an excessive concentration of modifiers. The phase-related phenomena cause both processing and product quality problems. The deterioration of product durability determines the ultimate waste loading limit if all processing problems are resolved. Concrete examples and mass-balance based calculations show that a substantial potential exists for increasing waste loading of high-level wastes that contain a large fraction of refractory components

  4. Coating of waste containing ceramic granules

    International Nuclear Information System (INIS)

    Neumann, W.; Kofler, O.

    1979-01-01

    Simulated high-level waste granules produced by fluidized-bed calcination were overcoated by chemical vapor deposition (CVD) with pyrocarbon and nickel in laboratory-scale experiments. Successful development enables pyrocrbon deposition at temperatures of 600 to 800 0 K. The coated granules have excellent properties for long-term waste storage

  5. Decision Document for Heat Removal from High-Level Waste Tanks

    International Nuclear Information System (INIS)

    WILLIS, W.L.

    2000-01-01

    This document establishes the combination of design and operational configurations that will be used to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. The chosen method--to use the primary and annulus ventilation systems to remove heat from the high-level waste tanks--is documented herein

  6. Proposed classification scheme for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1986-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 defines high-level radioactive waste (HLW) as: (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel....that contains fission products in sufficient concentrations; and (B) other highly radioactive material that the Commission....determines....requires permanent isolation. This paper presents a generally applicable quantitative definition of HLW that addresses the description in paragraph (B). The approach also results in definitions of other waste classes, i.e., transuranic (TRU) and low-level waste (LLW). A basic waste classification scheme results from the quantitative definitions

  7. Spent fuel and high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Trigerman, S.

    1988-06-01

    The subject of spent fuel and high-level radioactive waste storage, is bibliographically reviewed. The review shows that in the majority of the countries, spent fuels and high-level radioactive wastes are planned to be stored for tens of years. Sites for final disposal of high-level radioactive wastes have not yet been found. A first final disposal facility is expected to come into operation in the United States of America by the year 2010. Other final disposal facilities are expected to come into operation in Germany, Sweden, Switzerland and Japan by the year 2020. Meanwhile , stress is placed upon the 'dry storage' method which is carried out successfully in a number of countries (Britain and France). In the United States of America spent fuels are stored in water pools while the 'dry storage' method is still being investigated. (Author)

  8. Development of high-level waste solidification technology 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Hyung; Kim, Hwan Young; Kim, In Tae [and others

    1999-02-01

    Spent nuclear fuel contains useful nuclides as valuable resource materials for energy, heat and catalyst. High-level wastes (HLW) are expected to be generated from the R and D activities and reuse processes. It is necessary to develop vitrification or advanced solidification technologies for the safe long-term management of high level wastes. As a first step to establish HLW vitrification technology, characterization of HLWs that would arise at KAERI site, glass melting experiments with a lab-scale high frequency induction melter, and fabrication and property evaluation of base-glass made of used HEPA filter media and additives were performed. Basic study on the fabrication and characterization of candidate ceramic waste form (Synroc) was also carried out. These HLW solidification technologies would be directly useful for carrying out the R and Ds on the nuclear fuel cycle and waste management. (author). 70 refs., 29 tabs., 35 figs.

  9. Proposed classification scheme for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1986-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 defines high-level (radioactive) waste (HLW) as (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel...that contains fission products in sufficient concentrations; and (B) other highly radioactive material that the Commission...determines...requires permanent isolation. This paper presents a generally applicable quantitative definition of HLW that addresses the description in paragraph B. The approach also results in definitions of other wastes classes, i.e., transuranic (TRU) and low-level waste (LLW). The basic waste classification scheme that results from the quantitative definitions of highly radioactive and requires permanent isolation is depicted. The concentrations of radionuclides that correspond to these two boundaries, and that may be used to classify radioactive wastes, are given

  10. Future directions of defense programs high-level waste technology programs

    International Nuclear Information System (INIS)

    Chee, T.C.; Shupe, M.W.; Turner, D.A.; Campbell, M.H.

    1987-01-01

    The Department of Energy has been managing high-level waste from the production of nuclear materials for defense activities over the last forty years. An objective for the Defense Waste and Transportation Management program is to develop technology which ensures the safe, permanent disposal of all defense radioactive wastes. Technology programs are underway to address the long-term strategy for permanent disposal of high-level waste generated at each Department of Energy site. Technology is being developed for assessing the hazards, environmental impacts, and costs of each long-term disposal alternative for selection and implementation. This paper addresses key technology development areas, and consideration of recent regulatory requirements associated with the long-term management of defense radioactive high-level waste

  11. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-11-01

    Without reprocessing, spent LWR fuel itself is generally considered an acceptable waste form. With reprocessing, borosilicate glass canisters, have now gained general acceptance for waste immobilization. The current first choice for disposal is emplacement in an engineered structure in a mined cavern at a depth of 500-1000 meters. A variety of rock types are being investigated including basalt, clay, granite, salt, shale, and volcanic tuff. This paper gives specific coverage to the national high level waste disposal plans for France, the Federal Republic of Germany, Japan and the United States. The French nuclear program assumes prompt reprocessing of its spent fuels, and France has already constructed the AVM. Two larger borosilicate glass plants are planned for a new French reprocessing plant at La Hague. France plans to hold the glass canisters in near-surface storage for a forty to sixty year cooling period and then to place them into a mined repository. The FRG and Japan also plan reprocessing for their LWR fuels. Both are currently having some fuel reprocessed by France, but both are also planning reprocessing plants which will include waste vitrification facilities. West Germany is now constructing the PAMELA Plant at Mol, Belgium to vitrify high level reprocessing wastes at the shutdown Eurochemic Plant. Japan is now operating a vitrification mockup test facility and plans a pilot plant facility at the Tokai reprocessing plant by 1990. Both countries have active geologic repository programs. The United State program assumes little LWR fuel reprocessing and is thus primarily aimed at direct disposal of spent fuel into mined repositories. However, the US have two borosilicate glass plants under construction to vitrify existing reprocessing wastes

  12. High level waste canister emplacement and retrieval concepts study

    International Nuclear Information System (INIS)

    1975-09-01

    Several concepts are described for the interim (20 to 30 years) storage of canisters containing high level waste, cladding waste, and intermediate level-TRU wastes. It includes requirements, ground rules and assumptions for the entire storage pilot plant. Concepts are generally evaluated and the most promising are selected for additional work. Follow-on recommendations are made

  13. Licensing information needs for a high-level waste repository

    International Nuclear Information System (INIS)

    Wright, R.J.; Greeves, J.T.; Logsdon, M.J.

    1985-01-01

    The information needs for licensing findings during the development of a repository for high-level waste (HLW) are described. In particular, attention is given to the information and needs to demonstrate, for construction authorization purposes: repository constructibility, waste retrievability, waste containment, and waste isolation

  14. High level waste fixation in cermet form

    International Nuclear Information System (INIS)

    Kobisk, E.H.; Aaron, W.S.; Quinby, T.C.; Ramey, D.W.

    1981-01-01

    Commercial and defense high level waste fixation in cermet form is being studied by personnel of the Isotopes Research Materials Laboratory, Solid State Division (ORNL). As a corollary to earlier research and development in forming high density ceramic and cermet rods, disks, and other shapes using separated isotopes, similar chemical and physical processing methods have been applied to synthetic and real waste fixation. Generally, experimental products resulting from this approach have shown physical and chemical characteristics which are deemed suitable for long-term storage, shipping, corrosive environments, high temperature environments, high waste loading, decay heat dissipation, and radiation damage. Although leach tests are not conclusive, what little comparative data are available show cermet to withstand hydrothermal conditions in water and brine solutions. The Soxhlet leach test, using radioactive cesium as a tracer, showed that leaching of cermet was about X100 less than that of 78 to 68 glass. Using essentially uncooled, untreated waste, cermet fixation was found to accommodate up to 75% waste loading and yet, because of its high thermal conductivity, a monolith of 0.6 m diameter and 3.3 m-length would have only a maximum centerline temperature of 29 K above the ambient value

  15. Development of multibarrier nuclear waste forms

    International Nuclear Information System (INIS)

    1979-03-01

    The multibarrier concept aims to separate the radionuclide-containing inner core material and the environment by the use of coatings and matrices. Two options were developed for the inner core of the multibarrier concept: supercalcine pellets and glass marbles. Supercalcine is a crystalline assemblage of mutually compatible, refractory, and leach-resistant solid solution phases incorporating high-level liquid waste ions. Supercalcine powder is produced by spray calcining the liquid waste stream to which Al 2 O 3 , CaO, SiO 2 , and SrO have been added. Supercalcine pellets are produced by disc pelletizing. The amorphous supercalcine crystallizes into solid solution phases after subsequent heat treatment. Based on the multibarrier processes described, several conclusions can be made: gravity sintering and vacuum casting are both applicable methods for metal matrix encapsulation. The multibarrier concept of glass marbles encapsulated in a vacuum-cast lead alloy provides enhanced inertness at a minimum increase in technological complexity. If it were desirable to develop a crystalline multibarrier waste form, uncoated sintered supercalcine pellets would offer enhanced inertness at a much lower level of technological complexity than glaze- or CVD-coated supercalcine. The 16-inch diameter pelletizer unit has enough capacity to handle the output of a large PNL spray calciner (52.5 kg of calcine/hr) and it can form spray-calcined material into pellets with diameters of 2 mm to 20 mm having strength enough to withstand handling without significant breakage.Chemical vapor deposition coating of supercalcine should be pursued only if a very high level of inertness is required

  16. The Defense Waste Processing Facility: an innovative process for high-level waste immobilization

    International Nuclear Information System (INIS)

    Cowan, S.P.

    1985-01-01

    The Defense Waste Processing Facility (DWPF), under construction at the Department of Energy's Savannah River Plant (SRP), will process defense high-level radioactive waste so that it can be disposed of safely. The DWPF will immobilize the high activity fraction of the waste in borosilicate glass cast in stainless steel canisters which can be handled, stored, transported and disposed of in a geologic repository. The low-activity fraction of the waste, which represents about 90% of the high-level waste HLW volume, will be decontaminated and disposed of on the SRP site. After decontamination the canister will be welded shut by an upset resistance welding technique. In this process a slightly oversized plug is pressed into the canister opening. At the same time a large current is passed through the canister and plug. The higher resistance of the canister/plug interface causes the heat which welds the plug in place. This process provides a high quality, reliable weld by a process easily operated remotely

  17. Near-surface storage facilities for vitrified high-level wastes

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kulichenko, V.V.; Kryukov, I.I.; Krylova, N.V.; Paramoshkin, V.I.; Strakhov, M.V.

    1980-01-01

    Concurrently with the development of methods for solidifying liquid radioactive wastes, reliable and safe methods for the storage and disposal of solidified wastes are being devised in the USSR and other countries. One of the main factors affecting the choice of storage conditions for solidified wastes originating from the vitrification of high-level liquid wastes from fuel reprocessing plants is the problem of removing the heat produced by radioactive decay. In order to prevent the temperature of solidified wastes from exceeding the maximum permissible level for the material concerned, it is necessary to limit either the capacity of waste containers or the specific heat release of the wastes themselves. In order that disposal of high-level wastes in geological formations should be reliable and economic, solidified wastes undergo interim storage in near-surface storage facilities with engineered cooling systems. The paper demonstrates the relative influences of specific heat release, of the maximum permissible storage temperature for vitrified wastes and of the methods chosen for cooling wastes in order for the dimensions of waste containers to be reduced to the extent required. The effect of concentrating wastes to a given level in the vitrification process on the cost of storage in different types of storage facility is also examined. Calculations were performed for the amount of vitrified wastes produced by a reprocessing plant with a capacity of five tonnes of uranium per 24 hours. Fuel elements from reactors of the water-cooled, water-moderated type are sent for reprocessing after having been held for about two years. The dimensions of the storage facility are calculated on the assumption that it will take five years to fill

  18. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    International Nuclear Information System (INIS)

    Radulesscu, G.; Tang, J.S.

    2000-01-01

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M andO [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M andO 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M andQ 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M andO 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this

  19. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    Energy Technology Data Exchange (ETDEWEB)

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable

  20. Evaluation and selection of candidate high-level waste forms

    International Nuclear Information System (INIS)

    1982-03-01

    Seven candidate waste forms being developed under the direction of the Department of Energy's National High-Level Waste (HLW) Technology Program, were evaluated as potential media for the immobilization and geologic disposal of high-level nuclear wastes. The evaluation combined preliminary waste form evaluations conducted at DOE defense waste-sites and independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate based ceramic, SYNROC, were selected as the reference and alternative forms for continued development and evaluation in the National HLW Program. Both the glass and ceramic forms are viable candidates for use at each of the DOE defense waste-sites; they are also potential candidates for immobilization of commercial reprocessing wastes. This report describes the waste form screening process, and discusses each of the four major inputs considered in the selection of the two forms

  1. International high-level radioactive waste repositories

    International Nuclear Information System (INIS)

    Lin, W.

    1996-01-01

    Although nuclear technologies benefit everyone, the associated nuclear wastes are a widespread and rapidly growing problem. Nuclear power plants are in operation in 25 countries, and are under construction in others. Developing countries are hungry for electricity to promote economic growth; industrialized countries are eager to export nuclear technologies and equipment. These two ingredients, combined with the rapid shrinkage of worldwide fossil fuel reserves, will increase the utilization of nuclear power. All countries utilizing nuclear power produce at least a few tens of tons of spent fuel per year. That spent fuel (and reprocessing products, if any) constitutes high-level nuclear waste. Toxicity, long half-life, and immunity to chemical degradation make such waste an almost permanent threat to human beings. This report discusses the advantages of utilizing repositories for disposal of nuclear wastes

  2. A proposed classification system for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1987-06-01

    This report presents a proposal for quantitative and generally applicable risk-based definitions of high-level and other radioactive wastes. On the basis of historical descriptions and definitions of high-level waste (HLW), in which HLW has been defined in terms of its source as waste from reprocessing of spent nuclear fuel, we propose a more general definition based on the concept that HLW has two distinct attributes: HLW is (1) highly radioactive and (2) requires permanent isolation. This concept leads to a two-dimensional waste classification system in which one axis, related to ''requires permanent isolation,'' is associated with long-term risks from waste disposal and the other axis, related to ''highly radioactive,'' is associated with shorter-term risks due to high levels of decay heat and external radiation. We define wastes that require permanent isolation as wastes with concentrations of radionuclides exceeding the Class-C limits that are generally acceptable for near-surface land disposal, as specified in the US Nuclear Regulatory Commission's rulemaking 10 CFR Part 61 and its supporting documentation. HLW then is waste requiring permanent isolation that also is highly radioactive, and we define ''highly radioactive'' as a decay heat (power density) in the waste greater than 50 W/m 3 or an external radiation dose rate at a distance of 1 m from the waste greater than 100 rem/h (1 Sv/h), whichever is the more restrictive. This proposal also results in a definition of Transuranic (TRU) Waste and Equivalent as waste that requires permanent isolation but is not highly radioactive and a definition of low-level waste (LLW) as waste that does not require permanent isolation without regard to whether or not it is highly radioactive

  3. High-level radioactive waste in Canada. Background paper

    International Nuclear Information System (INIS)

    Fawcett, R.

    1993-11-01

    The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such waste. Research reactors built in the early postwar years produced small amounts of radioactive material but the volume grew steadily as the nuclear power reactors constructed during the 1960s and 1970s began to spawn used fuel bundles. Although this radioactive refuse has been safely stored for the short term, no permanent disposal system has yet been fully developed and implemented. Canada is not alone in this regard. A large number of countries use nuclear power reactors but none has yet put in place a method for the long-term disposal of the radioactive waste. Scientists and engineers throughout the world are investigating different possibilities; however, enormous difficulties remain. In Canada, used fuel bundles from nuclear reactors are defined as high-level waste; all other waste created at different stages in the nuclear fuel cycle is classified as low-level. Although disposal of low-level waste is an important issue, it is a more tractable problem than the disposal of high-level waste, on which this paper will concentrate. The paper discusses the nuclear fuel waste management program in Canada, where a long-term disposal plan has been under development by scientists and engineers over the past 15 years, but will not be completed for some time. Also discussed are responses to the program by parliamentary committees and aboriginal and environmental groups, and the work in the area being conducted in other countries. (author). 1 tab

  4. High-level radioactive waste in Canada. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Fawcett, R [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-11-01

    The disposal of radioactive waste is one of the most challenging environmental problems facing Canada today. Since the Second World War, when Canadian scientists first started to investigate nuclear reactions, there has been a steady accumulation of such waste. Research reactors built in the early postwar years produced small amounts of radioactive material but the volume grew steadily as the nuclear power reactors constructed during the 1960s and 1970s began to spawn used fuel bundles. Although this radioactive refuse has been safely stored for the short term, no permanent disposal system has yet been fully developed and implemented. Canada is not alone in this regard. A large number of countries use nuclear power reactors but none has yet put in place a method for the long-term disposal of the radioactive waste. Scientists and engineers throughout the world are investigating different possibilities; however, enormous difficulties remain. In Canada, used fuel bundles from nuclear reactors are defined as high-level waste; all other waste created at different stages in the nuclear fuel cycle is classified as low-level. Although disposal of low-level waste is an important issue, it is a more tractable problem than the disposal of high-level waste, on which this paper will concentrate. The paper discusses the nuclear fuel waste management program in Canada, where a long-term disposal plan has been under development by scientists and engineers over the past 15 years, but will not be completed for some time. Also discussed are responses to the program by parliamentary committees and aboriginal and environmental groups, and the work in the area being conducted in other countries. (author). 1 tab.

  5. A proposed classification system for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1989-01-01

    On the basis of the definition of high-level wastes (HLW) in the Nuclear Waste Policy Act of 1982 and previous descriptions of reprocessing wastes, a definition is proposed based on the concept that HLW is any waste which is highly radioactive and requires permanent isolation. This conceptual definition of HLW leads to a two-dimensional waste classification system in which one axis, related to 'highly radioactive', is associated with shorter-term risks from waste management and disposal due to high levels of decay heat and external radiation, and the other axis, related to 'requires permanent isolation', is associated with longer-term risks from waste disposal. Wastes that are highly radioactive are defined quantitatively as wastes with a decay heat (power density) greater than 50 W/m 3 or an external dose-equivalent rate greater than 100 rem/h (1 Sv/h) at a distance of 1 m from the waste, whichever is more restrictive. Wastes that require permanent isolation are defined quantitatively as wastes with concentrations of radionuclides greater than the Class-C limits that are generally acceptable for near-surface land disposal, as obtained from the Nuclear Regulatory Commission's 10 CFR Part 61 and its associated methodology. This proposal leads to similar definitions of two other waste classes: transuranic (TRU) waste and equivalent is any waste that requires permanent isolation but is not highly radioactive; and low-level waste (LLW) is any waste that does not require permanent isolation, without regard to whether or not it is highly radioactive. 31 refs.; 3 figs.; 4 tabs

  6. Methods of Disposing Of High-Level Radioactive Waste: A Review

    International Nuclear Information System (INIS)

    Abumurade, K.

    2002-01-01

    High level nuclear waste from both commercial reactors and defense industry presents a difficult problem to the scientific community as well as the public. The solutions to this problem is still debatable both technically and ethically. There are few methods proposed for disposing of high level waste. Each method has its own advantages and disadvantages. However, the very deep underground geologic repository is the best choice for disposing of high-level radioactive wastes. The cost benefit equation of nuclear power production and its waste is discussed. However, the public should be educated about this matter to minimize the gap between them and the nuclear power community including scientists industry, and governments. (Author) 15 refs., 4 tabs., 1 fig

  7. High level radioactive wastes: Considerations on final disposal

    International Nuclear Information System (INIS)

    Ciallella, Norberto R.

    2000-01-01

    When at the beginnings of the decade of the 80 the National Commission on Atomic Energy (CNEA) in Argentina decided to study the destination of the high level radioactive wastes, was began many investigations, analysis and multidisciplinary evaluations that be origin to a study of characteristics never before carried out in Argentina. For the first time in the country was faced the study of an environmental eventual problem, several decades before that the problem was presented. The elimination of the high level radioactive wastes in the technological aspects was taken in advance, avoiding to transfer the problems to the future generations. The decision was based, not only in technical evaluations but also in ethical premises, since it was considered that the future generations may enjoy the benefits of the nuclear energy and not should be solve the problem. The CNEA in Argentina in 1980 decided to begin a feasibility study and preliminary engineering project for the construction of the final disposal of high level radioactive wastes

  8. Design concepts of definitive disposal for high level radioactive wastes

    International Nuclear Information System (INIS)

    Badillo A, V.E.; Alonso V, G.

    2007-01-01

    It is excessively known the importance about finding a solution for the handling and disposition of radioactive waste of all level. However, the polemic is centered in the administration of high level radioactive waste and the worn out fuel, forgetting that the more important volumes of waste its are generated in the categories of low level wastes or of very low level. Depending on the waste that will be confined and of the costs, several technological modalities of definitive disposition exist, in function of the depth of the confinement. The concept of deep geologic storage, technological option proposed more than 40 years ago, it is a concept of isolation of waste of long half life placed in a deep underground installation dug in geologic formations that are characterized by their high stability and their low flow of underground water. In the last decades, they have registered countless progresses in technical and scientific aspects of the geologic storage, making it a reliable technical solution supported with many years of scientific work carried out by numerous institutions in the entire world. In this work the design concepts that apply some countries for the high level waste disposal that its liberate heat are revised and the different geologic formations that have been considered for the storage of this type of wastes. (Author)

  9. HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASSES FOR HANFORD'S WTP (WASTE TREATMENT PROJECT)

    International Nuclear Information System (INIS)

    Kruger, A.A.; Bowan, B.W.; Joseph, I.; Gan, H.; Kot, W.K.; Matlack, K.S.; Pegg, I.L.

    2010-01-01

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m 2 and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m 2 . The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al 2 O 3 concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m 2 .day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m 2 .day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m 2 .day).

  10. High-level radioactive waste disposal type and theoretical analyses

    International Nuclear Information System (INIS)

    Lu Yingfa; Wu Yanchun; Luo Xianqi; Cui Yujun

    2006-01-01

    Study of high-level radioactive waste disposal is necessary for the nuclear electrical development; the determination of nuclear waste depository type is one of importance safety. Based on the high-level radioactive disposal type, the relative research subjects are proposed, then the fundamental research characteristics of nuclear waste disposition, for instance: mechanical and hydraulic properties of rock mass, saturated and unsaturated seepage, chemical behaviors, behavior of special soil, and gas behavior, etc. are introduced, the relative coupling equations are suggested, and a one dimensional result is proposed. (authors)

  11. High-Level Waste (HLW) Feed Process Control Strategy

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  12. Nuclear waste. DOE's program to prepare high-level radioactive waste for final disposal

    International Nuclear Information System (INIS)

    Bannerman, Carl J.; Owens, Ronald M.; Dowd, Leonard L.; Herndobler, Christopher S.; Purvine, Nancy R.; Stenersen, Stanley G.

    1989-11-01

    In summary, as of December 1988, the four sites collectively stored about 95 million gallons of high-level waste in underground tanks and bins. Approximately 57 million gallons are stored at Hanford, 34 million gallons at Savannah River, 3 million gallons at INEL, and 6 million gallons at West Valley. The waste is in several forms, including liquid, sludge, and dry granular materials, that make it unsuitable for permanent storage in its current state at these locations. Leaks from the tanks, designed for temporary storage, can pose an environmental hazard to surrounding land and water for thousands of years. DOE expects that when its waste processes at Savannah River, West Valley, and Hanford become operational, the high-level radioactive waste stored at these sites will be blended with other materials to immobilize it by forming a glass-like substance. The glass form will minimize the risk of environmental damage and make the waste more acceptable for permanent disposal in a geologic repository. At INEL, DOE is still considering various other immobilization and permanent disposal approaches. In July 1989, DOE estimated that it would cost about $13 billion (in fiscal year 1988 dollars) to retrieve, process, immobilize, and store the high-level waste until it can be moved to a permanent disposal site: about $5.3 billion is expected to be spent at Savannah River, $0.9 billion at West Valley, $2.8 billion at Hanford, and $4.0 billion at INEL. DOE has started construction at Savannah River and West Valley for facilities that will be used to transform the waste into glass (a process known as vitrification). These sites have each encountered schedule delays, and one has encountered a significant cost increase over earlier estimates. More specifically, the Savannah River facility is scheduled to begin high-level waste vitrification in 1992; the West Valley project, based on a January 1989 estimate, is scheduled to begin high-level waste vitrification in 1996, about 8

  13. Characterization of magnetic biochar amended with silicon dioxide prepared at high temperature calcination

    Directory of Open Access Journals (Sweden)

    Baig Shams Ali

    2016-09-01

    Full Text Available Calcination is considered to increase the hardness of composite material and prevent its breakage for the effective applications in environmental remediation. In this study, magnetic biochar amended with silicon dioxide was calcined at high temperature under nitrogen environment and characterized using various techniques. X-ray diffraction (XRD analysis revealed elimination of Fe3O4 peaks under nitrogen calcination and formation of Fe3Si and iron as major constituents of magnetic biochar-SiO2 composite, which demonstrated its superparamagnetic behavior (>80 A2·kg−1 comparable to magnetic biochar. Thermogravimetric analysis (TGA revealed that both calcined samples generated higher residual mass (>96 % and demonstrated better thermal stability. The presence of various bands in Fourier transform infrared spectroscopy (FT-IR was more obvious and the elimination of H–O–H bonding was observed at high temperature calcination. In addition, scanning electron microscopy (SEM images revealed certain morphological variation among the samples and the presence of more prominent internal and external pores, which then judged the surface area and pore volume of samples. Findings from this study suggests that the selective calcination process could cause useful changes in the material composites and can be effectively employed in environmental remediation measures.

  14. Department of Energy pretreatment of high-level and low-level wastes

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Hunt, R.D.

    1995-01-01

    The remediation of the 1 x 10 8 gal of highly radioactive waste in the underground storage tanks (USTs) at five US Department of Energy (DOE) sites is one of DOE's greatest challenges. Therefore, the DOE Office of Environmental Management has created the Tank Focus Area (TFA) to manage an integrated technology development program that results in the safe and efficient remediation of UST waste. The TFA has divided its efforts into five areas, which are safety, characterization, retrieval/closure, pretreatment, and immobilization. All DOE pretreatment activities are integrated by the Pretreatment Technical Integration Manager of the TFA. For FY 1996, the 14 pretreatment tasks are divided into 3 systems: supernate separations, sludge treatment, and solid/liquid separation. The plans and recent results of these TFA tasks, which include two 25,000-gal demonstrations and two former TFA tasks on Cs removal, are presented. The pretreatment goals are to minimize the volume of high-level waste and the radioactivity in low-level waste

  15. High-level waste description, inventory and hazard

    International Nuclear Information System (INIS)

    Crandall, J.; Hennelly, E.J.; McElroy, J.L.

    1983-01-01

    High-level nuclear waste (HLW), including its origin, is described and the current differences in definitions discussed. Quantities of defense and commercial radioactive HLW, both volume and curie content, are given. Current waste handling, which is interimin nature, is described for the several sites. The HLW hazard is defined by the times during which various radionuclides are the dominant contributors. The hazard is also compared to that of the ore. Using ICRP-2, which is the legal reference in the US, the hazard of the waste reduces to a level equal to the ore in about 300 years. The disposal plans are summarized and it is shown that regulatory requirements will probably govern disposal operations in such a conservative manner that the risk (product of hazard times probability of release) may well be lower than for any other wastes in existence or perhaps lower than those for any other human endeavor

  16. Development of an improved ion-exchange process for removing cesium and strontium from high-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Wallace, R.M.; Ferguson, R.B.

    1980-11-01

    Processes are being developed to solidify and isolate the biologically hazardous radionuclides from approximately 23 million gallons of alkaline high-level waste accumulated at the Savannah River Plant. The waste consists mainly of a liquid supernate, a damp salt cake, and a gelatinous, insoluble sludge. The reference solidification process involves separation of the water soluble fraction (supernate) from the insoluble fraction, removal of cesium and traces of strontium from the supernate, incorporation of the sludge and the radionuclides from the supernate in glass, and incorporation of the residual salt in concrete. A new process, now being developed, involves sorbing cesium on phenolic resins that contain no strongly acidic sulfonate groups. These resins can then be eluted with formic acid which is not possible with Duolite ARC-359. Duolite CS-100, a phenol-carboxylate resin, was chosen for further development because of its greater breakthrough capacity and because it also sorbs strontium to some extent. Strontium sorption by CS-100 was not sufficient to eliminate the need for Amberlite IRC-718. However, the latter resin can also be eluted with formic acid because its functional groups are weakly acidic. Formic acid elution permits several options to be considered. The preferred option consists simply of mixing the eluate with sludge prior to calcination. Sodium formate, which is formed when the resins in the sodium form are eluted, decomposes rapidly between 450 0 C and 500 0 C and will be destroyed in either the calciner or the melter. The resulting sodium oxide would be incorporated into glass. The principal advantage of the new process is the elimination of a number of process steps

  17. Preconceptual design study for solidifying high-level waste: West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hill, O.F.

    1981-04-01

    This report presents a preconceptual design study for processing radioactive high-level liquid waste presently stored in underground tanks at Western New York Nuclear Service Center (WNYNSC) near West Valley, New York, and for incorporating the radionculides in that waste into a solid. The high-level liquid waste accumulated from the operation of a chemical reprocessing plant by the Nuclear Fuel Services, Inc. from 1966 to 1972. The high-level liquid waste consists of approximately 560,000 gallons of alkaline waste from Purex process operations and 12,000 gallons of acidic (nitric acid) waste from one campaign of processing thoria fuels by a modified Thorex process (during this campaign thorium was left in the waste). The alkaline waste contains approximately 30 million curies and the acidic waste contains approximately 2.5 million curies. The reference process described in this report is concerned only with chemically processing the high-level liquid waste to remove radionuclides from the alkaline supernate and converting the radionuclide-containing nonsalt components in the waste into a borosilicate glass

  18. Status of commercial nuclear high-level waste disposal. Special report

    International Nuclear Information System (INIS)

    Dau, G.J.; Williams, R.F.

    1976-09-01

    The results of this review, presented in the form of a functional description of high level waste management system, shows that technology is available to dispose of nuclear waste safely by several different processes. The most attractive alternative in terms of available technology and shortness of time to demonstrate it at commercial scale is a system that converts the waste to a solid by immobilizing the radioactive elements in a glass matrix. Brief comments are also given on international efforts in high level waste management and advanced disposal concepts

  19. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  20. Comparative waste forms study

    International Nuclear Information System (INIS)

    Wald, J.W.; Lokken, R.O.; Shade, J.W.; Rusin, J.M.

    1980-12-01

    A number of alternative process and waste form options exist for the immobilization of nuclear wastes. Although data exists on the characterization of these alternative waste forms, a straightforward comparison of product properties is difficult, due to the lack of standardized testing procedures. The characterization study described in this report involved the application of the same volatility, mechanical strength and leach tests to ten alternative waste forms, to assess product durability. Bulk property, phase analysis and microstructural examination of the simulated products, whose waste loading varied from 5% to 100% was also conducted. The specific waste forms investigated were as follows: Cold Pressed and Sintered PW-9 Calcine; Hot Pressed PW-9 Calcine; Hot Isostatic Pressed PW-9 Calcine; Cold Pressed and Sintered SPC-5B Supercalcine; Hot Isostatic pressed SPC-5B Supercalcine; Sintered PW-9 and 50% Glass Frit; Glass 76-68; Celsian Glass Ceramic; Type II Portland Cement and 10% PW-9 Calcine; and Type II Portland Cement and 10% SPC-5B Supercalcine. Bulk property data were used to calculate and compare the relative quantities of waste form volume produced at a spent fuel processing rate of 5 metric ton uranium/day. This quantity ranged from 3173 L/day (5280 Kg/day) for 10% SPC-5B supercalcine in cement to 83 L/day (294 Kg/day) for 100% calcine. Mechanical strength, volatility, and leach resistance tests provide data related to waste form durability. Glass, glass-ceramic and supercalcine ranked high in waste form durability where as the 100% PW-9 calcine ranked low. All other materials ranked between these two groupings

  1. Some legal aspects on high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    1997-01-01

    In Japan, it is considered to be an urgent problem to prepare the system for the research and execution of high level radioactive waste disposal. Under what regulation scheme the disposal should be done has not been sufficiently examined. In this research, the examination was carried out on the legal aspects of high level radioactive waste disposal as follows. First, the current legislation on the disposal in Japan was analyzed, and it was made clear that high level radioactive waste disposal has not been stipulated clearly. Next, on the legal choices which are conceivable on the way the legislation for high level radioactive waste disposal should be, from the aspects of applying the law on regulating nuclear reactors and others, applying the law on nuclear power damage reparation, and industrialization by changing the government ordinances, those were arranged in six choices, and the examination was carried out for each choice from the viewpoints of the relation with the base stipulation for waste-burying business, the speciality of high level radioactive waste disposal as compared with other actions of nuclear power business, the coordination with existing nuclear power of nuclear power business, the coordination with existing nuclear power law system and the formation of national consensus. In this research, it was shown that the execution of high level radioactive waste disposal as the business based on the separate legislation is the realistic choice. (K.I.)

  2. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  3. Corrosion monitoring of storage bins for radioactive calcines

    International Nuclear Information System (INIS)

    Hoffman, T.L.

    1975-01-01

    Highly radioactive liquid waste produced at the Idaho Chemical Processing Plant is calcined to a granular solid for long term storage in stainless steel bins. Corrosion evaluation of coupons withdrawn from these bins indicates excellent performance for the materials of construction of the bins. At exposure periods of up to six years the average penetration rates are 0.01 and 0.05 mils per year for Types 304 and 405 stainless steels, respectively. (auth)

  4. Development of a test system for high level liquid waste partitioning

    Directory of Open Access Journals (Sweden)

    Duan Wu H.

    2015-01-01

    Full Text Available The partitioning and transmutation strategy has increasingly attracted interest for the safe treatment and disposal of high level liquid waste, in which the partitioning of high level liquid waste is one of the critical technical issues. An improved total partitioning process, including a tri-alkylphosphine oxide process for the removal of actinides, a crown ether strontium extraction process for the removal of strontium, and a calixcrown ether cesium extraction process for the removal of cesium, has been developed to treat Chinese high level liquid waste. A test system containing 72-stage 10-mm-diam annular centrifugal contactors, a remote sampling system, a rotor speed acquisition-monitoring system, a feeding system, and a video camera-surveillance system was successfully developed to carry out the hot test for verifying the improved total partitioning process. The test system has been successfully used in a 160 hour hot test using genuine high level liquid waste. During the hot test, the test system was stable, which demonstrated it was reliable for the hot test of the high level liquid waste partitioning.

  5. In-situ nitrite analysis in high level waste tanks

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.

    1992-01-01

    The Savannah River Site produces special nuclear materials used in the defense of the United States. Most of the processes at SRS are primarily chemical separations and purifications. In-situ chemical analyses help improve the safety, efficiency and quality of these operations. One area where in situ fiberoptic spectroscopy can have a great impact is the management of high level radioactive waste. High level radioactive waste at SRS is stored in more than 50 large waste tanks. The waste exists as a slurry of nitrate salts and metal hydroxides at pH's higher than 10. Sodium Nitrite is added to the tanks as a corrosion inhibitor. In-situ fiberoptic probes are being developed to measure the nitrate, nitrite and hydroxide concentrations in both liquid and solid fractions. Nitrite levels can be measured between 0.01M and 1M in a 1mm pathlength optical cell

  6. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  7. Subject bibliography of radioactive waste management publications at Pacific Northwest Laboratory, 1975-1978

    International Nuclear Information System (INIS)

    Powell, J.A.

    1981-10-01

    This bibliography contains publications from 1975 to 1978 written by PNL staff. PNL translations are also announced in this document. The following areas are covered: actinides; airborne wastes; alternative waste forms; calcination; characterization; containers; decontamination; disposal; high-level wastes; liquid wastes; radionuclide migration; safety; separation processes; soils; solidification; storage; transport; transuranic waste; and vitrification

  8. Permitting plan for the high-level waste interim storage

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist

  9. Optimizing High Level Waste Disposal

    International Nuclear Information System (INIS)

    Dirk Gombert

    2005-01-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  10. High-level waste processing at the Savannah River Site: An update

    International Nuclear Information System (INIS)

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ''sludge-only'' composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ''coupled'' feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates

  11. Space augmentation of military high-level waste disposal

    International Nuclear Information System (INIS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predicability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed

  12. Vitrification of low level and mixed (radioactive and hazardous) wastes: Lessons learned from high level waste vitrification

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1994-01-01

    Borosilicate glasses will be used in the USA and in Europe immobilize radioactive high level liquid wastes (HLLW) for ultimate geologic disposal. Simultaneously, tehnologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to immobilize low-level and mixed (radioactive and hazardous) wastes (LLMW) in durable glass formulations for permanent disposal or long-term storage. Vitrification of LLMW achieves large volume reductions (86--97 %) which minimize the associated long-term storage costs. Vitrification of LLMW also ensures that mixed wastes are stabilized to the highest level reasonably possible, e.g. equivalent to HLLW, in order to meet both current and future regulatory waste disposal specifications The tehnologies being developed for vitrification of LLMW rely heavily on the technologies developed for HLLW and the lessons learned about process and product control

  13. High level radioactive waste management facility design criteria

    International Nuclear Information System (INIS)

    Sheikh, N.A.; Salaymeh, S.R.

    1993-01-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding

  14. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    International Nuclear Information System (INIS)

    WILLIS, W.L.

    2000-01-01

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein

  15. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS, W.L.

    2000-06-15

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  16. Performance of high level waste forms and engineered barriers under repository conditions

    International Nuclear Information System (INIS)

    1991-02-01

    The IAEA initiated in 1977 a co-ordinated research programme on the ''Evaluation of Solidified High-Level Waste Forms'' which was terminated in 1983. As there was a continuing need for international collaboration in research on solidified high-level waste form and spent fuel, the IAEA initiated a new programme in 1984. The new programme, besides including spent fuel and SYNROC, also placed greater emphasis on the effect of the engineered barriers of future repositories on the properties of the waste form. These engineered barriers included containers, overpacks, buffer and backfill materials etc. as components of the ''near-field'' of the repository. The Co-ordinated Research Programme on the Performance of High-Level Waste Forms and Engineered Barriers Under Repository Conditions had the objectives of promoting the exchange of information on the experience gained by different Member States in experimental performance data and technical model evaluation of solidified high level waste forms, components of the waste package and the complete waste management system under conditions relevant to final repository disposal. The programme includes studies on both irradiated spent fuel and glass and ceramic forms as the final solidified waste forms. The following topics were discussed: Leaching of vitrified high-level wastes, modelling of glass behaviour in clay, salt and granite repositories, environmental impacts of radionuclide release, synroc use for high--level waste solidification, leachate-rock interactions, spent fuel disposal in deep geologic repositories and radionuclide release mechanisms from various fuel types, radiolysis and selective leaching correlated with matrix alteration. Refs, figs and tabs

  17. Solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Stevens, W.R. III.

    1983-01-01

    The Department of Energy, in accord with recommendations from the Du Pont Company, has started construction of a Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The facility should be completed by the end of 1988, and full-scale operation should begin in 1990. This facility will immobilize in borosilicate glass the large quantity of high-level radioactive waste now stored at the plant plus the waste to be generated from continued chemical reprocessing operations. The existing wastes at the Savannah River Plant will be completely converted by about 2010. 21 figures

  18. Materials for high-level waste containment

    International Nuclear Information System (INIS)

    Marsh, G.P.

    1982-01-01

    The function of the high-level radioactive waste container in storage and of a container/overpack combination in disposal is considered. The consequent properties required from potential fabrication materials are discussed. The strategy adopted in selecting containment materials and the experimental programme underway to evaluate them are described. (U.K.)

  19. [Infrared spectral analysis for calcined borax].

    Science.gov (United States)

    Zhao, Cui; Ren, Li-Li; Wang, Dong; Zhou, Ping; Zhang, Qian; Wang, Bo-Tao

    2011-08-01

    To valuate the quality of calcined borax which is sold in the market, 18 samples of calcined borax were studied using the Fourier transform infrared, and samples with different water content were selected and analyzed. Then, the results of analysis were used to evaluate the quality of calcined borax. Results show that the infrared spectra of calcined borax include OH vibration, BO3(-3) vibration and BO4(5-) vibration absorption bands. The position and width of OH vibration absorption band depend on the level of water content, and the more the water content, the wider the absorption band. The number of BO3(3-) vibration and BO4(5-) vibration bands also depend on the level of water content, and the more the water content, and the stronger the hydrogen bond and the lower the symmetry of B atoms, the more the number of infrared absorption peaks. It was concluded that because the quality of calcined borax has direct correlation with water content, the infrared spectroscopy is an express and objective approach to quality analysis and evaluation of calcined borax.

  20. Status of the high-level nuclear waste disposal program in Japan

    International Nuclear Information System (INIS)

    Uematsu, K.

    1985-01-01

    The Japan Atomic Energy Commission (JAEC) initiated a high-level radioactive waste disposal program in 1976. Since then, the Advisory Committee on Radioactive Waste Management of JAEC has revised the program twice. The latest revision was issued in 1984. The committee recommended a four-phase program and the last phase calls for the beginning of emplacement of the high-level nuclear waste into a selected repository in the Year 2000. The first phase is already completed, and the second phase of this decade calls for the selection of a candidate disposal site and the conducting of the RandD of waste disposal in an underground research laboratory and in a hot test facility. This paper covers the current status of the high-level nuclear waste disposal program in Japan

  1. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...

  2. High-level radioactive waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Liikala, R.C.

    1974-01-01

    High-level radioactive waste in the U.S. will be converted to an encapsulated solid and shipped to a Federal repository for retrievable storage for extended periods. Meanwhile the development of concepts for ultimate disposal of the waste which the Federal Government would manage is being actively pursued. A number of promising concepts have been proposed, for which there is high confidence that one or more will be suitable for long-term, ultimate disposal. Initial evaluations of technical (or theoretical) feasibility for the various waste disposal concepts show that in the broad category, (i.e., geologic, seabed, ice sheet, extraterrestrial, and transmutation) all meet the criteria for judging feasibility, though a few alternatives within these categories do not. Preliminary cost estimates show that, although many millions of dollars may be required, the cost for even the most exotic concepts is small relative to the total cost of electric power generation. For example, the cost estimates for terrestrial disposal concepts are less than 1 percent of the total generating costs. The cost for actinide transmutation is estimated at around 1 percent of generation costs, while actinide element disposal in space is less than 5 percent of generating costs. Thus neither technical feasibility nor cost seems to be a no-go factor in selecting a waste management system. The seabed, ice sheet, and space disposal concepts face international policy constraints. The information being developed currently in safety, environmental concern, and public response will be important factors in determining which concepts appear most promising for further development

  3. Disposal of high level nuclear wastes: Thermodynamic equilibrium and environment ethics

    Institute of Scientific and Technical Information of China (English)

    RANA Mukhtar Ahmed

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes.

  4. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both

  5. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Steven E.

    2013-11-11

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

  6. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    International Nuclear Information System (INIS)

    Kelly, Steven E.

    2013-01-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol

  7. Management of radioactive wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1976-01-01

    The increased emphasis in many countries on the development and utilization of nuclear power is leading to an expansion of all sectors of the nuclear fuel cycle, giving rise to important policy issues and radioactive-waste management requirements. Consequently, the IAEA and the Nuclear Energy Agency of OECD felt that it would be timely to review latest technology for the management of the radioactive wastes arising from nuclear fuel cycle facilities, to identify where important advances have been made, and to indicate those areas where further technological development is needed. Beginning in 1959, the IAEA, either by itself or jointly with OECD/NEA has held seven international symposia on the management of radioactive wastes. The last symposium, on the management of radioactive wastes from fuel reprocessing, was held jointly by the IAEA and OECD/NEA in Paris in November 1972. An objective of the 1976 symposium was to update the information presented at the previous symposia with the latest technological developments and thinking regarding the management and disposal of all categories of radioactive wastes. Consequently, although the scope of the symposium was rather broad, attention was focussed on operational experience and progress in unresolved areas of radioactive waste management. The programme dealt primarily with the solidification of liquid radioactive wastes and disposal of the products, especially the high-level fission products and actinide-containing waste from fuel reprocessing. Other topics covered policy and planning, treatment of hulls and solvent, management of plutonium-contaminated waste, and removal of gaseous radionuclides. The major topic of interest was the current state of the technology for the reduction and incorporation of the high-level radioactive liquid from fuel reprocessing into solid forms, such as calcines, glasses or ceramics, for safe interim storage and eventual disposal. The approaches to vitrification ranged from two stage

  8. Research about the pozzolanic activity of waste materials from calcined clay

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. I.

    2001-03-01

    Full Text Available To recycle and reutilise waste materials and find definite applications for their use, it is necessary to have a deep knowledge of them. The aim of this study is to study the possibility of using waste materials from calcined clay, actually ceramic tile, once crushed and grounded, as pozzolanic material. For this purpose, different tests are carried out in order to establish the pozzolanic activity of this material. At the same time, these results are compared to those of other industrial by-products, fly ash and silica fume, which are pozzolanic materials usually employed to elaborate mortars and concretes.

    Para llevar a cabo labores encaminadas al reciclado y revalorización de residuos es necesario un conocimiento profundo de los mismos, de forma que se busquen aplicaciones concretas de uso. El objetivo de este estudio es investigar la posibilidad de utilizar materiales de desecho procedentes de arcilla cocida, concretamente teja cerámica, una vez triturada y molida, como puzolana. Para ello, se efectúan diferentes ensayos dirigidos a establecer la actividad puzolanica del material. A su vez, estos resultados son comparados con otros residuos industriales, ceniza volante y humo de sílice, habituales en la elaboración de morteros y hormigones.

  9. High-Level waste process and product data annotated bibliography

    International Nuclear Information System (INIS)

    Stegen, G.E.

    1996-01-01

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references

  10. Technologies for recovery of transuranics and immobilization of non-high-level wastes

    International Nuclear Information System (INIS)

    Richardson, G.L.

    1976-06-01

    This paper supplements the preceding Symposium paper on ''Treatment Technologies for Non-High-Level Wastes (U.S.A.)'' by C. R. Cooley and D. E. Clark (HEDL-SA-851), and covers the additional treatment technologies in use and under development for recovering transuranics and immobilizing non-high-level wastes for transportation and storage. Methods used for nondestructive assay (NDA) of TRU elements in non-high-level wastes are also discussed briefly

  11. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    Cotton, T.

    1985-01-01

    With the passage of the Nuclear Waste Policy Act of 1982 (NWPA), Congress for the first time established in law a comprehensive Federal policy for commercial high-level radioactive waste management, including interim storage and permanent disposal. NWPA provides sufficient authority for developing and operating a high-level radioactive waste management system based on disposal in mined geologic repositories. Authorization for other types of waste facilities will not be required unless major problems with geologic disposal are discovered, and studies to date have identified no insurmountable technical obstacles to developing geologic repositories. The NWPA requires the Department of Energy (DOE) to submit to Congress three key documents: (1) a Mission Plan, containing both a waste management plan with a schedule for transferring waste to Federal facilities and an implementation program for choosing sites and developing technologies to carry out that plan; (2) a monitored retrievable storage (MRS) proposal, to include a site-specific design for a long-term federal storage facility, an evaluation of whether such an MRS facility is needed and feasible, and an analysis of how an MRS facility would be integrated with the repository program if authorized by Congress; and (3) a study of alternative institutional mechanisms for financing and managing the radioactive waste system, including the option of establishing an independent waste management organization outside of DOE. The Mission Plan and the report on alternative institutional mechanisms were submitted to the 99th US Congress in 1985. The MRS proposal is to be submitted in early 1986. Each of these documents is discussed following an overview of the Nuclear Waste Policy Act of 1982

  12. Development of melt compositions for sulphate bearing high level waste

    International Nuclear Information System (INIS)

    Jahagirdar, P.B.; Wattal, P.K.

    1997-09-01

    The report deals with the development and characterization of vitreous matrices for sulphate bearing high level waste. Studies were conducted in sodium borosilicate and lead borosilicate systems with the introduction of CaO, BaO, MgO etc. Lead borosilicate system was found to be compatible with sulphate bearing high level wastes. Detailed product evaluation carried on selected formulations is also described. (author)

  13. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collard, L.B.

    2000-09-26

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.

  14. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Collard, L.B.

    2000-01-01

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds

  15. Disposal of high level nuclear wastes: thermodynamic equilibrium and environment ethics

    International Nuclear Information System (INIS)

    Rana, M.A.

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes. (authors)

  16. Canadian high-level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Allan, C.J.; Gray, B.R.

    1992-01-01

    In Canada responsibility for the management of radioactive wastes rests with the producer of those wastes. This fundamental principle applies to such diverse wastes as uranium mine and mill tailings, low-level wastes from universities and hospitals, wastes produced at nuclear research establishments, and wastes produced at nuclear generating stations. The federal government has accepted responsibility for historical wastes for which the original producer can no longer be held accountable. Management of radioactive wastes is subject to the regulatory control of the Atomic Energy Control Board, the federal agency responsible for regulating the nuclear industry. In this paper the authors summarize the current situation concerning the management of high level (used nuclear fuel) wastes. In 1981 the two governments also announced that selection of a disposal site would not proceed, and responsibility for site selection and operation would not be assigned until the Concept for used fuel disposal had been reviewed and assessed. Thus the concept assessment is generic rather than site specific. The Concept that has been developed has been designed to conform with safety and performance criteria established by the Atomic Energy Control Board. It is based on burial deep in plutonic rock of the Canadian Shield, using a multi-barrier approach with a series of engineered and natural barriers: these include the waste form, container, buffer and backfill, and the host rock

  17. Management of high level radioactive waste

    International Nuclear Information System (INIS)

    Redon, A.; Mamelle, J.; Chambon, M.

    1977-01-01

    The world wide needs in reprocessing will reach the value of 10.000 t/y of irradiated fuels, in the mid of the 80's. Several countries will have planned, in their nuclear programme, the construction of reprocessing plants with a 1500 t/y capacity, corresponding to 50.000 MWe installed. At such a level, the solidification of the radioactive waste will become imperative. For this reason, all efforts, in France, have been directed towards the realization of industrial plants able of solidifying the fission products as a glassy material. The advantages of this decision, and the reasons for it are presented. The continuing development work, and the conditions and methods of storing the high-level wastes prior to solidification, and of the interim storage (for thermal decay) and the ultimate disposal after solidification are described [fr

  18. Preparation and leaching of radioactive INEL waste forms

    International Nuclear Information System (INIS)

    Schuman, R.P.; Welch, J.M.; Staples, B.A.

    1982-01-01

    The purpose of this study is to prepare and leach test ceramic and glass waste form specimens produced from actual transuranic waste sludges and high-level waste calcines, respectively. Description of wastes, specimen fabrication, leaching procedure, analysis of leachates and results are discussed. The conclusion is that radioactive waste stored at INEL can be readily incorporated in fused ceramic and glass forms. Initial leach testing results indicate that these forms show great promise for safe long-term containment of radioactive wastes

  19. Glasses used for the high level radioactive wastes storage

    International Nuclear Information System (INIS)

    Sombret, C.

    1983-06-01

    High level radioactive wastes generated by the reprocessing of spent fuels is an important concern in the conditioning of radioactive wastes. This paper deals with the status of the knowledge about glasses used for the treatment of these liquids [fr

  20. Vitrification of high-level radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Lutze, W.

    1993-12-01

    The main objective is to summarize work conducted on glasses as waste forms for high-level radioactive fission product solutions up to the late 1980's (section I and II). Section III addresses the question, whether waste forms designed for the immobilization of radioactive residues can be used for the same purpose for hazardous wastes. Of particular interest are those types of hazardous wastes, e.g., fly ashes from municipal combustion plants, easy to convert into glasses or ceramic materials. A large number of base glass compositions has been studied to vitrify waste from reprocessing but only borosilicate glasses with melting temperatures between 1100 C and 1200 C and very good hydrolytic stability is used today. (orig./HP) [de

  1. ATW system impact on high-level waste

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1992-01-01

    This report discusses the Accelerator Transmutation of Waste (ATW) concept which aims at destruction of key long-lived radionuclides in high-level nuclear waste (HLW), both fission products and actinides. This focus makes it different from most other transmutation concepts which concentrate primarily on actinide burning. The ATW system uses an accelerator-driven, sub-critical assembly to create an intense thermal neutron environment for radionuclide transmutation. This feature allows rapid transmutation under low-inventory system conditions, which in turn, has a direct impact on the size of chemical separations and materials handling components of the system. Inventories in ATW are factors of eight to thirty times smaller than reactor systems of equivalent thermal power. Chemical separations systems are relatively small in scale and can be optimized to achieve high decontamination factors and minimized waste streams. The low-inventory feature also directly impacts material amounts remaining in the system at its end of life. In addition to its low-inventory operation, the accelerator-driven neutron source features of ATW are key to providing a sufficient level of neutrons to allow transmutation of long-lived fission products

  2. Demonstration of Caustic-Side Solvent Extraction with Savannah River Site High Level Waste

    International Nuclear Information System (INIS)

    Walker, D.D.

    2001-01-01

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet for the decontamination of high level waste using a 33-stage, 2-cm centrifugal contactor apparatus at the Savannah River Technology Center. This represents the first CSSX process demonstration using Savannah River Site (SRS) high level waste. Three tests lasting 6, 12, and 48 hours processed simulated average SRS waste, simulated Tank 37H/44F composite waste, and Tank 37H/44F high level waste, respectively

  3. Final disposal of high levels waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  4. A truck cask design for shipping defense high-level waste

    International Nuclear Information System (INIS)

    Madsen, M.M.; Zimmer, A.

    1985-01-01

    The Defense High-Level Waste (DHLW) cask is a Type B packaging currently under development by the U.S. Department of Energy (DOE). This truck cask has been designed to initially transport borosilicate glass waste from the Defense Waste Processing Facility (DWPF) to the Waste Isolation Pilot Plant (WIPP). Specific program activities include designing, testing, certifying, and fabricating a prototype legal-weight truck cask system. The design includes such state-of-the-art features as integral impact limiters and remote handling features. A replaceable shielding liner provides the flexibility for shipping a wide range of waste types and activity levels

  5. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  6. R and D Activities on high-level nuclear waste management

    International Nuclear Information System (INIS)

    Watanabe, Shosuke

    1985-01-01

    High-level liquid waste (HLLW) at Tokai Reprocessing Plant has been generated from reprocessing of spent fuels from the light water reactors, and successfully managed since 1977. At the time of 1984, about 154m 3 of HLLW from 170 tons of spent fuels were stored in three high-integrity stainless steel tanks (90m 3 for each) as a nitric acid aqueous solution. The HLLW arises mainly from the first cycle solvent extraction phase. Alkaline solution to scrub the extraction solvent is another source of HLLW. The Advisory Committee on Radioactive Waste Management reported the concept on disposal of high-level waste (HLW) in Japan in 1980 report, that the waste be solidified into borosilicate glass and then be disposed in deep geologic formation so as to minimize the influence of the waste on human environment, with the aid of multibarrier system which is the combination of natural barrier and engineered barrier

  7. CIGeO geological disposal for high-level radioactive waste in France

    International Nuclear Information System (INIS)

    Ouzounian, Gerald; Bolia, Jelana

    2014-01-01

    Andra is the sole French organization responsible for the radioactive waste management in the country. Its work relies extensively on the legal basis provided by several major laws (Waste Act of 1991 and the Planning Act of 2006), which shaped the main principles of the waste management strategy and determined the corresponding implementation tools. Andra's industrial activities are essentially based around three of its national disposal facilities. Two of these operational facilities, by their design and comprehensive monitoring system, are considered worldwide as solid and proven reference solutions for the concerned types of radioactive waste. Andra is also charged with designing a future deep geological repository for intermediate-level long-lived and high-level waste and researching potential management and disposal solutions for the graphite and radium-bearing waste. The purpose of this article is to update the information to the readers about the Cigeo geological disposal project for high-level radioactive waste in France (authors)

  8. High-level radioactive waste glass and storage canister design

    International Nuclear Information System (INIS)

    Slate, S.C.; Ross, W.A.

    1979-01-01

    Management of high-level radioactive wastes is a primary concern in nuclear operations today. The main objective in managing these wastes is to convert them into a solid, durable form which is then isolated from man. A description is given of the design and evaluation of this waste form. The waste form has two main components: the solidified waste and the storage canister. The solid waste form discussed in this study is glass. Waste glasses have been designed to be inert to water attack, physically rugged, low in volatility, and stable over time. Two glass-making processes are under development at PNL. The storage canister is being designed to provide high-integrity containment for solidified wastes from processing to terminal storage. An outline is given of the steps in canister design: material selection, stress and thermal analyses, quality verification, and postfill processing. Examples are given of results obtained from actual nonradioactive demonstration tests. 14 refs

  9. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  10. Effects of waste content of glass waste forms on Savannah River high-level waste disposal costs

    International Nuclear Information System (INIS)

    McDonell, W.R.; Jantzen, C.M.

    1985-01-01

    Effects of the waste content of glass waste forms of Savannah River high-level waste disposal costs are evaluated by their impact on the number of waste canisters produced. Changes in waste content affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt % waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Waste form modifications under current study include adjustments of glass frit content to compensate for added salt decontamination residues and increased sludge loadings in the DWPF glass. Projected cost reductions demonstrate significant incentives for continued optimization of the glass waste loadings. 13 refs., 3 figs., 3 tabs

  11. High-level nuclear waste disposal: Ethical considerations

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1985-01-01

    Popular skepticism about, and moral objections to, recent legislation providing for the management and permanent disposal of high-level radioactive wastes have derived their credibility from two major sources: government procrastination in enacting waste disposal program, reinforcing public perceptions of their unprecedented danger and the inflated rhetoric and pretensions to professional omnicompetence of influential scientists with nuclear expertise. Ethical considerations not only can but must provide a mediating framework for the resolution of such a polarized political controversy. Implicit in moral objections to proposals for permanent nuclear waste disposal are concerns about three ethical principles: fairness to individuals, equitable protection among diverse social groups, and informed consent through due process and participation

  12. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements

  13. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. It is intended to contribute to the implementation of Nuclear Waste Policy Act of 1982 (NWPA). The major conclusion of that review is that NWPA provides sufficient authority for developing and operating a waste management system based on disposal in geologic repositories. Substantial new authority for other facilities will not be required unless major unexpected problems with geologic disposal are encountered. OTA also concludes that DOE's Draft Mission Plan published in 1984 falls short of its potential for enhancing the credibility and acceptability of the waste management program

  14. Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2016-01-01

    Use of properly calcined kaolinite rich clay (i.e., metakaolin) to offset part of CO2-intensive clinkers not only reduces CO2 footprint from cement industry but also improves the performance of concrete. However, calcination under inappropriately high temperatures or long retention times may...... suspension calciner. The model is validated by the experimental data (e.g., the degree of dehydroxylation and the density of the calcines). Based on the model, the impacts of process conditions and feed properties on the quality of the calcination products are thoroughly examined....

  15. Retrievable surface storage: interim storage of solidified high-level waste

    International Nuclear Information System (INIS)

    LaRiviere, J.R.; Nelson, D.C.

    1976-01-01

    Studies have been conducted on retrievable-surface-storage concepts for the interim storage of solidified high-level wastes. These studies have been reviewed by the Panel on Engineered Storage, convened by the Committee on Radioactive Waste Management of the National Research Council-National Academy of Sciences. The Panel has concluded that ''retrievable surface storage is an acceptable interim stage in a comprehensive system for managing high-level radioactive wastes.'' The scaled storage cask concept, which was recommended by the Panel on Engineered Storage, consists of placing a canister of waste inside a carbon-steel cask, which in turn is placed inside a thick concrete cylinder. The waste is cooled by natural convection air flow through an annulus between the cask and the inner wall of the concrete cylinder. The complete assembly is placed above ground in an outdoor storage area

  16. High-level radioactive wastes. Supplement 1

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations

  17. Managing the nation's high-level radioactive waste: key issues and recommendations

    International Nuclear Information System (INIS)

    1981-07-01

    To date, no unified national plan has been adopted to develop and implement a comprehensive system of management and disposal of high-level radioactive waste in the United States. Growing public concern about this problem has resulted in a number of recent efforts to develop a national high-level waste management policy. The 96th Congress strove to resolve the central issues, but ultimately failed to pass legislation, partly because of disagreements about the appropriate role of states in the siting of repositories for military waste. Outside government, a number of organizations convened representatives of diverse groups concerned with national high-level radioactive waste management to seek agreement on the major elements of national policy. One such organization was RESOLVE, Center for Environmental Conflict Resolution, which in May 1981 was merged into The Conservation Foundation. RESOLVE convened Forum II, a series of discussions among representatives of environmental, industrial, governmental, and citizen interest groups, in 1981 specifically to address the issues blocking Congressional agreement on high-level waste policy. This report contains the recommendations which resulted from these deliberations. Reprocessing, interim storage, respository development, and licensing requirements are addressed. Federal, state, and public participation in decision making are also discussed

  18. Michigan high-level radioactive waste program. Technical progress report for 1985

    International Nuclear Information System (INIS)

    1986-01-01

    In 1985, five crystalline rock formations located in Michigan's Upper Peninsula were under consideration in the regional phase of the Department of Energy's (DOE) search for the site of the nation's second high-level radioactive waste repository. The Michigan Department of Public Health has been designated by the Governor as lead state agency in matters related to high-level radioactive waste (HLRW). Mr. Lee E. Jager, Chief of the Department's Bureau of Environmental and Occupational Health, has been designated as the state contact person in this matter, and the Bureau's Division of Radiological Health, Office of Radioactive Waste Management (ORWM), has been designated to provide staff support. Recognizing that adequate state involvement in the various aspects of the Federal high-level radioactive waste (HLRW) programs would require a range of expertise beyond the scope of any single state agency, Governor Blanchard established the High-Level Radioactive Waste Task Force in 1983. In support of the Task Force efforts concerning the implementation of its change, the Department negotiated and concluded an agreement with the DOE, under which federal funds are provided to support state HLRW activities. This report outlines state activities for the calendar year 1985, funded under that agreement

  19. Risk comparison of different treatment and disposal strategies of high level liquid radioactive waste

    International Nuclear Information System (INIS)

    Fang Dong

    1997-01-01

    The risk of different treatment and disposal strategies of high level liquid radioactive waste from spent fuel reprocessing is estimated and compared. The conclusions obtained are that risk difference from these strategies is very small and high level liquid waste can be reduced to middle and low level waste, if the decontamination factor for 99 Tc is large enough, which is the largest risk contributor in the high level radioactive waste from spent fuel reprocessing. It is also shown that the risk of high level radioactive waste could be reduced by the technical strategy of combining partitioning and transmutation

  20. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Espejo, J.M.; Beceiro, A.R.

    1992-01-01

    The Empresa Nacional de Residuos Radiactivos, S.A. (ENRESA) has been limited liability company to be responsible for the management of all kind of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high - level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international cooperation are also included

  1. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, G.E.; Wilson, C.N.

    1996-02-21

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described.

  2. Vectra GSI, Inc. low-level waste melter testing Phase 1 test report

    International Nuclear Information System (INIS)

    Stegen, G.E.; Wilson, C.N.

    1996-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Vectra GSI, Inc. was one of seven vendors selected for Phase 1 of the melter demonstration tests using simulated LLW that were completed during fiscal year 1995. The attached report prepared by Vectra GSI, Inc. describes results of melter testing using slurry feed and dried feeds. Results of feed drying and prereaction tests using a fluid bed calciner and rotary dryer also are described

  3. Demonstration of the TRUEX process for the treatment of actual high activity tank waste at the INEEL using centrifugal contactors

    International Nuclear Information System (INIS)

    Law, J.D.; Brewer, K.N.; Todd, T.A.; Olson, L.G.

    1997-01-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), formerly reprocessed spent nuclear fuel to recover fissionable uranium. The radioactive raffinates from the solvent extraction uranium recovery processes were converted to granular solids (calcine) in a high temperature fluidized bed. A secondary liquid waste stream was generated during the course of reprocessing, primarily from equipment decontamination between campaigns and solvent wash activities. This acidic tank waste cannot be directly calcined due to the high sodium content and has historically been blended with reprocessing raffinates or non-radioactive aluminum nitrate prior to calcination. Fuel reprocessing activities are no longer being performed at the ICPP, thereby eliminating the option of waste blending to deplete the waste inventory. Currently, approximately 5.7 million liters of high-activity waste are temporarily stored at the ICPP in large underground stainless-steel tanks. The United States Environmental Protection Agency and the Idaho Department of Health and Welfare filed a Notice of Noncompliance in 1992 contending some of the underground waste storage tanks do not meet secondary containment. As part of a 1995 agreement between the State of Idaho, the Department of Energy, and the Department of Navy, the waste must be removed from the tanks by 2012. Treatment of the tank waste inventories by partitioning the radionuclides and immobilizing the resulting high-activity and low-activity waste streams is currently under evaluation. A recent peer review identified the most promising radionuclide separation technologies for evaluation. The Transuranic Extraction-(TRUEX) process was identified as a primary candidate for separation of the actinides from ICPP tank waste

  4. Evaluation of Calcine Disposition Path Forward

    International Nuclear Information System (INIS)

    Birrer, S.A.; Heiser, M.B.

    2003-01-01

    This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward

  5. Preliminary estimates of cost savings for defense high level waste vitrification options

    International Nuclear Information System (INIS)

    Merrill, R.A.; Chapman, C.C.

    1993-09-01

    The potential for realizing cost savings in the disposal of defense high-level waste through process and design modificatins has been considered. Proposed modifications range from simple changes in the canister design to development of an advanced melter capable of processing glass with a higher waste loading. Preliminary calculations estimate the total disposal cost (not including capital or operating costs) for defense high-level waste to be about $7.9 billion dollars for the reference conditions described in this paper, while projected savings resulting from the proposed process and design changes could reduce the disposal cost of defense high-level waste by up to $5.2 billion

  6. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    International Nuclear Information System (INIS)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-01

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling

  7. Characteristics Data Base: Programmer's guide to the High-Level Waste Data Base

    International Nuclear Information System (INIS)

    Jones, K.E.; Salmon, R.

    1990-08-01

    The High-Level Waste Data Base is a menu-driven PC data base developed as part of OCRWM's technical data base on the characteristics of potential repository wastes, which also includes spent fuel and other materials. This programmer's guide completes the documentation for the High-Level Waste Data Base, the user's guide having been published previously. 3 figs

  8. Impact of transporting defense high-level waste to a geologic repository

    International Nuclear Information System (INIS)

    Joy, D.S.; Shappert, L.B.; Boyle, J.W.

    1984-12-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel and requires the Secretary of Energy to evaluate five potential repository sites. One factor that is to be examined is transportation of radioactive materials to such a repository and whether transportation might be affected by shipments to a defense-only repository, or to one that accepts both defense and commercial waste. In response to this requirement, The Department of Energy has undertaken an evaluation of the cost and risk associated with the potential shipments. Two waste-flow scenarios are considered which are related to the total quantity of defense high-level waste which will be placed in a repository. The low-flow case is based on a total of 6700 canisters being transported from one site, while the high-flow case assumes that a total of 20,000 canisters will be transported from three sites. For the scenarios considered, the estimated shipping costs range from $105 million to $257 million depending upon the mode of transport and the repository location. The total risks associated with shipping defense high-level waste to a repository are estimated to be significantly smaller than predicted for other transportation activities. In addition, the cost of shipping defense high-level waste to a repository does not depend on whether the site is a defense-only or a commercial repository. Therefore, the transportation considerations are not a basis for the selection of one of the two disposal options

  9. Project Guarantee 1985. Repository for high-level radioactive waste: construction and operation

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    An engineering project study aimed at demonstrating the feasibility of constructing a deep repository for high-level waste (Type C repository) has been carried out; the study is based on a model data-set representing typical geological and rock mechanical conditions as found outside the so-called Permocarboniferous basin in the regions under investigation by Nagra in Cantons Aargau, Schaffhausen, Solothurn and Zuerich. The repository is intended for disposal of high-level waste and any intermediate-level waste from re-processing in which the concentration of long-lived alpha-emitters exceeds the permissible limits set for a Type B repository. Final disposal of high-level waste is in subterranean, horizontally mined tunnels and of intermediate-level waste in underground vertical silos. The repository is intended to accomodate a total of around 6'000 HWL-cylinders (gross volume of around 1'200 m3) and around 10'000 m3 of intermediate-level waste. The total excavated volume is around 1'100'000 m3 and a construction time for the whole repository (up to the beginning of emplacement) of around 15 years is expected. For the estimated 50-year emplacement operations, a working team of around 60 people will be needed and a team of around 160 for the simultaneous tunnelling operations and auxiliary work. The project described in the present report permits the conclusion that construction of a repository for high-level radioactive waste and, if necessary, spent fuel-rods is feasible with present-day technology

  10. Safe disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E [Australian National Univ., Canberra. Research School of Earth Sciences

    1980-10-01

    Current strategies in most countries favour the immobilisation of high-level radioactive wastes in borosilicate glasses, and their burial in large, centralised, mined repositories. Strong public opposition has been encountered because of concerns over safety and socio-political issues. The author develops a new disposal strategy, based on immobilisation of wastes in an extremely resistant ceramic, SYNROC, combined with burial in an array of widely dispersed, very deep drill holes. It is demonstrated that the difficulties encountered by conventional disposal strategies can be overcome by this new approach.

  11. Separation technologies for the treatment of Idaho National Engineering Laboratory wastes

    Energy Technology Data Exchange (ETDEWEB)

    Todd, T.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-10-01

    Currently about 6.8 million L of acidic, radioactive liquid waste that is not amenable to calcination, and about 3800 m{sup 3} of calcine exist at the ICPP. Legal drivers (court orders) and agreements between the state of Idaho, the U.S. Navy, and DOE exist that obligate INEL to develop, demonstrate, and implement technologies for treatment and interim storage of the radioactive liquid and calcine wastes. Per these agreements, all tank waste must be removed from the underground liquid storage tanks by the year 2012, and high-level radioactive waste must be treated and removed from INEL by 2035. Separation of the radionuclides from the wastes, followed by immobilization of the high-activity and low-activity fractions in glass and grout, respectively, is the approach preferred by INEL. Technologies to remove actinides (U, Np, Pu, and Am), Cs, Sr, and possibly Tc from highly acidic solutions are required to process INEL wastes. Decontamination of the wastes to NRC Class A low-level waste (LLW) is planned. Separation and isolation of Resource Conservation and Recovery Act (RCRA) metals (Hg, Pb, Cd, and Cr) from the highly radioactive waste streams may also be required. Remediation efforts will begin in FY 1997 to remove volatile organic compounds (VOCs) and radionuclides (Cs and Sr) from groundwater located at the Test Area North facility at INEL. A plume of VOCs and radionuclides has spread from the former TSF-05 injection well, and a Comprehensive Environmental Response, Conservation, and Liability Act (CERCLA) remediation action is under way. A Record of Decision was signed in August 1995 that commits INEL to remediate the plume from TSF-05. Removal of Sr and Cs from the groundwater using commercially available ion-exchange resins has been unsuccessful at meeting maximum contaminant levels, which are 119 pCi/L and 8 pCi/L for Cs and Sr, respectively. Cesium and Sr are the major contaminants that must be removed from the groundwater.

  12. Separation processes for high-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Sutherland, D.G.

    1992-11-01

    During World War II, production of nuclear materials in the United States for national defense, high-level waste (HLW) was generated as a byproduct. Since that time, further quantities of HLW radionuclides have been generated by continued nuclear materials production, research, and the commercial nuclear power program. In this paper HLW is defined as the highly radioactive material resulting from the processing of spent nuclear fuel. The HLW is the liquid waste generated during the recovery of uranium and plutonium in a fuel processing plant that generally contains more than 99% of the nonvolatile fission products produced during reactor operation. Since this paper deals with waste separation processes, spent reactor fuel elements that have not been dissolved and further processed are excluded

  13. High-level radioactive wastes. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, L.H. (ed.)

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  14. Decommissioning high-level waste surface facilities

    International Nuclear Information System (INIS)

    1978-04-01

    The protective storage, entombment and dismantlement options of decommissioning a High-Level Waste Surface Facility (HLWSF) was investigated. A reference conceptual design for the facility was developed based on the designs of similar facilities. State-of-the-art decommissioning technologies were identified. Program plans and cost estimates for decommissioning the reference conceptual designs were developed. Good engineering design concepts were on the basis of this work identified

  15. Safe immobilization of high-level nuclear reactor wastes

    International Nuclear Information System (INIS)

    Ringwood, A.; Kesson, S.; Ware, N.; Hibberson, W.; Major, A.

    1979-01-01

    The advantages and disadvantages of methods of immobilizing high-level radioactive wastes are discussed. Problems include the devitrification of glasses and the occurrence of radiation damage. An alternative method of radioctive waste immobilization is described in which the waste is incorporated in the constituent minerals of a synthetic rock, Synroc. Synroc is immune from devitrification and is composed of phases which possess crystal structures identical to those of minerals which are known to have retained radioactive elements in geological environments at elevated pressures and tempertures for long periods. The composition and mineralogy of Synroc is given and the process of immobilizing wastes in Synroc is described. Accelerated leaching tests at elevated pressures and temperatures are also described

  16. Technical baseline description of high-level waste and low-activity waste feed mobilization and delivery

    International Nuclear Information System (INIS)

    Papp, I.G.

    1997-01-01

    This document is a compilation of information related to the high-level waste (HLW) and low-activity waste (LAW) feed staging, mobilization, and transfer/delivery issues. Information relevant to current Tank Waste Remediation System (TWRS) inventories and activities designed to feed the Phase I Privatization effort at the Hanford Site is included. Discussions on the higher level Phase II activities are offered for a perspective on the interfaces

  17. Development of technical information database for high level waste disposal

    International Nuclear Information System (INIS)

    Kudo, Koji; Takada, Susumu; Kawanishi, Motoi

    2005-01-01

    A concept design of the high level waste disposal information database and the disposal technologies information database are explained. The high level waste disposal information database contains information on technologies, waste, management and rules, R and D, each step of disposal site selection, characteristics of sites, demonstration of disposal technology, design of disposal site, application for disposal permit, construction of disposal site, operation and closing. Construction of the disposal technologies information system and the geological disposal technologies information system is described. The screen image of the geological disposal technologies information system is shown. User is able to search the full text retrieval and attribute retrieval in the image. (S.Y. )

  18. Processing vessel for high level radioactive wastes

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi

    1998-01-01

    Upon transferring an overpack having canisters containing high level radioactive wastes sealed therein and burying it into an underground processing hole, an outer shell vessel comprising a steel plate to be fit and contained in the processing hole is formed. A bury-back layer made of dug earth and sand which had been discharged upon forming the processing hole is formed on the inner circumferential wall of the outer shell vessel. A buffer layer having a predetermined thickness is formed on the inner side of the bury-back layer, and the overpack is contained in the hollow portion surrounded by the layer. The opened upper portion of the hollow portion is covered with the buffer layer and the bury-back layer. Since the processing vessel having a shielding performance previously formed on the ground, the state of packing can be observed. In addition, since an operator can directly operates upon transportation and burying of the high level radioactive wastes, remote control is no more necessary. (T.M.)

  19. Current status of high level radioactive waste disposal in Japan and foreign countries

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Tanabe, Hiromi; Inagaki, Yusuke; Ishida, Hisahiro; Kato, Osamu; Kurata, Mitsuyuki; Yamachika, Hidehiko

    2002-01-01

    At a time point of 2002, there is no country actually disposing high level radioactive wastes into grounds, but in most of countries legislative preparation and practicing agents are carried out and site selection is promoted together with energetic advancement of its R and Ds. As disposal methods of the high level radioactive wastes, various methods such as space disposal, oceanic bottom disposal, ice bed disposal, ground disposal, and so on have been examined. And, a processing technology called partitioning and transmutation technology separating long-lived radionuclides from liquid high level radioactive waste and transmutation into short-lived or harmless radionuclides has also been studied. Here was introduced their wrestling conditions in Japan and main foreign countries, as a special issue of the Current status of high level radioactive waste disposal in Japan and foreign countries'. The high level radioactive wastes (glassification solids or spent nuclear fuels) are wastes always formed by nuclear power generation and establishment of technologies is an important subject for nuclear fuel cycle. (G.K.)

  20. Answers to your questions on high-level nuclear waste

    International Nuclear Information System (INIS)

    1987-11-01

    This booklet contains answers to frequently asked questions about high-level nuclear wastes. Written for the layperson, the document contains basic information on the hazards of radiation, the Nuclear Waste Management Program, the proposed geologic repository, the proposed monitored retrievable storage facility, risk assessment, and public participation in the program

  1. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  2. Advanced waste form and melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  3. Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE)

    International Nuclear Information System (INIS)

    Lafaille, C.

    1991-01-01

    This paper describes the advance used in C.E.A. to realize dismantling operations in the best technical and economical conditions. Particularly, for low-level radioactive waste management CEA's advance defines, first, the final destination of dismantling materials: - recycling in public lands for level activity inferior to 1 Bq/g; directly or after transformation (melting, calcination, extrusion) - storage in a ground disposal, after compacting, encapsulation or drumming. Two examples are given: - Marcoule G2 - G3 reactor dismantling - Gaseous diffusion plants demolition (COGEMA Pierrelatte)

  4. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  5. Study on the development of safety regulations for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Wei Fangxin

    2012-01-01

    The development of regulations under Regulations on Safety Management of Radioactive Waste has become necessary as the issuance of it. The regulations related to geological disposal of high-level radioactive waste can promote the progress of research and development on geological disposal of high-level radioactive waste in China. This paper has present suggestions on development of regulations on geological disposal of high-level radioactive waste by analyzing development of safety regulations on geological disposal of high-level radioactive waste in foreign countries and problems occurred in China and discussed important issues related to the development of safety regulations on geological disposal of high-level radioactive waste. (author)

  6. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Ulibarri, A.; Veganzones, A.

    1993-01-01

    The Empresa Nacional de Residuous Radiactivos, S.A. (ENRESA) was set up in 1984 as a state-owned limited liability company to be responsible for the management of all kinds of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high-level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international co-operational are also included

  7. Quality assurance requirements and methods for high level waste package acceptability

    International Nuclear Information System (INIS)

    1992-12-01

    This document should serve as guidance for assigning the necessary items to control the conditioning process in such a way that waste packages are produced in compliance with the waste acceptance requirements. It is also provided to promote the exchange of information on quality assurance requirements and on the application of quality assurance methods associated with the production of high level waste packages, to ensure that these waste packages comply with the requirements for transportation, interim storage and waste disposal in deep geological formations. The document is intended to assist both the operators of conditioning facilities and repositories as well as national authorities and regulatory bodies, involved in the licensing of the conditioning of high level radioactive wastes or in the development of deep underground disposal systems. The document recommends the quality assurance requirements and methods which are necessary to generate data for these parameters identified in IAEA-TECDOC-560 on qualitative acceptance criteria, and indicates where and when the control methods can be applied, e.g. in the operation or commissioning of a process or in the development of a waste package design. Emphasis is on the control of the process and little reliance is placed on non-destructive or destructive testing. Qualitative criteria, relevant to disposal of high level waste, are repository dependent and are not addressed here. 37 refs, 3 figs, 2 tabs

  8. Managing commercial high-level radioactive waste: summary

    International Nuclear Information System (INIS)

    1982-04-01

    This summary presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste - an issue that has been debated over the last decade and that now appears to be moving toward major congressional action. After more than 20 years of commercial nuclear power, the Federal Government has yet to develop a broadly supported policy for fulfilling its legal responsibility for the final isolation of high-level radioactive waste. OTA's study concludes that until such a policy is adopted in law, there is a substantial risk that the false starts, shifts of policy, and fluctuating support that have plagued the final isolation program in the past will continue. The continued lack of final isolation facilities has raised two key problems that underlie debates about radioactive waste policy. First, some question the continued use of nuclear power until it is shown that safe final isolation for the resulting wastes can and will be accomplished, and argue that the failure to develop final isolation facilities is evidence that it may be an insoluble problem. Second, because there are no reprocessing facilities or federal waste isolation facilities to accept spent fuel, existing reactors are running out of spent fuel storage space, and by 1986 some may face a risk of shutting down for some period. Most of the 72,000 metric tons of spent fuel expected to be generated by the year 2000 will still be in temporary storage at that time. While it is possible that utilities could provide all necessary additional storage at reactor sites before existing basins are filled, some supplemental storage may be needed if there are delays in their efforts

  9. An optimal retrieval, processing, and blending strategy for immobilization of Hanford high-level tank waste

    International Nuclear Information System (INIS)

    Hoza, M.

    1996-01-01

    Hanford tank waste will be separated into high-level and low-level portions; each portion will then be vitrified (other waste forms are also being considered for low-level waste) to produce a stable glass form for disposal. Because of the wide variability in the tank waste compositions, blending is being considered as a way to reduce the number of distinct compositions that must be vitrified and to minimize the resultant volume of vitrified waste. Three years of computational glass formulation and blending studies have demonstrated that blending of the high-level waste before vitrification can reduce the volume of high-level waste glass required by as much as 50 percent. This level of reduction would be obtained if all the high-level waste were blended together (Total Blend) prior to vitrification, requiring the retrieval and pretreatment of all tank waste before high-level vitrification was started. This paper will present an overall processing strategy that should be able to match the blending performance of the Total Blend and be more logistically feasible. The strategy includes retrieving, pretreating, blending and vitrifying Hanford tank waste. This strategy utilizes blending both before and after pretreatment. Similar wastes are blended before pretreatment, so as not to dilute species targeted for removal. The high-level portions of these pretreated early blends are then selectively blended to produce a small number of high-level vitrification feed streams

  10. Glass-solidification method for high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kawamura, Kazuhiro; Kometani, Masayuki; Sasage, Ken-ichi.

    1996-01-01

    High level liquid wastes are removed with precipitates mainly comprising Mo and Zr, thereafter, the high level liquid wastes are mixed with a glass raw material comprising a composition having a B 2 O 3 /SiO 2 ratio of not less than 0.41, a ZnO/Li 2 O ratio of not less than 1.00, and an Al 2 O 3 /Li 2 O ratio of not less than 2.58, and they are melted and solidified into glass-solidification products. The liquid waste content in the glass-solidification products can be increased up to about 45% by using the glass raw material having such a predetermined composition. In addition, deposition of a yellow phase does not occur, and a leaching rate identical with that in a conventional case can be maintained. (T.M.)

  11. High level waste forms: glass marbles and thermal spray coatings

    International Nuclear Information System (INIS)

    Treat, R.L.; Oma, K.H.; Slate, S.C.

    1982-01-01

    A process that converts high-level waste to glass marbles and then coats the marbles has been developed at Pacific Northwest Laboratory (PNL) under sponsorship of the US Department of Energy. The process consists of a joule-heated glass melter, a marble-making device based on a patent issued to Corning Glass Works, and a coating system that includes a plasma spray coater and a marble tumbler. The process was developed under the Alternative Waste Forms Program which strived to improve upon monolithic glass for immobilizing high-level wastes. Coated glass marbles were found to be more leach-resistant, and the marbles, before coating were found to be very homogeneous, highly impact resistant, and conductive to encapsulation in a metal matric for improved heat transfer and containment. Marbles are also ideally suited for quality assurance and recycling. However, the marble process is more complex, and marbles require a larger number of canisters for waste containment and have a higher surface area than do glass monoliths

  12. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form

  13. Incorporation of high-level wastes in SYNROC: results from recent process-engineering studies at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Campbell, J.H.; Hoenig, C.L.; Ackerman, F.J.; Peters, P.E.; Grens, J.Z.

    1982-01-01

    In this paper, highlights from recent engineering research and development, in particular, results from fluidized bed calcination studies of SYNROC slurry are summarized. A schematic diagram of the envisioned SYNROC process (at this stage of development) is also presented. It shows the use of a fluidized bed calciner to prepare SYNROC powder that is then fed to a storage hopper. Bellows-type canisters are filled, evacuated, sealed and preheated. The preheated canisters are loaded into a hot isotactic pressing unit where they are densified, then removed and cooled and finally loaded into a waste storage container. After sealing, this container is decontaminated and transferred to the interim storage facility and then, ultimately, to an underground repository

  14. Safety analysis of the transportation of high-level radioactive waste

    International Nuclear Information System (INIS)

    Murphy, E.S.; Winegardner, W.K.

    1975-01-01

    An analysis of the risk from transportation of solidified high-level waste is being performed at Battelle-Northwest as part of a comprehensive study of the management of high-level waste. The risk analysis study makes use of fault trees to identify failure events and to specify combinations of events which could result in breach of containment and a release of radioactive material to the environment. Contributions to risk analysis methodology which have been made in connection with this study include procedures for identification of dominant failure sequences, methods for quantifying the effects of probabilistic failure events, and computer code development. Preliminary analysis based on evaluation of the rail transportation fault tree indicates that the dominant failure sequences for transportation of solidified high-level waste will be those related to railroad accidents. Detailed evaluation of rail accident failure sequences is proceeding and is making use of the limited frequency-severity data which is available in the literature. (U.S.)

  15. Liquid level measurement in high level nuclear waste slurries

    International Nuclear Information System (INIS)

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs

  16. Argentine project for the final disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Palacios, E.; Ciallella, N.R.; Petraitis, E.J.

    1989-01-01

    From 1980 Argentina is carrying out a research program on the final disposal of high level radioactive wastes. The quantity of wastes produced will be significant in next century. However, it was decided to start with the studies well in advance in order to demonstrate that the high level wastes could be disposed in a safety way. The option of the direct disposal of irradiated fuel elements was discarded, not only by the energetic value of the plutonium, but also for ecological reasons. In fact, the presence of a total inventory of actinides in the non-processed fuel would imply a more important radiological impact than that caused if the plutonium is recycled to produce energy. The decision to solve the technological aspects connected with the elimination of high-level radioactive wastes well in advance, was made to avoid transfering the problem to future generations. This decision is based not only on technical evaluations but also on ethic premises. (Author)

  17. A comparison of high-level waste form characteristics

    International Nuclear Information System (INIS)

    Salmon, R.; Notz, K.J.

    1991-01-01

    The US DOE is responsible for the eventual disposal in a repository of spent fuels, high-level waste (HLW) and other radioactive wastes that may require long-term isolation. This includes light-water reactor (LWR) spent fuel and immobilized HLW as the two major sources, plus other forms including non-LWR spent fuels and miscellaneous sources (such as activated metals in the Greater-Than-Class-C category). The Characteristics Data Base, sponsored by DOE's Office of Civilian Radioactive Waste Management (OCRWM), was created to systematically tabulate the technical characteristics of these materials. Data are presented here on the immobilized HLW forms that are expected to be produced between now and 2020

  18. The IAEA's high level radioactive waste management programme

    International Nuclear Information System (INIS)

    Saire, D.E.

    1994-01-01

    This paper presents the different activities that are performed under the International Atomic Energy Agency's (IAEA) high level radioactive waste management programme. The Agency's programme is composed of five main activities (information exchange, international safety standards, R ampersand D activities, advisory services and special projects) which are described in the paper. Special emphasis is placed on the RADioactive WAste Safety Standards (RADWASS) programme which was implemented in 1991 to document international consensus that exists on the safe management of radioactive waste. The paper also raises the question about the need for regional repositories to serve certain countries that do not have the resources or infrastructure to construct a national repository

  19. Volume reduction and solidification of liquid and solid low-level radioactive waste

    International Nuclear Information System (INIS)

    May, J.R.

    1979-01-01

    This paper presents a brief background of the development of a method of radioactive waste volume reduction using a unique fluidized bed calciner/incinerator. The volume reduction system is capable of processing a variety of liquid chemical wastes, spent ion exchange resin beads, filter treatment sludges, contaminated lubricating oils, and miscellaneous combustible solids such as paper, rags, protective clothing, wood, etc. All of these wastes are processed in one chemical reaction vessel. Detailed process data is presented that shows the system is capable of reducing the total volume of disposable radioactive waste generated by light water reactors by a factor of 10. Equally important to reducing the volume of power reactor radwaste is the final form of the stored or disposable radwaste. This paper also presents process data related to a new radwaste solidification system, presently being developed, that is particularly suited for immobilizing the granular solids and ashes resulting from volume reduction by calcination and/or incineration

  20. Development of a test system for high level liquid waste partitioning

    OpenAIRE

    Duan Wu H.; Chen Jing; Wang Jian C.; Wang Shu W.; Wang Xing H.

    2015-01-01

    The partitioning and transmutation strategy has increasingly attracted interest for the safe treatment and disposal of high level liquid waste, in which the partitioning of high level liquid waste is one of the critical technical issues. An improved total partitioning process, including a tri-alkylphosphine oxide process for the removal of actinides, a crown ether strontium extraction process for the removal of strontium, and a calixcrown ether cesium extra...

  1. Porous glass matrix method for encapsulating high-level nuclear wastes

    International Nuclear Information System (INIS)

    Macedo, P.B.; Tran, D.C.; Simmons, J.H.; Saleh, M.; Barkatt, A.; Simmons, C.J.; Lagakos, N.; DeWitt, E.

    1979-01-01

    A novel process which uses solidified porous high-silica glass powder to fixate radioactive high-level wastes is described. The process yields cylinders consisting of a core of high-silica glass containing the waste elements in its structure and a protective layer also of high-silica glass completely free of waste elements. The process can be applied to waste streams containing 0 to 100% solids. The core region exhibits a higher coefficient of thermal expansion and a lower glass transition temperature than the outer protective layer. This leads to mechanical strengthening of the glass and good resistance to stress corrosion by the development of a high residual compressive stress on the surface of the sample. Both the core and the protective layer exhibit extremely high chemical durability and offer an effective fixation of the radioactive waste elements, including 239 Pu and 99 Tc which have long half-lives, for calculated periods of more than 1 million years, when temperatures are not allowed to rise above 100 0 C

  2. Long-term high-level waste technology. Composite quarterly technical report, January-March 1981

    International Nuclear Information System (INIS)

    Cornman, W.R.

    1981-08-01

    This composite quarterly technical report summarizes work performed at participating sites to immobilize high-level radioactive wastes. The report is structured along the lines of the Work Breakdown Structure adopted for use in the High-Level Waste Management Technology program. These are: (1) program management and support with subtasks of management and budget, environmental and safety assessments, and other support; (2) waste preparation with subtasks of in-situ storage or disposal, waste retrieval, and separation and concentration; (3) waste fixation with subtasks of waste form development and characterization, and process and equipment development; and (4) final handling with subtasks of canister development and characterization and onsite storage or disposal. Some of the highlights are: preliminary event trees defining possible accidents were completed in the safety assessment of continued in-tank storage of high-level waste at Hanford; two low-cost waste forms (tailored concrete and bitumen) were investigated as candidate immobilization forms at the Hanford in-situ disposal studies of high-level waste; in comparative impact tests at the same impact energy per specimen volume, the same mass of respirable sizes was observed at ANL for SRL Frit 131 glass, SYNROC B ceramic, and SYNROC D ceramic; leaching tests were conducted on alkoxide glasses; glass-ceramic, concrete, and SYNROC D; a process design description was written for the tailored ceramic process

  3. High level waste transport and disposal cost calculations for the United Kingdom

    International Nuclear Information System (INIS)

    Nattress, P.C.; Ward, R.D.

    1992-01-01

    Commercial nuclear power has been generated in the United Kingdom since 1962, and throughout that time fuel has been reprocessed giving rise to high level waste. This has been managed by storing fission products and related wastes as highly active liquor, and more recently by a program of vitrification and storage of the glass blocks produced. Government policy is that vitrified high level waste should be stored for at least 50 years, which has the technical advantage of allowing the heat output rate of the waste to fall, making disposal easier and cheaper. Thus, there is no immediate requirement to develop a deep geological repository in the UK, but the nuclear companies do have a requirement to make financial provision out of current revenues for high level waste disposal at a future repository. In 1991 the interested organizations undertook a new calculation of costs for such provisions, which is described here. The preliminary work for the calculation included the assumption of host geology characteristics, a compatible repository concept including overpacking, and a range of possible nuclear programs. These have differing numbers of power plants, and differing mixes of high level waste from reprocessing and spent fuel for direct disposal. An algorithm was then developed so that the cost of high level waste disposal could be calculated for any required case within a stated envelope of parameters. An Example Case was then considered in detail leading to the conclusion that a repository to meet the needs of a constant UK nuclear economy up to the middle of the next century would have a cash cost of UK Pounds 1194M (US$2011M). By simple division the cost to a kWh of electricity is UK Pounds 0.00027 (0.45 US mil). (author)

  4. Small-scale demonstration of high-level radioactive waste processing and solidification using actual SRP waste

    International Nuclear Information System (INIS)

    Okeson, J.K.; Galloway, R.M.; Wilhite, E.L.; Woolsey, G.B.; Ferguson, R.B.

    1980-01-01

    A small-scale demonstration of the high-level radioactive waste solidification process by vitrification in borosilicate glass is being conducted using 5-6 liter batches of actual waste. Equipment performance and processing characteristics of the various unit operations in the process are reported and, where appropriate, are compared to large-scale results obtained with synthetic waste

  5. Description of a ceramic waste form and canister for Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Butler, J.L.; Allender, J.S.; Gould, T.H. Jr.

    1982-04-01

    A canistered ceramic waste form for possible immobilization of Savannah River Plant (SRP) high-level radioactive wastes is described. Characteristics reported for the form include waste loading, chemical composition, heat content, isotope inventory, mechanical and thermal properties, and leach rates. A conceptual design of a potential production process for making this canistered form are also described. The ceramic form was selected in November 1981 as the primary alternative to the reference waste form, borosilicate glass, for making a final waste form decision for SRP waste by FY-1983. 11 tables

  6. High level waste management in Asia: R and D perspectives

    International Nuclear Information System (INIS)

    Deokattey, Sangeeta; Bhanumurthy, K.

    2010-01-01

    The present work is an attempt to provide an overview, about the status of R and D and current trends in high level radioactive waste management, particularly in Asian countries. The INIS database (for the period 1976 to 2010) was selected for this purpose, as this is the most authoritative global source of information, in the area of Nuclear Science and Technology. Appropriate query formulations on the database, resulted in the retrieval of 4322 unique bibliographic records. Using the content analysis method (which is both a qualitative as well as a quantitative research method), all the records were analyzed. Part One of the analysis details Scientometric R and D indicators, such as the countries and the institutions involved in R and D, the types of publications, and programmes and projects related to High Level Waste management. Part Two is a subject-based analysis, grouped under the following broad categories: I. Waste Processing 1. Partitioning and transmutation (including ADS) II. Waste Immobilization 1. Glass waste forms and 2. Crystalline ceramics and other waste forms III. Waste Disposal 1. Performance assessment and safety evaluation studies 2. Geohydrological studies a. Site selection and characterization, b. In situ underground experiments, c. Rock mechanical characterization 3. Deep geological repositories a. Sorption, migration and groundwater chemistry b. Engineered barrier systems and IV. Waste Packaging Materials. The results of this analysis are summarized in the study. (author)

  7. Mining techniques and some aspects of high-level waste disposal

    International Nuclear Information System (INIS)

    Hoefnagels, J.A.R.

    1980-01-01

    The solutions to many problems of underground waste disposal involve mine engineering. This article attempts to highlight chosen issues and thereby create an overall impression, avoiding emphasis on single-aspect calculation. High level waste (H.L.W.) dominates current radioactive waste studies because of its specific characteristics and is therefore dealt with in this paper. However, depending on the method of disposal the other categories of radio active waste might become problems by themselves because of the relatively large quantities involved. (Auth.)

  8. Characterisation of sugar cane straw waste as pozzolanic material for construction: Calcining temperature and kinetic parameters

    International Nuclear Information System (INIS)

    Frias, Moises; Villar-Cocina, E.; Valencia-Morales, E.

    2007-01-01

    This paper reports on the influence of calcining temperature (800 and 1000 deg. C) on the pozzolanic activation of sugar cane straw (SCS). The reaction kinetics of SCS ash-lime mixtures were inferred from physicochemical characteristics (X-ray diffraction patterns and thermogravimetry analysis. The fitting of a kinetic-diffusive model to the experimental data (fixed lime versus time) allowed the computing of the kinetic parameters (reaction rate constant) of the pozzolanic reaction. Results obtained confirm that the sugar cane straw ash (SCSA) calcined at 800 and 1000 deg. C have properties indicative of very high pozzolanic activity. No influence of calcining temperature on the pozzolanic activity was observed. Also, no crystalline compounds during the pozzolanic reaction were identified up to 90 days of reaction. Environmental durability and strength of the consequential mortars remain to be assessed

  9. Evaluation of a high-level waste radiological maintenance facility

    International Nuclear Information System (INIS)

    Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation''s first and world''s largest high level waste vitrification facility. DWPF began, operations in March 1996 to process radioactive waste, consisting of a matrixed predominantly 137 Cs precipitate and a predominately 90 Sr and alpha emitting sludge, into boro-silicate glass for long term storage. Presently, DWPF is processing only sludge waste and is preparing to process a combination of sludge and precipitate waste. During precipitate operations, canister dose rates are expected to exceed 10 Sv hr -1 (1000 rem hr -1 ). In sludge-only operations, canister contact gamma dose rates are approximately 15 mSv hr -1 (1500 mrem hr -1 ). Transferable contamination levels have been greater than 10 mSv hr -1 (100 cm 2 ) -1 for beta-gamma emitters and into the millions of Bq (100 cm 2 ) -1 for the alpha emitting radionuclides. This paper presents an evaluation of the radiological maintenance areas and their ability to support radiological work

  10. Storage of High Level Nuclear Waste in Germany

    Directory of Open Access Journals (Sweden)

    Dietmar P. F. Möller

    2007-01-01

    Full Text Available Nuclear energy is very often used to generate electricity. But first the energy must be released from atoms what can be done in two ways: nuclear fusion and nuclear fission. Nuclear power plants use nuclear fission to produce electrical energy. The electrical energy generated in nuclear power plants does not produce polluting combustion gases but a renewable energy, an important fact that could play a key role helping to reduce global greenhouse gas emissions and tackling global warming especially as the electricity energy demand rises in the years ahead. This could be assumed as an ideal win-win situation, but the reverse site of the medal is that the production of high-level nuclear waste outweighs this advantage. Hence the paper attempt to highlight the possible state-of-art concepts for the safe and sustaining storage of high-level nuclear waste in Germany.

  11. The geochemistry of high-level waste disposal in granitic rocks

    International Nuclear Information System (INIS)

    Chapman, N.A.; Sargent, F.P.

    1984-01-01

    Under the auspices of the cooperative agreement between Euratom and Atomic Energy of Canada Ltd about radioactive waste management and disposal, a joint workshop was held on the topic of the geochemistry of high-level waste disposal in granitic rocks. The report covers (1) waste form leaching, (2) thermodynamics, (3) geochemical models, (4) the role of colloids, (5) sorption phenomena, (6) the linking of flow and geochemical models, (7) microbial activity

  12. Minor component study for simulated high-level nuclear waste glasses (Draft)

    International Nuclear Information System (INIS)

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation

  13. On risk assessment of high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Smith, C.F.; Kastenberg, W.E.

    1976-01-01

    One of the major concerns with the continued growth of the nuclear power industry is the production of the high level radioactive wastes. The risks associated with the disposal of these wastes derives from the potential for release of radioactive materials into the environment. The development of a methodology for risk analysis is carried out. The methodology suggested involves the probabilistic analysis of a general accident consequence distribution. In this analysis, the frequency aspect of the distribution is treated separately from the normalized probability function. In the final stage of the analysis, the frequency and probability characteristics of the distribution are recombined to provide an estimate of the risk. The characterization of the radioactive source term is accomplished using the ORIGEN computer code. Calculations are carried out for various reactor types and fuel cycles, and the overall waste hazard for a projected 35 year nuclear power program is determined. An index of relative nuclide hazard appropriate to problems involving the management of high level radioactive wastes is developed. As an illustration of the methodology, risk analyses are made for two proposed methods for waste management: extraterrestrial disposal and interim surface storage. The results of these analyses indicate that, within the assumptions used, the risks of these management schemes are small compared with natural background radiation doses. (Auth.)

  14. Spent Fuel and High-Level Radioactive Waste Transportation Report

    International Nuclear Information System (INIS)

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  15. Spent fuel and high-level radioactive waste transportation report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  16. Spent fuel and high-level radioactive waste transportation report

    International Nuclear Information System (INIS)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  17. Spent fuel and high-level radioactive waste transportation report

    International Nuclear Information System (INIS)

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  18. Control of high level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs

  19. Evaluation of health and safety impacts of defense high-level waste in geologic repositories

    International Nuclear Information System (INIS)

    Smith, E.D.; Kocher, D.C.; Witherspoon, J.P.

    1985-02-01

    Pursuant to the requirement of the Nuclear Waste Policy Act of 1982 that the President evaluate the use of commercial high-level waste repositories for the disposal of defense high-level wastes, a comparative assessment has been performed of the potential health and safety impacts of disposal of defense wastes in commercial or defense-only repositories. Simplified models were used to make quantitative estimates of both long- and short-term health and safety impacts of several options for defense high-level waste disposal. The results indicate that potential health and safety impacts are not likely to vary significantly among the different disposal options for defense wastes. Estimated long-term health and safety impacts from all defense-waste disposal options are somewhat less than those from commercial waste disposal, while short-term health and safety impacts appear to be insensitive to the differences between defense and commercial wastes. In all cases, potential health and safety impacts are small because of the need to meet stringent standards promulgated by the US Environmental Protection Agency and the US Nuclear Regulatory Commission. We conclude that health and safety impacts should not be a significant factor in the choice of a disposal option for defense high-level wastes. 20 references, 14 tables

  20. Neutron and gamma-ray sources in LWR high-level nuclear waste

    International Nuclear Information System (INIS)

    Dupree, S.A.

    1977-06-01

    Predictions of the composition of high-level waste from U-fueled LWRs have been used to calculate the neutron and gamma-ray sources in such waste at cooling times of 3 and 10 years. The results are intended for interim application to studies of waste shipping and storage pending the availability of more exact knowledge of fuel recycling and of waste concentration and solidification

  1. Vitrification of high-level liquid wastes

    International Nuclear Information System (INIS)

    Varani, J.L.; Petraitis, E.J.; Vazquez, Antonio.

    1987-01-01

    High-level radioactive liquid wastes produced in the fuel elements reprocessing require, for their disposal, a preliminary treatment by which, through a series of engineering barriers, the dispersion into the biosphere is delayed by 10 000 years. Four groups of compounds are distinguished among a great variety of final products and methods of elaboration. From these, the borosilicate glasses were chosen. Vitrification experiences were made at a laboratory scale with simulated radioactive wastes, employing different compositions of borosilicate glass. The installations are described. A series of tests were carried out on four basic formulae using always the same methodology, consisting of a dry mixture of the vitreous matrix's products and a dry simulated mixture. Several quality tests of the glasses were made 1: Behaviour in leaching following the DIN 12 111 standard; 2: Mechanical resistance; parameters related with the facility of the different glasses for increasing their surface were studied; 3: Degree of devitrification: it is shown that devitrification turns the glasses containing radioactive wastes easily leachable. From all the glasses tested, the composition SiO 2 , Al 2 O 3 , B 2 O 3 , Na 2 O, CaO shows the best retention characteristics. (M.E.L.) [es

  2. Technical career opportunities in high-level radioactive waste management

    International Nuclear Information System (INIS)

    1993-01-01

    Technical career opportunities in high-level radioactive waste management are briefly described in the areas of: Hydrology; geology; biological sciences; mathematics; engineering; heavy equipment operation; and skilled labor and crafts

  3. Study on high-level waste geological disposal metadata model

    International Nuclear Information System (INIS)

    Ding Xiaobin; Wang Changhong; Zhu Hehua; Li Xiaojun

    2008-01-01

    This paper expatiated the concept of metadata and its researches within china and abroad, then explain why start the study on the metadata model of high-level nuclear waste deep geological disposal project. As reference to GML, the author first set up DML under the framework of digital underground space engineering. Based on DML, a standardized metadata employed in high-level nuclear waste deep geological disposal project is presented. Then, a Metadata Model with the utilization of internet is put forward. With the standardized data and CSW services, this model may solve the problem in the data sharing and exchanging of different data form A metadata editor is build up in order to search and maintain metadata based on this model. (authors)

  4. National high-level waste systems analysis plan

    International Nuclear Information System (INIS)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.; Thiel, E.C.

    1995-05-01

    This document details the development of modeling capabilities that can provide a system-wide view of all US Department of Energy (DOE) high-level waste (HLW) treatment and storage systems. This model can assess the impact of budget constraints on storage and treatment system schedules and throughput. These impacts can then be assessed against existing and pending milestones to determine the impact to the overall HLW system. A nation-wide view of waste treatment availability will help project the time required to prepare HLW for disposal. The impacts of the availability of various treatment systems and throughput can be compared to repository readiness to determine the prudent application of resources or the need to renegotiate milestones

  5. PHYSICAL, CHEMICAL, AND STRUCTURAL EVOLUTION OF ZEOLITE-CONTAINING WASTE FORMS PRODUCED FROM METAKAOLINITE AND CALCINED HLW

    International Nuclear Information System (INIS)

    Pareizs, J. M.; Jantzenm, C.M.

    2000-01-01

    Natural and synthetic zeolites are extremely versatile materials. They can adsorb a variety of liquids and gases, and also take part in cation exchange reactions. Zeolites have the ability to sequester ions in lattice positions or within their networks of channels and voids. The zeolites can host alkali, alkaline earth and a variety of higher valance cations. As such they may be a viable alternative for immobilization of low activity waste (LAW) salts and calcines. The process for synthesizing zeolites is well documented for pure starting materials. A reactive aluminosilicate is reacted with an alkaline hydroxide at low temperature (<300 C) to form a zeolite. Processing time and temperature and specific reactants determine the type of zeolite formed. Zeolites are easy to make, and can be synthesized from a wide variety of natural and man made materials. However, relatively little is known about the process if one of the starting materials is a poorly characterized complex mixture of oxides (waste) containing nearly every element in the periodic table. The purpose of this work is to develop a clearer understanding of the advantages and limitations of producing a zeolite waste form from radioactive waste. Dr. M. W. Grutzeck at the Pennsylvania State University is investigating the production of a zeolite waste form using nonradioactive simulants. Dr. C. M. Jantzen and J. M. Pareizs at the Savannah River Technology Center will use the results from simulant work as a starting point for producing a zeolite waste form from an actual Savannah River Site radioactive waste stream

  6. Physical, chemical, and structural evolution of zeolite-containing waste forms produced from metakaolinite and calcined HLW

    International Nuclear Information System (INIS)

    Pareizs, J.M.

    2000-01-01

    Natural and synthetic zeolites are extremely versatile materials. They can adsorb a variety of liquids and gases, and also take part in cation exchange reactions. Zeolites have the ability to sequester ions in lattice positions or within their networks of channels and voids. The zeolites can host alkali, alkaline earth and a variety of higher valence cations. As such they may be a viable alternative for immobilization of low activity waste (LAW) salts and calcines. The process for synthesizing zeolites is well documented for pure starting materials. A reactive aluminosilicate is reacted with an alkaline hydroxide at low temperature to form a zeolite. Processing time and temperature and specific reactants determine the type of zeolite formed. Zeolites are easy to make, and can be synthesized from a wide variety of natural and man made materials. However, relatively little is known about the process if one of the starting materials is a poorly characterized complex mixture of oxides (waste) containing nearly every element in the periodic table. The purpose of this work is to develop a clearer understanding of the advantages and limitations of producing a zeolite waste form from radioactive waste. Dr. M. W. Grutzeck at the Pennsylvania State University is investigating the production of a zeolite waste form using non-radioactive simulants. Dr. C. M. Jantzen and J. M. Pareizs at the Savannah River Technology Center will use the results from simulant work as a starting point for producing a zeolite waste form from an actual Savannah River Site radioactive waste stream

  7. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    Energy Technology Data Exchange (ETDEWEB)

    Ray, J.W. [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  8. Pre-disposal storage, transport and handling of vitrified high level waste

    International Nuclear Information System (INIS)

    Kempe, T.F.; Martin, A.

    1981-05-01

    The objectives of the study were to review non site-specific engineering features of the storage, transport and handling of vitrified high level radioactive waste prior to its transfer into an underground repository, and to identify those features which require validation or development. Section headings are: introduction (historical and technical background); characteristics and arisings of vitrified high level waste; overpacks (additional containment barrier, corrosion resistant); interim storage of HLW; transport of HLW; handling; conclusions and recommendations. (U.K.)

  9. Assessment of studies and researches on warehousing - High-level and intermediate-level-long-lived radioactive wastes - December 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This large report first presents the approach adopted for the study and research on the warehousing of high-level and intermediate-level-long-lived radioactive wastes. It outlines how reversible storage and warehousing are complementary, discusses the lessons learned from researches performed by the CEA on long duration warehousing, presents the framework of studies and researches performed since 2006, and presents the scientific and technical content of studies and researches (warehousing need analysis, search for technical options providing complementarity with storage, extension or creation of warehousing installations). The second part addresses high-level and intermediate-level-long-lived radioactive waste parcels, indicates their origins and quantities. The third part proposes an analysis of warehousing capacities: existing capacities, French industrial experience in waste parcel warehousing, foreign experience in waste warehousing. The fourth part addresses reversible storage in deep geological formation: storage safety functions, storage reversibility, storage parcels, storage architecture, chronicle draft. The fifth part proposes an inventory of warehousing needs in terms of additional capacities for the both types of wastes (high-level, and intermediate-level-long-lived), and discusses warehousing functionalities and safety objectives. The sixth and seventh parts propose a detailed overview of design options for warehousing installations, respectively for high-level and for intermediate-level-long-lived waste parcels: main technical issues, feasibility studies of different concepts or architecture shapes, results of previous studies and introduction to studies performed since 2011, possible evolutions of the HA1, HA2 and MAVL concepts. The eighth chapter reports a phenomenological analysis of warehousing and the optimisation of material selection and construction arrangements. The last part discusses the application of researches to the extension of the

  10. Potential host media for a high-level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Hustrulid, W

    1982-01-01

    Earlier studies of burial of radioactive wastes in geologic repositories had concentrated on salt formations for well-publicized reasons. However, under the Carter administration, significant changes were made in the US nuclear waste management program. Changes which were made were: (1) expansion of the number of rock types under consideration; (2) adoption of the multiple-barrier approach to waste containment; (3) additional requirements for waste retrieval; and (4) new criteria proposed by the Nuclear Regulatory Commission for the isolation of high-level waste in geologic repositories. Results of the studies of different types of rocks as repository sites are summarized herein. It is concluded that each generic rock type has certain advantages and disadvantages when considered from various aspects of the waste disposal problem and that characteristics of rocks are so varied that a most favorable or least favorable rock type cannot be easily identified. This lack of definitive characteristics of rocks makes site selection and good engineering barriers very important for containment of the wastes. (BLM)

  11. Radioactive waste management

    International Nuclear Information System (INIS)

    Kizawa, Hideo

    1982-01-01

    A system of combining a calciner for concentrated radioactive liquid waste and an incinerator for miscellaneous radioactive solid waste is being developed. Both the calciner and the incinerator are operated by fluidized bed method. The system features the following points: (1) Inflammable miscellaneous solids and concentrated liquid can be treated in combination to reduce the volume. (2) Used ion-exchange resin can be incinerated. (3) The system is applicable even if any final waste disposal method is adopted; calcinated and incinerated solids obtained as intermediate products are easy to handle and store. (4) The system is readily compatible with other waste treatment systems to form optimal total system. The following matters are described: the principle of fluidized-bed furnaces, the objects of treatment, system constitution, the features of the calciner and incinerator, and the current status of development. (J.P.N.)

  12. Laboratory characterization and vitrification of Hanford radioactive high-level waste

    International Nuclear Information System (INIS)

    Tingey, J.M.; Elliott, M.L.; Larson, D.E.; Morrey, E.V.

    1991-05-01

    Radioactive high-level wastes generated at the Department of Energy's Hanford Site are stored in underground carbon steel tanks. Two double-shell tanks contain neutralized current acid waste (NCAW) from the reprocessing of irradiated nuclear fuel in the Plutonium and Uranium Extraction (PUREX) Plant. The tanks were sampled for characterization and waste immobilization process/product development. The high-level waste generated in PUREX was denitrated with sugar to form current acid waste (CAW). The CAW was ''neutralized'' to a pH of approximately 14 by adding sodium hydroxide to reduce corrosion of the tanks. This ''neutralized'' waste is called Neutralized Current Acid Waste. Both precipitated solids and liquids are stored in the NCAW waste tanks. The NCAW contains small amounts of plutonium and most of the fission products and americium from the irradiated fuel. NCAW also contains stainless steel corrosion products, and iron and sulfate from the ferrous sulfamate reductant used in the PUREX process. The NCAW will be retrieved, pretreated, and immobilized prior to final disposal. Pretreatment consists of water washing the precipitated NCAW solids for sulfate and soluble salts removal as a waste reduction step prior to vitrification. This waste is expected to be the first waste type to be retrieved and vitrified in the Hanford Waste Vitrification Plant (HWVP). A characterization plan was developed that details the processing of the small-volume NCAW samples through retrieval, pretreatment and vitrification process steps. Physical, rheological, chemical, and radiochemical properties were measured throughout these process steps. The results of nonradioactive simulant tests were used to develop appropriate pretreatment and vitrification process steps. The processing and characterization of simulants and actual NCAW tank samples are used to evaluate the operation of these processes. 3 refs., 1 fig., 4 tabs

  13. Processing and solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Kelley, J.A.

    1981-01-01

    The entire flowsheet for processing and solidification of Savannah River Plant (SRP) high-level wastes has been demonstrated. A new small-scale integrated pilot plant is operating with actual radioactive wastes, and large-scale equipment is being demonstrated with nonradioactive simulated wastes. Design of a full-scale waste solidification plant is in progress. Plant construction is expected to begin in 1983, and startup is anticipated in 1988. The plant will poduce about 500 cans of glass per year with each can containing about 1.5 tons of glass

  14. Polyphase ceramic and glass-ceramic forms for immobilizing ICPP high-level nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Flintoff, J.F.

    1984-01-01

    Polyphase ceramic and glass-ceramic forms have been consolidated from simulated Idaho Chemical Processing Plant wastes by hot isostatic pressing calcined waste and chemical additives by 1000 0 C or less. The ceramic forms can contain over 70 wt% waste with densities ranging from 3.5 to 3.85 g/cm 3 , depending upon the formulation. Major phases are CaF 2 , CaZrTi 207 , CaTiO 3 , monoclinic ZrO 2 , and amorphous intergranular material. The relative fraction of the phases is a function of the chemical additives (TiO 2 , CaO, and SiO 2 ) and consolidation temperature. Zirconolite, the major actinide host, makes the ceramic forms extremely leach resistant for the actinide simulant U 238 . The amorphous phase controls the leach performance for Sr and Cs which is improved by the addition of SiO 2 . Glass-ceramic forms were also consolidated by HIP at waste loadings of 30 to 70 wt% with densities of 2.73 to 3.1 g/cm 3 using Exxon 127 borosilicate glass frit. The glass-ceramic forms contain crystalline CaF 2 , Al 203 , and ZrSi 04 (zircon) in a glass matrix. Natural mineral zircon is a stable host for 4+ valent actinides. 17 references, 3 figures, 5 tables

  15. Solidification of high-level radioactive wastes. Final report

    International Nuclear Information System (INIS)

    1979-06-01

    A panel on waste solidification was formed at the request of the Nuclear Regulatory Commission to study the scientific and technological problems associated with the conversion of liquid and semiliquid high-level radioactive wastes into a stable form suitable for transportation and disposition. Conclusions reached and recommendations made are as follows. Many solid forms described in this report could meet standards as stringent as those currently applied to the handling, storage, and transportation of spent fuel assemblies. Solid waste forms should be selected only in the context of the total radioactive waste management system. Many solid forms are likely to be satisfactory for use in an appropriately designed system, The current United States policy of deferring the reprocessing of commercial reactor fuel provides additional time for R and D solidification technology for this class of wastes. Defense wastes which are relatively low in radioactivity and thermal power density can best be solidified by low-temperature processes. For solidification of fresh commercial wastes that are high in specific activity and thermal power density, the Panel recommends that, in addition to glass, the use of fully-crystalline ceramics and metal-matrix forms be actively considered. Preliminary analysis of the characteristics of spent fuel pins indicates that they may be eligible for consideration as a waste form. Because the differences in potential health hazards to the public resulting from the use of various solid form and disposal options are likely to be small, the Panel concludes that cost, reliability, and health hazards to operating personnel will be major considerations in choosing among the options that can meet safety requiremens. The Panel recommends that responsibility for all radioactive waste management operations (including solidification R and D) should be centralized

  16. Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Ann

    2010-11-01

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep

  17. Coupled processes in NRC high-level waste research

    International Nuclear Information System (INIS)

    Costanzi, F.A.

    1987-01-01

    The author discusses NRC research effort in support of evaluating license applications for disposal of nuclear waste and for promulgating regulations and issuing guidance documents on nuclear waste management. In order to do this they fund research activities at a number of laboratories, academic institutions, and commercial organizations. One of our research efforts is the coupled processes study. This paper discusses interest in coupled processes and describes the target areas of research efforts over the next few years. The specific research activities relate to the performance objectives of NRC's high-level waste (HLW) regulation and the U.S. Environmental Protection Agency (EPA) HLW standard. The general objective of the research program is to ensure the NRC has a sufficient independent technical base to make sound regulatory decisions

  18. High-level waste program integration within the DOE complex

    International Nuclear Information System (INIS)

    Valentine, J.H.; Malone, K.; Schaus, P.S.

    1998-03-01

    Eleven major Department of Energy (DOE) site contractors were chartered by the Assistant Secretary to use a systems engineering approach to develop and evaluate technically defensible cost savings opportunities across the complex. Known as the complex-wide Environmental Management Integration (EMI), this process evaluated all the major DOE waste streams including high level waste (HLW). Across the DOE complex, this waste stream has the highest life cycle cost and is scheduled to take until at least 2035 before all HLW is processed for disposal. Technical contract experts from the four DOE sites that manage high level waste participated in the integration analysis: Hanford, Savannah River Site (SRS), Idaho National Engineering and Environmental Laboratory (INEEL), and West Valley Demonstration Project (WVDP). In addition, subject matter experts from the Yucca Mountain Project and the Tanks Focus Area participated in the analysis. Also, departmental representatives from the US Department of Energy Headquarters (DOE-HQ) monitored the analysis and results. Workouts were held throughout the year to develop recommendations to achieve a complex-wide integrated program. From this effort, the HLW Environmental Management (EM) Team identified a set of programmatic and technical opportunities that could result in potential cost savings and avoidance in excess of $18 billion and an accelerated completion of the HLW mission by seven years. The cost savings, schedule improvements, and volume reduction are attributed to a multifaceted HLW treatment disposal strategy which involves waste pretreatment, standardized waste matrices, risk-based retrieval, early development and deployment of a shipping system for glass canisters, and reasonable, low cost tank closure

  19. Tank waste remediation system high-level waste vitrification system development and testing requirements

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-01-01

    This document provides the fiscal year (FY) 1995 recommended high-level waste melter system development and testing (D and T) requirements. The first phase of melter system testing (FY 1995) will focus on the feasibility of high-temperature operation of recommended high-level waste melter systems. These test requirements will be used to establish the basis for defining detailed testing work scope, cost, and schedules. This document includes a brief summary of the recommended technologies and technical issues associated with each technology. In addition, this document presents the key D and T activities and engineering evaluations to be performed for a particular technology or general melter system support feature. The strategy for testing in Phase 1 (FY 1995) is to pursue testing of the recommended high-temperature technologies, namely the high-temperature, ceramic-lined, joule-heated melter, referred to as the HTCM, and the high-frequency, cold-wall, induction-heated melter, referred to as the cold-crucible melter (CCM). This document provides a detailed description of the FY 1995 D and T needs and requirements relative to each of the high-temperature technologies

  20. Small-scale integrated demonstration of high-level radioactive waste processing and vitrification using actual SRP waste

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Woolsey, G.B.; Galloway, R.M.; Baumgarten, P.M.; Eibling, R.E.

    1980-01-01

    Experiments have been made to demonstrate the feasibility of immobilizing SRP high-level waste in borosilicate glass. Results to date are encouraging. Equipment performance and processing characteristics for solidifying small batches of actual SRP waste have agreed well with previous experience with small- and large-scale tests synthetic waste, and with theoretical predictions

  1. The development of a high level radioactive waste management strategy

    International Nuclear Information System (INIS)

    Beale, H.

    1979-11-01

    The management of high level radioactive waste, from the removal of spent fuel from reactors to final disposal of vitrified waste, involves a complex choice of operational variables which interact one with another. If the various operations are designed and developed in isolation it will almost certainly lead to suboptimal choice. Management of highly active waste should therefore be viewed as a complete system and analysed in such a way that account is taken of the interactions between the various operations. This system must have clearly defined and agreed objectives as well as criteria against which performance can be judged. A thorough analysis of the system will provide a framework within which the necessary research and development can be carried out in a co-ordinated fashion and lead to an optimised strategy for managing highly active wastes. (author)

  2. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  3. Immobilized high-level waste interim storage alternatives generation and analysis and decision report

    International Nuclear Information System (INIS)

    CALMUS, R.B.

    1999-01-01

    This report presents a study of alternative system architectures to provide onsite interim storage for the immobilized high-level waste produced by the Tank Waste Remediation System (TWRS) privatization vendor. It examines the contract and program changes that have occurred and evaluates their impacts on the baseline immobilized high-level waste (IHLW) interim storage strategy. In addition, this report documents the recommended initial interim storage architecture and implementation path forward

  4. Corrosion and failure processes in high-level waste tanks

    International Nuclear Information System (INIS)

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L.

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted

  5. Development and evaluation of candidate high-level waste forms

    International Nuclear Information System (INIS)

    Bernadzikowski, T.A.

    1981-01-01

    Some seventeen candidate waste forms have been investigated under US Department of Energy programs as potential media for the immobilization and geologic disposal of the high-level radioactive wastes (HLW) resulting from chemical processing of nuclear reactor fuels and targets. Two of these HLW forms were selected at the end of fiscal year (FY) 1981 for intensive development if FY 1982 to 1983. Borosilicate glass was continued as the reference form. A crystalline ceramic waste form, SYNROC, was selected for further product formulation and process development as the alternative to borosilicate glass. This paper describes the bases on which this decision was made

  6. Transportation packagings for high-level wastes and unprocessed transuranic wastes

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Romesberg, L.E.

    1982-01-01

    Packagings used for nuclear waste transport are varied in size, shape, and weight because they must accommodate a wide variety of waste forms and types. However, this paper will discuss the common characteristics among the packagings in order to provide a broad understanding of packaging designs. The paper then discusses, in some detail, a design that has been under development recently at Sandia National Laboratories (SNL) for handling unprocessed, contact-handled transuranic (CHTRU) wastes as well as a cask design for defense high-level wastes (HLW). As presently conceived, the design of the transuranic package transporter (TRUPACT) calls for inner and outer boxes that are separated by a rigid polyurethane foam. The inner box has a steel frame with stainless steel surfaces; the outer box is similarly constructed except that carbon steel is used for the outside surfaces. The access to each box is through hinged doors that are sealed after loading. To meet another waste management need, a cask is being developed to transport defense HLW. The cask, which is at the preliminary design stage, is being developed by General Atomic under the direction of the TTC. The cask design relies heavily on state-of-the-art spent-fuel cask designs though it can be much simpler due to the characteristics of the HLW. A primary purpose of this paper is to show that CHTRU waste and defense HLW currently are and will be transported in packagings designed to meet the hazards of transportation that are present in general commerce

  7. Status of high level and alpha bearing waste management in PNC

    International Nuclear Information System (INIS)

    Uematsu, Kunihiko

    1982-04-01

    For completing the nuclear fuel cycle in Japan, Power Reactor and Nuclear Fuel Development Corporation (PNC) has a role to promote the management of high level and alpha bearing wastes. For high level waste management, it is planned in Japan to initiate the operation of a vitrification pilot plant by 1987 for the development of the solidification process, and to make it possible to initiate trial disposal by 2015 for the development of geological disposal technology. In PNC, monolithic borosilicate glass was selected as the final form of solidification. Alpha bearing wastes have been produced in the mixed oxide fuel fabrication facility and the reprocessing plant in PNC; and the amount should increase considerably in the future in Japan. About these two areas of waste management, the policy and the research/development programs are described. (J.P.N.)

  8. Strategies for high-level radioactive waste management: the U.S. experience

    International Nuclear Information System (INIS)

    Cotton, T.A.

    1984-01-01

    Technology exists or is under development for the safe, retrievable storage of spent fuel from commercial nuclear reactors and high-level waste from reprocessing that fuel, for many decades, and no insuperable scientific obstacles to permanent disposal of spent fuel or high-level waste in geologic repositories have been identified. However, there are significant institutional obstacles to developing such repositories: strong local opposition to siting and the requirement for a sustained commitment of money and skilled manpower over a period of decades. These create strong incentives to defer the political and economic costs of developing disposal facilities by using less expensive interim storage; yet continued deferral may affect the acceptability of nuclear power. Thus the principal strategic policy issue in high-level waste management is how rapidly to develop disposal facilities. Some countries plan decades of storage before choosing a repository site or a disposal technology, while the United States has enacted a law requiring operation of a geologic repository by 1998. This paper discusses waste management strategic issues and major provisions of the U.S. law, emphasizing those measures dealing with the institutional obstacles to developing geologic repositories. (author)

  9. High-level radioactive waste repositories site selection plan

    International Nuclear Information System (INIS)

    Castanon, A.; Recreo, F.

    1985-01-01

    A general vision of the high level nuclear waste (HLNW) and/or nuclear spent fuel facilities site selection processes is given, according to the main international nuclear safety regulatory organisms quidelines and the experience from those countries which have reached a larger development of their national nuclear programs. (author)

  10. High-level waste glass compendium; what it tells us concerning the durability of borosilicate waste glass

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Allison, J.

    1993-01-01

    Facilities for vitrification of high-level nuclear waste in the United States are scheduled for startup in the next few years. It is, therefore, appropriate to examine the current scientific basis for understanding the corrosion of high-level waste borosilicate glass for the range of service conditions to which the glass products from these facilities may be exposed. To this end, a document has been prepared which compiles worldwide information on borosilicate waste glass corrosion. Based on the content of this document, the acceptability of canistered waste glass for geological disposal is addressed. Waste glass corrosion in a geologic repository may be due to groundwater and/or water vapor contact. The important processes that determine the glass corrosion kinetics under these conditions are discussed based on experimental evidence from laboratory testing. Testing data together with understanding of the long-term corrosion kinetics are used to estimate radionuclide release rates. These rates are discussed in terms of regulatory performance standards

  11. Thermo-aeraulics of high level waste storage facilities

    International Nuclear Information System (INIS)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume; Duret, Bernard

    2006-01-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete structures; - GALATEE

  12. Thermo-aeraulics of high level waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume [CEA/Valrho, B.P. 17171, F-30207 Bagnols-sur-Ceze (France); Duret, Bernard [CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-07-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete

  13. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Presgrove, S.B.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on this project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review; (1) Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator, (2) The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. 1 ref

  14. Remediation and production of low-sludge high-level waste glasses

    International Nuclear Information System (INIS)

    Ramsey, W.G.; Brown, K.G.; Beam, D.C.

    1994-01-01

    High-level radioactive sludge will constitute 24-28 oxide weight percent of the high-level waste glass produced at the Savannah River Site. A recent melter campaign using non-radioactive, simulated feed was performed with a sludge content considerably lower than 24 percent. The resulting glass was processed and shown to have acceptable durability. However, the durability was lower than predicted by the durability algorithm. Additional melter runs were performed to demonstrate that low sludge feed could be remediated by simply adding sludge oxides. The Product Composition Control System, a computer code developed to predict the proper feed composition for production of high-level waste glass, was utilized to determine the necessary chemical additions. The methodology used to calculate the needed feed additives, the effects of sludge oxides on glass production, and the resulting glass durability are discussed

  15. Safety of geologic disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Zaitsu, Tomohisa; Ishiguro, Katsuhiko; Masuda, Sumio

    1992-01-01

    This article introduces current concepts of geologic disposal of high level radioactive waste and its safety. High level radioactive waste is physically stabilized by solidifying it in a glass form. Characteristics of deep geologic layer are presented from the viewpoint of geologic disposal. Reconstruction of multi-barrier system receives much attention to secure the safety of geologic disposal. It is important to research performance assessment of multi-barrier system for preventing dissolution or transfer of radionuclides into the ground water. Physical and chemical modeling for the performance assessment is outlined in the following terms: (1) chemical property of deep ground water, (2) geochemical modeling of artificial barrier spatial water, (3) hydrology of deep ground water, (4) hydrology of the inside of artificial barrier, and (5) modeling of radionuclide transfer from artificial barrier. (N.K.)

  16. Deep geologic storage of high level radioactive wastes: conceptual generic designs

    International Nuclear Information System (INIS)

    1995-01-01

    This report summarizes the studies on deep geologic storage of radioactive wastes and specially for the high-level radioactive wastes. The study is focussed to the geotechnical assessment and generic-conceptual designs. Methodology analysis, geotechnical feasibility, costs and operation are studied

  17. Test plan: Effects of phase separation on waste loading for high level waste glasses

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    As part of the Tanks Focus Area's (TFA) effort to increase waste loading for high-level waste (HLW) vitrification at various facilities in the Department of Energy (DOE) complex, the occurrence of phase separation in waste glasses spanning the Savannah River Site (SRS) and Idaho National Engineering and Environmental Laboratory (INEEL) composition ranges were studied during FY99. The type, extent, and impact of phase separation on glass durability for a series of HLW glasses, e.g., SRS-type and INEEL-type, were examined

  18. Application of new technologies for characterization of Hanford Site high-level waste

    International Nuclear Information System (INIS)

    Winters, W.I.

    1998-01-01

    To support remediation of Hanford Site high-level radioactive waste tanks, new chemical and physical measurement technologies must be developed and deployed. This is a major task of the Chemistry Analysis Technology Support (CATS) group of the Hanford Corporation. New measurement methods are required for efficient and economical resolution of tank waste safety, waste retrieval, and disposal issues. These development and deployment activities are performed in cooperation with Waste Management Federal Services of Hanford, Inc. This paper provides an overview of current analytical technologies in progress. The high-level waste at the Hanford Site is chemically complex because of the numerous processes used in past nuclear fuel reprocessing there, and a variety of technologies is required for effective characterization. Programmatic and laboratory operational needs drive the selection of new technologies for characterizing Hanford Site high-level waste, and these technologies are developed for deployment in laboratories, hot cells or in the field. New physical methods, such as the propagating reactive systems screening tool (PRSST) to measure the potential for self-propagating reactions in stored wastes, are being implemented. Technology for sampling and measuring gases trapped within the waste matrix is being used to evaluate flammability hazards associated with gas releases from stored wastes. Application of new inductively coupled plasma and laser ablation mass spectrometry systems at the Hanford Site's 222-S Laboratory will be described. A Raman spectroscopy probe mounted in a cone penetrometer to measure oxyanions in wastes or soils will be described. The Hanford Site has used large volumes of organic complexants and acids in processing waste, and capillary zone electrophoresis (CZE) methods have been developed for determining several of the major organic components in complex waste tank matrices. The principles involved, system installation, and results from

  19. Managing the high level waste nuclear regulatory commission licensing process

    International Nuclear Information System (INIS)

    Baskin, K.P.

    1992-01-01

    This paper reports that the process for obtaining Nuclear Regulatory Commission permits for the high level waste storage facility is basically the same process commercial nuclear power plants followed to obtain construction permits and operating licenses for their facilities. Therefore, the experience from licensing commercial reactors can be applied to the high level waste facility. Proper management of the licensing process will be the key to the successful project. The management of the licensing process was categorized into four areas as follows: responsibility, organization, communication and documentation. Drawing on experience from nuclear power plant licensing and basic management principles, the management requirement for successfully accomplishing the project goals are discussed

  20. Standards for high level waste disposal: A sustainability perspective

    International Nuclear Information System (INIS)

    Dougherty, W.W.; Powers, V.; Johnson, F.X.; Cornland, D.

    1999-01-01

    Spent reactor fuel from commercial power stations contains high levels of plutonium, other fissionable actinides, and fission products, all of which pose serious challenges for permanent disposal because of the very long half-lives of some isotopes. The 'nuclear nations' have agreed on the use of permanent geologic repositories for the ultimate disposal of high-level nuclear waste. However, it is premature to claim that a geologic repository offers permanent isolation from the biosphere, given high levels of uncertainty, nascent risk assessment frameworks for the time periods considered, and serious intergenerational equity issues. Many have argued for a broader consideration of disposal options that include extended monitored retrievable storage and accelerator-driven transmutation of wastes. In this paper we discuss and compare these three options relative to standards that emerge from the application of sustainable development principles, namely long-lasting technical viability, intergenerational equity, rational resource allocation, and rights of future intervention. We conclude that in order to maximise the autonomy of future generations, it is imperative to leave future options more open than does permanent disposal

  1. Studies on site characterization methodologies for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Ju; Guo Yonghai; Chen Weiming

    2008-01-01

    This paper presents the final achievement of the project 'Studies of Site-specific Geological Environment for High Level Waste Disposal and Performance Assessment Methodology, Part Ⅰ: Studies on Site Characterization Methodologies for High Level Radioactive Waste Disposal', which is a 'Key Scientific and Technological Pre-Research Project for National Defense' during 2001-2005. The study area is Beishan area, Gansu Province, NW China--the most potential site for China's underground research laboratory and high level radioactive waste repository. The boreholes BS01, BS2, BS03 and BS04 drilled in fractured granite media in Beishan are used to conduct comprehensive studies on site characterization methodologies, including: bore hole drilling method, in situ measurement methods of hydrogeological parameters, underground water sampling technology, hydrogeochemical logging method, geo-stress measurement method, acoustic borehole televiewer measurement method, borehole radar measurement method, fault stability evaluation methods and rock joint evaluation method. The execution of the project has resulted in the establishment of an 'Integrated Methodological System for Site Characterization in Granite Site for High Level Radioactive Waste Repository' and the 8 key methodologies for site characterization: bore hole drilling method with minimum disturbance to rock mass, measurement method for hydrogeological parameters of fracture granite mass, in situ groundwater sampling methods from bore holes in fractured granite mass, fracture measurement methods by borehole televiewer and bore radar system, hydrogeochemical logging, low permeability measurement methods, geophysical methods for rock mass evaluation, modeling methods for rock joints. Those methods are comprehensive, advanced, innovative, practical, reliable and of high accuracy. The comprehensive utilization of those methods in granite mass will help to obtain systematic parameters of

  2. Key scientific challenges in geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Wang Ju

    2007-01-01

    The geological disposal of high radioactive waste is a challenging task facing the scientific and technical world. This paper introduces the latest progress of high level radioactive disposal programs in the latest progress of high level radioactive disposal programs in the world, and discusses the following key scientific challenges: (1) precise prediction of the evolution of a repository site; (2) characteristics of deep geological environment; (3) behaviour of deep rock mass, groundwater and engineering material under coupled con-ditions (intermediate to high temperature, geostress, hydraulic, chemical, biological and radiation process, etc); (4) geo-chemical behaviour of transuranic radionuclides with low concentration and its migration with groundwater; and (5) safety assessment of disposal system. Several large-scale research projects and several hot topics related with high-level waste disposal are also introduced. (authors)

  3. Determination of performance criteria for high-level solidified nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Holdsworth, T.

    1979-05-07

    To minimize radiological risk from the operation of a waste management system, performance limits on volatilization, particulate dispersion, and dissolution characteristics of solidified high level waste must be specified. The results show clearly that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. Absolute values of expected risk are very sensitive to modeling assumptions. The transportation and interim storage operations appear to be most limiting in determining the performance characteristics required. The expected values of risk do not rely upon the repositories remaining intact over the potentially hazardous lifetime of the waste.

  4. Determination of performance criteria for high-level solidified nuclear waste

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.

    1979-01-01

    To minimize radiological risk from the operation of a waste management system, performance limits on volatilization, particulate dispersion, and dissolution characteristics of solidified high level waste must be specified. The results show clearly that the pre-emplacement environs are more limiting in establishing the waste form performance criteria than the post-emplacement environs. Absolute values of expected risk are very sensitive to modeling assumptions. The transportation and interim storage operations appear to be most limiting in determining the performance characteristics required. The expected values of risk do not rely upon the repositories remaining intact over the potentially hazardous lifetime of the waste

  5. National high-level waste systems analysis

    International Nuclear Information System (INIS)

    Kristofferson, K.; O'Holleran, T.P.

    1996-01-01

    Previously, no mechanism existed that provided a systematic, interrelated view or national perspective of all high-level waste treatment and storage systems that the US Department of Energy manages. The impacts of budgetary constraints and repository availability on storage and treatment must be assessed against existing and pending negotiated milestones for their impact on the overall HLW system. This assessment can give DOE a complex-wide view of the availability of waste treatment and help project the time required to prepare HLW for disposal. Facilities, throughputs, schedules, and milestones were modeled to ascertain the treatment and storage systems resource requirements at the Hanford Site, Savannah River Site, Idaho National Engineering Laboratory, and West Valley Demonstration Project. The impacts of various treatment system availabilities on schedule and throughput were compared to repository readiness to determine the prudent application of resources. To assess the various impacts, the model was exercised against a number of plausible scenarios as discussed in this paper

  6. Conceptual design for vitrification of HLW at West Valley using a rotary calciner/metallic melter

    International Nuclear Information System (INIS)

    Giraud, J.P.; Conord, J.P.; Saverot, P.M.

    1984-01-01

    The CEA has had an extensive research program in the field of vitrification technology for over 24 years, and several testing facilities were used throughout all phases of development and engineering: The Vulcain facility comprises a vitrification hot cell and four auxiliary hot cells. Vulcain allows the production of 2-kg samples of active glass. The off-gas treatment system allows testing the DF of each equipment. The auxiliary cells are equipped with leach-rate tests, diffusion tests, and irradiation tests on the glass samples. The Atlas facility is a reproduction of AVM calcination and vitrification furnaces at 1/2 scale enclosed in a glove box. This facility is used for testing ruthenium volatility and containment in the vitrification process. The full-scale AVM inactive pilot facility is used for testing calcination and vitrification of new compositions of high-level waste and for developing new types of vitrification furnaces. The inactive test loop is for testing air cooling of glass containers. The full-scale AVH inactive pilot facility is used for testing AVH technology and has been in operation since late 1981

  7. Proposal for basic safety requirements regarding the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    1980-04-01

    A working group commissioned to prepare proposals for basic safety requirements for the storage and transport of radioactive waste prepared its report to the Danish Agency of Environmental Protection. The proposals include: radiation protection requirements, requirements concerning the properties of high-level waste units, the geological conditions of the waste disposal location, the supervision of waste disposal areas. The proposed primary requirements for safety evaluation of the disposal of high-level waste in deep geological formations are of a general nature, not being tied to specific assumptions regarding the waste itself, the geological and other conditions at the place of disposal, and the technical methods of disposal. It was impossible to test the proposals for requirements on a working repository. As no country has, to the knowledge of the working group, actually disposed of hifg-level radioactive waste or approved of plans for such disposal. Methods for evaluating the suitability of geological formations for waste disposal, and background material concerning the preparation of these proposals for basic safety requirements relating to radiation, waste handling and geological conditions are reviewed. Appended to the report is a description of the phases of the fuel cycle that are related to the storage of spent fuel and the disposal of high-level reprocessing waste in a salt formation. It should be noted that the proposals of the working group are not limited to the disposal of reprocessed fuel, but also include the direct disposal of spent fuel as well as disposal in geological formations other than salt. (EG)

  8. Hot-wall corrosion testing of simulated high level nuclear waste

    International Nuclear Information System (INIS)

    Chandler, G.T.; Zapp, P.E.; Mickalonis, J.I.

    1995-01-01

    Three materials of construction for steam tubes used in the evaporation of high level radioactive waste were tested under heat flux conditions, referred to as hot-wall tests. The materials were type 304L stainless steel alloy C276, and alloy G3. Non-radioactive acidic and alkaline salt solutions containing halides and mercury simulated different high level waste solutions stored or processed at the United States Department of Energy's Savannah River Site. Alloy C276 was also tested for corrosion susceptibility under steady-state conditions. The nickel-based alloys C276 and G3 exhibited excellent corrosion resistance under the conditions studied. Alloy C276 was not susceptible to localized corrosion and had a corrosion rate of 0.01 mpy (0.25 μm/y) when exposed to acidic waste sludge and precipitate slurry at a hot-wall temperature of 150 degrees C. Type 304L was susceptible to localized corrosion under the same conditions. Alloy G3 had a corrosion rate of 0.1 mpy (2.5 μm/y) when exposed to caustic high level waste evaporator solution at a hot-wall temperature of 220 degrees C compared to 1.1 mpy (28.0 μ/y) for type 304L. Under extreme caustic conditions (45 weight percent sodium hydroxide) G3 had a corrosion rate of 0.1 mpy (2.5 μm/y) at a hot-wall temperature of 180 degrees C while type 304L had a high corrosion rate of 69.4 mpy (1.8 mm/y)

  9. Design of a hot pilot plant facility for demonstration of the pot calcination process

    Energy Technology Data Exchange (ETDEWEB)

    Buckham, J A

    1962-01-01

    A facility was designed for demonstration of the pot calcination process with wastes from processing aluminum alloy fuels, Darex or electrolytic processing of stainless-steel fuels, and Purex processes. This facility will also permit determination of procedures required for economical production of low-porosity, relatively nonleachable materials by addition of suitable reagents to the wastes fed to the calciner. The process consists of concentration by evaporation and thermal decomposition in situ in pots which also serve as the final disposal containers. This unit permits determination of pot loading and density, leachability, melting point, volatile material content, heat release, and thermal conductivity of the calcine. Also to be determined are transient calcine temperature distributions, fission product behavior during calcination, deentrainment obtained in the various parts of the system, decontamination achieved on all liquid and gaseous effluent streams, need for venting of stored pots, optimum means of remotely sealing the pots, and methods required for production of a minimum volume of noncondensable off-gas. This facility will employ nominal full-scale pots 8 and 12 in. in diameter and 8 ft long. A unique evaporator design was evolved to permit operation either with close-coupled continuous feed preparation or with bath feed preparation. Provisions were made to circumvent possible explosions due to organic material in feed solutions and other suspected hazards.

  10. Leaching behavior of simulated high-level waste glass

    International Nuclear Information System (INIS)

    Kamizono, Hiroshi

    1987-03-01

    The author's work in the study on the leaching behavior of simulated high-level waste (HLW) glass were summarized. The subjects described are (1) leach rates at high temperatures, (2) effects of cracks on leach rates, (3) effects of flow rate on leach rates, and (4) an in-situ burial test in natural groundwater. In the following section, the leach rates obtained by various experiments were summarized and discussed. (author)

  11. Economic considerations/comparisons for the disposal of defense high-level waste

    International Nuclear Information System (INIS)

    Leclaire, D.B.; Lazur, E.G.

    1985-01-01

    This paper provides a summary, in a generic sense, of the economic considerations and comparisons of permanent isolation of defense high-level waste (DHLW) in a licensed geologic repository. Topics considered include underground disposal, economic analysis, comparative evaluations, national defense, radioactive waste facilities, and licensing

  12. Laboratory simulation of high-level liquid waste evaporation and storage

    International Nuclear Information System (INIS)

    Anderson, P.A.

    1978-01-01

    The reprocessing of nuclear fuel generates high-level liquid wastes (HLLW) which require interim storage pending solidification. Interim storage facilities are most efficient if the HLLW is evaporated prior to or during the storage period. Laboratory evaporation and storage studies with simulated waste slurries have yielded data which are applicable to the efficient design and economical operation of actual process equipment

  13. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  14. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  15. Strategic lessons in high-level waste management planning

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Neil

    1999-07-01

    This presentation discusses some issues in the planning and execution of high-level waste (HLW) disposal. The topics are (1) Initial considerations, (2) Issues in structuring a programme, (3) Disposal concepts, (4) Geological environments, (5) Site selection and characterisation, (6) Waste transport, (7) Performance assessment methodology and application, (8) Some key issues. The options for spent fuel management can give rise to a variety of different wastes. The quantity of waste arising will affect the volume of rock required for deposition, both with respect to rock integrity and requirements for heat dissipation. A repository must not be considered in isolation from the rest of the waste management programme. The repository development plan should be supported by a schedule of activities and related funding mechanisms, implying a long-term commitment in policy terms, and should include a corresponding legal and regulatory framework. The idea that disposed waste might be retrieved by future generations for processing under new technology is discussed. Safeguards requirements on fissile material within spent fuel or any other wastes imply indefinite control. Disposal concepts include the geological environment and the engineered barrier system within it. Site selection involves several steps: regional-scale characterisation, local characterisation, hydrological studies, etc. Key issues are retrieval vs. safeguards, optimisation of repository design, reducing long programme timescales, international collaboration.

  16. Strategic lessons in high-level waste management planning

    International Nuclear Information System (INIS)

    Chapman, Neil

    1999-01-01

    This presentation discusses some issues in the planning and execution of high-level waste (HLW) disposal. The topics are (1) Initial considerations, (2) Issues in structuring a programme, (3) Disposal concepts, (4) Geological environments, (5) Site selection and characterisation, (6) Waste transport, (7) Performance assessment methodology and application, (8) Some key issues. The options for spent fuel management can give rise to a variety of different wastes. The quantity of waste arising will affect the volume of rock required for deposition, both with respect to rock integrity and requirements for heat dissipation. A repository must not be considered in isolation from the rest of the waste management programme. The repository development plan should be supported by a schedule of activities and related funding mechanisms, implying a long-term commitment in policy terms, and should include a corresponding legal and regulatory framework. The idea that disposed waste might be retrieved by future generations for processing under new technology is discussed. Safeguards requirements on fissile material within spent fuel or any other wastes imply indefinite control. Disposal concepts include the geological environment and the engineered barrier system within it. Site selection involves several steps: regional-scale characterisation, local characterisation, hydrological studies, etc. Key issues are retrieval vs. safeguards, optimisation of repository design, reducing long programme timescales, international collaboration

  17. Nondestructive examination of DOE high-level waste storage tanks

    International Nuclear Information System (INIS)

    Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-01-01

    A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack

  18. Preliminary evaluation of alternative forms for immobilization of Hanford high-level defense wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Beary, M.M.; Gallagher, S.A.; Higley, B.A.; Johnston, R.G.; Jungfleisch, F.M.; Kupfer, M.J.; Palmer, R.A.; Watrous, R.A.; Wolf, G.A.

    1980-09-01

    A preliminary evaluation of solid waste forms for immobilization of Hanford high-level radioactive defense wastes is presented. Nineteen different waste forms were evaluated and compared to determine their applicability and suitability for immobilization of Hanford salt cake, sludge, and residual liquid. This assessment was structured to address waste forms/processes for several different leave-retrieve long-term Hanford waste management alternatives which give rise to four different generic fractions: (1) sludge plus long-lived radionuclide concentrate from salt cake and residual liquid; (2) blended wastes (salt cake plus sludge plus residual liquid); (3) residual liquid; and (4) radionuclide concentrate from residual liquid. Waste forms were evaluated and ranked on the basis of weighted ratings of seven waste form and seven process characteristics. Borosilicate Glass waste forms, as marbles or monoliths, rank among the first three choices for fixation of all Hanford high-level wastes (HLW). Supergrout Concrete (akin to Oak Ridge National Laboratory Hydrofracture Process concrete) and Bitumen, low-temperature waste forms, rate high for bulk disposal immobilization of high-sodium blended wastes and residual liquid. Certain multi-barrier (e.g., Coated Ceramic) and ceramic (SYNROC Ceramic, Tailored Ceramics, and Supercalcine Ceramic) waste forms, along with Borosilicate Glass, are rated as the most satisfactory forms in which to incorporate sludges and associated radionuclide concentrates. The Sol-Gel process appears superior to other processes for manufacture of a generic ceramic waste form for fixation of Hanford sludge. Appropriate recommendations for further research and development work on top ranking waste forms are made

  19. Problems related to final disposal of high-level radioactive waste in Russia

    International Nuclear Information System (INIS)

    Velichkin, Vasily I.

    1999-01-01

    According to this presentation, the radioactivity of the total amount of radioactive waste accumulated in Russia to date is 1.5*10 9 Ci and of spent fuel 4.5*10 9 Ci. A table is given that shows the source, type, volume activity and storage type under the responsibility of the different departments and enterprises. 99.9% of the wastes are accumulated at the enterprises of Minatom of the Russian Federation. Some companies inject their liquid wastes from ionisation sources and intermediate liquid waste from the nuclear power industry into deep-seated reliably isolated aquifers. The Mayak plant has released liquid low-level and intermediate wastes into artificial reservoirs and Lake Karachay. Liquid high-level wastes are always stored in special tanks at interim storage facilities. A large number of nuclear submarines are laid up in North-Western Russia and East Russia, with spent fuel still in place as the interim storages in these regions are filled up and there are no conditioning plants. Underground disposal is considered the best way of isolating radioactive waste for as long as it is hazardous to the environment. Two new technologies are discussed. One involves including long-lived isotopes in high-stable mineral matrices, the other uses selective separation from the bulk of wastes. The matrices should be disposed of deep in the Earth's crust, at least 2-3 km down. Liquid waste of caesium-strontium fraction must be transformed into glass-like form and stored underground at a depth of a few hundred metres. Short-lived low level and intermediate level wastes should be conditioned and then deposited in subsurface ferroconcrete repositories constructed in clays. Finally, the presentation discusses the selection of sites and conditions for radioactive waste disposal. Two sites are discussed, the Mayak plant and a possible site at Mining Chemical Combine in Krasnoyarsk-26

  20. Bibliography of PNL publications in management of radioactive wastes, subject-indexed (alphabetically) and listed chronologically (latest issues first)

    International Nuclear Information System (INIS)

    Powell, J.A.

    1976-07-01

    The citations are arranged under: actinides, alpha particles, americium, beta particles, calcination, cements, ceramics, cesium, containers, decontamination, evaporation, fluidized bed, glass, ground release, high-level wastes, incinerators, liquid wastes, marine disposal, melting, nonradioactive waste disposal, Pu, radiation doses, radiation protection, disposal, processing, radionuclide migration, Ru, safety, separation processes, soils, solidification, solid wastes, stack disposal, temperature, thermal conductivity, transmutation, tritium, underground disposal, U, volatility, and waste disposal/management/processing/storage/transportation

  1. Production of a High-Level Waste Glass from Hanford Waste Samples

    International Nuclear Information System (INIS)

    Crawford, C.L.; Farrara, D.M.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP)

  2. Cost calculation and financial measures for high-level waste disposal business

    International Nuclear Information System (INIS)

    Sekiguchi, Hiromasa.

    1987-01-01

    A study is made on the costs for disposal of high-level wastes, centering on financial problems involving cost calculation for disposal business and methods and systems for funding the business. The first half of the report is focused on calculation of costs for disposal business. Basic equations are shown to calculate the total costs required for a disposal plant and the costs for disposal of one unit of high-level wastes. A model is proposed to calculate the charges to be paid by electric power companies to the plant for disposal of their wastes. Another equation is derived to calculate the disposal charge per kWh of power generation in a power plant. The second half of the report is focused on financial measures concerning expenses for disposal. A financial basis should be established for the implementation of high-level waste disposal. It is insisted that a reasonable method for estimating the disposal costs should be set up and it should be decided who will pay the expenses. Discussions are made on some methods and systems for funding the disposal business. An additional charge should be included in the electricity bill to be paid by electric power users, or it should be included in tax. (Nogami, K.)

  3. Symposium on the development of nuclear waste policy: Siting the high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) attempted to formulate a viable national policy for managing the disposal of high-level nuclear wastes. The NWPA authorized the selection of two repository sites: the first to be constructed in the West and a second site developed in the eastern United States. A detailed process for site selection was outlined in the NWPA. In addition, the NWPA authorized open-quotes the development of a waste transportation system; required the Department of Energy (DOE) to submit a proposal to construct a facility for monitored retrievable storage (MRS) after conducting a study of the need for, and feasibility of such a facility; and required the President to evaluate the use of the repositories ... for the disposal of high-level waste resulting from defense activitiesclose quotes (DOE, 1988, p. 1). A series of provisions granting oversight participation to states and Indian tribes, as well as a compensation package for the ultimate host state were also included. Responsibility for implementing the NWPA was assigned to DOE

  4. Long-term high-level waste technology. Composite quarterly technical report, July-September 1980

    International Nuclear Information System (INIS)

    Cornman, W.R.

    1981-02-01

    This composite quarterly technical report summarizes work performed at participating sites to immobilize high-level radioactive wastes. The technical information included in this report is structured along the lines of the Work Breakdown Structure adopted for use in the High-Level Waste Management Technology (WBS) program. The functions and work elements of the WBS are as follows: function 1 - program management and support, which includes work elements of management and budget, environmental and safety assessments, and other support; function 2 - waste preparation, which includes in-situ storage or disposal, waste retrieval, and separation and concentration; function 3 - waste fixation with work elements of waste form development and characterization, and process and equipment development; and function 4 - final handling which includes canister development and characterization, and onsite storage or disposal

  5. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification

    International Nuclear Information System (INIS)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program

  6. Neotectonic movement feature in preselection area for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Huang Xianfang; Gao Yang; He Jianguo; Li Jianzhong; Gao Honglei; Xu Guoqing

    2010-01-01

    Neotectonic activity intensity is an important criteria for evaluating high level radioactive waste repository. The guiding ideology, methods and application of neotectonic study are elaborated in the paper. According to comparison research between the south and north part of east Tianshan area, the south part of east Tianshan is regarded as relative stable or relative weak in neotectonic movement in Neogene period and was selected as preselection area for high level radioactive waste repository. (authors)

  7. Optimization of waste loading in high-level glass in the presence of uncertainty

    International Nuclear Information System (INIS)

    Hoza, M.; Fann, G.I.; Hopkins, D.F.

    1995-02-01

    Hanford high-level liquid waste will be converted into a glass form for long-term storage. The glass must meet certain constraints on its composition and properties in order to have desired properties for processing (e.g., electrical conductivity, viscosity, and liquidus temperature) and acceptable durability for long-term storage. The Optimal Waste Loading (OWL) models, based on rigorous mathematical optimization techniques, have been developed to minimize the number of glass logs required and determine glass-former compositions that will produce a glass meeting all relevant constraints. There is considerable uncertainty in many of the models and data relevant to the formulation of high-level glass. In this paper, we discuss how we handle uncertainty in the glass property models and in the high-level waste composition to the vitrification process. Glass property constraints used in optimization are inequalities that relate glass property models obtained by regression analysis of experimental data to numerical limits on property values. Therefore, these constraints are subject to uncertainty. The sampling distributions of the regression models are used to describe the uncertainties associated with the constraints. The optimization then accounts for these uncertainties by requiring the constraints to be satisfied within specified confidence limits. The uncertainty in waste composition is handled using stochastic optimization. Given means and standard deviations of component masses in the high-level waste stream, distributions of possible values for each component are generated. A series of optimization runs is performed; the distribution of each waste component is sampled for each run. The resultant distribution of solutions is then statistically summarized. The ability of OWL models to handle these forms of uncertainty make them very useful tools in designing and evaluating high-level waste glasses formulations

  8. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Brock Presgrove, S.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste currently stored at the DOE Savannah River Site Tank Farm. Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on the project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review: Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator; The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. (author)

  9. Radioactive waste immobilization in protective ceramic forms by the HIP method at high pressures

    International Nuclear Information System (INIS)

    Sayenko, S.Yu.; Kantsedal, V.P.; Tarasov, R.V.; Starchenko, V.A.; Lyubtsev, R.I.

    1993-01-01

    Intense research activities have been carried out in recent years at the Kharkov Institute of Physics and Technology (KIPT) to develop the method of hot isostatic pressing (HIP) for immobilizing radioactive (primarily, high-level) wastes. With this method, the radioactive material is immobilized in a matrix under the simultaneous action of high pressures (up to 6,000 atm) and appropriate temperatures. The process has 2 variants: (1) radioactive wastes are treated as powders of oxides resulting from calcination during chemical treatment of spent fuel. In this case the radioactive material enters into the crystalline structure of the immobilized matrix or is distributed in the matrix as a homogeneous mixture; (2) protective barrier layers are pressed on spent fuel rods or their pieces as radioactive wastes, by the HIP method (fuel rod encapsulation in a protective form). Based on numerous results from various studies, the authors suggest that various ceramic compositions should be used as protective materials. Here the authors report two trends of their investigations: (1) development of ecologically clean process equipments for radioactive waste treatment by the HIP method; (2) manufacture of promising protective ceramic compositions and investigation of their physico-mechanical properties

  10. Consolidated waste forms: glass marbles and ceramic pellets

    International Nuclear Information System (INIS)

    Treat, R.L.; Rusin, J.M.

    1982-05-01

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes

  11. Development and application of a conceptual approach for defining high-level waste

    International Nuclear Information System (INIS)

    Croff, A.G.; Forsberg, C.W.; Kocher, D.C.; Cohen, J.J.; Smith, C.F.; Miller, D.E.

    1986-01-01

    This paper presents a conceptual approach to defining high-level radioactive waste (HLW) and a preliminary quantitative definition obtained from an example implementation of the conceptual approach. On the basis of the description of HLW in the Nuclear Waste Policy Act of 1982, we have developed a conceptual model in which HLW has two attributes: HLW is (1) highly radioactive and (2) requires permanent isolation via deep geologic disposal. This conceptual model results in a two-dimensional waste categorization system in which one axis, related to ''requires permanent isolation,'' is associated with long-term risks from waste disposal and the other axis, related to ''highly radioactive,'' is associated with short-term risks from waste management and operations; this system also leads to the specification of categories of wastes that are not HLW. Implementation of the conceptual model for defining HLW was based primarily on health and safety considerations. Wastes requiring permanent isolation via deep geologic disposal were defined by estimating the maximum concentrations of radionuclides that would be acceptable for disposal using the next-best technology, i.e., greater confinement disposal (GCD) via intermediate-depth burial or engineered surface structures. Wastes that are highly radioactive were defined by adopting heat generation rate as the appropriate measure and examining levels of decay heat that necessitate special methods to control risks from operations in a variety of nuclear fuel-cycle situations. We determined that wastes having a power density >200 W/m 3 should be considered highly radioactive. Thus, in the example implementation, the combination of maximum concentrations of long-lived radionuclides that are acceptable for GCD and a power density of 200 W/m 3 provides boundaries for defining wastes that are HLW

  12. High-level waste canister envelope study: structural analysis

    International Nuclear Information System (INIS)

    1977-11-01

    The structural integrity of waste canisters, fabricated from standard weight Type 304L stainless steel pipe, was analyzed for sizes ranging from 8 to 24 in. diameter and 10 to 16 feet long under normal, abnormal, and improbable life cycle loading conditions. The canisters are assumed to be filled with vitrified high-level nuclear waste, stored temporarily at a fuel reprocessing plant, and then transported for storage in an underground salt bed or other geologic storage. In each of the three impact conditions studies, the resulting impact force is far greater than the elastic limit capacity of the material. Recommendations are made for further study

  13. Thermal analysis of Yucca Mountain commercial high-level waste packages

    International Nuclear Information System (INIS)

    Altenhofen, M.K.; Eslinger, P.W.

    1992-10-01

    The thermal performance of commercial high-level waste packages was evaluated on a preliminary basis for the candidate Yucca Mountain repository site. The purpose of this study is to provide an estimate for waste package component temperatures as a function of isolation time in tuff. Several recommendations are made concerning the additional information and modeling needed to evaluate the thermal performance of the Yucca Mountain repository system

  14. Modeling for speciation of radionuclides in waste packages with high-level radioactive wastes

    International Nuclear Information System (INIS)

    Weyand, Torben; Bracke, Guido; Seher, Holger

    2016-10-01

    Based on a literature search on radioactive waste inventories adequate thermodynamic data for model inventories were derived for geochemical model calculations using PHREEQC in order to determine the solid phase composition of high-level radioactive wastes in different containers. The calculations were performed for different model inventories (PWR-MOX, PWR-UO2, BWR-MOX, BMR-UO2) assuming intact containers under reduction conditions. The effect of a defect in the container on the solid phase composition was considered in variation calculations assuming air contact induced oxidation.

  15. Improved polyphase ceramic form for high-level defense nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Morgan, P.E.D.; Clarke, D.R.; Flintoff, J.J.; Shaw, T.M.

    1983-01-01

    An improved ceramic nuclear waste form and fabrication process have been developed using simulated Savannah River Plant defense high-level waste compositions. The waste form provides flexibility with respect to processing conditions while exhibiting superior resistance to ground water leaching than other currently proposed forms. The ceramic, consolidated by hot-isostatic pressing at 1040 0 C and 10,000 psi, is composed of six major phases, nepheline, zirconolite, a murataite-type cubic phase, magnetite-type spinel, a magnetoplumbite solid solution, and perovskite. The waste form provides multiple crystal lattice sites for the waste elements, minimizes amorphous intergranular material, and can accommodate waste loadings in excess of 60 wt %. The fabrication of the ceramic can be accomplished with existing manufacturing technology and eliminates the effects of radionuclide volatilization and off-gas induced corrosion experienced with the molten processes for vitreous form production

  16. The Canadian program for management of spent fuel and high level wastes

    International Nuclear Information System (INIS)

    Barnes, R.W.; Mayman, S.A.

    A brief history and description of the nuclear power program in Canada is given. Schedules and programs are described for storing spent fuel in station fuel bays, centralized water pool storage facilities, concrete canisters, convection vaults, and rock or salt formations. High-level wastes will be retrievable initially, therefore the focus is on storage in mined cavities. The methods developed for high-level waste storage/disposal will ideally be flexible enough to accommodate spent fuel. (E.C.B.)

  17. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    International Nuclear Information System (INIS)

    Ebert, W.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M andO 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to

  18. Management of radioactive liquid waste at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Bendixsen, C.L.

    1992-01-01

    Highly radioactive liquid wastes (HLLW) are routinely produced during spent nuclear fuel processing at the Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL). This paper discusses the processes and safe practices for management of the radioactive process waste streams, which processes include collection, concentration, interim storage, calcination to granular solids, and long-term intermediate storage. Over four million gallons of HLLW have been converted to a recoverable granular solid form through waste liquid injection into a high-temperature, fluidized bed wherein the wastes are converted to their respective solid oxides. The development of a glass ceramic solid for the long-term permanent disposal of the high level waste (HLW) solids is also described

  19. Handling and storage of high-level liquid wastes from reprocessing of spent fuel

    International Nuclear Information System (INIS)

    Finsterwalder, L.

    1982-01-01

    The high level liquid wastes arise from the reprocessing of irradiated nuclear fuels, which are dissolved in aqueous acid solution, and the plutonium and unburned uranium removed in the chemical separation plant. The remaining solution, containing more than 99% of the dissolved fission products, together with impurities from cladding materials, corrosion products, traces of unseparated plutonium and uranium and most of the transuranic elements, constitutes the high-level waste. At present, these liquid wastes are usually concentrated by evaporation and stored as an aqueous nitric acid solution in high-integrity stainless-steel tanks. There is now world-wide agreement that, for the long term, these liquid wastes should be converted to solid form and much work is in progress to develop techniques for the solidification of these wastes. This paper considers the design requirements for such facilities and the experience gained during nearly 30 years of operation. (orig./RW)

  20. Management of commercial high-level and transuranium-contaminated radioactive wastes. Environmental statement

    International Nuclear Information System (INIS)

    1974-09-01

    This Draft Environmental Statement is issued to assess the environmental impact of the AEC's program to manage commercial high-level and transuranium-contaminated radioactive wastes. These are the types of commercial radioactive wastes for which AEC custody is required by present or anticipated regulations. The program consists of three basic parts: development of a Retrievable Surface Storage Facility (RSSF) for commercial high-level waste, using existing technology; evaluating geological formations and sites for the development of a Geological Disposal Pilot Plant (GDPP) which would lead to permanent disposal; and providing retrievable storage for the transuranium-contaminated waste pending availability of permanent disposal. Consideration has been given to all environmental aspects of the program, using waste generation projections through the year 2000. Radiological and other impacts of implementing the program are expected to be minimal, but will be discussed in further environmental statements which will support budget actions for specific repositories. The alternatives discussed in this Draft Environmental Statement are presented. (U.S.)

  1. Transferring knowledge about high-level waste repositories: An ethical consideration

    International Nuclear Information System (INIS)

    Berndes, S.; Kornwachs, K.

    1996-01-01

    The purpose of this paper is to present requirements to Information and Documentation Systems for high-level waste repositories from an ethical point of view. A structured synopsis of ethical arguments used by experts from Europe and America is presented. On the one hand the review suggests to reinforce the obligation to transfer knowledge about high level waste repositories. This obligation is reduced on the other hand by the objection that ethical obligations are dependent on the difference between our and future civilizations. This reflection results in proposing a list of well-balanced ethical arguments. Then a method is presented which shows how scenarios of possible future civilizations for different time horizons and related ethical arguments are used to justify requirements to the Information and Documentation System

  2. Technical development for geological disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Sugino, Hiroyuki; Kawakami, Susumu; Yamanaka, Yumiko

    1997-01-01

    Technical developments for geological disposal of high-level radioactive wastes materials research and design technique for engineered barriers (overpack and buffer material) were studied to evaluate more reliable disposal systems for high-level radioactive wastes. A lifetime prediction model for the maximum corrosion depth of carbon steel was developed. A preferable alloys evaluation method for crevice corrosion was established for titanium. Swelling pressure and water permeability of bentonite as a buffer material was measured, and coupled hydro-thermo-mechanical analysis code for bentonite was also studied. The CIP (cold isostatic pressing) method for monolithically formed buffer material was tested. A concept study on operation equipment for the disposal site was performed. Activities of microorganisms involved in underground performance were investigated. (author)

  3. Human factors programs for high-level radioactive waste handling systems

    International Nuclear Information System (INIS)

    Pond, D.J.

    1992-04-01

    Human Factors is the discipline concerned with the acquisition of knowledge about human capabilities and limitations, and the application of such knowledge to the design of systems. This paper discusses the range of human factors issues relevant to high-level radioactive waste (HLRW) management systems and, based on examples from other organizations, presents mechanisms through which to assure application of such expertise in the safe, efficient, and effective management and disposal of high-level waste. Additionally, specific attention is directed toward consideration of who might be classified as a human factors specialist, why human factors expertise is critical to the success of the HLRW management system, and determining when human factors specialists should become involved in the design and development process

  4. Human factors programs for high-level radioactive waste handling systems

    International Nuclear Information System (INIS)

    Pond, D.J.

    1992-01-01

    Human Factors is the discipline concerned with the acquisition of knowledge about human capabilities and limitations, and the application of such knowledge to the design of systems. This paper discusses the range of human factors issues relevant to high-level radioactive waste (HLRW) management systems and, based on examples form other organizations, presents mechanisms through which to assure application of such expertise in the safe, efficient, and effective management and disposal of high-level waste. Additionally, specific attention is directed toward consideration of who might be classified as a human factors specialist, why human factors expertise is critical to the success of the HLRW management system, and determining when human factors specialists should become involved in the design and development process

  5. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied. The terminal waste form processes considered were: borosilicate glass, low-alkali glass, marbles-in-lead matrix, and crystallinolecular potential and molecular dynamics calculations of the effect are yet to be completed. Cous oxide was also investigated. The reaction is first order in nitrite ion, second order in hydrogen ion, and between zero and first order in hydroxylamine monosulfonate, depending on the concentration

  6. Composite quarterly technical report: long-term high-level waste technology, October-December 1980

    International Nuclear Information System (INIS)

    Cornman, W.R.

    1981-04-01

    The technical information in this report summarizes work performed at participating sites to immobilize high-level radioactive wastes. The areas reported are in: program management and support; waste preparation; waste fixation; and final handling. Majority of the studies were in the area of waste fixation, some of which are: leaching tests of ceramic forms, high silica glass, graphite powder and other carbon preparations; viscosity measurements for a range of waste-glass compositions from references borosilicate glass to high-alumina glasses; neutron activation analysis for measuring leach rates; preparation of SYNROC D spheres; formulations for preparing ceramics from defense waste composition; development of a pilot-scale glass melter, and kinetic studies of slag formation in glass melters

  7. Settling of Spinel in A High-Level Waste Glass Melter

    International Nuclear Information System (INIS)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-01

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors call melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 degree C (or even higher in advanced melters) to create a melt that becomes glass on cooling. This process is slow and expensive. Moreover, the melters that are currently in use or are going to be used in the U.S. are sensitive to clogging and thus cannot process melt in which solid particles are suspended. These particles settle and gradually accumulate on the melter bottom. Such particles, most often small crystals of spinel ( a mineral containing iron, nickel, chromium, and other minor oxides), inevitably occurred in the melt when the content of the waste in the glass (called waste loading) increases above a certain limit. To avoid the presence of solid particles in the melter, the waste loading is kept rather low, in average 15% lower than in glass formulated for more robust melters

  8. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    1993-01-01

    On February 17,1989, the Midwestern Office of The Council of State Governments and the US Department of Energy entered into a cooperative agreement authorizing the initiation of the Midwestern High-Level Radioactive Waste Transportation Project. The transportation project continued to receive funding from DOE through amendments to the original cooperative agreement, with December 31, 1993, marking the end of the initial 5-year period. This progress report reflects the work completed by the Midwestern Office from February 17,1989, through December 31,1993. In accordance with the scopes of work governing the period covered by this report, the Midwestern Office of The Council of State Governments has worked closely with the Midwestern High-Level Radioactive Waste Committee. Project staff have facilitated all eight of the committee's meetings and have represented the committee at meetings of DOE's Transportation Coordination Group (TCG) and Transportation External Coordination Working Group (TEC/WG). Staff have also prepared and submitted comments on DOE activities on behalf of the committee. In addition to working with the committee, project staff have prepared and distributed 20 reports, including some revised reports (see Attachment 1). Staff have also developed a library of reference materials for the benefit of committee members, state officials, and other interested parties. To publicize the library, and to make it more accessible to potential users, project staff have prepared and distributed regular notices of resource availability

  9. Status, direction, and critical issues of waste treatment technology

    International Nuclear Information System (INIS)

    Knowles, D.E.; Bonner, W.F.

    1983-01-01

    Nuclear power production and related activities generate radioactive wastes that must be safely managed to protect workers and the general public. The liquid-fed ceramic melting (LFCM) vitrification process is the reference process for vitrifying high-level nuclear waste in the U.S. as well as in Japan and India. The French are currently using a rotary kiln calciner/metallic melter system at their reprocessing facility. Compaction or controlled-air incineration are the currently preferred options for low-level waste solids, followed by immobilization in an appropriate matrix. The Nuclear Waste Policy Act of 1982 is a significant step in proceeding with waste treatment and disposal. Programs can now build on past work to assure that public safety and regulations are met in a cost-effective manner

  10. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This stu