Sample records for high-latitude topside ionosphere

  1. High-Latitude Topside Ionospheric Vertical Electron Density Profile Changes in Response to Large Magnetic Storms (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.


    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst -100nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial andor temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  2. Characteristic features of topside ionograms in the high-latitude ionosphere. (United States)

    Panshin, Evgeniy; Danilkin, Nick; Tsybulya, Konstantin; Zhuravliov, Sergey

    Topside ionograms display a multitude of specific features in the high-latitude regions. In this report we present an analysis of these features based upon topside ionograms of the Kosmos-1809 satellite taken in May-June 1987. These ionograms were received onboard icebreaker Sibir during a polar expedition in this time. Since the ionograms were downlinked directly in the time of sounding, they were not strongly curtailed to fit the limited onboard memory and thus were much more informative. Acquiring the data in such way allowed us to see little-studied and even unknown ionogram features. Among them we note traces of a characteristic form which were interpreted earlier as signal reflections from almost vertical walls with increased electron density. Such structures are typical for the auroral oval ionosphere. To interpret this features we used a technique of ray trajectory synthesis. We present a sequence of ionograms with all phases of closing to, flying through and away from a higher-density wall. Quite often one find on the polar ionograms broad-band noise signals in different frequency ranges. On the ionograms they are seen as frequency-limited vertical columns from the very top of the ionogram to its bottom. Low-frequency noise (0.3-0.8 MHz) appear during auroral oval fly-throughs and are interpreted as a result of auroral kilometric radiation (AKR). Narrow bands on the magnetic gyrofrequency and upper hybrid frequency could be understood as an ionospheric plasma resonance response near the radiating antenna. Also, there are strong noises in the 3-5 MHz which we were not able to interpret. During some sounding sessions the transmitter was turned off so it was possible to record only natural and artificial noises and separate them from the ionospheric sounding responses.

  3. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.


    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  4. The Upgraded European Digital Upper Atmosphere Server: new DIAS products for the high latitude ionosphere, the topside ionosphere and the plasmasphere (United States)

    Belehaki, Anna; Kutiev, Ivan; Zolesi, Bruno; Tsagouri, Ioanna; Dialetis, Dimitris; Marinov, Pencho; Fidanova, Stefka; Cander, Lili; Pietrella, Marco; Tziotziou, Kostas; Lykiardopoulos, Angelos


    Knowledge of the state of the upper atmosphere, and in particular its ionized part, is very important in several applications affected by space weather, especially the communications and navigation systems that rely on radio transmission. To better classify the ionosphere and forecast its disturbances over Europe, a data and model infrastructure platform called the European Digital Upper Atmosphere Server (DIAS) has been established in the National Observatory of Athens by a European consortium formed around eight ionospheric stations, and funded by the European Commission. The DIAS system operates since 2006 and the basic products that are delivered are real-time and historical ionograms, frequency plots and maps of the ionosphere on the foF2, M(3000)F2, MUF and bottomside electron density, as well as long term and short term forecasting up to 24 hour ahead. The DIAS system supports more than 500 subscribed users, including telecommunication companies, satellite operators, space agencies, radio amateurs, research organizations and the space weather scientific community. In 2012 the system has been upgraded, in close collaboration between the National Observatory of Athens, the Istituto Nazionale di Geofisica e Vulcanologia and the Bulgarian Academy of Sciences, with funding from the ESA/SSA Programme. The first group of new products results from the implementation of the TaD model (Topside Sounder Model assisted by Digisonde) that makes possible the generation of maps of the electron density at heights up to GNSS orbits, and of TEC and partial TEC maps (topside and plasmaspheric) over Europe. The TaD is based on the simple empirical functions for the transition height, the topside electron density scale height and their ratio, based on the Alouette/ISIS database, and models separately the oxygen, hydrogen and helium ions density profiles. The model takes as input the plasma characteristics at the height of maximum electron concentration that are provided in real

  5. Ionosphere Scintillation at Low and High Latitudes (Modelling vs Measurement) (United States)

    Béniguel, Yannick


    This paper will address the problem of scintillations characteristics, focusing on the parameters of interest for a navigation system. Those parameters are the probabilities of occurrence of simultaneous fading, the bubbles surface at IPP level, the cycle slips and the fades duration statistics. The scintillation characteristics obtained at low and high latitudes will be compared. These results correspond to the data analysis performed after the ESA Monitor ionosphere measurement campaign [1], [2]. A second aspect of the presentation will be the modelling aspect. It has been observed that the phase scintillation dominates at high latitudes while the intensity scintillation dominates at low latitudes. The way it can be reproduced and implemented in a propagation model (e.g. GISM model [3]) will be presented. Comparisons of measurements with results obtained by modelling will be presented on some typical scenarios. References [1] R. Prieto Cerdeira, Y. Beniguel, "The MONITOR project: architecture, data and products", Ionospheric Effects Symposium, Alexandria (Va), May 2011 [2] Y. Béniguel, R Orus-Perez , R. Prieto-Cerdeira , S. Schlueter , S. Scortan, A. Grosu "MONITOR 2: ionospheric monitoring network in support to SBAS and other GNSS and scientific purposes", IES Conference, Alexandria (Va), May 2015-05-22 [3] Y. Béniguel, P. Hamel, "A Global Ionosphere Scintillation Propagation Model for Equatorial Regions", Journal of Space Weather Space Climate, 1, (2011), doi: 10.1051/swsc/2011004

  6. Electon density profiles of the topside ionosphere

    Directory of Open Access Journals (Sweden)

    D. Bilitza


    Full Text Available The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h m F 2 to ~ 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350 000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2 down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling ~ 70% of the ionograms. An «editing process» is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.

  7. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF (United States)

    Sharber, J. R.


    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  8. Comparing High-latitude Ionospheric and Thermospheric Lagrangian Coherent Structures (United States)

    Wang, N.; Ramirez, U.; Flores, F.; Okic, D.; Datta-Barua, S.


    Lagrangian Coherent Structures (LCSs) are invisible boundaries in time varying flow fields that may be subject to mixing and turbulence. The LCS is defined by the local maxima of the finite time Lyapunov exponent (FTLE), a scalar field quantifying the degree of stretching of fluid elements over the flow domain. Although the thermosphere is dominated by neutral wind processes and the ionosphere is governed by plasma electrodynamics, we can compare the LCS in the two modeled flow fields to yield insight into transport and interaction processes in the high-latitude IT system. For obtaining thermospheric LCS, we use the Horizontal Wind Model 2014 (HWM14) [1] at a single altitude to generate the two-dimensional velocity field. The FTLE computation is applied to study the flow field of the neutral wind, and to visualize the forward-time Lagrangian Coherent Structures in the flow domain. The time-varying structures indicate a possible thermospheric LCS ridge in the auroral oval area. The results of a two-day run during a geomagnetically quiet period show that the structures are diurnally quasi-periodic, thus that solar radiation influences the neutral wind flow field. To find the LCS in the high-latitude ionospheric drifts, the Weimer 2001 [2] polar electric potential model and the International Geomagnetic Reference Field 11 [3] are used to compute the ExB drift flow field in ionosphere. As with the neutral winds, the Lagrangian Coherent Structures are obtained by applying the FTLE computation. The relationship between the thermospheric and ionospheric LCS is analyzed by comparing overlapping FTLE maps. Both a publicly available FTLE solver [4] and a custom-built FTLE computation are used and compared for validation [5]. Comparing the modeled IT LCSs on a quiet day with the modeled IT LCSs on a storm day indicates important factors on the structure and time evolution of the LCS.

  9. Postmidnight ionospheric troughs in summer at high latitudes (United States)

    Voiculescu, M.; Nygrén, T.; Aikio, A. T.; Vanhamäki, H.; Pierrard, V.


    In this article we identify possible mechanisms for the formation of postmidnight ionospheric troughs during summer, in sunlit plasma. Four events were identified in measurements of European Incoherent Scatter and ESR radars during CP3 experiments, when the ionosphere was scanned in a meridional plan. The spatial and temporal variation of plasma density, ion, and electron temperatures were analyzed for each of the four events. Super Dual Auroral Radar Network plasma velocity measurements were added, when these were available. For all high-latitude troughs the ion temperatures are high at density minima (within the trough), at places where the convection plasma velocity is eastward and high. There is no significant change in electron temperature inside the trough, regardless of its temporal evolution. We find that troughs in sunlit plasma form in two steps: the trough starts to form when energetic electron precipitation leads to faster recombination in the F region, and it deepens when entering a region with high eastward flow, producing frictional heating and further depleting the plasma. The high-latitude plasma convection plays an important role in formation and evolution of troughs in the postmidnight sector in sunlit plasma. During one event a second trough is identified at midlatitudes, with different characteristics, which is most likely produced by a rapid subauroral ion drift in the premidnight sector.

  10. Use of radio occultation to probe the high latitude ionosphere

    Directory of Open Access Journals (Sweden)

    A. J. Mannucci


    Full Text Available We have explored the use of COSMIC data to provide valuable scientific information on the ionospheric impacts of energetic particle precipitation during geomagnetic storms. Ionospheric electron density in the E region, and hence ionospheric conductivity, is significantly altered by precipitating particles from the magnetosphere. This has global impacts on the thermosphere-ionosphere because of the important role of conductivity on high latitude Joule heating. Two high-speed stream (HSS and two coronal mass ejection (CME storms are examined with the COSMIC data. We find clear correlation between geomagnetic activity and electron density retrievals from COSMIC. At nighttime local times, the number of profiles with maximum electron densities in the E layer (below 200 km altitude is well correlated with geomagnetic activity. We interpret this to mean that electron density increases due to precipitation are captured by the COSMIC profiles. These "E layer dominant ionosphere" (ELDI profiles have geomagnetic latitudes that are consistent with climatological models of the auroral location. For the two HSS storms, that occurred in May of 2011 and 2012, a strong hemispheric asymmetry is observed, with nearly all the ELDI profiles found in the southern, less sunlit, hemisphere. Stronger aurora and precipitation have been observed before in winter hemispheres, but the degree of asymmetry deserves further study. For the two CME storms, occurring in July and November of 2012, large increases in the number of ELDI profiles are found starting in the storm's main phase but continuing for several days into the recovery phase. Analysis of the COSMIC profiles was extended to all local times for the July 2012 CME storm by relaxing the ELDI criterion and instead visually inspecting all profiles above 50° magnetic latitude for signatures of precipitation in the E region. For nine days during the July 2012 period, we find a signature of precipitation occurs nearly

  11. Behavior of Ionized Plasma in the High Latitude Topside Ionosphere. (United States)


    Geophysical Institute ATTN: R. Taussig Fairbanks, Alaska 99701 R.A. Gross ATTN: Library S. Akasofu University of California j. Kan Berkeley, California...Space and Technology Group Temerin, Michael Space Science Dept. Space Science Lab. Building R-1, Room 1170 University of California One Space Park...of Minnesota Minneapolis, MN 55455 Dhvetorof Remrch *i Schul z Michael U.S Naval Acmadmy Schulz, Aaq MD 21402 (2 cople) Aerospace Corp. * A6/2451

  12. High-Latitude Ionospheric Structuring at Kilometer Scales (United States)

    Bust, G. S.; Datta-Barua, S.; Su, Y.; Deshpande, K.; Hampton, D.


    Ionospheric observations in the polar and auroral zones have been made regularly with radar chains and optical imaging at larger spatio-temporal cadence. However, the observation of kilometer scale variations at sub-second cadence has not been practically realizable until recently. Quantifying the irregularities at these sizes and scales is necessary for an understanding of the dynamics leading to fine scale phenomena in the high latitude environment. We present measurements of kilometer-scale plasma variations made at the northern auroral zone using an array of specialized Global Positioning System (GPS) receivers. These 6 CASES receivers (plus 1 from ASTRA, LLC) are sited at the Poker Flat Research Range, Alaska, and have been collecting data since late 2013. The array monitors for ionospheric scintillations, fluctuations in phase and amplitude of the GPS L-band signals received due to ionospheric variations. The array spans 2 km east-west and about 1 km north-south, with a variety of intermediate baseline lengths down to about 200 m. In addition to measuring amplitude and phase scintillation with the S4 and sigma_phi indices at 100-s cadence, these receivers also record 100 Hz raw power and phase measurements from GPS baseband signal processing. These low-rate data are publicly available for download through a web portal at with high rate available upon request. A detailed case study is presented from the December 8, 2013, 0300-0400 UT time period. During this period several interesting scintillation periods were observed. We use array cross-correlation processing methods to first estimate direct ground parameters of the array including a) estimate the 2D drift velocity on the ground; b) estimate a de-correlation (or turbulent) speed; and c) parameters of correlation elliptical coordinates (axial ratio and tilt angle). We then use these results and cross-correlation measurements to derive the ground 2D spatial spectrum of

  13. Magnetic and solar effects on ionospheric absorption at high latitude

    Directory of Open Access Journals (Sweden)

    M. Pietrella


    Full Text Available Some periods of intense solar events and of strong magnetic storms have been selected and their effects on the ionospheric D region have been investigated on the basis of ionospheric absorption data derived from riometer measurements made at the Italian Antarctic Base of Terra Nova Bay (geographic coordinates: 74.69 S, 164.12 E; geomagnetic coordinates: 77.34 S, 279.41 E. It was found that sharp increases in ionospheric absorption are mainly due to solar protons emission with an energy greater than 10 MeV. Moreover, the day to night ratios of the ionospheric absorption are greater than 2 in the case of strong events of energetic protons emitted by the Sun, while during magnetic storms, these ratios range between 1 and 2.

  14. Climatology of GNSS ionospheric scintillation at high latitudes


    Spogli, Luca; Alfonsi, Lucilla; De Franceschi, Giorgiana; Romano, Vincenzo; Aquino, Marcio H. O.; Dodson, Alan


    The ionosphere is characterized by a highly variable degree of ionization maintained by a wide range of solar radiation and by electrons and protons originating from Sun. This plasma is under the permanent solar forcing, and interacts with the geomagnetic and interplanetary magnetic fields. The ionosphere shows diurnal and seasonal variations, together with a 11-year period variability related to the solar cycle. Sporadic events due to the intermittent behaviour of the Sun are superimposed to...

  15. High-latitude ionospheric outflows characterized through analytic formulas (United States)

    Zeng, W.; Horwitz, J. L.


    Recent advances involving multi-fluid treatments have begun to allow the prospect of global magnetospheric models to simulate the dynamics of multiple ion species, such as various ion species originating from sources in the solar wind and terrestrial ionosphere. Such opportunities for the dynamic treatment of ionospheric ions within the magnetosphere portend a need for realistic accessible methods of estimating ionospheric outflows as linked plasma sources for these global models. Toward this end, in this presentation, the results of numerous physics-based simulations of ionospheric plasma outflows under varied driving agents are distilled in terms of relatively compact analytic expressions. The simulations are conducted with the UT Arlington Dynamic Fluid (DyFK) ionospheric plasma transport code. These analytic expressions for O+ and H+ densities, temperatures and flow velocities are obtained at the 3 RE altitudes corresponding to typical inner boundary levels for certain current global magnetospheric models. These O+ and H+ parameters are expressed as functions of precipitation electron energy flux levels, characteristic energy levels of the precipitating electrons, the peak spectral wave densities for low-frequency electrostatic waves which transversely heat ionospheric ions, and solar zenith angle.

  16. Ionospheric topside models compared with experimental electron density profiles

    Directory of Open Access Journals (Sweden)

    S. M. Radicella


    Full Text Available Recently an increasing number of topside electron density profiles has been made available to the scientific community on the Internet. These data are important for ionospheric modeling purposes, since the experimental information on the electron density above the ionosphere maximum of ionization is very scarce. The present work compares NeQuick and IRI models with the topside electron density profiles available in the databases of the ISIS2, IK19 and Cosmos 1809 satellites. Experimental electron content from the F2 peak up to satellite height and electron densities at fixed heights above the peak have been compared under a wide range of different conditions. The analysis performed points out the behavior of the models and the improvements needed to be assessed to have a better reproduction of the experimental results. NeQuick topside is a modified Epstein layer, with thickness parameter determined by an empirical relation. It appears that its performance is strongly affected by this parameter, indicating the need for improvements of its formulation. IRI topside is based on Booker's approach to consider two parts with constant height gradients. It appears that this formulation leads to an overestimation of the electron density in the upper part of the profiles, and overestimation of TEC.

  17. Earthquake responses in the high-latitude ionosphere (United States)

    Sergeeva, N. G.; Turunen, E.; Ogloblina, O. F.; Chernyakov, S. M.


    The data, obtained using the methods of partial reflections and ionosphere vertical sounding on the Kola Peninsula and in Scandinavia, at Tumannyi (69.0° N, 35.7° E) and Sodankyla (67.37°N, 26.63°E) observatories, have been analyzed in order to detect earthquake responses. The strong earthquakes have been considered: one earthquake with a magnitude of 7.7 occurred at 0819:25 UT on July 17, 2006, on the western coast of Indonesia (9.33° S, 107.26° E), and another earthquake with a magnitude of 6.2 occurred 2253:59 UT on May 26, 2006, on Yava (7.94° S, 110.32° E). These earthquakes, the epicenters of which were located in the same region and at identical depths (10 km), were observed under quiet conditions in the geomagnetic field (Σ K p = 5.7 and 6.3) and during small solar flares. The response of the ionosphere to these flares was mainly observed in the parameters of the lower ionosphere in the D and E regions. It has been found out that the period of variations in the ordinary component of the partially reflected signal at altitudes of the E region increased before the earthquake that occurred on July 17, 2006. The f min variations at Sodankyla observatory started 20 h before the earthquake. The periods of these variations were 3-6 h. The same periods were found in the variations in other ionospheric parameters ( foEs and h’Es). The variations in the ordinary component of partially reflected signals with periods of 2-5 hours were observed on the day of another earthquake (May 26, 2006). Internal gravity waves with periods of several hours, which can be related to the earthquakes, were detected in the amplitude spectra of the ordinary component of partially reflected signals and in other parameters in the lower ionosphere.

  18. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model (United States)


    titlelScientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and Electrodynamics-Data Assimilation (IDED-DA) Model...awardnumberl]N00014-13-l-0267 [awardnumber2] [awardnumbermore] [keywords]Ionosphere, Assimilation , Simulations [specialcat] [pillRobert W...totalminoritypostdocs] [bestaccomplishment] With only ground magnetometer measurements, our high-latitude data assimilation model can track the

  19. Artificial periodic irregularities in the high-latitude ionosphere excited by the HAARP facility (United States)

    Bakhmetieva, N. V.; Grach, S. M.; Sergeev, E. N.; Shindin, A. V.; Milikh, G. M.; Siefring, C. L.; Bernhardt, P. A.; McCarrick, M.


    We present results of the new observations of artificial periodic irregularities (APIs) in the ionosphere using the High Frequency Active Auroral Research Program (HAARP) heating facility carried out in late May and early June 2014.The objective of this work is to detect API using high-latitude facility and analyze possible differences of the temporal and spatial variations of the API echoes in the high (HAARP) and middle (Sura) latitudes. Irregularities were created by the powerful wave of X mode and were sounded using the short probing pulses signals of X mode. API echoes were observed in the D, E, and F regions of the ionosphere. Amplitudes and characteristic times of the API echoes were measured. The API growth and decay times at HAARP (high latitudes) observed were similar to those at the Sura heating facility (midlatitudes).

  20. Energy release in high latitudes during the dissipation of ionospheric currents

    Energy Technology Data Exchange (ETDEWEB)

    Faermark, D.S.; Levitin, A.E.; Fel' dshtejn, Ya.I.; Belov, B.A.; Gajdukov, V.Yu.; Afonina, R.G.; Demidova, Yu.Z.

    Space-time distributions of Joule heating in the ionosphere for both summer and equinox seasons at different parameters of the interplanetary medium are obtained. It is shown, that in high latitudes there is a continuous Joule dissipation on which additional sources of energy release (qsub(j)) are superimposed. These sources are controlled by the Bsub(z) and Bsub(y) components of the interplanetary magnetic field (IMF) vector. In the region of high latitudes (PHI > or approximately 60 deg) there is a continuous Joule dissipation of ionospheric currents. Near the aurora borealis oval the maxima of qsub(j) (Bsub(z)=Bsub(y)=0) in the evening and morning sectors constitute: in summer season approximately 1-2 mW/mS; in the equinox season approximately 4-8 mW/mS. In the polar cap region, a continuous Joule dissipation with high values qsub(j) (Bsub(z)=Bsub(y)=0) is observed in the morning sector. Constantly existing Joule dissipation ensures a heat influx of approximately (2 - 4) x 10 W to the high-latitude ionosphere irrespectively of a year season.

  1. Model of topside ionosphere scale height based on topside sounder data (United States)

    Kutiev, I.; Marinov, P.; Watanabe, S.

    A new model of topside ionosphere scale height (TISH) is developed, based on the vertical electron density (Ne) profiles obtained from topside ionosondes. The model provides the vertical scale height as a function of month of the year, local time, geomagnetic latitude, longitude and solar flux F107. To define TISH, the O+ scale height above the peak of the F2 layer is assumed to be represented by the lowest gradient in the measured profile. Then a regression line is calculated over those Ne values of the measured profile at which the gradient is within 39% from the lowest. This 30% tolerance accounts for the increase of plasma temperature with altitude. The model data base contains 170,033 TISH values, extracted from individual N(h) profiles gathered between 1962 and 1978 by Aluoette and ISIS satellites. The data sample sufficiently all parameter's ranges. The model describes the vertical plasma scale height by a multivariable polynomial consisted from Chebishev's and trigonometric base functions, which is fitted to the data in the 5-dimensional space. The model TISH variations along the different parameters are presented. The model results are compared with IRI and other available models.

  2. New Data Source for Studying and Modelling the Topside Ionosphere (United States)

    Huang, X.; Reinisch, B.; Bilitza, D.; Benson, R.


    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height regime from hmF2 to ~2000 km, requires the search for new data sources. Millions of ionograms had been recorded by the ISIS satellites that never were analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. To date, approximately 300,000 ISIS-2 topside-sounder ionograms have been digitizd. Computation of electron density profiles from these ionograms requires identifying the echo traces on the ionogram and then applying an inversion algorithm. An automatic topside ionogram scaler with true height algorithm (TOPIST) has been developed that is successfully scaling ~70 % of the ionograms. This paper shows how the digital ionograms are processed and the profiles calculated. The most difficult part of the task is the automatic scaling of the echo traces in the ISIS ionograms to provide R'(f) where R' is the virtual range of the echo at frequency f. Characteristic resonance features seen in the topside ionograms occur at the gyro and plasma frequencies. An elaborate scheme was developed to measure these resonance frequencies in order to determine the local plasma and gyrofrequencies. This information helps in the identification of the O and X traces, and it provides the starting density of the electron density profile from the satellite altitude to hmF2. An 'editing process' is available to manually scale the more difficult ionograms. The electron density data and the TOPIST software will be made available online from NASA's National Space Science Data Center (NSSDC) at This site provides already access to the digitized ISIS ionogram data and to related software. A search page lets users select data by location, time, and a host of other search criteria. Selected ionogram data can be viewed on

  3. Ionospheric Correction of InSAR for Accurate Ice Motion Mapping at High Latitudes (United States)

    Liao, H.; Meyer, F. J.


    Monitoring the motion of the large ice sheets is of great importance for determining ice mass balance and its contribution to sea level rise. Recently the first comprehensive ice motion of the Greenland and the Antarctica have been generated with InSAR. However, these studies have indicated that the performance of InSAR-based ice motion mapping is limited by the presence of the ionosphere. This is particularly true at high latitudes and for low-frequency SAR data. Filter-based and empirical methods (e.g., removing polynomials), which have often been used to mitigate ionospheric effects, are often ineffective in these areas due to the typically strong spatial variability of ionospheric phase delay in high latitudes and due to the risk of removing true deformation signals from the observations. In this study, we will first present an outline of our split-spectrum InSAR-based ionospheric correction approach and particularly highlight how our method improves upon published techniques, such as the multiple sub-band approach to boost estimation accuracy as well as advanced error correction and filtering algorithms. We applied our work flow to a large number of ionosphere-affected dataset over the large ice sheets to estimate the benefit of ionospheric correction on ice motion mapping accuracy. Appropriate test sites over Greenland and the Antarctic have been chosen through cooperation with authors (UW, Ian Joughin) of previous ice motion studies. To demonstrate the magnitude of ionospheric noise and to showcase the performance of ionospheric correction, we will show examples of ionospheric-affected InSAR data and our ionosphere corrected result for comparison in visual. We also compared the corrected phase data to known ice velocity fields quantitatively for the analyzed areas from experts in ice velocity mapping. From our studies we found that ionospheric correction significantly reduces biases in ice velocity estimates and boosts accuracy by a factor that depends on a

  4. High-latitude ionospheric convection during strong interplanetary magnetic field B-y

    DEFF Research Database (Denmark)

    Huang, C.S.; Sofko, G.J.; Murr, D.


    An unusual high-latitude ionospheric pattern was observed on March 23, 1995. ionospheric convection appeared as clockwise merging convection cell focused at 84 degrees magnetic latitude around 1200 MLT. No signature of the viscous convection cell in the afternoon sector was observed....... The interplanetary magnetic field (IMF) conditions corresponding to the occurrence of the ionospheric convection were B-x approximate to 1 nT, B-y approximate to 10 nT, and B-z ... conditions. It is found that the location of the convection cell focus in this event is at least two hours earlier than those previously observed and about 5 hours earlier than that predicted by the MHD model. The observations may have some significant implications on the antiparallel merging theory....

  5. EISCAT Observations of Main Ionization Troughs in the High-Latitude Ionosphere

    Institute of Scientific and Technical Information of China (English)


    F-region electron density depletions associated with main ionization troughs in the high-latitude ionosphere are studied using EISCAT CP3 data of meridian scanning experiments. The troughs in our observations are found to appear mainly in dusk sector, extending from late afternoon to pre-midnight, with higher occurrence rate during equinox and winter. Simultaneous ion drift velocity in F-region shows that the main trough minimm is mostly located at the equator ward edge of the plasma convection flow, rather than in the r~ion where the largest ion flow are observed.

  6. A new methodology for the development of high-latitude ionospheric climatologies and empirical models (United States)

    Chisham, G.


    Many empirical models and climatologies of high-latitude ionospheric processes, such as convection, have been developed over the last 40 years. One common feature in the development of these models is that measurements from different times are combined and averaged on fixed coordinate grids. This methodology ignores the reality that high-latitude ionospheric features are organized relative to the location of the ionospheric footprint of the boundary between open and closed geomagnetic field lines (OCB). This boundary is in continual motion, and the polar cap that it encloses is continually expanding and contracting in response to changes in the rates of magnetic reconnection at the Earth's magnetopause and in the magnetotail. As a consequence, models that are developed by combining and averaging data in fixed coordinate grids heavily smooth the variations that occur near the boundary location. Here we propose that the development of future models should consider the location of the OCB in order to more accurately model the variations in this region. We present a methodology which involves identifying the OCB from spacecraft auroral images and then organizing measurements in a grid where the bins are placed relative to the OCB location. We demonstrate the plausibility of this methodology using ionospheric vorticity measurements made by the Super Dual Auroral Radar Network radars and OCB measurements from the IMAGE spacecraft FUV auroral imagers. This demonstration shows that this new methodology results in sharpening and clarifying features of climatological maps near the OCB location. We discuss the potential impact of this methodology on space weather applications.

  7. Imaging of structures in the high-latitude ionosphere: model comparisons

    Directory of Open Access Journals (Sweden)

    D. W. Idenden

    Full Text Available The tomographic reconstruction technique generates a two-dimensional latitude versus height electron density distribution from sets of slant total electron content measurements (TEC along ray paths between beacon satellites and ground-based radio receivers. In this note, the technique is applied to TEC values obtained from data simulated by the Sheffield/UCL/SEL Coupled Thermosphere/Ionosphere/Model (CTIM. A comparison of the resulting reconstructed image with the 'input' modelled data allows for verification of the reconstruction technique. All the features of the high-latitude ionosphere in the model data are reproduced well in the tomographic image. Reconstructed vertical TEC values follow closely the modelled values, with the F-layer maximum density (NmF2 agreeing generally within about 10%. The method has also been able successfully to reproduce underlying auroral-E ionisation over a restricted latitudinal range in part of the image. The height of the F2 peak is generally in agreement to within about the vertical image resolution (25 km.

    Key words. Ionosphere (modelling and forecasting; polar ionosphere · Radio Science (instruments and techniques

  8. GNSS ionospheric scintillation and TEC at high latitudes: INGV monitoring and studies (United States)

    Alfonsi, L.; de Franceschi, G.; Spogli, L.; Romano, V.


    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is monitoring the high latitude ionospheric irregularities causing GNSS signals corruption since 2003 when a GISTM receiver (GPS Ionospheric Scintillation and TEC Monitor) was deployed in Ny Alesund (Svalbard). Currently, INGV manages three GISTMs at Svalbard (two in Ny Alesund, another one in Longyearbyen) and two receivers in Antarctica at Concordia and Mario Zucchelli Stations. The GISTM receivers consist of NovAtel OEM4 dual-frequency receivers with special firmware specifically able to compute in near real time the amplitude and the phase scintillation from the GPS L1 frequency signals, and the ionospheric TEC (Total Electron Content) from the GPS L1 and L2 carrier phase signals. From this ground-based network, we are able to capture the dynamics of ionospheric plasma in a wide latitudinal range, from auroral to cusp/cap regions, considering the contribution of both hemispheres, in a bi-polar framework. The data collected are structured and archived in a dedicated database: The INGV activities in the field of the observation and the investigation of the ionospheric irregularities are included in several international collaborations addressing scientific issues as well as technological applications. This paper would like to give an overview of our recent activities about polar ionospheric imaging, scintillation climatology and scintillation mitigation matured also under the umbrella of the SCAR ICESTAR community and, currently, part of the initiatives of the SCAR Action Group “GPS Weather and Space Weather Forecast”chaired by INGV.

  9. Topside correction of IRI by global modeling of ionospheric scale height using COSMIC radio occultation data (United States)

    Wu, M. J.; Guo, P.; Fu, N. F.; Xu, T. L.; Xu, X. S.; Jin, H. L.; Hu, X. G.


    The ionosphere scale height is one of the most significant ionospheric parameters, which contains information about the ion and electron temperatures and dynamics in upper ionosphere. In this paper, an empirical orthogonal function (EOF) analysis method is applied to process all the ionospheric radio occultations of GPS/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) from the year 2007 to 2011 to reconstruct a global ionospheric scale height model. This monthly medium model has spatial resolution of 5° in geomagnetic latitude (-87.5° ~ 87.5°) and temporal resolution of 2 h in local time. EOF analysis preserves the characteristics of scale height quite well in the geomagnetic latitudinal, anural, seasonal, and diurnal variations. In comparison with COSMIC measurements of the year of 2012, the reconstructed model indicates a reasonable accuracy. In order to improve the topside model of International Reference Ionosphere (IRI), we attempted to adopt the scale height model in the Bent topside model by applying a scale factor q as an additional constraint. With the factor q functioning in the exponent profile of topside ionosphere, the IRI scale height should be forced equal to the precise COSMIC measurements. In this way, the IRI topside profile can be improved to get closer to the realistic density profiles. Internal quality check of this approach is carried out by comparing COSMIC realistic measurements and IRI with or without correction, respectively. In general, the initial IRI model overestimates the topside electron density to some extent, and with the correction introduced by COSMIC scale height model, the deviation of vertical total electron content (VTEC) between them is reduced. Furthermore, independent validation with Global Ionospheric Maps VTEC implies a reasonable improvement in the IRI VTEC with the topside model correction.

  10. The 20 March 2015 total solar eclipse: effects in the high-latitude lower ionosphere (United States)

    Cherniakov, Sergey; Tereshchenko, Valentina; Ogloblina, Olga; Vasiliev, Evgeny; Gomonov, Alexander


    The medium-wave facility of partial reflections of the Polar Geophysical Institute (observatory "Tumanny", 69 N, 35.7 E) has observed behavior of the lower high-latitude ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. Generally on the heights of the lower ionosphere the "short night" effect had shown, but at some heights local enhanced electron concentration were revealed and the behavior of the electron concentration had the wave-like form. It had seen also at the behavior of the total electron content of the lower ionosphere. The periods and behavior of the wave are considered. It can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere by the lunar shadow during its supersonic movement along the earth surface. The periods and behavior of waves during the eclipse were also received using riometer data at the observatory "Tumanny" and the magnetometer at the observatory "Loparskaya" (68.63 N, 33.38 E).

  11. Ionosphere data assimilation capabilities for representing the high-latitude geomagnetic storm event in September 2011 (United States)

    Solomentsev, Dmitry; Jacobsen, Knut Stanley; Khattatov, Boris; Khattatov, Vyacheslav; Cherniak, Yakov; Titov, Anton


    Severe geomagnetic storms have a strong impact on space communication and satellite navigation systems. Forecasting the appearance of geomagnetically induced disturbances in the ionosphere is one of the urgent goals of the space weather community. The challenge is that the processes governing the distribution of the crucial ionospheric parameters have a rather poor quantitative description, and the models, built using the empirical parameterizations, have limited capabilities for operational purposes. On the other hand, data assimilation techniques are becoming more and more popular for nowcasting the state of the large-scale geophysical systems. We present an example of an ionospheric data assimilation system performance assessment during a strong geomagnetic event, which took place on 26 September 2011. The first-principle model has assimilated slant total electron content measurements from a dense network of ground stations, provided by the Norwegian Mapping Authority. The results have shown satisfactory agreement with independent data and demonstrate that the assimilation model is accurate to about 2-4 total electron content units and can be used for operational purposes in high-latitude regions. The operational system performance assessment is the subject of future work.

  12. Probabilistic forecasting of ionospheric scintillation and GNSS receiver signal tracking performance at high latitudes

    Directory of Open Access Journals (Sweden)

    Paul Prikryl


    Full Text Available At high latitudes, phase scintillation occurs predominantly on the dayside in the ionospheric footprint of the magnetospheric cusp, and in the nightside auroral oval. A new technique of probabilistic forecasting of phase scintillation occurrence relative to the arrival time of high-speed solar wind from coronal holes and interplanetary coronal mass ejections has recently been proposed [Prikryl et al. 2012]. Cumulative probability distribution functions for the phase-scintillation occurrence that are obtained can be specified for low (below-median and high (above-median values of various solar wind plasma parameters. Recent advances in modeling of high-speed solar wind and coronal mass ejections, combined with the probabilistic forecasting of scintillation, will lead to improved operational space weather forecasting applications. Scintillation forecasting and mitigation techniques need to be developed to avoid potential costly failures of technology-based Global Navigation Satellite Systems in the near future, in particular during the upcoming solar maximum. The Global Navigation Satellite Systems receiver-tracking performance during severe scintillation conditions can be assessed by the analysis of receiver phase-locked-loop jitter. Tracking jitter maps [Sreeja et al. 2011] offers a potentially useful tool to provide users with expected tracking conditions, if based on scintillation predictions as proposed above. Scintillation indices are obtained from L1 GPS data collected with the Canadian High Arctic Ionospheric Network. Combined with high rate amplitude and phase data, they can be used as input to receiver tracking models to develop scintillation mitigation techniques.

  13. Some aspects of modelling the high-latitude ionospheric convection from Cluster/Edi data (United States)

    Förster, M.; Feldstein, Y. I.; Gromova, L. I.; Dremukhina, L. A.; Levitin, A. E.; Haaland, S. E.


    Measurements onboard Cluster satellites are briefly described, which form the base for determining the intensity and direction of the electric field in the magnetosphere. The aim of this paper is to describe (1) the methodology of calculating the potential distribution at the ionospheric level and the results of constructing spatiotemporal convection patterns for different orientations of the IMF vector in the GSM YZ plane; (2) derivation of basic convection patterns (BCPs), which allow to deduce the statistical ionospheric convection pattern at high latitudes for any IMF Bz and By values (statistical convection model) using different sets of independent data; (3) the consequences of enlarging the amount of data used for analysis; (4) the results of potential calculations with various orders of the spherical harmonics describing them; (5) determination of the cross-polar cap potential with different IMF sector widths (α from 45° down to 10°); (6) the results of our trials to determine the contribution of the IMF Bx component to the convection pattern.

  14. Resonance between coherent whistler mode waves and electrons in the topside ionosphere (United States)

    Neubert, T.; Bell, T. F.; Storey, L. R. O.


    Landau resonance and cyclotron resonance of coherent whistler mode waves and energetic electrons are explored for magnetoplasmas with appreciable gradients in the plasma density and magnetic field strength. It is shown that in the topside ionosphere of the earth near the ion transition height the gradients in plasma density and magnetic field strength along a magnetic field line may match in a way which enhances both Landau and cyclotron interactions between waves and electrons at the loss cone pitch angle. The pitch angle scattering induced by a signal from a ground-based VLF transmitter in the ionosphere above the transmitter has been estimated and compared to the pitch angle scattering induced by naturally occurring ELF hiss through cyclotron resonance. It is found that the expected scattering due to plasmapheric hiss is an order of magnitude larger than that due to Landau resonance in the topside ionosphere. Pitch angle scattering due to cyclotron resonance in the topside ionosphere, however, may be larger by a factor of 2. It is suggested that the 'fast Trimpi' effect may be caused by a cyclotron resonance interaction in the topside ionosphere.

  15. What in situ measurements of thermal electrons tell us about electron heating in the high-latitude ionosphere (United States)

    Lund, E. J.; Lessard, M.; Cohen, I. J.; Lynch, K. A.


    The transfer of energy from precipitating particles and incoming photons to ionospheric plasma is a key issue in the physics of the high-latitude ionosphere. However, in situ measurements of electron temperature in the ionosphere have historically been difficult to make. Over the past decade, we have flown several rockets equipped with an electron retarding potential analyzer (ERPA), an instrument designed to measure thermal electrons in the ionosphere. These missions include launches into the cusp (SERSIO, SCIFER-2) and nightside aurora (CASCADES-2, ACES, MICA). In the cusp, the soft electron precipitation which is found in regions of ion outflow leads to increases in electron temperature due to energy deposition in the E and lower F region. The electron temperature increase at sounding rocket altitudes (500--1500~km) is delayed by ˜100~s with respect to the precipitation. By contrast, the higher energy of precipitating electrons in the nightside aurora makes them less effective at heating ionospheric electrons at these altitudes, while in downward current regions ionospheric electrons are found to be cooler than in upward current regions. We discuss the implications of these results for the ionospheric ion outflow problem as well as future prospects for in situ electron temperature measurements.

  16. PFISR GPS tracking mode for researching high-latitude ionospheric electron density gradients associated with GPS scintillation (United States)

    Loucks, D. C.; Palo, S. E.; Pilinski, M.; Crowley, G.; Azeem, S. I.; Hampton, D. L.


    Ionospheric behavior in the high-latitudes can significantly impact Ultra High Frequency (UHF) signals in the 300 MHz to 3 GHz band, resulting in degradation of Global Positioning System (GPS) position solutions and satellite communications interruptions. To address these operational concerns, a need arises to identify and understand the ionospheric structure that leads to disturbed conditions in the Arctic. Structures in the high-latitude ionosphere are known to change on the order of seconds or less, can be decameters to kilometers in scale, and elongate across magnetic field lines at auroral latitudes. Nominal operations at Poker Flat Incoherent Scatter Radar (PFISR) give temporal resolution on the order of minutes, and range resolution on the order of tens of kilometers, while specialized GPS receivers available for ionospheric sensing have a 100Hz observation sampling rate. One of these, ASTRA's Connected Autonomous Space Environment Sensor (CASES) is used for this study. We have developed a new GPS scintillation tracking mode for PFISR to address open scientific questions regarding temporal and spatial electron density gradients. The mode will be described, a number of experimental campaigns will be analyzed, and results and lessons learned will be presented.

  17. The structure of mid- and high-latitude ionosphere during September 1999 storm event obtained from GPS observations

    Directory of Open Access Journals (Sweden)

    I. I. Shagimuratov

    Full Text Available TEC data, obtained from over 60 GPS stations, were used to study the ionospheric effects of the 12–16 September 1999 magnetic storm over Europe. The spatial and temporal changes of the ionosphere were analysed as a time series of TEC maps, which present 15 min averages of TEC. The data set consisting of GPS observations, collected by a dense network of European stations, with sampling rate of 30 s, enable the creation of TEC maps with high spatial and temporal resolution. The storm included the positive as well as the negative phase. The positive phase took place during the first storm day of 12 September 1999. The short-lived daytime TEC enhancement was observed at all latitudes. The maximal enhancement reached a factor of 1.3–1.5. On the second and third days, the negative phase of the storm developed. The TEC decrease was registered regardless of time of the day. The TEC depression exceeded 70% relative to quiet days. On the following days (15 and 16 September, a significant daytime enhancement of TEC was observed once again. The complex occurrence of the ionospheric storm was probably related to the features of development of the magnetic storm. We found out that during the storm the large and medium-scale irregularities developed in the high-latitude ionosphere. The multi-stations technique, employed to create TEC maps, was particularly successful while studying the mid-latitude ionospheric trough. We found out that the essential changes of TEC during the storm, which were registered at the auroral and sub-auroral ionosphere, were connected with the effect of the trough and its dynamics, which depends on geomagnetic activity.

    Key words. Ionosphere (ionospheric disturbances; auroral ionosphere; mid-latitude ionosphere

  18. Modeling the high-latitude ground response to the excitation of the ionospheric MHD modes by atmospheric electric discharge (United States)

    Fedorov, E.; Mazur, N.; Pilipenko, V.; Baddeley, L.


    The ionospheric Alfvén resonator (IAR) and fast magnetosonic (FMS) waveguide, which can trap the electromagnetic wave energy in the range from fractions of Hz to several Hz, are characteristic features of the upper ionosphere. Their role in the electromagnetic impulsive coupling between atmospheric discharge processes and the ionosphere can be elucidated with a proper model. The presented model is based on numerical solution of coupled wave equations for electromagnetic modes in the ionosphere and atmosphere in a realistic ionosphere modeled with the use of IRI (International Reference Ionosphere) vertical profiles. The geomagnetic field is supposed to be nearly vertical, so the model can be formally applied to high latitudes, though the main features of ground ULF structure will be qualitatively similar at middle latitudes as well. The modeling shows that during the lightning discharge a coupled wave system comprising IAR and MHD waveguide is excited. Using the model, the spatial structure, frequency spectra, and polarization parameters have been calculated at various distances from a vertical dipole. In the lightning proximity (about several hundred kilometer) only the lowest IAR harmonics are revealed in the radial magnetic component spectra. At distances >800 km the multiband spectral structure is formed predominantly by harmonics of FMS waveguide modes. The model predictions do not contradict the results of search coil magnetometer observations on Svalbard; however, the model validation demands more dedicated experimental studies.

  19. Titan's Topside Ionospheric Composition: Cassini Plasma Spectrometer Ion Mass Spectrometer Measurements (United States)

    Sittler, Edward; Hartle, Richard; Ali, Ashraf; Cooper, John; Lipatov, Alexander; Simpson, David; Sarantos, Menelaos; Chornay, Dennis; Smith, Todd


    We present ion composition measurements of Titan's topside ionosphere using both T9 and T15 Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) measurements. The IMS is able to make measurements of Titan's ionosphere due to ionospheric outflows as originally reported for the T9 flyby. This allows one to take advantage of the unique capabilities of the CAPS IMS which measures both the mass-per-charge (M/Q) of the ions and the fragments of the ions produced inside the sensor such as carbon, nitrogen and oxygen fragments. Specific attention will be given to such ions as NH4 +, N +, O +, CH4 +, CxHy +, and HCNH + ions as examples. The CAPS IMS uses a time-of-flight (TOF) technique which accelerates ions up to 14.6 kV, so they can pass through ultra-thin carbon foils. Neutral fragments are used to measure the ion M/Q and positive fragments to measure the atomic components. We preliminarily find, by using IMS measurements of T9 and T15 ionospheric outflows, evidence for methane group ions, nitrogen ions, ammonium ions, water group ions and CnHm + ions with n = 2, 3, and 4 within Titan's topside ionosphere. E.C. Sittler acknowledges support at Goddard Space Flight Center by the CAPS Cassini Project from JPL funds under contract # NAS703001TONMO711123/1405851.

  20. Large-scale traveling ionospheric disturbances observed using GPS receivers over high-latitude and equatorial regions (United States)

    Idrus, Intan Izafina; Abdullah, Mardina; Hasbi, Alina Marie; Husin, Asnawi; Yatim, Baharuddin


    This paper presents the first results of large-scale traveling ionospheric disturbances (LSTIDs) observation during two moderate magnetic storm events on 28 May 2011 (SYM-H∼ -94 nT and Dst∼-80 nT) and 6 August 2011 (SYM-H∼-126 nT and Dst∼-113 nT) over the high-latitude region in Russia, Sweden, Norway, Iceland and Greenland and equatorial region in the Peninsular Malaysia using vertical total electron content (VTEC) from the Global Positioning System (GPS) observations measurement. The propagation of the LSTID signatures in the GPS TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTIDs were found to propagate both equatorward and poleward directions during these two events. The results showed that the LSTIDs propagated faster at high-latitude region with an average phase velocity of 1074.91 m/s than Peninsular Malaysia with an average phase velocity of 604.84 m/s. The LSTIDs at the high-latitude region have average periods of 150 min whereas the ones observed over Peninsular Malaysia have average periods of 115 min. The occurrences of these LSTIDs were also found to be the subsequent effects of substorm activities in the auroral region. To our knowledge, this is the first result of observation of LSTIDs over Peninsular Malaysia during the 24th solar cycle.

  1. Interhemispheric differences and solar cycle effects of the high-latitude ionospheric convection patterns deduced from Cluster EDI observations (United States)

    Förster, Matthias; Haaland, Stein


    Here, we present a study of ionospheric convection at high latitudes that is based on satellite measurements of the Electron Drift Instrument (EDI) on-board the Cluster satellites, which were obtained over a full solar cycle (2001-2013). The mapped drift measurements are covering both hemispheres and a variety of different solar wind and interplanetary magnetic field (IMF) conditions. The large amount of data allows us to perform more detailed statistical studies. We show that flow patterns and polar cap potentials can differ between the two hemispheres on statistical average for a given IMF orientation. In particular, during southward directed IMF conditions, and thus enhanced energy input from the solar wind, we find that the southern polar cap has a higher cross polar cap potential. We also find persistent north-south asymmetries which cannot be explained by external drivers alone. Much of these asymmetries can probably be explained by significant differences in the strength and configuration of the geomagnetic field between the Northern and Southern Hemisphere. Since the ionosphere is magnetically connected to the magnetosphere, this difference will also be reflected in the magnetosphere in the form of different feedback from the two hemispheres. Consequently, local ionospheric conditions and the geomagnetic field configuration are important for north-south asymmetries in large regions of geospace. The average convection is higher during periods with high solar activity. Although local ionospheric conditions may play a role, we mainly attribute this to higher geomagnetic activity due to enhanced solar wind - magnetosphere interactions.

  2. Seasonal and solar activity changes of electron temperature in the F-region and topside ionosphere (United States)

    Sethi, N. K.; Pandey, V. K.; Mahajan, K. K.

    Incoherent scatter radar data from Arecibo, for high solar activity (HSA) (1989-1990) as well as for low solar activity (LSA) (1974-1977) periods, are used to study the seasonal and solar activity variations in electron temperature (Te) for noontime conditions. Inspite of large day-to-day variations, clear seasonal variations in average Te can be identified for both solar activity periods, with winter temperatures significantly higher in the topside (400-700 km) ionosphere. Further, comparison of average Te profiles for each season reveals distinct solar activity variations - a large increase in the F-region (200-350 km) Te, during summer and equinox as compared to winter, occurs as one moves from low to HSA. In the topside, however, electron temperature changes little with solar activity. Comparisons with IRI-95 and refid="bib10">Truhlik et al. (2000) models show a reasonable agreement within one standard deviation of the measured values.

  3. Experimental determination of effective recombination rates in the disturbed high latitude lower ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Collis, P.N.; Hargreaves, J.K.; Brekke, A.; Korth, A.


    With a view to investigating properties of the high latitude D-region during disturbed conditions, we have undertaken a coordinated study of partial reflection measurements of electron densities, together with estimated ion-pair production rates from observations of energetic electrons by the satellite GEOS-2, during intervals of auroral radio absorption recorded by riometers. The viability of this approach to the problem is found to be restricted, and limitations on the wider applicability of such intercomparisons are identified. For the weak-to moderately-disturbed events which were able to be examined in detail, the results give better resolution in height than a previously reported profile of effective recombination coefficients during D-region disturbances, and suggest a steeper slope at altitudes of 75-80 km.

  4. Characteristic of plasma bubbles observed by DMSP in the topside ionosphere during the year 2005

    Indian Academy of Sciences (India)

    K Patel; A K Singh


    To study the characteristic of plasma bubbles in the topside ionosphere during the solar minima, we have analyzed a large database of post-sunset plasma density measurement acquired during ∼5104 equatorial crossings made by Defense Meteorological Satellite Program (DMSP) F14 in 2005. On 675 of these crossings, equatorial plasma bubbles (EPBs) events were observed as intervals of depleted and irregular plasma densities that degrade communication and navigation signals. We have analyzed these EPB events to study their distributions with month, season and longitude. To test for possible dependence of EPB occurrence at topside altitudes on the level of magnetic activity, we compared the distributions of one year database with those of Kp index at the time of equatorial crossings by the DMSP satellites. We also examined the response of the evening sector, low-latitude ionosphere during eight magnetic storms with minimum Dst ≤ −100nT. We observed that EPBs occurred regularly during geomagnetic storms, especially in the initial and main phases but can be suppressed sometimes for days, after prolonged activity during recovery phases. These results are discussed according to the other reported results.

  5. The ultra low frequency electromagnetic radiation observed in the topside ionosphere above boundaries of tectonic plates

    Directory of Open Access Journals (Sweden)

    Michael A. Athanasiou


    Full Text Available In this paper we present results of a comparison between ultra low frequency (ULF electromagnetic (EM radiation, recorded by an electric field instrument onboard the satellite detection of electromagnetic emissions transmitted from earthquake regions in the topside ionosphere, and the seismicity of regions with high and low seismic activity. In particular, we evaluated the energy variations of the ULF Ezelectric field component during a period of four years (2006-2009, in order to examine the possible relation of ULF EM radiation with seismogenic regions located in Central America, Indonesia, the Eastern Mediterranean Basin and Greece. As a tool for evaluating the ULF Ez energy variations we used singular spectrum analysis techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emitted from regions of highest seismic activity at the boundaries tectonic plates. Furthermore, we found that higher electromagnetic radiation was detected in a region above the northern- western Greek Arc (R1 than above the adjacent region including Athens and its urban area. We interpret these results of the present study as suggesting that: i the seismogenic regions at the boundary of tectonic plates radiate ULF EM emissions observed by satellites in the topside ionosphere; and ii that this EM radiation is not only related with the occurrence time of great (M≥5 earthquakes, but it is often present in intermediate times and it appears as a quasi-permanent phenomenon.

  6. Study of high-latitude ionosphere: One-year campaign over Husafell, Iceland (United States)

    Bahari, S. A.; Abdullah, M.; Hasbi, A. M.; Yatim, B.; Suparta, W.; Kadokura, A.; Bjornsson, G.


    This paper reports on the effects of diurnal, seasonal, geomagnetic and solar activity on GPS Vertical Total Electron Content (VTEC) measurements at a high-latitude station in Husafell, Iceland (64.7°N, 21.0°W) from March 2009 to February 2010. According to the diurnal VTEC pattern, there was generally a build-up region at sunrise (0500-1000 LT), a daytime plateau in the afternoon (1200-1400 LT), and a decay region from evening to pre-dawn (1800-0400 LT). The month-to-month analysis showed high VTEC variability, particularly in February 2010, due to an increase in solar activity. The VTEC showed a high variability during both winter and the equinoxes, with the highest value being 90%, but showed a low variability in summer. Two abnormal peaks appeared at sunrise and sunset in winter and the equinoxes. These peaks were the result of steep density gradients caused by the onset and turnoff of solar radiation. The correlation analysis yielded almost no correlation between the VTEC and geomagnetic activity but showed a high correlation with solar activity for all the seasons, particularly at night-time.

  7. Longitudinal Distribution of the Dayside Ionosphere of Mars at High Latitude (United States)

    Haider, S. A.; Sheel, Varun; Singh, V.; Maguire, W. C.; Molina-Cuberos, G. J.


    Accelerometer and radio science data obtained from Mars Global Surveyor have been used to study the longitudinal structure of thermosphere and troposphere of Mars at high latitude region. These datasets represent primary and secondary ionization peaks at altitudes 130 km and 122 km, respectively. These peaks are reproduced by photoionization and photoelectron impact processes. The production rates of different ions are estimated in the thermosphere and troposphere at solar zenith angle 80°, using analytical yield spectrum and energy loss models, respectively. The electron densities are calculated under photochemical equilibrium condition. The impact ionization sources are taken as EUV and galactic cosmic rays. The characteristics of longitudinal distribution of production and density are fitted up to waves 2 and 3 by least square method with 0.95 confidence limits. The peak electron density in the troposphere is obtained at an altitude of 30 km due to high efficiency of electron attachment to Ox molecules, which entails that concentration of negative ions is higher than that of electron below 30 km. Of the 35 ions considered in the model, the densities of electron and nine major ions (H3O+(H2O)n for n = 1,2,3,4, notation="LaTeX">CO^{-}_{4}, notation="LaTeX">CO^{-}_{3}, notation="LaTeX">NO^{-}_{2}H_{2}O, and notation="LaTeX">CO^{-}_{3}(H_{2}O)_{n} for n = 1,2) are discussed.

  8. Role of the Ionosphere in the Generation of Large-Amplitude Ulf Waves at High Latitudes (United States)

    Tulegenov, B.; Guido, T.; Streltsov, A. V.


    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quite times. Our analysis demonstrates that the frequency of the waves carrying most of the power almost in all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system. The low frequency of the oscillations is explained by the effect of the ionosphere, where the current is carried by ions through highly collisional media. The amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  9. Topside Ionosphere Plasma Bubbles Seen in He+ Density: Results and Problems (United States)

    Sidorova, Larisa; Filippov, Sergey

    He (+) density depletions, considered as fossil equatorial plasma bubble signatures, were involved in this study. They are usually detected in the topside ionosphere (approx. 1000 km) deeply inside the plasmasphere (L=1.3-3). a) The question about an opportunity to detect the topside plasma bubbles of equatorial origin in their separate plasma component (He (+) ) is investigated. There are the indications [Sidorova, ASR, 2004, 2007; Sidorova and Filippov, JASTP, 2012] that there is genetic connection between the He (+) density depletions and the equatorial plasma bubbles. For validation of this idea the characteristic times of the main photochemical and electro-dynamical processes, in which the plasma bubbles and their minor ion component (He (+) ) are involved, have been calculated and compared. The model estimations, obtained in SAMIS3 (3D model of equatorial spread F) and kindly presented by J. Huba (USA), are also used for the investigation. It was revealed that the plasma bubbles, reaching the “ceiling” heights, can exist within 2-3 days and that there is principal opportunity to observe them in the separate plasma component (He (+) ). (b) The longitudinal statistics of the He (+) density depletions (P), calculated for all seasons and both hemispheres (20-50(°) INVLAT), were obtained. It was revealed that the most of the P plots have “wave-like” structure with well-defining four peaks. The peaks are the most pronounced in the NH during March equinox/December solstice and in the SH during March equinox/June solstice. Similar wave number 4 longitudinal structure has recently been found in the low-latitude ionosphere density distribution [Immel et al., GRL, 2006; England et al., GRL, 2006; Jin et al., JGR, 2008]. It is assumed that the longitudinal plasma density variations appear due to the modulated vertical Е×В drift. It is supposed that solar thermal tides excited in the troposphere induce zonal perturbation electric fields, which are added to the

  10. Some distinctive features in the behavior of small-scale artificial ionospheric irregularities at mid-and high latitudes (United States)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kornienko, V. A.; Frolov, V. L.; Rietveld, M. T.; Brekke, A.


    We present the results of experimental studies of some features in the behavior of small-scale artificial irregularities (SSAIs) at mid-and high latitudes based on the “Sura” and EISCAT/HEATING HF facilities. Observations were performed by the method of aspect scattering using a network of diagnostic paths having a common reception point located near St. Petersburg. We found that an extremely long duration of the second (slow) stage of SSAI relaxation of up to 5 min occurs in the evening hours when the ionosphere above the “Sura” facility is illuminated by the Sun, but the solar terminator travels through the magnetically conjugated ionosphere. The conjecture is made that the processes initiated by the terminator are mostly responsible for secondary ionospheric turbulence maintaining the irregularities above “Sura.” A drastic increase in the Doppler spectra width of the scattered signals is revealed when the magnetically conjugate point of the ionosphere is located on the shade side of the terminator, but the ionosphere above the “Sura” facility is still lighted. It is assumed that the “ run away” of photoelectrons from the day to the night side could reduce the threshold of excitation of artificial irregularities, leading to an increase in their intensity. The presence of fairly intense scattered signals was detected from the “Sura” and EISCAT/HEATING experimental results both under conditions of pulsed HF heating after continuous heater-on periods and cycled HF heating by short pulses. In the case of pulsed heating by short pulses with duration τp Pthr of the SSAI generation cutoff the irregularities can be maintained due only to striction parametric instabilities. The excitation of irregularites under the cycled HF pumping with the pulse duration τp = 384 ms for Pa comparable with Pthr was detected. The aspect-angle dependence, or the so-called magnetic zenith effect, was found in the SSAI intensity. The residual turbulence aftereffects

  11. Plasma modifications induced by an X-mode HF heater wave in the high latitude F region of the ionosphere (United States)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.; Rietveld, M. T.; Häggström, I.; Ivanova, I. M.


    We presented experimental results of strong plasma modifications induced by X-mode powerful HF radio waves injected towards the magnetic zenith into the high latitude F region of the ionosphere. The experiments were conducted in 2009-2011 using the EISCAT Heating facility, UHF incoherent scatter radar and the EISCAT ionosonde at Tromsø, Norway; and the CUTLASS SuperDARN HF coherent radar at Hankasalmi, Finland. The results showed that the X-mode HF pump wave can generate strong small-scale artificial field aligned irregularities (AFAIs) in the F region of the high-latitude ionosphere. These irregularities, with spatial scales across the geomagnetic field of the order of 9-15 m, were excited when the heater frequency (fH) was above the ordinary-mode critical frequency (foF2) by 0.1-1.2 MHz. It was found that the X-mode AFAIs appeared between 10 s and 4 min after the heater is turned on. Their decay time varied over a wide range between 3 min and 30 min. The excitation of X-mode AFAIs was accompanied by electron temperature (Te) enhancements and an increase in the electron density (Ne) depending on the effective radiated power (ERP). Under ERPs of about 75-180 MW the Te enhances up to 50% above the background level and an increase in Ne of up to 30% were observed. Dramatic changes in the Te and Ne behavior occurred at effective radiated powers of about 370-840 MW, when the Ne and Te values increased up to 100% above the background ones. It was found that AFAIs, Ne and Te enhancements occurred, when the extraordinary-mode critical frequency (fxF2) lied in the frequency range fH-fce/2≤fxF2≤fH+fce/2, where fce is the electron gyrofrequency. The strong Ne enhancements were observed only in the magnetic field-aligned direction in a wide altitude range up to the upper limit of the UHF radar measurements. In addition, the maximum value of Ne is about 50 km higher than the Te enhancement peak. Such electron density enhancements (artificial ducts) cannot be explained by

  12. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  13. Long-duration depletion in the topside ionospheric total electron content during the recovery phase of the March 2015 strong storm (United States)

    Zhong, Jiahao; Wang, Wenbin; Yue, Xinan; Burns, Alan G.; Dou, Xiankang; Lei, Jiuhou


    Topside ionospheric total electron content (TEC) observations from multiple low-Earth orbit (LEO) satellites have been used to investigate the local time, altitudinal, and longitudinal dependence of the topside ionospheric storm effect during both the main and recovery phases of the March 2015 geomagnetic storm. The results of this study show, for the first time, that there was a persistent topside TEC depletion that lasted for more than 3 days after the storm main phase at most longitudes, except in the Pacific Ocean region, where the topside TECs during the storm recovery phase were comparable to the quiet time ones. The observed depletion in the topside ionospheric TEC was relatively larger at higher altitudes in the evening sector and greater at local times closer to midnight. Moreover, the topside TEC patterns observed by MetOp-A (832 km) were different from those seen by other LEO satellites with lower orbital altitudes during the storm main phase and at the beginning of the recovery phase, especially in the evening sector. This suggests that the physical processes that control the storm time behavior of topside ionospheric response to storms are altitude-dependent.

  14. eSWua: a tool to manage and access GNSS ionospheric data from mid-to-high latitudes

    Directory of Open Access Journals (Sweden)

    Vincenzo Romano


    Full Text Available The electronic space weather upper atmosphere (eSWua is a hardware–software system that is based on measurements collected by instruments installed by the Upper Atmosphere Physics Group of the Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy. More recently, it has also included the Global Navigation Satellite System (GNSS ionospheric scintillation and total electron content (TEC monitor (GISTM stations that are managed and operated by the University of Nottingham (UK. By visiting the eSWua website, it is possible to access the database that has been implemented to organize and manage the large amount of information acquired. The section of the database designed for the TEC and scintillation data has been designed to address the needs of the space weather community as well as of scientific users. Through the web tools, it is possible to visualize, plot, extract and download the data from each station. This interactive website is supported by a structured database, and it provides a powerful tool for the scientific and technological community in the field of telecommunications and space weather. At present, the data transmission procedure, the database population algorithm, the linear plot and polar plot visualization tools, the statistics page, and the user management system are fully operational. Web access to the data and tools has been realized to handle the data from the sites at low, mid and high latitudes. In this report, we present the results of the system for the GNSS data in the Arctic, the Antarctica, and the three GISTM stations operated by the University of Nottingham: Nottingham, Trondheim and Dourbes. Case studies of the efficacy of this system for scientific and application purposes are also presented and discussed.

  15. Observations of nightside auroral plasma upflows in the F-region and topside ionosphere

    Directory of Open Access Journals (Sweden)

    C. Foster

    Full Text Available Observations from the special UK EISCAT program UFIS are presented. UFIS is a joint UHF-VHF experiment, designed to make simultaneous measurements of enhanced vertical plasma flows in the F-region and topside ionospheres. Three distinct intervals of upward ion flow were observed. During the first event, upward ion fluxes in excess of 1013 m–2 s–1 were detected, with vertical ion velocities reaching 300 m s–1 at 800 km. The upflow was associated with the passage of an auroral arc through the radar field of view. In the F-region, an enhanced and sheared convection electric field on the leading edge of the arc resulted in heating of the ions, whilst at higher altitudes, above the precipitation region, strongly enhanced electron temperatures were observed; such features are commonly associated with the generation of plasma upflows. These observations demonstrate some of the acceleration mechanisms which can exist within the small-scale structure of an auroral arc. A later upflow event was associated with enhanced electron temperatures and only a moderate convection electric field, with no indication of significantly elevated ion tem- peratures. There was again some evidence of F-region particle precipitation at the time of the upflow, which exhibited vertical ion velocities of similar magnitude to the earlier upflow, suggesting that the behaviour of the electrons might be the dominant factor in this type of event. A third upflow was detected at altitudes above the observing range of the UHF radar, but which was evident in the VHF data from 600 km upwards. Smaller vertical velocities were observed in this event, which was apparently uncorrelated with any features observed at lower altitudes. Limitations imposed by the experimental conditions inhibit the interpretation of this event, although the upflow was again likely related to topside plasma heating.

  16. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    P. J. G. Perron


    Full Text Available Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius corrections are small. We derived a new fluid-like expression for the critical drift which depends explicitly on ion anisotropy. More importantly, for ion to electron temperature ratios typical of F-region, solutions of the kinetic dispersion relation show that ion temperature anisotropy may significantly lower the drift threshold required for instability. In some cases, a perpendicular to parallel ion temperature ratio of 2 and may reduce the relative drift required for the onset of instability by a factor of approximately 30, assuming the ion-acoustic speed of the medium remains constant. Therefore, the ion temperature anisotropy should be considered in future studies of ion-acoustic waves and instabilities in the high-latitude ionospheric F-region.

  17. Annual and seasonal variations in the low-latitude topside ionosphere

    Directory of Open Access Journals (Sweden)

    Y. Z. Su

    Full Text Available Annual and seasonal variations in the low-latitude topside ionosphere are investigated using observations made by the Hinotori satellite and the Sheffield University Plasmasphere Ionosphere Model (SUPIM. The observed electron densities at 600 km altitude show a strong annual anomaly at all longitudes. The average electron densities of conjugate latitudes within the latitude range ±25° are higher at the December solstice than at the June solstice by about 100 during daytime and 30 during night-time. Model calculations show that the annual variations in the neutral gas densities play important roles. The model values obtained from calculations with inputs for the neutral densities obtained from MSIS86 reproduce the general behaviour of the observed annual anomaly. However, the differences in the modelled electron densities at the two solstices are only about 30 of that seen in the observed values. The model calculations suggest that while the differences between the solstice values of neutral wind, resulting from the coupling of the neutral gas and plasma, may also make a significant contribution to the daytime annual anomaly, the E×B drift velocity may slightly weaken the annual anomaly during daytime and strengthen the anomaly during the post-sunset period. It is suggested that energy sources, other than those arising from the 6 difference in the solar EUV fluxes at the two solstices due to the change in the Sun-Earth distance, may contribute to the annual anomaly. Observations show strong seasonal variations at the solstices, with the electron density at 600 km altitude being higher in the summer hemisphere than in the winter hemisphere, contrary to the behaviour in NmF2. Model calculations confirm that the seasonal behaviour results from effects caused by transequatorial component of the neutral wind in the direction summer hemisphere to winter hemisphere.

  18. EISCAT observations of topside ionospheric ion outflows during auroral activity: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Wahlund, J.E.; Opgenoorth, H.J. (Swedish Inst. of Space Physics, Uppsala (Sweden)); Haeggstroem, I. (Swedish Inst. of Space Physics, Kiruna (Sweden)); Winser, K.J. (Royal Coll. of Surgeons, Dublin (Ireland)); Jones, G.O.L. (Univ. Coll. of Wales, Aberystwyth (United Kingdom))


    New EISCAT observations of large field-aligned bulk ion outflows from the topside ionosphere during auroral activity are presented. The ions (mainly O{sup +}) start their outflows from a variable altitude and may reach field-aligned outward velocities of up to 1,500 m s{sup {minus}1} in the altitude region 900-1,500 km. The observed ion fluxes are about a factor of 10 larger than previously observed reaching 2 {times} 10{sup 14} m{sup {minus}2} s{sup {minus}1}, and in some cases is nonconstant with altitude. Two different types of ion outflows have been identified. The first type is related to periods of strong perpendicular electric fields, enhanced and anisotropic ion temperatures, and low electron densities below 300 km, indicating small amounts of auroral precipitation. The second type is related to auroral arcs and enhanced electron temperatures. The exact mechanism causing the ion outflows is still not yet understood, but additional mechanism other than thermal expansion are required to explain the observations presented here.

  19. Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

    Directory of Open Access Journals (Sweden)

    T. Neubert


    Full Text Available In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations. The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates.

  20. Variations of topside ionospheric scale heights over Millstone Hill during the 30-day incoherent scatter radar experiment

    Directory of Open Access Journals (Sweden)

    L. Liu


    Full Text Available A 30-day incoherent scatter radar (ISR experiment was conducted at Millstone Hill (288.5° E, 42.6° N from 4 October to 4 November 2002. The altitude profiles of electron density Ne, ion and electron temperature (Ti and Te, and line-of-sight velocity during this experiment were processed to deduce the topside plasma scale height Hp, vertical scale height VSH, Chapman scale height Hm, ion velocity, and the relative altitude gradient of plasma temperature (dTp/dh/Tp, as well as the F2 layer electron density (NmF2 and height (hmF2. These data are analyzed to explore the variations of the ionosphere over Millstone Hill under geomagnetically quiet and disturbed conditions. Results show that ionospheric parameters generally follow their median behavior under geomagnetically quiet conditions, while the main feature of the scale heights, as well as other parameters, deviated significantly from their median behaviors under disturbed conditions. The enhanced variability of ionospheric scale heights during the storm-times suggests that the geomagnetic activity has a major impact on the behavior of ionospheric scale heights, as well as the shape of the topside electron density profiles. Over Millstone Hill, the diurnal behaviors of the median VSH and Hm are very similar to each other and are not so tightly correlated with that of the plasma scale height Hp or the plasma temperature. The present study confirms the sensitivity of the ionospheric scale heights over Millstone Hill to thermal structure and dynamics. The values of VSH/Hp tend to decrease as (dTp/dh/Tp becomes larger or the dynamic processes become enhanced.

  1. Production and Control of Ion Cyclotron Instabilities in the High Latitude Ionosphere by High Power Radio Waves. (United States)


    14 DTIC. .. .... ,-.---:T’JAN 1 3 198 _1. V , -’• ""iii . . . PRODUCTION AND CONTROL OF ION CYCLOTRON INSTABILITIES IN...tri,;gered in the collioionaa bottomse ionosphere m.Chaturvedi, 1976; Satyanarayana et al., ?35; 7eJer er. ai., 1984] by a radio-wave at the .ocal...equatzed the zero-order current to an equilibrium electron drift V ~ and have used the so-called dipole approxiation for the pump wave which is valid when

  2. TEC evidence for near-equatorial energy deposition by 30-keV electrons in the topside ionosphere

    CERN Document Server

    Suvorova, A V; Tsai, L -C; Kunitsyn, V E; Andreeva, E S; Nesterov, I A; Lazutin, L L


    Observations of energetic electrons (10 - 300 keV) by NOAA/POES and DMSP satellites at heights <1000 km during the period from 1999 to 2010 allowed finding abnormal intense fluxes of ~10^6 - 10^7 cm-2 s-1 sr-1 for quasi-trapped electrons appearing within the forbidden zone of low latitudes over the African, Indo-China, and Pacific regions. Extreme fluxes appeared often in the early morning and persisted for several hours during the maximum and recovery phase of geomagnetic storms. We analyzed nine storm-time events when extreme electron fluxes first appeared in the Eastern Hemisphere, then drifted further eastward toward the South-Atlantic Anomaly. Using the electron spectra, we estimated the possible ionization effect produced by quasi-trapped electrons in the topside ionosphere. The estimated ionization was found to be large enough to satisfy observed storm-time increases in the ionospheric total electron content determined for the same spatial and temporal ranges from global ionospheric maps. Additional...

  3. Oblique echoes at unusually high frequencies in MARSIS-AIS measurements of the topside ionosphere of Mars (United States)

    Fallows, Kathryn J.; Withers, Paul; Morgan, David


    The topside plasma density measurements from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on the Mars Express orbiter have been invaluable for studying the influence of the crustal magnetic fields on the distribution of plasma in the Mars ionosphere. A common feature, especially in the southern crustal field region, is an "oblique echo," or an off-nadir reflection consistent with the spacecraft passing by, or directly above, a localized region with a sharp gradient in electron density. These are often interpreted as regions where the ionosphere is heated by the solar wind fields and plasma which penetrate the ionosphere along vertical field lines.We present a subset of these oblique echoes which are characterized by reflections at frequencies much higher than those from the nadir ionosphere. If these are interpreted in the same way as typical return signals, where the frequency of the reflected signal is assumed to be the plasma frequency at the point of reflection, then these may be the highest plasma densities reported to date at Mars. In two cases, reflections are detected at the maximum sounding frequency of the instrument, 5.5 MHz, which corresponds to electron densities of 3.75x105 cm-3.These features are associated with strong, vertical magnetic fields, as expected for typical oblique echoes. However, they are only observed in regions where there is also an above-average likelihood of the field lines being open to the solar wind. This is consistent with the interpretation that these cusp-like regions can allow for interaction with the solar wind, but it is not yet clear whether these are an extreme case of "typical" oblique echoes, or whether these high-frequency echoes are caused by a unique physical process or observation geometry.

  4. Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    D. M. Wright


    Full Text Available On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs. The effective radiated power of SPEAR was varied from 1–10 MW. The aim of the experiment was to investigate the power thresholds for excitation (Pt and collapse (Pc of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsø heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsø UHF.

  5. Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions

    Directory of Open Access Journals (Sweden)

    D. P. Monselesan


    Full Text Available During summer months at solar cycle minimum, F-region lacuna and slant-Es conditions (SEC are common features of daytime ionograms recorded around local magnetic noon at Casey, Antarctica. Digisonde measurements of drift velocity height profiles show that the occurrence of lacuna prevents the determination of F-region drift velocities and also affects E-region drift velocity measurements. Unique E-region spectral features revealed as intervals of Bragg scatter superimposed on typical background E-region reflection were observed in Digisonde Doppler spectra during intense lacuna conditions. Daytime E-region Doppler spectra recorded at carrier frequencies from 1.5 to 2.7MHz, below the E-region critical frequency foE, have two side-peaks corresponding to Bragg scatter at approximately ±1-2Hz symmetrically located on each side of a central-peak corresponding to near-zenith total reflections. Angle-of-arrival information and ray-tracing simulations show that echo returns are coming from oblique directions most likely resulting from direct backscatter from just below the total reflection height for each sounding frequency. The Bragg backscatter events are shown to manifest during polar lacuna conditions, and to affect the determination of E-region background drift velocities, and as such must be considered when using standard Doppler-sorted interferometry (DSI techniques to estimate ionospheric drift velocities. Given the Doppler and spatial separation of the echoes determined from high-resolution Doppler measurements, we are able to estimate the Bragg scatter phase velocity independently from the bulk E-region motion. The phase velocity coincides with the ExB direction derived from in situ fluxgate magnetometer records. When ionospheric refraction is considered, the phase velocity amplitudes deduced from DSI are comparable to the ion-acoustic speed expected in the E-region. We briefly consider the plausibility that these

  6. Comprehensive study of ULF upstream waves observed in the topside ionosphere by CHAMP and on the ground

    Directory of Open Access Journals (Sweden)

    B. Heilig


    Full Text Available Based on magnetic field measurements from the satellite CHAMP, a detailed picture could be obtained of the upstream wave (UW distribution in the topside ionosphere. The low, near-polar orbit of CHAMP, covering all local times, allows the global distribution of this type of pulsation to be revealed. The observations from space are compared to recordings of the ground-based MM100 meridional array covering the latitude range 66° to 42° in magnetic coordinates. UWs show up very clearly in the compressional component of the satellite magnetic field data, whereas on the ground, their signature is found in the H component, but it is mixed with oscillations from field line resonant pulsations. Here we first introduce a procedure for an automated detection of UW signatures, both in ground and space data. Then a statistical analysis is presented of UW pulsations recorded during a 132-day period, centred on the autumn 2001 equinox. Observations in the top-side ionosphere reveal a clear latitudinal distribution of the amplitudes. Largest signals are observed at the equator. Minima show up at about 40° latitude. The coherence between ground and satellite wave signatures is high over wide latitude and longitude ranges. We make suggestions about the entry mechanism of UWs from the foreshock region into the magnetosphere. The clear UW signature in satellite recordings between −60° and 60° latitude allows for detailed investigations of the dependence on solar wind conditions. We test the control of solar wind speed, interplanetary magnetic field strength and cone angle on UWs. For the first time, it is possible to derive details of the Doppler-shift effect by modifying the UW frequency from direct observations. The results reconcile foreshock wave generation predictions with near-Earth observations.

  7. Topside ionospheric effects of the annular solar eclipse of 15th January 2010 as observed by DEMETER satellite (United States)

    Maji, Surya K.; Chakrabarti, Sandip K.; Sanki, Dipak; Pal, Sujay


    We present effects of the annular solar eclipse of 15th January 2010 on the topside ionosphere using the DEMETER satellite data. Measurements of the electron-ion density and electron temperature by the ISL (Instrument Sonde de Langmuir) and IAP (Instrument Analyseur de Plasma) instruments on board the DEMETER satellite during the eclipse time over the low latitude (±40) Indian ocean area are presented. We found the peak decrease in electron density to be about 35% and the peak decrease in ion density to be about 40% from the reference orbits at the altitude of the satellite (∼660 km). Electron and ion temperatures were found to have decreased by 200-300 K at the same altitude. Instead of simple decrease as in ion density, electron temperature showed a complex wave-like oscillation as the solar eclipse progressed. Electron density decreased to a minimum value before the maximum obscuration and starts to increase before passing through another minimum at the time of maximum obscuration. Both the minima are located at the ±10° geomagnetic latitude. Variations of electron and ion densities were found to follow the average solar illumination experienced by the satellite and its conjugate points at satellite altitude, while the electron temperature showed no such correlation.

  8. Different responses of northern and southern high latitude ionospheric convection to IMF rotations: a case study based on SuperDARN observations

    Directory of Open Access Journals (Sweden)

    D. Ambrosino


    Full Text Available We use SuperDARN data to study high-latitude ionospheric convection over a three hour period (starting at 22:00 UT on 2 January 2003, during which the Interplanetary Magnetic Field (IMF flipped between two states, one with By>>|Bz| and one with Bz>0, both with negative Bx. We find, as expected from previous works, that day side ionospheric convection is controlled by the IMF in both hemispheres. For strongly northward IMF, we observed signatures of two reverse cells, both in the Northern Hemisphere (NH and in the Southern Hemisphere (SH, due to lobe reconnection. On one occasion, we also observed in the NH two viscous cells at the sides of the reverse cell pair. For duskward IMF, we observed in the NH a large dusk clockwise cell, accompanied by a smaller dawn cell, and the signature of a corresponding pattern in the SH. On two occasions, a three cell pattern, composed of a large clockwise cell and two viscous cells, was observed in the NH. As regards the timings of the NH and SH convection reconfigurations, we find that the convection reconfiguration from a positive Bz dominated to a positive By dominated pattern occurred almost simultaneously (i.e. within a few minutes in the two hemispheres. On the contrary, the reconfiguration from a By dominated to a northward IMF pattern started in the NH 8–13 min earlier than in the SH. We suggest that part of such a delay can be due to the following mechanism: as IMF Bx<0, the northward-tailward magnetosheath magnetic field reconnects with the magnetospheric field first tailward of the northern cusp and later on tailward of the southern cusp, due to the IMF draping around the magnetopause.

  9. DEMETER observations of the ionospheric trough over HAARP in relation to HF heating experiments


    Piddyachiy, D.; Bell, T.F.; Berthelier, Jean-Jacques; U. S. Inan; Parrot, Michel


    International audience; Plasma density variations observed aboard the DEMETER satellite in the topside ionospheric F layer are analyzed in relation to high-frequency transmitter operations. The main interest is the high-latitude region. One hundred cases with operating and nonoperating High Frequency Active Auroral Research Program HF transmitter during day and night are examined. It is found that most large-scale variations can be attributed to the presence of the main ionospheric trough and...

  10. A global climatology for equatorial plasma bubbles in the topside ionosphere

    Directory of Open Access Journals (Sweden)

    L. C. Gentile


    Full Text Available We have developed a global climatology of equatorial plasma bubble (EPB occurrence based on evening sector plasma density measurements from polar-orbiting Defense Meteorological Satellite Program (DMSP spacecraft during 1989-2004. EPBs are irregular plasma density depletions in the post-sunset ionosphere that degrade communication and navigation signals. More than 14400 EPBs were identified in ~134000 DMSP orbits. DMSP observations basically agree with Tsunoda's (1985 hypothesis that EPB rates peak when the terminator is aligned with the Earth's magnetic field, but there are also unpredicted offsets in many longitude sectors. We present an updated climatology for the full database from 1989-2004 along with new plots for specific phases of the solar cycle: maximum 1989-1992 and 1999-2002, minimum 1994-1997, and transition years 1993, 1998, and 2003. As expected, there are significant differences between the climatologies for solar maximum and minimum and between the two solar maximum phases as well. We also compare DMSP F12, F14, F15, and F16 observations at slightly different local times during 2000-2004 to examine local time effects on EPB rates. The global climatologies developed using the DMSP EPB database provide an environmental context for the long-range prediction tools under development for the Communication/Navigation Outage Forecasting System (C/NOFS mission.

  11. ESPERIA: an Equatorial Magnetic, Plasma and Particle Mission for Monitoring Perturbations in the Topside Ionosphere and for Defining the Near-Earth Magnetic Environment. (United States)

    Sgrigna, V.; Console, R.; Buzzi, A.; Conti, L.; Galper, A. M.; Malvezzi, V.; Parrot, M.; Picozza, P.; Scrimaglio, R.; Spillantini, P.; Zilpimiani, D.


    ESPERIA is an equatorial space mission planned with a LEO small-satellite and a multi-instrument payload. The project has been ideally conceived to define the near-Earth electromagnetic, plasma, and particle environment, both in steady-state and perturbed-state conditions. In recent times has been observed that either Earth's interior processes or near-Earth space phenomena have a privileged and sensitive zone of investigation constituted by the ionosphere-magnetosphere transition region, at altitudes ranging around 500 / 1000 km. In fact, sun and cosmic rays as well as, seismic, anthropogenic and thunderstorm activities, influence the structure and dynamics of the zone. These external and internal contributions play an important role in defining the particle and electromagnetic field character of the region, both in steady-state and perturbed-state conditions. So, a suitable monitoring of the topside ionosphere may give an help in studying many important physical phenomena as pre-earthquake and anthropogenic electromagnetic emissions, solar wind and flares, as well as in mapping the geomagnetic field. Concerning the Earth's magnetic field mapping, ESPERIA can be seen as an equatorial coordinated and simultaneous complement to polar missions, like SWARM. The first step in realizing the project was an opportunity given by the Italian Space Agency (ASI) for a Phase A Study, concerned with detecting any tectonic and preseismic related signals, and studying seismo-associated perturbations and instabilities in the topside ionosphere. The study has been performed by an International Consortium lead by the University Roma Tre, and the ESPERIA Phase A report is now available. The ASI constrains restricted the scientific objectives of the above-mentioned ideally conceived project, but recent contacts with other missions and science teams give indications to reconcile the project to its original aims.

  12. Experimental estimation of effective recombination coefficients in the D-region ionosphere at high latitudes during solar eclipses by the method of partial reflections

    Directory of Open Access Journals (Sweden)

    Chernyakov S. M.


    Full Text Available The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. Experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. The basis of this method is the idea of Appleton about similarity of the behavior of the linear inductive circuit and variations of the electron concentration in the ionosphere on a fixed height in the absence of the transport processes, the change in the rate of formation of electrons in time and the disappearance of free electrons due to recombination. By analogy with the time constant of the electric circuit Appleton called the reaction of the ionosphere on the process of ionization in the ionosphere as "sluggishness" with a characteristic time constant τ, which is also called the "relaxation time" or "time constant of the ionosphere". During 11 August 1999, 1 August 2008, 11 June 2011, 20 March 2015 solar eclipses at the partial reflection facility of the observatory "Tumanny" (69.0N, 35.7E observations of the amplitudes of reflections of ordinary and extraordinary waves have been carried out. Using the obtained data the two-dimensional (time, height distribution of the electron density ne at altitudes of the D-region ionosphere has been calculated. This has made it possible to obtain the behavior of the electron concentration in time at selected altitudes (temporal profiles of electron density at selected altitudes. Using the obtained experimental profiles, the effective recombination coefficients on the heights of the D-region ionosphere have been evaluated. Transport processes of plasma (for example, propagation of acoustic

  13. First simultaneous observations of flux transfer events at the high-latitude magnetopause by the Cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars

    Directory of Open Access Journals (Sweden)

    J. A. Wild

    Full Text Available Cluster magnetic field data are studied during an outbound pass through the post-noon high-latitude magnetopause region on 14 February 2001. The onset of several minute perturbations in the magnetospheric field was observed in conjunction with a southward turn of the interplanetary magnetic field observed upstream by the ACE spacecraft and lagged to the subsolar magnetopause. These perturbations culminated in the observation of four clear magnetospheric flux transfer events (FTEs adjacent to the magnetopause, together with a highly-structured magnetopause boundary layer containing related field features. Furthermore, clear FTEs were observed later in the magnetosheath. The magnetospheric FTEs were of essentially the same form as the original "flux erosion events" observed in HEOS-2 data at a similar location and under similar interplanetary conditions by Haerendel et al. (1978. We show that the nature of the magnetic perturbations in these events is consistent with the formation of open flux tubes connected to the northern polar ionosphere via pulsed reconnection in the dusk sector magnetopause. The magnetic footprint of the Cluster spacecraft during the boundary passage is shown to map centrally within the fields-of-view of the CUTLASS SuperDARN radars, and to pass across the field-aligned beam of the EISCAT Svalbard radar (ESR system. It is shown that both the ionospheric flow and the backscatter power in the CUTLASS data pulse are in synchrony with the magnetospheric FTEs and boundary layer structures at the latitude of the Cluster footprint. These flow and power features are subsequently found to propagate poleward, forming classic "pulsed ionospheric flow" and "poleward-moving radar auroral form" structures at higher latitudes. The combined Cluster-CUTLASS observations thus represent a direct demonstration of the coupling of momentum and energy into the magnetosphere-ionosphere system via pulsed magnetopause reconnection. The ESR

  14. High-resolution Multi-instrument Observations of Ion Outflows in the Topside Ionosphere on the Enhanced Polar Outflow Probe (e-POP) (United States)

    Yau, A. W.; Cogger, L. L.; Howarth, A. D.; James, H. G.; McWilliams, K. A.; Miles, D. M.; Perry, G. W.; Peterson, W. K.


    The high measurement resolution capability of the Enhanced Polar Outflow Probe (e-POP) instrument suite (up to ~150 samples/sec) onboard the polar-orbiting Canadian CASSIOPE satellite (325 × 1500 km; 81° inclination) provides the first opportunity to investigate the dynamic structures of ion up-flows and outflows in the topside ionosphere and associated auroral and wave-particle interaction processes, at different magnetic local times and down to sub-km scale. We present observations in selected quiet- and storm-time e-POP orbits, including orbits in close conjunction with DMSP and/or the SuperDARN radar, and including data from the low-energy imaging ion mass spectrometer, fast auroral imager, radio receiver instrument, fluxgate magnetometer, and suprathermal electron imager. The observed features include localized regions of enhanced ion up-flows or down-flows down to the F-region within the aurora; the persistence of non-negligible up-flows at quiet times; the larger-than-expected fluxes of atomic and molecular nitrogen ions; and "polar-wind" H+ion flow on closed auroral field lines co-existing with auroral bulk flows below DMSP altitudes. We will discuss the implications of these features on magnetosphere-ionosphere coupling and magnetospheric ion composition.

  15. Physics-based formula representations of high-latitude ionospheric outflows: H+ and O+ densities, flow velocities, and temperatures versus soft electron precipitation, wave-driven transverse heating, and solar zenith angle effects (United States)

    Horwitz, J. L.; Zeng, W.


    Extensive systematic dynamic fluid kinetic (DyFK) model simulations are conducted to obtain advanced simulation-based formula representations of ionospheric outflow parameters, for possible use by global magnetospheric modelers. Under F10.7 levels of 142, corresponding to solar medium conditions, we obtain the H+ and O+ outflow densities, flow velocities, and perpendicular and parallel temperatures versus energy fluxes and characteristic energies of soft electron precipitation, wave spectral densities of ion transverse wave heating, and F region level solar zenith angle in the high-latitude auroral region. From the results of hundreds of DyFK simulations of auroral outflows for ranges of each of these driving agents, we depict the H+ and O+ outflow density and flow velocity parameters at 3 R E altitude at the ends of these 2-h simulation runs in spectrogram form versus various pairs of these influencing parameters. We further approximate these results by various distilled formula representations for the O+ and H+ outflow velocities, densities, and temperatures at 3 R E altitude, as functions of the above indicated four ``driver'' parameters. These formula representations provide insight into the physics of these driven outflows, and may provide a convenient set of tools to set the boundary conditions for ionospheric plasma sources in global magnetospheric simulations.

  16. Tidi Observations Relating to High Latitude Aeronomy (United States)

    Gell, D.; Niciejewski, R.; Killeen, T.; Wu, Q.; Skinner, W.; Solomon, S.; Ortland, D.; Kafkalidis, J.; Gablehouse, D.; Johnson, R.


    Unique observations of the horizontal neutral winds at high latitudes in the altitude range 60 to 180 km have been performed by TIDI (Thermosphere Ionosphere Doppler Interferometer) since January 2002. The satellite orbit is such that the TIDI field of view includes latitudes to both the north pole and the south pole. Though high latitude neutral wind measurements have been obtained from space with the DE-2 satellite and the UARS satellite, TIDI is the first instrument to sample the mesosphere and the lower thermosphere up to and including both polar regions on a long-term basis. Ground based studies have previously reported a strong semi-diurnal tide in the mesosphere over Resolute, Canada. This paper will describe the climatology that has been obtained by the TIDI instrument since early 2002 for high latitudes. The precession rate of TIMED supports two month averaging of data sets in order to sample all local solar time.

  17. Comparison of midlatitude ionospheric F region peak parameters and topside Ne profiles from IRI2012 model prediction with ground-based ionosonde and Alouette II observations (United States)

    Gordiyenko, G. I.; Yakovets, A. F.


    difference in the shape of the Alouette-, NeQuick-, IRI02-coorr, and IRI2001-derived Ne profiles, with overestimated Ne values at some altitudes and underestimated Ne values at others. The results obtained in the study showed that the observation-model differences were significant especially for the real observed (not median) data. For practical application, it is clearly important for the IRI2012 model to be adapted to the observed F2-layer peak parameters. However, the model does not offer a simple solution to predict the shape of the vertical electron density profile in the topside ionosphere, because of the problem with the topside shape parameters.

  18. WN4 effect on longitudinal distribution of different ion species in the topside ionosphere at low latitudes by means of DEMETER, DMSP-F13 and DMSP-F15 data

    Directory of Open Access Journals (Sweden)

    L. Bankov


    Full Text Available Plasma probe data from DMSP-F13, DMSP-F15 and DEMETER satellites were used to examine longitudinal structures in the topside equatorial ionosphere during fall equinox conditions of 2004 year. Since the launch of DEMETER satellite on 29 June 2004, all these satellites operate close together in the topside ionosphere. Here, data taken from Special Sensor-Ion, Electron and Scintillations (SSIES instruments on board DMSP-F13, F15 and Instrument Analyser de Plasma (IAP on DEMETER, are used. Longitudinal variations in the major ions at two altitudes (~730 km for DEMETER and ~840 km for DMSP are studied to further describe the recently observed "wavenumber-four" (WN4 structures in the equatorial topside ionosphere. Different ion species H+, He+ and O+ have a rather complex longitudinal behavior. It is shown that WN4 is almost a regular feature in O+ the density distribution over all local times covered by these satellites. In the evening local time sector, H+ ions follow the O+ behavior within WN4 structures up to the pre-midnight hours. Near sunrise H+ and later in the daytime, He+ longitudinal variations are out of phase with respect to O+ ions and effectively reduce the effect of WN4 on total ion density distribution at altitudes 730–840 km. It is shown that both a WN4 E×B drift driver and local F-region winds must be considered to explain the observed ion composition variations.

  19. Multi-instrumental Analysis of the Ionospheric Density Response to Geomagnetic Disturbances (United States)

    Zakharenkova, I.; Astafyeva, E.


    Measurements provided by Low Earth Orbit (LEO) satellite missions have already proved to be very efficient in investigations of global redistribution of ionospheric plasma and thermosphere mass density during such phenomena as geomagnetic storms. LEO satellites have various instruments for research of the ionosphere response to the space weather events like GPS receiver for precise orbit determination (POD), total electron content estimation and radio occultation, altimeter, planar Langmuir probe, topside sounder, special detectors for particle fluxes, magnetometer etc. In this paper, we present results of joint analysis of LEO satellite data, in particular CHAMP, DMSP, JASON, as well as data provided by ground-based networks of GPS receivers and ionosonde stations for global ionospheric response to the geomagnetic disturbances. We use in-situ plasma density data from CHAMP and DMSP satellites, along with data of GPS receiver onboard CHAMP-satellite and ground-based GPS-receivers to study occurrence and global distribution of ionospheric irregularities during the main phase of the storm. Using CHAMP GPS measurements, we created maps of GPS phase fluctuation activity and found two specific zones of the most intense irregularities - first is the region of the auroral oval at high latitudes of both hemispheres, the second one is the low-latitudes/equatorial region between Africa and South America. The interhemispheric asymmetry of the ionospheric irregularities intensity and occurrence in polar region is discussed. Analysis of the topside TEC, derived from CHAMP onboard GPS POD antenna, indicate the significant redistribution of the topside ionospheric plasma density in the equatorial, middle and high-latitude ionosphere during main and recovery phases of geomagnetic storm. Multi-instrumental data allow to analyze in detail the complex modification and dynamics of the upper atmosphere in different altitudinal, spatial and temporal scales.

  20. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere


    Perron, P. J. G.; J.-M. A. Noël; Kabin, K.; St-Maurice, J.-P.


    Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA) instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius...

  1. Assessment of Plasma Transport and Convection at High Latitudes (United States)


    The high-latitude ionosphere is strongly coupled to the thermosphere and magnetosphere. The magnetospheric coupling occurs via electric fields, field-aligned currents, and particle precipitation. Owing to the interaction of the shocked solar wind with the geomagnetic field, an electric potential difference is generated across the tail of the magnetosphere, with the resulting electric field pointing from dawn to dusk. Energetic particle precipitation from the magnetosphere in the auroral region leads to the creation of ionization and to electron, ion, and neutral gas heating. In order to assess the current understanding of plasma transport and convection at high latitudes, it is necessary to take account of the strong coupling between the ionosphere, thermosphere, and magnetosphere.

  2. High Latitude Mottling on Jupiter (United States)


    The familiar banded appearance of Jupiter at low and middle latitudes gradually gives way to a more mottled appearance at high latitudes in this striking true color image taken Dec. 13, 2000, by NASA's Cassini spacecraft.The intricate structures seen in the polar region are clouds of different chemical composition, height and thickness. Clouds are organized by winds, and the mottled appearance in the polar regions suggests more vortex-type motion and winds of less vigor at higher latitudes.The cause of this difference is not understood. One possible contributor is that the horizontal component of the Coriolis force, which arises from the planet's rotation and is responsible for curving the trajectories of ocean currents and winds on Earth, has its greatest effect at high latitudes and vanishes at the equator. This tends to create small, intense vortices at high latitudes on Jupiter. Another possibility may lie in that fact that Jupiter overall emits nearly as much of its own heat as it absorbs from the Sun, and this internal heat flux is very likely greater at the poles. This condition could lead to enhanced convection at the poles and more vortex-type structures. Further analysis of Cassini images, including analysis of sequences taken over a span of time, should help us understand the cause of equator-to-pole differences in cloud organization and evolution.By the time this picture was taken, Cassini had reached close enough to Jupiter to allow the spacecraft to return images with more detail than what's possible with the planetary camera on NASA's Earth-orbiting Hubble Space Telescope. The resolution here is 114 kilometers (71 miles) per pixel. This contrast-enhanced, edge-sharpened frame was composited from images take at different wavelengths with Cassini's narrow-angle camera, from a distance of 19 million kilometers (11.8 million miles). The spacecraft was in almost a direct line between the Sun and Jupiter, so the solar illumination on Jupiter is almost full

  3. Magnotospheric imaging of high latitude ion outflows

    Directory of Open Access Journals (Sweden)

    D. E. Garrido

    Full Text Available High latitude ion outflows mostly consist of upward streaming O+ and He+ emanating from the ionosphere. At heights above 1000 km, these flows consist of cold and hot components which resonantly scatter solar extreme ultraviolet (EUV light, however, the ion populations respond differently to Doppler shifting resulting from the large relative velocities between the ions and the Sun. The possibility of optical detection of the Doppler effect on the scattering rate will be discussed for the O+ (83.4 nm ions. We have contrasted the EUV solar resonance images of these outflows by simulations of the 30.4 nm He+ and 83.4 nm O+ emissions for both quiet and disturbed geomagnetic conditions. Input data for the 1000 km level has been obtained from the EICS instrument aboard the Dynamics Explorer satellite. Our results show emission rates of 50 and 56 milli-Rayleighs at 30.4 nm for quiet and disturbed conditions and 65 and 75 milli-Rayleighs at 83.4 nm for quiet and disturbed conditions, respectively, obtained for a polar orbiting satellite and viewing radially outward. We also find that an imager at an equatorial distance of 9 RE or more is in a favourable position for detecting ion outflows, particularly when the plasmapause is depressed in latitude. However, an occultation disk is necessary to obscure the bright plasmaspheric emissions.

  4. The SDSS High Latitude Cloud Survey (United States)

    McGehee, P. M.


    The high latitude clouds (|b| > 30) are primarily translucent molecular clouds and diffuse Galactic cirrus with the majority of them seen at high latitude simply due to their proximity to the Sun. The rare exceptions are those, like the Draco and other intermediate or high velocity clouds, found significantly above or below the Galactic plane. To date, star formation has only been verified in MBM 12 and MBM 20, which are two of the densest high latitude molecular clouds. We present results from an ongoing study of high latitude clouds based on the Sloan Digital Sky Survey (SDSS) and the Two Micron All-Sky Survey (2MASS). This study consists of two major efforts, the first (described here) to provide a 3-D mapping of the interstellar dust using a color-excess technique, the second to identify candidate low-mass Classical T Tauri stars in the field.

  5. GPS phase scintillation at high latitudes during the geomagnetic storm of 17-18 March 2015

    DEFF Research Database (Denmark)

    Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J. M.


    The geomagnetic storm of 17–18 March 2015 was caused by the impacts of a coronal mass ejection and a high-speed plasma stream from a coronal hole. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers...

  6. Analysis of High-Latitude lonospheric Processes During HSS and CME-Induced Geomagnetic Storms

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga

    For the first time we compared ionospheric effects of HSS and CME-driven storms at high-latitudes. There were similarities and also differences observed in the development of the storms. (1) Both type of storms exhibited clear negative phase, which resulted in an increase of TOI-breaking-down int...

  7. Ionospheric response to particle precipitation within aurora

    Energy Technology Data Exchange (ETDEWEB)

    Wahlund, J.E. (Swedish Inst. of Space Physics, Uppsala (Sweden))


    The aurora is just the visible signature of a large number of processes occurring in a planetary ionosphere as a response to energetic charged particles falling in from the near-empty space far above the planetary atmosphere. This thesis, based on measurements using the EISCAT incoherent scatter radar system in northern Scandinavia, discusses ionospheric response processes and especially a mechanism leading to atmospheric gas escape from a planet. One of the most spectacular events in the high latitude atmosphere on earth are the 'auroral arcs' - dynamic rayed sheets of light. An investigation of the conditions of the ionosphere surrounding auroral arcs shows that strong field-aligned bulk ion outflows appear in the topside ionosphere which account for a large fraction of the escape of atmospheric oxygen from earth. Four different additional ionospheric responses are closely related to this ion outflow; 1. enhanced electron temperatures of several thousand Kelvin above an altitude of about 250 km, 2. enhanced ionization around an altitude of 200 km corresponding to electron precipitation with energies of a few hundred eV, 3. the occurrence of naturally enhanced ion acoustic fluctuations seen in the radar spectrum, most likely produced by an ion-ion two-stream instability, and 4. upward directed field-aligned currents partly carried by the outflowing ions. From these observations, it is suggested that the energy dissipation into the background plasma through Joule heating, the production of a few hundred eV energetic run-away electrons, and strong ion outflows are partly produced by the simultaneous presence of ion acoustic turbulence and field-aligned currents above auroral arcs. (20 refs.) (au).

  8. Ionospheric response to particle precipitation within aurora

    Energy Technology Data Exchange (ETDEWEB)

    Wahlund, J.E. [Swedish Inst. of Space Physics, Uppsala (Sweden)


    The aurora is just the visible signature of a large number of processes occurring in a planetary ionosphere as a response to energetic charged particles falling in from the near-empty space far above the planetary atmosphere. This thesis, based on measurements using the EISCAT incoherent scatter radar system in northern Scandinavia, discusses ionospheric response processes and especially a mechanism leading to atmospheric gas escape from a planet. One of the most spectacular events in the high latitude atmosphere on earth are the `auroral arcs` - dynamic rayed sheets of light. An investigation of the conditions of the ionosphere surrounding auroral arcs shows that strong field-aligned bulk ion outflows appear in the topside ionosphere which account for a large fraction of the escape of atmospheric oxygen from earth. Four different additional ionospheric responses are closely related to this ion outflow; 1. enhanced electron temperatures of several thousand Kelvin above an altitude of about 250 km, 2. enhanced ionization around an altitude of 200 km corresponding to electron precipitation with energies of a few hundred eV, 3. the occurrence of naturally enhanced ion acoustic fluctuations seen in the radar spectrum, most likely produced by an ion-ion two-stream instability, and 4. upward directed field-aligned currents partly carried by the outflowing ions. From these observations, it is suggested that the energy dissipation into the background plasma through Joule heating, the production of a few hundred eV energetic run-away electrons, and strong ion outflows are partly produced by the simultaneous presence of ion acoustic turbulence and field-aligned currents above auroral arcs. (20 refs.) (au).

  9. Radio-Wave Scintillations and Ionospheric Irregularities at High Latitudes. (United States)


    features are the enhancements in activity close to the 5 40 LO) ** III w oo *m wA It X:C 1 N m *o 4--LL ZtO - (3? 0 LO t -I 0 =M V -I. I.- < LL a D I-a- Z...edges of the precipitation zone causing unstable velocity shears at F-region height. It can be noted that other exanies linking shearing of the E

  10. Alternative Coordinate Systems for High Latitude Ionospheric Plasma Studies. (United States)


    only a small fraction of this energy flux is directly coupled into the magnetosphere system. However, it has been suggested that a high altitude...upon numerical error arising frori off-center differencing . To complete the mesh in three dimensions, the contours of of Figure 2 must he rotated

  11. Equator and High-Latitude Ionosphere-to-Magnetosphere Research (United States)


    characterizing plasma velocity profile in the heated region above HAARP has been clearly established. Specification of D region absorption from Digisonde...Electron density profile, Ground truth, Cal/Val, Doppler skymap, HAARP , Plasma velocity profile, Ionogram autoscaling, D region absorption...2  3  HAARP INVESTIGATIONS ............................................................................ 5  3.1

  12. Small-scale characteristics of extremely high latitude aurora

    Directory of Open Access Journals (Sweden)

    J. A. Cumnock


    Full Text Available We examine 14 cases of an interesting type of extremely high latitude aurora as identified in the precipitating particles measured by the DMSP F13 satellite. In particular we investigate structures within large-scale arcs for which the particle signatures are made up of a group of multiple distinct thin arcs. These cases are chosen without regard to IMF orientation and are part of a group of 87 events where DMSP F13 SSJ/4 measures emissions which occur near the noon-midnight meridian and are spatially separated from both the dawnside and duskside auroral ovals by wide regions with precipitating particles typical of the polar cap. For 73 of these events the high-latitude aurora consists of a continuous region of precipitating particles. We focus on the remaining 14 of these events where the particle signatures show multiple distinct thin arcs. These events occur during northward or weakly southward IMF conditions and follow a change in IMF By. Correlations are seen between the field-aligned currents and plasma flows associated with the arcs, implying local closure of the FACs. Strong correlations are seen only in the sunlit hemisphere. The convection associated with the multiple thin arcs is localized and has little influence on the large-scale convection. This also implies that the sunward flow along the arcs is unrelated to the overall ionospheric convection.

  13. Relative Contributions of Heating and Momentum Forcing to High-Latitude Lower Thermospheric Winds (United States)

    Kwak, Y. S.; Richmond, A. D.


    At high latitudes the thermospheric dynamics are gov­erned by various heat and momentum sources. Recently several modeling studies have been attempt­ed to understand the physical process that control the high-latitude lower thermospheric dynamics. Kwak and Richmond [2007] and Kwak et al. [2007] studied the momentum forcing bal­ance that are mainly responsible for maintaining the high-latitude lower thermospheric wind system by using the National Center for Atmospheric Research Thermo­sphere Ionosphere Electrodynamics General Circulation Model (NCAR TIE-GCM). Kwak and Richmond [2014] analyzed the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the south­ern summertime. In this study, we extend previous works by Kwak and Rich­mond [2007, 2014] and Kwak et al. [2007], which helped to better understand the physical processes maintaining thermospheric dynamics at high latitudes, and here perform a "term analysis of the potential vorticity equation" for the high-latitude neu­tral wind field in the lower thermosphere, on the basis of numerical simulations using the NCAR TIE-GCM. These analyses can provide insight into the relative strength of the heating and the momentum forcing responsible for driving rotational winds at the high-latitude lower thermosphere. The heating is the net heat including the heat transfer by downward molecular and eddy heat conduction, the absorption of solar ultraviolet (UV) and extreme ultraviolet (EUV) ra­diation, auroral heating by particles, Joule dissipation of ionospheric currents, release of chemical energy by the atomic oxygen recombination, and radiative CO2, NO and O infrared emissions. The momentum forcing is associated with the viscous force and the frictional drag force from convecting ions.

  14. The role played by thermal feedback in heated Farley-Buneman waves at high latitudes

    Directory of Open Access Journals (Sweden)

    J.-P. St.-Maurice

    Full Text Available It is becoming increasingly clear that electron thermal effects have to be taken into account when dealing with the theory of ionospheric instabilities in the high-latitude ionosphere. Unfortunately, the mathematical complexity often hides the physical processes at work. We follow the limiting cases of a complex but systematic generalized fluid approach to get to the heart of the thermal processes that affect the stability of E region waves during electron heating events. We try to show as simply as possible under what conditions thermal effects contribute to the destabilization of strongly field-aligned (zero aspect angle Farley-Buneman modes. We show that destabilization can arise from a combination of (1 a reduction in pressure gradients associated with temperature fluctuations that are out of phase with density fluctuations, and (2 thermal diffusion, which takes the electrons from regions of enhanced temperatures to regions of negative temperature fluctuations, and therefore enhanced densities. However, we also show that, contrary to what has been suggested in the past, for modes excited along the E0×B direction thermal feedback decreases the growth rate and raises the threshold speed of the Farley-Buneman instability. The increase in threshold speed appears to be important enough to explain the generation of `Type IV' waves in the high-latitude ionosphere.

    Key words: Ionosphere (auroral ionosphere; iono- spheric irregularities; plasma waves and instabilities

  15. Spacecraft design project: High latitude communications satellite (United States)

    Josefson, Carl; Myers, Jack; Cloutier, Mike; Paluszek, Steve; Michael, Gerry; Hunter, Dan; Sakoda, Dan; Walters, Wes; Johnson, Dennis; Bauer, Terry


    The spacecraft design project was part of AE-4871, Advanced Spacecraft Design. The project was intended to provide experience in the design of all major components of a satellite. Each member of the class was given primary responsibility for a subsystem or design support function. Support was requested from the Naval Research Laboratory to augment the Naval Postgraduate School faculty. Analysis and design of each subsystem was done to the extent possible within the constraints of an eleven week quarter and the design facilities (hardware and software) available. The project team chose to evaluate the design of a high latitude communications satellite as representative of the design issues and tradeoffs necessary for a wide range of satellites. The High-Latitude Communications Satellite (HILACS) will provide a continuous UHF communications link between stations located north of the region covered by geosynchronous communications satellites, i.e., the area above approximately 60 N latitude. HILACS will also provide a communications link to stations below 60 N via a relay Net Control Station (NCS), which is located with access to both the HILACS and geosynchronous communications satellites. The communications payload will operate only for that portion of the orbit necessary to provide specified coverage.

  16. GPS scintillations and total electron content climatology in the southern low, middle and high latitude regions

    Directory of Open Access Journals (Sweden)

    Luca Spogli


    Full Text Available In recent years, several groups have installed high-frequency sampling receivers in the southern middle and high latitude regions, to monitor ionospheric scintillations and the total electron content (TEC changes. Taking advantage of the archive of continuous and systematic observations of the ionosphere on L-band by means of signals from the Global Positioning System (GPS, we present the first attempt at ionospheric scintillation and TEC mapping from Latin America to Antarctica. The climatology of the area considered is derived through Ground-Based Scintillation Climatology, a method that can identify ionospheric sectors in which scintillations are more likely to occur. This study also introduces the novel ionospheric scintillation 'hot-spot' analysis. This analysis first identifies the crucial areas of the ionosphere in terms of enhanced probability of scintillation occurrence, and then it studies the seasonal variation of the main scintillation and TEC-related parameters. The results produced by this sophisticated analysis give significant indications of the spatial/ temporal recurrences of plasma irregularities, which contributes to the extending of current knowledge of the mechanisms that cause scintillations, and consequently to the development of efficient tools to forecast space-weather-related ionospheric events.

  17. High latitude electromagnetic plasma wave emissions (United States)

    Gurnett, D. A.


    The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.

  18. Solar activity variability in the IRI at high latitudes: Comparisons with GPS total electron content (United States)

    Themens, David R.; Jayachandran, P. T.


    Total electron content (TEC) measurements from 10 dual-frequency GPS receivers in the Canadian High Arctic Ionospheric Network (CHAIN) are used to evaluate the performance of International Reference Ionosphere (IRI)-2007 within the Canadian sector. Throughout the region, we see systematic underestimation of daytime TEC, particularly at solar maximum, where summer and equinox root-mean-square errors reach as high as 14 total electron content units, 1 TECU = 1016 el m-2 (TECU). It is also shown that the use of a monthly IG index, in place of the IRI's standard IG12 index, leads to an improvement in TEC specification by up to 3 TECU in the polar cap and up to 6 TECU in the subauroral region during periods of short-term, large amplitude changes in solar activity. On diurnal timescales, variability in TEC is found to be underestimated by the IRI, during equinox periods, by up to 40% at subauroral latitudes and up to 70% in the polar cap region. During the winter, diurnal variations are overestimated by up to 40% in the subauroral region and are underestimated within the polar cap by up to 80%. Using collocated ionosonde data, we find IRI bottomside TEC to be within 1 TECU of observation with errors largest during the equinoxes. For the topside we find good agreement during the winter but significant underestimation of topside TEC by the IRI during summer and equinox periods, exceeding 6 TECU at times. By ingesting measured NmF2 into the IRI, we show that the topside thickness parameterization is the source of the bulk of the observed TEC errors.

  19. A Study of Steady Magnetospheric Convection Using High Latitude Magnetometers (United States)

    de Silva, J. T.; Erickson, K. N.; Engebretson, M. J.; Murr, D. L.; Hughes, W. J.


    Magnetometer data from the MACCS and CANOPUS arrays in northern North America have been analyzed during two of the intervals of steady magnetospheric convection identified by the GEM community, January 29-30 and February 3-4, 1998. These intervals were characterized by extended periods of southward interplanetary magnetic field (negative IMF Bz), and by the absence of substorms. The patterns of ionospheric current flow on the dayside were found to be in general agreement with the disturbance current system, SD, originally described by Silsbee and Vestine [1942]. This indicates that during extended periods of southward IMF the convection on the dayside is the same whether or not there are substorms. When plasma flow patterns measured by the SuperDARN auroral radar network were available for comparison, these patterns agreed with the patterns inferred from magnetometers. Further study will investigate convection patterns on the nightside, and a similar study of convection for the southern high latitude region will be conducted using data from Antarctic stations.

  20. Birkeland current effects on high-latitude groundmagnetic field perturbations

    CERN Document Server

    Laundal, K M; Lehtinen, N; Gjerloev, J W; Østgaard, N; Tenfjord, P; Reistad, J P; Snekvik, K; Milan, S E; Ohtani, S; Anderson, B J


    Magnetic perturbations on ground at high latitudes are directly associated only with the divergence-free component of the height-integrated horizontal ionospheric current, $\\textbf{J}_{\\perp,df}$. Here we show how $\\textbf{J}_{\\perp,df}$ can be expressed as the total horizontal current $\\textbf{J}_\\perp$ minus its curl-free component, the latter being completely determined by the global Birkeland current pattern. Thus in regions where $\\textbf{J}_\\perp = 0$, the global Birkeland current distribution alone determines the local magnetic perturbation. We show with observations from ground and space that in the polar cap, the ground magnetic field perturbations tend to align with the Birkeland current contribution in darkness but not in sunlight. We also show that in sunlight, the magnetic perturbations are typically such that the equivalent overhead current is anti-parallel to the convection, indicating that the Hall current system dominates. Thus the ground magnetic field in the polar cap relates to different c...

  1. Bayesian Image Classification At High Latitudes (United States)

    Bulgin, Claire E.; Eastwood, Steinar; Merchant, Chris J.


    The European Space Agency created the Climate Change Initiative (CCI) to maximize the usefulness of Earth Observations to climate science. Sea Surface Temperature (SST) is an essential climate variable to which satellite observations make a crucial contribution, and is one of the projects within the CCI program. SST retrieval is dependent on successful cloud clearing and identification of clear-sky pixels over ocean. At high latitudes image classification is more difficult due to the presence of sea-ice. Newly formed ice has a temperature close to the freezing point of water and a dark surface making it difficult to distinguish from open ocean using data at visible and infrared wavelengths. Similarly, melt ponds on the sea-ice surface make image classification more difficult. We present here a three- way Bayesian classifier for the AATSR instrument classifying pixels as ‘clear-sky over ocean', ‘clear-sky over ice' or ‘cloud' using the 0.6, 1.6, 11 and 12 micron channels. We demonstrate the ability of the classifier to successfully identify sea-ice and consider the potential for generating an ice surface temperature record from AATSR which could be extended using data from SLSTR.

  2. Analysis of High-Latitude lonospheric Processes During HSS and CME-Induced Geomagnetic Storms

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga

    For the first time we compared ionospheric effects of HSS and CME-driven storms at high-latitudes. There were similarities and also differences observed in the development of the storms. (1) Both type of storms exhibited clear negative phase, which resulted in an increase of TOI......-breaking-down into patches and a decrease in patch formation in general throughout the Greenland sector. The negative phase developed as the PCN-index started to increase indicated energy input into the polarcap. (2) The rate of PCN increase was clearly different for the two types of storms. (3) The impact of the physical...... processes responsible for the negative phase have less pronounced impact on the diurnal TEC variations than on patch formation. We also investigated and assessed storm influences on airborne navigation at high-latitudes in order to determine the possible cause of the radio communication disturbances...

  3. Turbulence in high latitude molecular clouds (United States)

    Shore, S. N.; Larosa, T. N.; Magnani, L.; Chastain, R. J.; Costagliola, F.

    We summarize a continuing investigation of turbulence in high-latitude translucent molecular clouds. These low mass (~ 50 M(solar), nearby (~ 100 pc), non-star forming clouds appear to be condensing out of the atomic cirrus and must be forced by external dynamical processes, since they lack internal sources, for which we can distinguish the injection scale for the turbulence. We have now mapped three clouds -- MBM 3, MBM 16, and MBM 40 -- with high spatial (0.03 pc) and velocity resolution (<0.08 km/s) in 12CO(1-0) 13CO(1-0) (NRAO 12m and FCRAO). All three clouds show evidence for large-shear flows and we propose that the turbulent motions are powered by shear-flow instability. The densest gas is structured into filaments but the velocity profiles do not change in going across a filament indicating that shocks are not compressing the gas. The density field is more likely the result of thermal instability. The velocity-size relationship, a commonly used diagnostic of ISM turbulence, does not hold in these clouds: the linewidth does not increase with region size. The centroid velocity probability distribution function (PDF) is a more precise measure of turbulence. In these clouds the PDFs exhibit broad wings, consistent with a Lorentzian distribution and showing evidence non-Gaussian correlated processes. This is a clear signature of intermittency. We have also begun a mapping survey of CS (1-0), CS (2-1), H2CO, and HCO+ at Arecibo and OSO and willdiscuss results for the Polaris flare and L1512. We will also discusssome implications of these studies for the turbulent dissipation in these systems.

  4. Magnetospheric effects in atmospheric electricity at high latitudes (United States)

    Shumilov, O. I.; Kasatkina, E. A.; Frank-Kamenetsky, A. V.; Raspopov, O. M.; Vasiljev, A. N.; Struev, A. G.


    Measurements of the vertical atmospheric electric field (Ez) made at auroral station Apatity (geomagnetic latitude: 63.8) and polar cap station Vostok, Antarctica (geomagnetic latitude: -89.3) in 2001-2002 have been analyzed. The measurements were made by a high-latitude computer-aided complex installed at Apatity in 2001. It consists of three spatially placed microbarographs for measurements of atmospheric waves, a device for air conductivity measurement and a device for measurement of vertical component of the atmospheric electric field. The computer-aided system permits to get information with a frequency of five times per second. The ground level atmospheric electric field was found to have systematic local diurnal and seasonal variations. Diurnal variations of atmospheric potential gradient were found to have a departure from the Carnegie curve. A distinct difference in the diurnal variation of atmospheric electric field has been observed also between disturbed (Kp>30) and extremely quiet (Kplatitude electric field variations appear to be the result of solar wind-magnetosphere-ionosphere coupling. Besides, we have found the similarity between the diurnal course of the atmospheric electric field under the quiet geomagnetic conditions and the diurnal variation of galactic cosmic rays. These results have been explained in terms of calculated effective Bz component of the interpalnetary magnetic field arising due to variation of the geomagnetic dipole axis inclination during the Earth's rotation. The results of analysis of the influence of extreme weather conditions (rain, snow, snowstorm, stormclouds, thunderstorms, lightning) on atmospheric electricity (electric field and conductivity) are also discussed. This work was supported by EC (grant INTAS 97-31008) and RFBR (grant 01-05-64850).

  5. High-latitude propagation studies using a meridional chain of LF/MF/HF receivers

    Directory of Open Access Journals (Sweden)

    J. LaBelle


    Full Text Available For over a decade, Dartmouth College has operated programmable radio receivers at multiple high-latitude sites covering the frequency range 100-5000kHz with about a 1-s resolution. Besides detecting radio emissions of auroral origin, these receivers record characteristics of the ionospheric propagation of natural and man-made signals, documenting well-known effects, such as the diurnal variation in the propagation characteristics of short and long waves, and also revealing more subtle effects. For example, at auroral zone sites in equinoctial conditions, the amplitudes of distant transmissions on MF/HF frequencies are often enhanced by a few dB just before they fade away at dawn. The polarization and/or direction of the arrival of ionospherically propagating signals in the lower HF range (3-5MHz show a consistent variation between pre-midnight, post-midnight, and pre-dawn conditions. As is well known, magnetic storms and substorms dramatically affect ionospheric propagation; data from multiple stations spanning the invariant latitude range 67-79° reveal spatial patterns of propagation characteristics associated with magnetic storms and substorms. For example, in the hours preceding many isolated substorms, favorable propagation conditions occur at progressively lower latitudes as a function of time preceding the substorm onset. For some of these effects, explanations follow readily from elementary ionospheric physics, but understanding others requires further investigation.

    Key words. Magnetospheric physics (annual phenomena – Radio science (ionosphere propagation; radio-wave propagation6

  6. Corotating Interaction Regions at High Latitudes (United States)

    Kunow, H.; Lee, M. A.; Fisk, L. A.; Forsyth, R. J.; Heber, B.; Horbury, T. S.; Keppler, E.; Kóta, J.; Lou, Y.-Q.; McKibben, R. B.; Paizis, C.; Potgieter, M. S.; Roelof, E. C.; Sanderson, T. R.; Simnett, G. M.; von Steiger, R.; Tsurutani, B. T.; Wimmer-Schweingruber, R. F.; Jokipii, J. R.


    Ulysses observed a stable strong CIR from early 1992 through 1994 during its first journey into the southern hemisphere. After the rapid latitude scan in early 1995, Ulysses observed a weaker CIR from early 1996 to mid-1997 in the northern hemisphere as it traveled back to the ecliptic at the orbit of Jupiter. These two CIRs are the observational basis of the investigation into the latitudinal structure of CIRs. The first CIR was caused by an extension of the northern coronal hole into the southern hemisphere during declining solar activity, whereas the second CIR near solar minimum activity was caused by small warps in the streamer belt. The latitudinal structure is described through the presentation of three 26-day periods during the southern CIR. The first at ˜24°S shows the full plasma interaction region including fast and slow wind streams, the compressed shocked flows with embedded stream interface and heliospheric current sheet (HCS), and the forward and reverse shocks with associated accelerated ions and electrons. The second at 40°S exhibits only the reverse shock, accelerated particles, and the 26-day modulation of cosmic rays. The third at 60°S shows only the accelerated particles and modulated cosmic rays. The possible mechanisms for the access of the accelerated particles and the CIR-modulated cosmic rays to high latitudes above the plasma interaction region are presented. They include direct magnetic field connection across latitude due to stochastic field line weaving or to systematic weaving caused by solar differential rotation combined with non-radial expansion of the fast wind. Another possible mechanism is particle diffusion across the average magnetic field, which includes stochastic field line weaving. A constraint on connection to a distant portion of the CIR is energy loss in the solar wind, which is substantial for the relatively slow-moving accelerated ions. Finally, the weaker northern CIR is compared with the southern CIR. It is weak

  7. Formation of Polar Ionospheric Tongue of Ionization during Minor Geomagnetic Disturbed Conditions (United States)

    Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.


    Previous investigations of ionospheric storm-enhanced density (SED) and tongue of ionization (TOI) focused mostly on the behavior of TOI during intense geomagnetic storms. Little attention has been paid to the spatial and temporal variations of TOI during weak to moderate geomagnetic disturbed conditions. we investigate the source and development of TOI during a moderate geomagnetic storm on 14 October 2012.Multi-instrumental observations including GPS total electron content (TEC), Defense Meteorological SatelliteProgram(DMSP) in situ measured total ion concentration and ion drift velocity, SuperDARN measured polar ionconvection patterns, and electron density profiles from the Poker Flat Incoherent Scatter Radar (PFISR) have been utilized in the current analysis. GPS TEC maps show salient TOI structures persisting for about 5 h over high latitudes of North America on 14 October 2012 in the later recovery phase of the storm when the magnitudes of IMF By and Bz were less than 5 nT. The PFISR electron density profiles indicate that the extra ionization for TEC enhancements mainly occurred in the topside ionosphere with no obvious changes in the bottom side ionosphere and vertical plasma drifts. Additionally, there were no signatures of penetration electric fields in the equatorial electrojet data and upward ion drifts at high latitudes. At the same time, strong subauroral polarization streams with ion drift speeds exceeding 2.5 km/s carried sunward fluxes and migrated toward lower latitudes for about 5° based on the DMSP cross-track driftmeasurements. Based on those measurements,we postulate that the combined effects of initial build-up of ionization at midlatitudes through daytime production of ionization and equatorward (or less poleward than normal daytime) neutral wind reducing downward diffusion along the inclined filed lines, and an expanded polar ion convection pattern and its associated horizontal plasma transport are important in the formation of the TOI.

  8. Global High-Latitude Conductivity Modeling: New Data and Improved Methods (United States)

    McGranaghan, R. M.; Knipp, D. J.; Matsuo, T.; Godinez, H. C.


    The ionospheric conductivity distribution is essential for understanding the coupling in the magnetosphere-ionosphere-thermosphere (MIT) system. Hall conductivities, which regulate ionospheric current flow in the direction perpendicular to both the background magnetic field and the electric field, exert control over magnetospheric configuration, including transport within the plasmasphere and reconnection in the magnetotail [Lotko et al., 2014]. Pedersen conductivities control electric field variability and, in turn, determine the distribution and intensity of Joule heating, a prominent source of upper atmospheric temperature and neutral density enhancement. Contemporary conductivity modeling techniques rely on limiting assumptions and are 2-dimensional by design. Typically these models assume Maxwellian incoming particle energy distributions and simplistic current closure paths within an ionospheric 'shell' located at 110 km. We have developed a method to: 1) eliminate these assumptions and 2) allow 3-dimensional conductivity analysis using particle energy spectra provided by Defense Meteorological Satellite Program (DMSP) satellites. A sequential non-linear procedure then regresses the conductivities derived from DMSP data on the same basis functions used in the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure to obtain a realistic form of the covariance model, with the goal to integrate 3-dimensional conductivity analysis into the AMIE procedure. This addresses one of the primary sources of uncertainty within AMIE, and will ultimately allow more accurate characterization of high-latitude ionospheric electrodynamics. We present 3-dimensional conductivity distributions derived from satellite observations and global maps of these conductivities for the year 2010. References:Lotko, W., et al. (2014), Ionospheric control of magnetotail reconnection, Science, 345(6193), 184-187, doi:10.1126/science.1252907.

  9. Using scale heights derived from bottomside ionograms for modelling the IRI topside profile

    Directory of Open Access Journals (Sweden)

    B. W. Reinisch


    Full Text Available Groundbased ionograms measure the Chapman scale height HT at the F2-layer peak that is used to construct the topside profile. After a brief review of the topside model extrapolation technique, comparisons are presented between the modeled profiles with incoherent scatter radar and satellite measurements for the mid latitude and equatorial ionosphere. The total electron content TEC, derived from measurements on satellite beacon signals, is compared with the height-integrated profiles ITEC from the ionograms. Good agreement is found with the ISR profiles and with results using the low altitude TOPEX satellite. The TEC values derived from GPS signal analysis are systematically larger than ITEC. It is suggested to use HT , routinely measured by a large number of Digisondes around the globe, for the construction of the IRI topside electron density profile.

  10. Momentum transfer at the high-latitude magnetopause and boundary layers

    Directory of Open Access Journals (Sweden)

    E. J. Lund


    Full Text Available How and where momentum is transferred from the solar wind to the magnetosphere and ionosphere is one of the key problems of space physics. Much of this transfer occurs through direct reconnection on the dayside, particularly when the IMF is southward. However, momentum transfer also occurs at higher latitudes via Alfvén waves on old open field lines, even for southward IMF. This momentum is transferred to the ionosphere via field-aligned currents (FACs, and the flow channel associated with these FACs produces a Hall current which causes magnetic variations at high latitude (the Svalgaard-Mansurov effect. We show examples where such momentum transfer is observed with multiple spacecraft and ground-based instruments.

  11. Spline model of the high latitude scintillation based on in situ satellite data (United States)

    Priyadarshi, S.; Wernik, A. W.


    We present a spline model for the high latitude ionospheric scintillation using satellite in situ measurements made by the Dynamic Explorer 2 (DE 2) satellite. DE 2 satellite measurements give observations only along satellite orbit but our interpolation model fills the gaps between the satellite orbits. This analytical model is based on products of cubic B-splines and coefficients determined by least squares fit to the binned data and constrained to make the fit periodic in 24 hours of geomagnetic local time, periodic in 360 degrees of invariant longitude, in geomagnetic indices and solar radio flux. Discussion of our results clearly shows the seasonal and diurnal behavior of ionospheric parameters important in scintillation modeling for different geophysical and solar activity conditions. We also show that results obtained from our analytical model match observations obtained from in situ measurements. Shishir Priyadarshi Space Research Centre, Poland

  12. Power Thresholds of SPEAR-induced Irregularities at Very High Latitudes (United States)

    Wright, D. M.; Yeoman, T. K.; Robinson, T. R.; Thomas, E. C.; Baddeley, L. J.; Dhillon, R. S.


    SPEAR (Space Plasma Exploration by Active Radar) is a high power facility uniquely located to study the plasma physics and geophysics of the very high latitude magnetosphere and ionosphere. Recently, experiments have been undertaken to investigate the power thresholds required to excite field-aligned irregularities (FAIs). The artificially stimulated FAI act as intense targets in the fields of view of the CUTLASS HF coherent radar pair. Data derived using this artificial backscatter technique demonstrate that SPEAR effective radiated powers (ERPs) of the order of 1 MW or less are capable of initiating the formation of the FAI. This represents only 1/30th of the heating capability of SPEAR. Ionospheric hysteresis was also observed to occur during the experiments. This relates to the nature of the instability which leads to their excitation.

  13. Cosmology with the WFIRST High Latitude Survey (United States)

    Dore, Olivier

    Cosmic acceleration is the most surprising cosmological discovery in many decades. Testing and distinguishing among possible explanations requires cosmological measurements of extremely high precision that probe the full history of cosmic expansion and structure growth. The WFIRST-AFTA mission, as described in the Science Definition Team (SDT) reports (Spergel 2013, 2015), has the ability to improve these measurements by 1-2 orders of magnitude compared to the current state of the art, while simultaneously extending their redshift grasp, greatly improving control of systematic effects, and taking a unified approach to multiple probes that provide complementary physical information and cross-checks of cosmological results. We have assembled a team with the expertise and commitment needed to address the stringent challenges of the WFIRST dark energy program through the Project's formulation phase. After careful consideration, we have elected to address investigations A (Galaxy Redshift Survey) and C (Weak Lensing and Cluster Growth) of the WFIRST SIT NRA with a unified team, because the two investigations are tightly linked at both the technical level and the theoretical modeling level. The imaging and spectroscopic elements of the High Latitude Survey (HLS) will be realized as an integrated observing program, and they jointly impose requirements on instrument and telescope performance, operations, and data transfer. The methods for simulating and interpreting weak lensing and galaxy clustering observations largely overlap, and many members of our team have expertise in both areas. The team PI, Olivier Dore, is a cosmologist with a broad expertise in cosmic microwave background and large scale structures. Yun Wang and Chris Hirata will serve as Lead Co-Investigators for topics A and C, respectively. Many members of our team have been involved with the design and requirements of a dark energy space mission for a decade or more, including the Co-Chair and three

  14. Results of Ionospheric Heating Experiments Involving an Enhancement in Electron Density in the High Latitude Ionosphere (United States)

    Wu, Jun; Wu, Jian; Xu, Zhengwen


    Observations are presented of the phenomenon of the enhancement in electron density and temperature that is caused by a powerful pump wave at a frequency near the fifth gyrofrequency. The observations show that the apparent enhancement in electron density extending over a wide altitude range and the enhancement in electron temperature around the reflection altitude occur as a function of pump frequency. Additionally, the plasma line spectra show unusual behavior as a function of pump frequency. In conclusion, the upper hybrid wave resonance excited by the pump wave plays a dominating role and leads to the enhancement in electron temperature at the upper hybrid altitude. The phenomenon of apparent enhancement in electron density does not correspond to the true enhancement in electron density, this may be due to some mechanism that preferentially involves the plasma transport process and leads to the strong backscatter of radar wave along the magnetic line, which remains to be determined. supported by National Natural Science Foundation of China (No. 40831062)

  15. Comparison of high-latitude thermospheric meridionalwinds I: optical and radar experimental comparisons

    Directory of Open Access Journals (Sweden)

    E. M. Griffin


    Full Text Available Thermospheric neutral winds at Kiruna, Sweden (67.4°N, 20.4°E are compared using both direct optical Fabry-Perot Interferometer (FPI measurements and those derived from European incoherent scatter radar (EISCAT measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974 and the Meridional Wind Model (MWM (Miller et al., 1997 application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the Coupled Thermosphere and Ionosphere (CTIM numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3 techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical Horizontal Wind Model (HWM, though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics, Ionosphere (ionosphere-atmosphere interactions, auroral ionosphere

  16. High-latitude E and F region coupling signature: A case study results from rapid-run ionosonde (United States)

    Shalimov, S.; Kozlovsky, A.


    Rapid-run ionosonde installed in the high-latitude Sodankylä Geophysical Observatory enables us to observe for the first time extraordinary details of E-F region coupling process in high-latitude ionosphere during geomagnetically quiet period. We present an example on 15 August 2009 when a dense, patchy sporadic E layer was detected. Associated with this unstable sporadic E layer, exhibiting in addition an unusual enhancement with a vertical extent of about 10 km, the highly structured F layer plasma was observed with apparent plasma depletions. We examine this event taking into account the presence of mesoscale traveling ionospheric disturbances which can initiate coupling between these two regions and compare the data with current theories.

  17. Upper mesospheric lunar tides over middle and high latitudes during sudden stratospheric warming events (United States)

    Chau, J. L.; Hoffmann, P.; Pedatella, N. M.; Matthias, V.; Stober, G.


    In recent years there have been a series of reported ground- and satellite-based observations of lunar tide signatures in the equatorial and low latitude ionosphere/thermosphere around sudden stratospheric warming (SSW) events. This lower atmosphere/ionosphere coupling has been suggested to be via the E region dynamo. In this work we present the results of analyzing 6 years of hourly upper mesospheric winds from specular meteor radars over a midlatitude (54°N) station and a high latitude (69°N) station. Instead of correlating our results with typical definitions of SSWs, we use the definition of polar vortex weaking (PVW) used by Zhang and Forbes. This definition provides a better representation of the strength in middle atmospheric dynamics that should be responsible for the waves propagating to the E region. We have performed a wave decomposition on hourly wind data in 21 day segments, shifted by 1 day. In addition to the radar wind data, the analysis has been applied to simulations from Whole Atmosphere Community Climate Model Extended version and the thermosphere-ionosphere-mesosphere electrodynamics general circulation model. Our results indicate that the semidiurnal lunar tide (M2) enhances in northern hemispheric winter months, over both middle and high latitudes. The time and magnitude of M2 are highly correlated with the time and associated zonal wind of PVW. At middle/high latitudes, M2 in the upper mesosphere occurs after/before the PVW. At both latitudes, the maximum amplitude of M2 is directly proportional to the strength of PVW westward wind. We have found that M2 amplitudes could be comparable to semidiurnal solar tide amplitudes, particularly around PVW and equinoxes. Besides these general results, we have also found peculiarities in some events, particularly at high latitudes. These peculiarities point to the need of considering the longitudinal features of the polar stratosphere and the upper mesosphere and lower thermosphere regions. For

  18. Effects of magnetospheric lobe cell convection on dayside upper thermospheric winds at high latitudes (United States)

    Zhang, B.; Wang, W.; Wu, Q.; Knipp, D.; Kilcommons, L.; Brambles, O. J.; Liu, J.; Wiltberger, M.; Lyon, J. G.; Häggström, I.


    This paper investigates a possible physical mechanism of the observed dayside high-latitude upper thermospheric wind using numerical simulations from the coupled magnetosphere-ionosphere-thermosphere (CMIT) model. Results show that the CMIT model is capable of reproducing the unexpected afternoon equatorward winds in the upper thermosphere observed by the High altitude Interferometer WIND observation (HIWIND) balloon. Models that lack adequate coupling produce poleward winds. The modeling study suggests that ion drag driven by magnetospheric lobe cell convection is another possible mechanism for turning the climatologically expected dayside poleward winds to the observed equatorward direction. The simulation results are validated by HIWIND, European Incoherent Scatter, and Defense Meteorological Satellite Program. The results suggest a strong momentum coupling between high-latitude ionospheric plasma circulation and thermospheric neutral winds in the summer hemisphere during positive IMF Bz periods, through the formation of magnetospheric lobe cell convection driven by persistent positive IMF By. The CMIT simulation adds important insight into the role of dayside coupling during intervals of otherwise quiet geomagnetic activity

  19. High-latitude HF Doppler observations of ULF waves: 2. Waves with small spatial scale sizes

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    Full Text Available The DOPE (Doppler Pulsation Experiment HF Doppler sounder located near Tromsø, Norway (geographic: 69.6°N 19.2°E; L = 6.3 is deployed to observe signatures, in the high-latitude ionosphere, of magnetospheric ULF waves. A type of wave has been identified which exhibits no simultaneous ground magnetic signature. They can be subdivided into two classes which occur in the dawn and dusk local time sectors respectively. They generally have frequencies greater than the resonance fundamentals of local field lines. It is suggested that these may be the signatures of high-m ULF waves where the ground magnetic signature has been strongly attenuated as a result of the scale size of the waves. The dawn population demonstrate similarities to a type of magnetospheric wave known as giant (Pg pulsations which tend to be resonant at higher harmonics on magnetic field lines. In contrast, the waves occurring in the dusk sector are believed to be related to the storm-time Pc5s previously reported in VHF radar data. Dst measurements support these observations by indicating that the dawn and dusk classes of waves occur respectively during geomagnetically quiet and more active intervals.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions · Magnetospheric physics (MHD waves and instabilities

  20. On multifractality of high-latitude geomagnetic fluctuations

    Directory of Open Access Journals (Sweden)

    Z. Vörös

    Full Text Available In order to contribute to the understanding of solar wind-magnetosphere interactions the multifractal scaling properties of high-latitude geomagnetic fluctuations observed at the Thule observatory have been studied. Using the local observatory data and the present experimental knowledge only it seems hard to characterize directly the, presumably intermittent, mesoscale energy accumulation and dissipation processes taking place at the magnetotail, auroral region, etc. Instead a positive probability measure, describing the accumulated local geomagnetic signal energy content at the given time scales has been introduced and its scaling properties have been studied. There is evidence for the multifractal nature of the so defined intermittent field ε, a result obtained by using the recently introduced technique of large deviation multifractal spectra. This technique allows us to describe the geomagnetic fluctuations locally in time by means of singularity exponents α, which represent a generalization of the local degree of differentiability and characterize the power-law scaling dependence of the introduced measure on resolution. A global description of the geomagnetic fluctuations is insured by the spectrum of exponents f(α which represents a rate function quantifying the deviations of the observed singularities α from the expected value. The results show that there exists a multifractal counterpart of the previously reported spectral break and different types of f(α spectra describe the fluctuations in direct dissipation or loading-unloading regimes of the solar wind-magnetosphere interaction. On the time scale of substorms and storms the multi-fractal structure of the loading-unloading mode fluctuations seems to be analogous to the simple multiplicative P-model, while the f(α spectra in direct dissipation regime are close but not equal to the features of a uniform distribution. Larger deviations from the multiplicative

  1. Modeling of global variations and ring shadowing in Saturn's ionosphere (United States)

    Moore, L. E.; Mendillo, M.; Müller-Wodarg, I. C. F.; Murr, D. L.


    vibrationally excited H 2, and for different influxes of H 2O, resulting in a maximum diurnal variation in electron density much weaker than the diurnal variations inferred from Voyager's Saturn Electrostatic Discharge (SED) measurements. Peak values of height-integrated Pedersen conductivities at high latitudes during solar maximum are modeled to be ˜42 mho in the summer hemisphere during solstice and ˜18 mho during equinox, indicating that even without ionization produced by auroral processes, magnetosphere-ionosphere coupling can be highly variable.

  2. Earth’s Interaction Region: Plasma-Neutral Interactions in the Weakly Ionized gas of Earth’s High Latitude Upper Atmosphere (United States)

    Thayer, Jeffrey; Hsu, Vicki


    The high-latitude regions of Earth’s upper atmosphere are strongly influenced by plasma-neutral interactions. These interactions couple electrodynamic processes of the ionosphere with hydrodynamic processes of the more abundant thermosphere neutral gas, consequently connecting the high-latitude upper atmosphere to distant regions of the geoplasma environment. This produces a complex spatial and temporal interplay of competing processes that results in a myriad of physical and chemical responses and a rich array of neutral and plasma morphologies that constitute the high-latitude thermosphere and ionosphere. The altitude extent from the lower thermosphere to the upper ionosphere (90km - 1000km) can be considered Earth’s space-atmosphere interaction region - likened to the solar chromosphere’s interaction region where radiative processes and hydrodynamic waves from the dense lower atmosphere produce a cold lower boundary that quickly transitions over a few 100 kilometers to neutral and plasma temperatures that are five times hotter. A thousand or more kilometers further in altitude, Earth's upper atmosphere becomes a hot, collisionless, geomagnetically controlled protonosphere whose neutral and plasma population originates from the thermosphere and ionosphere. A grand challenge in the study of Earth’s interaction region is how the collision-dominated thermosphere/ionosphere system exchanges energy, mass and momentum with the collisionless magnetosphere. This talk will focus primarily on collision-dominated processes of the high-latitude ionosphere and the electromagnetic energy transfer processes that lead to frictional heating of ions and neutrals, and plasma instability phenomenon that leads to extreme electron heating. Observations of the ionosphere response to these processes will be illustrated using incoherent scatter radar measurements. Relevance to the solar chromosphere will be identified where appropriate and outstanding issues in Earth

  3. Comparison of high-latitude thermospheric meridionalwinds II: combined FPI, radar and model Climatologies

    Directory of Open Access Journals (Sweden)

    E. M. Griffin


    Full Text Available The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4°N, 20.4°E has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM (Hedin et al., 1988 and the numerical Coupled Thermosphere and Ionosphere Model (CTIM are compared to the measured behaviour at Kiruna, as a single site example. The empirical International Reference Ionosphere (IRI model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using Fabry-Perot Interferometers (FPI, together with 2 separate techniques applied to the European Incoherent Scatter radar (EISCAT database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics

  4. Comparison of high latitude electron density profiles obtained with the GPS radio occultation technique and EISCAT measurements

    Directory of Open Access Journals (Sweden)

    C. Stolle


    Full Text Available To obtain a comprehensive view on high latitude processes by applying different observation techniques, the SIRCUS campaign was initiated in 2001/2002. This paper compares electron density profiles derived from CHAMP radio occultation data and those measured with the EISCAT facility. Since ionospheric profiling with the help of space-based received GPS is a relatively new technique, validations with established independent instruments are of crucial need. We present 28 profiling events for quasi-statistical analyses, which occurred during the SIRCUS campaigns and describe some of them in more detail. We found out that the majority of profile comparisons in electron density peak value and height, as well as in TEC, lie within the error ranges of the two methods. Differences in the ionospheric quantities do not necessarily occur when the locations of the occultation and of the radar site show considerable distances. Differences are more pronounced when the ionosphere is remarkably structured.

  5. High-latitude ion temperature climatology during the International Polar Year 2007–2008

    Directory of Open Access Journals (Sweden)

    Yamazaki Y.


    Full Text Available This article presents the results of an ion temperature climatology study that examined ionospheric measurements from the European Incoherent SCATter (EISCAT Svalbard Radar (ESR: 78.2° N, 16.0° E and the Poker Flat Incoherent Scatter Radar (PFISR: 65.1° N, 212.6° E during the year-long campaign of the International Polar Year (IPY from March 2007 to February 2008. These observations were compared with those of the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM, as well as the International Reference Ionosphere 2012 (IRI-2012. Fairly close agreement was found between the observations and TIE-GCM results. Numerical experiments revealed that the daily variation in the high-latitude ion temperature, about 100–200 K, is mainly due to ion frictional heating. The ion temperature was found to increase in response to elevated geomagnetic activity at both ESR and PFISR, which is consistent with the findings of previous studies. At ESR, a strong response occurred during the daytime, which was interpreted as a result of dayside-cusp heating. Neither TIE-GCM nor IRI-2012 reproduced the strong geomagnetic activity response at ESR, underscoring the need for improvement in both models at polar latitudes.

  6. Relative importance of horizontal and vertical transports to the formation of ionospheric storm-enhanced density and polar tongue of ionization (United States)

    Liu, Jing; Wang, Wenbin; Burns, Alan; Solomon, Stanley C.; Zhang, Shunrong; Zhang, Yongliang; Huang, Chaosong


    There are still uncertainties regarding the formation mechanisms for storm-enhanced density (SED) in the high and subauroral latitude ionosphere. In this work, we deploy the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM) and GPS total electron content (TEC) observations to identify the principle mechanisms for SED and the tongue of ionization (TOI) through term-by-term analysis of the ion continuity equation and also identify the advantages and deficiencies of the TIEGCM in capturing high-latitude and subauroral latitude ionospheric fine structures for the two geomagnetic storm events occurring on 17 March 2013 and 2015. Our results show that in the topside ionosphere, upward E × B ion drifts are most important in SED formation and are offset by antisunward neutral winds and downward ambipolar diffusion effects. In the bottomside F region ionosphere, neutral winds play a major role in generating SEDs. SED signature in TEC is mainly caused by upward E × B ion drifts that lift the ionosphere to higher altitudes where chemical recombination is slower. Horizontal E × B ion drifts play an essential role in transporting plasma from the dayside convection throat region to the polar cap to form TOIs. Inconsistencies between model results and GPS TEC data were found: (1) GPS relative TEC difference between storm time and quiet time has "holes" in the dayside ion convection entrance region, which do not appear in the model results. (2) The model tends to overestimate electron density enhancements in the polar region. Possible causes for these inconsistencies are discussed in this article.

  7. Operational high latitude surface irradiance products from polar orbiting satellites (United States)

    Godøy, Øystein


    It remains a challenge to find an adequate approach for operational estimation of surface incoming short- and longwave irradiance at high latitudes using polar orbiting meteorological satellite data. In this presentation validation results at a number of North Atlantic and Arctic Ocean high latitude stations are presented and discussed. The validation results have revealed that although the method works well and normally fulfil the operational requirements, there is room for improvement. A number of issues that can improve the estimates at high latitudes have been identified. These improvements are partly related to improved cloud classification using satellite data and partly related to improved handling of multiple reflections over bright surfaces (snow and sea ice), especially in broken cloud conditions. Furthermore, the availability of validation sites over open ocean and sea ice is a challenge.

  8. Simulation studies of high-latitude magnetospheric boundary dynamics

    Institute of Scientific and Technical Information of China (English)

    PU; Zuyin; SHI; Quanqi; XIAO; Chijie; FU; Suiyan; ZHANG; Hu


    Magnetic reconnection at the high-latitude magnetopause is studied using 2.5-dimensional Hail-MHD simulation. Concentric flow vortices and magnetic islands appear when both Hall effect and sheared flow are considered. Plasma mixing across the magnetopause occurs in the presence of the flow vortices. Reconnected structure generated in the vicinity of the subsolar point changes its geometry with increasing flow shear while moving to high latitudes. In the presence of flow shear, with the Hail-MHD reconnection a higher reconnection rate than with the traditional MHD is obtained. The out-of-plane components of flow and magnetic field produced by the Hall current are redistributed under the action of the flow shear, which makes the plasma transport across the boundaries more complicated. The simulation results provide some help in understanding the dynamic processes at the high latitude magnetopause.

  9. Existence of a component corotating with the earth in high-latitude disturbance magnetic fields (United States)

    Suzuki, A.; Kim, J. S.; Sugiura, M.


    A study of the data from the high-latitude North American IMS network of magnetic stations suggests that there is a component in substorm perturbations that corotates with the earth. It is as yet not certain whether the existence of this component stems from the corotation of a part of the magnetospheric plasma involved in the substorm mechanism or if it is a 'phase change' resulting from the control of the substorm manifestations by the earth's main magnetic field which is not axially symmetric. There are other geophysical phenomena showing a persistence of longitudinal variations corotating with the earth. These phenomena are of significance for a better understanding of ionosphere-magnetosphere coupling.

  10. HF omnidirectional spectral CW auroral radar (HF-OSCAR) at very high latitude. Part 1: Technique (United States)

    Olesen, J. K.; Jacobsen, K. E.; Stauning, P.; Henriksen, S.


    An HF system for studies of very high latitude ionospheric irregularities was described. Radio aurora from field-aligned E-region irregularities of the Slant E Condition type were discussed. The complete system combines an ionosonde, a 12 MHz pulse radar and a 12 MHz bistatic CW Doppler-range set-up. The two latter units use alternately a 360 deg rotating Yagi antenna. High precision oscillators secure the frequency stability of the Doppler system in which the received signal is mixed down to a center frequency of 500 Hz. The Doppler shift range is max + or - 500 Hz. The received signal is recorded in analog form on magnetic tape and may be monitored visually and audibly. Echo range of the CW Doppler signal is obtained by a 150 Hz amplitude modulation of the transmitted signal and phase comparison with the backscattered signal.

  11. Climate response to imposed solar radiation reductions in high latitudes

    Directory of Open Access Journals (Sweden)

    M. C. MacCracken


    Full Text Available Increasing concentrations of greenhouse gases are the primary contributor to the 0.8 °C increase in the global average temperature since the late 19th century, shortening cold seasons and lengthening warm seasons. The warming is amplified in polar regions, causing retreat of sea ice, snow cover, permafrost, mountain glaciers, and ice sheets, while also modifying mid-latitude weather, amplifying global sea level rise, and initiating high-latitude carbon feedbacks. Model simulations in which we reduced solar insolation over high latitudes not only cooled those regions, but also drew energy from lower latitudes, exerting a cooling influence over much of the hemisphere in which the reduction was imposed. Our simulations, which used the National Center for Atmospheric Research's CAM3.1 atmospheric model coupled to a slab ocean, indicated that, on a normalized basis, high-latitude reductions in absorbed solar radiation have a significantly larger cooling influence than equivalent solar reductions spread evenly over the Earth. This amplified influence occurred because high-latitude surface cooling preferentially increased sea ice fraction and, therefore, surface albedo, leading to a larger deficit in the radiation budget at the top of the atmosphere than from an equivalent global reduction in solar radiation. Reductions in incoming solar radiation in one polar region (either north or south resulted in increased poleward energy transport during that hemisphere's cold season and shifted the Inter-Tropical Convergence Zone (ITCZ away from that pole, whereas equivalent reductions in both polar regions tended to leave the ITCZ approximately in place. Together, these results suggest that, until emissions reductions are sufficient to limit the warming influence of greenhouse gas concentrations, polar reductions in solar radiation, if they can be efficiently and effectively implemented, might, because of fewer undesirable side effects than for global solar

  12. Topside measurements at Jicamarca during solar minimum

    Directory of Open Access Journals (Sweden)

    D. L. Hysell


    Full Text Available Long-pulse topside radar data acquired at Jicamarca and processed using full-profile analysis are compared to data processed using more conventional, range-gated approaches and with analytic and computational models. The salient features of the topside observations include a dramatic increase in the Te/Ti temperature ratio above the F peak at dawn and a local minimum in the topside plasma temperature in the afternoon. The hydrogen ion fraction was found to exhibit hyperbolic tangent-shaped profiles that become shallow (gradually changing above the O+-H+ transition height during the day. The profile shapes are generally consistent with diffusive equilibrium, although shallowing to the point of changes in inflection can only be accounted for by taking the effects of E×B drifts and meridional winds into account. The SAMI2 model demonstrates this as well as the substantial effect that drifts and winds can have on topside temperatures. Significant quiet-time variability in the topside composition and temperatures may be due to variability in the mechanical forcing. Correlations between topside measurements and magnetometer data at Jicamarca support this hypothesis.

  13. High-latitude poynting flux from combined Iridium and SuperDARN data

    Directory of Open Access Journals (Sweden)

    C. L. Waters


    Full Text Available Field-aligned currents convey stress between the magnetosphere and ionosphere, and the associated low altitude magnetic and electric fields reflect the flow of electromagnetic energy to the polar ionosphere. We introduce a new technique to measure the global distribution of high latitude Poynting flux, S||, by combining electric field estimates from the Super Dual Auroral Radar Network (SuperDARN with magnetic perturbations derived using magnetometer data from the Iridium satellite constellation. Spherical harmonic methods are used to merge the data sets and calculate S|| for any magnetic local time (MLT from the pole to 60° magnetic latitude (MLAT. The effective spatial resolutions are 2° MLAT, 2h MLT, and the time resolution is about one hour due to the telemetry rate of the Iridium magnetometer data. The technique allows for the assessment of high-latitude net S|| and its spatial distribution on one hour time scales with two key advantages: (1 it yields the net S|| including the contribution of neutral winds; and (2 the results are obtained without recourse to estimates of ionosphere conductivity. We present two examples, 23 November 1999, 14:00-15:00 UT, and 11 March 2000, 16:00-17:00 UT, to test the accuracy of the technique and to illustrate the distributions of S|| that it gives. Comparisons with in-situ S|| estimates from DMSP satellites show agreement to a few mW/m2 and in the locations of S|| enhancements to within the technique's resolution. The total electromagnetic energy flux was 50GW for these events. At auroral latitudes, S|| tends to maximize in the morning and afternoon in regions less than 5° in MLAT by two hours in MLT having S||=10 to 20mW/m2 and total power up to 10GW. The power poleward of the Region 1 currents is about one

  14. Climate response to imposed solar radiation reductions in high latitudes


    M. C. MacCracken; H.-J. Shin; Caldeira, K; G. A. Ban-Weiss


    Increasing concentrations of greenhouse gases are the primary contributor to the 0.8 °C increase in the global average temperature since the late 19th century, shortening cold seasons and lengthening warm seasons. The warming is amplified in polar regions, causing retreat of sea ice, snow cover, permafrost, mountain glaciers, and ice sheets, while also modifying mid-latitude weather, amplifying global sea level rise, and initiating high-latitude carbon feedbacks. Model simulations in which we...

  15. The High Latitude D Region During Electron Precipitation Events (United States)

    Hargreaves, J. K.; Collis, P. N.; Korth, A.


    The fluxes of energetic electrons entering the high-latitude atmosphere during auroral radio absorption events and their effect on the electron density in the auroral D region are discussed. An attempt was made to calculate the radio absorption during precipitation events from the fluxes of energetic electrons measured at geosynchronous orbit, and then to consider the use of absorption measurements to indicate the magnetospheric particle fluxes, the production rates, and electron densities in the D region.

  16. High latitude D region during electron precipitation events

    Energy Technology Data Exchange (ETDEWEB)

    Hargreaves, J.K.; Collis, P.N.; Korth, A.


    The fluxes of energetic electrons entering the high-latitude atmosphere during auroral radio absorption events and their effect on the electron density in the auroral D region are discussed. An attempt was made to calculate the radio absorption during precipitation events from the fluxes of energetic electrons measured at geosynchronous orbit, and then to consider the use of absorption measurements to indicate the magnetospheric particle fluxes, the production rates, and electron densities in the D region.

  17. Boundary Current and Mixing Processes in The High Latitude Oceans (United States)


    Boundary Current and Mixing Processes in The High Latitude Oceans Robin D. Muench Earth & Space Research 1910 Fairview Ave E., Ste 210 Seattle...Thorpe and Ozmidov length scales. Journal of Geophysical Research , 87, 9601-9613. Galbraith, P.S., and D.E. Kelley, 1996: Identifying overturns in...and near Marguerite Bay during winter 2003: A SO GLOBEC study. Deep-Sea Research 2, 54. Padman, L., S.L. Howard, and R.D. Muench, 2006a: Internal


    Energy Technology Data Exchange (ETDEWEB)

    Yeates, A. R. [Department of Mathematical Sciences, Durham University, Durham, DH1 3LE (United Kingdom); Mackay, D. H., E-mail:, E-mail: [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)


    A non-potential quasi-static evolution model coupling the Sun's photospheric and coronal magnetic fields is applied to the problem of filament chirality at high latitudes. For the first time, we run a continuous 15 year simulation, using bipolar active regions determined from US National Solar Observatory, Kitt Peak magnetograms between 1996 and 2011. Using this simulation, we are able to address the outstanding question of whether magnetic helicity transport from active latitudes can overcome the effect of differential rotation at higher latitudes. Acting alone, differential rotation would produce high-latitude filaments with opposite chirality to the majority type in each hemisphere. We find that differential rotation can indeed lead to opposite chirality at high latitudes, but only for around 5 years of the solar cycle following the polar field reversal. At other times, including the rising phase, transport of magnetic helicity from lower latitudes overcomes the effect of in situ differential rotation, producing the majority chirality even on the polar crowns at polar field reversal. These simulation predictions will allow for future testing of the non-potential coronal model. The results indicate the importance of long-term memory and helicity transport from active latitudes when modeling the structure and topology of the coronal magnetic field at higher latitudes.

  19. GPS phase scintillation at high latitudes during the geomagnetic storm of 17-18 March 2015 (United States)

    Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J. M.; Viljanen, A.; Connors, M.; Danskin, D. W.; Jayachandran, P. T.; Jacobsen, K. S.; Andalsvik, Y. L.; Thomas, E. G.; Ruohoniemi, J. M.; Durgonics, T.; Oksavik, K.; Zhang, Y.; Spanswick, E.; Aquino, M.; Sreeja, V.


    The geomagnetic storm of 17-18 March 2015 was caused by the impacts of a coronal mass ejection and a high-speed plasma stream from a coronal hole. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers, and magnetometers. The phase scintillation index is computed for signals sampled at a rate of up to 100 Hz by specialized GPS scintillation receivers supplemented by the phase scintillation proxy index obtained from geodetic-quality GPS data sampled at 1 Hz. In the context of solar wind coupling to the magnetosphere-ionosphere system, it is shown that GPS phase scintillation is primarily enhanced in the cusp, the tongue of ionization that is broken into patches drawn into the polar cap from the dayside storm-enhanced plasma density, and in the auroral oval. In this paper we examine the relation between the scintillation and auroral electrojet currents observed by arrays of ground-based magnetometers as well as energetic particle precipitation observed by the DMSP satellites. Equivalent ionospheric currents are obtained from ground magnetometer data using the spherical elementary currents systems technique that has been applied over the ground magnetometer networks in North America and North Europe. The GPS phase scintillation is mapped to the poleward side of strong westward electrojet and to the edge of the eastward electrojet region. Also, the scintillation was generally collocated with fluxes of energetic electron precipitation observed by DMSP satellites with the exception of a period of pulsating aurora when only very weak currents were observed.

  20. SuperDARN CUTLASS Finland radar observations of high-latitude magnetic reconnections under northward interplanetary magnetic field (IMF) conditions

    Institute of Scientific and Technical Information of China (English)

    ZHANG QingHe; LIU RuiYuan; YANG HuiGen; HU HongQiao; ZHANG BeiChen; DUNLOP Malcolm; LESTER Mark; BOGDANOVA Yulia; WALSH Andrew


    A number of backscatter power enhancement events with “equatorward-moving radar auroral forms” in the high-latitude ionosphere were observed by SuperDARN CUTLASS Finland radar when the IMF was northward during 09:00 -10:00 UT on 26 March 2004.These events were also associated with sunward flow enhancements at each location in the Northern Hemisphere which were shown in ionospheric convections measured by the SuperDARN radars.These are typical features of high-latitude (lobe) magnetic reconnections.The durations of the velocity enhancements imply that the evolution time of the lobe reconnections is about 8-16 min from their origin at the reconnection site to their addition to the magnetotail lobe again.In additional,the Double Star TC-1 spacecraft was moving from magnetosheath into magnetosphere,and crossing the magnetopause near the subsolar region during this interval,and observed typical low-latitude magnetic reconnection signatures.This infers that the dayside high- and low-latitude reconnections may occur simultaneously.

  1. Small-scale fluctuations in barium drifts at high latitudes and associated Joule heating effects (United States)

    Hurd, L. D.; Larsen, M. F.


    Most previous estimates of Joule heating rates, especially the contribution of small-scale structure in the high-latitude ionosphere, have been based on incoherent scatter or coherent scatter radar measurements. An alternative estimate can be found from the plasma drifts obtained from ionized barium clouds released from sounding rockets. We have used barium drift data from three experiments to estimate Joule heating rates in the high-latitude E region for different magnetic activity levels. In particular, we are interested in the contribution of small-scale plasma drift fluctuations, corresponding to equivalent electric field fluctuations, to the local Joule heating rate on scales smaller than those typically resolved by radar or other measurements. Since Joule heating is a Lagrangian quantity, the inherently Lagrangian estimates provided by the chemical tracer measurements are a full description of the effects of electric field variance and neutral winds on the heating, differing from the Eulerian estimates of the type provided by ground-based measurements. Results suggest that the small-scale contributions to the heating can be more than a factor of 2 greater than the mean field contribution regardless of geomagnetic conditions, and at times the small-scale contribution is even larger. The high-resolution barium drift measurements, moreover, show that the fine structure in the electric field can be more variable than previous studies have reported for similar conditions. The neutral winds also affect the heating, altering the height-integrated Joule heating rates by as much as 12%, for the cases studied here, and modifying the height distribution of the heating profile as well.

  2. Comparison of high-latitude thermospheric meridional winds I: optical and radar experimental comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.M.; Mueller-Wodarg, I.C.F.; Aruliah, A.; Aylward, A. [Atmospheric Physics Lab., Univ. Coll. London, London (United Kingdom)


    Thermospheric neutral winds at Kiruna, Sweden (67.4 N, 20.4 E) are compared using both direct optical fabry-perot interferometer (FPI) measurements and those derived from European incoherent scatter radar (EISCAT) measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974) and the meridional wind model (MWM) (Miller et al., 1997) application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the coupled thermosphere and ionosphere (CTIM) numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3 techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical horizontal wind model (HWM), though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations. (orig.)

  3. Observations of transverse ion acceleration in the topside auroral ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Garbe, G.P.; Arnoldy, R.L. (Univ. of New Hampshire, Durham (United States)); Moore, T.E. (NASA Marshall Space Flight Center, Huntsville, AL (United States)); Kintner, P.M.; Vago, J.L. (Cornell Univ., Ithaca, NY (United States))


    Data obtained from a sounding rocket flight which reached an apogee of 927 km and passed through several auroral arcs are reported. During portions of the flight when the rocket was not in an energetic auroral structure, the ion data are fit to a Maxwellian function which yields the plasma parameters. Throughout the middle portion of the flight when above 700 km altitude, ion distributions having a superthermal tail were measured. These ion distributions generally coexisted with a cold thermal core distribution and peaked at pitch angles slightly greater than 90{degree}, which identifies them as conic distributions. These ions can be modeled using a bi-Maxwellian distribution function with a perpendicular (to B) temperature about 10 times greater than the parallel temperature of 0.15 eV. When the rocket was immersed in energetic auroral electron precipitation, two other ion distributions were observed. Transversely accelerated ions which represented bulk heating of the ambient population were observed. Transversely accelerated ions which represented bulk heating of the ambient population were observed continuously in these arcs. The characteristic perpendicular energy of the transversely bulk heated ions reached as high as 3 eV compared to typically less than 0.4 eV during nonauroral times. Cold ions flowing down the magnetic field were also continuously observed when the rocket was immersed in auroral electron precipitation and had downward speeds between 3 and 5 km/s. If one balances electric and collisional forces, these speeds translate to an electric field pointing into the atmosphere of magnitude 0.01 mV/m. A close correlation between auroral electron precipitation, measured electrostatic oxygen cyclotron waves, cold downflowing ions and transversely bulk heated ions will be shown.

  4. High-latitude plasma convection from Cluster EDI: variances and solar wind correlations

    Directory of Open Access Journals (Sweden)

    M. Förster


    Full Text Available Based on drift velocity measurements of the EDI instruments on Cluster during the years 2001–2006, we have constructed a database of high-latitude ionospheric convection velocities and associated solar wind and magnetospheric activity parameters. In an earlier paper (Haaland et al., 2007, we have described the method, consisting of an improved technique for calculating the propagation delay between the chosen solar wind monitor (ACE and Earth's magnetosphere, filtering the data for periods of sufficiently stable IMF orientations, and mapping the EDI measurements from their high-altitude positions to ionospheric altitudes. The present paper extends this study, by looking at the spatial pattern of the variances of the convection velocities as a function of IMF orientation, and by performing sortings of the data according to the IMF magnitude in the GSM y-z plane, |ByzIMF|, the estimated reconnection electric field, Er,sw, the solar wind dynamic pressure, Pdyn, the season, and indices characterizing the ring current (Dst and tail activity (ASYM-H. The variability of the high-latitude convection shows characteristic spatial patterns, which are mirror symmetric between the Northern and Southern Hemispheres with respect to the IMF By component. The latitude range of the highest variability zone varies with IMF Bz similar to the auroral oval extent. The magnitude of convection standard deviations is of the same order as, or even larger than, the convection magnitude itself. Positive correlations of polar cap activity are found with |ByzIMF| and with Er,sw, in particular. The strict linear increase for small magnitudes of Er,sw starts to deviate toward a flattened increase above about 2 mV/m. There is also a weak positive correlation with Pdyn. At

  5. High-latitude electromagnetic and particle energy flux during an event with sustained strongly northward IMF

    Directory of Open Access Journals (Sweden)

    H. Korth


    Full Text Available We present a case study of a prolonged interval of strongly northward orientation of the interplanetary magnetic field on 16 July 2000, 16:00-19:00 UT to characterize the energy exchange between the magnetosphere and ionosphere for conditions associated with minimum solar wind-magnetosphere coupling. With reconnection occurring tailward of the cusp under northward IMF conditions, the reconnection dynamo should be separated from the viscous dynamo, presumably driven by the Kelvin-Helmholtz (KH instability. Thus, these conditions are also ideal for evaluating the contribution of a viscous interaction to the coupling process. We derive the two-dimensional distribution of the Poynting vector radial component in the northern sunlit polar ionosphere from magnetic field observations by the constellation of Iridium satellites together with drift meter and magnetometer observations from the Defense Meteorological Satellite Program (DMSP F13 and F15 satellites. The electromagnetic energy flux is then compared with the particle energy flux obtained from auroral images taken by the far-ultraviolet (FUV instrument on the Imager for Magnetopause to Aurora Global Exploration (IMAGE spacecraft. The electromagnetic energy input to the ionosphere of 51 GW calculated from the Iridium/DMSP observations is eight times larger than the 6 GW due to particle precipitation all poleward of 78° MLAT. This result indicates that the energy transport is significant, particularly as it is concentrated in a small region near the magnetic pole, even under conditions traditionally considered to be quiet and is dominated by the electromagnetic flux. We estimate the contributions of the high and mid-latitude dynamos to both the Birkeland currents and electric potentials finding that high-latitude reconnection accounts for 0.8 MA and 45kV while we attribute <0.2MA and ~5kV to an interaction at lower latitudes having the sense of a viscous interaction. Given that these

  6. Response of thermosphere density to high-latitude forcing (United States)

    Yamazaki, Y.; Kosch, M. J.; Vickers, H.; Sutton, E. K.; Ogawa, Y.


    Solar wind-magnetospheric disturbances cause enhancements in the energy input to the high-latitude upper atmosphere through particle precipitation and Joule heating. As the upper atmosphere is heated and expanded during geomagnetically disturbed periods, the neutral density in the thermosphere increases at a fixed altitude. Conversely, the thermosphere contracts during the recovery phase of the disturbance, resulting in a decrease of the density. The main objectives of this study are (1) to determine the morphology of the global thermospheric density response to high-latitude forcing, and (2) to determine the recovery speed of the thermosphere density after geomagnetic disturbances. For (1), we use thermospheric density data measured by the Challenging Minisatellite Payload (CHAMP) satellite during 2000-2010. It is demonstrated that the density enhancement during disturbed periods occurs first in the dayside cusp region, and the density at other regions slowly follows it. The reverse process is observed when geomagnetic activity ceases; the density enhancement in the cusp region fades away first, then the global density slowly goes back to the quiet level. For (2), we analyze EISCAT Svalbard radar and Tromso UHF radar data to estimate thermospheric densities during the recovery phase of geomagnetic disturbances. We attempt to determine the time constant for the density recovery both inside and outside the cusp region.

  7. Mountain biodiversity patterns at low and high latitudes. (United States)

    Molau, Ulf


    This paper presents an overview of mountain biodiversity at a multitude of scales in space, time, and function. Even though species richness is usually the focal component in nature conservation, genetic diversity within species is equally important. The small-scale distribution of species in the tropical Andes, as exemplified by the plant genera Calceolaria and Bartsia, contrasts against the situation in high-latitude mountains, e.g., the Scandes, where species have wide ranges and many are circumpolar. Recent studies on alpine plants based on molecular methods show that the intraspecific genetic diversity tends to increase with latitude, a situation brought about by the glaciation history with repeated contraction-expansion episodes of species' distributions. In tropical mountains, species distributions are geographically much narrower, often as a result of relatively recent, local speciation. Thus, whereas species richness in mountains decreases from the Equator towards the poles, genetic diversity shows the opposite trend. Finally, a comparison of ecosystem diversity in low- and high-latitude mountain ranges (tropical Andes vs. Scandes) shows that the landscapes differ profoundly with regard to timberline ecotones, snow distribution, and climate variables, and are subject to widely different impacts of global change

  8. Silicon-carbon interactions in high latitude watersheds (United States)

    Humborg, C.; Morth, C.; Struyf, E.; Conley, D. J.


    Changes in climate and hydrology in high latitude regions could liberate large amounts of previously inactive organic carbon (OC) during a prolonging thawing period, and new studies have shown that a great deal of this organic C is remineralized as CO2 during its transport to the sea. However, OC (with its origin in atmospheric carbon) and dissolved silicate (DSi) concentrations in taiga and tundra rivers are intimately linked, and higher concentrations of weathering products are found in taiga and tundra rivers with a higher percentage of peat in their watersheds. It appears that the weathering regime of taiga and tundra watersheds is tightly linked to carbon-silicon interactions, in which carbon acts both as a weathering agent (soil CO2 from degradation of OC) and as a weathering product (DSi and bicarbonate). Whereas respiration of OC can be regarded as a positive feedback to global warming, weathering can be regarded as a negative feedback to global warming since atmospheric CO2 is converted to bicarbonate and thereby locked into the aquatic phase for geological time scales. Thus, bicarbonate export may compensate for significant amounts of exported OC thereby reducing the positive feedback to atmospheric CO2. However, the silicon-carbon interactions are not straight forward as suggested by classical inverse modelling,using the stochiometry of rock forming minerals as base, since high latitude wetlands contain a massive stock of amorphous silica (diatoms and phytoliths) buffering the actual DSi export, suggesting that the Si cycle is to a large extent biologically controlled.

  9. Topside Sounding As A Powerful Tool For Global Detection of Short-time Precursors of Destructive Earthquakes (United States)

    Pulinets, S.

    The recent years brought a lot of publications on the registration onboard satellites some variations of ionosphere parameters associated with the seismic activity within few days/hours before the strong earthquakes over seismically active areas. The num- ber of information exceeded the threshold when some countries started to build spe- cialized satellites to register ionospheric earthquake precursors from space (Russia, France, Italy, Ukraine, Japan). Among the different kinds of measurements the most promising are results of vertical sounding from onboard the satellite with the help of topside sounder. The advantage of the technique is that the satellite gives information not on the only one parameter (such as electron temperature or local concentration) but the comprehensive picture of the three dimensional state of the ionosphere due to combination of remote sensing and in-situ abilities of the device. The sounding gives the vertical cross-section of the ionosphere (electron concentration vertical pro- files along the satellite orbit), the state of the plasma inhomogeneity (spread of the ionogram), estimation of electron temperature and the ion mass (scale height of the profile), tides and waves (variation of heights of different levels of electron concen- tration), particle fluxes (HF emission registered by the sounder receiver), tempera- ture anisotropy (plasma instability emissions registered by the sounder receiver), local magnetic field value (plasma resonances including electron gyrofrequency harmon- ics), etc. The multiple examples of registration of ionospheric precursors with the help of topside sounder will be demonstrated. Statistical analysis of the ionospheric sound- ing shows that the topside sounder gives the most reliable and confident measurements of the short-time ionospheric precursors in comparison with any other technique. Nevertheless, the sounder itself creates some problems for the satellite payload due to interferences connected with

  10. Solar wind effect on Joule heating in the high-latitude ionosphere (United States)

    Cai, L.; Aikio, A. T.; Nygrén, T.


    The effect of solar wind on several electrodynamic parameters, measured simultaneously by the European Incoherent Scatter (EISCAT) radars in Tromsø (TRO, 66.6° cgmLat) and on Svalbard (ESR, 75.4° cgmLat), has been evaluated statistically. The main emphasis is on Joule heating rate QJ, which has been estimated by taking into account the neutral wind. In addition, a generally used proxy QE, which is the Pedersen conductance times the electric field squared, has been calculated. The most important findings are as follows. (i) The decrease in Joule heating in the afternoon-evening sector due to winds reported by Aikio et al. (2012) requires southward interplanetary magnetic field (IMF) conditions and a sufficiently high solar wind electric field. The increase in the morning sector takes place for all IMF directions within a region where the upper E neutral wind has a large equatorward component and the F region plasma flow is directed eastward. (ii) At ESR, an afternoon hot spot of Joule heating centered typically at 14-15 magnetic local time (MLT) is observed during all IMF conditions. Enhanced Pedersen conductances within the hot spot region are observed only for the IMF Bz + /By- conditions, and the corresponding convection electric field values within the hot spot are smaller than during the other IMF conditions. Hence, the hot spot represents a region of persistent magnetospheric electromagnetic energy input, and the median value is about 3 mW/m2. (iii) For the southward IMF conditions, the MLT-integrated QE for By- is twice the value for By+ at TRO. This can plausibly be explained by the higher average solar wind electric field values for By-.

  11. Spacecraft Charging at Geosynchronous Orbit and Large Scale Electric Fields in the High Latitude Ionosphere. (United States)


    time ofthee chnge (crca1793 IN9, nd 158)hav no Looms. F., The aurora boreales or polar light: its phenomena and apparent relationship to phases of...Observations et catalogue des auroras Russell, C. T., On the possibility (f dedtclr, boreales apparues en occident de 626 a 1600, interplanetary and solar...of discrete aurora as the low altitude expression of the trapping boundary. Over two thousand boundaries in the Northern hemisphere were identified

  12. GNSS-ISR data fusion: General framework with application to the high-latitude ionosphere (United States)

    Semeter, Joshua; Hirsch, Michael; Lind, Frank; Coster, Anthea; Erickson, Philip; Pankratius, Victor


    A mathematical framework is presented for the fusion of electron density measured by incoherent scatter radar (ISR) and total electron content (TEC) measured using global navigation satellite systems (GNSS). Both measurements are treated as projections of an unknown density field (for GNSS-TEC the projection is tomographic; for ISR the projection is a weighted average over a local spatial region) and discrete inverse theory is applied to obtain a higher fidelity representation of the field than could be obtained from either modality individually. The specific implementation explored herein uses the interpolated ISR density field as initial guess to the combined inverse problem, which is subsequently solved using maximum entropy regularization. Simulations involving a dense meridional network of GNSS receivers near the Poker Flat ISR demonstrate the potential of this approach to resolve sub-beam structure in ISR measurements. Several future directions are outlined, including (1) data fusion using lower level (lag product) ISR data, (2) consideration of the different temporal sampling rates, (3) application of physics-based regularization, (4) consideration of nonoptimal observing geometries, and (5) use of an ISR simulation framework for optimal experiment design.

  13. Nonlinear Evolution of the Kelvin-Helmholtz Instability in the High Latitude Ionosphere. (United States)


    FEDDER, P. SATYANARAYANA ,*% S.T. ZALESAK, AND J.D. HUBA It/ Geophysical and Plasma Dynamics Branch Plasma Physics Division *Science Applications...unlimited F 0, 88 1 SECUITY [AS-(ATON CP T~c, *1, Sa EC O URITY C A Ti PACETP V V UNCLASSIFIED) 2a SFiRJ’Y lAd(AONAuJIwwI TY I) O ,R 04 (AJA A-4 - 2b...8217 0 IT0R % C 0(, V . 1A’ I*. R, t, *" VS NRt. Memorandum Report 6043 ba NAME OF PIPF()RPM NC OR6AN:ZATiON 1,-, oFf (F SYVBIX ’da 4V A( OF M IR ’,’ I)P4

  14. High-latitude ionospheric response to a sudden impulse event during northward IMF conditions

    DEFF Research Database (Denmark)

    Moretto, T.; Ridley, A.J.; Engebretson, M.J.


    A high-density structure under northward interplanetary magnetic field B-z conditions is identified at the Wind and IMP 8 satellites, both in the solar wind on August 22, 1995. A compression of the magnetosphere is observed by the GOES 7 magnetometer within a few minutes of the pressure increase ...

  15. Phase fluctuations of GPS signals and irregularities in the high latitude ionosphere during geomagnetic storm (United States)

    Shagimuratov, I.; Chernouss, S.; Cherniak, Iu.; Efishov, I.; Filatov, M.; Tepenitsyna, N.


    In this report we analysed latitudinal occurrence of TEC fluctuations over Europe during October 2, 2013 geomagnetic storm. The data of GPS stations spaced in latitudinal range 68°-54° N over longitude of 20°E were involved in this investigation. The magnetograms of the IMAGE network and geomagnetic pulsations at Lovozero (68°02'N 35°00'W) and Sodankyla (67°22'N 26°38'W) observatories were used as indicator of auroral activity. During October 2, 2013 the strong geomagnetic field variations took place near 05 UT at auroral IMAGE network. We found good similarities between time development of substorm and fluctuations of GPS signals. The bay-like geomagnetic variations were followed by intensive phase fluctuations at auroral and subauroral stations. The strong short-term phase fluctuations were also found at mid-latitude Kaliningrad station near 05 UT that correspond to the maximal intense geomagnetic bay variations. This date confirms the equatorward expansion of the auroral oval. It brings in evidence also the storm time behavior of the irregularities oval obtained from multi-site GPS observations.

  16. A Comparison of High-Latitude Ionosphere Propagation Predictions from AMBCOM with Measured Data (United States)


    radar . The point-to-point mode performs raytracing from a transmitter to a receiver and was used for this thesis. RIAYTRA co,-,putes grokil times... RADAR C and AMBCOM....... 9 3. Thc Naval Postgraduate School Studies ......................... 9 II. THE AMBIENT COMMUNICATIONS MO0DEL (AMBCOM...the transpolar path such as the a communications blackout on 12 November 1986. [Ref. 11] 2. Hi2h-Latitude HF Predictions From RADAR C and AMBCOM

  17. Comparison of high-latitude thermospheric meridional winds II: combined FPI, radar and model climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.M.; Aruliah, A.; Mueller-Wodarg, I.C.F.; Aylward, A. [Atmospheric Physics Lab., Univ. Coll. London, London (United Kingdom)


    The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4 N, 20.4 E) has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM) (Hedin et al., 1988) and the numerical coupled thermosphere and ionosphere model (CTIM) are compared to the measured behaviour at kiruna, as a single site example. The empirical International Reference Ionosphere (IRI) model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using fabry-perot interferometers (FPI), together with 2 separate techniques applied to the European incoherent scatter radar (EISCAT) database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR) derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes. (orig.)

  18. Climatology of rapid geomagnetic variations at high latitudes over two solar cycles

    Directory of Open Access Journals (Sweden)

    A. Viljanen


    Full Text Available We investigate the characteristics of rapid geomagnetic variations at high latitudes based on the occurrence of large time derivatives of the horizontal magnetic field (dH/dt exceeding 1 nT s−1. Analysis of IMAGE magnetometer data from North Europe in 1983–2010, covering more than two solar cycles, confirms and specifies several previous findings. We show that dH/dt activity is high around the midnight and early morning hours, and nearly vanishes at noon and early afternoon. This happens during all seasons, although the midnight maximum is nearly invisible during summer. As indicated by modelled ionospheric equivalent currents, large dH/dt values occur predominantly during westward ionospheric electrojets. Before and around midnight, dH/dt tends to be north-south oriented, whereas in the morning hours, its direction is more west-east directed. dH/dt tends to be more strictly north-south oriented during winter than other seasons. The seasonal occurrence of large dH/dt values is similar to the variation of the maximum amplitude of westward equivalent currents. The yearly fraction of east-west directed large dH/dt vectors at the Kilpisjärvi station (MLAT 65.88 varies from 31 to 47 % without any clear correlation with the general geomagnetic activity nor with the yearly averages of solar wind parameters.

  19. High-latitude geomagnetic studies (22-23 millihertz)

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, A. (AT T Bell Laboratories, Murray Hill, NJ (USA) City Univ. of New York, Brooklyn (USA)); Lanzerotti, L.J.; Maclennan, C.C.; Medford, L.V. (AT T Bell Laboratories, Murray Hill, NJ (USA))


    Geomagnetic field measurements were initiated at Iqaluit (formerly Frobisher Bay) in the Northwest Territories of Canada during July 1985 (Wolfe et al. 1986). This site was selected because it was calculated to be in the conjugate area to the Amundsen-Scott South Pole Station where extensive geomagnetic research has been conducted. The principal scientific objectives are to study the conjugacy of high-latitude magnetic fluctuations observed at Iqaluit and South Pole (L{approximately}13). In this report, the authors extend the previous report of Wolfe et al. (1987) and comment upon the conjugacy of the stations for magnetic field fluctuations in the Pc3 (22-33 millihertz) hydromagnetic regime and upon the penetration of hydromagnetic energy deeper into the magnetosphere on the local dayside.

  20. Physiological and behavioral adaptations in bats living at high latitudes. (United States)

    Boyles, Justin G; McGuire, Liam P; Boyles, Esmarie; Reimer, Jesika P; Brooks, Christopher A C; Rutherford, Robert W; Rutherford, Teresa A; Whitaker, John O; McCracken, Gary F


    Widespread animals at the extremes of the species' distribution experience ecological constraints different than individuals in the core of the distribution. For example, small endotherms at very high latitudes face short summers with cool temperatures and a lack of true darkness. In particular, insectivorous bats at high latitudes may experience constraints because of their unique life history traits, and may have different energy requirements than bats at lower latitudes. To evaluate the extent of these differences, we estimated an energy budget and refueling rates for reproductively active female little brown bats (Myotis lucifugus) roosting in buildings in eastern Alaska (~63°N). Physiological parameters (torpor use and metabolic rates) and daily energy expenditures (25.7±5.3kJd(-1)) were similar to, or slightly lower than, conspecifics at lower latitudes. Northern little brown bats foraged for less time than southerly conspecifics, but measurements of plasma β-hydroxybutyrate concentrations suggest that northern bats refuel at a rate considerably higher than those to the south. It appears that high refueling rates (and therefore foraging intensity) involve a dietary shift to orb-weaver spiders, which are abundant and likely offer higher energetic benefit than the small, flying insects consumed by individuals in other parts of the distribution. Environmental factors may limit species' distributions, but our results provide an example of a population at the limit of their geographic range that has compensated for environmental challenges by adopting unique behavioral strategies while the underlying physiology (including daily energy expenditure) remains similar to populations at the core of the species' range. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Energy-Efficient Office Buildings at High Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lerum, V.


    This doctoral thesis describes a method for energy efficient office building design at high latitudes and cold climates. The method combines daylighting, passive solar heating, solar protection, and ventilative cooling. The thesis focuses on optimal design of an equatorial-facing fenestration system. A spreadsheet framework linking existing simplified methods is used. The daylight analysis uses location specific data on frequency distribution of diffuse daylight on vertical surfaces to estimate energy savings from optimal window and room configurations in combination with a daylight-responsive electric lighting system. The passive solar heating analysis is a generalization of a solar load ratio method adapted to cold climates by combining it with the Norwegian standard NS3031 for winter months when the solar savings fraction is negative. The emphasis is on very high computational efficiency to permit rapid and comprehensive examination of a large number of options early in design. The procedure is illustrated for a location in Trondheim, Norway, testing the relative significance of various design improvement options relative to a base case. The method is also tested for two other locations in Norway, at latitudes 58 and 70 degrees North. The band of latitudes between these limits covers cities in Alaska, Canada, Greenland, Iceland, Scandinavia, Finland, Russia, and Northern Japan. A comprehensive study of the ``whole building approach`` shows the impact of integrated daylighting and low-energy design strategies. In general, consumption of lighting electricity may be reduced by 50-80%, even at extremely high latitudes. The reduced internal heat from electric lights is replaced by passive solar heating. 113 refs., 85 figs., 25 tabs.

  2. Daylighting in linear atrium buildings at high latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Matusiak, Barbara


    This thesis proposes new criteria for visual comfort based on knowledge of visual perception and a method for estimating the modelling ability of light by using inter-reflection calculations. Simplified calculations are presented for the daylight factor in linear building structures, using the projected solid angle principle, for uniform sky and for CIE overcast sky conditions. The calculations are compared with experimental results. Simple diagrams are created based on calculations of the mean daylight factor in rooms adjacent to a narrow street. These diagrams and presented formulas and tables can be used as a simple design tool. Daylighting strategies for linear atrium buildings at high latitudes are developed and examined. These strategies are divided into three groups: (1) the atrium space and facades as light conductor/reflector, (2) the glass roof as a light conductor, and (3) light reflectors on the neighbouring roof. The atrium space and facade strategies are subdivided into passive and active. The strategies connected to the glazed roof includes different configurations of glazing: horizontal, single pitched, double pitched, and the use of laser cut panels and prismatic panels in the glazed roof. The shapes of reflectors on the neighbouring roof are a flat reflector, a parabolic reflector and a parabolic concentrator. Strategies from all three groups are examined on a physical model of scale 1:20 in the artificial sky of mirror box type. Simulations with artificial sun have also been done. The results from model studies are compared with computer simulations. All the active daylighting systems designed for use in the atrium space or on the atrium facades have a huge potential for use in atrium buildings. From the strategies connected with the glazed roof the negatively sloped glass is found to be the best alternative for glazed roofs at high latitudes. Among the roof reflectors, the flat one performs best. 82 refs., 122 figs., 27 tabs.

  3. A filament of energetic particles near the high-latitude dawn magnetopause (United States)

    Lui, A. T. Y.; Williams, D. J.; Mcentire, R. W.; Christon, S. P.; Jacquey, C.; Angelopoulos, V.; Yamamoto, T.; Kokubun, S.; Frank, L. A.; Ackerson, K. L.


    The Geotail satelite detected a filament of tailward-streaming energetic particles spatially separated from the boundary layer of energetic particles at the high-latitude dawn magnetopause at a downstream distance of approximately 80 R(sub E) on October 27, 1992. During this event, the composition and charge states of energetic ions at energies above approximately 10 keV show significant intermix of ions from solar wind and ionospheric sources. Detailed analysis leads to the deduction that the filament was moving southward towards the neutral sheet at an average speed of approximately 80 km/s, implying an average duskward electric field of approximately 1 mV/m. Its north-south dimension was approximately 1 R(sub E) and it was associated with an earthward directed field-aligned current of approximately 5 mA/m. The filament was separated from the energetic particle boundary layer straddling the magnetopause by approximately 0.8 R(sub E) and was inferred to be detached from the boundary layer at downstream distance beyond approximately 70 R(sub E) in the distant tail.

  4. The High-latitude Electric Potential Disparity and Hemispheric Differences in the Upper Thermospheric Neutral Wind Circulation (United States)

    Foerster, M.; Haaland, S.; Cnossen, I.


    We present statistical studies of both the high-latitude ionospheric potential pattern deduced from long-term observations of the Cluster Electron Drift Instrument (EDI) and upper thermospheric neutral wind circulation patterns in the Northern (NH) and Southern Hemisphere (SH) obtained from accelerometers on board of low-Earth orbiting satellites like CHAMP during about the same time interval. The cross-polar cap potential difference during southward IMF conditions appears to be on average slightly (~7%) larger in the SH compared with the NH, while the neutral wind magnitude and vorticity amplitude are mostly larger in the NH than in the SH, especially during high solar activity conditions. We attribute such behaviour to peculiarities of the hemispheres due to the non-dipolar portions of Earth's main magnetic field that constitute substantial differences between the geomagnetic field configurations of both hemispheres. They cause in particular different magnetic field flux densities in the opposite polar regions and different offsets of the invariant poles with respect to the rotation axis of the Earth. The pole is presently displaced almost twice the distance in the SH compared to the NH, which has substantial implications for the coupled magnetosphere-ionosphere-thermosphere system under the influence of external drivers. To analyse this behaviour, we have run several numerical simulations using the first-principle Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) model under various seasonal conditions. The survey of both the numerical simulation results and the observations confirm prominent asymmetries between the two hemispheres for these parameters.

  5. Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED

    Directory of Open Access Journals (Sweden)

    R. Maggiolo


    scenario of quasi-static acceleration of electrons that generate a polar cap arc as they precipitate in the ionosphere. The detailed observations of the acceleration region by Cluster and the large scale image of the polar cap arc provided by TIMED are two different features of the same phenomenon. Combined together, they bring new light on the configuration of the high-latitude magnetosphere during prolonged periods of Northward IMF. Possible implications of the modelling results for optical observations of polar cap arcs are also discussed.

  6. AUTOSCALA software improvements: topside-plasmasphere profiles and TEC model assisted by AIS ionosonde measurements (United States)

    Cesaroni, C.; Ippolito, A.; Scotto, C.; Ciraolo, L.


    The group of Upper Atmosphere Physics at INGV (Istituto Nazionale di Geofisica e Vulcanologia) developed Autoscala, a computer program for automatic scaling of the critical frequency foF2 and other ionospheric parameters derived from ionograms. Autoscala includes a routine that automatically estimates the electron density profile below F layer peak height hmF2, by adjusting the parameters of a model according to the recorded ionogram [Scotto (2009)]. Recently we have introduced a new algorithm for modeling upper ionosphere and plasmasphere electron density profiles following the approach suggested by Kutiev et al. (2009). In particular, these model uses the parameters of F layer peak (foF2, hmF2, scale height at hmF2) to obtain scale heights that are useful to construct H- and O+ density profiles, and consequently N(h) profile (given as the sum of the former two). Integrating electron density profiles we are then able to obtain a real time TEC estimation above the considered ionospheric station. A first validation of the model is carried out for data measured at Rome ionospheric station (Italy, 41°54' N 12°28' E) using independent TEC measurements from GPS receivers. References: Scotto, C. (2009). Electron density profile calculation technique for Autoscala ionogram analysis. Advances in Space Research, 44(6), 756-766. doi:10.1016/j.asr.2009.04.037 Kutiev, I., Marinov, P., Belehaki, a., Reinisch, B., & Jakowski, N. (2009). Reconstruction of topside density profile by using the topside sounder model profiler and digisonde data. Advances in Space Research, 43(11), 1683-1687. doi:10.1016/j.asr.2008.08.017

  7. High-latitude plasma convection during Northward IMF as derived from in-situ magnetospheric Cluster EDI measurements

    Directory of Open Access Journals (Sweden)

    M. Förster


    Full Text Available In this study, we investigate statistical, systematic variations of the high-latitude convection cell structure during northward IMF. Using 1-min-averages of Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for six and a half years (February 2001 till July 2007, and mapping the spatially distributed measurements to a common reference plane at ionospheric level in a magnetic latitude/MLT grid, we obtained regular drift patterns according to the various IMF conditions. We focus on the particular conditions during northward IMF, where lobe cells at magnetic latitudes >80° with opposite (sunward convection over the central polar cap are a permanent feature in addition to the main convection cells at lower latitudes. They are due to reconnection processes at the magnetopause boundary poleward of the cusp regions. Mapped EDI data have a particular good coverage within the central part of the polar cap, so that these patterns and their dependence on various solar wind conditions are well verified in a statistical sense. On average, 4-cell convection pattern are shown as regular structures during periods of nearly northward IMF with the tendency of a small shift toward negative clock angles. The positions of these high-latitude convection foci are within 79° to 85° magnetic latitude and 09:00–15:00 MLT. The MLT positions are approximately symmetric ±2 h about 11:30 MLT, i.e. slightly offset from midday toward prenoon hours, while the maximum (minimum potential of the high-latitude cells is at higher magnetic latitudes near their maximum potential difference at ≈−10° to −15° clock angle for the North (South Hemisphere. With increasing clock angle distances from ≈IMFBz+, a gradual transition occurs from the 4-cell pattern via a 3-cell to the common 2-cell convection pattern, in the course of which one of the medium-scale high-latitude dayside cells diminishes and disappears while the

  8. Ion-neutral coupling in the high-latitude F-layer from incoherent scatter and Fabry-Perot interferometer measurements

    Directory of Open Access Journals (Sweden)

    K. Cierpka

    Full Text Available Since the auroral ionosphere provides an important energy sink for the magnetosphere, ionosphere-thermosphere coupling must be investigated when considering the energy budget of the ionosphere-magnetosphere coupling. We present the first Scandinavian ground-based study of high-latitude F-region ion-neutral frictional heating where ion velocity and temperature are measured by the EISCAT incoherent scatter radar as well as neutral wind and temperature being measured simultaneously by a Fabry-Perot interferometer. A geomagnetically active period (Kp = 7 – 5 and quiet period (Kp = 0+ – 0 were studied. Neglecting the neutral wind can result in errors of frictional heating estimates of 60% or more in the F-layer. About 96% of the local ion temperature enhancement over the neutral temperature is accounted for by ion-neutral frictional heating.

    Key words: Ionosphere (auroral ionosphere; ionosphere-atmosphere interactions

  9. Autonomous, continuously recording broadband seismic stations at high-latitude (United States)

    Beaudoin, B.; Parker, T.; Bonnett, B.; Tytgat, G.; Anderson, K.; Fowler, J.


    IRIS PASSCAL is in the third year of an NSF funded development and acquisition effort to establish a pool of cold-hardened seismic stations specifically for high-latitude broadband deployments. We have two complete years of field trials and have successfully recorded continuous seismic data during both years with data recovery rates of ~90%. Our design is premised on a 2W autonomous system recording to local media, capable of lasting two years without service. The system is composed of four new design elements: a heavily insulated station enclosure; a state-of-health (SOH) Iridium modem; a light weight, easily deployed solar panel mount; and a power system that includes power switching between primary (Lithium Thionyl Chloride) and secondary batteries. The station enclosures have proved most critical in keeping our data acquisition systems operating within manufacturer specifications and primary batteries within a 50-70% efficiency range. Enclosures with 2.5cm-thick vacuum panels and 5cm of foam insulation have kept interior enclosure temperatures 25-30°C above background (typically below -50°C). This austral summer we are deploying version three of our enclosures. Significant changes in the design include thicker vacuum panels (5cm), more robust construction, and simplified cable routing. An important aspect of our station design is easy installation and minimal weight. To simplify installation our station enclosures are packed with datalogger, SOH communications and batteries in the lab or base camp, so that access to the internal components is not necessary at the remote site. Bulkhead connectors allow a user to fully interact with the system without ever having to open the enclosure. Solar panel mounts are also fully constructed prior to deployment. Once on site, digging two large holes (one for the enclosure and one for the broadband seismometer) and constructing the site takes roughly 2 hours. A station designed to record continuously for 12-14 months is

  10. Discovery of an Apparent High Latitude Galactic Supernova Remnant

    CERN Document Server

    Fesen, Robert; Black, Christine; Koeppel, Ari


    Deep H$\\alpha$ images of a faint emission complex 4.0 x 5.5 degrees in angular extent and located far off the Galactic plane at l = 70.0 degrees, b=-21.5 degrees reveal numerous thin filaments suggestive of a supernova remnant's shock emission. Low dispersion optical spectra covering the wavelength range 4500 - 7500 A show only Balmer line emissions for one filament while three others show a Balmer dominated spectrum along with weak [N I] 5198, 5200 A, [O I] 6300, 6364 A, [N II] 6583 A, [S II] 6716, 6731 A and in one case [O III] 5007 A line emission. Many of the brighter H$\\alpha$ filaments are visible in near UV GALEX images presumably due to C III] 1909 A line emission. ROSAT All Sky Survey images of this region show a faint crescent shaped X-ray emission nebula coincident with the portion of the H$\\alpha$ nebulosity closest to the Galactic plane. The presence of long, thin Balmer dominated emission filaments with associated UV emission and coincident X-ray emission suggests this nebula is a high latitude ...

  11. Distance to the northern high-latitude HI shells

    CERN Document Server

    Puspitarini, Lucky


    A detailed 3D distribution of interstellar matter in the solar neighborhood is increasingly necessary. As part of a 3D mapping program, we aim at assigning a precise distance to the high-latitude HI gas in particular the northern part (b \\geq 55^{circ}) of the shell associated with the conspicuous radio continuum Loop I. This shell is thought to be the expanding boundary of an interstellar bubble inflated and recently reheated by the strong stellar winds of the nearby Scorpius-Centaurus OB. We recorded high-resolution spectra of 30 A-type target stars located at various distances in the direction of the northern part of Loop I. Interstellar NaI 5889-5895 and CaII K-H 3934-3968 {\\AA} are modeled and compared with the HI emission spectra from the LAB Survey. About two-thirds of our stellar spectra possess narrow interstellar lines. Narrow lines are located at the velocity of the main, low-velocity Loop 1 HI shell ([-6,+1] km/s in the LSR). Using Hipparcos distances to the target stars, we show that the closest ...

  12. The single event upset environment for avionics at high latitude

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.J.; Dyer, C.S.; Peerless, C.L. (Defence Research Agency, Farnborough (United Kingdom). Space and Communications Dept.); Johansson, K.; Pettersson, H. (SAAB Military Aircraft, Linkoeping (Sweden)); Farren, J. (AEA Technology, Oxfordshire (United Kingdom). Harwell Lab.)


    Modern avionic systems for civil and military applications are becoming increasingly reliant upon embedded microprocessors and associated memory devices. The phenomenon of single event upset (SEU) is well known in space systems and designers have generally been careful to use SEU tolerant devices or to implement error detection and correction (EDAC) techniques where appropriate. In the past, avionics designers have had no reason to consider SEU effects but is clear that the more prevalent use of memory devices combined with increasing levels of IC integration will make SEU mitigation an important design consideration for future avionic systems. To this end, it is necessary to work towards producing models of the avionics SEU environment which will permit system designers to choose components and EDAC techniques which are based on predictions of SEU rates correct to much better than an order of magnitude. Measurements of the high latitude SEU environment at avionics altitude have been made on board a commercial airliner. Results are compared with models of primary and secondary cosmic rays and atmospheric neutrons. Ground based SEU tests of static RAMs are used to predict rates in flight.

  13. Molecular cores of the high-latitude cloud MBM 40 (United States)

    Chol Minh, Y. C. Young; Kim, Hyun-Goo; Lee, Youngung; Park, Hyeran; Kim, Kwang-Tae; Park, Yong-Sun; Joon Kim, Sang


    Towards the high-latitude cloud MBM 40, we identify 3 dense molecular cores of M˜0.2-0.5 M ⊙, and sizes of ˜0.2 pc in diameter embedded in the H I cloud of ˜8 M ⊙ which is observed to be extended along the northeast-southwest direction. The molecular cloud is located almost perpendicularly to the H I emission. We confirm the previous result of Magnani et al. that MBM 40 is not a site for new star formations. We found a very poor correlation between the H I and the IRAS 100 μm emissions, but the CO (1-0) and 100 μm emissions show a better correlation of WCO/ I100=1±0.2 K km s -1 (MJy sr -1) -1. This ratio is larger by a factor of ≥5 than in dense dark clouds, which may indicate that the CO is less depleted in MBM 40 than in dense dark clouds.

  14. The impact of sunlight on high-latitude equivalent currents

    CERN Document Server

    Laundal, K M; Østgaard, N; Reistad, J P; Haaland, S; Snekvik, K; Tenfjord, P; Ohtani, S; Milan, S E


    Ground magnetic field measurements can be mathematically related to an overhead ionospheric equivalent current. In this study we look in detail at how the global equivalent current, calculated using more than 30 years of SuperMAG magnetometer data, changes with sunlight conditions. The calculations are done using spherical harmonic analysis in quasi-dipole coordinates, a technique which leads to improved accuracy compared to previous studies. Sorting the data according to the location of the sunlight terminator and orientation of the interplanetary magnetic field (IMF), we find that the equivalent current resembles ionospheric convection patterns on the sunlit side of the terminator but not on the dark side. On the dark side, with southward IMF, the current is strongly dominated by a dawn cell and the current across the polar cap has a strong dawnward component. The contrast between the sunlit and dark side increases with increasing values of the $\\mathit{F}_{10.7}$ index, showing that increasing solar EUV fl...

  15. Ion escape from the high latitude magnetopause: analysis of oxygen and proton dynamics in the presence of magnetic turbulence

    Directory of Open Access Journals (Sweden)

    A. Taktakishvili


    Full Text Available Recent Cluster observations of the vicinity of the high latitude magnetopause indicate the presence of beams of singly charged oxygen ions, which are of ionospheric origin. In this paper we examine the role of magnetic turbulence combined with a dc electric field across the magnetopause in causing the cross field transport of protons and of singly charged oxygen ions, by means of a kinetic test particle simulation. We find that the observed values of magnetosheath turbulence and electric fields can produce a substantial escape of the oxygen ions relative to protons. By varying the magnetic turbulence level in the simulation, we find that the number of O+ crossing the magnetopause grows with δB/B0, and that very few ions can cross the magnetopause for δB/B0=0. The ion temperature also grows with δB/B0, showing that magnetic turbulence is effective in thermalizing the kinetic energy gain due to the cross-magnetopause potential drop. We suggest that this mechanism can help to explain Cluster observations of energetic oxygen ions during a high-latitude magnetopause crossing.

  16. Two dimensional hydrodynamic modeling of a high latitude braided river (United States)

    Humphries, E.; Pavelsky, T.; Bates, P. D.


    Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.

  17. Occurrence of polar mesosphere summer echoes at very high latitudes

    Directory of Open Access Journals (Sweden)

    M. Zecha


    Full Text Available Observations of polar mesosphere summer echoes (PMSE have been carried out during the summer periodes 1999–2001 and 2003–2004 at the very high latitude of 78° N using the SOUSY Svalbard Radar (53.5 MHz at Longyearbyen. Although the measurements could not be done continuously in these seasons, PMSE have been detected over more than 6600 h of 9300 h of observation time overall. Using this data base, particular PMSE occurrence characteristics have been determined. PMSE at Svalbard appear from the middle of May to the end of August with an almost permanent total occurrence in June and July. Diurnal variations are observable in the height-depend occurrence rates and in PMSE thickness, they show a maximum around 09:00–10:00 UTC and a minimum around 21:00–22:00 UTC. PMSE occur nearly exclusively between a height of 80 km and 92 km with a maximum near 85 km. However, PMSE appear not simultaneously over the entire height range, the mean vertical PMSE extension is around 4–6 km in June and July. Furthermore, typically PMSE are separated into several layers, and only 30% of all PMSE are single layers. The probability of multiple layers is greater in June and July than at the beginning and the end of the PMSE season and shows a marked 5-day-variation. The same variation is noticeable in the seasonal dependence of the PMSE occurrence and the PMSE thickness. We finally discuss potential geophysical processes to explain our observational results.

  18. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio


    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution.

    All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity.

    An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to

  19. High Latitude Scintillation Monitoring at UHF with the COMMX Experiment on TACSat4 (United States)

    Bernhardt, P. A.; Siefring, C. L.; Akins, K.; Nurnberger, M.


    UHF Beacon Transmissions at 253 MHz have provided high latitude scintillation monitoring from Gakona Alaska using the COMMX instrument on TACSat4. TACSat4 was constructed by the Naval Research Laboratory and was launched in September 2011 as an experimental communications satellite. Ground UHF transmissions are uplinked to TACSat4 using the 4 meter diameter antenna deployed to view the earth. These signals are coherently translated to other UHF frequency to be rebroadcast to the ground. Scintillation monitoring is achieved by taking the 401.25 MHz signals from ground DORIS beacons located in Cold Bay, Alaska; Yellowknife, Canada; Kauai, Hawaii; and Soccoro Island, Mexico. These signals are translated to 253 MHz and broadcast with the 4 meter antenna pointed to the UHF receiver located at Gakona, Alaska. The satellite antenna gain is 18 dB in this UHF band and the transmitter power is 2 Watts. The satellite is in an elliptical orbit with an inclination of 63 degrees and a perigee of 12,000 km. Doppler frequency shifts allow separation of each uplink from the ground DORIS beacons. This new scintillation monitoring system has been used to detect natural and artificial field aligned irregularity effects on the amplitude and phase of UHF carriers where typical scintillation amplitudes are 2dB or less. Using the HAARP transmitter in Alaska, TACSat4 was used to discover the artificial ionization clouds produce scintillation with as much as 16 dB and amplitude indices S4 greater than unity. This is the first demonstration of significant effects on radio scintillations using high power HF radio waves to disturb the ionosphere.

  20. An overview of high-latitude hf induced aurora from EISCAT (United States)

    Kosch, M.; Gustavsson, B.; Rietveld, M.

    The EISCAT HF facility is capable of transmitting over 200 MW into the ionosphere below 5.423 MHz using the low-gain antenna array. Over 1000 MW above 5.423 MHz is available using the high-gain antenna array. During O-mode pumping in the hours after sunset, F-region electrons can be accelerated sufficiently to excite the oxygen atoms and nitrogen molecules, resulting in observable optical emissions at 844.6 (O), 630 (O1D), 557.7 (O1S) and 427.8 (N2) nm above EISCAT. Initial success came in February 1999 with optical recordings by ALIS (Auroral Large Imaging System) from various Swedish locations south of EISCAT and DASI (Digital All-Sky Imager) from Skibotn, Norway, 50 km south-east of EISCAT. Several observations have features unique to high latitudes. Novel discoveries include: (1) Very large electron temperature enhancements of a few 1000 K, which maximise along the magnetic field line direction (2) Ion temperature enhancements of a few 100 K accompanied by large ion outflows, (3) The optical emission usually appears near the magnetic field line direction regardless of the HF transmitter beam pointing direction, (4) The optical emission appears below the HF pump reflection altitude as well as the upper-hybrid resonance height, (5) The optical emission and HF coherent radar backscatter disappears when pumping on the 3rd, 4th or 5th gyro-harmonic frequency, (6) The first artificial optical observations at 844.6 (O) and 427.8 (N2) nm and (7) Annular optical structures, which subsequently collapse into blobs.

  1. Monte Carlo computations of F-region incoherent radar spectra at high latitudes and the use of a simple method for non-Maxwellian spectral calculations (United States)

    Kikuchi, K.; Barakat, A.; St-Maurice, J.-P.


    Monte Carlo simulations of ion velocity distributions in the high-latitude F region have been performed in order to improve the calculation of incoherent radar spectra in the auroral ionosphere. The results confirm that when the ion temperature becomes large due to frictional heating in the presence of collisions with the neutral background constituent, F region spectra evolve from a normal double hump, to a triple hump, to a spectrum with a single maximum. An empirical approach is developed to overcome the inadequacy of the Maxwellian assumption for the case of radar aspect angles of between 30 and 70 deg.

  2. Dense gas in high-latitude molecular clouds

    Energy Technology Data Exchange (ETDEWEB)

    Reach, W.R.; Pound, M.W.; Wilner, D.J. (Univ. of California, Berkeley (United States)); Lee, Y.


    The authors have surveyed high-latitude molecular clouds (MBM 12, 7, 55, 40) in spectral lines that are believed to be dense-gas' tracers due to the high H[sub 2] volume density required for collisional excitation. An extensive CS (2-1) line map of MBM 12 revealed emission that is not confined to clumps. Less than 20% of the integrated line emission from the cloud originates in clearly identified clumps with size between 0.2 pc and 0.02 pc in the integrated line map. The bulk of the emission originates from a relatively smooth horseshoe' structure about 0.1 pc wide and 1 pc long. The CS (2-1) map correlates with the published Bell Labs [sup 13] CO map, with significant [sup 13] CO emission even where the CS emission is undetectable. Within the central core, the C[sup 18]O(1-0) and CS(2-1) lines are positively correlated with significant scatter. There is some indication of higher CS/[sup 13]CO in the cores than the horseshoe'. The observed correlations suggest that both the diffuse CS and [sup 13]CO originate from either numerous, unresolved clumps, or the diffuse parts of the cloud. High-spatial-resolution observations of HCO[sup +] from MBM 12 obtained with the BIMA Hat Creek array demonstrated that the main core emission is primarily on spatial scales greater than 0.004 pc. It appears that the authors have resolved most of the spatial structure of the dense-gas' tracers and have found that the emission is primarily diffuse. To understand the excitation mechanism of the CS rotational levels, a multitransitional study of the 1-0, 2-1, and 3-2 lines is being performed. The CS excitation may be governed by electron collisions in regions with H[sub 2] column densities an order of magnitude lower than the critical density' of [approx gt] 2 [times] 10[sup 4] cm[sup -3]. If electron collisions are populating the CS levels, then the CS and [sup 13]CO lines can both be produced in the outer parts of the cloud, explaining their positive correlation

  3. Ionospheric data assimilation and forecasting during storms (United States)

    Chartier, Alex T.; Matsuo, Tomoko; Anderson, Jeffrey L.; Collins, Nancy; Hoar, Timothy J.; Lu, Gang; Mitchell, Cathryn N.; Coster, Anthea J.; Paxton, Larry J.; Bust, Gary S.


    Ionospheric storms can have important effects on radio communications and navigation systems. Storm time ionospheric predictions have the potential to form part of effective mitigation strategies to these problems. Ionospheric storms are caused by strong forcing from the solar wind. Electron density enhancements are driven by penetration electric fields, as well as by thermosphere-ionosphere behavior including Traveling Atmospheric Disturbances and Traveling Ionospheric Disturbances and changes to the neutral composition. This study assesses the effect on 1 h predictions of specifying initial ionospheric and thermospheric conditions using total electron content (TEC) observations under a fixed set of solar and high-latitude drivers. Prediction performance is assessed against TEC observations, incoherent scatter radar, and in situ electron density observations. Corotated TEC data provide a benchmark of forecast accuracy. The primary case study is the storm of 10 September 2005, while the anomalous storm of 21 January 2005 provides a secondary comparison. The study uses an ensemble Kalman filter constructed with the Data Assimilation Research Testbed and the Thermosphere Ionosphere Electrodynamics General Circulation Model. Maps of preprocessed, verticalized GPS TEC are assimilated, while high-latitude specifications from the Assimilative Mapping of Ionospheric Electrodynamics and solar flux observations from the Solar Extreme Ultraviolet Experiment are used to drive the model. The filter adjusts ionospheric and thermospheric parameters, making use of time-evolving covariance estimates. The approach is effective in correcting model biases but does not capture all the behavior of the storms. In particular, a ridge-like enhancement over the continental USA is not predicted, indicating the importance of predicting storm time electric field behavior to the problem of ionospheric forecasting.

  4. EDITORIAL: Northern Hemisphere high latitude climate and environmental change (United States)

    Groisman, Pavel; Soja, Amber


    High Northern Hemisphere latitudes are undergoing rapid and significant change associated with climate warming. Climatic change in this region interacts with and affects the rate of the global change through atmospheric circulation, biogeophysical, and biogeochemical feedbacks. Changes in the surface energy balance, hydrologic cycle, and carbon budget feedback to regional and global weather and climate systems. Two-thirds of the Northern Hemisphere high latitude land mass resides in Northern Eurasia (~20% of the global land mass), and this region has undergone sweeping socio-economic change throughout the 20th century. How this carbon-rich, cold region component of the Earth system functions as a regional entity and interacts with and feeds back to the greater global system is to a large extent unknown. To mitigate the deficiencies in understanding these feedbacks, which may in turn hamper our understanding of the global change rates and patterns, an initiative was formed. Three years ago the Northern Eurasia Earth Science Partnership Initiative (NEESPI) was established to address large-scale and long-term manifestations of climate and environmental change in this region. The NEESPI Science Plan and its Executive Summary have been published at the NEESPI web site ( Since 2004, NEESPI participants have been able to seed several waves of research proposals to international and national funding agencies and institutions and also contribute to the International Polar Year. Currently, NEESPI is widely recognized and endorsed by several Earth System Science Partnership (ESSP) programmes and projects: the International Geosphere and Biosphere Programme, the World Climate Research Programme through the Global Energy and Water Cycle Experiment and Climate and Cryosphere Projects, the Global Water System Project, Global Carbon Project, Global Land Project, and the Integrated Land Ecosystem—Atmosphere Processes Study. Through NEESPI, more than 100 individually

  5. Large-amplitude ULF waves at high latitudes (United States)

    Guido, T.; Tulegenov, B.; Streltsov, A. V.


    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quiet times. Our analysis demonstrates that the frequency of the waves carrying most of the power in almost all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system, and the amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  6. Ionospheric forecasts for the European region for space weather applications

    Directory of Open Access Journals (Sweden)

    Tsagouri Ioanna


    Full Text Available This paper discusses recent advances in the implementation and validation of the Solar Wind driven autoregression model for Ionospheric short-term Forecast (SWIF that is running in the European Digital upper Atmosphere Server (DIAS to release ionospheric forecasting products for the European region. The upgraded implementation plan expands SWIF’s capabilities in the high latitude ionosphere while the extensive validation tests in the two solar cycles 23 and 24 allow the comprehensive analysis of the model’s performance in all terms. Focusing on disturbed conditions, the results demonstrate that SWIF’s alert detection algorithm forecasts the occurrence of ionospheric storm time disturbances with probability of detection up to 98% under intense geomagnetic storm conditions and up to 63% when storms of moderate intensity are also considered. The forecasts show relative improvement over climatology of about 30% in middle-to-low and high latitudes and 40% in middle-to-high latitudes. This indicates that SWIF is able to capture on average more than one third (35% of the storm-associated ionospheric disturbances. Regarding the accuracy, the averaged mean relative error during storm conditions usually ranges around 20% in middle-to-low and high latitudes and 24% in the middle-to-high latitudes. Our analysis shows clearly that SWIF alert criteria were designed to effectively anticipate the ionospheric storm time effects that occurred under specific interplanetary conditions, e.g., cloud Interplanetary Coronal Mass Ejections (ICMEs and/or associated sheaths. The results provide valuable input in advancing our ability in predicting the space weather effects in the ionosphere for future developments, and further work is proposed to enhance the model forecasting efficiency to support operational applications.

  7. Vulnerability of high-latitude soil organic carbon in North America to disturbance (United States)

    Guido Grosse; Jennifer Harden; Merritt Turetsky; A. David McGuire; Philip Camill; Charles Tarnocai; Steve Frolking; Edward Schuur; Torre Jorgenson; Sergei Marchenko; Vladimir Romanovsky; Kimberly P. Wickland; Nancy French; Mark Waldrop; Laura Bourgeau-Chavez; Robert G. Streigl


    This synthesis addresses the vulnerability of the North American high-latitude soil organic carbon (SOC) pool to climate change. Disturbances caused by climate warming in arctic, subarctic, and boreal environments can result in significant redistribution of C among major reservoirs with potential global impacts. We divide the current northern high-latitude SOC pools...

  8. Investigation of High-Latitude Phenomena Using Polar Data and Global Simulations (United States)

    Russell, Christopher T.; Hoffman, Robert (Technical Monitor)


    The goal of this one-year project was to use data from the Polar satellite in conjunction with global simulations of Earth's magnetosphere to investigate phenomena in the high-latitude magnetosphere. Specifically, we addressed reconnection at the cusp during periods of northward interplanetary magnetic field (IMF), and the effects of substorms on the high-latitude magnetosphere.

  9. Magnetosphere-Ionosphere Coupling and Field-Aligned Currents

    CERN Document Server

    Oliveira, D M


    It is presented in this paper a review of one of several interactions between the magnetosphere and the ionosphere through the field-aligned currents (FACs). Some characteristics and physical implications of the currents flowing in a plane perpendicular to the magnetic field at high latitudes are discussed. The behavior of this system as an electric circuit is explained, where momentum and energy are transferred via Poynting flux from the magnetosphere into the ionosphere.

  10. Ionospheric control of the magnetosphere: conductance

    Directory of Open Access Journals (Sweden)

    A. J. Ridley


    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  11. OREDA offshore and onshore reliability data volume 1 - topside equipment

    CERN Document Server



    This handbook presents high quality reliability data for offshore equipment collected during phase VI to IX (project period 2000 – 2009) of the OREDA project. The intention of the handbook is to provide both quantitative and qualitative information as a basis for Performance Forecasting or RAMS (Reliability, Availability, Maintainability and Safety) analyses. Volume 1 is about Topside Equipment. Compared to earlier editions, there are only minor changes in the reliability data presentation. To obtain a reasonable population for presenting reliability data for topside equipment in the 2015 edition, some data from phases VI and VII already issued in the previous 2009 handbook (5th edition) have also been included. The 2015 topside volume is divided into two parts. Part I describes the OREDA project, different data collection phases and the estimation procedures used to generate the data tables presented in Part II of the handbook. Topside data are in general not covering the whole lifetime of equipment, but ...

  12. Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica

    National Research Council Canada - National Science Library

    Cummings, Vonda; Hewitt, Judi; Van Rooyen, Anthony; Currie, Kim; Beard, Samuel; Thrush, Simon; Norkko, Joanna; Barr, Neill; Heath, Philip; Halliday, N Jane; Sedcole, Richard; Gomez, Antony; McGraw, Christina; Metcalf, Victoria


    Ocean acidification is a well recognised threat to marine ecosystems. High latitude regions are predicted to be particularly affected due to cold waters and naturally low carbonate saturation levels...

  13. CO J = 3 -> 2 observations of translucent and high-latitude molecular clouds

    NARCIS (Netherlands)

    Dishoeck, van E.F.; Phillips, T.G.; Black, J.H.; Gredel, R.


    Measurements were carried out on the CO J = 3-2 emission line at 345 GHz from a number of translucent and high-latitude molecular clouds, as well as on the J = 2-1 and J = 1-0 lines of both the (C-12)O and (C-13)O. It is shown that the physical conditions in the high-latitude clouds are very similar

  14. Low-Frequency Waves in HF Heating of the Ionosphere (United States)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.


    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  15. Topside-plasmasphere electron density profiles model by using AIS ionosonde measurements and calibrates GPS TEC data (United States)

    Cesaroni, Claudio; Scotto, Carlo; Ippolito, Alessandro; Ciraolo, Luigi


    The Upper Atmosphere Physics group at INGV (Istituto Nazionale di Geofisica e Vulcanologia) developed Autoscala, a computer program for automatic scaling of the critical frequency foF2 and other ionospheric parameters derived from ionograms. Autoscala includes a routine that automatically estimates the electron density profile below F layer peak height hmF2, by adjusting the parameters of a model according to the recorded ionogram [Scotto (2009)]. By integrating this profile we can estimate bottom-side total electron content (bTEC). By means of a calibration technique [Ciraolo et al. (2007)], we are able to obtain calibrated vertical TEC (vTEC) values from GPS measurements over a receiver station. This method permits to estimate biases of the received signal due to transmitter-receiver hardware configuration. These biases must be eliminated from the GPS data in order to calibrate the experimental slant total electron content (sTEC) along the satellite-receiver line-of-sight (LoS). The difference between vTEC and bottom-side TEC (bTEC) permits to evaluate electron content of the topside ionospheric region (tTEC). Starting from tTEC, bottom-side parameters (foF2, hmF2, scale height at hmF2) obtained by ionosonde and O+ - H+ transition level, we can solve a system of equations based on different ionospheric profiler (Chapman, sech-squared and exponential) the solution of which provides ion scale height [Stankov et al. (2003)]. This last factor is sufficient to establish the vertical distribution of electrons in topside and plasmasphere regions. Obtained vertical profiles could be used to develop a new model for real time estimation of TEC and topside electron density distribution. References: Scotto, C. (2009). Electron density profile calculation technique for Autoscala ionogram analysis. Advances in Space Research, 44(6), 756-766. doi:10.1016/j.asr.2009.04.037 Ciraolo, L., et al. "Calibration errors on experimental slant total electron content (TEC) determined with

  16. A comparison between ion characteristics observed by the POLAR and DMSP spacecraft in the high-latitude magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs


    Full Text Available We study here the injection and transport of ions in the convection-dominated region of the Earth's magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001 survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992. The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of ≈1keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convection- related time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by non-reconnection coupling. At higher energies ≈2–20keV, we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the

  17. Simulated Response of the Magnetosphere-Ionosphere System to Different Forms of Empirically Regulated Ionospheric Outflows (United States)

    Lotko, W.; Lyon, J.; Melanson, P.; Murr, D.; Wiltberger, M.


    Empirically derived power-law relations between the locally measured Poynting flux (S) flowing toward the ionosphere and the number flux of ions (F) flowing away from the ionosphere exhibit significant differences that depend on the choice of satellite data samples (Strangeway et al., 2005; Zheng et al., 2005). Such relations attempt to capture in lumped form the causality of electromagnetic power flows into collisionless ion acceleration in the topside ionosphere and low-altitude magnetosphere and the resulting ion outflows -- effects that are otherwise difficult to treat in first-principles fluid models for the field-aligned mass transport. We have implemented a power-law relation of the form F = A*S**b, where A and b are adjustable parameters ultimately constrained by observation, as a low-altitude boundary condition on the LFM global simulation model. This boundary condition allows ions of ionospheric origin to enter the magnetospheric simulation domain and to mix with plasma of solar wind origin in populating the magnetosphere. According to the empirical relation, more ionospheric ions are causally injected into the simulation domain as the Poynting flux through the low-altitude boundary increases. In this paper, we report results from simulations using different values of the parameters A and b to determine the sensitivity of the magnetospheric response to the form of the empirical relation. Simulation diagnostics for the transpolar potential, field-aligned current, ionospheric conductivity, precipitating electron energy flux, and Joule dissipation rate will be presented.

  18. Ionospheric redistribution during geomagnetic storms. (United States)

    Immel, T J; Mannucci, A J


    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dststorm strength that corresponds closely to the TEC variation but follows it by 3-6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow.

  19. Ionospheric and Thermospheric Response to the 2015 St. Patrick's Day Storm: a Global Multi-Instrumental Overview (United States)

    Astafyeva, E.; Zakharenkova, I.; Foerster, M.; Doornbos, E.; Encarnacao, J.; Siemes, C.


    We study the ionospheric response to the geomagnetic storm of 17-18 March 2015 (the St. Patrick's Day 2015 storm) that was up to now the strongest in the 24th solar cycle (minimum SYM-H value of -233 nT). For this purpose, we use data of ground-based GPS-receivers and ionosondes, along space-borne instruments onboard the following satellites: Jason-2, GRACE, Terra-SAR-X, the three Swarm satellites (A, B, and C), and GUVI/TIMED. The storm consisted of two successive moderate storms. In the response to the first short storm, a short-term positive effect in the ionospheric vertical electron content (VTEC) occurred at low- and mid-latitudes on the dayside. The second event lasted longer and caused significant and complex storm-time changes around the globe. At high-latitudes, negative storm signatures were recorded in all longitudinal regions. The negative storm phase was found to be strongest in the Asian sector, in particular in the northern hemisphere (NH), but developed globally on March 18 at the beginning of the recovery phase. At mid-latitudes, inverse hemispheric asymmetries occurred in different longitudinal regions: in the European-African sector, positive storm signatures were observed in the NH, whereas in the American sector, a large positive storm occurred in the southern hemisphere (SH), and the NH experienced a negative storm. These observations performed around the spring equinox signify the existence of other impact factors than seasonal dependence for hemispheric asymmetries to occur. At low-latitudes, data from multiple satellites revealed the strongest storm-time effects in the morning (~100-150% enhancement) and post-sunset (~80-100% enhancement) sectors in the topside ionosphere. These dramatic VTEC enhancements were observed at different UT, but around the same area of Eastern Pacific region. To further understand the storm development, we are planning to use thermospheric data from Swarm-C satellite, as well as the data from the electric field

  20. Green house gas flux at high latitudes - constraints and susceptibility to a changing climate (United States)

    Nilsson, M. B.


    High latitude boreal forests and peatlands contribute importantly to the land-atmosphere exchange of both carbon dioxide and methane. High latitude biomes are also identified as most vulnerable to changing climate. High latitudes are characterized by a strong seasonality in incoming solar radiation, weather conditions and biogeochemical processes. The strong seasonality in incoming solar radiation, not to change in response to a changing climate, constitute firm constraints on how changes in air temperature, evapotranspiration and precipitation will affect biogeochemical processes underlying the land atmosphere exchange of green house gases. Timing of the soil frost thaw and plant phenology thus constitutes two master controls on how fluxes of both CO2 and CH4 will be affected by weather conditions. In addition also the wintertime conditions importantly affect GHG fluxes both during winter time as well as during the succeeding summer. Examples will primarily be given for peatlands and coniferous forests.

  1. Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times. (United States)

    Shi, Q Q; Zong, Q-G; Fu, S Y; Dunlop, M W; Pu, Z Y; Parks, G K; Wei, Y; Li, W H; Zhang, H; Nowada, M; Wang, Y B; Sun, W J; Xiao, T; Reme, H; Carr, C; Fazakerley, A N; Lucek, E


    An understanding of the transport of solar wind plasma into and throughout the terrestrial magnetosphere is crucial to space science and space weather. For non-active periods, there is little agreement on where and how plasma entry into the magnetosphere might occur. Moreover, behaviour in the high-latitude region behind the magnetospheric cusps, for example, the lobes, is poorly understood, partly because of lack of coverage by previous space missions. Here, using Cluster multi-spacecraft data, we report an unexpected discovery of regions of solar wind entry into the Earth's high-latitude magnetosphere tailward of the cusps. From statistical observational facts and simulation analysis we suggest that these regions are most likely produced by magnetic reconnection at the high-latitude magnetopause, although other processes, such as impulsive penetration, may not be ruled out entirely. We find that the degree of entry can be significant for solar wind transport into the magnetosphere during such quiet times.

  2. High-latitude ocean ventilation and its role in Earth's climate transitions. (United States)

    Naveira Garabato, Alberto C; MacGilchrist, Graeme A; Brown, Peter J; Evans, D Gwyn; Meijers, Andrew J S; Zika, Jan D


    The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Authors.

  3. Morphological features of Triassic and Late Cretaceous high-latitude radiolarian assemblages (comparative analysis) (United States)

    Bragin, Nikita; Bragina, Liubov


    High-latitude radiolarian assemblages of Mesozoic represent particular interest for Boreal-Tethyan correlation of Mesozoic as well as for their paleobiogeography. Radiolarians are the only planktonic protists that present both in low- and high-latitude Mesozoic sections, therefore they have high importance. The aim of this work is to distinguish common and different features of Triassic and Late Cretaceous high-latitude assemblages of Radiolaria during their comparative analysis. We use material from Triassic of Omolon Massif (NE Siberia) (Bragin, Egorov, 2001) and Kotel'nyi Island (Arctic) (Bragin, Bragina, 2009; Bragin, in press) and Late Cretaceous of Western Siberia (Amon, 2000) and Kamchatka Peninsula (Vishnevskaya, 2005; Bragina, 1991). The main trends of radiolarian assemblages from these sections are: quantitative domination of some taxa, presence of characteristic high-latitude taxa that are absent or very rare in low-latitude regions, and relatively low taxonomic diversity with absence of many high taxa and many morphotypes. We made following conclusions after comparative analysis: 1. Triassic assemblages are dominated by morphotypes with bipolar main spines (Pseudostylosphaera and similar forms), and by pylomate forms (Glomeropyle). Genus Glomeropyle has bipolar distribution pattern and it is typically high-latitude taxon. Late Cretaceous assemblages are dominated by forms with bipolar three-bladed main spines (Amphisphaera, Protoxiphotractus, Stylosphaera), by prunoid morphotypes (Amphibrachium, Prunobrachium), discoid spongy forms (Orbiculiforma, Spongodiscus) by three-rayed (Paronaella, Spongotripus), four-rayed (Crucella, Histiastrum) and multirayed stauraxon forms (Pentinastrum, Multastrum). Pylomate forms (Spongopyle) are present in the Late Cretaceous high-latitude assemblages but not so common. 2. Spherical forms with spines that possess apophyses (Kahlerosphaera, Dumitricasphaera) are common for Triassic high-latitude areas, but not present in

  4. Preface: International Reference Ionosphere - Progress in Ionospheric Modelling (United States)

    Bilitza Dieter; Reinisch, Bodo


    The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly

  5. Quantifying the Impact of Icelandic Dust Storms on High-Latitude Aerosol (United States)

    Browse, Jo; Dorsi, Kelly; Dagsson Waldhauserova, Pavla; Murray, Ben


    Using a combination of observations, meteorological climatologies and modelling we have developed an Icelandic dust storm emission inventory. Here we present results from a global modelling study quantifying the contribution of Icelandic dust to high-latitude: ice nucleating particles (INP), cloud condensation nuclei (CCN) and PM2.5. Our results suggest that Icelandic dust cannot explain the formation and persistence of summertime mixed-phase Arctic marine clouds, as summertime marine clouds are too warm for Icelandic dust to serve as INP. However, in colder regions (such as Greenland) Icelandic dust may sporadically contribute to INP. The contribution of Icelandic dust to high-latitude CCN was shown to be complex. Indeed, our results indicate a decrease in high-latitude CCN in the aftermath of Icelandic dust storms. This decrease is due to the short-term increase of the Arctic atmospheric condensation sink and the resulting suppression of nucleation processes (a significant source of Arctic summertime CCN). Finally, Icelandic dust storms are shown to significantly contribute to high-latitude summertime PM2.5 (and PM10) both during (˜100 {μ}gm-3) and in the aftermath (˜10 {μ}gm-3) of dust events. Our results suggest that Icelandic dust storms (neglected in most global climate models) may in the short term increase aerosol optical depth (strongly correlated to PM2.5) at high latitudes. Additionally, Icelandic dust storms are likely to contribute to poor air quality as well as reduced visibility in the Arctic boundary layer. Thus, we argue for the adoption of high-latitude dust emissions in climate and NWP models.

  6. High-Latitude Plasma Convection from Cluster EDI Measurements: North-South Asymmetries (United States)

    Haaland, S.; Foerster, M.; Paschmann, G.; Torbert, R. B.; Vaith, H.


    Recent observations have shown that the ionospheric response to processes in the magnetosphere can be very dissimilar in the northern and southern hemispheres. In this paper we present a statistical study of ionospheric convection patterns obtained from 7 years of electric field observations from the Cluster mission. The results show some prominent asymmetries between the two hemispheres, but most of the differences can probably be attributed to ionospheric conductivities. The results also demonstrate that magnetospheric convection is not simply the result of processes in the magnetospheric boundaries and the magnetotail, but that it is modified and partly controlled by ionospheric effects.

  7. The spatial structure of the dayside ionospheric trough

    Directory of Open Access Journals (Sweden)

    S. E. Pryse

    Full Text Available Tomographic imaging provides a powerful technique for obtaining images of the spatial distribution of ionospheric electron density at polar latitudes. The method, which involves monitoring radio transmissions from the Navy Navigation Satellite System at a meridional chain of ground receivers, has particular potential for complementing temporal measurements by other observing techniques such as the EISCAT incoherent-scatter radar facility. Tomographic reconstructions are presented here from a two-week campaign in November 1995 that show large-scale structuring of the polar ionosphere. Measurements by the EISCAT radar confirm the authenticity of the technique and provide additional information of the plasma electron and ion temperatures. The dayside trough, persistently observed at high latitudes during a geomagnetically quiet period but migrating to lower latitudes with increasing activity, is discussed in relationship to the pattern of the polar-cap convection.

    Key words. Ionosphere-magnetosphere interactions · Polar ionosphere · Radio science · Ionospheric propagation

  8. Effects of Martian crustal magnetic field on its ionosphere

    Institute of Scientific and Technical Information of China (English)


    The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere.The studies on this topic are summarized in this paper.Main data of the Martian ionosphere were resulted from radio occultation experiments.According to the observations,the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field.The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region.In the cusp-like regions with strong vertical magnetic field,the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region.The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field.The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere.The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines,and the amount of the enhancement was much larger than that observed by the radio occultation experiment.There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions:One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities.It’s difficult to determine which one is the key mechanism for the peak electron density enhancement.Based on these studies,several interesting problems on the Martian ionosphere and plasma environment are presented.

  9. Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI

    NARCIS (Netherlands)

    Beck, P.S.A.; Atzberger, C.; Hogda, K.A.; Johansen, B.; Skidmore, A.K.


    Current models of vegetation dynamics using the normalized vegetation index (NDVI) time series perform poorly for high-latitude environments. This is due partly to specific attributes of these environments, such as short growing season, long periods of darkness in winter, persistence of snow cover,

  10. Detection of CH and CH+ in a high latitude molecular cloud

    NARCIS (Netherlands)

    Vries, de C.P.; Dishoeck, van E.F.


    Interstellar absorption lines of CH and CH(+) have been detected toward the star HD 210121, which is located behind a previously unknown high-latitude cloud. The CH observations and the measured extinction toward the star provide independent measures of the H2 column density along the line of sight,

  11. High-latitude forcing of diatom productivity in the southern Agulhas Plateauduring the past 350kyr

    NARCIS (Netherlands)

    Romero, O.E.; Kim, J.-H.; Bárcena, M.A.; Hall, I.R.; Zahn, R.; Schneider, R.


    The hydrography of the Indian-Atlantic Ocean gateway has been connected to high-latitude climate dynamics by oceanic and atmospheric teleconnections on orbital and suborbital timescales. A wealth of sedimentary records aiming at reconstructing the late Pleistocene paleoceanography around the souther

  12. Morphology and phenomenology of the high-latitude E and F regions (United States)

    Hunsucker, R. D.


    Results obtained at high latitude observatories on the behavior of E and F region ionization are presented including a bibliography. Behavior of E and F region ionization during day and night for quiet and disturbed conditions in the auroral and polar regions is described. Daily, seasonal and sunspot variations are also outlined.

  13. Oceanic mesoscale turbulence drives large biogeochemical interannual variability at middle and high latitudes

    Digital Repository Service at National Institute of Oceanography (India)

    Levy, M.; Resplandy, L.; Lengaigne, M.

    at middle and high latitudes. We used a 1/54◦idealized biogeochemical model with a seasonally repeating atmospheric forcing such that there was no external source of interannual variability. At the scale of moorings, our experiment suggested that internal...

  14. A Simulation of High Latitude F-Layer Instabilities in the Presence of Magnetosphere-Ionosphere Coupling. (United States)


    Institute ATTN: R. Taussig Fairbanks, Alaska 99701 R.A. Gross ATTN: Library S. Akasofu University of CaliforniaJ. Kan Berkeley, California 94720 J... Michael Space Science Dept. Space Science Lab. Building R-1, Room 1170 University of California One Space Park Berkeley, California 94720 Redondo Beach...Schulz, Michael Aerospace Corp. A6/2451, P.O. Box 92957 Los Angeles, California 90009 Shawhan, Stanley Dept. of Physics & Astronomy University of

  15. Electron density profiles in the nighttime high-latitude lower ionosphere, artificially disturbed by high-power radio waves (United States)

    Gokov, A. M.; Martynenko, S. I.; Misiura, V. A.; Piven, L. A.; Somov, V. G.; Fedorenko, Iu. P.; Chernogor, L. F.; Shemet, A. S.


    The method of partial reflections detected increases of electron temperature to 50% at heights of 67-71 km. The electron density decreased under the effect of high-power radio waves (9 MW effective pulse power) by 30-40% at 68-72 km, while it increased by several tens of percent at 76-85 km.

  16. Evidence of meso-scale structure in the high-latitude thermosphere

    Directory of Open Access Journals (Sweden)

    A. L. Aruliah

    Full Text Available There is a widely held assumption that the thermospheric neutral gas is slow to respond to magnetospheric forcing owing to its large inertia and therefore, may be treated as a steady state background medium for the more dynamic ionosphere. This is shown to be over simplistic. The data presented here compare direct measurements of the thermospheric neutral winds made in Northern Scandinavia by Fabry-Perot Interferometers (FPIs with direct measurements of the ionosphere made by the EISCAT radar and with model simulations. These comparisons will show that the neutral atmosphere is capable of responding to ionospheric changes on mesoscale levels, i.e., spatial and temporal scale sizes of less than a few hundred kilometres and tens of minutes, respectively.

    Key words. Atmospheric composition and structure (air-glow and aurora; instruments and techniques – Ionosphere (ionosphere-atmosphere interactions

  17. High latitude dust pathways from Iceland: implications for aeolian inputs to oceans and cryosphere (United States)

    Bullard, J. E.; Baddock, M.; Mockford, T.; Thorsteinsson, T.


    Recent research has suggested that dust emission from source areas found in the high latitudes (≥50°N and ≥40°S) may contribute at least 5% to the global dust budget. Although this amount is low compared to that from sub-tropical dust sources, the relative impact of dust emission at high latitudes may well be magnified by its regional significance. High latitude regions lie away from the transport corridors of dust from the major sub-tropical dust belt, thus sources at higher latitudes have the potential to be especially important providers of mineral aerosol to (their) proximal cryospheric, terrestrial and marine systems. To examine the distribution of dust from a prominent high latitude dust source, this study employed forward air parcel trajectory modelling over a 20 year period, quantifying dust trajectories from source areas in the north and south of Iceland. The majority of multi-year dust transport studies have relied upon daily-run trajectories over their decadal study periods. This research differs from these because it only analyses trajectories generated when dust was known to be in suspension at the origin, based on meteorological observations. We demonstrate that the potential for Icelandic dust to be transported over the Greenland Ice Sheet is considerably overestimated by generic transport climatologies when compared with those specifically associated with dust. Modeled transport patterns illustrate the strong influence of seasonality as a primary control on dust emission and its transport from Iceland. Snow cover means dust activity is suppressed for a longer duration in the north of Iceland, and while winds are weakest in summer, the delivery of dust to Atlantic and sub-arctic oceans is greatest and broadest in that season. These findings illustrate the influence of drivers unique to high latitude environments, and their importance in understanding the aeolian systems operating there.

  18. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities (United States)

    Benson, Robert F.; Fung, Shing F.


    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  19. Large-Scale Ionospheric Effects Related to Electron-Gyro Harmonics: What We Have Learned from HAARP. (United States)

    Watkins, B. J.; Fallen, C. T.; Secan, J. A.


    The HAARP ionospheric modification facility has unique capabilities that enable a wide range of HF frequencies with transmit powers ranging from very low to very high values. We will review a range of experiment results that illustrate large-scale ionospheric effects when the HF frequencies used are close to electron gyro-harmoncs and we focus mainly on the 3rd and 4th harmonics. The data are primarily from the UHF diagnosticc radar and total electron content (TEC) observations through the heated topside ionosphere. Radar data for HF frequencies just above and just below gyro harmoncs show significant differences in radar scatter cross-section that suggest differing plasma processes, and this effect is HF power dependent with some effects only observable with full HF power. For the production of artificial ionization in the E-region when the HF frequency is near gyro-harmoncs the results differ significantly for relatively small (50 kHz) variations in the HF frequency. We show how slow FM scans in conjunction with gyro-harmonic effects are effective in producing artificial ionization in the lower ionosphere.In the topside ionosphere enhanced density and upward fluxes have been observed and these may act as effective ducts for the propagation of VLF waves upward into the magneosphere. Experimental techniques have been developed that may be used to continuously maintain these effects in the topside ionossphere.

  20. Global scale ionospheric irregularities associated with thunderstorm activity

    CERN Document Server

    Pulinets, S A


    The potential difference near 280 kV exists between ground and ionosphere. This potential difference is generated by thunderstorm discharges all over the world, and return current closes the circuit in the areas of fair weather (so-called fair weather current). The model calculations and experimental measurements clearly demonstrate non-uniform latitude-longitude distribution of electric field within the atmosphere. The recent calculations show that the strong large scale vertical atmospheric electric field can penetrate into the ionosphere and create large scale irregularities of the electron concentration. To check this the global distributions of thunderstorm activity obtained with the satellite monitoring for different seasons were compared with the global distributions of ionosphere critical frequency (which is equivalent to peak electron concentration) obtained with the help of satellite topside sounding. The similarity of the obtained global distributions clearly demonstrates the effects of thunderstor...

  1. Global characteristics of the upper transition height derived from the topside Alouette/ISIS topside sounder electron density profiles, the Formosat-3/COSMIC density profiles and the IRI ion composition model (United States)

    Truhlik, Vladimir; Triskova, Ludmila; Benson, Robert; Bilitza, Dieter; Chu, Philip; Richards, Phil G.; Wang, Yongli

    The upper transition height (Ht) (the altitude of the transition from heavy atomic ions to light ions or in the simplest form the transition from O+ to H+) is an important parameter, representing the boundary between the ionosphere and the plasmasphere. Ht is very sensitive to various geophysical parameters, like solar and magnetic activity and strongly depends on latitude and local time. There were numerous studies of this parameter in past decades. In spite of these efforts, no model satisfactorily represents this parameter so far. Moreover, surprising evidence of very low transition heights during the last prolonged solar minimum, of a level never obtained before, have been reported. We investigate the upper transition height on the global scale. We made progress in processing large data sets of Ht deduced from the Alouette/ISIS topside sounder and from the Formosat-3/COSMIC vertical electron-density profiles Ne(h) using the theoretical Global Plasma Ionosphere Density (GPID) model (Webb and Essex, 2004) and a revised non-linear function describing the scale height vs. altitude (Titheridge, 1976) to fit the vertical density profiles to the observed profiles and to determine the upper transition height. Since both methods require the plasma temperatures and their gradients as input, these are calculated using the IRI2012 model. Both methods are verified using a large amount of electron and ion density profiles simulated by the FLIP theoretical model and their accuracy is discussed. We compare the results from Alouette/ISIS and Formosat-3/COSMIC and present a global distribution of the calculated Ht and its dependence on geophysical parameters. Finally we compare it with Ht calculated using the IRI ion composition model. Titheridge, J.E., 1976. Ion Transition Heights from Topside Electron-Density Profiles. Planetary and Space Science 24 (3), 229-245. Webb, P.A., Essex, E.A., 2004. A dynamic global model of the plasmasphere. Journal of Atmospheric and Solar

  2. Modification of magnetic signals of short-period pulsations by the ionosphere


    Shigeru, Fujita


    The transmission, mode conversion, and reflection of HM-waves associated with short-period geomagnetic pulsations through and by the ionosphere are comparatively examined for three different model cases, bearing in mind the localized injection of the shear Alfven wave at high latitude and the consequent horizontal spread of disturbances to low-latitude regions through the ducted propagation in the upper ionosphere. In the first model case composed of two semiinfinite layers (the magnetosphere...

  3. Geologic isolation of nuclear waste at high latitudes: the role of ice sheets (United States)

    Person, M.; McIntosh, J.; Iverson, N.; Neuzil, C.E.; Bense, V.


    Geologic isolation of high-level nuclear waste from the biosphere requires special consideration in countries at high latitudes (>40°N) owing to the possibility of future episodes of continental glaciation (Talbot 1999). It is now widely recognized that Pleistocene continental glaciations have had a profound effect on rates of sediment erosion (Cuffey & Paterson 2010) and deformation including tectonic thrusting (Pedersen 2005) as well as groundwater flow (Person et al. 2007; Lemieux et al. 2008a,b,c). In addition, glacial mechanical loads may have generated anomalous, or fossil, pore pressures within certain clay-rich confining units (e.g. Vinard et al. 2001). Because high-level nuclear wastes must be isolated from the biosphere as long as 1 million years (McMurry et al. 2003), the likelihood of one or more continental ice sheets overrunning high-latitude sites must be considered.

  4. Diffuse Galactic Gamma Rays at Intermediate and High Latitudes, Constraints on ISM Properties

    CERN Document Server

    Tavakoli, Maryam; Evoli, Carmelo; Ullio, Piero


    The spectral data on the diffuse Galactic gamma-rays, at medium and high latitudes (|b| > 10) and energies of 1-100 GeV, recently published by the Fermi Collaboration are used to produce a novel study on the gamma-ray emissivity in the Galaxy. We focus on analyzing the properties of propagation of cosmic rays (CRs), using the publicly available DRAGON code. We critically address some of the models for the interstellar HI and H2 gas distributions commonly used in the literature, as well as test a variety of propagation models. Each model assumes a distinct global profile for the diffusion and the re-acceleration of CRs. Fitting propagation parameters to well measured local CRs such as, the B/C ratio, protons, antiprotons and electron, positron fluxes, we evaluate the gamma-ray spectra at medium and high latitudes in order to place further constraints on these propagation models.

  5. The X-ray shadow of the high-latitude molecular cloud MBM 12 (United States)

    Snowden, S. L.; Mccammon, D.; Verter, F.


    ROSAT XRT/PSPC observations show a deep shadow cast by the high-latitude molecular cloud MBM 12 in the 3/4 keV diffuse background. Modeling of the shadow implies that less than 20 percent of the typical high-latitude 3/4 keV diffuse background intensity is emitted in front of the cloud (D = 60-70 pc). A weaker shadow consistent with the lower optical depth at higher energies was observed in the 1.5 keV band. Since little shadowing was seen in the 1/4 keV band, this observation places strong constraints on the amount of 0.5-2 keV emission that is intermixed with the source of the observed 1/4 keV flux.

  6. High-latitude truncation errors of box-type primitive equation models (United States)

    Kalnay-Rivas, E.


    The 'box-type' finite-difference method includes a weighted average of the pressure gradient with weights proportional to the surface of the grid walls. It is shown that this averaging introduces first-order truncation errors near the poles. An example is shown in which the relative error is of zero order and the scheme produces large distortions in the solution at high latitudes.

  7. Engineering challenges of operating year-round portable seismic stations at high-latitude (United States)

    Beaudoin, Bruce; Carpenter, Paul; Hebert, Jason; Childs, Dean; Anderson, Kent


    Remote portable seismic stations are, in most cases, constrained by logistics and cost. High latitude operations introduce environmental, technical and logistical challenges that require substantially more engineering work to ensure robust, high quality data return. Since 2006, IRIS PASSCAL has been funded by NSF to develop, deploy, and maintain a pool of polar specific seismic stations. Here, we describe our latest advancements to mitigate the challenges of high-latitude, year-round station operation. The IRIS PASSCAL program has supported high-latitude deployments since the late 1980s. These early deployments were largely controlled source, summer only experiments. In early 2000 PASSCAL users began proposing year-round deployments of broadband stations in some of the harshest environments on the planet. These early year-round deployments were stand-alone (no telemetry) stations largely designed to operate during summer months and then run as long as possible during the winter with hopes the stations would revive come following summer. In 2006 and in collaboration with UNAVCO, we began developing communications, power systems, and enclosures to extend recording to year-round. Since this initial effort, PASSCAL continued refinement to power systems, enclosure design and manufacturability, and real-time data communications. Several sensor and data logger manufacturers have made advances in cold weather performance and delivered newly designed instruments that have furthered our ability to successfully run portable stations at high-latitude with minimal logistics - reducing size and weight of instruments and infrastructure. All PASSCAL polar engineering work is openly shared through our website:

  8. Climate Effects on High Latitude Daphnia via Food Quality and Thresholds (United States)

    Przytulska, Anna; Bartosiewicz, Maciej; Rautio, Milla; Dufresne, France; Vincent, Warwick F.


    Climate change is proceeding rapidly at high northern latitudes and may have a variety of direct and indirect effects on aquatic food webs. One predicted effect is the potential shift in phytoplankton community structure towards increased cyanobacterial abundance. Given that cyanobacteria are known to be a nutritionally poor food source, we hypothesized that such a shift would reduce the efficiency of feeding and growth of northern zooplankton. To test this hypothesis, we first isolated a clone of Daphnia pulex from a permafrost thaw pond in subarctic Québec, and confirmed that it was triploid but otherwise genetically similar to a diploid, reference clone of the same species isolated from a freshwater pond in southern Québec. We used a controlled flow-through system to investigate the direct effect of temperature and indirect effect of subarctic picocyanobacteria (Synechococcus) on threshold food concentrations and growth rate of the high latitude clone. We also compared the direct effect of temperature on both Daphnia clones feeding on eukaryotic picoplankton (Nannochloropsis). The high latitude clone had a significantly lower food threshold for growth than the temperate clone at both 18 and 26°C, implying adaptation to lower food availability even under warmer conditions. Polyunsaturated fatty acids were present in the picoeukaryote but not the cyanobacterium, confirming the large difference in food quality. The food threshold for growth of the high latitude Daphnia was 3.7 (18°C) to 4.2 (26°C) times higher when fed Synechococcus versus Nannochloropsis, and there was also a significant negative effect of increased temperature and cyanobacterial food on zooplankton fatty acid content and composition. The combined effect of temperature and food quality on the performance of the high latitude Daphnia was greater than their effects added separately, further indicating the potentially strong indirect effects of climate warming on aquatic food web processes. PMID

  9. Impacts of high-latitude volcanic eruptions on ENSO and AMOC. (United States)

    Pausata, Francesco S R; Chafik, Leon; Caballero, Rodrigo; Battisti, David S


    Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño-Southern Oscillation (ENSO).

  10. A FUSE Survey of Interstellar Molecular Hydrogen toward High-Latitude AGN

    CERN Document Server

    Gillmon, K; Tumlinson, J; Danforth, C; Gillmon, Kristen; Tumlinson, Jason; Danforth, Charles


    We report results from a FUSE survey of interstellar molecular hydrogen (H2) along 45 sight lines to AGN at high Galactic latitudes (|b| > 20 degrees). Most (39 of 45) of the sight lines show detectable Galactic H2 absorption from Lyman and Werner bands between 1000 and 1126 A, with column densities ranging from N(H2) = 10^(14.17-19.82) cm^-2. In the northern Galactic hemisphere, we identify many regions of low column, N(H2) 54 degrees. These `"H2 holes" provide valuable, uncontaminated sight lines for extragalactic UV spectroscopy, and a few may be related to the "Northern Chimney" (low Na I absorption) and "Lockman Hole" with low N(HI). A comparison of high-latitude H2 with 139 OB-star sight lines surveyed in the Galactic disk suggests that high-latitude and disk H2 clouds may have different rates of heating, cooling, and UV excitation. For rotational states J = 0 and 1, the mean excitation temperature at high latitude, = 124 +/- 8 K, is somewhat above that in the Galactic disk, = 86 +/- 20 K. For J = 2-...

  11. High-latitude oceanic variability associated with the 18.6-year nodal tide (United States)

    Royer, Thomas C.


    Ocean temperatures in the upper 250 m in the northern North Pacific (60°N, 149°W) increased by more than 1°C from 1972 to 1986 but are now decreasing. Subsurface temperature anomalies are well correlated (˜0.58) with the air temperature anomalies at Sitka, Alaska; hence the coastal air temperatures can be used as a proxy data set to extend the ocean temperature time series back to 1828. Up to 30% of the low-frequency variance can be accounted for with the 18.6-year nodal signal. Additionally, spectral analysis of these air temperature variations indicates a significant low-frequency peak in the range of the 18.6-year signal. Similar low-frequency signals have been reported for Hudson Bay air temperatures since 1700, for sea surface temperatures in the North Atlantic from 1876 to 1939, and for sea level in the high-latitude southern hemisphere. The water column temperature variations presented here are the first evidence that the upper ocean is responding to this very long period tidal forcing. An enhanced high-latitude response to the 18.6-year forcing is predicted by equilibrium tide theory, and it should be most evident at latitudes poleward of about 50°. These low-frequency ocean-atmosphere variations must be considered in high-latitude assessments of global climate change, since they are of the same magnitude as many of the predicted global changes.

  12. The mapping of ionospheric TEC for central Russian and European regions on the base of GPS and GLONASS measurements (United States)

    Shagimuratov, Irk; Cherniak, Iurii; Zakharenkova, Irina; Ephishov, Ivan; Krankowski, Andrzej; Radievsky, Alexander


    The total electron content (TEC) is a key parameter not only for space radio communication but also for addressing the fundamental problems of the ionosphere physics and near Earth space. Currently, the main sources of information on the TEC in the global scale are GNSS signals measurements. The spatial-temporal behavior of the ionosphere can be most effectively analyzed using TEC maps. To date, global IGS global ionospheric maps with a resolution of 2.5 degree in latitude and 5 in longitude and a time resolution of 2 h are most widely used. To study the detailed structure of the ionospheric gradients and rapid process as well as for precise positioning task it is necessary to use more precise regional TEC maps. The Regional TEC maps are currently constructed by different research groups for different regions: USA, Europe, Japan etc. The West Department of IZMIRAN research group is a one in Russia who works on the task of regional ionosphere mapping since 2000. It was developed the methodology for obtaining information on the spatial TEC distribution, TEC maps of the ionosphere on the basis of the algorithm for multi-station processing of GNSS observations. Using a set of algorithms and programs, regional TEC maps with a spatial resolution of 1° and a time resolution up to 15 min can be produced. Here is developed the approach to establish the regular online internet service for regional ionosphere mapping of the Western Russia and Eastern Europe. Nowadays the development of GLONASS navigation system is completely finished and it consists of a constellation of more than 24 satellites. It is good perspective for investigations of the ionosphere structure and dynamics on the base of the simultaneous observations of GPS and GLONASS systems. The GLONASS satellites have the inclination about 64 degrees as against GPS satellites with 56. So the GLONASS provides opportunity to study the high latitude ionosphere. The different scale electron density irregularities

  13. Longitudinal Variation in GPS -TEC and Topside Electron Density Associated with the Wave Number Four Structures over South American Sector (United States)

    Nogueira, P. A.; Abdu, M. A.; Souza, J. R.; Bailey, G. J.; Shume, E. B.; Denardini, C. M.


    Recent observations of the low-latitude ionospheric electron density have revealed a longitudinal structure in the Equatorial Ionization Anomaly (EIA) intensity, which is characterized by a wave number-four pattern when plotted at a constant-local-time frame. It has been proposed that neutral wind driven dynamo electric fields from the E-region due to non migrating tidal modes are responsible for this pattern. In the present work we have used measurements from the Defense Meteorological Satellite Program (DMSP) to investigate the four peaks structure in the topside electron density of the low latitude ionosphere. We also compare the climatology of the Total Electron Content (TEC) as observed by GPS receivers in two equatorial stations over South America, São Luís (2.33 S, 315.8E, declination = -19 degree) in Brazil and Arequipa (16.5S, 288.5E, declination = 0.5 degree) in Peru. TEC variations for three solar activity levels (high, moderate and low) have been analyzed. TEC values over São Luís are found to be larger than that ones over Arequipa independent of the season, local time and solar cycle conditions. We estimated the vertical plasma drifts over these stations using magnetometer data during daytime and using ionosonde data for evening hours. We fed the Sheffield University Plasmasphere Ionosphere Model (SUPIM) with this drifts in an attempt to partially explain the differences in the TEC over these stations. The SUPIM was also used to evaluate the effect of thermospheric wind to cause the four peaks structure in the plasma density. Therefore, we analyze the equatorial ionospheric response to combined effects of thermospheric neutral winds and zonal electric field causing the longitudinal variation in TEC observed in the South American longitude sector.

  14. North-South Asymmetries in Earth's Magnetic Field: Effects on High-Latitude Geospace

    CERN Document Server

    Laundal, K M; Milan, S E; Haaland, S E; Coxon, J; Pedatella, N M; Förster, M; Reistad, J P


    The solar-wind magnetosphere interaction primarily occurs at altitudes where the dipole component of Earth's magnetic field is dominating. The disturbances that are created in this interaction propagate along magnetic field lines and interact with the ionosphere-thermosphere system. At ionospheric altitudes, the Earth's field deviates significantly from a dipole. North-South asymmetries in the magnetic field imply that the magnetosphere ionosphere-thermosphere (M-I-T) coupling is different in the two hemispheres. In this paper we review the primary differences in the magnetic field at polar latitudes, and the consequences that these have for the M-I-T coupling. We focus on two interhemispheric differences which are thought to have the strongest effects: 1) A difference in the offset between magnetic and geographic poles in the Northern and Southern Hemispheres, and 2) differences in the magnetic field strength at magnetically conjugate regions. These asymmetries lead to differences in plasma convection, neutr...

  15. Phenology and cover of plant growth forms predict herbivore habitat selection in a high latitude ecosystem. (United States)

    Iversen, Marianne; Fauchald, Per; Langeland, Knut; Ims, Rolf A; Yoccoz, Nigel G; Bråthen, Kari Anne


    The spatial and temporal distribution of forage quality is among the most central factors affecting herbivore habitat selection. Yet, for high latitude areas, forage quantity has been found to be more important than quality. Studies on large ungulate foraging patterns are faced with methodological challenges in both assessing animal movements at the scale of forage distribution, and in assessing forage quality with relevant metrics. Here we use first-passage time analyses to assess how reindeer movements relate to forage quality and quantity measured as the phenology and cover of growth forms along reindeer tracks. The study was conducted in a high latitude ecosystem dominated by low-palatable growth forms. We found that the scale of reindeer movement was season dependent, with more extensive area use as the summer season advanced. Small-scale movement in the early season was related to selection for younger stages of phenology and for higher abundances of generally phenologically advanced palatable growth forms (grasses and deciduous shrubs). Also there was a clear selection for later phenological stages of the most dominant, yet generally phenologically slow and low-palatable growth form (evergreen shrubs). As the summer season advanced only quantity was important, with selection for higher quantities of one palatable growth form and avoidance of a low palatable growth form. We conclude that both forage quality and quantity are significant predictors to habitat selection by a large herbivore at high latitude. The early season selectivity reflected that among dominating low palatability growth forms there were palatable phenological stages and palatable growth forms available, causing herbivores to be selective in their habitat use. The diminishing selectivity and the increasing scale of movement as the season developed suggest a response by reindeer to homogenized forage availability of low quality.

  16. Linking Sediment Microbial Communities to Carbon Cycling in High-Latitude Lakes (United States)

    Emerson, J. B.; Varner, R. K.; Johnson, J. E.; Owusu-Dommey, A.; Binder, M.; Woodcroft, B. J.; Wik, M.; Freitas, N. L.; Boyd, J. A.; Crill, P. M.; Saleska, S. R.; Tyson, G. W.; Rich, V. I.


    It is well recognized that thawing permafrost peatlands are likely to provide a positive feedback to climate change via CH4 and CO2 emissions. High-latitude lakes in these landscapes have also been identified as sources of CH4 and CO2 loss to the atmosphere. To investigate microbial contributions to carbon loss from high-latitude lakes, we characterized sediment geochemistry and microbiota via cores collected from deep and shallow regions of two lakes (Inre Harrsjön and Mellersta Harrsjön) in Arctic Sweden in July, 2012. These lakes are within the Stordalen Mire long-term ecological area, a focal site for investigating the impacts of climate change-related permafrost thaw, and the lakes in this area are responsible for ~55% of the CH4 loss from this hydrologically interconnected system. Across 40 samples from 4 to 40 cm deep within four sediment cores, Illumina 16S rRNA gene sequencing revealed that the sedimentary microbiota was dominated by candidate phyla OP9 and OP8 (Atribacteria and Aminicenantes, respectively, including putative fermenters and anaerobic respirers), predicted methanotrophic Gammaproteobacteria, and predicted methanogenic archaea from the Thermoplasmata Group E2 clade. We observed some overlap in community structure with nearby peatlands, which tend to be dominated by methanogens and Acidobacteria. Sediment microbial communities differed significantly between lakes, by overlying lake depth (shallow vs. deep), and by depth within a core, with each trend corresponding to parallel differences in biogeochemical measurements. Overall, our results support the potential for significant microbial controls on carbon cycling in high-latitude lakes associated with thawing permafrost, and ongoing metagenomic analyses of focal samples will yield further insight into the functional potential of these microbial communities and their dominant members.

  17. Soil-frost-enabled soil-moisture-precipitation feedback over northern high latitudes (United States)

    Hagemann, Stefan; Blome, Tanja; Ekici, Altug; Beer, Christian


    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. The currently observed global warming is most pronounced in the Arctic region and is projected to persist during the coming decades due to anthropogenic CO2 input. This warming will certainly have effects on the ecosystems of the vast permafrost areas of the high northern latitudes. The quantification of such effects, however, is still an open question. This is partly due to the complexity of the system, including several feedback mechanisms between land and atmosphere. In this study we contribute to increasing our understanding of such land-atmosphere interactions using an Earth system model (ESM) which includes a representation of cold-region physical soil processes, especially the effects of freezing and thawing of soil water on thermal and hydrological states and processes. The coupled atmosphere-land models of the ESM of the Max Planck Institute for Meteorology, MPI-ESM, have been driven by prescribed observed SST and sea ice in an AMIP2-type setup with and without newly implemented cold-region soil processes. Results show a large improvement in the simulated discharge. On the one hand this is related to an improved snowmelt peak of runoff due to frozen soil in spring. On the other hand a subsequent reduction in soil moisture enables a positive feedback to precipitation over the high latitudes, which reduces the model's wet biases in precipitation and evapotranspiration during the summer. This is noteworthy as soil-moisture-atmosphere feedbacks have previously not been the focus of research on the high latitudes. These results point out the importance of high-latitude physical processes at the land surface for regional climate.

  18. Regional differences of the ionospheric response to the July 2012 geomagnetic storm (United States)

    Kuai, Jiawei; Liu, Libo; Lei, Jiuhou; Liu, Jing; Zhao, Biqiang; Chen, Yiding; Le, Huijun; Wang, Yungang; Hu, Lianhuan


    The July 2012 geomagnetic storm is an extreme space weather event in solar cycle 24, which is characterized by a southward interplanetary geomagnetic field lasting for about 30 h below -10 nT. In this work, multiple instrumental observations, including electron density from ionosondes, total electron content (TEC) from Global Positioning System, Jason-2, and Gravity Recovery and Climate Experiment, and the topside ion concentration observed by the Defense Meteorological Satellite Program spacecraft are used to comprehensively present the regional differences of the ionospheric response to this event. In the Asian-Australian sector, an intensive negative storm is detected near longitude 120°E on 16 July, and in the topside ionosphere the negative phase is mainly existed in the equatorial region. The topside and bottomside TEC contribute equally to the depletion in TEC, and the disturbed electric fields make a reasonable contribution. On 15 July, the positive storm effects are stronger in the Eastside than in the Westside. The topside TEC make a major contribution to the enhancement in TEC for the positive phases, showing the important role of the equatorward neutral winds. For the American sector, the equatorial ionization anomaly intensification is stronger in the Westside than in the Eastside and shows the strongest feature in the longitude 110°W. The combined effects of the disturbed electric fields, composition disturbances, and neutral winds cause the complex storm time features. Both the topside ion concentrations and TEC reveal the remarkable hemispheric asymmetry, which is mainly resulted from the asymmetry in neutral winds and composition disturbances.

  19. On the solar cycle variation in the barometer coefficients of high latitude neutron monitors (United States)

    Kusunose, M.; Ogita, N.


    Evaluation of barometer coefficients of neutron monitors located at high latitudes has been performed by using the results of the spherical harmonic analysis based on the records from around twenty stations for twelve years from January 1966 to December 1977. The average of data at eight stations, where continuous records are available for twelve years, show that the absolute value of barometer coefficient is in positive correlation with the cosmic ray neutron intensity. The variation rate of the barometer coefficient to the cosmic ray neutron intensity is influenced by the changes in the cutoff rigidity and in the primary spectrum.

  20. Circulation in the high-latitude thermosphere due to electric fields and Joule heating (United States)

    Heaps, M. G.; Megill, L. R.


    Electric fields in the earth's upper atmosphere are capable of setting the neutral atmosphere in motion via ion-neutral collisions as well as pressure gradients from resultant Joule heating. By means of simple models for the high-latitude thermosphere and electric fields a simplified set of coupled equations is solved which show that moderate electric fields, when present for a period of several hours, are capable of displacing the neutral atmosphere of the order of 50 km in the vertical, a few hundred kilometers in the north-south direction and over 1000 km in the east-west direction.

  1. Seasonal Variations of Mid-Latitude Ionospheric Trough Structure Observed with DEMETER and COSMIC

    Directory of Open Access Journals (Sweden)

    Matyjasiak Barbara


    Full Text Available The mid-latitude ionospheric trough is a depleted region of ionospheric plasma observed in the topside ionosphere. Its behavior can provide useful information about the magnetospheric dynamics, since its existence is sensitive to magnetospherically induced motions. Mid-latitude trough is mainly a night-time phenomenon. Both, its general features and detailed characteristics strongly depend on the level of geomagnetic disturbances, time of the day, season, and the solar cycle, among others. Although many studies provide basic information about general characteristics of the main ionospheric trough structure, an accurate prediction of the trough behavior in specific events is still understood poorly. The paper presents the mid-latitude trough characteristics with regard to the geomagnetic longitude and season during a solar activity minimum, as based on the DEMETER in situ satellite measurements and the data retrieved from FORMOSAT-3/COSMIC radio occultation measurements.

  2. Multi-Instrument Observations of Geomagnetic Storms in the Arctic Ionosphere

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga;

    We present a multi-instrumented approach for the analysis of the Arctic ionosphere during the 19 February 2014 highly complex, multiphase geomagnetic storm. The geomagnetic storm was the result of two powerful and subsequent Earth-directed coronal mass ejections (CMEs). The first one was launched...... from the solar corona on 16 February and the second one on 18 February. We focus on effects of such solar-originated geomagnetic disturbances on the high latitude ionosphere because our present understanding of the fundamental ionospheric processes – particularly during perturbed times – in this region...

  3. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans. (United States)

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J


    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3' UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes.

  4. High-latitude energy input and its impact on the thermosphere (United States)

    Lu, G.; Richmond, A. D.; Lühr, H.; Paxton, L.


    This paper presents a quantitative assessment of high-latitude energy input and its partitioning in the polar cap by synthesizing various space and ground-based observations during the 17 January 2005 geomagnetic storm. It was found that Joule heating is the primary form of magnetospheric energy input, especially during active times when the hemispheric-integrated Joule heating can be an order of magnitude larger than the hemispheric-integrated auroral power. Most of magnetospheric energy is dissipated in the auroral zone rather than in the polar cap. On average, only about 22-25% of the total hemispheric energy input is dissipated into the polar cap region bordered by the convection reversal boundary (CRB) and the poleward auroral flux boundary (FXB). The impact of high-latitude energy input was also investigated to unveil the causal relationship between Joule heating and the formation of polar cap mass density anomalies. Our numerical simulation demonstrated that thermosphere dynamics readily redistributes composition, temperature, and mass through upwelling and atmospheric gravity waves. The polar cap mass density anomalies observed by the CHAMP satellite during the storm were largely a result of large-scale atmospheric gravity waves. Therefore, an increase in local thermospheric mass density does not necessarily mean there is direct energy input.

  5. An atmospheric blast/thermal model for the formation of high-latitude pedestal craters (United States)

    Wrobel, Kelly; Schultz, Peter; Crawford, David


    Although tenuous, the atmosphere of Mars affects the evolution of impact-generated vapor. Early-time vapor from a vertical impact expands symmetrically, directly transferring a small percentage of the initial kinetic energy of impact to the atmosphere. This energy, in turn, induces a hemispherical shock wave that propagates outward as an intense airblast (due to high-speed expansion of vapor) followed by a thermal pulse of extreme atmospheric temperatures (from thermal energy of expansion). This study models the atmospheric response to such early-time energy coupling using the CTH hydrocode written at Sandia National Laboratories. Results show that the surface surrounding a 10 km diameter crater (6 km "apparent" diameter) on Mars will be subjected to intense winds (˜200 m/s) and extreme atmospheric temperatures. These elevated temperatures are sufficient to melt subsurface volatiles at a depth of several centimeters for an ice-rich substrate. Ensuing surface signatures extend to distal locations (˜4 apparent crater diameters for a case of 0.1% energy coupling) and include striations, thermally armored surfaces, and/or ejecta pedestals—all of which are exhibited surrounding the freshest high-latitude craters on Mars. The combined effects of the atmospheric blast and thermal pulse, resulting in the generation of a crater-centered erosion-resistant armored surface, thus provide a new, very plausible formation model for high-latitude Martian pedestal craters.

  6. Inorganic carbon in a high latitude estuary-fjord system in Canada's eastern Arctic (United States)

    Turk, D.; Bedard, J. M.; Burt, W. J.; Vagle, S.; Thomas, H.; Azetsu-Scott, K.; McGillis, W. R.; Iverson, S. J.; Wallace, D. W. R.


    Rapidly changing conditions in the Arctic can have a significant impact on biogeochemical cycles and can be particularly important in high latitude estuary-fjord systems with abundant and diverse freshwater sources. This study provides a first look into the inorganic carbon system and its relation to freshwater sources in Cumberland Sound in the east coast of Baffin Island, Nunavut, Canada. These data contribute to the very limited set of inorganic carbon measurements in high latitude estuary-fjord systems. During the ice-free conditions in August 2011, the meteoric freshwater fractions (MW) in the upper 40 m ranged from 11 to 21% and no sea ice melt (SIM) was present in the Sound. Surface waters were undersaturated with pCO2 (260 and 300 μatm), and DIC and TA ranged between 1779 and 1966 μmol DIC kg-1, and 1922 and 2140 μmol TA kg-1, respectively. Aragonite saturation (ΩAr) state ranged from 1.9 in the surface to 1.4 in the subsurface waters. Data show decreasing TA and ΩAr with increasing MW fraction and suggest that Cumberland Sound waters would become aragonite undersaturated (ΩAr melt. In August 2012, MW fractions at the surface were between 8 and 11.5%, and SIM between 7 and 23%. Significant interannual variability of summertime SIM could potentially result in ΩAr undersaturation.

  7. Response of High Latitude Coralline Algae to pCO2 and Thermal Stress (United States)

    Garlick-Ott, K.; Williams, B.; Chan, P. T. W.; Westfield, I. T.; Rasher, D.; Ries, J. B.; Adey, W.; Halfar, J.


    The impacts of recent and future anthropogenic increases in atmospheric pCO2 causing ocean acidification and temperature on high-latitude oceans, and the marine organisms that inhabit them, are varied and poorly understood. The ecologically important crustose coralline alga Clathromorphum compactum may be particularly vulnerable to ocean acidification due to the relatively high solubility of its high Mg-calcite skeleton . This species of coralline algae is abundant throughout coastal mid-to-high latitude areas of the northern hemisphere, and calcifies annually-banded skeletons with longevities of up to 650 years. Here we used micro-computed tomography (micro-CT) to evaluate the impact of decreasing seawater pH and increasing temperature on skeletal density of algal specimens cultured in a fully crossed pCO2 (280, 400, 700, 2800 µatm) and temperature (6.5, 8.7, 12.4 °C) laboratory experiment. To examine the natural variability in coralline algal skeletal density, additional long-lived wild C. compactum specimens were collected along a latitudinal transect extending from the Gulf of Maine to the Canadian Arctic Archipelago. Density time series generated from the wild specimens spans the past several decades to century, and were used to evaluate other environmental parameters that may influence the skeletal density of coralline algae. This research will evaluate the resiliency of this alga to future environmental change.

  8. Searches for Angular Extension in High Latitude Fermi-LAT Sources (United States)

    Caputo, Regina; di Mauro, Mattia; Meyer, Manuel; Wells, Brendan; Wood, Matthew; Fermi-LAT Collaboration


    We present a comprehensive search for angular extension in high-latitude gamma-ray sources detected by the Fermi Large Area Telescope (LAT) using the 4-year LAT Point Source Catalog (3FGL). The majority of high-latitude LAT sources are extragalactic blazars that appear point-like within the LAT angular resolution. However, there are physics scenarios that predict populations of spatially extended sources. In one scenario, electron-positron pair cascades from gamma rays produced in blazars are deflected in the Intergalactic Magnetic Field (IGMF) producing extended emission, or ``pair halos''. The detection of a pair halo component around a LAT-detected blazar would provide a measurement of the strength and coherence length scale of the IGMF. In another scenario, the annihilation or decay of Weakly Interacting Massive Particles, a candidate for dark matter (DM), in Milky Way subhalos would appear as a population of unassociated gamma-ray sources with an angular extension. The detection of spatial extension in nearby sub halos could provide compelling evidence for a DM interpretation and would serve as an independent cross-check against other DM searches. We report on the angular extension catalog based on 7.5 years of Pass 8 data and discuss the implications of these results.

  9. Geomagnetic secular variations of high-latitude glaciomarine sediments: data from the Kola Peninsula, northwestern Russia (United States)

    Bakhmutov, V.; Yevzerov, V.; Kolka, V.


    Geological, radiocarbon and paleomagnetic investigations of paleobays were carried out in the northwestern part of the Kola Peninsula (the Pechenga and Shuonijoki river valleys). The period from 10.3 to 9.5 kyear ago was characterized by the accumulation of glaciomarine sediments while the period 8.6-9.5 kyear was characterized by marine ones. Ca. 8.6 kyear marks the beginning of the formation of marine sediment transgression series. The clay sequences, accumulated in paleobays during a few hundred years, are an important object for studying the ancient geomagnetic field secular variations at high latitudes. Paleomagnetic signals in three outcrops from Pechenga river valley (69.5°N) record high-latitudinal inclination and declination variations in the time interval 8.5-10.0 kyear ago which correlate well with the secular variations of Early Holocene lacustrine deposits in the northern part of Ladoga Lake (61.5°N). A characteristic feature of the paleosecular variations at high latitudes is the proximity VGP to the observation point. Near to vertical inclination with declination variation amplitudes up to 150 took place ca. 9700-9500 year ago. The geomagnetic pole drifted south or crossed the Kola Peninsula at that time. The inclination and declination variations may be used in correlating the Early Holocene marine and lacustrine deposits in adjacent regions.

  10. Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. (United States)

    Clarke, Andrew; Crame, J Alistair


    Ecologists have long been fascinated by the flora and fauna of extreme environments. Physiological studies have revealed the extent to which lifestyle is constrained by low temperature but there is as yet no consensus on why the diversity of polar assemblages is so much lower than many tropical assemblages. The evolution of marine faunas at high latitudes has been influenced strongly by oceanic cooling during the Cenozoic and the associated onset of continental glaciations. Glaciation eradicated many shallow-water habitats, especially in the Southern Hemisphere, and the cooling has led to widespread extinction in some groups. While environmental conditions at glacial maxima would have been very different from those existing today, fossil evidence indicates that some lineages extend back well into the Cenozoic. Oscillations of the ice-sheet on Milankovitch frequencies will have periodically eradicated and exposed continental shelf habitat, and a full understanding of evolutionary dynamics at high latitude requires better knowledge of the links between the faunas of the shelf, slope and deep-sea. Molecular techniques to produce phylogenies, coupled with further palaeontological work to root these phylogenies in time, will be essential to further progress.

  11. High latitude cooling associated with landscape changes from North American boreal forest fires

    Directory of Open Access Journals (Sweden)

    B. M. Rogers


    Full Text Available Fires in the boreal forests of North America are generally stand-replacing, killing the majority of trees and initiating succession that may last over a century. Functional variation during succession can affect local surface energy budgets and, potentially, regional climate. Burn area across Alaska and Canada has increased in the last few decades and is projected to be substantially higher by the end of the 21st century because of a warmer climate with longer growing seasons. Here we simulated the changes in forest composition due to altered burn area using a stochastic model of fire occurrence, historical fire data from national inventories, and succession trajectories derived from remote sensing. When coupled to an Earth system model, younger vegetation from increased burning cooled the high-latitude atmosphere, primarily in the winter and spring, with noticeable feedbacks from the ocean and sea ice. Results from multiple scenarios suggest that a doubling of burn area would result in surface cooling of 0.23 ± 0.09 °C and 0.43 ± 0.12 °C for winter–spring and February–April time periods, respectively. This could provide a negative feedback to high-latitude terrestrial warming during winter on the order of 4–6% for a doubling, and 14–23% for a quadrupling, of burn area. Further work is needed to integrate all the climate drivers from boreal forest fires, including aerosols and greenhouse gasses.

  12. Hemispheric Asymmetry of Ionospheric Convection and Joule Heating and Its Impact on the Thermospher (United States)

    Lu, G.


    The Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure has proved to be a very useful tool to estimate the large-scale simultaneous distributions of ionospheric conductance, electric potential, and other related quantities by combining simultaneous measurements from satellites, radars, and ground magnetometers. In this paper we apply the AMIE procedure to compare the high-latitude ionospheric convection and Joule heating patterns between the northern and southern hemispheres and to investigate how the hemispheric asymmetry varies with different solar wind and IMF conditions. We also investigate the impact of the asymmetric high-latitude magnetospheric forcing on themospheric dynamics based on the coupled AMIE-TIMEGCM simulations as well as through intercomparison with observations.

  13. Ionospheric irregularities at Antarctic using GPS measurements

    Indian Academy of Sciences (India)

    Sunita Tiwari; Amit Jain; Shivalika Sarkar; Sudhir Jain; A K Gwal


    The purpose of this work is to study the behaviour of the ionospheric scintillation at high latitude during geomagnetically quiet and disturbed conditions which is one of the most relevant themes in the space weather studies. Scintillation is a major problem in navigation application using GPS and in satellite communication at high latitudes. Severe amplitude fading and strong scintillation affect the reliability of GPS navigational system and satellite communication. To study the effects of the ionospheric scintillations, GPS receiver installed at Antarctic station Maitri (Geog. 70.76°S; 11.74°E) was used. The data is collected by using GISTM 4004A, NOVATEL’S GPS receiver during March 2008. Studies show that percentage occurrence of phase scintillation is well correlated with geomagnetic activity during the observation period. The result also shows that very intense scintillations can degrade GPS based location determination due to loss of lock of satellites. These findings indicate that the dependence of scintillations and irregularity occurrence on geomagnetic activity is associated with the magnetic local time (MLT). Large number of patches are reported and their activity depends on the magnetic activity index.

  14. Dual-Spacecraft Observation of Density Features in the Near-Terminator Martian Ionosphere: Mars Express Ionospheric Sounding and MAVEN (United States)

    Morgan, D. D.; Gurnett, D. A.; Mahaffy, P. R.; Halekas, J. S.; Frahm, R. A.; Connerney, J. E. P.


    The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), on the Mars Express spacecraft, incorporates the Active Ionospheric Sounding (AIS) mode, which is used to sound the topside of the Martian ionosphere. This instrument has been used over the last ten years to identify and study a wide variety of ionospheric features. The advent of the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft, inserted into Mars orbit in September 2014, allows us to look at the ionosphere with two spacecraft. In this study, we find density features, primarily depressions with one apparent ionopause, identifiable within a few hours and a few tens of degrees in solar zenith angle in the MARSIS AIS and MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) data, and study them with a variety of instruments from both spacecraft. Most of the features identified occur in the vicinity of weak crustal magnetic fields and are slowly migrating toward higher solar zenith angles. During these events, MARSIS scalar magnetic fields are slightly elevated above the model crustal fields. Two of the three depressions are coincident with abrupt increases in the solar wind density, as measured by the MAVEN Solar Wind Ion Analyzer (SWIA), and with abrupt changes in the solar wind magnetic field clock angle, from MAVEN Magnetometer (MAG). We believe that both changes in the solar wind and proximity to crustal field anomalies are related to the existence of these dropouts.

  15. Distance to the High-Latitude Molecular Cloud MBM 37 (LDN 183) (United States)

    Boyle, Richard P.; Janusz, Robert; Straizys, Vytautas; Corbally, Christopher J.; Munari, Ulisse; Andersson, B.-G.; Zdanavicius, Justas; Maskoliunas, Marius; Kazlauskas, Algirdas


    The molecular cloud MBM 37 and the corresponding dust cloud LDN 183 belong to a group of high-latitude clouds near the Serpens Caput and Libra border at b = +36 deg. We determined the distance to this cloud applying the extinction Av vs. distance diagram based on two-dimensional photometric classification of about 800 stars down to V = 15 mag and about 200 stars down to V = 19 mag observed in the Vilnius seven-color system. Additionally, for the stars brighter than V = 12 mag MK types were determined spectroscopically. Distances for part of them, located nearer than 500 pc, were calculated from the Gaia parallaxes. The distance to MBM 37 is found to be at 90 pc placing it among the dust and molecular clouds closest to the Sun.

  16. Persistent retrograde flow structures at high latitudes - extent in depth and time (United States)

    Baldner, Charles; Bogart, Richard S.


    Medium resolution helioseismic studies of the near-surface layers of the Sun have revealed the existence of coherent retrograde flow structures that persist for multiple solar rotations (Bogart et al. 2015). Similar surface features have been detected and suggested to be related to giant cell convection (Hathaway et al. 2013). These structures seem to be confined to high latitudes (greater than 60°N/S) and are have magnitudes (relative to the mean solar flow) of less than 1 m s-1. In this work we extend our earlier analysis of these flow structures by studying their extent and structure in depth and their evolution in time. In particular, we attempt to determine the depth at which the anomalous flow structures are most significant, and to determine their migration relative to the Carrington coordinate frame.

  17. The structure of the high-latitude molecular cloud toward HD 210121 (United States)

    Gredel, Roland; van Dishoeck, Ewine F.; de Vries, Cor P.; Black, John H.


    Optical absorption line observations and millimeter emission of the high-latitude cloud toward the star HD 21021 are reported. The cloud was mapped with the ESO submillimeter telescope. Maps of (C-12)O and (C-13)O emission are presented and the line profiles and velocity structure of the cloud are discussed. The optical absorption line observations allow an independent determination of the H2 column density along the line of sight. The molecular column densities found in this cloud were consistent with those measured in diffuse and translucent clouds. Attention is given to the physical and chemical properties of the cloud with reference to chemical models. Analysis indicates that small fluctuations in H2 column density and other factors can produce large variations of CO abundance and column density in clouds where carbon is just being transformed into CO.

  18. Assessing recent trends in high-latitude Southern Hemisphere surface climate (United States)

    Jones, Julie M.; Gille, Sarah T.; Goosse, Hugues; Abram, Nerilie J.; Canziani, Pablo O.; Charman, Dan J.; Clem, Kyle R.; Crosta, Xavier; de Lavergne, Casimir; Eisenman, Ian; England, Matthew H.; Fogt, Ryan L.; Frankcombe, Leela M.; Marshall, Gareth J.; Masson-Delmotte, Valérie; Morrison, Adele K.; Orsi, Anaïs J.; Raphael, Marilyn N.; Renwick, James A.; Schneider, David P.; Simpkins, Graham R.; Steig, Eric J.; Stenni, Barbara; Swingedouw, Didier; Vance, Tessa R.


    Understanding the causes of recent climatic trends and variability in the high-latitude Southern Hemisphere is hampered by a short instrumental record. Here, we analyse recent atmosphere, surface ocean and sea-ice observations in this region and assess their trends in the context of palaeoclimate records and climate model simulations. Over the 36-year satellite era, significant linear trends in annual mean sea-ice extent, surface temperature and sea-level pressure are superimposed on large interannual to decadal variability. Most observed trends, however, are not unusual when compared with Antarctic palaeoclimate records of the past two centuries. With the exception of the positive trend in the Southern Annular Mode, climate model simulations that include anthropogenic forcing are not compatible with the observed trends. This suggests that natural variability overwhelms the forced response in the observations, but the models may not fully represent this natural variability or may overestimate the magnitude of the forced response.

  19. High-Latitude Molecular Clouds as (Gamma)-ray Sources for GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Torres, D F; Dame, T M; Digel, S W


    For about two decades, a population of relative small and nearby molecular clouds has been known to exist at high Galactic latitudes. Lying more than 10{sup o} from the Galactic plane, these clouds have typical distances of {approx}150 pc, angular sizes of {approx}1{sup o}, and masses of order tens of solar masses. These objects are passive sources of high-energy {gamma}-rays through cosmic ray-gas interactions. Using a new wide-angle CO survey of the northern sky, we show that typical high-latitude clouds are not bright enough in {gamma}-rays to have been detected by EGRET, but that of order 100 of them will be detectable by the Large Area Telescope (LAT) on GLAST. Thus, we predict a new steady population of {gamma}-ray sources at high Galactic latitudes, perhaps the most numerous after active galactic nuclei.

  20. Population dynamic of high latitude copepods - with emphasis on Metridia longa

    DEFF Research Database (Denmark)

    Kjellerup, Sanne


    High latitude ecosystems are shaped by seasonality in light, ranging from complete darkness in winter to midnight sun in summer, influencing both temperature and primary production. Copepods are important grazers on phytoplankton in marine systems and occupy a central role in the marine food......, sampling only the upper water column during the day-as is a usual procedure-would underestimate this potential key species. Reproduction patterns of the large calanoids suggested lifecycles adapted to the seasonal and episodic food availability, and consequently had a pulsed reproduction. In contrast......, small copepod species were less dependent on the spring phytoplankton bloom, and their reproduction and population dynamics were less pulsed. Likewise, a large proportion of Oithona similis was ovigerous from March to August. Reproduction of Microsetella norvegica, another of the small key species...

  1. Influences of basic flow on unstable excitation of intraseasonal oscillation in mid-high latitudes

    Institute of Scientific and Technical Information of China (English)

    李崇银; 曹文忠; 李桂龙


    The influences of basic flow fields on the unstable excitation of the intraseasonal atmosphericoscillation in the mid-high latitudes are studied by using a simple nonlinear dynamical model.The results showthat the westerly profile has an important effect on unstable modes in the atmosphere;the growth rates andspectrum distributions of the excited unstable modes are different for the different profiles.For the usualwesterly profile patterns in the real atmosphere,the most unstable mode is in the intraseasonal(30—60 d)frequency band.The local intensity and meridional gradient of the westerlies also clearly affect unstablemodes.The consistency of the results in observational data analyses with that in dynamical theory proved thecorrectness and rationalization of the above-mentioned results.

  2. Dinosaurs on the North Slope, Alaska: High latitude, latest cretaceous environments (United States)

    Brouwers, E.M.; Clemens, W.A.; Spicer, R.A.; Ager, T.A.; Carter, L.D.; Sliter, W.V.


    Abundant skeletal remains demonstrate that lambeosaurine hadrosaurid, tyrannosaurid, and troodontid dinosaurs lived on the Alaskan North Slope during late Campanian-early Maestrichtian time (about 66 to 76 million years ago) in a deltaic environment dominated by herbaceous vegetation. The high ground terrestrial plant community was a mild- to cold-temperate forest composed of coniferous and broad leaf trees. The high paleolatitude (about 70?? to 85?? North) implies extreme seasonal variation in solar insolation, temperature, and herbivore food supply. Great distances of migration to contemporaneous evergreen floras and the presence of both juvenile and adult hadrosaurs suggest that they remained at high latitudes year-round. This challenges the hypothesis that short-term periods of darkness and temperature decrease resulting from a bolide impact caused dinosaurian extinction.

  3. Impact of future Arctic shipping on high-latitude black carbon deposition (Invited) (United States)

    Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.


    The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources

  4. Winds in the high-latitude lower thermosphere: Dependence on the interplanetary magnetic field

    DEFF Research Database (Denmark)

    Richmond, A.D.; Lathuillere, C.; Vennerstrøm, Susanne


    [1] Wind observations in the summertime lower thermosphere at high southern latitudes, measured by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite, are statistically analyzed in magnetic coordinates and correlated with the interplanetary magnetic field (IMF......) to determine influences of IMF-dependent ionospheric convection on the winds. Effects are clearly detectable down to 105 km altitude. Above 125 km the wind patterns show considerable similarity with ionospheric convection patterns, and the speed of the averaged neutral wind in the polar cap often exceeds 300 m....../s. The correlation between the IMF B-z component and the diurnal harmonic of the winds is generally best when the IMF is averaged over the preceding 1-4.5 hours. The magnetic-zonal-mean zonal wind below 120 km correlates best with the IMF B-y component when the latter is averaged over approximately the preceding 20...

  5. ENSO response to high-latitude volcanic eruptions: the role of the initial conditions (United States)

    Pausata, Francesco S. R.; Caballero, Rodrigo; Battisti, David S.


    Large volcanic eruptions can have major impacts on global climate affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is around 2-3 years and attention has consequently focused on their short-term impacts, and in particular on tropical eruptions. The long-term, ocean-mediated response has been less studied and large uncertainties remain. Moreover, studies have largely focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts have been thought to be merely hemispheric rather than global and no study has hitherto investigated the long-term effects of such eruptions. Here we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere could cause an El Niño-like anomaly in the equatorial Pacific during the first 8-9 months after the start of the eruption owing to a strong hemispheric cooling. The hemispherically asymmetric cooling shifts the Inter-Tropical Convergence Zone southwards, triggering a weakening of the trade winds over the western and central equatorial Pacific that leads to an El Niño-like anomaly. However, the El Niño-like anomaly strongly depends on the initial ENSO state: a 3-time larger response is shown when the climate system is going towards a La Niña compared to when is going towards an El Niño. Finally, the eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first twenty-five years after the eruption, followed by a weakening lasting at least 35 years. The long-lived changes in the AMOC strength also alter the variability of El Niño-Southern Oscillation.

  6. Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon (United States)

    Evans, Chris D.; Page, Susan E.; Jones, Tim; Moore, Sam; Gauci, Vincent; Laiho, Raija; Hruška, Jakub; Allott, Tim E. H.; Billett, Michael F.; Tipping, Ed; Freeman, Chris; Garnett, Mark H.


    Carbon sequestration and storage in peatlands rely on consistently high water tables. Anthropogenic pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of peat-forming vegetation and exposure of previously anaerobic peat to aerobic decomposition. This can shift peatlands from net CO2 sinks to large CO2 sources, releasing carbon held for millennia. Peatlands also export significant quantities of carbon via fluvial pathways, mainly as dissolved organic carbon (DOC). We analyzed radiocarbon (14C) levels of DOC in drainage water from multiple peatlands in Europe and Southeast Asia, to infer differences in the age of carbon lost from intact and drained systems. In most cases, drainage led to increased release of older carbon from the peat profile but with marked differences related to peat type. Very low DOC-14C levels in runoff from drained tropical peatlands indicate loss of very old (centuries to millennia) stored peat carbon. High-latitude peatlands appear more resilient to drainage; 14C measurements from UK blanket bogs suggest that exported DOC remains young (hydraulic conductivity and temperature, as well as the extent of disturbance associated with drainage, notably land use changes in the tropics. Data from the UK Peak District, an area where air pollution and intensive land management have triggered Sphagnum loss and peat erosion, suggest that additional anthropogenic pressures may trigger fluvial loss of much older (>500 year) carbon in high-latitude systems. Rewetting at least partially offsets drainage effects on DOC age.

  7. Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.

    Directory of Open Access Journals (Sweden)

    A. Eisenhauer


    Full Text Available The accurate reconstruction of sea surface temperature (SST history in climate-sensitive regions (e.g. tropical and polar oceans became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin. highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin. is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5°C associated with salinities below 33.0 (±0.5‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin., becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.

  8. Design of ecoregional monitoring in conservation areas of high-latitude ecosystems under contemporary climate change (United States)

    Beever, Erik A.; Woodward, Andrea


    Land ownership in Alaska includes a mosaic of federally managed units. Within its agency’s context, each unit has its own management strategy, authority, and resources of conservation concern, many of which are migratory animals. Though some units are geographically isolated, many are nevertheless linked by paths of abiotic and biotic flows, such as rivers, air masses, flyways, and terrestrial and aquatic migration routes. Furthermore, individual land units exist within the context of a larger landscape pattern of shifting conditions, requiring managers to understand at larger spatial scales the status and trends in the synchrony and spatial concurrence of species and associated suitable habitats. Results of these changes will determine the ability of Alaska lands to continue to: provide habitat for local and migratory species; absorb species whose ranges are shifting northward; and experience mitigation or exacerbation of climate change through positive and negative atmospheric feedbacks. We discuss the geographic and statutory contexts that influence development of ecological monitoring; argue for the inclusion of significant amounts of broad-scale monitoring; discuss the importance of defining clear programmatic and monitoring objectives; and draw from lessons learned from existing long-term, broad-scale monitoring programs to apply to the specific contexts relevant to high-latitude protected areas such as those in Alaska. Such areas are distinguished by their: marked seasonality; relatively large magnitudes of contemporary change in climatic parameters; and relative inaccessibility due to broad spatial extent, very low (or zero) road density, and steep and glaciated areas. For ecological monitoring to effectively support management decisions in high-latitude areas such as Alaska, a monitoring program ideally would be structured to address the actual spatial and temporal scales of relevant processes, rather than the artificial boundaries of individual land

  9. Intraseasonal variability of air temperature over the mid-high latitude Eurasia in boreal winter (United States)

    Yang, Shuangyan; Li, Tim


    The intraseasonal oscillation (ISO) of air temperature over the mid- and high-latitude Eurasia in boreal winter was investigated by NCEP-NCAR reanalysis data. It is found that the intraseasonal temperature disturbances exhibit maximum variability near the surface in the region of 50°-75°N, 80°‒120°E and they propagate southeastwards at average zonal and meridional phase speeds of 3.2 and 2.5 m s-1, respectively. The low-level temperature signal is tightly coupled with upper-tropospheric height anomalies, and both propagate southeastward in a similar phase speed. A diagnosis of the temperature budget reveals that the southeastward propagation is primarily attributed to the advection of the temperature anomaly by the mean wind. A wave activity flux analysis indicates that the southeastward propagating wave train is likely a result of Rossby wave energy propagation. The source of the Rossby wave train appears at the high latitude Europe/Atlantic sector, where maximum wave activity flux convergence resides. During its southeastward journey, the ISO perturbation gains energy from the mean flow through both kinetic and potential energy conversions. A physics-based empirical model was constructed to predict the intraseasonal temperature anomaly over southeast China. The major predictability source is the southeastward-propagating ISO signal. The data for 1979‒2003 were used as a training period to construct the empirical model. A 10-yr (2004‒2013) independent forecast shows that the model attains a useful skill of up to 25 days.

  10. Long-Term High-Latitude Sea and Ice Surface Temperature Record from AVHRR GAC Data (United States)

    Luis, C. S.; Dybkjær, G.; Eastwood, S.; Tonboe, R. T.; Høyer, J. L.


    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 μm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  11. Holocene temperature evolution in the Northern Hemisphere high latitudes - Model-data comparisons (United States)

    Zhang, Yurui; Renssen, Hans; Seppä, Heikki; Valdes, Paul J.


    Heterogeneous Holocene climate evolutions in the Northern Hemisphere high latitudes are primarily determined by orbital-scale insolation variations and melting ice sheets. Previous inter-model comparisons have revealed that multi-simulation consistencies vary spatially. We, therefore, compared multiple model results with proxy-based reconstructions in Fennoscandia, Greenland, north Canada, Alaska and Siberia. Our model-data comparisons reveal that data and models generally agree in Fennoscandia, Greenland and Canada, with the early-Holocene warming and subsequent gradual decrease to 0 ka BP (hereinafter referred as ka). In Fennoscandia, simulations and pollen data suggest a 2 °C warming by 8 ka, but this is less expressed in chironomid data. In Canada, a strong early-Holocene warming is suggested by both the simulations and pollen results. In Greenland, the magnitude of early-Holocene warming ranges from 6 °C in simulations to 8 °C in δ18O-based temperatures. Simulated and reconstructed temperatures are mismatched in Alaska. Pollen data suggest strong early-Holocene warming, while the simulations indicate constant Holocene cooling, and chironomid data show a stable trend. Meanwhile, a high frequency of Alaskan peatland initiation before 9 ka can reflect a either high temperature, high soil moisture or large seasonality. In high-latitude Siberia, although simulations and proxy data depict high Holocene temperatures, these signals are noisy owing to a large spread in the simulations and between pollen and chironomid results. On the whole, the Holocene climate evolutions in most regions (Fennoscandia, Greenland and Canada) are well established and understood, but important questions regarding the Holocene temperature trend and mechanisms remain for Alaska and Siberia.

  12. Generation of the lower-thermospheric vertical wind estimated with the EISCAT KST radar at high latitudes during periods of moderate geomagnetic disturbance

    Directory of Open Access Journals (Sweden)

    S. Oyama


    Full Text Available Lower-thermospheric winds at high latitudes during moderately-disturbed geomagnetic conditions were studied using data obtained with the European Incoherent Scatter (EISCAT Kiruna-Sodankylä-Tromsø (KST ultrahigh frequency (UHF radar system on 9–10 September 2004. The antenna-beam configuration was newly designed to minimize the estimated measurement error of the vertical neutral-wind speed in the lower thermosphere. This method was also available to estimate the meridional and zonal components. The vertical neutral-wind speed at 109 km, 114 km, and 120 km heights showed large upward motions in excess of 30 m s−1 in association with an ionospheric heating event. Large downward speeds in excess of −30 m s−1 were also observed before and after the heating event. The meridional neutral-wind speed suddenly changed its direction from equatorward to poleward when the heating event began, and then returned equatorward coinciding with a decrease in the heating event. The magnetometer data from northern Scandinavia suggested that the center of the heated region was located about 80 km equatorward of Tromsø. The pressure gradient caused the lower-thermospheric wind to accelerate obliquely upward over Tromsø in the poleward direction. Acceleration of the neutral wind flowing on a vertically tilted isobar produced vertical wind speeds larger by more than two orders of magnitude than previously predicted, but still an order of magnitude smaller than observed speeds.

  13. Spectral characteristics of high-latitude raw 40 MHz cosmic noise signals (United States)

    Hall, Chris M.


    Cosmic noise at 40 MHz is measured at Ny-Ålesund (79° N, 12° E) using a relative ionospheric opacity meter ("riometer"). A riometer is normally used to determine the degree to which cosmic noise is absorbed by the intervening ionosphere, giving an indication of ionisation of the atmosphere at altitudes lower than generally monitored by other instruments. The usual course is to determine a "quiet-day" variation, this representing the galactic noise signal itself in the absence of absorption; the current signal is then subtracted from this to arrive at absorption expressed in decibels (dB). By a variety of means and assumptions, it is thereafter possible to estimate electron density profiles in the very lowest reaches of the ionosphere. Here however, the entire signal, i.e. including the cosmic noise itself, will be examined and spectral characteristics identified. It will be seen that distinct spectral subranges are evident which can, in turn, be identified with non-Gaussian processes characterised by generalised Hurst exponents, α. Considering all periods greater than 1 h, α ≈ 24, an indication of fractional Brownian motion, whereas for periods greater than 1 day α ≈ 0.9 - approximately pink noise and just in the domain of fractional Gaussian noise. The results are compared with other physical processes, suggesting that absorption of cosmic noise is characterised by a generalised Hurst exponent ≈ 1.24 and thus non-persistent fractional Brownian motion, whereas generation of cosmic noise is characterised by a generalised Hurst exponent ≈ 1. The technique unfortunately did not result in clear physical understanding of the ionospheric phenomena, and thus, in this respect, the application was not successful; the analysis could, however, be used as a tool for instrument validation.

  14. Martian ionosphere response to solar wind variability during solar minimum (United States)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Mays, M. Leila; Hall, Benjamin E. S.; Milan, Stephen E.; Cartacci, Marco; Blelly, Pierre-Louis; Andrews, David; Opgenoorth, Hermann; Odstrcil, Dusan


    Solar cycle variations in solar radiation create notable density changes in the Martian ionosphere. In addition to this long-term variability, there are numerous short-term and non-recurrent solar events that hit Mars which need to be considered, such as Interplanetary Coronal Mass Ejections (ICMEs), Co-Rotation Interaction Regions (CIRs), solar flares, or solar wind high speed streams. The response of the Martian plasma system to each of these events is often unusual, especially during the long period of extreme low solar activity in 2008 and 2009. This work shows the long-term solar cycle impact on the ionosphere of Mars using data from The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), and The Analyzer of Space Plasma and Energetic Atoms (ASPERA-3), and with empirical and numerical models on Mars Express. Particular attention is given to the different ionospheric responses observed during the last, extended solar minimum. Mars' ionospheric response followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to the inner-origin of the magnetic field of both planets. The ionospheric temperature was cooler, the topside scale height was smaller and almost constant with altitude, the secondary ionospheric layer practically disappeared and the whole atmospheric total electron content (TEC) suffered an extreme reduction of about 30-40%, not predicted before by models. Moreover, there is a larger probability for the induced magnetic field to be present in the ionosphere, than in other phases of the solar cycle. The short-term variability is also addressed with the study of an ICME followed by a fast stream that hit Mars in March 2008, where solar wind data are provided by ACE and STEREO-B and supported by simulations using the WSA-ENLIL Model. The solar wind conditions lead to the formation of a CIR centred on the interface of the fast and the slow solar wind streams. Mars' system reacted to

  15. Localized auroral disturbance in the morning sector of topside ionosphere as a standing electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Dubinin, E.M.; Israelevich, P.L.; Nikolaeva, N.S.; Podgornyi, I.M.; Kutiev, I.


    The fine structure and plasma properties of an auroral disturbance observed with the Intercosmos-Bulgaria-1300 satellite are analyzed. The disturbance was detected in the morning sector of the sky at an altitude of about 850 km in December of 1981. Strong jumps (about 80 mV/m) in the electric and magnetic fields and fluctuations of ion density were detected within the disturbance. The electric and magnetic fields were characterized by a distinct spatial-temporal relationship typical for a standing quasi-monochromatic wave with a frequency of 1 Hz. The ratio of the amplitudes of electric and magnetic fluctuations was equal to the velocity of Alfven waves. The strong parallel component of the electric field (about 30 mV/m) and the large ion density of the fluctuations indicate changes in the plasma properties of the disturbance. The possibility of anomalous resistivity effects in the disturbance is also briefly considered. 23 references.

  16. Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vago, J.L.


    Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O(+) source region below 2000 km. In this thesis, the author demonstrates that intense (100-300 mV/m) lower hybrid waves are responsible for transversely accelerating H(+) and O(+) ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements discussed were conducted in the nightside auroral zone at altitudes between 500 km and 1100 km. The results are consistent with theories of lower hybrid wave condensation and collapse.

  17. Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vago, J.L.; Kintner, P.M.; Chesney, S.W.; Arnoldy, R.L.; Lynch, K.A.; Moore, T.E.; Pollock, C.J. (Cornell Univ., Ithaca, NY (United States) New Hampshire Univ., Durham (United States) NASA, Marshall Space Flight Center, Huntsville, AL (United States))


    Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O(+) source region below 2000 km. In this paper we demonstrate that intense (100-300 mV/m) lower hybrid waves are responsible for transversely accelerating H(+) and O(+) ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements we discuss were conducted in the nightside auroral zone at latitudes between 500 km and 1100 km. Our results are consistent with theories of lower hybrid wave condensation and collapse. 50 refs.

  18. Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere (United States)

    Vago, J. L.; Kintner, P. M.; Chesney, S. W.; Arnoldy, R. L.; Lynch, K. A.; Moore, T. E.; Pollock, C. J.


    Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O(+) source region below 2000 km. In this paper we demonstrate that intense (100-300 mV/m) lower hybrid waves are responsible for transversely accelerating H(+) and O(+) ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements we discuss were conducted in the nightside auroral zone at latitudes between 500 km and 1100 km. Our results are consistent with theories of lower hybrid wave condensation and collapse.

  19. The multi-instrumental radio diagnostics of the ionosphere for Space Weather Program (United States)

    Krankowski, Andrzej; Rothkaehl, Hanna; Pulinets, Sergey; Cherniak, Iurii; Zakharenkova, Irina


    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help to solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. Each site will host one LOFAR station (96 high-band+96 low-band antennas). The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. In addition to the in-situ space plasma measurements the topside sounders will be installed onboard the "Ionosphere" spacecrafts to retrieve the vertical distribution of electron concentration in the topside ionosphere. The first two satellites are scheduled for launch at the first half of 2016. These two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. In order to improve and validate the large scale and small scale ionospheric structures we will also use the GPS observations collected at IGS/EPN: global and regional TEC maps created with high special and temporal resolution, ROTI maps over the Northern Hemisphere and the data retrieved from

  20. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    Energy Technology Data Exchange (ETDEWEB)

    Kong, D. F.; Qu, Z. N. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Guo, Q. L., E-mail: [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)


    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.

  1. GNSS monitoring of the ionosphere for Space Weather services (United States)

    Krankowski, A.; Sieradzki, R.; Zakharenkova, I. E.; Cherniak, I. V.


    The International GNSS Service (IGS) Ionosphere Working Group routinely provides the users global ionosphere maps (GIMs) of vertical total electron content (vTEC). The IGS GIMs are provided with spatial resolution of 5.0 degrees x 2.5 degrees in longitude and latitude, respectively. The current temporal resolution is 2 hours, however, 1-hour maps are delivered as a pilot project. There are three types IGS GIMs: the final, rapid and predicted. The latencies of the IGS ionospheric final and rapid products are 10 days and 1 day, respectively. The predicted GIMs are generated for 1 and 2 days in advance. There are four IGS Associate Analysis Centres (IAACs) that provide ionosphere maps computed with independent methodologies using GNSS data. These maps are uploaded to the IGS Ionosphere Combination and Validation Center at the GRL/UWM (Geodynamics Research Laboratory of the University of Warmia and Mazury in Olsztyn, Poland) that produces the IGS official ionospheric products, which are published online via ftp and www. On the other hand, the increasing number of permanently tracking GNSS stations near the North Geomagnetic Pole allow for using satellite observations to detect the ionospheric disturbances at high latitudes with even higher spatial resolution. In the space weather service developed at GRL/UWM, the data from the Arctic stations belonging to IGS/EPN/POLENET networks were used to study TEC fluctuations and scintillations. Since the beginning of 2011, a near real-time service presenting the conditions in the ionosphere have been operational at GRL/UWM www site. The rate of TEC index (ROTI) expressed in TECU/min is used as a measure of TEC fluctuations. The service provides 2-hour maps of the TEC variability. In addition, for each day the daily map of the ionospheric fluctuations as a function geomagnetic local time is also created. This presentation shows the architecture, algorithms, performance and future developments of the IGS GIMs and this new space

  2. Positive ionospheric storm effects at Latin America longitude during the superstorm of 20–22 November 2003: revisit

    Directory of Open Access Journals (Sweden)

    B. Zhao


    Full Text Available Positive ionospheric storm effects that occurred during the superstorm on 20 November 2003 are investigated using a combination of ground-based Global Positioning System (GPS total electron content (TEC, and the meridian chain of ionosondes distributed along the Latin America longitude of ~280° E. Both the ground-based GPS TEC and ionosonde electron density profile data reveal significant enhancements at mid-low latitudes over the 280° E region during the main phase of the November 2003 superstorm. The maximum enhancement of the topside ionospheric electron content is 3.2–7.7 times of the bottomside ionosphere at the locations of the ionosondes distributed around the mid- and low latitudes. Moreover, the height of maximum electron density exceeds 400 km and increases by 100 km compared with the quiet day over the South American area from middle to low latitudes, which might have resulted from a continuous eastward penetration electric field and storm-generated equatorward winds. Our results do not support the conclusions of Yizengaw et al. (2006, who suggested that the observed positive storm over the South American sector was mainly the consequence of the changes of the bottomside ionosphere. The so-called "unusual" responses of the topside ionosphere for the November 2003 storm in Yizengaw et al. (2006 are likely associated with the erroneous usage of magnetometer and incomplete data.

  3. Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy input: OpenGGCM-CTIM results (United States)

    Connor, Hyunju Kim; Zesta, Eftyhia; Fedrizzi, Mariangel; Shi, Yong; Raeder, Joachim; Codrescu, Mihail V.; Fuller-Rowell, Tim J.


    The magnetosphere is a major source of energy for the Earth's ionosphere and thermosphere (IT) system. Current IT models drive the upper atmosphere using empirically calculated magnetospheric energy input. Thus, they do not sufficiently capture the storm-time dynamics, particularly at high latitudes. To improve the prediction capability of IT models, a physics-based magnetospheric input is necessary. Here, we use the Open Global General Circulation Model (OpenGGCM) coupled with the Coupled Thermosphere Ionosphere Model (CTIM). OpenGGCM calculates a three-dimensional global magnetosphere and a two-dimensional high-latitude ionosphere by solving resistive magnetohydrodynamic (MHD) equations with solar wind input. CTIM calculates a global thermosphere and a high-latitude ionosphere in three dimensions using realistic magnetospheric inputs from the OpenGGCM. We investigate whether the coupled model improves the storm-time IT responses by simulating a geomagnetic storm that is preceded by a strong solar wind pressure front on August 24, 2005. We compare the OpenGGCM-CTIM results with low-earth-orbit satellite observations and with the model results of Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe). CTIPe is an up-to-date version of CTIM that incorporates more IT dynamics such as a low-latitude ionosphere and a plasmasphere, but uses empirical magnetospheric input. OpenGGCM-CTIM reproduces localized neutral density peaks at ~ 400 km altitude in the high-latitude dayside regions in agreement with in situ observations during the pressure shock and the early phase of the storm. Although CTIPe is in some sense a much superior model than CTIM, it misses these localized enhancements. Unlike the CTIPe empirical input models, OpenGGCM-CTIM more faithfully produces localized increases of both auroral precipitation and ionospheric electric fields near the high-latitude dayside region after the pressure shock and after the storm onset, which in turn

  4. Clumped isotope thermometry of modern and early Cretaceous molluscan carbonate from high-latitude seas (Invited) (United States)

    Henkes, G. A.; Price, G. D.; Ambrose, W. G.; Carroll, M. L.; Passey, B. H.


    The carbonate clumped isotope thermometer is based on the temperature sensitivity of the relative abundance of carbonate ion groups containing 13C-18O bonds. One application of clumped isotope thermometry is to determine the temperature of ancient seawater from the skeletal material of calcium carbonate-secreting marine organisms. The relationship between Δ47, a parameter describing isotopic clumping, and the temperature of carbonate biomineralization has been well-defined for fish otoliths, corals, foraminifera, and coccolithophore tests, but few data have been published for brachiopods and bivalve mollusks. A comprehensive evaluation of the Δ47-temperature relationship for mollusks is required for paleotemperature interpretations from the marine fossil record. Here we present a more comprehensive calibration for modern mollusks, including bivalves, cephalopods, and gastropods. Further, we focus on a subset of cold water, high-latitude species collected in the northern Barents Sea. The observed Δ47-temperature relationship is similar to the theoretical relationship presented by Guo et al. (2009) but deviates at low temperatures from the original Ghosh et al. (2007) calibration curve. This divergence could be related to methodological differences or unaccounted differences in the biomineralization of mollusks versus that of other carbonate-secreting organisms at low temperature. One advantage of clumped isotope thermometry over traditional oxygen isotope thermometry is that it does not require assumptions about the isotopic composition of the water in which the carbonate formed. This may be particularly useful in Mesozoic paleoceanography where the oxygen isotope value of seawater is uncertain. Using clumped isotope thermometry applied to early Cretaceous (Valangian) belemnite carbonate from the Yatria River, sub-polar Urals, Siberia, we find shell growth temperatures of 20-26°C at a paleolatitude of ~60-65°N. Our data imply average seawater δ18O values of 0

  5. The Ionosphere Real-Time Assimilative Model, IRTAM - A Status Report (United States)

    Reinisch, Bodo; Galkin, Ivan; Huang, Xueqin; Vesnin, Artem; Bilitza, Dieter


    Ionospheric models are generally unable to correctly predict the effects of space weather events on the ionosphere. Taking advantage of today's real-time availability of measured electron density profiles of the bottomside ionosphere, we have developed a technique "IRTAM" to specify real-time foF2 and hmF2 global maps. The measured data arrive at the Lowell GIRO Data Center (LGDC) from some ~70 ionosonde stations of the Global Ionosphere Radio Observatory (GIRO) [Reinisch and Galkin, 2011], usually at a 15 min cadence, and are ingested in LGDC's databases ( We use the International Reference Ionosphere (IRI) electron density model [Bilitza et al., 2011] as the background model. It is an empirical monthly median model that critically depends on the correct values of the F2 layer peak height hmF2 and density NmF2 (or critical frequency foF2). The IRI model uses the so-called CCIR (or URSI) coefficients for the specification of the median foF2 and hmF2 maps. IRTAM assimilates the measured GIRO data in IRI by "adjusting" the CCIR coefficients on-the-fly. The updated maps of foF2 and hmF2 for the last 24 hours before now-time are continuously displayed on [Galkin et al., 2012]. The "adjusted" bottomside profiles can be extended to the topside by using the new Vary-Chap topside profile model [Nsumei et al., 2012] which extends the profile from hmF2 to the plasmasphere. References Bilitza D., L.-A. McKinnell, B. Reinisch, and T. Fuller-Rowell (2011), The International Reference Ionosphere (IRI) today and in the future, J. Geodesy, 85:909-920, DOI 10.1007/s00190-010-0427-x Galkin, I. A., B. W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Sci., 47, RS0L07, doi:10.1029/2011RS004952. Nsumei, P., B. W. Reinisch, X. Huang, and D. Bilitza (2012), New Vary-Chap profile of the topside ionosphere electron density distribution for use with the IRI Model and the GIRO real time

  6. High-Latitude Magnetic Reconnection in Sub-Alfvenic Flow as Observed by Interball Tail on 29 May 1996 (United States)

    Smirnov, V. N.; Avanov, L. A.; Waite, J.; Fuselier, S.; Vaisberg, O. L.; Six, N. Frank (Technical Monitor)


    The Interball/Tail spacecraft crossed the high latitude magnetopause near the cusp region under stable northward IMF conditions on 29 May 1996, with magnetic local time and magnetic latitude approx. 7.3 hours, approx. 65.4 degrees, respectively. The Interball Tail spacecraft observed quasi-steady reconnection and a relatively stable reconnection site at high latitudes. Observed sunward plasma flow and tangential stress balance indicated that reconnection occurred poleward of the magnetic cusp, above the spacecraft location. The spacecraft observed sub-alfvenic flow in the magnetosheath region adjacent to the magnetopause current layer near the reconnection site indicating that the reconnection site may have moved in the sunward direction. These observations suggest that the region of sub-alfvenic flow and stable, quasi-steady reconnection extend to very high latitudes under northward IMF conditions which is not consistent with the gas dynamic model predictions.

  7. Coverage, Diversity, and Functionality of a High-Latitude Coral Community (Tatsukushi, Shikoku Island, Japan) (United States)

    Denis, Vianney; Mezaki, Takuma; Tanaka, Kouki; Kuo, Chao-Yang; De Palmas, Stéphane; Keshavmurthy, Shashank; Chen, Chaolun Allen


    Background Seawater temperature is the main factor restricting shallow-water zooxanthellate coral reefs to low latitudes. As temperatures increase, coral species and perhaps reefs may move into higher-latitude waters, increasing the chances of coral reef ecosystems surviving despite global warming. However, there is a growing need to understand the structure of these high-latitude coral communities in order to analyze their future dynamics and to detect any potential changes. Methodology/Principal Findings The high-latitude (32.75°N) community surveyed was located at Tatsukushi, Shikoku Island, Japan. Coral cover was 60±2% and was composed of 73 scleractinian species partitioned into 7 functional groups. Although only 6% of species belonged to the ‘plate-like’ functional group, it was the major contributor to species coverage. This was explained by the dominance of plate-like species such as Acropora hyacinthus and A. solitaryensis. Comparison with historical data suggests a relatively recent colonization/development of A. hyacinthus in this region and a potential increase in coral diversity over the last century. Low coverage of macroalgae (2% of the benthic cover) contrasted with the low abundance of herbivorous fishes, but may be reasonably explained by the high density of sea urchins (12.9±3.3 individuals m−2). Conclusions/Significance The structure and composition of this benthic community are relatively remarkable for a site where winter temperature can durably fall below the accepted limit for coral reef development. Despite limited functionalities and functional redundancy, the current benthic structure might provide a base upon which a reef could eventually develop, as characterized by opportunistic and pioneer frame-building species. In addition to increasing seawater temperatures, on-going management actions and sea urchin density might also explain the observed state of this community. A focus on such ‘marginal’ communities should be a

  8. Seasonal and diurnal variability of the meteor flux at high latitudes observed using PFISR (United States)

    Sparks, J. J.; Janches, D.; Nicolls, M. J.; Heinselman, C. J.


    We report in this and a companion paper [Fentzke, J.T., Janches, D., Sparks, J.J., 2008. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.015] a complete seasonal study of the micrometeor input function (MIF) at high latitudes using meteor head-echo radar observations performed with the Poker Flat Incoherent Scatter Radar (PFISR). This flux is responsible for a number of atmospheric phenomena; for example, it could be the source of meteoric smoke that is thought to act as condensation nuclei in the formation of ice particles in the polar mesosphere. The observations presented here were performed for full 24-h periods near the summer and winter solstices and spring and autumn equinoxes, times at which the seasonal variability of the MIF is predicted to be large at high latitudes [Janches, D., Heinselman, C.J., Chau, J.L., Chandran, A., Woodman, R., 2006. Modeling of the micrometeor input function in the upper atmosphere observed by High Power and Large Aperture Radars, JGR, 11, A07317, doi:10.1029/2006JA011628]. Precise altitude and radar instantaneous line-of-sight (radial) Doppler velocity information are obtained for each of the hundreds of events detected every day. We show that meteor rates, altitude, and radial velocity distributions have a large seasonal dependence. This seasonal variability can be explained by a change in the relative location of the meteoroid sources with respect to the observer. Our results show that the meteor flux into the upper atmosphere is strongly anisotropic and its characteristics must be accounted for when including this flux into models attempting to explain related aeronomical phenomena. In addition, the measured acceleration and received signal strength distribution do not seem to depend on season; which may suggest that these observed

  9. Mudstone sedimentation at high latitudes: Ice as a transport medium for mud and supplier of nutrients (United States)

    Macquaker, J.H.S.; Keller, M.A.


    Controls on mudstone deposition at high latitudes are poorly known relative to low latitudes. In recent sediments deposited in these environments, ice significantly influences sediment transport and primary productivity. The products of ice transport are relatively well known in glacimarine settings, but are less well known from below melting sea ice. This latter setting is significant as today it is associated with high primary organic productivity. The aim of this study is to assess how sea ice might have controlled lithofacies variability and organic-matter distribution and preservation in an ancient marine, siliciclastic mudstone-dominated succession deposited at high latitudes. Combined sedimentary logging, optical and electron optical (back-scatte red electron imagery), geochemical, and isotopic methods were used to determine sample variability in forty-five samples collected from the Lower Cretaceous succession in the Mikkelsen Bay State #1 borehole (North Slope, Alaska). The succession overall fines upward and contains muddy sandstones and sand- and silt-bearing, clay-rich mudstones towards its base in contrast to clay-rich and clay-dominated mudstones towards its top. Some of the mudstone units exhibit thin (pelleted. These mudstones are unusual in that they contain minor but very striking outsize grains, composed of subrounded to rounded sand and granule-size material. In addition, they are good petroleum source rocks, with between 2.8 and 5.9 wt % total organic carbon, of predominantly Type II kerogen. The organic matter has an isotopic signature ranging from -25.4??? ??13C to -28.1??? ??13C. Thin tuffs (pelleted the sediment. Bioturbation, which varies through the succession, indicates that sedimentation probably occurred beneath a predominantly oxic or dysoxic water column. In this setting productivity was fueled by nutrients released from melting sea ice in the marginal ice zone. The good petroleum source potential of these mudstones is attributed to

  10. Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica.

    Directory of Open Access Journals (Sweden)

    Vonda Cummings

    Full Text Available Ocean acidification is a well recognised threat to marine ecosystems. High latitude regions are predicted to be particularly affected due to cold waters and naturally low carbonate saturation levels. This is of concern for organisms utilising calcium carbonate (CaCO(3 to generate shells or skeletons. Studies of potential effects of future levels of pCO(2 on high latitude calcifiers are at present limited, and there is little understanding of their potential to acclimate to these changes. We describe a laboratory experiment to compare physiological and metabolic responses of a key benthic bivalve, Laternula elliptica, at pCO(2 levels of their natural environment (430 µatm, pH 7.99; based on field measurements with those predicted for 2100 (735 µatm, pH 7.78 and glacial levels (187 µatm, pH 8.32. Adult L. elliptica basal metabolism (oxygen consumption rates and heat shock protein HSP70 gene expression levels increased in response both to lowering and elevation of pH. Expression of chitin synthase (CHS, a key enzyme involved in synthesis of bivalve shells, was significantly up-regulated in individuals at pH 7.78, indicating L. elliptica were working harder to calcify in seawater undersaturated in aragonite (Ω(Ar = 0.71, the CaCO(3 polymorph of which their shells are comprised. The different response variables were influenced by pH in differing ways, highlighting the importance of assessing a variety of factors to determine the likely impact of pH change. In combination, the results indicate a negative effect of ocean acidification on whole-organism functioning of L. elliptica over relatively short terms (weeks-months that may be energetically difficult to maintain over longer time periods. Importantly, however, the observed changes in L. elliptica CHS gene expression provides evidence for biological control over the shell formation process, which may enable some degree of adaptation or acclimation to future ocean acidification scenarios.

  11. Early Cretaceous vegetation and climate change at high latitude: palynological evidence from Isachsen Formation, Arctic Canada (United States)

    Galloway, Jennifer M.; Tullius, Dylan N.; Evenchick, Carol A.; Swindles, Graeme T.; Hadlari, Thomas; Embry, Ashton


    expansion of mixed lowland communities. Our paleoclimate inferences for this Canadian high latitude region are consistent with reconstructions from lower latitudes, suggesting at least hemispherical expression of Valanginian cooling and a subsequent warming event in the Hauterivian that influenced polar vegetation. This work demonstrates the utility of a multivariate statistical approach to palynology to provide insight into the composition and dynamics of ecosystems and climate of high latitude regions during the Early Cretaceous.

  12. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef. (United States)

    Bridge, Tom C L; Ferrari, Renata; Bryson, Mitch; Hovey, Renae; Figueira, Will F; Williams, Stefan B; Pizarro, Oscar; Harborne, Alastair R; Byrne, Maria


    High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2) plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  13. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef.

    Directory of Open Access Journals (Sweden)

    Tom C L Bridge

    Full Text Available High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2 plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  14. Day-to-day variability of midlatitude ionospheric currents due to magnetospheric and lower atmospheric forcing (United States)

    Yamazaki, Y.; Häusler, K.; Wild, J. A.


    As known from previous studies on the solar quiet (Sq) variation of the geomagnetic field, the strength and pattern of ionospheric dynamo currents change significantly from day to day. The present study investigates the relative importance of two sources that contribute to the day-to-day variability of the ionospheric currents at middle and low latitudes. One is high-latitude electric fields that are caused by magnetospheric convection, and the other is atmospheric waves from the lower atmosphere. Global ionospheric current systems, commonly known as Sq current systems, are simulated using the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model. Simulations are run for 1-30 April 2010 with a constant solar energy input but with various combinations of high-latitude forcing and lower atmospheric forcing. The model well reproduces geomagnetic perturbations on the ground, when both forcings are taken into account. The contribution of high-latitude forcing to the total Sq current intensity (Jtotal) is generally smaller than the contribution of wave forcing from below 30 km, except during active periods (Kp≥4), when Jtotal is enhanced due to the leakage of high-latitude electric fields to lower latitudes. It is found that the penetration electric field drives ionospheric currents at middle and low latitudes not only on the dayside but also on the nightside, which has an appreciable effect on the Dst index. It is also found that quiet time day-to-day variability in Jtotal is dominated by symmetric-mode migrating diurnal and semidiurnal tidal winds at 45-60° latitude at ˜110 km.

  15. Dayside magnetic ULF power at high latitudes: A possible long-term proxy for the solar wind velocity?

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne


    We examine the occurrence of dayside high-latitude magnetic variations with periods between 2 and 10 min statistically using data from around 20 magnetic stations in Greenland, Scandinavia, and Canada, many of which have been in operation for a full solar cycle. We derive time series of the power...... in the 5-10 min band for the auroral stations. We find the results encouraging for the use of dayside spectral band power at high-latitude stations as a tool for investigating past solar wind variations....

  16. Preface: The International Reference Ionosphere (IRI) at equatorial latitudes (United States)

    Reinisch, Bodo; Bilitza, Dieter


    This issue of Advances in Space Research includes papers that report and discuss improvements of the International Reference Ionosphere (IRI). IRI is the international standard for the representation of the plasma in Earth's ionosphere and recognized as such by the Committee on Space Research (COSPAR), the International Union of Radio Science (URSI), the International Telecommunication Union (ITU), and the International Standardization Organization (ISO). As requested, particularly by COSPAR and URSI, IRI is an empirical model relying on most of the available and reliable ground and space observations of the ionosphere. As new data become available and as older data sources are fully exploited the IRI model undergoes improvement cycles to stay as close to the existing data record as possible. The latest episode of this process is documented in the papers included in this issue using data from the worldwide network of ionosondes, from a few of the incoherent scatter radars, from the Alouette and ISIS topside sounders, and from the Global Navigation Satellite Systems (GNSS). The focus of this issue is on the equatorial and low latitude region that is of special importance for ionospheric physics because it includes the largest densities and steep density gradients in the double hump latitudinal structure, the Equatorial Ionization Anomaly (EIA), which is characteristic for this region.

  17. Interpretation of ionospheric F-region structures in the vicinity of ionisation troughs observed by satellite radio tomography

    Directory of Open Access Journals (Sweden)

    G. A. Aladjev

    Full Text Available Tomographic images of the spatial distribution of electron density in the ionospheric F-region are presented from the Russian-American Tomography Experiment (RATE in November 1993 as well as from campaigns carried out in northern Scandinavia in November 1995 and in Russia in April 1990. The reconstructions selected display the ionisation troughs above the tomographic chains of receivers during geomagnetically quiet and disturbed periods. Two mathematical models of the high-latitude ionosphere developed in the Polar Geophysical Institute have been applied for interpretation of the observed tomographic images.

    Key words. Ionosphere (electric fields and currents; ion chemistry and composition; plasma convection

  18. The mid-high latitude whistler mode chorus waves observed around substorm onsets

    Institute of Scientific and Technical Information of China (English)

    YANG JunYing; CAO JinBin; YAN ChunXiao; LI LiuYuan; MA YuDuan


    Using the data of LFEW/TC-2, we studied the dawn side chorus around substorm onsets during a strong geomagnetic storm in November 2004. During this storm, LFEW/TC-2 observed 14 dawnside chorus events. Nine of them were associated with substorms and occurred within 40 min around the substorm onsets. The fre-quencies of waves have a very good correlation with the half equatorial electron cyclotron frequencies. Chorus can be excited in the region near magnetic equato-rial plane and then propagate to the mid and high latitudes. When the wave fre-quencies reach the local lower hybrid frequencies, chorus can be reflected due to the lower hybrid resonance. The time delay between the chorus and its echo is about 28 min. Previous observations show that the chorus can propagate at most to the magnetic latitudes of 40°. LFEW/TC-2 found for the first time that the chorus in space could propagate to the magnetic latitude of 70°. Since most of the previous chorus observatlons are made close to the magnetic equatorial plane, our results are Important for the studies of excitation and propagation of whistler mode wave, and relevant relativistic electron acceleration in the magnetosphere.

  19. The geomagnetic cutoff rigidities at high latitudes for different solar wind and geomagnetic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W. [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Space Weather; Univ. of Chinese Academy of Sciences, Beijing (China). College of Earth Sciences; Qin, G. [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Space Weather


    Studying the access of the cosmic rays (CRs) into the magnetosphere is important to understand the coupling between the magnetosphere and the solar wind. In this paper we numerically studied CRs' magnetospheric access with vertical geomagnetic cutoff rigidities using the method proposed by Smart and Shea (1999). By the study of CRs' vertical geomagnetic cutoff rigidities at high latitudes we obtain the CRs' window (CRW) whose boundary is determined when the vertical geomagnetic cutoff rigidities drop to a value lower than a threshold value. Furthermore, we studied the area of CRWs and found out they are sensitive to different parameters, such as the z component of interplanetary magnetic field (IMF), the solar wind dynamic pressure, AE index, and Dst index. It was found that both the AE index and Dst index have a strong correlation with the area of CRWs during strong geomagnetic storms. However, during the medium storms, only AE index has a strong correlation with the area of CRWs, while Dst index has a much weaker correlation with the area of CRWs. This result on the CRW can be used for forecasting the variation of the cosmic rays during the geomagnetic storms.

  20. Dust in High Latitudes in the Community Earth System Model since the Last Glacial Maximum (United States)

    Albani, S.; Mahowald, N. M.


    Earth System Models are one of the main tools in modern climate research, and they provide the means to produce future climate projections. Modeling experiments of past climates is one of the pillars of the Coupled Modelling Inter-comparison Project (CMIP) / Paleoclimate Modelling Inter-comparison Project (PMIP) general strategy, aimed at understanding the climate sensitivity to varying forcings. Physical models are useful tools for studying dust transport patterns, as they allow representing the full dust cycle from sources to sinks with an internally consistent approach. Combining information from paleodust records and climate models in coherent studies can be a fruitful approach from different points of view. Based on a new quality-controlled, size- and temporally-resolved data compilation, we used the Community Earth System Model to estimate the mass balance of and variability in the global dust cycle since the Last Glacial Maximum and throughout the Holocene. We analyze the variability of the reconstructed global dust cycle at different climate equilibrium conditions since the LGM until the pre-industrial climate, and compare with palodust records, focusing on the high latitudes, and discuss the uncertainties and the implications for dust and iron deposition to the oceans.

  1. Mountain birch – potentially large source of sesquiterpenes into high latitude atmosphere

    Directory of Open Access Journals (Sweden)

    S. Haapanala


    Full Text Available Emissions of volatile organic compounds (VOCs from mountain birches were measured in Abisko, northern Sweden. Mountain birches make up majority of the tree biomass in Scandinavian high latitudes, area subject to significant climate warming. The measurements were carried out in two growing seasons. The emissions of a branch from four individual trees were measured in June–August 2006 and one of them again in July 2007. The measurements were conducted using a dynamic flow through chamber covered with Teflon film. The studied mountain birches were found to emit substantial amounts of linalool, monoterpenes and sesquiterpenes. The monoterpene emission was dominated by sabinene. The magnitude and composition of sesquiterpene emission changed dramatically between the years. For example, the average α-farnesene emission in 2006 was almost 2000 ng gdw−1 h−1 while in 2007 the emission of α-farnesene was negligible. Also the emissions of other sesquiterpenes decreased in 2007 to a fraction of that in 2006. One possible explanation for the change in emissions is the herbivory damage that occurred in the area in 2004. Herbivory is known to enhance the emissions of sesquiterpenes, especially those of α-farnesene, and the effect may last several years.

  2. Mountain birch – potentially large source of sesquiterpenes into high latitude atmosphere

    Directory of Open Access Journals (Sweden)

    A. Arneth


    Full Text Available Emissions of volatile organic compounds (VOCs from mountain birches were measured in Abisko, northern Sweden. Mountain birches make up the majority of the tree biomass in Scandinavian high latitudes, a region subject to significant climate warming. The measurements were carried out in two growing seasons. The emissions of four branches, each from a different individual tree, were measured in June–August 2006 and one of them again in July 2007. The measurements were conducted using a dynamic flow through chamber covered with Teflon film. The studied mountain birches were found to emit substantial amounts of linalool, monoterpenes and sesquiterpenes. The monoterpene emission was dominated by sabinene. The magnitude and composition of the sesquiterpene emission changed dramatically between the years. For example, the average α-farnesene emission potential in 2006 was almost 2600 ng gdw−1 h−1 (3.5 pmol gdw−1 s−1 while in 2007 α-farnesene was not detected at all. Also the emissions of other sesquiterpenes decreased in 2007 to a fraction of that in 2006. One possible explanation for the change in emissions is the herbivory damage that occurred in the area in 2004. Herbivory is known to enhance the emissions of sesquiterpenes, especially those of α-farnesene, and the effect may last for several years.

  3. Extensive wet episodes in Late Glacial Australia resulting from high-latitude forcings (United States)

    Bayon, Germain; De Deckker, Patrick; Magee, John W.; Germain, Yoan; Bermell, Sylvain; Tachikawa, Kazuyo; Norman, Marc D.


    Millennial-scale cooling events termed Heinrich Stadials punctuated Northern Hemisphere climate during the last glacial period. Latitudinal shifts of the intertropical convergence zone (ITCZ) are thought to have rapidly propagated these abrupt climatic signals southward, influencing the evolution of Southern Hemisphere climates and contributing to major reorganisation of the global ocean-atmosphere system. Here, we use neodymium isotopes from a marine sediment core to reconstruct the hydroclimatic evolution of subtropical Australia between 90 to 20 thousand years ago. We find a strong correlation between our sediment provenance proxy data and records for western Pacific tropical precipitations and Australian palaeolakes, which indicates that Northern Hemisphere cooling phases were accompanied by pronounced excursions of the ITCZ and associated rainfall as far south as about 32°S. Comparatively, however, each of these humid periods lasted substantially longer than the mean duration of Heinrich Stadials, overlapping with subsequent warming phases of the southern high-latitudes recorded in Antarctic ice cores. In addition to ITCZ-driven hydroclimate forcing, we infer that changes in Southern Ocean climate also played an important role in regulating late glacial atmospheric patterns of the Southern Hemisphere subtropical regions.

  4. Ecological legacies of Indigenous fire management in high-latitude coastal temperate rainforests, Canada (United States)

    Hoffman, K.; Lertzman, K. P.; Starzomski, B. M.


    Anthropogenic burning is considered to have little impact on coastal temperate rainforest fire regimes in the Pacific Northwest (PNW) of North America, yet few long-term fire histories have been reconstructed in these forests. We use a multidisciplinary approach to reconstruct the ecological impact, scale, and legacies of historic fire regime variability in high-latitude coastal temperate rainforests located in British Columbia, Canada. We map seven centuries of fire activity with fire scars and records of stand establishment, and examine patterns in the distribution and composition of vegetation to assess whether fire was historically used as a tool for resource management. We conduct a paired study of 20 former Indigenous habitation and control sites across a 100 km2 island group to relate historic fire activity with long-term patterns of human land use and contemporary lightning strike densities. Fires were significantly associated with the locations of former Indigenous habitation sites, low and mixed in severity, and likely intentionally used to influence the composition and structure of vegetation, thus increasing the productivity of culturally important plants such as western redcedar, berry-producing shrubs, and bracken fern. Centuries of repeated anthropogenic burning have resulted in a mosaic of vegetation types in different stages of succession. These data are directly relevant to the management of contemporary forests as they do not support the widespread contention that old growth coastal temperate rainforests in this region are pristine landscapes where fire is rare, but more likely the result of long-term human land use practices.

  5. High latitude temperature evolution across the Last Interglacial: a model-data comparison (United States)

    Capron, Emilie; Stone, Emma; Govin, Aline; Loutre, Marie-France; Masson-Delmotte, Valerie; Mulitza, Stefan; Otto-Bliesner, Betty; Sime, Louise; Waelbroeck, Claire; Wolff, Eric W.


    The Last Interglacial (LIG, 129-116 thousand of years, ka) represents an interesting test bed for climate model feedbacks for warmer-than-present high latitudes. However, mainly because synchronising different paleoclimatic archives from different parts of the world is not trivial, a global picture of LIG temperature changes is difficult to obtain. In the framework of the UK iGlass consortium and the European Past4Future project, we have selected 49 polar ice core and sub-polar marine sediment records and developed a strategy to synchronise them onto the recent AICC2012 ice core chronology. This new synthesis enables us to describe the spatial and temporal climatic patterns over polar ice sheets (surface air temperature) and around the ice margins (sea surface temperatures) at a pluri-centennial to millennial-scale. Major features highlighted are (i) non synchronous maximum temperature change between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records and (ii) Southern hemisphere records exhibiting warm conditions for a longer time period compared to records from the Northern Hemisphere and smaller temperature amplitude changes. Our compiled records are compared with recent snapshot and transient model experiments performed with three state of the art General Circulation Models (HADCM3, CCSM3, FAMOUS) and an Earth Model of Intermediary Complexity (LOVECLIM). Such an exercise enables us to investigate the climate feedbacks which causes the most apparent model-data differences.

  6. Lake trout otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems (United States)

    Black, B.A.; Von Biela, V.R.; Zimmerman, C.E.; Brown, Randy J.


    High-latitude ecosystems are among the most vulnerable to long-term climate change, yet continuous, multidecadal indicators by which to gauge effects on biology are scarce, especially in freshwater environments. To address this issue, dendrochronology (tree-ring analysis) techniques were applied to growth-increment widths in otoliths from lake trout (Salvelinus namaycush) from the Chandler Lake system, Alaska (68.23°N, 152.70°W). All otoliths were collected in 1987 and exhibited highly synchronous patterns in growth-increment width. Increments were dated, the widths were measured, and age-related growth declines were removed using standard dendrochronology techniques. The detrended time series were averaged to generate an annually resolved chronology, which continuously spanned 1964–1984. The chronology positively and linearly correlated with August air temperature over the 22-year interval (p productivity. Given the broad distribution of lake trout within North America, this study suggests that otolith chronologies could be used to examine responses between freshwater ecosystems and environmental variability across a range of temporal and spatial scales.

  7. An accelerating high-latitude jet in Earth’s core (United States)

    Livermore, Philip W.; Hollerbach, Rainer; Finlay, Christopher C.


    Observations of the change in Earth’s magnetic field--the secular variation--provide information about the motion of liquid metal within the core that is responsible for the magnetic field’s generation. High-resolution observations from the European Space Agency’s Swarm satellite mission show intense field change at high latitude, localized in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we show that this feature can be explained by a localized, non-axisymmetric, westward jet of 420 km width on the tangent cylinder, the cylinder of fluid within the core that is aligned with the rotation axis and tangent to the solid inner core. We find that the jet has increased in magnitude by a factor of three over the period 2000-2016 to about 40 km yr-1, and is now much stronger than typical large-scale flows inferred for the core. We suggest that the current accelerating phase may be part of a longer-term fluctuation of the jet causing both eastward and westward movement of magnetic features over historical periods, and may contribute to recent changes in torsional-wave activity and the rotation direction of the inner core.

  8. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. (United States)

    Heimpel, Moritz; Aurnou, Jonathan; Wicht, Johannes


    The bands of Jupiter represent a global system of powerful winds. Broad eastward equatorial jets are flanked by smaller-scale, higher-latitude jets flowing in alternating directions. Jupiter's large thermal emission suggests that the winds are powered from within, but the zonal flow depth is limited by increasing density and electrical conductivity in the molecular hydrogen-helium atmosphere towards the centre of the planet. Two types of planetary flow models have been explored: shallow-layer models reproduce multiple high-latitude jets, but not the equatorial flow system, and deep convection models only reproduce an eastward equatorial jet with two flanking neighbours. Here we present a numerical model of three-dimensional rotating convection in a relatively thin spherical shell that generates both types of jets. The simulated flow is turbulent and quasi-two-dimensional and, as observed for the jovian jets, simulated jet widths follow Rhines' scaling theory. Our findings imply that Jupiter's latitudinal transition in jet width corresponds to a separation between the bottom-bounded flow structures in higher latitudes and the deep equatorial flows.

  9. Early Eocene hyperthermals record orbitally controlled changes in high latitude climates (United States)

    Galeotti, S.; DeConto, R. M.; Lanci, L.; Pagani, M.; Rohl, U.; Westerhold, T.; Zachos, J. C.


    The Late Paleocene to Early Eocene records a succession of short-term (104 yr) negative carbon isotope excursions (CIEs) in marine carbonates and organic carbon. Available data indicate that at least three of these episodes, including the Paleocene Eocene Thermal Maximum (PETM) at ca. 55.5, the Eocene Thermal Maximum (ETM)2 at ca. 53.5 Ma and the ETM3 at ca. 52 Ma, were associated with rapid warming, and widespread marine carbonate dissolution forced by shoaling of the carbonate lysocline and lowering of the carbonate saturation state. Large temperature raises associated with decreased δ13C values in both terrestrial and oceanic records and concomitant acidification of oceanic waters implies that hyperthermals were caused by the addition of massive amounts of 13C-depleted greenhouse gases (CH4 and/or CO-2) into the atmosphere and subsequent sequestration by oceanic waters. Cyclostratigraphic analyses of marine sequences provided evidence that CIEs and associated carbonate dissolution episodes were linked to orbital changes in insolation. Here we show grounds that Early Eocene hyperthermals are part of a continuum of δ13C anomaly and carbonate dissolution episodes and are triggered by long-term orbitally-controlled changes in local climates at high latitudes.

  10. Epithermal Neutron Evidence for a Diurnal Surface Hydration Process in the Moon's High Latitudes (United States)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Parsons, A.; Starr, R. D.; Evans, L. G.; Sanin, A.; Litvak, M.; Livengood, T.


    We report evidence from epithermal neutron flux observations that show that the Moon's high latitude surfaces are being actively hydrated, dehydrated and rehydrated in a diurnal cycle. The near-surface hydration is indicated by an enhanced suppression of the lunar epithermal neutron leakage flux on the dayside of the dawn terminator on poleward-facing slopes (PFS). At 0600 to 0800 local-time, hydrogen concentrations within the upper 1 meter of PFS are observed to be maximized relative to equivalent equator-facing slopes (EFS). During the lunar day surface hydrogen concentrations diminish towards dusk and then rebuild overnight. Surface hydration is determined by differential comparison of the averaged EFS to PFS epithermal neutron count rates above +/- 75 deg latitude. At dawn the contrast bias towards PFS is consistent with at least 15 to 25 parts-per-million (ppm) hydrogen that dissipates by dusk. We review several lines of evidence derived from temperature and epithermal neutron data by a correlated analysis of observations from the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) that were mapped as a function of lunar local-time, Lunar Observing Laser Altimeter (LOLA) topography and Diviner (DLRE) surface temperature.

  11. Ultraviolet, optical, and infrared observations of the high-latitude molecular cloud toward HD 210121 (United States)

    Welty, Daniel E.; Fowler, James R.


    Low-resolution UV spectra of the B3 V star HD 210121, located behind the high-latitude molecular cloud DBB 80, yield an extinction curve exhibiting a far-UV rise that is among the steepest known. The apparently simple line of sight affords an excellent opportunity for investigating the absorption and emission characteristics of a single, isolated interstellar cloud characterized by extreme UV extinction. The low ratios of the IRAS bands with respect to I(100 microns) suggest that the radiation field incident on the cloud is lower than the average interstellar field, with further attenuation of the field within the cloud. The apparent relative enhancement of I(12 microns) compared with models of dust emission, and the extremely steep far-UV extinction together are consistent with the presence of an enhanced population of very small grains; the normal calcium depletion suggests that there has been little wholesale grain destruction. The steep far-UV extinction may help to explain the relatively high abundances of CO and CN. The disagreement in density for this cloud inferred from C2 absorption versus that inferred from CO emission may be due in part to clumping in the gas sample by the radio beams.

  12. Structuring of full plasma patches in the high latitude with realistic drives-continued. (United States)

    Guzdar, P. N.; Gondarenko, N. A.; Sojka, J. J.; David, M.


    The robustness of plasma patches, in spite of structuring by a combination of gradient drift and secondary Kelvin-Helmholtz (KH) instabilities, has been attributed to the strong stabilizing influence of dynamics of electrons along the field line and the break-up of the gradient drift instability driven fingers by secondary KH instabilities. Another physical effect that contributes significantly to the robustness of the patch is the variability of the convection of the patch over the polar cap region. Recently we have developed a parallel version of our 3D code, which can run on the IBM SP. We will present results of a set of runs with realistic convective drives obtained from MHD simulations of real event studies of substorms. The goal is to develop a database to provide statistical information on the nature of structuring in high latitude plasma patches. We are also developing diagnostic capabilities to compare with reconstructed images of the 3D transverse as well as parallel structure of the irregularities.

  13. First observations of simultaneous interhemispheric conjugate high-latitude thermospheric winds (United States)

    Kosch, M. J.; Anderson, C.; Yiu, H.-C. I.; Kellerman, A. C.; Makarevich, R. A.; Aruliah, A.; Conde, M.; Griffin, E.; Davies, T.; McWhirter, I.; Dyson, P. L.


    We report the first observations of simultaneous high-latitude interhemispheric F region neutral wind fields by combining the 630 nm optical measurements from two scanning Doppler imagers (SDIs) and three Fabry-Perot interferometers (FPIs) for a period exceeding 5 h. From the Southern Hemisphere, a SDI at Mawson and a FPI at Davis, both in Antarctica, are geomagnetically mapped onto the Northern Hemisphere. These data are combined in the Northern Hemisphere with a SDI at Longyearbyen, Svalbard, and two FPIs near Kiruna in Sweden and Sodankyla in Finland. Geomagnetic conditions were moderate (Kp = 3--3+) and steady although the interplanetary magnetic field Bz component did change polarity several times. There is good agreement between the conjugate 630 nm optical intensities and wind vectors where the two SDIs' fields of view overlap. All wind field vectors are overlaid onto the northern Super Dual Auroral Radar Network ion convection contours. Qualitatively, the agreement between neutral and ion flow is remarkably good throughout the study interval, even down to mesoscale spatial size.

  14. The mid-high latitude whistler mode chorus waves observed around substorm onsets

    Institute of Scientific and Technical Information of China (English)


    Using the data of LFEW/TC-2, we studied the dawn side chorus around substorm onsets during a strong geomagnetic storm in November 2004. During this storm, LFEW/TC-2 observed 14 dawnside chorus events. Nine of them were associated with substorms and occurred within 40 min around the substorm onsets. The fre-quencies of waves have a very good correlation with the half equatorial electron cyclotron frequencies. Chorus can be excited in the region near magnetic equato-rial plane and then propagate to the mid and high latitudes. When the wave fre-quencies reach the local lower hybrid frequencies, chorus can be reflected due to the lower hybrid resonance. The time delay between the chorus and its echo is about 28 min. Previous observations show that the chorus can propagate at most to the magnetic latitudes of 40°. LFEW/ TC-2 found for the first time that the chorus in space could propagate to the magnetic latitude of 70°. Since most of the previous chorus observations are made close to the magnetic equatorial plane, our results are important for the studies of excitation and propagation of whistler mode wave, and relevant relativistic electron acceleration in the magnetosphere.

  15. Diffuse Galactic Gamma Rays at intermediate and high latitudes. I. Constraints on the ISM properties

    CERN Document Server

    Cholis, I; Evoli, C; Maccione, L; Ullio, P


    We study the high latitude (|b|>10) diffuse gamma-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on HI and H2 gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and gamma-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at ~230 GV in CR proton...

  16. Diffuse galactic gamma rays at intermediate and high latitudes. Pt. 1. Constraints on the ISM properties

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias; Tavakoli, Maryam; Ullio, Piero [SISSA, Trieste (Italy); INFN, Trieste (Italy); Evoli, Carmelo [SISSA, Trieste (Italy); Chinese Academy of Sciences, Beijing (China). National Astronomical Observatories; Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)


    We study the high latitude (vertical stroke b vertical stroke >10 ) diffuse {gamma}-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on HI and H2 gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and {gamma}-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at {proportional_to}230 GeV in CR protons and helium spectra, recently observed by PAMELA and their impact on {gamma}-rays. (orig.)

  17. A Scan with the EUVE DS Telescope across the High-latitude Molecular Cloud MBM12 (United States)

    Berghoefer, Thomas W.

    We propose to scan across the nearby high-latitude molecular cloud MBM12 and its vicinity with the EUVE Deep Survey (DS) telescope. A distance of 65 pc and an EUV mean free path of ~100 pc in the vicinity of MBM12 makes this an ideal target to apply a newly developed method, based on a differential cloud technique, to measure physical conditions of the hot gas in the local ISM by means of EUVE observations. Snowden, McCammon & Verter (1993) reported the detection of an X-ray shadow in the 3/4 keV diffuse background at the position of MBM12. However, a shadow in the 1/4 keV band, which would surely be present as a consequence of the higher optical depth at lower energies, cannot be seen in the data. This is quite suprising! Stellar reddening measurements of stars in the direction of MBM12 indicate an HI column density that is too low to reveal a shadow at soft X-ray wavelength. However, in the EUV range MBM12 is opaque and the proposed observations shall be used to derive the density and the pressure of the hot gas in the direction of MBM12 and hopefully to provide an explanation for the contradictory results given by Snowden et al.

  18. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. (United States)

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C


    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

  19. Forecasts for the WFIRST High Latitude Survey using the BLUETIDES Simulation (United States)

    Waters, Dacen; Di Matteo, Tiziana; Feng, Yu; Wilkins, Stephen M.; Croft, Rupert A. C.


    We use the BLUETIDES simulation to predict the properties of the high-z galaxy and active galactic nuclei (AGN) populations for the planned 2200deg2 Wide-Field Infrared Survey Telescope's (WFIRST) High Latitude Survey (HLS). BLUETIDES is a cosmological hydrodynamic simulation, which incorporates a variety of baryon physics in a (400h-1Mpc)3 volume evolved to z = 8 with 0.7 trillion particles. The galaxy luminosity functions in the simulation show good agreement with all the current observational constraints (up to z = 11) and predicts an enhanced number of UV bright galaxies. At the proposed depth of the HLS (mUV luminosity function. At z = 8, galaxies in the mock HLS have specific star formation rates of ˜10Gyr-1 and ages of ˜80Myr (both evolving linearly with redshift) and a non-evolving mass-metallicity relation. BLUETIDES also predicts ˜104 AGN in WFIRST HLS from z = 8 out to z ˜ 14. These AGN host black holes of M ˜ 106 - 108M⊙ accreting close to their Eddington luminosity. Galaxies and AGN have host halo masses of Mhalo ˜ 1011 - 12M⊙ and a linear bias b ≈ 13 - 20. Given the expected galaxy space densities, their high bias and large volume probed we speculate that it may be feasible for WFIRST HLS detect the Baryon Acoustic Oscillation peak in the galaxy power spectrum out to z = 8 - 9.

  20. Rapid sympatry explains greater color pattern divergence in high latitude birds. (United States)

    Martin, Paul R; Montgomerie, Robert; Lougheed, Stephen C


    Latitudinal variation in patterns of evolution has fascinated biologists for over a century, but our understanding of latitudinal differences in evolutionary processes-such as selection and drift-remains limited. Here, we test for, and find, accelerated evolution of color patterns in bird taxa that breed at higher latitudes compared with those breeding in the tropics, analyzing data from seven diverse avian families. Most important, we show that the extent of overlap of species' breeding ranges (degree of sympatry) explains the elevated rate of color pattern evolution at higher latitudes. We suggest that the dynamic shifts in breeding ranges that accompanied climatic changes during the last 3 million years (Milankovitch Oscillations) resulted in more rapid and more frequent secondary contact at high latitudes. We argue that sympatry among diverging clades causes greater divergence of color traits in birds at higher latitudes through sexual, social, or ecological character displacement that accelerate rates of evolution, and through the selective elimination of weakly differentiated lineages that hybridize and fuse in sympatry (differential fusion).

  1. Seasonal changes in H/V spectral ratio at high-latitude seismic stations (United States)

    Lee, R. F.; Abbott, R. E.; Knox, H. A.; Pancha, A.


    We present results demonstrating seasonal variations in the Horizontal-to-Vertical Spectral Ratio (HVSR) at high-latitude seismic stations. We analyze data from two sites at Poker Flat Research Range, near Fairbanks, Alaska. From the first site, we analyze 3 stations installed by Sandia National Labs (SNL) in a valley with marshy summer conditions. We also analyze the PASSCAL Instrument Center station PIC2, which is installed on rock approximately 3.2 km from the SNL stations. These stations continuously record data at 125 (SNL) and 200 (PIC2) samples per second. Seasonal changes in HVSR at high frequencies (> 20 Hz) appear to be caused by impedance contrasts between frozen and thawed ground. Thawed active layers are known to have slower shear-wave velocities than frozen layers or bedrock. An estimate of active layer thickness at each station is obtained from the quarter-wavelength approximation. We verify the accuracy of this technique by obtaining ground-truth measurements at the sites for both thickness and shear-wave velocity. We use physical probing for the thickness measurements and active-source Refraction-Microtremor (ReMi) surveys for the shear-wave velocities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  2. High-latitude cooling associated with landscape changes from North American boreal forest fires

    Directory of Open Access Journals (Sweden)

    B. M. Rogers


    Full Text Available Fires in the boreal forests of North America are generally stand-replacing, killing the majority of trees and initiating succession that may last over a century. Functional variation during succession can affect local surface energy budgets and, potentially, regional climate. Burn area across Alaska and Canada has increased in the last few decades and is projected to be substantially higher by the end of the 21st century because of a warmer climate with longer growing seasons. Here we simulated changes in forest composition due to altered burn area using a stochastic model of fire occurrence, historical fire data from national inventories, and succession trajectories derived from remote sensing. When coupled to an Earth system model, younger vegetation from increased burning cooled the high-latitude atmosphere, primarily in the winter and spring, with noticeable feedbacks from the ocean and sea ice. Results from multiple scenarios suggest that a doubling of burn area would cool the surface by 0.23 ± 0.09 °C across boreal North America during winter and spring months (December through May. This could provide a negative feedback to winter warming on the order of 3–5% for a doubling, and 14–23% for a quadrupling, of burn area. Maximum cooling occurs in the areas of greatest burning, and between February and April when albedo changes are largest and solar insolation is moderate. Further work is needed to integrate all the climate drivers from boreal forest fires, including aerosols and greenhouse gasses.

  3. An accelerating high-latitude jet in Earth’s core

    DEFF Research Database (Denmark)

    W. Livermore, Philip; Hollerbach, Rainer; Finlay, Chris


    Observations of the change in Earth’s magnetic field—the secular variation—provide information about the motion of liquid metal within the core that is responsible for the magnetic field’s generation. High-resolution observations from the European Space Agency’s Swarm satellite mission show intense...... field change at high latitude, localized in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we show that this feature can be explained by a localized, non-axisymmetric, westward jet of 420 km width on the tangent cylinder, the cylinder of fluid within the core...... that is aligned with the rotation axis and tangent to the solid inner core. We find that the jet has increased in magnitude by a factor of three over the period 2000–2016 to about 40 km yr−1, and is now much stronger than typical large-scale flows inferred for the core. We suggest that the current accelerating...

  4. Dust, Gas, and Star Formation in the MBM 18--19 High-Latitude Cloud Complex (United States)

    Larson, Kristen A.; Reed, Cyrus M.

    Projected on the plane of the sky, the MBM 19 molecular cloud extends from the MBM 18 high-latitude cloud toward the Taurus star-forming regions. We present a new CO(J = 1--0) map of MBM 19 that shows clumpy emission with line intensities above 3 K in some regions despite low, relatively smooth 100 micron emission and modest visual extinction. This map complements data that show extremely high polarization efficiency of dust aligned along the bridge axis and low values of the ratio of total-to-selective extinction throughout the complex. In addition, several ongoing searches for spectral signatures of young stars have found evidence for star formation associated with MBM 18--19. We discuss variation in the molecular gas fraction and dust-to-gas ratio estimates, as well as the implications all these data have for understanding star formation in the region. Results of this study and others like it will provide insight into dust and gas of the translucent interstellar medium and star formation at high galactic latitude. This research was supported by the American Astronomical Society's Small Research Grant Program.

  5. Ultraviolet, optical, and infrared observations of the high-latitude molecular cloud toward HD 210121 (United States)

    Welty, Daniel E.; Fowler, James R.


    Low-resolution UV spectra of the B3 V star HD 210121, located behind the high-latitude molecular cloud DBB 80, yield an extinction curve exhibiting a far-UV rise that is among the steepest known. The apparently simple line of sight affords an excellent opportunity for investigating the absorption and emission characteristics of a single, isolated interstellar cloud characterized by extreme UV extinction. The low ratios of the IRAS bands with respect to I(100 microns) suggest that the radiation field incident on the cloud is lower than the average interstellar field, with further attenuation of the field within the cloud. The apparent relative enhancement of I(12 microns) compared with models of dust emission, and the extremely steep far-UV extinction together are consistent with the presence of an enhanced population of very small grains; the normal calcium depletion suggests that there has been little wholesale grain destruction. The steep far-UV extinction may help to explain the relatively high abundances of CO and CN. The disagreement in density for this cloud inferred from C2 absorption versus that inferred from CO emission may be due in part to clumping in the gas sample by the radio beams.

  6. The high latitude convection response to an interval of substorm activity

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available On 17 March 1991, five clear substorm onsets/intensifications took place within a three hour interval. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were available, in addition to data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation. This interval of substorm activity has been interpreted as being in support of a near-Earth current disruption model of substorm onset. In the present study the ionospheric convection response, observed some four hours to the west in MLT by the Halley HF radar in Antarctica, is related to the growth, expansion and recovery phases of two of the substorm onsets/expansions observed in the Northern Hemisphere. Bursts of ionospheric flow and motion of the convection reversal boundary (CRB are observed at Halley in response to the substorm activity and changes in the IMF. The delay between the substorm expansion phase onset and the response in the CRB location is dependent on the local time separation from, and latitude of, the initial substorm onset region. These results are interpreted in terms of a synthesis of the very near-Earth current disruption model and the near-Earth neutral line model of substorm onset.

  7. Propagation of ULF waves through the ionosphere: Inductive effect for oblique magnetic fields

    Directory of Open Access Journals (Sweden)

    M. D. Sciffer


    Full Text Available Solutions for ultra-low frequency (ULF wave fields in the frequency range 1–100mHz that interact with the Earth's ionosphere in the presence of oblique background magnetic fields are described. Analytic expressions for the electric and magnetic wave fields in the magnetosphere, ionosphere and atmosphere are derived within the context of an inductive ionosphere. The inductive shielding effect (ISE arises from the generation of an "inductive" rotational current by the induced part of the divergent electric field in the ionosphere which reduces the wave amplitude detected on the ground. The inductive response of the ionosphere is described by Faraday's law and the ISE depends on the horizontal scale size of the ULF disturbance, its frequency and the ionosphere conductivities. The ISE for ULF waves in a vertical background magnetic field is limited in application to high latitudes. In this paper we examine the ISE within the context of oblique background magnetic fields, extending studies of an inductive ionosphere and the associated shielding of ULF waves to lower latitudes. It is found that the dip angle of the background magnetic field has a significant effect on signals detected at the ground. For incident shear Alfvén mode waves and oblique background magnetic fields, the horizontal component of the field-aligned current contributes to the signal detected at the ground. At low latitudes, the ISE is larger at smaller conductivity values compared with high latitudes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; electric fields and currents; wave propagation

  8. Using data assimilation to investigate the causes of Southern Hemisphere high latitude cooling from 10 to 8 ka BP

    NARCIS (Netherlands)

    P. Mathiot; H. Goosse; X. Crosta; B. Stenni; M. Braida; A. Mairesse; S. Dubinkina (Svetlana)


    htmlabstractFrom 10 to 8 ka BP (thousand years before present), paleoclimate records show an atmospheric and oceanic cooling in the high latitudes of the Southern Hemisphere. During this interval, temperatures estimated from proxy data decrease by 0.8 °C over Antarctica and 1.2 °C over the Southern

  9. What do model results tell us regarding Climate Intervention (Geoengineering) strategies to counter high latitude climate change. (United States)

    Rasch, P. J.


    A number of modeling studies at various levels of complexity have taken place to explore consequences of climate intervention in countering climate change. I will review results from some of those studies, cover some new analysis, and identify areas where more study is needed, with a focus on high latitude climate.

  10. Longitudinal variation in the ionosphere-plasmasphere system at the minimum of solar and geomagnetic activity: Investigation of temporal and latitudinal dependences (United States)

    Klimenko, Maxim V.; Klimenko, Vladimir V.; Zakharenkova, Irina E.; Vesnin, Artem M.; Cherniak, Iurii V.; Galkin, Ivan A.


    We use the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) as the first-principle calculation of the physical system state, the quick-run ionospheric electron density model (NeQuick) as the climatology background, and the International Reference Ionosphere-based Real-Time Assimilative Model for a global view of the ionospheric weather during a quiet period of the December 2009 solstice. The model computations are compared to the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation profiles, CHAMP and Gravity Recovery and Climate Experiment in situ densities, and GPS total electron content (TEC). It is shown that the plasma density in the ionosphere is generally larger in the American/Atlantic longitudinal sector at any local time. The high-latitude density enhancements are visible in the GSM TIP output at different altitudes but are not reproduced by the NeQuick empirical model. Given that observational data confirm an existence of the high-latitude areas where ionospheric densities are elevated in the altitude range between 300 and 480 km, we conclude that the NmF2 maximum in the GSM TIP output can be trusted. Indeed, such high-latitude NmF2, ionospheric electron content, and TEC maxima in the American longitude sector form on the proper places as shown by the GSM TIP data, COSMIC and GPS observations. According to our results, the high-latitude maximum of NmF2 (1) manifests itself only when the integration over LT or UT of the global maps for 22 December 2009 includes nighttime, i.e., supporting an argument of its close association with the Weddell Sea Anomaly, and (2) also appears in the Ne distribution at altitudes above the F2 peak.

  11. Global ionospheric TEC response to a strong magnetic storm

    Institute of Scientific and Technical Information of China (English)


    The global characteristics of the ionospheric storm and irregularities as well as propagation of TEC (total electron content) disturbances during the strong mag-netic storm occurring in November 2004 were investigated by using the data of the IGS network. For the response of the global ionospheric TEC to this strong mag-netic storm, the following features are noticeable: 1) the maximum of the iono-spheric storm phase occurred around the main phase maximum of the magnetic storm; 2) the TEC response in equatorial and low latitudes was more remarkable than that in mid-high latitudes; 3) as a whole, the storm phase in the northern hemisphere was mainly positive, and it was negative in the southern hemisphere; 4) during the whole magnetic storm from November 7 to 11, the locations where the maxima of the positive and negative ionospheric storm phases occurred were nearly invariant to the Sun at low and equatorial latitudes, i.e. the 24-h recurrence. Analyzing results of TEC rate and its standard deviation showed that the iono-spheric irregularities and disturbances in the global mainly occurred around the main phase maximum of the storm, and they distributed in a large longitudinal re-gion for both day and night in mid-high latitudes and they generated and developed only after the sunset, and lasted out to the midnight in equatorial and low latitudes. The disturbance propagation parameters were also estimated by using the wavelet reconstruction and cross-correlation technologies for a set of spaced stations in the Northern America.

  12. Application of a land surface model for simulating river streamflow in high latitudes (United States)

    Gusev, Yeugeniy; Nasonova, Olga; Dzhogan, Larissa


    Nowadays modelling runoff from the pan-Arctic river basins, which represents nearly 50% of water flow to the Arctic Ocean, is of great interest among hydrological modelling community because these regions are very sensitive to natural and anthropogenic impacts. This motivates the necessity of increase of the accuracy of hydrological estimations, runoff predictions, and water resources assessments in high latitudes. However, in these regions, observations required for model simulations (to specify model parameters and forcing inputs) are very scarce or even absent (especially this concerns land surface parameters). At the same time river discharge measurements are usually available that makes it possible to estimate model parameters by their calibration against measured discharge. Such a situation is typical of most of the northern basins of Russia. The major goal of the work is to reveal whether a physically-based land surface model (LSM) Soil Water - Atmosphere - Plants (SWAP) is able to reproduce snowmelt and rain driven daily streamflow in high latitudes (using poor input information) with the accuracy acceptable for hydrologic applications. Three river basins, located on the north of the European part of Russia, were chosen for investigation. They are the Mezen River basin (area: area: 78 000 km2), the Pechora River basin (area: 312 000 km2) and the Severnaya Dvina River basin (area: 348 000 km2). For modeling purposes the basins were presented, respectively, by 10, 57 and 62 one-degree computational grid boxes connected by river network. A priori estimation of the land surface parameters for each grid box was based on the global one-degree datasets prepared within the framework of the International Satellite Land-Surface Climatology Project Initiative II (ISLSCP) / the Second Global Soil Wetness Project (GSWP-2). Three versions of atmospheric forcing data prepared for the basins were based on: (1) NCEP/DOE reanalysis dataset; (2) NCEP/DOE reanalysis product

  13. GPS phase scintillation at high latitudes during the geomagnetic storm of 17-18 March 2015

    DEFF Research Database (Denmark)

    Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J. M.


    , and magnetometers. The phase scintillation index is computed for signals sampled at a rate of up to 100 Hz by specialized GPS scintillation receivers supplemented by the phase scintillation proxy index obtained from geodetic-quality GPS data sampled at 1 Hz. In the context of solar wind coupling...... the scintillation and auroral electrojet currents observed by arrays of ground-based magnetometers as well as energetic particle precipitation observed by the DMSP satellites. Equivalent ionospheric currents are obtained from ground magnetometer data using the spherical elementary currents systems technique...... of energetic electron precipitation observed by DMSP satellites with the exception of a period of pulsating aurora when only very weak currents were observed....

  14. Landscape influences on climate-related lake shrinkage at high latitudes (United States)

    Roach, Jennifer K.; Griffith, Brad; Verbyla, David


    Climate-related declines in lake area have been identified across circumpolar regions and have been characterized by substantial spatial heterogeneity. An improved understanding of the mechanisms underlying lake area trends is necessary to predict where change is most likely to occur and to identify implications for high latitude reservoirs of carbon. Here, using a population of ca. 2300 lakes with statistically significant increasing and decreasing lake area trends spanning longitudinal and latitudinal gradients of ca. 1000 km in Alaska, we present evidence for a mechanism of lake area decline that involves the loss of surface water to groundwater systems. We show that lakes with significant declines in lake area were more likely to be located: (1) in burned areas; (2) on coarser, well-drained soils; and (3) farther from rivers compared to lakes that were increasing. These results indicate that postfire processes such as permafrost degradation, which also results from a warming climate, may promote lake drainage, particularly in coarse-textured soils and farther from rivers where overland flooding is less likely and downslope flow paths and negative hydraulic gradients between surface water and groundwater systems are more common. Movement of surface water to groundwater systems may lead to a deepening of subsurface flow paths and longer hydraulic residence time which has been linked to increased soil respiration and CO2 release to the atmosphere. By quantifying relationships between statewide coarse resolution maps of landscape characteristics and spatially heterogeneous responses of lakes to environmental change, we provide a means to identify at-risk lakes and landscapes and plan for a changing climate.

  15. Seasonal patterns in the nocturnal distributionand behavior of the mesopelagic fish Maurolicus muelleri at high latitudes

    KAUST Repository

    Prihartato, Perdana


    Acoustic scattering layers (SL) ascribed to pearlside Maurolicus muelleri were studied in Masfjorden, Norway, using upward-looking echo sounders cabled to shore for continuous long-term measurements. The acoustic studies were accompanied by continuous measurements of surface light and supplemented with intermittent field campaigns. From autumn to spring, young M. muelleri formed an SL in the upper ∼75 to 150 m in the daytime, characterized by migration to near-surface water near dusk, subsequent \\'midnight sinking\\', followed by a dawn ascent before a return to the daytime habitat. Light levels were ∼1 order of magnitude lower during the dawn ascent than for ascent in the afternoon, with the latter terminating before fish reached upper layers on ∼1/3 of the nights from late November to mid-April. Adults showed less tendency of migration during autumn and winter, until the SLs of young and adults merged in late spring, and thereafter displayed coherent migration behavior. The midnight sinking became progressively deeper from autumn to winter but was strongly reduced from mid-May when the darkest nocturnal light intensity (PAR) at the surface was above 10-3 μmol m-2 s-1. The pearlside took on schooling in upper waters during the even lighter nights in early June, with minimum light of ∼5 × 10-3 to 10-1 μmol m-2 s-1 at the surface. Nocturnal schooling ceased in early July, and midnight sinking reappeared in mid-August. We suggest that the strong variation in nocturnal light intensity at high latitudes provides changing trade-offs between visual foraging and avoiding predators and hence varying time budgets for feeding in the upper, productive layers.

  16. On the wave number 2 eastward propagating quasi 2 day wave at middle and high latitudes (United States)

    Gu, Sheng-Yang; Liu, Han-Li; Pedatella, N. M.; Dou, Xiankang; Liu, Yu


    The temperature and wind data sets from the ensemble data assimilation version of the Whole Atmosphere Community Climate Model + Data Assimilation Research Testbed (WACCM + DART) developed at the National Center for Atmospheric Research (NCAR) are utilized to study the seasonal variability of the eastward quasi 2 day wave (QTDW) with zonal wave number 2 (E2) during 2007. The aliasing ratio of E2 from wave number 3 (W3) in the synoptic WACCM data set is a constant value of 4 × 10-6% due to its uniform sampling pattern, whereas the aliasing is latitudinally dependent if the WACCM fields are sampled asynoptically based on the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) sampling. The aliasing ratio based on SABER sampling is 75% at 40°S during late January, where and when W3 peaks. The analysis of the synoptic WACCM data set shows that the E2 is in fact a winter phenomenon, which peaks in the stratosphere and lower mesosphere at high latitudes. In the austral winter period, the amplitudes of E2 can reach 10 K, 20 m/s, and 30 m/s for temperature, zonal, and meridional winds, respectively. In the boreal winter period, the wave perturbations are only one third as strong as those in austral winter. Diagnostic analysis also shows that the mean flow instabilities in the winter upper mesosphere polar region provide sources for the amplification of E2. This is different from the westward QTDWs, whose amplifications are related to the summer easterly jet. In addition, the E2 also peaks at lower altitude than the westward modes.

  17. Remote Sensing of Open Water in Northern High Latitudes for use in Hydrologic Modeling (United States)

    Podest, E.; McDonald, K. C.; Kimball, J.; Maumenee, N.; Bohn, T.; Lettenmaier, D.; Bowling, L.


    In the northern high latitudes open water bodies are common landscape features, having a large influence on hydrologic processes as well as surface-atmosphere carbon exchange and associated impacts on global climate. It is therefore of great importance to assess their spatial extent and temporal character in order to improve hydrologic and ecosystem process modeling. Spaceborne synthetic aperture radar (SAR) is an effective tool for this purpose since it is particularly sensitive to surface water and it can monitor large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We employ multi-temporal L-band SAR data from the Japanese Earth Remote Sensing Satellite (JERS-1) and ALOS PALSAR to map open water bodies across Alaska and Eurasia. A supervised decision tree-based classification approach was used to generate open water maps. For Alaska, we assembled regional-scale monthly JERS-1 SAR mosaics from data acquired during 1998. Digital elevation model (DEM) terrain and slope information were also employed in the decision tree classifier. These supplementary data aided significantly in improving classification performance in topographically complex regions where radar shadowing was prevalent. For study regions in Eurasia, PALSAR data was used in conjunction with JERS-1 imagery to map spatial patterns and seasonal variability in open water characteristics over selected study basins. These results were examined in relation to regional topographic and land cover characteristics. Classification results were also evaluated relative to other open water and land cover classification maps derived from Landsat, AVHRR, MODIS and SRTM. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology; at the University of Montana; at the University of Washington; and at Purdue University under contract with the National Aeronautics and Space Administration.

  18. Coral bleaching on high-latitude marginal reefs at Sodwana Bay, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Celliers, Louis; Schleyer, Michael H


    Coral bleaching, involving the expulsion of symbiotic zooxanthellae from the host cells, poses a major threat to coral reefs throughout their distributional range. The role of temperature in coral bleaching has been extensively investigated and is widely accepted. A bleaching event was observed on the marginal high-latitude reefs of South Africa located at Sodwana Bay during the summer months of 2000. This was associated with increased sea temperatures with high seasonal peaks in summer and increased radiation in exceptionally clear water. The bleaching was limited to Two-mile Reef and Nine-mile Reef at Sodwana Bay and affected <12% of the total living cover on Two-mile Reef. Montipora spp., Alveopora spongiosa and Acropora spp. were bleached, as well as some Alcyoniidae (Sinularia dura, Lobophytum depressum, L. patulum). A cyclical increase in sea temperature (with a period of 5-6 years) was recorded during 1998-2000 in addition to the regional temperature increase caused by the El Nino Southern Oscillation phenomenon. The mean sea temperature increased at a rate of 0.27 deg. C year{sup -1} from May 1994 to April 2000. High maximum temperatures were measured (>29 deg. C). The lowest mean monthly and the mean maximum monthly temperatures at which coral bleaching occurred were 27.5 and 28.8 deg. C, respectively, while the duration for which high temperatures occurred in 2000 was 67 days at {>=}27.5 deg. C (4 days at {>=}28.8 deg. C). Increased water clarity and radiation appeared to be a synergistic cause in the coral bleaching encountered at Sodwana Bay.

  19. Ozone trends at northern mid- and high latitudes – a European perspective

    Directory of Open Access Journals (Sweden)

    Y. Orsolini


    Full Text Available The EU CANDIDOZ project investigated the chemical and dynamical influences on decadal ozone trends focusing on the Northern Hemisphere. High quality long-term ozone data sets, satellite-based as well as ground-based, and the long-term meteorological reanalyses from ECMWF and NCEP are used together with advanced multiple regression models and atmospheric models to assess the relative roles of chemistry and transport in stratospheric ozone changes. This overall synthesis of the individual analyses in CANDIDOZ shows clearly one common feature in the NH mid latitudes and in the Arctic: an almost monotonic negative trend from the late 1970s to the mid 1990s followed by an increase. In most trend studies, the Equivalent Effective Stratospheric Chlorine (EESC which peaked in 1997 as a consequence of the Montreal Protocol was observed to describe ozone loss better than a simple linear trend. Furthermore, all individual analyses point to changes in dynamical drivers, such as the residual circulation (responsible for the meridional transport of ozone into middle and high latitudes playing a key role in the observed turnaround. The changes in ozone transport are associated with variations in polar chemical ozone loss via heterogeneous ozone chemistry on PSCs (polar stratospheric clouds. Synoptic scale processes as represented by the new equivalent latitude proxy, by conventional tropopause altitude or by 250 hPa geopotential height have also been successfully linked to the recent ozone increases in the lowermost stratosphere. These show significant regional variation with a large impact over Europe and seem to be linked to changes in tropospheric climate patterns such as the North Atlantic Oscillation. Some influence in recent ozone increases was also attributed to the rise in solar cycle number 23. Changes from the late 1970s to the mid 1990s were found in a number of characteristics of the Arctic vortex. However, only one trend was found when more recent

  20. Ecosystem responses to recent oceanographic variability in high-latitude Northern Hemisphere ecosystems (United States)

    Mueter, Franz J.; Broms, Cecilie; Drinkwater, Kenneth F.; Friedland, Kevin D.; Hare, Jonathan A.; Hunt, George L., Jr.; Melle, Webjørn; Taylor, Maureen


    As part of the international MENU collaboration, we compared and contrasted ecosystem responses to climate-forced oceanographic variability across several high latitude regions of the North Pacific (Eastern Bering Sea (EBS) and Gulf of Alaska (GOA)) and North Atlantic Oceans (Gulf of Maine/Georges Bank (GOM/GB) and the Norwegian/Barents Seas (NOR/BAR)). Differences in the nitrate content of deep source waters and incoming solar radiation largely explain differences in average primary productivity among these ecosystems. We compared trends in productivity and abundance at various trophic levels and their relationships with sea-surface temperature. Annual net primary production generally increases with annual mean sea-surface temperature between systems and within the EBS, BAR, and GOM/GB. Zooplankton biomass appears to be controlled by both top-down (predation by fish) and bottom-up forcing (advection, SST) in the BAR and NOR regions. In contrast, zooplankton in the GOM/GB region showed no evidence of top-down forcing but appeared to control production of major fish populations through bottom-up processes that are independent of temperature variability. Recruitment of several fish stocks is significantly and positively correlated with temperature in the EBS and BAR, but cod and pollock recruitment in the EBS has been negatively correlated with temperature since the 1977 shift to generally warmer conditions. In each of the ecosystems, fish species showed a general poleward movement in response to warming. In addition, the distribution of groundfish in the EBS has shown a more complex, non-linear response to warming resulting from internal community dynamics. Responses to recent warming differ across systems and appear to be more direct and more pronounced in the higher latitude systems where food webs and trophic interactions are simpler and where both zooplankton and fish species are often limited by cold temperatures.

  1. Joule heating hot spot at high latitudes in the afternoon sector (United States)

    Cai, L.; Aikio, A. T.; Milan, S. E.


    The afternoon Joule heating hot spot has been studied statistically by using the EISCAT Svalbard Radar (ESR) measurements at 75.4° Corrected Geomagnetic latitude (CGMLAT) and the OMNI solar wind data base. For a small subset of events, the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) field-aligned current distributions have been available. The main results are as follows. Afternoon Joule heating hot spots are associated with high values of ionospheric electric fields and slightly enhanced Pedersen conductances. The Joule heating hot spot values are larger in summer than in winter, which can be explained by the higher Pedersen conductances during summer than winter. The afternoon Joule heating hot spots are located close to the reversals of the large-scale field-aligned current systems. The most common location is close to the Region 1/Region 2 boundary and those events are associated with sunward convecting F region plasma. In a few cases, the hot spots take place close to the Region 1/Region 0 boundary and then the ionospheric plasma is convecting antisunward. The hot spots may occur both during slow (450 km/s) speed solar wind conditions. During slow-speed solar wind events, the dominant interplanetary magnetic field (IMF) direction is southward, which is the general requirement for the low-latitude magnetic merging at the dayside magnetopause. During high-speed solar wind, also northward IMF conditions appear, but those are associated with large values of the IMF |By| component, making again the dayside magnetopause merging possible. Finally, the measured afternoon hot spot Joule heating rates are not a linear function of the solar wind energy coupling function.

  2. Ions from Different Sources in the near-Earth High-Latitude Magnetotail (United States)

    Koleva, R.; Semkova, J.; Fedorov, A.; Smirnov, V.


    We investigate the characteristics of the ion population in the near-Earth (distances from 5 Re to 10 Re) magnetotail region poleward of the exterior cusp and the auroral field lines. The study presented is based on data from the Low Energy Plasma Composition Experiment (AMEI-2) aboard the high-apogee INTERBALL-1 satellite. Characteristic features of the region are the low plasma density and the low electron energy. We discuss several cases of ion spectral and composition measurements, using He++ as a tracer of SW plasma and O+ as a tracer of ionospheric plasma. Ion fluxes exhibit complex structure bearing the history of ions origin and consecutive acceleration. Both Solar wind and ionospheric ions are present in this region. O+ beams are regularly observed, as expected, going away or towards the Earth, with energies up to about 2 keV/q. A small amount of isotropic, high-temperature plasma sheet ions is always present. But dominating is a He++ population with energies in the interval 1 - 2.5 keV/q, either isotropic in pitch angle or consisting of counter-flowing ions with wide pitch-angular distribution. We discuss the possible relation of these populations with the ion populations observed downtail in the lobes, the PSBL, the 'mixed region' at the dusk flunk as identified by Fuselier et al. on base of ISEE-1 and ISEE-2 (J. Geophys. Res., 1999) and the lobe-plasma transition layer, defined by WIND data by Wilbert et al, (J. Geophys. Res., 2001).

  3. A possible origin of dayside Pc1 magnetic pulsations observed at high latitudes

    Directory of Open Access Journals (Sweden)

    V. Safargaleev


    Full Text Available Induction magnetometer observations of dayside Pc1 activity at Barentsburg (BAB, Spitsbergen archipelago, 78.05°N, 14.12°E are combined with data from two magnetometers located in Scandinavia and the Kola peninsula. Seven events with very large negative IMF Bz components were considered. For all of the events, the cusp location was expected to be significantly shifted equatorward from the statistical position such that the BAB magnetometer was located well inside the polar cap. The DMSP particle data indicated that the BAB magnetometer was indeed inside the polar cap, whereas other magnetometers were collocated with the ionospheric projections of the cusp, the low-latitude boundary layer or the boundary plasma sheet. Pc1 magnetic pulsations were observed only at BAB. In three cases, for which SuperDARN convection data were available, the Pc1 activity correlated with intervals of large-scale convection reconfiguration, such that the plasma flow crossing the BAB location was associated with newly-reconnected magnetic flux tubes drifting tailward. The convection reconfigurations were in response to a decrease in the IMF By component. We argue that the source of the observed Pc1 pulsations is anisotropic plasma of the depletion layer within the magnetosheath. The plasma anisotropy supports the excitation of electromagnetic ion cyclotron waves that are detectable with a ground-based magnetometer when the flux tubes containing the unstable plasma become connected to the Earth's ionosphere in the course of the dayside reconnection processes.

  4. Theoretical Studies of Low Frequency Instabilities in the Ionosphere. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dimant, Y. S.


    The objective of the current project is to provide a theoretical basis for better understanding of numerous radar and rocket observations of density irregularities and related effects in the lower equatorial and high-latitude ionospheres. The research focused on: (1) continuing efforts to develop a theory of nonlinear saturation of the Farley-Buneman instability; (2) revision of the kinetic theory of electron-thermal instability at low altitudes; (3) studying the effects of strong anomalous electron heating in the high-latitude electrojet; (4) analytical and numerical studies of the combined Farley-Bunemadion-thermal instabilities in the E-region ionosphere; (5) studying the effect of dust charging in Polar Mesospheric Clouds. Revision of the kinetic theory of electron thermal instability at low altitudes.

  5. Ionospheric Digital Database (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ionosphere is that part of the Earth's atmosphere that results mainly from the photo ionization of the upper atmosphere. Traditionally, the following ionospheric...

  6. Persistence of biological nitrogen fixation in high latitude grass-clover grasslands under different management practices (United States)

    Tzanakakis, Vasileios; Sturite, Ievina; Dörsch, Peter


    Biological nitrogen fixation (BNF) can substantially contribute to N supply in permanent grasslands, improving N yield and forage quality, while reducing inorganic N inputs. Among the factors critical to the performance of BNF in grass-legume mixtures are selected grass and legume species, proportion of legumes, the soil-climatic conditions, in particular winter conditions, and management practices (e.g. fertilization and compaction). In high latitude grasslands, low temperatures can reduce the performance of BNF by hampering the legumés growth and by suppressing N2 fixation. Estimation of BNF in field experiments is not straightforward. Different methods have been developed providing different results. In the present study, we evaluated the performance of BNF, in a newly established field experiment in North Norway over four years. The grassland consisted of white clover (Trifolium repens L.) and red clover (Trifolium pretense L.) sawn in three proportions (0, 15 and 30% in total) together with timothy (Pheum pretense L.) and meadow fescue (Festuca pratensis L.). Three levels of compaction were applied each year (no tractor, light tractor, heavy tractor) together with two different N rates (110 kg N/ha as cattle slurry or 170 kg N/ha as cattle slurry and inorganic N fertilizer). We applied two different methods, the 15N natural abundance and the difference method, to estimate BNF in the first harvest of each year. Overall, the difference method overestimated BNF relative to the 15N natural abundance method. BNF in the first harvest was compared to winter survival of red and white clover plants, which decreased with increasing age of the grassland. However, winter conditions did not seem to affect the grassland's ability to fix N in spring. The fraction of N derived from the atmosphere (NdfA) in white and red clover was close to 100% in each spring, indicating no suppression of BNF. BNF increased the total N yield of the grasslands by up to 75%, mainly due to high

  7. The Structure of Galactic Gas at High Latitudes: The Southern Polar Cap (United States)

    Gosachinskii, I. V.; Il'in, G. N.; Prozorov, V. A.


    We analyze the angular structure of the 21-cm interstellar neutral hydrogen emission at six and seven declinations in the northern (published previously) and southern polar caps of the Galaxy (Galactic latitudes from -40 deg to -90 deg), respectively, with an extent of 90 deg in right ascension. The RATAN-600 radio telescope has a beam width averaged over these regions of 2.0' x 30'. One-dimensional power spectra for the angular distribution of interstellar neutral hydrogen emission were computed in each 6.3-km/s-wide spectral channel by using the standard Fast Fourier Transform (FFT) code and were smoothed over 1 hour in right ascension. The Galactic latitude dependence of the mean parameters for the sky distribution of H I line emission at high latitudes was found to correspond to the distribution of gas in the form of a flat layer only in the northern region, while in the southern cap, the gas distribution is much less regular. In addition, the mean H I radial velocities are negative everywhere (-3.7 +/- 3.0 km/s in the north and -6.0+/-2.4 km/s in the south). The power spectra of the angular fluctuations in the range of angular periods from 10' to 6 deg appear as power laws. However, the spectral indices change greatly over the sky: from -3 to -1.2; on average, as the Galactic latitude increases and the H I column density decreases, the fluctuation spectrum of the interstellar gas emission becomes flatter. In the northern polar region, this behavior is much more pronounced, which probably stems from the fact that the gas column density in the south is generally a factor of 2 or 3 higher than that in the north. Therefore, the spectra are, on average, also steeper in the south, but the dependence on Galactic latitude is weaker. Using simulations, we show that the observed power-law spectrum of the H I emission distribution can be obtained in terms of not only a turbulent, but also a cloud model of interstellar gas if we use our previous spectra of the diameters

  8. Space Weather Impact on the European Interconnected Power Transmission System at High Latitudes (United States)

    Piccinelli, Roberta; Krausmann, Elisabeth


    High voltage power transmission grids can suffer outages or blackouts during geomagnetic storms (GMS). More specifically, GMS can inject geomagnetically induced currents (GICs) into the power network. Transformers were identified as the most vulnerable components of the power networks: GICs cause transformers to work in saturation regions generating voltage instabilities and eventually driving the system to collapse. Since GMS are expected to cause more pronounced disturbances at high latitudes, we addressed the effects of extreme GMS on the Scandinavian 400 kV interconnected power transmission grid, including Finland, Sweden and Norway. By applying extreme 100-year-benchmark scenarios, we analyzed potential space-weather triggered voltage instabilities in the power grid considering mono-phase transformers, which are known to be more vulnerable to GIC injection, and three-phase transformers, which are more resistant. We assumed that every node of the grid included either transformers of the mono-phase type, or three-phase transformers.Our simulations indicate that the three-phase configuration of the network is significantly more robust than the mono-phase one. Our study indicates that for a system with only three-phase transformers the likelihood of grid collapse is very low, and collapse only occurs for the worst-case scenario with extremely high geoelectric field intensities. In such a case, the increase in reactive power demand caused by transformer saturation is too high for the system to continue to provide power. Our results indicate that lines that experience higher reactive power losses during normal operation are more likely to increase losses during a GMS event. According to our study, the portion of the Scandinavian interconnected power transmission grid most vulnerable to extreme space weather is the part where the highest reactive losses in transmission lines and in voltage magnitudes are observed. This corresponds to the southern parts of Sweden and

  9. Modeling of nitrobenzene in the river with ice process in high-latitude regions

    Institute of Scientific and Technical Information of China (English)


    To deal with the accidental release of pollutants into frozen rivers, those rivers in high-latitude regions should be treated differently. Pollutants could be stored up in the ice and released when the ice melts in spring, perhaps resulting in secondary pollution in the river. A water quality model of nitrobenzene has been developed in this paper to assess the influence on river water quality due to the freezing process. The model is made up of three modules: thermodynamic module, hydrodynamic module and water quality module. The thermodynamic module considers the complex heat exchange processes between the water body and the atmosphere, the water body and the river bed, the water body and the ice cover, and so on. The growth of the ice cover is simulated in a simplified form whilst taking consideration of heat balance. The hydrodynamic model uses the Saint-Venant equations in non-constant flow and the influence of the ice cover is measured. The degradation, diffusion, absorption and desorption, and the influence of the freezing process are incorporated in the water quality module and the concept of Con- tinuously Stirred Tanked Reactors (CSTRs) model is applied in the model construction. The model has been applied to supporting the management of accidental pollution in the Songhua River. The model was calibrated and validated with monitored data. Regional sensitivity analysis based on a task-based Hornberger-Spear-Young (HSY) algorithm was carried out to examine the model structure and the re- sult showed that the model could describe the system very well. Then the conditioned model was ap- plied to predicting the concentration of nitrobenzene in the water when the ice melted in spring. The predictive result showed that the release of pollutants in the ice could lead to an increase in the con- centration of pollutants in the water, but the increase would be very small because there was only a small amount of pollutants stored in the ice. A secondary pollution

  10. An Automated Approach for Mapping Persistent Ice and Snow Cover over High Latitude Regions

    Directory of Open Access Journals (Sweden)

    David J. Selkowitz


    Full Text Available We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N. Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI, and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI, with a mean accuracy (agreement with the RGI of 0.96, a mean precision (user’s accuracy of the snow/ice cover class of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class of 0.86, and a mean F-score (a measure that considers both precision and recall of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to

  11. An automated approach for mapping persistent ice and snow cover over high latitude regions (United States)

    Selkowitz, David J.; Forster, Richard R.


    We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly

  12. The Neogene Redbeds of Iceland - a High-Latitude Terrestrial Paleoclimate Monitor Driven by Chemical Weathering (United States)

    Riishuus, M. S.; Bird, D. K.


    Chemical weathering of tephra and aeolian dust of basaltic composition produces clays and iron oxide/hydroxide minerals preserved in reddened layers referred to as redbeds, boles or paleosols. We propose that the extent of weathering of Neogene redbeds in Iceland and the isotopic composition of structurally bound water in associated weathering clay preserve records of high-latitude paleoclimatic and hydrologic conditions. In support we present whole-rock geochemistry and smectite D/H compositions of redbed horizons from Iceland for comparative analysis with global paleoclimate trends and local independent proxy data. Smectite δD values of 35 basaltic tephras in Iceland (~15-2 Ma) display a general decrease in δD compositions from -110 to -105 ‰ at ~15-13 Ma to -115 to -118 ‰ at ~3-2 Ma which correlates well with the global cooling trend from the Middle Miocene Climatic Optimum (17-15 Ma) to present day. Furthermore, the extent of weathering expressed by the Chemical Index of Weathering increases from 40-50 at 2-3 Ma to 80-90 at 15-16 Ma suggesting enhanced chemical weathering rates during the warmer climate conditions. The weathering extent of modern andosols in Iceland is temperature-dependant and allows construction of a paleo-climate proxy [1]. Application of this proxy suggests that mean annual temperatures (MATs) increased from ~0°C at ~2 Ma to ~9°C at 15-16 Ma in general agreement with independent local proxy data. The δD values of paleo meteoric waters in Iceland, estimated using a smectite-water fractionation factor and model MATs, decrease from -41 ‰ at 15-16 Ma (9°C) to -45 ‰ at 2 Ma (0°C). The paleo meteoric water compositions are increasingly enriched in deuterium relative to present day meteoric water in Iceland (δD ≤ -50 ‰). This is in agreement with global cooling since Middle Miocene toward ice-dominated conditions with greater equator-to-pole temperature contrasts, affecting the distillation process between ocean, atmosphere and

  13. System-level view of geospace dynamics: Challenges for high-latitude ground-based observations (United States)

    Donovan, E.


    high latitude ground based observations can address these challenges.

  14. Absorption properties of high-latitude Norwegian coastal water: The impact of CDOM and particulate matter (United States)

    Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Sørensen, Kai; Norli, Marit; Stamnes, Knut; Stamnes, Jakob J.


    We present data from measurements and analyses of the spectral absorption due to colored dissolved organic matter (CDOM), total suspended matter (TSM), phytoplankton, and non-algal particles (NAP) in high-latitude northern Norwegian coastal water based on samples taken in spring, summer, and autumn. The Chlorophyll-a (Chl-a) concentration was found to vary significantly with season, whereas regardless of season CDOM was found to be the dominant absorber for wavelengths shorter than 600 nm. The absorption spectral slope S350-500 for CDOM varied between 0.011 and 0.022 nm-1 with mean value and standard deviation given by (0.015 ± 0.002) nm-1. The absorption spectral slope was found to be strongly dependent on the wavelength interval used for fitting. On average, S280-500 was found to be 43% higher than S350-500. A linear relationship was found between the base 10 logarithm of the absorption coefficient at 440 nm [log(ag(440))] and S350-500. Regardless of season, phytoplankton were the dominant component of the TSM absorption indicating little influence from land drainage. The mean values of the Chl-a specific absorption coefficient of phytoplankton aph*(λ) at 440 nm and 676 nm were 0.052 m2 mg-1 and 0.023 m2 mg-1, respectively, and aph*(λ) was found to vary with season, being higher in summer and autumn than in spring. The absorption spectral slope SNAP, which is the spectral slope of absorption spectrum for non-algal particles, was lower than that for European coastal water in general. It varied between 0.0048 and 0.022 nm-1 with mean value and standard deviation given by (0.0083-1 ± 0.003) nm-1. Comparisons of absorption coefficients measured in situ using an ac-9 instrument with those measured in the laboratory from water samples show a good agreement.

  15. Modeling of nitrobenzene in the river with ice process in high-latitude regions

    Institute of Scientific and Technical Information of China (English)

    SUN PengCheng; ZENG SiYu; CHEN JiNing


    To deal with the accidental release of pollutants into frozen rivers,those rivers in high-latitude regions should be treated differently.Pollutants could be stored up in the ice and released when the ice melts in spring,perhaps resulting in secondary pollution in the river.A water quality model of nitrobenzene has been developed in this paper to assess the influence on river water quality due to the freezing process.The model is made up of three modules:thermodynamic module,hydrodynamic module and water quality module.The thermodynamic module considers the complex heat exchange processes between the water body and the atmosphere,the water body and the river bed,the water body and the ice cover,and so on.The growth of the ice cover is simulated in a simplified form whilst taking consideration of heat balance.The hydrodynamic model uses the Saint-Venant equations in non-constant flow and the influence of the ice cover is measured.The degradation,diffusion,absorption and desorption,and the influence of the freezing process are incorporated in the water quality module and the concept of Continuously Stirred Tanked Reactors (CSTRs) model is applied in the model construction.The model has been applied to supporting the management of accidental pollution in the Songhua River.The model was calibrated and validated with monitored data.Regional sensitivity analysis based on a task-based Hornberger-Spear-Young (HSY) algorithm was carried out to examine the model structure and the result showed that the model could describe the system very well.Then the conditioned model was applied to predicting the concentration of nitrobenzene in the water when the ice melted in spring.The predictive result showed that the release of pollutants in the ice could lead to an increase in the concentration of pollutants in the water,but the increase would be very small because there was only a small amount of pollutants stored in the ice.A secondary pollution could therefore be avoided

  16. The Geographic Distribution of Boulder Halo Craters at Mid-to-High Latitudes on Mars (United States)

    Rader, L. X.; Fassett, C. I.; Levy, J. S.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.; Dyar, M. D.


    Extensive evidence exists for ground ice at mid-to-high latitudes on Mars, including results from neutron spectroscopy [1-3], thermal properties [4-5], geomorphology [e.g., 6-9], and the in situ observations of Mars Phoenix [10]. This ground ice has been hypothesized to be emplaced diffusively and fill pores [11], or to have accumulated by ice and dust deposition that draped or mantled the terrain [7, 12]. These two processes are not mutually exclusive; both potentially have occurred on Mars [5]. One of the landforms found in areas where ground ice is common on Mars are boulder halo craters [e.g., 13-15] (Figure 1), which are topographically muted impact craters that are filled by ice-rich regolith. They are outlined by boulders that trace a circular outline of the original crater rim. Boulder halos generally have distinctly higher boulder densities than the surrounding background plains and have few boulders in their interiors. The mechanism of boulder halo crater formation is somewhat uncertain. Our working model is that an impact event occurs with sufficient size to excavate to a depth greater than the boulder-poor, ice-rich soils. Excavated boulders are deposited around the crater's rim and in its proximal ejecta. Quite rapidly [14], the crater becomes infilled by icy soil. Rather than being buried, boulders in the halo remain at the surface, perhaps be-cause they 'float' relative to finer-grained materials [14, 16]. Regardless of the details of this process, the life-time of boulders at the surface is much greater than the timescale needed to remove most of the craters' topography. Physical weathering of rocks must be greatly out-paced by crater infilling (the opposite of what is typical, e.g., on the Moon [17]). The rapidity of this infilling is easiest to understand if icy mantling material is deposited and accumulates, rather than simply being added by pore filling of soils. If this model is correct, boulder halos only form when they excavate rock

  17. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges

    Directory of Open Access Journals (Sweden)

    Annett Bartsch


    resolution around 30 m has been shown to be suitable for a range of applications. This implies that the current Landsat-8, as well as Sentinel-2 missions would be adequate as input data. Recent studies have exemplified the value of Synthetic Aperture Radar (SAR in tundra regions. SAR missions may be therefore of added value for large-scale high latitude land cover mapping.

  18. The high-latitude cloud MBM 7. I. H I and CO observations (United States)

    Minh, Y. C.; Park, Y. S.; Kim, K. T.; Irvine, W. M.; Brewer, M. K.; Turner, B. E.


    The high-latitude cloud (HLC) MBM 7 has been observed in the 21 cm H I line and the 12CO(1-0) and 13CO(1-0) lines with similar spatial resolutions. The data reveal a total mass approximately 30 M solar for MBM 7 and a complex morphology. The cloud consists of a cold dense core of 5 M solar surrounded by atomic and molecular gas with about 25 M solar, which is embedded in hotter and more diffuse H I gas. We derive a total column density N(H I + 2H2) of 1 x 10(21) cm-2 toward the center and 1 x 10(20) cm-3 toward the envelope of MBM 7. The CO line indicates the existence of dense cores [n(H2) > or = 2000 cm-3] of size (FWHM) approximately 0.5 pc. The morphology suggests shock compression from the southwest direction, which can form molecular cores along the direction perpendicular to the H I distribution. The H I cloud extends to the northeast, and the velocity gradient appears to be about 2.8 km s-1 pc-1 in this direction, which indicates a systematic outward motion which will disrupt the cloud in approximately 10(6) yr. The observed large line widths of approximately 2 km s-1 for CO suggest that turbulent motions exist in the cloud, and hydrodynamical turbulence may dominate the line broadening. Considering the energy and pressure of MBM 7, the dense cores appear not to be bound by gravity, and the whole cloud including the dense cores seem to be expanding. The distance to HLCs suggest that they belong to the galactic plane, since the scale height of the cloud is < or approximately equal to 100 pc. Compared to the more familiar dense dark clouds, HLCs may differ only in their small mass and low density, with their proximity reducing the filling factor and enhancing the contrast of the core and envelope structure.

  19. Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit (United States)

    Kikuchi, Takashi; Hashimoto, Kumiko K.


    The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night

  20. High-latitude lower thermospheric neutral winds at EISCAT and Sondrestrom during LTCS 1

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.M. (Univ. of Michigan, Ann Arbor (USA)); Virdi, T.S. (Univ. Coll. of Wales, Aberystwyth (England))


    The incoherent scatter radar located at Soendre Stroemfjord, Greenland (67{degree}N, 51{degree}W, 74.5{degree}{Lambda}) and the EISCAT incoherent scatter facility located in northern Scandinavia (69.5{degree}N, 19{degree}E, 66.3{degree}{Lambda}) both obtained E and F region measurements during the first campaign of the Lower Thermosphere Coupling Study (LTCS 1, September 21-25, 1987). Neutral winds deduced from these measurements have been analyzed for their mean flow and tidal components. A number of the altitude profiles for the mean winds and the diurnal and semidiurnal wave components at the two radar locations show similar variations with height, indicating that latitudinal rather than longitudinal effects are dominant in determining the observed wind field. Diurnal tidal amplitudes and phases are reasonably well represented by theoretical model results (Forbes, 1982). The semidiurnal amplitudes and phases, although somewhat consistent between the two radars, are not well represented in equinox tidal model results (Forbes and Vial, this issue). Results from both radars indicate a vertical wavelength for the zonal semidiurnal oscillation of approximately 60 km. During a period of impulsive magnetospheric forcing (September 22-23), winds deduced from measurements at both radars show enhanced eastward flows near midnight accompanied by equatorward winds at Sondrestrom. Comparison with the results of a National Center for Atmospheric Research thermosphere-ionosphere general circulation model (TIGCM) simulation of the LTCS 1 interval shows generally better agreement with the observations at EISCAT than at Sondrestrom.

  1. Observations of IMF and seasonal effects in high-latitude convection (United States)

    Ruohoniemi, J. M.; Greenwald, R. A.


    Strong interplanetary magnetic field (IMF) and seasonal effects in the convection of nightside ionospheric plasma are described. The findings are based on a statistical analysis of observations made with the Johns Hopkins University/ Applied Physics Lab (JHU/APL) HF radar located at Goose Bay, Labrador. For positive sign of the IMF dusk-dawn component, By greater than 0 the dawn cell is more crescent shaped and the dusk cell more round while for BY less than 0 these pairings of size and shape are reversed. The more extreme crescent /round cell dichotomy is obtained for BY greater than 0. The return flows associated with the crescent-shaped cell dominate at midnight MLT (magnetic local time); the reversal in the zonal velocity in the 67 deg-69 deg lambda (magnetic latitude) interval occurs 2.5 hr earlier in summer than in winter. The maximum effects are obtained on the nightside for the pairings By greater than 0, summer and BY less than 0, winter; the first produces the more structured cell in the morning, the second in the evening, and this cell dominates the return flow at midnight. The difference in the zonal flow reversals for these pairings exceeds 4 hr in MLT.

  2. Shallow food for deep divers: Dynamic foraging behavior of male sperm whales in a high latitude habitat

    DEFF Research Database (Denmark)

    Teloni, Valeria; Johnson, M.P.; Miller, P.J.O.


    Groups of female and immature sperm whales live at low latitudes and show a stereotypical diving and foraging behavior with dives lasting about 45 min to depths of between 400 and 1200 m. In comparison, physically mature male sperm whales migrate to high latitudes where little is known about...... their foraging behavior and ecology. Here we use acoustic recording tags to study the diving and acoustic behavior of male sperm whales foraging off northern Norway. Sixty-five hours of tag data provide detailed information about the movements and sound repertoire of four male sperm whales performing 83 dives...... epipelagic prey, is consistent with the hypothesis that male sperm whales may migrate to high latitudes to access a productive, multi-layered foraging habitat....

  3. Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American forests (United States)

    Mykleby, P. M.; Snyder, P. K.; Twine, T. E.


    Afforestation is a viable and widely practiced method of sequestering carbon dioxide from the atmosphere. However, because of a change in surface albedo, placement of less reflective forests can cause an increase in net-absorbed radiation and localized surface warming. This effect is enhanced in northern high latitudes where the presence of snow cover exacerbates the albedo difference. Regions where afforestation could provide a climate benefit are determined by comparing net ecosystem production and net radiation differences from afforestation in midlatitude and high latitude of North America. Using the dynamic vegetation model Integrated Biosphere Simulator, agricultural version (Agro-IBIS), we find a boundary through North America where afforestation results in a positive equivalent carbon balance (cooling) to the south, and a negative equivalent carbon balance (warming) to the north. Including the effects of stand age and fraction cover affect whether a site contributes to mitigating global warming.

  4. Wave and plasma measurements and GPS diagnostics of the main ionospheric trough as a hybrid method used for Space Weather purposes

    Directory of Open Access Journals (Sweden)

    H. Rothkaehl


    Full Text Available The region of the main ionospheric trough is a unique region of the ionosphere, where different types of waves and instabilities can be generated. This region of the ionosphere acts like a lens, focusing a variety of indicators from the equator of plasmapause and local ionospheric plasma. This paper reports the results of monitoring the mid-latitude trough structure, dynamics and wave activity. For these purposes, the data gathered by the currently-operating DEMETER satellite and past diagnostics located on IK-19, Apex, and MAGION-3 spacecraft, as well as TEC measurements were used. A global-time varying picture of the ionospheric trough was reconstructed using the sequence of wave spectra registered and plasma measurements in the top-side ionosphere. The authors present the wave activity from ULF frequency band to the HF frequency detected inside the trough region and discuss its properties during geomagnetic disturbances. It is thought that broadband emissions are correlated with low frequency radiation, which is excited by the wave-particle interaction in the equatorial plasmapause and moves to the ionosphere along the geomagnetic field line. In the ionosphere, the suprathermal electrons can interact with these electrostatic waves and excite electron acoustic waves or HF longitudinal plasma waves.

    Furthermore, the electron density trough can provide useful data on the magnetosphere ionosphere dynamics and morphology and, in consequence, can be used for Space Weather purposes.

  5. Ionospheric Correction Based on Ingestion of Global Ionospheric Maps into the NeQuick 2 Model

    Directory of Open Access Journals (Sweden)

    Xiao Yu


    Full Text Available The global ionospheric maps (GIMs, generated by Jet Propulsion Laboratory (JPL and Center for Orbit Determination in Europe (CODE during a period over 13 years, have been adopted as the primary source of data to provide global ionospheric correction for possible single frequency positioning applications. The investigation aims to assess the performance of new NeQuick model, NeQuick 2, in predicting global total electron content (TEC through ingesting the GIMs data from the previous day(s. The results show good performance of the GIMs-driven-NeQuick model with average 86% of vertical TEC error less than 10 TECU, when the global daily effective ionization indices (Az versus modified dip latitude (MODIP are constructed as a second order polynomial. The performance of GIMs-driven-NeQuick model presents variability with solar activity and behaves better during low solar activity years. The accuracy of TEC prediction can be improved further through performing a four-coefficient function expression of Az versus MODIP. As more measurements from earlier days are involved in the Az optimization procedure, the accuracy may decrease. The results also reveal that more efforts are needed to improve the NeQuick 2 model capabilities to represent the ionosphere in the equatorial and high-latitude regions.

  6. Parallel electron streaming in the high-latitude E region and its effect on the incoherent scatter spectrum (United States)

    Bahcivan, H.; Cosgrove, R. B.; Tsunoda, R. T.


    This article investigates the combined electron heating and streaming effects of low-frequency parallel electric fields on the incoherent scatter measurements of the high-latitude E region. The electric fields distort the electron distribution function, inducing changes on the amplitude and frequency of the ion-acoustic line in the measured incoherent scatter spectrum. If one assumes Maxwellian electrons, the measurements of electron and ion temperatures and electron density are subject to significant percentage errors during geomagnetically active conditions.

  7. Ionosphere research with a HF/MF cubesat radio instrument (United States)

    Kallio, Esa; Aikio, Anita; Alho, Markku; Fontell, Mathias; Harri, Ari-Matti; Kauristie, Kirsti; Kestilä, Antti; Koskimaa, Petri; Mäkelä, Jakke; Mäkelä, Miika; Turunen, Esa; Vanhamäki, Heikki; Verronen, Pekka


    New technology provides new possibilities to study geospace and 3D ionosphere by using spacecraft and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We introduce recently developed simulation models as well as measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in late 2017 ( The new models are (1) a 3D ray tracing model and (2) a 3D full kinetic electromagnetic simulation. We also introduce how combining of the

  8. Study on the ionospheric effects with different heat-conditions

    Institute of Scientific and Technical Information of China (English)

    HE Fang; ZHAO Zhengyu; NI Binbin; ZHANG Yuannong


    A numerical model has been developed.Based on the numerical simulation results,the spatial effects of the ionosphere,mainly consisting of the change on electron density(ED)and electron temperature(ET),heated by the high frequency(HF)pump wave have been analyzed quantitatively.Results are presented as the space-time evolution regulation on the main parameters of the ionosphere resulted by the HF heating waves under the different heat-conditions,iust as different regions,such as high latitude and mid-low latitude;different heating power or frequency,such as underdense heating and over-dense heating and regions at different altitudes.The heating effects in different regions with different heating conditions have been presented in figures.Finally,some primary conclusions are given by comparing the simulation results with experimental observation.

  9. Impulsive Coupling Between the Atmosphere and Ionosphere/Magnetosphere (United States)

    Pilipenko, V. A.


    This review covers various aspects of the impulsive coupling in the ULF frequency range between atmospheric discharge processes and upper ionosphere. Characteristic feature of the upper ionosphere is the occurrence of the ionospheric Alfven resonator (IAR) and MHD waveguide, which can trap the electromagnetic wave energy in the range from fractions of Hz to few Hz. Induction magnetometer observations at mid-latitude stations are considered as an example of a transient ULF response to the regional and global lightning activity. For many events, besides the main impulse produced by a lightning discharge, a secondary impulse delayed about 1 sec was observed. These secondary echo-impulses are probably caused by the partial reflection of wave energy of the initial lightning pulse from the upper IAR boundary in the topside ionosphere. The multi-band spectral resonant structure (SRS) can be formed owing to the occurrence of paired pulses in analyzed time series. The statistical superposed epoch method indeed has revealed a dominance of two-pulse structure in the magnetic field background during the periods of the SRS occurrence. The numerical modeling shows that during the lightning discharge a coupled wave system comprising IAR and MHD waveguide is excited. In the lightning proximity (about few hundred km) the amplitudes of radial component is 1-2 orders less than those of the azimuthal component, and only the lowest IAR harmonics are revealed in the radial magnetic component. At distances ˜103 km the spectral power densities of both components are comparable, and the SRS is more pronounced. The problems and further prospects of the study of the impulsive magnetosphere-ionosphere-atmosphere coupling via transient processes during thunderstorms are discussed.

  10. The Energetic Constraints on the Zonal Mean Atmospheric Circulations in the Tropics, Midlatitudes, and High Latitudes (United States)

    Hwang, Yen-Ting

    In this doctoral thesis, I have studied the processes that affect the atmospheric energy budget and their coupling relationships with atmospheric circulations. The equator-to-pole radiation gradient at the top of the atmosphere is the fundamental driver of atmospheric and oceanic circulations. Any anomaly in the energy budget due to variations in different climate components (such as clouds, aerosols, atmospheric properties, and land surfaces) will have an effect on the atmospheric and oceanic circulations and energy transport. Variations in the energy budget of extratropical regions have a non-local effect on tropical climate and vice versa. We first investigated climate components that affect the atmospheric energy budget and their coupled relationships with the atmospheric energy transport, using CMIP multi-model ensembles. We studied how individual components affect energy transport in three latitude bands: (1) at 70 degrees, where increasing poleward energy transport may cause polar amplification, (2) at 40 degrees, where eddies are the strongest, and (3) in the deep tropics, where global climate models (GCMs) do not agree on the changes in transport in global warming scenarios. In high latitudes, positive radiative effects from melting sea ice decrease the equator-to-pole temperature gradient and prevent poleward fluxes from increasing. Models that have more melting ice tend to predict a smaller increase in the energy transport, which is counterintuitive based on the argument that increasing poleward transport can lead to melting sea ice. The cooling effect of increasing low clouds over newly open ocean along the ice edge sharpens the temperature gradient and increases the energy transport in midlatitudes. Clouds and sea ice in the extratropics can also influence energy transport at the equator. We then shifted our focus to the tropical rain belt, built on the first part that demonstrated a directly linkage from hemispheric asymmetry of the atmospheric energy

  11. Current state and prospects of carbon management in high latitudes of Northern Eurasia (United States)

    Schepaschenko, Dmitry; Shvidenko, Anatoly


    The current state and trajectories of future development of natural landscapes in high latitudes of Northern Eurasia are defined inter alia by (1) current unsatisfactory social and economic situation in boreal Northern Eurasia; (2) the dramatic magnitude of on-going and expected climatic change (warming up to 10-12oC under global warming at 4oC); (3) increasing anthropogenic pressure, particularly in regions of intensive oil and gas exploration and extraction; (4) large areas of sparsely populated and practically unmanaged land; (5) vulnerability of northern ecosystems which historically developed under cold climates and buffering capacity of which is not well known; (6) risk of catastrophic natural disturbances (fire, insect outbreaks) whose frequency and severity have accelerated during recent decades; and (7) high probability of irreversible changes of vegetation cover. These specifics are overlapped with insufficient governance of natural renewable resources (e.g., forests) and destructed practice of industrial development of new territories (oil and gas extraction and exploration, metallurgy etc.). Based on a full carbon account for terrestrial vegetation ecosystems of Northern Eurasia, we analyze the relative impacts of major drivers on magnitude and uncertainty of the Net Ecosystem Carbon Balance (NECB) under current and expected climate and environment. Dynamic trends and interannual variability of NECB are mostly dependent on weather conditions during growth seasons of individual years, regimes of natural disturbances, and anthropogenic impacts on ecosystems. In a short term, disturbances and human impacts cause a theoretically 'manageable' part of the full carbon account, which on average is estimated to be of about 20% of annual net primary production. In a long term, thawing of permafrost and change of hydrological regimes of vast territories may result in a catastrophic decline of the forested area and wide distribution of 'green desertification'. The

  12. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus (United States)

    Kuhn, Thomas; Heymsfield, Andrew J.


    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  13. Past perspectives on Northern High-Latitude sensitivity to a 400ppm+ world (Invited) (United States)

    Jansen, E.; Risebrobakken, B.; Drange, H.


    of the period. Emergence of the initial signs of Northern Hemisphere glaciation at about 13 m.y. happened when pCO2-levels had fallen to below modern values, and continuous presence of IRD from calving glaciers in most of the late Miocene and Pliocene is consistent with the generally low pCO2-levels of these periods. T the ocean circulation of the time was, however, clearly different from modern conditions, as indicated by a very shallow lysocline, less ventilation and extensive carbonate dissolution. The reduced state of the overturning persisted also in the warmest part of the Pliocene with pCO2-levels in excess of 400ppmv, possibly indicating that changes in the hydrological cycle was important for high-latitude stratification. Improved ventilation apparently followed the intensification of Northern Hemisphere glaciation with a markedly reduced carbonate dissolution accompanying the emergence of strong 100kyr cyclicity. Apparently the overturning circulation may operate differently for the same general pCO2-levels, with its response dominated by the freshwater budget in a manner independent of the ambient pCO2.

  14. Numerical analysis of global ionospheric current system including the effect of equatorial enhancement

    Directory of Open Access Journals (Sweden)

    S. Tsunomura

    Full Text Available A modeling method is proposed to derive a two-dimensional ionospheric layer conductivity, which is appropriate to obtain a realistic solution of the polar-originating ionospheric current system including equatorial enhancement. The model can be obtained by modifying the conventional, thin shell conductivity model. It is shown that the modification for one of the non-diagonal terms (Σθφ in the conductivity tensor near the equatorial region is very important; the term influences the profile of the ionospheric electric field around the equator drastically. The proposed model can reproduce well the results representing the observed electric and magnetic field signatures of geomagnetic sudden commencement. The new model is applied to two factors concerning polar-originating ionospheric current systems. First, the latitudinal profile of the DP2 amplitude in the daytime is examined, changing the canceling rate for the dawn-to-dusk electric field by the region 2 field-aligned current. It is shown that the equatorial enhancement would not appear when the ratio of the total amount of the region 2 field-aligned current to that of region 1 exceeds 0.5. Second, the north-south asymmetry of the magnetic fields in the summer solstice condition of the ionospheric conductivity is examined by calculating the global ionospheric current system covering both hemispheres simultaneously. It is shown that the positive relationship between the magnitudes of high latitude magnetic fields and the conductivity is clearly seen if a voltage generator is given as the source, while the relationship is vague or even reversed for a current generator. The new model, based on the International Reference Ionosphere (IRI model, can be applied to further investigations in the quantitative analysis of the magnetosphere-ionosphere coupling problems.

    Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionosphere

  15. PETROBRAS P-55: a new approach for the topsides design

    Energy Technology Data Exchange (ETDEWEB)

    Bronneberg, Jos; Maas, Hans [SBM Offshore, Schiedam (Netherlands); GustoMSC, Schiedam (Netherlands); Cyranka, Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)


    In July 2007 PETROBRAS awarded Gusto BV the Front End Engineering and Design for the re-design of the Topsides for PETROBRAS-55 Production Platform ('P-55') seeking simplification, reduction of costs and schedule. The PETROBRAS-55 will add an impressive 180 000 barrels oil processing capacity to the Roncador Field in the Campos Basin. Despite its large capacity the functions to be fulfilled on board can be performed by methods well known in the oil industry. Oil dehydration by gravity and electrostatic separators, oil stabilization through heating and depressurization, carbon dioxide removal out of gas through adsorption by amine, gas dehydration through absorption by glycol, produced water treatment through hydrocyclones and gas flotation, etc. Offshore operations in general, due to their independent (self reliance), remote location, limited manning and expertise, etc., need to be as rugged, robust, lean and simple in its set-up and operation as possible. The (front end) engineering plays an essential role in the Endeavour to obtain these characteristics on an offshore unit. The initial configuration is perceived as one of the key elements that will determine to a great extent the feasibility of the much sought simplicity. Since the basic design does not cover the complete project the approach used to meet the objectives was to deliver a safe, operable and lean design, it focused on simplifications. The mainly technical approach is described below. (author)

  16. Assessment studies on the inversion of satellite to satellite electron content to obtain electron density profiles in the ionosphere

    CERN Document Server

    Hochegger, G P


    The electron content data, obtained by satellite-to-satellite occultations of radio signals can lead to height profiles of electron density by discrete inversion. Since there is no possibility to verify such profiles by means of other measurements (practically never measurements at the same time and same location) it was necessary to simulate occultation scenarios by means of an ionosphere model to obtain a large number of comparisons sufficient for investigations on a statistical basis. The obtained electron contents were inverted and compared with electron density height profiles, obtained with the same ionospheric model for the occultation point. The differences between these profiles were investigated (difference between the F2-peak maxima, the height of the maxima, the shape of the topside and bottom side ionosphere). Since simulations were done for chosen locations (250 randomly spread on the globe) for every month and every second hour and for two solar activity levels (HSA and LSA), a whole year was '...

  17. UHF Radar observations at HAARP with HF pump frequencies near electron gyro-harmonics and associated ionospheric effects (United States)

    Watkins, Brenton; Fallen, Christopher; Secan, James

    Results for HF modification experiments at the HAARP facility in Alaska are presented for experiments with the HF pump frequency near third and fourth electron gyro-harmonics. A UHF diagnostic radar with range resolution of 600 m was used to determine time-dependent altitudes of scattering from plasma turbulence during heating experiments. Experiments were conducted with multiple HF frequencies stepped by 20 kHz above and below the gyro-harmonic values. During times of HF heating the HAARP facility has sufficient power to enhance large-scale ionospheric densities in the lower ionosphere (about 150-200 km altitude) and also in the topside ionosphere (above about 350 km). In the lower ionosphere, time-dependent decreases of the altitude of radar scatter result from electron density enhancements. The effects are substantially different even for relatively small frequency steps of 20 kHz. In all cases the time-varying altitude decrease of radar scatter stops about 5-10 km below the gyro-harmonic altitude that is frequency dependent; we infer that electron density enhancements stop at this altitude where the radar signals stop decreasing with altitude. Experiments with corresponding total electron content (TEC) data show that for HF interaction altitudes above about 170 km there is substantial topside electron density increases due to upward electron thermal conduction. For lower altitudes of HF interaction the majority of the thermal energy is transferred to the neutral gas and no significant topside density increases are observed. By selecting an appropriate HF frequency a little greater than the gyro-harmonic value we have demonstrated that the ionospheric response to HF heating is a self-oscillating mode where the HF interaction altitude moves up and down with a period of several minutes. If the interaction region is above about 170 km this also produces a continuously enhanced topside electron density and upward plasma flux. Experiments using an FM scan with the HF

  18. Reconnection electric field estimates and dynamics of high-latitude boundaries during a substorm

    Directory of Open Access Journals (Sweden)

    T. Pitkänen


    Full Text Available The dynamics of the polar cap and the auroral oval are examined in the evening sector during a substorm period on 25 November 2000 by using measurements of the EISCAT incoherent scatter radars, the north-south chain of the MIRACLE magnetometer network, and the Polar UV Imager.

    The location of the polar cap boundary (PCB is estimated from electron temperature measurements by the mainland low-elevation EISCAT VHF radar and the 42 m antenna of the EISCAT Svalbard radar. A comparison to the poleward auroral emission (PAE boundary by the Polar UV Imager shows that in this event the PAE boundary is typically located 0.7° of magnetic latitude poleward of the PCB by EISCAT. The convection reversal boundary (CRB is determined from the 2-D plasma drift velocity extracted from the dual-beam VHF data. The CRB is located 0.5–1° equatorward of the PCB indicating the existence of viscous-driven antisunward convection on closed field lines.

    East-west equivalent electrojets are calculated from the MIRACLE magnetometer data by the 1-D upward continuation method. In the substorm growth phase, electrojets together with the polar cap boundary move gradually equatorwards. During the substorm expansion phase, the Harang discontinuity (HD region expands to the MLT sector of EISCAT. In the recovery phase the PCB follows the poleward edge of the westward electrojet.

    The local ionospheric reconnection electric field is calculated by using the measured plasma velocities in the vicinity of the polar cap boundary. During the substorm growth phase, values between 0 and 10 mV/m are found. During the late expansion and recovery phase, the reconnection electric field has temporal variations with periods of 7–27 min and values from 0 to 40 mV/m. It is shown quantitatively, for the first time to our knowledge, that intensifications in the local reconnection electric field correlate with appearance of auroral poleward boundary intensifications (PBIs

  19. Ionosphere data assimilation modeling of 2015 St. Patrick's Day geomagnetic storm (United States)

    Chen, C. H.; Lin, C. H.; Matsuo, T.; Chen, W. H.


    The ionospheric plasma disturbances during a severe storm can affect human activities and systems, such as navigation and HF communication systems. Therefore, the forecast of ionospheric electron density is becoming an important topic recently. This study is conducted with the ionospheric assimilation model by assimilating the total electron content observations into the thermosphere-ionosphere coupling model with different high-latitude ionospheric convection models, Heelis and Weimer, and further to forecast the variations of ionospheric electron density during the 2015 St. Patrick's Day geomagnetic storm. The forecast capabilities of these two assimilation models are evaluated by the root-mean-square error values in different regions to discuss its latitudinal effects. Results show the better forecast in the electron density at the low-latitude region during the storm main phase and the recovery phase. The well reproduced eastward electric field at the low-latitude region by the assimilation model reveals that the electric fields may be an important factor to have the contributions on the accuracy of ionospheric forecast.

  20. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Abdirahman M.


    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally

  1. Radiotomographic observations of corpuscular ionization in the ionosphere (United States)

    Andreeva, E. S.; Kunitsyn, V. E.; Tereshchenko, E. D.; Krysanov, B. Yu.; Nazarenko, M. O.


    Along with the antisunward cross-polar convection of the ionospheric plasma and the field-aligned electric currents, the corpuscular fluxes play an important role in the magnetosphere-ionosphere coupling. Being more tightly coupled with the magnetosphere, the subauroral and auroral ionosphere noticeably differs from the midlatitude ionosphere. It experiences much stronger and faster variations in space and time. The particle fluxes and the electric fields of magnetospheric origin penetrate into the ionosphere and substantially affect the production, loss and transport of charged particles. The rate of ionization in the midlatitude ionosphere is controlled almost solely by the X-ray and UV/EUV solar radiation, whereas in high latitudes the fluxes of particles precipitating from the magnetosphere are significant sources of ionization. Moreover, they are probably the single source during the polar night. Typically, the contribution of the magnetospheric corpuscular fluxes into the ionization is small compared to the contribution of electromagnetic radiation; however, during the geomagnetic storms, it may prove significant, especially if these fluxes are sufficiently strong and act in the nighttime when the solar electromagnetic radiation is absent. The present work is devoted to radio tomographic imaging of the ionospheric effects of particle precipitation using the data from low-orbital navigational satellite systems. The ionospheric radio tomography is actively developed during the past two decades. It provides images of the 2D distribution of electron density in the vertical plane (latitude-altitude cross-sections) (averaged over an interval of 10-15 minutes) for the spatial sector covering several thousand kilometers. The horizontal and vertical resolution of the RT method is 20-30 km and 30-40 km, respectively. In the present work, the particle precipitation events are identified from the particle flux measurements onboard DMSP satellites. We present and discuss

  2. Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming (United States)

    Pedatella, N. M.; Fang, T.-W.; Jin, H.; Sassi, F.; Schmidt, H.; Chau, J. L.; Siddiqui, T. A.; Goncharenko, L.


    A comparison of different model simulations of the ionosphere variability during the 2009 sudden stratosphere warming (SSW) is presented. The focus is on the equatorial and low-latitude ionosphere simulated by the Ground-to-topside model of the Atmosphere and Ionosphere for Aeronomy (GAIA), Whole Atmosphere Model plus Global Ionosphere Plasmasphere (WAM+GIP), and Whole Atmosphere Community Climate Model eXtended version plus Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (WACCMX+TIMEGCM). The simulations are compared with observations of the equatorial vertical plasma drift in the American and Indian longitude sectors, zonal mean F region peak density (NmF2) from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites, and ground-based Global Positioning System (GPS) total electron content (TEC) at 75°W. The model simulations all reproduce the observed morning enhancement and afternoon decrease in the vertical plasma drift, as well as the progression of the anomalies toward later local times over the course of several days. However, notable discrepancies among the simulations are seen in terms of the magnitude of the drift perturbations, and rate of the local time shift. Comparison of the electron densities further reveals that although many of the broad features of the ionosphere variability are captured by the simulations, there are significant differences among the different model simulations, as well as between the simulations and observations. Additional simulations are performed where the neutral atmospheres from four different whole atmosphere models (GAIA, HAMMONIA (Hamburg Model of the Neutral and Ionized Atmosphere), WAM, and WACCMX) provide the lower atmospheric forcing in the TIME-GCM. These simulations demonstrate that different neutral atmospheres, in particular, differences in the solar migrating semidiurnal tide, are partly responsible for the differences in the simulated

  3. Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrick's Day storm (United States)

    Spogli, Luca; Cesaroni, Claudio; Di Mauro, Domenico; Pezzopane, Michael; Alfonsi, Lucilla; Musicò, Elvira; Povero, Gabriella; Pini, Marco; Dovis, Fabio; Romero, Rodrigo; Linty, Nicola; Abadi, Prayitno; Nuraeni, Fitri; Husin, Asnawi; Le Huy, Minh; Lan, Tran Thi; La, The Vinh; Pillat, Valdir Gil; Floury, Nicolas


    We investigate the geospace response to the 2015 St. Patrick's Day storm leveraging on instruments spread over Southeast Asia (SEA), covering a wide longitudinal sector of the low-latitude ionosphere. A regional characterization of the storm is provided, identifying the peculiarities of ionospheric irregularity formation. The novelties of this work are the characterization in a broad longitudinal range and the methodology relying on the integration of data acquired by Global Navigation Satellite System (GNSS) receivers, magnetometers, ionosondes, and Swarm satellites. This work is a legacy of the project EquatoRial Ionosphere Characterization in Asia (ERICA). ERICA aimed to capture the features of both crests of the equatorial ionospheric anomaly (EIA) and trough (EIT) by means of a dedicated measurement campaign. The campaign lasted from March to October 2015 and was able to observe the ionospheric variability causing effects on radio systems, GNSS in particular. The multiinstrumental and multiparametric observations of the region enabled an in-depth investigation of the response to the largest geomagnetic storm of the current solar cycle in a region scarcely reported in literature. Our work discusses the comparison between northern and southern crests of the EIA in the SEA region. The observations recorded positive and negative ionospheric storms, spread F conditions, scintillation enhancement and inhibition, and total electron content variability. The ancillary information on the local magnetic field highlights the variety of ionospheric perturbations during the different storm phases. The combined use of ionospheric bottomside, topside, and integrated information points out how the storm affects the F layer altitude and the consequent enhancement/suppression of scintillations.

  4. Nonlinear Landau damping in the ionosphere (United States)

    Kiwamoto, Y.; Benson, R. F.


    A model which explains the nonresonant waves which produce the diffuse resonance observed near 3/2 f(H) by the Alouette and Isis topside sounders, where f(H) is the ambient electron cyclotron frequency, is presented. These waves are the result of plasma wave instabilities driven by anisotropic electron velocity distributions initiated by the high-power short-duration sounder pulse. Calculations of the nonlinear wave-particle coupling coefficients show that the diffuse resonance wave can be maintained by nonlinear Landau damping of the sounder-stimulated 2f(H) wave which is observed with a time duration longer than that of the diffuse resonance wave. The time duration of the diffuse resonance is determined by the transit time of the instability-generated and nonlinearly maintained diffuse resonance wave from the remote short-lived hot region back to the antenna. The model is consistent with the Alouette/Isis observations and it demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.

  5. Ionosphere of venus: first observations of day-night variations of the ion composition. (United States)

    Taylor, H A; Brinton, H C; Bauer, S J; Hartle, R E; Cloutier, P A; Daniell, R E; Donahue, T M


    The Bennett radio-frequency ion mass spectrometer on the Pioneer Venus orbiter is returning the first direct composition evidence of the processes responsible for the formation and maintenance of the nightside ionosphere. Early results from predusk through the nightside in the solar zenith angle range 63 degrees (dusk) to 120 degrees (dawn) reveal that, as on the dayside, the lower nightside ionosphere consists of F(1)and F(2) layers dominated by O(2)(+) and O(+), respectively. Also like the dayside, the nightside composition includes distributions of NO(+), C(+), N(+), H(+), He(+), CO(2)(+), and 28(+) (a combination of CO(+) and N(2)(+)). The surprising abundance of the nightside ionosphere appears to be maintained by the transport of O(+) from the dayside, leading also to the formation of O(2)(+) through charge exchange with CO(2). Above the exobase, the upper nightside ionosphere exhibits dramatic variability in apparent response to variations in the solar wind and interplanetary magnetic field, with the ionopause extending to several thousand kilometers on one orbit, followed by the complete rertnoval of thermal ions to altitudes below 200 kilometers on the succeeding orbit, 24 hours later. In the upper ionosphere, considerable structure is evident in many of the nightside ion profiles. Also evident are horizontal ion drifts with velocities up to the order of 1 kilometer per second. Whereas the duskside ionopause is dominated by O(+) H(+) dominates the topside on the dawnside of the antisolar point, indicating two separate regions for ion depletion in the magnetic tail regions.

  6. BOLAS: A Canadian-US Ionospheric Tether Mission (United States)

    Tyc, George; Vigneron, Frank; Jablonski, Alexander; James, H. Gordon; Carrington, Connie; Rupp, Charles


    Everyday, international broadcasters, ships, and aircraft use a naturally conducting atmospheric layer, the ionosphere, to reflect communications signals over the Earth's horizon. A better understanding of this layer, with its irregularities, instabilities, and dynamics, would improve communications transmission and reception. This atmospheric layer is also a lens that can distort signal transmissions from communications, navigation, and surveillance satellites. The ionosphere over Canada and other high latitude countries can carry large currents and is particularly dynamic, so that a scientific understanding of this layer is critical. The BOLAS (Bistatic Observations using Low Altitude Satellites) mission would characterize reflective and transmissive properties of the ionosphere by flying two satellites, each with identical HF receivers, dipole antennas, particle probes, and GPS receivers. The satellites would be connected by a non-conducting tether to maintain a 100 m separation, and would cartwheel in the orbit plane to spatially survey the ionosphere. The six-month mission would fly in a high inclination, 350 x 600 km orbit, and would be active during passes over the auroral region of Canada. This paper discusses the system requirements and architecture, spacecraft and operations concepts, and mission design, as well as team organization, international cooperation and the scientific and technological benefits that are expected.

  7. Influence of magnetospheric inputs definition on modeling of ionospheric storms (United States)

    Tashchilin, A. V.; Romanova, E. B.; Kurkin, V. I.

    Usually for numerical modeling of ionospheric storms corresponding empirical models specify parameters of neutral atmosphere and magnetosphere. Statistical kind of these models renders them impractical for simulation of the individual storm. Therefore one has to correct the empirical models using various additional speculations. The influence of magnetospheric inputs such as distributions of electric potential, number and energy fluxes of the precipitating electrons on the results of the ionospheric storm simulations has been investigated in this work. With this aim for the strong geomagnetic storm on September 25, 1998 hour global distributions of those magnetospheric inputs from 20 to 27 September were calculated by the magnetogram inversion technique (MIT). Then with the help of 3-D ionospheric model two variants of ionospheric response to this magnetic storm were simulated using MIT data and empirical models of the electric fields (Sojka et al., 1986) and electron precipitations (Hardy et al., 1985). The comparison of the received results showed that for high-latitude and subauroral stations the daily variations of electron density calculated with MIT data are more close to observations than those of empirical models. In addition using of the MIT data allows revealing some peculiarities in the daily variations of electron density during strong geomagnetic storm. References Sojka J.J., Rasmussen C.E., Schunk R.W. J.Geophys.Res., 1986, N10, p.11281. Hardy D.A., Gussenhoven M.S., Holeman E.A. J.Geophys.Res., 1985, N5, p.4229.

  8. Occurrence time of ionospheric spread F observed over high latitude stations%高纬地区电离层扩展F发生时间研究

    Institute of Scientific and Technical Information of China (English)



    利用高纬地区Zhigansk、Yakutsk两个台站的DPS-4电离层测高仪2006年观测到的扩展F(Spread-F,SF)数据统计分析了两台站不同类型SF出现的地方时分布及其季节变化.结果表明:Zhigansk和Yakutsk两个台站观测到的SF主要类型都是频率扩展(Frequency Spread-F,FSF)和混合扩展(Mixed Spread-F,MSF);两台站FSF出现的时间范围具有明显的季节变化,而MSF在各个季节都主要出现在18:00-06:00LT.通过分析可以认为这两个高纬度地区FSF的发生主要与电离槽有关,而MSF主要与夜侧磁层粒子沉降有关.

  9. First observations of electron gyro-harmonic effects under X-mode HF pumping the high latitude ionospheric F-region (United States)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kalishin, A. S.; Yeoman, T. K.; Häggström, I.


    We provide the first experimental evidence of the sensitivity of phenomena induced by extraordinary (X-mode) polarized HF high power radio waves to pump frequency stepping across the fifth electron gyro-harmonic (5fce) from below to above. The results were obtained at the EISCAT (European Incoherent Scatter Scientific Association) HF heater facility near Tromsø under effective radiated powers of 456-715 MW, when the HF pump wave was transmitted into the magnetic zenith. We have analyzed the behavior and intensities of various spectral lines in the narrowband stimulated electromagnetic emission (SEE) spectra observed far from the heater, HF-enhanced plasma and ion lines (HFPL and HFIL) from EISCAT UHF incoherent scatter radar spectra, and artificial field-aligned irregularities from CUTLASS (Co-operative UK Twin Located Auroral Sounding System) observations, depending on the frequency offset of the pump field relative to the 5fce. At pump frequencies below 5fce the narrowband SEE spectra exhibited very intense so-called stimulated ion Bernstein scatter (SIBS), accompanied by other spectral components, associated with stimulated Brillouin scatter (SBS), which are greatly suppressed and disappeared in the vicinity of 5fce and did not reappear at fH>5fce. As the pump frequency reached 5fce, the abrupt enhancements of the HFPL and HFIL power, the appearance of cascade lines in the plasma line spectra, and the onset of increasing CUTLASS backscatter power occurred. That is opposite to the ordinary mode (O-mode) effects in the vicinity of 5fce. The X-mode pumping at frequencies below and in the vicinity of the fifth electron gyro-harmonic clearly demonstrated an ascending altitude of generation of induced plasma and ion lines from the initial interaction height, whereas for O-mode heating the region of interaction descended. The observations are consistent with the coexistence of the electron acceleration along and across the geomagnetic field at fH<5fce, while only very strong electron acceleration along the magnetic field was observed at fH≥5fce.

  10. Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity

    Directory of Open Access Journals (Sweden)

    K. E. J. Huttunen


    Full Text Available Magnetic disturbances in the Earth's magnetosphere can be very different depending on the type of solar wind driver. We have determined the solar wind causes for intense magnetic storms (Dst<-100nT over a 6-year period from the beginning of 1997 to the end of 2002, using observations by the WIND and ACE spacecraft. We have taken into consideration whether the storm was caused by the sheath region or by the following interplanetary coronal mass ejection (ICME. We also divided ICMEs into those having a magnetic cloud structure and those without such a structure. We found that post-shock streams and sheath regions caused the largest fraction of intense magnetic storms. We present four periods of magnetospheric activity in more detail. One of the events was caused by a magnetic cloud (10-11 August 2000 and the rest (13-14 July 2000, 8-9 June 2000 and 17-18 April 2001 by sheath regions and post-shock streams. We have used several magnetic indices to monitor the low- and high-latitude magnetospheric response to these different solar wind structures. Two of the events are interesting examples where at first strong high-latitude activity took place and the low-latitude response followed several hours later. These events demonstrate that low- and high-latitude activity do not always occur concurrently and the level of activity may be very different. According to the examples shown the evolution of the pressure-corrected Dst index was more difficult to model for a sheath region or a post-shock stream driven storm than for a storm caused by a magnetic cloud.

  11. AO/NAO Response to Climate Change. 2; Relative Importance of Low- and High-Latitude Temperature Changes (United States)

    Rind, D.; Perlwitz, J.; Lonergan, P.; Lerner, J.


    Using a variety of GCM experiments with various versions of the GISS model, we investigate how different aspects of tropospheric climate changes affect the extratropical Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) circulation indices. The results show that low altitude changes in the extratropical latitudinal temperature gradient can have a strong impact on eddy forcing of the extratropical zonal wind, in the sense that when this latitudinal temperature gradient increases, it helps force a more negative AO/NAO phase. In addition, local conditions at high latitudes can stabilize/destabilize the atmosphere, inducing negative/positive phase changes. To the extent that there is not a large temperature change in the tropical upper troposphere (either through reduced tropical sensitivity at the surface, or limited transport of this change to high levels), the changes in the low level temperature gradient can provide the dominate influence on the extratropical circulation, so that planetary wave meridional refraction and eddy angular momentum transport changes become uncorrelated with potential vorticity transports. In particular, the climate change that produces the most positive NAO phase change would have substantial warming in the tropical upper troposphere over the Pacific Ocean, with high latitude warming in the North Atlantic. An increase in positive phase of these circulation indices is still more likely than not, but it will depend on the degree of tropical and high latitude temperature response and the transport of low level warming into the upper troposphere. These are aspects that currently differ among the models used for predicting the effects of global warning, contributing to the lack of consensus of future changes in the AO/NAO.

  12. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming (United States)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro


    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  13. Variability of the nighttime OH layer and mesospheric ozone at high latitudes during northern winter: influence of meteorology


    Damiani, A.; M. Storini; Santee, M.L.; Wang, S


    Analyses of OH zonal means, recorded at boreal high latitudes by the Aura Microwave Limb Sounder (MLS) in winters of 2005–2009, have shown medium- (weeks) and short- (days) term variability of the nighttime OH layer.

    Because of the exceptional descent of air from the mesosphere-lower thermosphere (MLT) region, medium-term variability occurred during February 2006 and February/March 2009. The layer normally situated at about 82 km descended by about 5–7 km, and its density...

  14. Variability of the nighttime OH layer and mesospheric ozone at high latitudes during northern winter: influence of meteorology


    Damiani, A.; M. Storini; Santee, M.L.; Wang, S


    Analyses of OH zonal means, recorded at boreal high latitudes by the Aura Microwave Limb Sounder (MLS), have shown medium- (weeks) and short-term (days) variability of the nighttime OH layer.

    Because of the exceptional descent of air from the mesosphere-lower thermosphere region, medium-term variability occurred during February 2006 and February/March 2009. The layer normally situated at about 82 km descended by about 5–7 km, and its density increased to more than twice J...

  15. Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data (United States)

    Sakai, Shotaro; Andersson, Laila; Cravens, Thomas E.; Mitchell, David L.; Mazelle, Christian; Rahmati, Ali; Fowler, Christopher M.; Bougher, Stephen W.; Thiemann, Edward M. B.; Eparvier, Francis G.; Fontenla, Juan M.; Mahaffy, Paul R.; Connerney, John E. P.; Jakosky, Bruce M.


    This paper presents a study of the energetics of the dayside ionosphere of Mars using models and data from several instruments on board the Mars Atmosphere and Volatile EvolutioN spacecraft. In particular, calculated photoelectron fluxes are compared with suprathermal electron fluxes measured by the Solar Wind Electron Analyzer, and calculated electron temperatures are compared with temperatures measured by the Langmuir Probe and Waves experiment. The major heat source for the thermal electrons is Coulomb heating from the suprathermal electron population, and cooling due to collisional rotational and vibrational CO2 dominates the energy loss. The models used in this study were largely able to reproduce the observed high topside ionosphere electron temperatures (e.g., 3000 K at 300 km altitude) without using a topside heat flux when magnetic field topologies consistent with the measured magnetic field were adopted. Magnetic topology affects both suprathermal electron transport and thermal electron heat conduction. The effects of using two different solar irradiance models were also investigated. In particular, photoelectron fluxes and electron temperatures found using the Heliospheric Environment Solar Spectrum Radiation irradiance were higher than those with the Flare Irradiance Spectrum Model-Mars. The electron temperature is shown to affect the O2+ dissociative recombination rate coefficient, which in turn affects photochemical escape of oxygen from Mars.

  16. Theoretical study of the seasonal behavior of the global ionosphere at solar maximum (United States)

    Sojka, J. J.; Schunk, R. W.


    The seasonal behavior of the global ionosphere was studied using a time-dependent three-dimensional physical model (developed by Shunk and his coworkers) of the ionosphere at altitudes between 120 and 800 km. This model accounts for field-aligned diffusion, cross-field electrodynamic drifts both the equatorial region and at high latitudes, interhemispheric flow, thermospheric winds, polar wind escape, energy-dependent chemical reactions, neutral composition changes, ion production due to solar EUV radiation and auroral precipitation, thermal conduction, diffusion-thermal heat flow, and local heating and cooling processes. The model studies were carried out for both June and December solstice conditions at solar maximum and for low geomagnetic activity. The ionospheric features predicted by the model agreed qualitatively with the available measurements.

  17. Comparing Herschel dust emission structures, magnetic fields observed by Planck, and dynamics: high-latitude star forming cloud L1642 (United States)

    Malinen, Johanna


    The nearby high-latitude cloud L1642 is one of only two known very high latitude (|b| > 30 deg) clouds actively forming stars. This cloud is a rare example of star formation in isolated conditions, and can reveal important details of star formation in general, e.g., of the effect of magnetic fields. We compare Herschel dust emission structures and magnetic field orientation revealed by Planck polarization maps in L1642, and also combine these with dynamic information from molecular line observations. The high-resolution Herschel data reveal a complex structure including a dense, compressed central blob with elongated extensions, low density striations, "fishbone" like structures with a spine and perpendicular striations, and a spiraling "tail". The Planck polarization data reveal an ordered magnetic field that pervades the cloud and is aligned with the surrounding low density striations. We show that there is a complex interplay between the cloud structure and large scale magnetic fields revealed by Planck polarization data at 10' resolution. This suggests that the magnetic field is closely linked to the formation and evolution of the cloud. We see a clear transition from aligned to perpendicular structures approximately at a column density of NH = 2x10^21 cm-2. We conclude that Planck polarization data revealing the large scale magnetic field orientation can be very useful even when comparing to the finest structures in higher resolution data, e.g. Herschel at ~18" resolution.

  18. High-latitude regions of Siberia and Northeast Russia in the Paleogene: Stratigraphy, flora, climate, coal accumulation (United States)

    Akhmetiev, M. A.


    The geological structure and development history of superposed depressions on the Arctic coast of East Siberia and Bering Sea region (Chukotka, Koryakiya, northern Kamchatka) in the Early Paleogene are considered with the analysis of their flora and climatic parameters. The paleofloral analysis revealed thermophilic assemblages that reflect phases of maximum warming at the Paleocene-Eocene transition and in the Early Eocene. The appearance of thermophilic plants (Magnoliaceae, Myrtaceae, Lauraceae, Araliaceae, Loranthaceae, and others) in the Siberian segment of the Arctic region is explained by the stable atmospheric heat transfer from the Tethys to higher latitudes and absence of the latitudinal orographic barrier (Alpine-Himalayan belt). The plants migrated to high latitudes also along the meridional seaway that connected the Tethys with the Arctic Ocean via marine basins of the Eastern Paratethys, Turgai Strait, and West Siberia. The migration from the American continent was realized along the southern coast of Beringia under influence of a warm current flowing from low latitudes along the western coast of North America. The palm genus Sabal migrated to northern Kamchatka and Koryakiya precisely in this way via southern Alaska. In the Oligocene, shallow-water marine sediments in high-latitude regions were replaced by terrestrial facies. The Late Oligocene was marked by maximum cooling. Coal accumulation in Northeast Russia through the Paleogene is reviewed.

  19. The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. (United States)

    Miller, K J; Ayre, D J


    The genotypic composition of populations of the asexually viviparous coral Pocillopora damicornis varies in a manner that challenges classical models of the roles of sexual and asexual reproduction. On the geographically isolated Hawaiian reefs and high latitude reefs in Western Australia, P. damicornis populations are highly clonal although it has been argued that sexual reproduction via broadcast spawning generates widely dispersed colonists. In contrast, on eastern Australia's tropical Great Barrier Reef populations show little evidence of clonality. Here, we compare the genotypic diversity of adult and juvenile colonies of P. damicornis at seven sites on eastern Australia's high latitude Lord Howe Island reefs to determine if levels of clonality vary with habitat heterogeneity and age of colonies (as predicted by theory) or alternatively if clonality is again always high as for other isolated reef systems. We found 55-100% of the genotypic diversity expected for random mating at all seven sites and little evidence of asexual recruitment irrespective of habitat heterogeneity (sheltered versus wave exposed) or colony age. We found reduced levels of genetic diversity compared with tropical reefs (2.75 versus 4 alleles/locus), which supports earlier findings that Lord Howe Island is an isolated reef system. Furthermore, heterozygote deficits coupled with significant genetic subdivision among sites (FST=0.102+/-0.03) is typical of populations that have limited larval connections and are inbred. We conclude that the genetic structure of P. damicornis at Lord Howe Island reflects populations that are maintained through localised recruitment of sexually produced larvae.

  20. The large-scale energetic ion layer in the high latitude Jovian magnetosphere as revealed by Ulysses/HI-SCALE cross-field intensity-gradient measurements

    CERN Document Server

    Anagnostopoulos, G C; Marhavilas, P K; Sarris, E T


    Ulysses investigated the high latitude Jovian magnetosphere for a second time after Pioneer 11 mission and gave us the opportunity to search the structure and the dynamics of this giant magnetosphere above the magnetodisc. Kivelson(1976) and Kennel & Coroniti(1979) reported that Pioneer 11 observed energetic particle intensities at high latitudes at the same level with those measured in the plasma sheet and inferred that they were not consistent with the magnetodisc model. Ulysses observations supported the idea about a large-scale layer of energetic ions and electrons in the outer high latitude Jovian magnetosphere (Cowley et al.1996; Anagnostopoulos et al. 2001). This study perform a number of further tests for the existence of the large scale layer of energetic ions in the outer high latitude Jovian magnetosphere by studying appropriate cross-B field anisotropies in order to monitor the ion northward/southward intensity gradients. In particular, we examined Ulysses/HI-SCALE observations of energetic io...

  1. Nonlinear coupling of lower hybrid waves to the kinetic low-frequency plasma response in the auroral ionosphere (United States)

    Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.

    A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.

  2. Simultaneous observations of magnetopause flux transfer events and of their associated signatures at ionospheric altitudes

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams


    Full Text Available An extensive variety of instruments, including Geotail, DMSP F11, SuperDARN, and IMP-8, were monitoring the dayside magnetosphere and ionosphere between 14:00 and 18:00 UT on 18 January 1999. The location of the instruments provided an excellent opportunity to study in detail the direct coupling between the solar wind, the magnetosphere, and the ionosphere. Flux transfer events were observed by Geotail near the magnetopause in the dawn side magnetosheath at about 4 magnetic local time during exclusively northward interplanetary magnetic field conditions. Excellent coverage of the entire dayside high-latitude ionosphere was achieved by the Northern Hemisphere SuperDARN radars. On the large scale, temporally and spatially, the dayside magnetosphere convection remained directly driven by the interplanetary magnetic field, despite the highly variable interplanetary magnetic field conditions, including long periods of northward field. The SuperDARN radars in the dawn sector also measured small-scale temporally varying convection velocities, which are indicative of flux transfer event activity, in the vicinity of the magnetic footprint of Geotail. DMSP F11 in the Southern Hemisphere measured typical cusp precipitation simultaneously with and magnetically conjugate to a single flux transfer event signature detected by Geotail. A study of the characteristics of the DMSP ion spectrogram revealed that the source plasma from the reconnection site originated downstream of the subsolar point. Detailed analyses of locally optimised coordinate systems for individual flux transfer events at Geotail are consistent with a series of flux tubes protruding from the magnetopause, and originating from a high-latitude reconnection site in the Southern Hemisphere. This high-latitude reconnection site agrees with plasma injected away from the subsolar point. This is the first simultaneous and independent determination from ionospheric and space-based data of the

  3. Storm Signatures and Irregularities in the Equatorial Ionosphere Observed by Using FORMOSAT-3/COSMIC (Invited) (United States)

    Liu, J. G.; Chen, L.; Hsu, R.; Lee, I.; Chang, G.; Yu, S.; Liu, T.


    This paper reports that fluctuations in the vertical electron density triggering by magnetic storms and irregularities of S4 scintillations in the equatorial ionosphere probed by FORMOSAT-3/COSMIC (F3/C). For the storm study, the electron density profiles derived by the F3/C RO (radio occultation) in high-, mid- and low-latitudes during the quiet time and disturbed periods are subdivided into four sectors, noon, dusk, midnight, and dawn, to find wavy characteristics. The wavelet transformation is further applied to examine the profiles before and during the storm period. Above 300km, the ionosphere becomes very structured, and the amplitude in fluctuations of 15~30km wavelength significantly enhances during the storm period, especially high latitude region. The concurrence in changes of the geomagnetic index and the ionospheric density suggest that penetration electric fields and energy inputs at high latitudes play important roles. On the other hand, the F3/C RO provides an excellent opportunity to monitor three-dimensional structures and dynamics of the ionospheric scintillations during the low solar activity year of 2007-2013. Measurements of the global F3/C S4 index are subdivided and examined in various latitudes, longitudes, altitudes, and seasons. The F-region scintillations in the equatorial and low-latitude ionosphere start around post-sunset period and often persist till post-midnight hours (0300 MLT, magnetic local time) during the March and September equinox as well as December Solstice seasons. The E-region scintillations reveal a clear solar zenith effect and yield pronounced intensities in mid-latitudes during the Summer Solstice seasons, which are well correlated with occurrences of the sporadic E-layer. Finally, impact of the F3/C follow-on, FORMOSAT-7/COSMIC-2, mission on ionospheric space weather monitoring will be briefed.

  4. An effect of the ionospheric Alfvén resonator on multiband Pc1 pulsations

    Directory of Open Access Journals (Sweden)

    K. Prikner


    Full Text Available On 2 December 1999, the magnetometer stations in northern Finland registered structured Pc1 activity simultaneously in three distinct frequency bands. Using simultaneous EISCAT radar measurements of the high-latitude ionosphere, we have studied the ionospheric resonator properties during this multiband Pc1 event. The frequencies of the three structured Pc1 bands were found to closely correspond to the second, third and fourth harmonic of the calculated fundamental frequency of the ionospheric Alfvén resonator (IAR. In addition, those frequencies of the three pearl bands that were closest to the exact IAR harmonics were found to have the strongest intensities. The results demonstrate that the resonator can have an important role on ground-based Pc1 activity over a notably large frequency range, favoring transmission of waves with frequencies close to the resonator's eigenfrequencies. Since the frequencies of all three bands correspond to the maximum rather than the minimum of the transmission coefficient, the traditional bouncing wave packet model needs to be revised.

    Key words. Ionosphere (auroral ionosphere; ionosphere magnetosphere interactions; wave propagation

  5. Letter to the EditorEffects of hot oxygen in the ionosphere: TRANSCAR simulations

    Directory of Open Access Journals (Sweden)

    W. Kofman

    Full Text Available Recent studies of the ion energy balance in the mid-latitude ionosphere have led to the suggestion that hot neutral atomic oxygen may play a significant role; the presence of a population of hot O could explain some of the problems met in balancing the ion energy budget for Incoherent Scatter (IS observations. The aim of the present study is to look at such effects by using numerical simulation. The TRANSCAR model is a time-dependent, 13-moment ionosphere model developed for high latitude studies. It was first adapted for mid-latitude conditions. In a first step the model was calibrated and cross-checked with St. Santin IS measurements for the winter case of 27 January 1972 around noon using, in particular, the MSIS neutral atmosphere model. This provides a reference diurnal variation of the ionosphere. The second step investigated the influence of a maxwellian population of hot neutral atomic oxygen introduced in addition to the standard neutral atmosphere. The paper describes the initial comparison between the model and St. Santin IS data, and then the effects induced by a hot atomic oxygen population.Key words. Ionosphere (ionosphere-atmosphere interactions; ion chemistry and composition; mid-latitude ionosphere

  6. A statistical survey of dayside pulsed ionospheric flows as seen by the CUTLASS Finland HF radar

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    Full Text Available Nearly two years of 2-min resolution data and 7- to 21-s resolution data from the CUTLASS Finland HF radar have undergone Fourier analysis in order to study statistically the occurrence rates and repetition frequencies of pulsed ionospheric flows in the noon-sector high-latitude ionosphere. Pulsed ionospheric flow bursts are believed to be the ionospheric footprint of newly reconnected geomagnetic field lines, which occur during episodes of magnetic flux transfer to the terrestrial magnetosphere - flux transfer events or FTEs. The distribution of pulsed ionospheric flows were found to be well grouped in the radar field of view, and to be in the vicinity of the radar signature of the cusp footprint. Two thirds of the pulsed ionospheric flow intervals included in the statistical study occurred when the interplanetary magnetic field had a southward component, supporting the hypothesis that pulsed ionospheric flows are a reconnection-related phenomenon. The occurrence rate of the pulsed ionospheric flow fluctuation period was independent of the radar scan mode. The statistical results obtained from the radar data are compared to occurrence rates and repetition frequencies of FTEs derived from spacecraft data near the magnetopause reconnection region, and to ground-based optical measurements of poleward moving auroral forms. The distributions obtained by the various instruments in different regions of the magnetosphere were remarkably similar. The radar, therefore, appears to give an unbiased sample of magnetopause activity in its routine observations of the cusp footprint.

    Key words: Magnetospheric physics (magnetosphere-ionosphere interactions; plasma convection; solar wind-magnetosphere interactions

  7. Cluster observations of the high-latitude magnetopause and cusp: initial results from the CIS ion instruments

    Directory of Open Access Journals (Sweden)

    J. M. Bosqued

    Full Text Available Launched on an elliptical high inclination orbit (apogee: 19.6 RE since January 2001 the Cluster satellites have been conducting the first detailed three-dimensional studies of the high-latitude dayside magnetosphere, including the exterior cusp, neighbouring boundary layers and magnetopause regions. Cluster satellites carry the CIS ion spectrometers that provide high-precision, 3D distributions of low-energy (<35 keV/e ions every 4 s. This paper presents the first two observations of the cusp and/or magnetopause behaviour made under different interplanetary magnetic field (IMF conditions. Flow directions, 3D distribution functions, density profiles and ion composition profiles are analyzed to demonstrate the high variability of high-latitude regions. In the first crossing analyzed (26 January 2001, dusk side, IMF-BZ < 0, multiple, isolated boundary layer, magnetopause and magnetosheath encounters clearly occurred on a quasi-steady basis for ~ 2 hours. CIS ion instruments show systematic accelerated flows in the current layer and adjacent boundary layers on the Earthward side of the magnetopause. Multi-point analysis of the magnetopause, combining magnetic and plasma data from the four Cluster spacecraft, demonstrates that oscillatory outward-inward motions occur with a normal speed of the order of ± 40 km/s; the thickness of the high-latitude current layer is evaluated to be of the order of 900–1000 km. Alfvénic accelerated flows and D-shaped distributions are convincing signatures of a magnetic reconnection occurring equatorward of the Cluster satellites. Moreover, the internal magnetic and plasma structure of a flux transfer event (FTE is analyzed in detail; its size along the magnetopause surface is ~ 12 000 km and it convects with a velocity of ~ 200 km/s. The second event analyzed (2 February 2001 corresponds to the first Cluster pass within the cusp when the IMF-BZ component was northward directed. The analysis of

  8. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga


    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  9. A global scale picture of ionospheric peak electron density changes during geomagnetic storms (United States)

    Kumar, Vickal V.; Parkinson, Murray L.


    Changes in ionospheric plasma densities can affect society more than ever because of our increasing reliance on communication, surveillance, navigation, and timing technology. Models struggle to predict changes in ionospheric densities at nearly all temporal and spatial scales, especially during geomagnetic storms. Here we combine a 50 year (1965-2015) geomagnetic disturbance storm time (Dst) index with plasma density measurements from a worldwide network of 132 vertical incidence ionosondes to develop a picture of global scale changes in peak plasma density due to geomagnetic storms. Vertical incidence ionosondes provide measurements of the critical frequency of the ionospheric F2 layer (foF2), a direct measure of the peak electron density (NmF2) of the ionosphere. By dissecting the NmF2 perturbations with respect to the local time at storm onset, season, and storm intensity, it is found that (i) the storm-associated depletions (negative storm effects) and enhancements (positive storm effects) are driven by different but related physical mechanisms, and (ii) the depletion mechanism tends to dominate over the enhancement mechanism. The negative storm effects, which are detrimental to HF radio links, are found to start immediately after geomagnetic storm onset in the nightside high-latitude ionosphere. The depletions in the dayside high-latitude ionosphere are delayed by a few hours. The equatorward expansion of negative storm effects is found to be regulated by storm intensity (farthest equatorward and deepest during intense storms), season (largest in summer), and time of day (generally deeper on the nightside). In contrast, positive storm effects typically occur on the dayside midlatitude and low-latitude ionospheric regions when the storms are in the main phase, regardless of the season. Closer to the magnetic equator, moderate density enhancements last up to 40 h during the recovery phase of equinox storms, regardless of the local time. Strikingly, high-latitude

  10. An Examination of FORMOSAT-3/COSMIC Ionospheric Electron Density Profile: Data Quality Criteria and Comparisons with the IRI Model

    Directory of Open Access Journals (Sweden)

    Kuo-Feng Yang


    Full Text Available In this article, we analyze the properties of ionospheric electron density profiling retrieved from FORMOSAT-3/COSMIC radio occultation measurements. Two parameters, namely, the gradient and fluctuation of the topside electron density profile, serve as indicators to quantitatively describe the data quality of the retrieved electron density profile. On the basis of 8 month data (June 2006 - January 2007, we find that on average 93% of the electron density profiles have upper electron density gradients and electron density fluctuations smaller than -0.02 #/m3/m and 0.2, respectively, which can be treated as good data for further analysis. The same results are also achieved for the peak height of the electron density. After removing the questionable data, we compare the general behaviors of the electron density between FORMOSAT-3 and the IRI model. It is found that the global distributions of the peak height and the peak electron density for the FORMOSAT-3/COSMIC data are generally consistent with those for the IRI model. However, a significant difference between their scale heights of the topside electron density profiles is found. It suggests that the shape of the topside electron density profile in the IRI model should be revised accordingly such that it more closely resembles the real situation.

  11. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change

    DEFF Research Database (Denmark)

    Pauchard, Aníbal; Milbau, Ann; Albihn, Ann;


    Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key...... discussions of the workshop ‘Biosecurity in Mountains and Northern Ecosystems: Current Status and Future Challenges’ (Flen, Sweden, 1–3 June 2015). The aims of the workshop were to (1) increase awareness about the growing importance of species expansion—both non-native and native—at high elevation and high......, especially if it is coupled with prioritisation schemes for targeting invaders likely to have greatest impact. Communication and co-operation between cold environment regions will facilitate rapid response, and maximise the use of limited research and management resources....

  12. Matching dust emission structures and magnetic field in high-latitude cloud L1642: comparing Herschel and Planck maps

    CERN Document Server

    Malinen, J; Montillaud, J; Juvela, M; Ristorcelli, I; Clark, S E; Berné, O; Bernard, J -Ph; Pelkonen, V -M; Collins, D C


    The nearby cloud L1642 is one of only two known very high latitude (|b| > 30 deg) clouds actively forming stars. It is a rare example of star formation in isolated conditions, and can reveal important details of star formation in general, e.g., of the effect of magnetic fields. We compare Herschel dust emission structures and magnetic field orientation revealed by Planck polarization maps in L1642. The high-resolution (~18-40") Herschel data reveal a complex structure including a dense, compressed central blob with elongated extensions, low density striations, "fishbone" like structures with a spine and perpendicular striations, and a spiraling "tail". The Planck polarization data (at 10' resolution) reveal an ordered magnetic field pervading the cloud and aligned with the surrounding striations. There is a complex interplay between the cloud structure and large scale magnetic field. This suggests that magnetic field is closely linked to the formation and evolution of the cloud. CO rotational emission confirm...

  13. Stable isotope ecology of land snails from a high-latitude site near Fairbanks, interior Alaska, USA (United States)

    Yanes, Yurena


    Land snails have been investigated isotopically in tropical islands and mid-latitude continental settings, while high-latitude locales, where snails grow only during the summer, have been overlooked. This study presents the first isotopic baseline of live snails from Fairbanks, Alaska (64°51‧N), a proxy calibration necessary prior to paleoenvironmental inferences using fossils. δ13C values of the shell (- 10.4 ± 0.4‰) and the body (- 25.5 ± 1.0‰) indicate that snails consumed fresh and decayed C3-plants and fungi. A flux-balance mixing model suggests that specimens differed in metabolic rates, which may complicate paleovegetation inferences. Shell δ18O values (- 10.8 ± 0.4‰) were 4‰ higher than local summer rain δ18O. If calcification occurred during summer, a flux-balance mixing model suggests that snails grew at temperatures of 13°C, rainwater δ18O values of - 15‰ and relative humidity of 93%. Results from Fairbanks were compared to shells from San Salvador (Bahamas), at 24°51‧N. Average (annual) δ18O values of shells and rainwater samples from The Bahamas were both 10‰ 18O-enriched with respect to seasonal (summer) Alaskan samples. At a coarse latitudinal scale, shell δ18O values overwhelmingly record the signature of the rainfall during snail active periods. While tropical snails record annual average environmental information, high-latitude specimens only trace summer season climatic data.

  14. Northern high-latitude climate change between the mid and late Holocene – Part 2: Model-data comparisons

    Directory of Open Access Journals (Sweden)

    J. Nilsson


    Full Text Available The solar orbital forcing induced changes in insolation at the mid-Holocene compared to the late Holocene, which causes an amplification of the seasonal cycle in the Northern Hemisphere in the earlier period. The climate response over northern high latitudes, to this change in forcing has been investigated in three types of PMIP (Paleoclimate Modelling Intercomparison Project simulations with different complexity of the climate system. The model results have also been compared with available reconstructions from temperature proxy data. Both the reconstructions and the PMIP2 models show a warm response in annual mean temperature, as well as in summer and winter temperature. The model-model comparisons indicate the importance of including the different physical feedbacks (ocean, sea-ice, vegetation in the climate model. An objective selection method is applied in the model-data comparison to evaluate the capability of the climate model in reproducing the spatial response pattern. The comparisons between the reconstructions and the best-fit selected simulations show that over the northern high latitudes, summer temperature change follows closely to the insolation and shows a common feature with strong warming over land and relatively weak warming over ocean. A pronounced warming centre is found over Barents Sea in winter in model simulations, which is also supported by the nearby northern Eurasian continental reconstructions. The warming over Barents Sea corresponds to a positive North Atlantic Oscillation (NAO. The strengthened sea level pressure gradient may have caused a northward shift of the Atlantic storm track. It results in enhanced westerlies towards the northern Eurasia, which may be responsible for the winter warming over northern Fennoscandia and northern Siberia.

  15. Meta-analysis of high-latitude nitrogen-addition and warming studies imply ecological mechanisms overlooked by land models

    Directory of Open Access Journals (Sweden)

    N. J Bouskill


    Full Text Available Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the atmosphere. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the above and belowground high-latitude ecosystem responses to warming and nitrogen addition, and identified mechanisms absent, or poorly parameterized in CLM4.5. While the two model versions predicted similar trajectories for soil carbon stocks following both types of perturbation, other variables (e.g., belowground respiration differed from the observations in both magnitude and direction, indicating the underlying mechanisms are inadequate for representing high-latitude ecosystems. The observational synthesis attribute these differences to missing representations of microbial dynamics, characterization of above and belowground functional processes, and nutrient competition. We use the observational meta-analyses to discuss potential approaches to improving the current models (e.g., the inclusion of dynamic vegetation or different microbial functional guilds, however, we also raise a cautionary note on the selection of data sets and experiments to be included in a meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average =72 kg ha−1 yr−1 are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization, which preclude a rigorous evaluation of the model responses to nitrogen perturbation. Overall, we demonstrate here that elucidating ecological mechanisms via meta-analysis can identify deficiencies in both ecosystem models and empirical experiments.

  16. Accuracy analysis of continuous deformation monitoring using BeiDou Navigation Satellite System at middle and high latitudes in China (United States)

    Jiang, Weiping; Xi, Ruijie; Chen, Hua; Xiao, Yugang


    As BeiDou Navigation Satellite System (BDS) has been operational in the whole Asia-Pacific region, it means a new GNSS system with a different satellite orbit structure will become available for deformation monitoring in the future. Conversely, GNSS deformation monitoring data are always processed with a regular interval to form displacement time series for deformation analysis, where the interval can neither be too long from the time perspective nor too short from the precision of determined displacements angle. In this paper, two experimental platforms were designed, with one being at mid-latitude and another at higher latitude in China. BDS data processing software was also developed for investigating the accuracy of continuous deformation monitoring using current in-orbit BDS satellites. Data over 20 days at both platforms were obtained and were processed every 2, 4 and 6 h to generate 3 displacement time series for comparison. The results show that with the current in-orbit BDS satellites, in the mid-latitude area it is easy to achieve accuracy of 1 mm in horizontal component and 2-3 mm in vertical component; the accuracy could be further improved to approximately 1 mm in both horizontal and vertical directions when combined BDS/GPS measurements are employed. At higher latitude, however, the results are not as good as expected due to poor satellite geometry, even the 6 h solutions could only achieve accuracy of 4-6 and 6-10 mm in horizontal and vertical components, respectively, which implies that it may not be applicable to very high-precision deformation monitoring at high latitude using the current BDS. With the integration of BDS and GPS observations, however, in 4-h session, the accuracy can achieve 2 mm in horizontal component and 4 mm in vertical component, which would be an optimal choice for high-accuracy structural deformation monitoring at high latitude.

  17. Climate change between the mid and late Holocene in northern high latitudes – Part 2: Model-data comparisons

    Directory of Open Access Journals (Sweden)

    K. Holmgren


    Full Text Available The climate response over northern high latitudes to the mid-Holocene orbital forcing has been investigated in three types of PMIP (Paleoclimate Modelling Intercomparison Project simulations with different complexity of the modelled climate system. By first undertaking model-data comparison, an objective selection method has been applied to evaluate the capability of the climate models to reproduce the spatial response pattern seen in proxy data. The possible feedback mechanisms behind the climate response have been explored based on the selected model simulations. Subsequent model-model comparisons indicate the importance of including the different physical feedbacks in the climate models. The comparisons between the proxy-based reconstructions and the best fit selected simulations show that over the northern high latitudes, summer temperature change follows closely the insolation change and shows a common feature with strong warming over land and relatively weak warming over ocean at 6 ka compared to 0 ka. Furthermore, the sea-ice-albedo positive feedback enhances this response. The reconstructions of temperature show a stronger response to enhanced insolation in the annual mean temperature than winter and summer temperature. This is verified in the model simulations and the behaviour is attributed to the larger contribution from the large response in autumn. Despite a smaller insolation during winter at 6 ka, a pronounced warming centre is found over Barents Sea in winter in the simulations, which is also supported by the nearby northern Eurasian continental and Fennoscandian reconstructions. This indicates that in the Arctic region, the response of the ocean and the sea ice to the enhanced summer insolation is more important for the winter temperature than the synchronous decrease of the insolation.

  18. Examining the Role of Aquatic Vegetation in Methane Production: Examples From a Shallow High Latitude Lake in Abisko, Sweden. (United States)

    Horruitiner, C. D.; Varner, R. K.; Palace, M. W.; Johnson, J. E.; Wik, M.; Lundgren, D. J.; Sinclair, S. N.; Nicastro, A. J. D.; Crawford, M.


    High latitude lakes and ponds are a large source of atmospheric methane. Emissions from lakes are thought to be controlled primarily by temperature and secondarily by the availability of labile organic carbon. Aquatic plants provide insitu carbon sources to lake bottoms and therefore can potentially impact rates of methane production. We studied vegetation and lake sediment characteristics across shallow depths in Inre Harrsjön, a lake located within the Stordalen Mire in the discontinuous permafrost zone in subarctic Sweden. Vegetation surveys using a submerged quadrat with camera were performed in transects across IH to characterize bottom vegetation. Carbon and nitrogen elemental analysis was performed on vegetation samples from both the lake and surrounding mire ecosystem. Sediment cores representing each vegetation type were analyzed for CH4, δ13CH4, and elemental CHNS. In all cores but one, total organic carbon (TOC) is greatest near the surface and decreases downcore. Methane concentrations correlated with TOC indicating insitu methane production. C:N ratios in sediment cores are more reflective of aquatic than terrestrial mire vegetation indicating that organic carbon in the lake sediments is dominated by aquatic sources. δ13CH4 is relatively constant downcore, which indicates little to no methane oxidation. The methane produced in sediments is consistently within the range of hydrogenotrophic methanogenesis via CO2 reduction. We suggest the role of aquatic vegetation in the production of methane in high latitude shallow lakes may be important and will likely have a positive feedback in a warming climate with longer ice-free seasons.

  19. Cluster multispacecraft observations at the high-latitude duskside magnetopause: implications for continuous and component magnetic reconnection

    Directory of Open Access Journals (Sweden)

    A. Retinò


    Full Text Available We report multispacecraft Cluster observations of magnetic reconnection at the high-latitude magnetopause/magnetospheric boundary layer (MP/BL under mainly northward interplanetary magnetic field (IMF conditions. The event we study is on 3 December 2001 when the Cluster spacecraft were skimming the high-latitude duskside MP/BL during a period of about four hours. The orbit and configuration of the spacecraft were such that at least one satellite was present in the MP/BL during most of that period. We present the evidence of reconnection in the form of tangential stress balance between the magnetosheath and the MP/BL (Walén test and in several cases in the form of transmitted magnetosheath ions in the MP/BL and incident/reflected magnetosheath ions in the magnetosheath boundary layer (MSBL . The observations are consistent with magnetic reconnection occurring tailward of the cusp and going on continuously for a period of about four hours. The observed directions of the reconnection flows are consistent with the IMF orientation, thus indicating that reconnection is globally controlled by the IMF. Observations of a few flow reversals suggest passages of the spacecraft close to the X-line. The observation of low magnetic shear across the magnetopause during a flow reversal is consistent with component merging at least in one case. The observation of reconnection flows on the duskside magnetopause irrespective of the change in the sign of the IMF BY also suggests a better agreement with the component merging model, though antiparallel merging cannot be excluded because the distance from the X-line is not known.

  20. A new version of the NeQuick ionosphere electron density model (United States)

    Nava, B.; Coïsson, P.; Radicella, S. M.


    NeQuick is a three-dimensional and time dependent ionospheric electron density model developed at the Aeronomy and Radiopropagation Laboratory of the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy and at the Institute for Geophysics, Astrophysics and Meteorology of the University of Graz, Austria. It is a quick-run model particularly tailored for trans-ionospheric applications that allows one to calculate the electron concentration at any given location in the ionosphere and thus the total electron content (TEC) along any ground-to-satellite ray-path by means of numerical integration. Taking advantage of the increasing amount of available data, the model formulation is continuously updated to improve NeQuick capabilities to provide representations of the ionosphere at global scales. Recently, major changes have been introduced in the model topside formulation and important modifications have also been introduced in the bottomside description. In addition, specific revisions have been applied to the computer package associated to NeQuick in order to improve its computational efficiency. It has therefore been considered appropriate to finalize all the model developments in a new version of the NeQuick. In the present work the main features of NeQuick 2 are illustrated and some results related to validation tests are reported.

  1. Ionosphere and Radio Communication

    Indian Academy of Sciences (India)

    Saradi Bora


    The Earth's ionosphere consists of plasma produced by thephotoionization of thin upper atmospheric gases by UV raysand photons of short wavelength from the sun. The upperionosphere is used for radio communication and navigationas it reflects long, medium, as well as short radio waves. Sincesolar radiation is the main cause of the existence of ionosphere,any variation in the radiations can affect the entireradio communication system. This article attempts to brieflyintroduce the readers to the study of ionosphere in the contextof its use as a radio reflector, with particular reference toIndia.

  2. Statistical characteristics of low-latitude ionospheric scintillation over China (United States)

    Liu, Kangkang; Li, Guozhu; Ning, Baiqi; Hu, Lianhuan; Li, Hongke


    The Global Positioning System (GPS) L-band ionospheric scintillation produced by electron density irregularities in the ionospheric E- and F-regions, is mainly a low- and high-latitude phenomenon. In this study, the statistical behavior of GPS ionospheric scintillation over a Chinese low-latitude station Sanya (18.3°N, 109.6°E; dip lat: 12.8°N) has been investigated. A detailed study on the seasonal and solar activity dependence of scintillation occurrence during July 2004-December 2012 show that the amplitude scintillation pattern, with a maximum occurrence during equinox of solar maximum, agrees with plasma bubble observations by in situ satellites in this longitude. A few daytime periodic scintillation events are found during June solstice months of solar minimum. Interestingly, a significant equinoctial asymmetry of scintillation onset time is found in 2011-2012. The initiation of scintillation during September-October is on average earlier than that of March-April about 25 min. Meanwhile, the zonal drifts of irregularities estimated using two spatially separated GPS receivers over Sanya show a similar behavior during the two equinoxes, slowly decreasing from 150 m/s at post-sunset to 50 m/s near midnight. The possible mechanisms responsible for the occurrence characteristics of GPS scintillation over Sanya, and relevant aspects of the zonal drifts of the irregularities are discussed.

  3. Observations of an enhanced convection channel in the cusp ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pinnock, M.; Rodger, A.S.; Dudeney, J.R. (Natural Environment Research Council, Cambridge (United Kingdom)); Baker, K.B.; Neweli, P.T.; Greenwald, R.A. (Johns Hopkins Univ., Laurel, MD (United States)); Greenspan, M.E. (Boston Univ., MA (United States))


    Transient or patchy magnetic field line merging on the dayside magnetopause, giving rise to flux transfer events (FTEs), is thought to play a significant role in energizing high-latitude ionospheric convection during periods of southward interplanetary magnetic field. Several transient velocity patterns in the cusp ionosphere have been presented as candidate FTE signatures. Instrument limitations, combined with uncertainties about ionospheric signature of FTEs have yet to be presented. This paper describes combined observations by the PACE HF backscatter radar and the DMSP F9 polar-orbiting satellite of a transient velocity signature in the southern hemispheric cusp. The prevailing solar wind conditions suggest that it is the result of enhanced magnetic merging at the magnetopause. The satellite particle precipitation data associated with the transient are typically cusplike in nature. The presence of spatially discrete patches of accelerated ions at the equatorward edge of the cusp is consistent with the ion acceleration that could occur with merging. The combined radar line-of-sight velocity data and the satellite transverse plasma drift data are consistent with a channel of enhanced convection superposed on the ambient cusp plasma flow. This channel is at least 900 km in longitudinal extent but only 100 km wide. It is zonally aligned for most of its extent, except at the western limit where it rotates sharply poleward. Weak return flow is observed outside the channel. These observations are compared with and contrasted to similar events seen by the EISCAT radar and by optical instruments. 30 refs., 2 figs.

  4. Global structure of ionospheric TEC anomalies driven by geomagnetic storms (United States)

    Pancheva, D.; Mukhtarov, P.; Andonov, B.


    This study examines the structure and variability of the ionospheric TEC anomalies driven by geomagnetic storms. For this purpose the CODE global ionospheric TEC data from four geomagnetically disturbed periods (29 October-1 November 2003, 7-10 November 2004, 14-15 December 2006, and 5-6 August 2011) have been considered. By applying the tidal analysis to the geomagnetically forced TEC anomalies we made an attempt to identify the tidal or stationary planetary wave (SPW) signatures that may contribute to the generation of these anomalies. It has been found that three types of positive anomalies with different origin and different latitudinal appearance are observed. These are: (i) anomalies located near latitudes of ±40° and related to the enhancement and poleward moving of the equatorial ionization anomaly (EIA) crests; (ii) anomalies located near latitudes of ±60° and seen predominantly in the night-side ionosphere, and (iii) very high latitude anomalies having mainly zonally symmetric structure and related to the auroral heating and thermospheric expansion. The decomposition analysis revealed that these anomalies can be reconstructed as a result of superposition of the following components: zonal mean (ZM), diurnal migrating (DW1), zonally symmetric diurnal (D0), and stationary planetary wave 1 (SPW1).

  5. A statistical study of diurnal, seasonal and solar cycle variations of F-region and topside auroral upflows observed by EISCAT between 1984 and 1996

    Directory of Open Access Journals (Sweden)

    C. Foster

    Full Text Available A statistical analysis of F-region and topside auroral ion upflow events is presented. The study is based on observations from EISCAT Common Programmes (CP 1 and 2 made between 1984 and 1996, and Common Programme 7 observations taken between 1990 and 1995. The occurrence frequency of ion upflow events (IUEs is examined over the altitude range 200 to 500 km, using field-aligned observations from CP-1 and CP-2. The study is extended in altitude with vertical measurements from CP-7. Ion upflow events were identified by consideration of both velocity and flux, with threshold values of 100 m s–1 and 1013 m–2 s–1, respectively. The frequency of occurrence of IUEs is seen to increase with increasing altitude. Further analysis of the field-aligned observations reveals that the number and nature of ion upflow events vary diurnally and with season and solar activity. In particular, the diurnal distribution of upflows is strongly dependent on solar cycle. Furthermore, events identified by the velocity selection criterion dominate at solar minimum, whilst events identified by the upward field-aligned flux criterion dominated at solar maximum. The study also provides a quantitative estimate of the proportion of upflows that are associated with enhanced plasma temperature. Between 50 and 60% of upflows are simultaneous with enhanced ion temperature, and approximately 80% of events are associated with either increased F-region ion or electron temperatures.

    Key words. Ionosphere (auroral ionosphere; particle acceleration

  6. Akebono (EXOS-D) sounder data archive for studies of the ionosphere and plasmasphere (United States)

    Kumamoto, A.; Katoh, Y.; Obara, T.


    For the purpose of topside sounding of the ionosphere and active experiments of the plasma waves in geospace, a sounder system was installed on the Akebono (EXOS-D) satellite, which was operated in a period from 1989 to 2015. Through the long operation period, the sounder system was also operated successfully, and brought us 117,468 ionograms in a frequency range from 0.02-0.89 MHz and 31,936 ionograms in a frequency range from 0.3-11.4 MHz taken within 2.6 Re. In order to provide the data to world-wide researchers' use, we are preparing data archive of Akebono Sounder data in Common Data Format (CDF) and Planetary Data System (PDS) format. Calibrated ionograms will be provided as Level-2 data. In addition, we are going to perform echo trace of the ionograms, and derive the vertical profile of the electron number density below the satellite. The horizontal and vertical distribution of the number density of the topside ionosphere along the satellite path will be provided as Level-3 data. However, because we need some efforts in manual echo tracing with numerous ionograms, it will take some time to finish the release of Level-3 data. So, we are going to prepare another simplified Leve-3 data, which provides the horizontal and apparent (assuming light-speed propagation) vertical distribution of the reflection point of the echo at some fixed frequency. The dataset will be enough useful in finding irregular plasma structures around auroral ionosphere and storm-time plasmasphere.

  7. Simulations of resonant Alfvén waves generated by artificial HF heating of the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    D. Pokhotelov


    Full Text Available Numerical two-dimensional two-fluid MHD simulations of dynamic magnetosphere-ionosphere (MI coupling have been performed to model the effects imposed on the auroral ionosphere by a powerful HF radio wave transmitter. The simulations demonstrate that modifications of the ionospheric plasma temperature and recombination due to artificial heating may trigger the ionospheric feedback instability when the coupled MI system is close to the state of marginal stability. The linear dispersion analysis of MI coupling has been performed to find the favorable conditions for marginal stability of the system. The development of the ionospheric feedback instability leads to the generation of shear waves which resonate in the magnetosphere between the heated ionospheric E-region and the strong gradient in the speed at altitudes of 1-2 RE. The application of the numerical results for the explanation of observations performed by low-orbiting satellites above the high-latitude ionosphere heated with a high power ground-based HF transmitter is discussed.

  8. Solar wind transport into magnetosphere caused by magnetic reconnection at high latitude magnetopause during northward IMF: Cluster-DSP conjunction observations

    Institute of Scientific and Technical Information of China (English)

    YAN GuangQing; SHEN Chao; LIU ZhenXing; M. DUNLOP; E. LUOEK; H. REME; C. M. OARR; ZHANG TieLong


    An event of Cluster-Double Star conjunction observations of magnetic reconnec-tion at high latitude magnetopause nightside of both cusps and solar wind trans-port into magnetosphere caused by such reconnection process has been investi-gated. During northward IMF, Cluster/SC1 observed accelerated flows and ion heating associated with magnetic reconnection at high latitude magnetopause night$1de of southern cusp. And Double Star observed cold dense solar wind plasma transported into dayside magnetosphere. The analysis on such conjunction observations shows that: (1) during northward IMF, magnetic reconnection occurs at high latitude nightside of southern cusp, accompanied by accelerated flows that are observed by Cluster/SC1; (2) the direction of the accelerated flows, with its sunward component Vx, dawnward component Vy, northward component Vz, is quite consistent with the theoretical anticipation under the condition of northward IMF with dawnward component By; (3) reconnection can heat plasma more in par-allel direction than in perpendicular direction, to a level of about 4 keV; (4) with reconnection taking place at high latitude magnetopause nightside of the southern cusp, TC-1 observed cold and dense plasma transported into magnetosphere; (5) by reconnection at high latitude magnetopause nightside of both cusps, solar wind flux tube can be captured by magnetosphere and pulled into dayside magneto-sphere.

  9. Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy input: OpenGGCM-CTIM results

    Directory of Open Access Journals (Sweden)

    Connor Hyunju Kim


    Full Text Available The magnetosphere is a major source of energy for the Earth’s ionosphere and thermosphere (IT system. Current IT models drive the upper atmosphere using empirically calculated magnetospheric energy input. Thus, they do not sufficiently capture the storm-time dynamics, particularly at high latitudes. To improve the prediction capability of IT models, a physics-based magnetospheric input is necessary. Here, we use the Open Global General Circulation Model (OpenGGCM coupled with the Coupled Thermosphere Ionosphere Model (CTIM. OpenGGCM calculates a three-dimensional global magnetosphere and a two-dimensional high-latitude ionosphere by solving resistive magnetohydrodynamic (MHD equations with solar wind input. CTIM calculates a global thermosphere and a high-latitude ionosphere in three dimensions using realistic magnetospheric inputs from the OpenGGCM. We investigate whether the coupled model improves the storm-time IT responses by simulating a geomagnetic storm that is preceded by a strong solar wind pressure front on August 24, 2005. We compare the OpenGGCM-CTIM results with low-earth-orbit satellite observations and with the model results of Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe. CTIPe is an up-to-date version of CTIM that incorporates more IT dynamics such as a low-latitude ionosphere and a plasmasphere, but uses empirical magnetospheric input. OpenGGCM-CTIM reproduces localized neutral density peaks at ~ 400 km altitude in the high-latitude dayside regions in agreement with in situ observations during the pressure shock and the early phase of the storm. Although CTIPe is in some sense a much superior model than CTIM, it misses these localized enhancements. Unlike the CTIPe empirical input models, OpenGGCM-CTIM more faithfully produces localized increases of both auroral precipitation and ionospheric electric fields near the high-latitude dayside region after the pressure shock and after the storm onset

  10. Sudden Ionospheric Disturbances (SID) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden ionospheric disturbances (SID) are caused by solar flare enhanced X-rays in the 1 to 10 angstrom range. Solar flares can produce large increases of ionization...

  11. Measuring GNSS ionospheric total electron content at Concordia, and application to L-band radiometers

    Directory of Open Access Journals (Sweden)

    Vincenzo Romano


    Full Text Available In the framework of the project BIS - Bipolar Ionospheric Scintillation and Total Electron Content Monitoring, the ISACCO-DMC0 and ISACCO-DMC1 permanent monitoring stations were installed in 2008. The principal scope of the stations is to measure the ionospheric total electron content (TEC and to monitor the ionospheric scintillations, using high-sampling-frequency global positioning system (GPS ionospheric scintillation and TEC monitor (GISTM receivers. The disturbances that the ionosphere can induce on the electromagnetic signals emitted by the Global Navigation Satellite System constellations are due to the presence of electron density anomalies in the ionosphere, which are particularly frequent at high latitudes, where the upper atmosphere is highly sensitive to perturbations coming from outer space. With the development of present and future low-frequency space-borne microwave missions (e.g., Soil Moisture and Ocean Salinity [SMOS], Aquarius, and Soil Moisture Active Passive missions, there is an increasing need to estimate the effects of the ionosphere on the propagation of electromagnetic waves that affects satellite measurements. As an example, how the TEC data collected at Concordia station are useful for the calibration of the European Space Agency SMOS data within the framework of an experiment promoted by the European Space Agency (known as DOMEX will be discussed. The present report shows the ability of the GISTM station to monitor ionospheric scintillation and TEC, which indicates that only the use of continuous GPS measurements can provide accurate information on TEC variability, which is necessary for continuous calibration of satellite data.

  12. The new IGS ionospheric product - TEC fluctuation maps and their scientific application (United States)

    Krankowski, Andrzej; Cherniak, Iurii; Zakharenkova, Irina


    The GPS signals fading due to presence of the plasma irregularities in the ionosphere can decrease an operational availability of navigation systems. This effect can be estimated by measuring its impact on phase of the received GPS signal. The new IGS ionospheric fluctuation maps product is based on estimates of the TEC rapid changes. For an overall representation of the spatial evolution of the ionospheric irregularities, which caused the GPS signal fluctuations over the Northern Hemisphere in middle and high latitudes, a daily map of the ROTI index is produced basing on data derived from a representative set of 700 permanent GPS stations. We use the corrected geomagnetic (CGM) coordinates with DGRF/IGRF models. For daily ROTI maps, we averaged and binned all ROTI values collected during 00-24 UT period of a considered day. The grid size is 8 min MLT by 2° MLAT, with the latter covering 50° - 90°. The averaged ROTI value in each MLAT-MLT bin corresponds to probability of the GPS signals phase fluctuations caused by passing of radio signals through the ionospheric irregularities. The resulted ionospheric fluctuation product is represented in the ASCII IONEX-like data format and can be visualized. This data format is described in details. We demonstrate the IGS ionospheric fluctuation map product performance for scientific research application on set of test-cases (geomagnetic storms occurred in the years 2013-2015) for comparative analysis of the resulted daily ROTI maps for quiet and geomagnetically disturbed periods. The intense phase scintillations depicted in the diurnal ROTI maps can provide an important information about development of the severe storm-induced gradients in the ionospheric plasma density, both caused by auroral particle precipitation and plasma flows. It is possible to conclude that IGS ionospheric fluctuation maps product can be effectively used for monitoring of the plasma irregularities with different origin. The independent ground

  13. Ionospheric plasma density structures associated with magnetopause motion: a case study using the Cluster spacecraft and the EISCAT Svalbard Radar

    Directory of Open Access Journals (Sweden)

    F. Pitout


    Full Text Available On 5 January 2003, the footprint of the Cluster spacecraft, then orbiting in the dayside magnetosphere near the magnetopause, was in the close vicinity of the EISCAT Svalbard Radar (ESR in the dayside afternoon sector. This configuration made possible the study of the magnetopause motion and its direct consequences on the ionospheric plasma at high latitude. Cluster observed multiple magnetopause crossings despite its high latitude, while on the ground the magnetic activity was very low, whereas the ionospheric plasma sounded by the ESR exhibited poleward moving plasma density structures. In this paper, we compare the satellite and radar data, in order to show that the plasma density structures are directly related to the magnetopause motion and its associated pulsed ionospheric flow. We propose that the variations in electric field make the convection velocity vary enough to alter the electron population by accelerating the chemistry in the F-region and act as a source of electron depletion. The magnetopause motion is in this case, a source of plasma density structures in the polar dayside ionosphere.

  14. G181.1+9.5, a new high-latitude low-surface brightness supernova remnant (United States)

    Kothes, Roland; Reich, Patricia; Foster, Tyler J.; Reich, Wolfgang


    Context. More than 90% of the known Milky Way supernova remnants (SNRs) are within 5° of the Galactic plane. The discovery of the new high-latitude SNR G181.1+9.5 will give us the opportunity to learn more about the environment and magnetic field at the interface between disk and halo of our Galaxy. Aims: We present the discovery of SNR G181.1+9.5, a new high-latitude SNR, serendipitously discovered in an ongoing survey of the Galactic anti-centre High-Velocity Cloud complex, observed with the DRAO Synthesis Telescope in the 21 cm radio continuum and H i spectral line. Methods: We use radio continuum observations (including the linearly polarized component) at 1420 MHz (observed with the DRAO ST) and 4850 MHz (observed with the Effelsberg 100-m radio telescope) to map G181.1+9.5 and determine its nature as a SNR. High-resolution 21 cm H i line observations and H i emission and absorption spectra reveal the physical characteristics of its local interstellar environment. Finally, we estimate the basic physical parameters of G181.1+9.5 using models for highly-evolved SNRs. Results: G181.1+9.5 has a circular shell-like morphology with a radius of about 16 pc at a distance of 1.5 kpc some 250 pc above the mid-plane. The radio observations reveal highly linearly polarized emission with a non-thermal spectrum. Archival ROSAT X-ray data reveal high-energy emission from the interior of G181.1+9.5 indicative of the presence of shock-heated ejecta. The SNR is in the advanced radiative phase of SNR evolution, expanding into the HVC inter-cloud medium with a density of nHI ≈ 1 cm-3. Basic physical attributes of G181.1+9.5 calculated with radiative SNR models show an upper-limit age of 16 000 yr, a swept-up mass of more than 300M⊙, and an ambient density in agreement with that estimated from H i observations. Conclusions: G181.1+9.5 shows all characteristics of a typical mature shell-type SNR, but its observed faintness is unusual and requires further study.

  15. Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of mid to high latitudes?

    Directory of Open Access Journals (Sweden)

    P. Dass


    Full Text Available Numerous studies have concluded that deforestation of mid to high latitudes result in a global cooling. This is mainly because of the increased albedo of deforested land which dominates over other biogeophysical and biogeochemical mechanisms in the energy balance. This dominance however may be due to an underestimation of the biogeochemical response, as carbon emissions are typically at or below the lower end of estimates. Here, we use the dynamic global vegetation model LPJmL for a better estimate of the carbon cycle under such large-scale deforestation. These studies are purely academic to understand the role of vegetation in the energy balance and the earth system. They must not be mistaken as possible mitigation options, because of the devastating effects on pristine ecosystems. We show that even optimistic assumptions on the manageability of these areas and its utilization for bioenergy crops could not make up for the strong carbon losses in connection with the losses of vegetation carbon and the long-term decline of soil carbon stocks. We find that the global biophysical bioenergy potential is 78.9 ± 7.9 EJ yr−1 of primary energy at the end of the 21st century for the most plausible scenario. Due to avoided usage of fossil fuels over the time frame of this experiment, the cooling due to the biogeophysical feedback could be supplemented by an avoided warming of approximately 0.1 to 0.3 °C. However, the extensive deforestation simulated in this study causes an immediate emission of 182.3 ± 0.7 GtC followed by long term emissions. In the most plausible scenario, this carbon debt is not neutralized even if bioenergy production is assumed to be carbon-neutral other than for the land use emissions so that global temperatures would increase by ~0.2 to 0.6 °C by the end of the 21st century. The carbon dynamics in the high latitudes, especially with respect to permafrost dynamics and long-term carbon losses, require additional attention in

  16. A satellite snow depth multi-year average derived from SSM/I for the high latitude regions (United States)

    Biancamaria, S.; Mognard, N.M.; Boone, A.; Grippa, M.; Josberger, E.G.


    The hydrological cycle for high latitude regions is inherently linked with the seasonal snowpack. Thus, accurately monitoring the snow depth and the associated aerial coverage are critical issues for monitoring the global climate system. Passive microwave satellite measurements provide an optimal means to monitor the snowpack over the arctic region. While the temporal evolution of snow extent can be observed globally from microwave radiometers, the determination of the corresponding snow depth is more difficult. A dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from Special Sensor Microwave/Imager (SSM/I) brightness temperatures and was validated over the U.S. Great Plains and Western Siberia. The purpose of this study is to assess the dynamic algorithm performance over the entire high latitude (land) region by computing a snow depth multi-year field for the time period 1987-1995. This multi-year average is compared to the Global Soil Wetness Project-Phase2 (GSWP2) snow depth computed from several state-of-the-art land surface schemes and averaged over the same time period. The multi-year average obtained by the dynamic algorithm is in good agreement with the GSWP2 snow depth field (the correlation coefficient for January is 0.55). The static algorithm, which assumes a constant snow grain size in space and time does not correlate with the GSWP2 snow depth field (the correlation coefficient with GSWP2 data for January is - 0.03), but exhibits a very high anti-correlation with the NCEP average January air temperature field (correlation coefficient - 0.77), the deepest satellite snow pack being located in the coldest regions, where the snow grain size may be significantly larger than the average value used in the static algorithm. The dynamic algorithm performs better over Eurasia (with a correlation coefficient with GSWP2 snow depth equal to 0.65) than over North America

  17. Solar wind transport into magnetosphere caused by magnetic reconnection at high latitude magnetopause during northward IMF: Cluster-DSP conjunction observations

    Institute of Scientific and Technical Information of China (English)

    M.; DUNLOP; E.; LUCEK; H.; RME; C.; M.; CARR


    An event of Cluster-Double Star conjunction observations of magnetic reconnec-tion at high latitude magnetopause nightside of both cusps and solar wind trans-port into magnetosphere caused by such reconnection process has been investi-gated. During northward IMF, Cluster/SC1 observed accelerated flows and ion heating associated with magnetic reconnection at high latitude magnetopause nightside of southern cusp. And Double Star observed cold dense solar wind plasma transported into dayside magnetosphere. The analysis on such conjunction observations shows that: (1) during northward IMF, magnetic reconnection occurs at high latitude nightside of southern cusp, accompanied by accelerated flows that are observed by Cluster/SC1; (2) the direction of the accelerated flows, with its sunward component Vx, dawnward component Vy, northward component Vz, is quite consistent with the theoretical anticipation under the condition of northward IMF with dawnward component By; (3) reconnection can heat plasma more in par-allel direction than in perpendicular direction, to a level of about 4 keV; (4) with reconnection taking place at high latitude magnetopause nightside of the southern cusp, TC-1 observed cold and dense plasma transported into magnetosphere; (5) by reconnection at high latitude magnetopause nightside of both cusps, solar wind flux tube can be captured by magnetosphere and pulled into dayside magneto-sphere. This event presents further observational evidence for magnetic reconnec-tion at high latitude magnetopause nightside of both cusps as an important mech-anism of sol-ar w-ind transport into magnetosphere.

  18. Assimilative Mapping of Interhemispheric Polar Ionospheric Electrodynamics (United States)

    Matsuo, T.; Richmond, A. D.; Knipp, D. J.; McGranaghan, R. M.


    The Earth's main magnetic field is asymmetric between hemispheres due to its non-dipolar component, leading to various hemispherical differences in the coupling among the solar wind, magnetosphere and ionosphere. Manifestation of the asymmetric coupling through different electrodynamic parameters reported in past studies is considerably diverse. To fill the gap in our current understanding, obtained so far by analyzing individual parameters separately and comparing statistical behaviors of the parameters, we quantify the degree of instantaneous inter-hemispheric imbalance of electromagnetic energy deposition (Poynting flux), field-aligned currents, and convection electric fields though global and self-consistent analysis of electrodynamic variables at both polar regions, by means of data assimilation. Inter-hemispheric assimilative maps of different high-latitude electrodynamical parameters are obtained from simultaneous analysis of multiple types of space-based and ground-based observations made available though the AMPERE, SuperDARN, SuperMAG and DMSP programs with rigorous consideration of the uncertainty associated with each observation.

  19. Design optimization of heat exchangers in topside systems for offshore oil and gas processing


    Bandopadhyay, Mayukh


    On a typical oil and gas platform, mechanical equipment units are integral parts of the topside processing system. Heat exchangers, separators, scrubbers, compressors and other equipment units are critical for the proper operation of the processing plant. The hydrocarbon stream received at the first production separator is a mixed stream comprising oil, water and gas phase. This mixed stream is processed in order to separate the oil dominated, water dominated and gas phase. The processing sys...

  20. Geospace ionosphere research with a MF/HF radio instrument on a cubesat (United States)

    Kallio, E. J.; Aikio, A. T.; Alho, M.; Fontell, M.; van Gijlswijk, R.; Kauristie, K.; Kestilä, A.; Koskimaa, P.; Makela, J. S.; Mäkelä, M.; Turunen, E.; Vanhamäki, H.


    Modern technology provides new possibilities to study geospace and its ionosphere, using spacecraft and and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We present computational simulation results and measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in 2017 ( We have modelled the propagation of the radio waves, both ground generated man-made waves and space formed space weather related waves, through the 3D

  1. Eocene high-latitude temperature gradients over time and space based on d18O values of fossil shark teeth (United States)

    Zeichner, S. S.; Kim, S.; Colman, A. S.


    Early-Mid Eocene (56.0-33.9Mya) is characterized by a temperate Antarctic climate and shallower latitudinal temperature gradients than those in present day. The warmer waters off the coast of the Antarctic Peninsula provided suitable habitats for taxa (i.e., sharks) that live today at lower latitudes. Stable isotope analysis of Eocene shark teeth provides a proxy to understand high latitude temperature gradients. However, shark ecology, in particular migration and occupation of tidal versus pelagic habitats, must be considered in the interpretation of stable isotope data. In this study, we analyze d18OPO4 values from the enameloid of Striatolamia (synonymized with Carcharias) shark teeth from the La Meseta formation (Seymour Island, Antarctica) to estimate paleotemperature in Early-Mid Eocene Antarctica, and assess the impact of ecology versus environmental signals on d18OPO4 values. We compare the ranges and offsets between our measured shark tooth d18OPO4 and published bivalve d18OCO3 values to test whether shark teeth record signals of migration across latitudinal temperature gradients, or instead reflect seasonal and long-term temporal variation across La Meseta stratigraphic units.

  2. A Balloon-borne Measurement of High Latitude Atmospheric Neutrons Using a LiCAF Neutron Detector

    CERN Document Server

    Kole, Merlin; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mózsi; Moretti, Elena; Salinas, Maria Fernanda Muñoz; Pearce, Mark; Rydström, Stefan; Takahashi, Hiromitsu; Yanagida, Takayuki


    PoGOLino is a scintillator-based neutron detector. Its main purpose is to provide data on the neutron flux in the upper stratosphere at high latitudes at thermal and nonthermal energies for the PoGOLite instrument. PoGOLite is a balloon borne hard X-ray polarimeter for which the main source of background stems from high energy neutrons. No measurements of the neutron environment for the planned flight latitude and altitude exist. Furthermore this neutron environment changes with altitude, latitude and solar activity, three variables that will vary throughout the PoGOLite flight. PoGOLino was developed to study the neutron environment and the influences from these three variables upon it. PoGOLino consists of two Europium doped Lithium Calcium Aluminium Fluoride (Eu:LiCAF) scintillators, each of which is sandwiched between 2 Bismuth Germanium Oxide (BGO) scintillating crystals, which serve to veto signals produced by gamma-rays and charged particles. This allows the neutron flux to be measured even in high rad...

  3. Determination of stratospheric temperature and density by GOMOS: Verification with respect to high latitude LIDAR profiles from Thule, Greenland (United States)

    di Sarra, A.; Iannone, R. Q.; Casadio, S.; Di Biagio, C.; Pace, G.; Cacciani, M.; Muscari, G.; Dehn, A.; Bojkov, B.


    High resolution temperature profiles (HRTP) have been derived from measurements performed by Global Ozone Monitoring by Occultation of Stars (GOMOS) onboard ENVISAT. HRTP are derived from measurements with two fast photometers whose signal is sampled at 1 kHz, and allows investigating the role of irregularities in the density and temperature profiles, such as those associated with gravity waves. In this study high resolution temperature and density profiles measured at high latitude by GOMOS are compared with observations made with the ground-based aerosol/temperature LIDAR at Thule, Greenland. The LIDAR at Thule contributes to the Network for the Detection of Atmospheric Composition Change. The LIDAR profiles are analyzed in the height interval overlapping with GOMOS data (22-35 km), and the density and temperature profiles are obtained with 250 m vertical resolution. The comparison is focused on data collected during the 2008-2009 and 2009-2010 Arctic winters. Profiles measured within 6 hours and 500 km are selected. The profiles are classified based on spatial and temporal variability of dynamical indicators over Thule and at the GOMOS tangent height position. Several corresponding features can be identified in the GOMOS and LIDAR profiles, suggesting that the GOMOS HRTP could be used to investigate the global distribution of small scale fluctuations. As an example, two cases corresponding to inner and outer vortex conditions during the 2008-2009 winter are discussed, also in relation with the very intense sudden stratospheric warming occurred in this season.

  4. Turbulent high-latitude oceanic intrusions—details of non-smooth apparent isopycnal transport West of Svalbard (United States)

    van Haren, Hans; Greinert, Jens


    Filament intrusions are observed in high-resolution temperature (T) measurements from a 100-m and several month-long mooring in the Fram Strait in around 400-m water depth at the continental slope West of Svalbard (Spitsbergen, Norway). In this dynamic environment, a wide variety of intrusive layers are observed with thicknesses between 5 and 80 m with warmer water between cooler waters above and below. The layers typically last from several hours up to 1 day, exceeding the local buoyancy period but not lasting as long as intrusive layers in the open ocean. The intrusions are a result of an intermingling of Arctic and North-Atlantic waters and generated in the basins interior and locally via internal wave steepening upon the sloping bottom. Freely propagating semidiurnal lunar internal tides cannot exist without background vorticity at these high latitudes. Strongly nonlinear turbulent bores are not observed at the tidal periodicity, but wave fronts occur at the sub-inertial frequency of dominant baroclinic instability. The fronts are in part associated with near-buoyancy frequency internal waves (breaking). The details of the moored T observations and their spectral content demonstrate the non-smooth, relatively turbulent development including convective overturning and shear-induced instabilities when intrusions disperse in presumably salinity-compensated isopycnal layers.

  5. The effects of coronal mass ejection on galactic cosmic rays in the high latitude heliosphere: Observations from Ulysses` first orbit

    Energy Technology Data Exchange (ETDEWEB)

    Bothmer, V.; Heber, B.; Kunow, H.; Mueller-Mellin, R.; Wibberenz, G. [Univ. of Kiel (Germany). Institut fuer Kernphysik; Gosling, J.T. [Los Alamos National Lab., NM (United States); Balogh, A. [Imperial College, London (United Kingdom). Blackett Lab.; Raviart, A. [CEA, Gif-sur-Yvette (France). Service d`Astrophysique; Paizis, C. [Univ. di Milano (Italy). Istituto di Fisica Cosmica CNR


    During its first solar orbit the Ulysses spacecraft detected several coronal mass ejections (CMEs) at high heliographic latitudes. The authors present first observations on the effects of these high latitude CMEs on galactic cosmic rays (GCRs) using measurements from the Kiel Electron Telescope (KET) which is part of the Cosmic Ray and Solar Particle Investigation (COSPIN) experiment, the Los Alamos SWOOPS (Solar Wind Observations Over the Poles of the Sun) experiment and the magnetic field experiments. They find the passage of these CMEs over the spacecraft to be associated with short term decreases of GCR intensities The relatively weak shocks in these events, driven by the CMEs` over-expansion, had no strong influence on the GCRs. The intensity minimums of GCRs occurred on closed magnetic field lines inside the CMEs themselves as indicated by bidirectional fluxes of suprathermal electrons. Short episodes of intensity increases of GCRs inside CMEs at times when the bidirectional fluxes of suprathermal electrons disappeared, can be interpreted as evidence that GCRs can easily access the interior of those CMEs in which open magnetic field lines are embedded.

  6. Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the Southern Hemisphere.

    Directory of Open Access Journals (Sweden)

    Ceridwen I Fraser

    Full Text Available Marine biologists and biogeographers have long been puzzled by apparently non-dispersive coastal taxa that nonetheless have extensive transoceanic distributions. We here carried out a broad-scale phylogeographic study to test whether two widespread Southern Hemisphere species of non-buoyant littoral macroalgae are capable of long-distance dispersal. Samples were collected from along the coasts of southern Chile, New Zealand and several subAntarctic islands, with the focus on high latitude populations in the path of the Antarctic Circumpolar Current or West Wind Drift. We targeted two widespread littoral macroalgal species: the brown alga Adenocystisutricularis (Ectocarpales, Heterokontophyta and the red alga Bostrychiaintricata (Ceramiales, Rhodophyta. Phylogenetic analyses were performed using partial mitochondrial (COI, chloroplast (rbcL and ribosomal nuclear (LSU / 28S DNA sequence data. Numerous deeply-divergent clades were resolved across all markers in each of the target species, but close phylogenetic relationships - even shared haplotypes - were observed among some populations separated by large oceanic distances. Despite not being particularly buoyant, both Adenocystisutricularis and Bostrychiaintricata thus show genetic signatures of recent dispersal across vast oceanic distances, presumably by attachment to floating substrata such as wood or buoyant macroalgae.

  7. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment. (United States)

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica


    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm(2)).

  8. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    Directory of Open Access Journals (Sweden)

    Kathryn L Markey

    Full Text Available In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile. Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011 has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  9. Five new Fast Radio Bursts from the HTRU high latitude survey: first evidence for two-component bursts

    CERN Document Server

    Champion, D J; Kramer, M; Keith, M J; Bailes, M; Barr, E D; Bates, S D; Bhat, N D R; Burgay, M; Burke-Spolaor, S; Flynn, C M L; Jameson, A; Johnston, S; Ng, C; Levin, L; Possenti, A; Stappers, B W; van Straten, W; Tiburzi, C; Lyne, A G


    The detection of five new fast radio bursts (FRBs) found in the High Time Resolution Universe high latitude survey is presented. The rate implied is 6$^{+4}_{-3}\\times~10^3$ (95%) FRBs sky$^{-1}$ day$^{-1}$ above a fluence of between 0.13 and 5.9 Jy ms for FRBs between 0.128 and 262 ms in duration. One of these FRBs has a clear two-component profile, each component is similar to the known population of single component FRBs and are separated by 2.4(4) ms. All the FRB components appear to be unresolved following deconvolution with a scattering tail and accounting for intra-channel smearing. The two-component FRB also has the highest dispersion measure (1629 pc cm$^{-3}$) of any FRB to-date. Many of the proposed models to explain FRBs use a single high energy event involving compact objects (such as neutron star mergers) and therefore cannot easily explain a two-component FRB. Models that are based on extreme versions of flaring, pulsing or orbital events however could produce multiple component profiles. The c...

  10. Application of the marine circular electric dipole method in high latitude Arctic regions using drifting ice floes (United States)

    Mogilatov, Vladimir; Goldman, Mark; Persova, Marina; Soloveichik, Yury; Koshkina, Yulia; Trubacheva, Olga; Zlobinskiy, Arkadiy


    Theoretically, a circular electric dipole is a horizontal analogue of a vertical electric dipole and, similarly to the latter, it generates the unimodal transverse magnetic field. As a result, it demonstrates exceptionally high signal detectability and both vertical and lateral resolutions, particularly regarding thin resistive targets. The ideal circular electric dipole is represented by two concentric continuums of electrodes connected to different poles of the transmitter. In practice, the ideal dipole is adequately approximated by eight outer electrodes and one central electrode. The greatest disadvantage of circular electric dipoles stems from the necessity to provide perfectly symmetrical radial grounded lines with equal current in each line. In addition, relocating such a cumbersome system is very difficult on land and offshore. All these disadvantages might be significantly reduced in the proposed ice-borne system. The system utilizes drifting ice floes in high latitude Arctic regions as stable platforms for locating marine circular electric dipole transmitters, while the underlain ocean water is a perfect environment for grounding transmitter and receiver electrodes. Taking into account the limited size of drifting floes, mainly short offset methods can be applied from the surface. Among those, the proposed method is superior in providing sufficiently high signal detectability and resolution to delineate deep targets below very conductive ocean water and sub-seafloor sediments. Other existing methods, which are able to provide similar characteristics, utilize near bottom arrays and would be hard to employ in the presence of a thick ice cover.

  11. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers (United States)

    MacDonald, Lauren A.; Wolfe, Brent B.; Turner, Kevin W.; Anderson, Lesleigh; Arp, Christopher D.; Birks, Jean; Bouchard, Frédéric; Edwards, Thomas W.D.; Farquharson, Nicole; Hall, Roland I.; McDonald, Ian; Narancic, Biljana; Ouimet, Chantal; Pienitz, Reinhard; Tondu, Jana; White, Hilary


    Numerous studies utilizing remote sensing imagery and other methods have documented that thermokarst lakes are undergoing varied hydrological transitions in response to recent climate changes, from surface area expansion to drainage and evaporative desiccation. Here, we provide a synthesis of hydrological conditions for 376 lakes of mainly thermokarst origin across high-latitude North America. We assemble surface water isotope compositions measured during the past decade at five lake-rich landscapes including Arctic Coastal Plain (Alaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), northwestern Hudson Bay Lowlands (Manitoba), and Nunavik (Quebec). These landscapes represent the broad range of thermokarst environments by spanning gradients in meteorological, permafrost, and vegetation conditions. An isotope framework was established based on flux-weighted long-term averages of meteorological conditions for each lake to quantify water balance metrics. The isotope composition of source water and evaporation-to-inflow ratio for each lake were determined, and the results demonstrated a substantial array of regional and subregional diversity of lake hydrological conditions. Controls on lake water balance and how these vary among the five landscapes and with differing environmental drivers are assessed. Findings reveal that lakes in the Hudson Bay Lowlands are most vulnerable to evaporative desiccation, whereas those in Nunavik are most resilient. However, we also identify the complexity in predicting hydrological responses of these thermokarst landscapes to future climate change.

  12. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    Directory of Open Access Journals (Sweden)

    A. Ekici


    Full Text Available Modelling soil thermal dynamics at high latitudes and altitudes requires representations of specific physical processes such as snow insulation, soil freezing/thawing, as well as subsurface conditions like soil water/ice content and soil texture type. We have compared six different land models (JSBACH, ORCHIDEE, JULES, COUP, HYBRID8, LPJ-GUESS at four different sites with distinct cold region landscape types (i.e. Schilthorn-Alpine, Bayelva-high Arctic, Samoylov-wet polygonal tundra, Nuuk-non permafrost Arctic to quantify the importance of physical processes in capturing observed temperature dynamics in soils. This work shows how a range of models can represent distinct soil temperature regimes in permafrost and non-permafrost soils. Snow insulation is of major importance for estimating topsoil conditions and must be combined with accurate subsoil temperature dynamics to correctly estimate active layer thicknesses. Analyses show that land models need more realistic surface processes (such as detailed snow dynamics and moss cover with changing thickness/wetness as well as better representations of subsoil thermal dynamics (i.e. soil heat transfer mechanism and correct parameterization of heat conductivity/capacities.

  13. Assessment of land influence on a high-latitude marine coastal system: Tierra del Fuego, southernmost Argentina. (United States)

    Amin, Oscar; Comoglio, Laura; Spetter, Carla; Duarte, Claudia; Asteasuain, Raúl; Freije, Rubén Hugo; Marcovecchio, Jorge


    The study deals with the determination of physico-chemical parameters, inorganic nutrients, particulate organic matter, and photosynthetic pigments on a monthly basis during an annual cycle from nine sampling sites of the coastal zone of a high-latitude ecosystem (Tierra del Fuego, Argentina). Nitrites and phosphates concentrations were similar to other systems of the south Atlantic coast (median, 0.30 and 1.02 μM, respectively), while nitrates were higher in all sampling periods (median, 45.37 μM), and silicates were significantly smaller (median, 7.76 μM). Chlorophyll a and phaeopigments have shown median values of 0.38 and 0.85 mg m(-3), respectively, while saturated values of dissolved oxygen were recorded throughout the study. The analysis reflected that nutrient enrichment seems to be linked to an anthropogenic source, the presence of peatlands areas, and a sink of Nothofagus pumilio woods. The area could be characterized in three zones related to (1) high urban influence, (2) natural inputs of freshwater, and (3) mixed inputs coming from moderate urban impacts.

  14. The Vertical-Tube Solar Collector: A Low-Cost Design Suitable for Temperate High-Latitude Locations

    Directory of Open Access Journals (Sweden)

    Luis Juanicó


    Full Text Available A new low-cost solar collector based on thick (4.5′′ vertical tubes related to the previous design based on long 1.5′′ plastic hoses connected directly between water-grid supply and consumption is presented. This novel design could noticeably improve its performance for temperate locations mid and high latitudes, as was demonstrated by dynamic thermal modeling. This tool has been useful for understanding the particular characteristics of this kind of water-pond collector and besides, for noticeably improving its performance by optimizing its parameters, like tube diameter and number of glazing layers. By this way, the optimized design could fully satisfy the household demand up to midnight along the whole year for Buenos Aires (35°S and during summers (remaining as a useful preheater for the whole year for Ushuaia (55°S. Besides, its high simplicity makes it available for user’s own construction, costing down 50 dollars for a single-family unit.

  15. Electrodynamic coupling between ionospheric convection patterns in the northern and southern hemispheres

    Directory of Open Access Journals (Sweden)

    V. E. Zakharov

    Full Text Available A numerical model of the high-latitude ionospheric electric field is presented. To perform the calculations, a model of the field-aligned current source is proposed. The electric field patterns are calculated consistently both in the northern and southern hemispheres. Effects of season, universal time, solar and geomagnetic activity, the neutral atmosphere winds, and of the IMF sector structure are considered. In particular, dynamics of the parameters of convection cells are investigated that depend on the action of these factors. Comparison of the results with experimental data is carried out.

  16. Artificial periodic irregularities in the auroral ionosphere

    Directory of Open Access Journals (Sweden)

    M.T. Rietveld

    Full Text Available Artificial periodic irregularities (API are produced in the ionospheric plasma by a powerful standing electromagnetic wave reflected off the F region. The resulting electron-density irregularities can scatter other high-frequency waves if the Bragg scattering condition is met. Such measurements have been performed at mid-latitudes for two decades and have been developed into a useful ionospheric diagnostic technique. We report here the first measurements from a high-latitude station, using the EISCAT heating facility near Tromsø, Norway. Both F-region and lower-altitude ionospheric echoes have been obtained, but the bulk of the data has been in the E and D regions with echoes extending down to 52-km altitude. Examples of API are shown, mainly from the D region, together with simultaneous VHF incoherent-scatter-radar (ISR data. Vertical velocities derived from the rate of phase change during the irregularity decay are shown and compared with velocities derived from the ISR. Some of the API-derived velocities in the 75–115-km height range appear consistent with vertical neutral winds as shown by their magnitudes and by evidence of gravity waves, while other data in the 50–70-km range show an unrealistically large bias. For a comparison with ISR data it has proved difficult to get good quality data sets overlapping in height and time. The initial comparisons show some agreement, but discrepancies of several metres per second do not yet allow us to conclude that the two techniques are measuring the same quantity. The irregularity decay time-constants between about 53 and 70 km are compared with the results of an advanced ion-chemistry model, and height profiles of recorded signal power are compared with model estimates in the same altitude range. The calculated amplitude shows good agreement with the data in that the maximum occurs at about the same height as that of the measured amplitude. The calculated time-constant agrees very well with the

  17. Identification of the plasma instabilities responsible for decameter-scale ionospheric irregularities on plasmapause field lines (United States)

    Eltrass, Ahmed; Ruohoniemi, J. Michael; Mahmoudian, Alireza; Scales, Wayne; De Larquier, Sebastien; Baker, Joseph; Greenwald, Ray; Erickson, Philip

    The mid-latitude SuperDARN radars have revealed decameter-scale ionospheric irregularities during quiet geomagnetic periods that have been proposed to be responsible for the observed low-velocity Sub-Auroral Ionospheric Scatter (SAIS). The mechanism responsible for the growth of such common irregularities is still unknown. Joint measurements by Millstone Hill Incoherent Scatter Radar (ISR) and SuperDARN HF radar located at Wallops Island, Virginia reported by Greenwald et al. [2006] have determined decameter-scale irregularities with low drift velocities in the quiet-time mid-latitude night-side ionosphere. Temperature gradient instability (TGI) is investigated as the cause of irregularities associated with these SuperDARN echoes. The electrostatic dispersion relation for TGI has been extended into the kinetic regime appropriate for SuperDARN radar frequencies by including Landau damping, finite gyro-radius effects, and temperature anisotropy. This dispersion relation allows study of the TGI over a wide range of parameter regimes that have not been considered for such ionospheric applications up to this time. The calculations of electron temperature and density gradients in the direction perpendicular to the geomagnetic field have shown that the TGI growth is possible in the top-side F-region for the duration of the experiment. A time series for the growth rate has been developed for mid-latitude ionospheric irregularities observed by SuperDARN in the top-side F-region [Greenwald et al., 2006]. This time series is computed for both perpendicular and meridional density and temperature gradients. These observations show the role of TGI is dominant over the gradient drift instability (GDI) in this case. Nonlinear evolution of the TGI has been studied utilizing gyro-kinetic "Particle In Cell" (PIC) simulations with Monte Carlo collisions. This allows detailed study of saturation amplitude, particle flux, heat flux, diffusion coefficient, and thermal diffusivity of the

  18. Southern high-latitude terrestrial climate change during the Palaeocene–Eocene derived from a marine pollen record (ODP Site 1172, East Tasman Plateau)

    NARCIS (Netherlands)

    Contreras, L.; Pross, J.; Bijl, P.K.; O'Hara, R.B.; Raine, J.I.; Sluijs, A.; Brinkhuis, H.


    Reconstructing the early Palaeogene climate dynamicsof terrestrial settings in the high southern latitudes isimportant to assess the role of high-latitude physical and biogeochemicalprocesses in the global climate system. However,whereas a number of high-quality Palaeogene climaterecords has become

  19. The rotation of the plasmapause-like boundary at high latitudes in Saturn's magnetosphere and its relation to the eccentric rotation of the northern and southern auroral ovals (United States)

    Gurnett, D. A.; Persoon, A. M.; Groene, J. B.; Kurth, W. S.; Morooka, M.; Wahlund, J.-E.; Nichols, J. D.


    Here we present a study of the rotation of the plasmapause-like density boundary discovered by the Cassini spacecraft at high latitudes in the Saturnian magnetosphere, and compare the results with previously published studies of high-latitude magnetic field perturbations and the eccentric rotation of the auroral ovals. Near the planet the density boundary is located at dipole L values ranging from about 8 to 15, and separates a region of very low densities at high latitudes from a region of higher densities at lower latitudes. We show that the density boundary rotates at different rates in the northern and southern hemispheres, and that the periods are the same as the modulation periods of Saturn kilometric radiation in those hemispheres. We also show that the phase of rotation in a given hemisphere is closely correlated with the phase of the high-latitude magnetic field perturbations observed by Cassini in that hemisphere, and also with the phase of the eccentric rotation of the auroral oval observed by the Hubble Space Telescope.

  20. Lower thermosphere coupling study: Comparison of observations with predictions of the University College London-Sheffield thermosphere-ionosphere model

    Energy Technology Data Exchange (ETDEWEB)

    Fuller-Rowell, T.J.; Rees, D.; Parish, H.F. (Univ. Coll. London (England)); Virdi, T.S.; Williams, P.J.S. (Univ. Coll. of Wales, Aberystwyth (England)); Johnson, R.M. (Univ. of Michigan, Ann Arbor (USA))


    During the first Lower Thermosphere Coupling Study (LTCS), September 21-25 1987, data were recorded from the incoherent scatter radar sites at EISCAT, Millstone Hill, Sondrestrom, and Arecibo. These experimental facilities measured ionospheric parameters (Ne, Te, Ti, and plasma velocity) in the E and the F regions which have been used to determine the E region neutral wind and infer the neutral temperature in the height range 100-150 km. Propagating tides are clearly visible in some of the parameters, and the latitude structure and phase variations with height indicate the presence of at least the (2,2) and (2,4) global tidal Hough modes. The influence of geomagnetic forcing is also clearly present at high latitudes. The University College London-Sheffield University three-dimensional coupled thermosphere-ionosphere model has been used to simulate this period of observation, by imposing tidal forcing at the lower boundary and magnetospheric forcing at high latitudes, in an attempt to interpret and understand the experimental data. Model simulations are able to predict where the signature of a particular tidal mode is likely to be observed in the respective responses of the temperature and wind structure. The numerical simulations predict the range of observed tidal amplitudes at mid and high latitudes, provided the tidal forcing functions imposed near the lower boundary of the model are larger (400 m geopotential height variation) than those inferred from linear tidal models.

  1. The zonal motion of equatorial plasma bubbles relative to the background ionosphere (United States)

    Kil, Hyosub; Lee, Woo Kyoung; Kwak, Young-Sil; Zhang, Yongliang; Paxton, Larry J.; Milla, Marco


    The zonal motions of plasmas inside equatorial plasma bubbles are different from those in the background ionosphere. The difference was explained in terms of the tilt of bubbles by recent studies, but observational evidence of this hypothesis has not yet been provided. We examine this hypothesis and, at the same time, look for an alternative explanation on the basis of the coincident satellite and radar observations over Jicamarca (11.95°S, 76.87°W) in Peru. In the observations at premidnight by the first Republic of China satellite (altitude: 600 km, inclination: 35°), plasmas inside bubbles drift westward relative to ambient plasmas. The same phenomenon is identif