WorldWideScience

Sample records for high-intensity high-energy proton

  1. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    N. A. Tahir

    2012-05-01

    Full Text Available The Large Hadron Collider (LHC is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%–20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect. It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials at CERN using the proton beam from the Super Proton Synchrotron (SPS, to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle

  2. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Science.gov (United States)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  3. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    CERN Document Server

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  4. High intensity circular proton accelerators

    International Nuclear Information System (INIS)

    Craddock, M.K.

    1987-12-01

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  5. Development of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, M.; Kusano, J.; Hasegawa, K.; Ouchi, N.; Oguri, H.; Kinsho, M.; Touchi, Y.; Honda, Y.; Mukugi, K.; Ino, H.; Noda, F.; Akaoka, N.; Kaneko, H.; Chishiro, E.; Fechner, B.

    1997-01-01

    The high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 5.33mA has been proposed for the Neutron Science Project (NSP) at JAERI. the NSP is aiming at exploring nuclear technologies for nuclear waste transmutation based on a proton induced spallation neutrons. The proposed accelerators facilities will be also used in the various basic research fields such as condensed matter physics in combination with a high intensity proton storage ring. The R and D work has been carried out for the components of the front-end of the proton accelerator. For the high energy portion above 100 MeV, superconducting (SC) accelerator linac has been designed and developed as a major option. (Author) 7 refs

  6. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  7. Development of a high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu; Kusano, Joichi; Hasegawa, Kazuo; Ito, Nobuo; Oguri, Hidetomo; Touchi, Yutaka; Mukugi, Ken; Ino, Hiroshi

    1997-01-01

    The high-intensity proton linear accelerator with a beam power of 15 MW has been proposed for various engineering tests for the nuclear waste transmutation system as one of the research plans in the Neutron Science Research Program (NSRP) in JAERI. High intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beam generated from the proton spallation reaction will be utilized at these facilities in each research field. The R and D work has been carried out for the components of the front-end part of the proton accelerator; ion source, RFQ, DTL and RF source. In the beam test, the current of 70 mA with a duty factor of 7% has been accelerated from the RFQ at the energy of 2 MeV. A hot test model of the DTL for the high power and high duty operation was fabricated and tested. For the high energy portion above 100 MeV, superconducting accelerating cavity is studied as a main option. The superconducting linac is expected to have several favourable characteristics for high intensity accelerator such as short accelerator length, large bore radius resulting in low beam losses and cost effectiveness for construction and operation. A test stand with equipment of cryogenics system, vacuum system, RF system and cavity processing and cleaning is prepared to test the physics issues and fabrication process. The proposed plan for accelerator design and construction will compose of two consecutive stages. The first stage will be completed in about 7 years with the beam power of 1.5 MW. As the second stage gradual upgrading of the beam power will be made up to 15 MW. 7 refs., 3 figs., 4 tabs

  8. Applications of High Intensity Proton Accelerators

    Science.gov (United States)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  9. High intensity proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Mizumoto, Motoharu; Nishida, Takahiko

    1991-06-01

    Industrial applications of proton accelerators to the incineration of the long-lived nuclides contained in the spent fuels have long been investigated. Department of Reactor Engineering of Japan Atomic Energy Research Institute (JAERI) has formulated the Accelerator Program through the investigations on the required performances of the accelerator and its development strategies and also the research plan using the accelerator. Outline of the Program is described in the present report. The target of the Program is the construction of the Engineering Test Accelerators (ETA) of the type of a linear accelerator with the energy 1.5 GeV and the proton current ∼10 mA. It is decided that the construction of the Basic Technology Accelerator (BTA) is necessary as an intermediate step, aiming at obtaining the required technical basis and human resources. The Basic Technology Accelerator with the energy of 10 MeV and with the current of ∼10 mA is composed of the ion source, RFQ and DTL, of which system forms the mock-up of the injector of ETA. Development of the high-β structure which constitutes the main acceleration part of ETA is also scheduled. This report covers the basic parameters of the Basic Technology Accelerator (BTA), development steps of the element and system technologies of the high current accelerators and rough sketch of ETA which can be prospected at present. (J.P.N.)

  10. CW high intensity non-scaling FFAG proton drivers

    OpenAIRE

    Johnstone, C.; Berz, M.; Makino, K.; Snopok, P.

    2012-01-01

    Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS)...

  11. Shielding for high energy, high intensity electron accelerator installation

    International Nuclear Information System (INIS)

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  12. Characterization of a proton beam driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Daido, Hiroyuki; Ogura, Koichi; Orimo, Satoshi; Hayashi, Yukio; Mori, Michiaki; Nishiuchi, Mamiko; Yogo, Akifumi; Kado, Masataka; Fukumi, Atsushi; Li, Zhong; Pirozhkov, Alexander S.; Nakamura, Shu

    2007-01-01

    High-energy protons are observed with a 3 μm thick tantalum target irradiated with a high intensity laser. The maximum proton energy is ∼900 keV. The half angle of the generated proton beam (>500 keV) is about 10deg. Characterization of the proton beam will significantly contribute to the proton applications. (author)

  13. High intensity proton accelerator controls network upgrade

    International Nuclear Information System (INIS)

    Krempaska, R.; Bertrand, A.; Lendzian, F.; Lutz, H.

    2012-01-01

    The High Intensity Proton Accelerator (HIPA) control system network is spread through a vast area in PSI and it was grown historically in an unorganized way. The miscellaneous network hardware infrastructure and the lack of the documentation and components overview could no longer guarantee the reliability of the control system and the facility operation. Therefore, a new network, based on modern network topology, PSI standard hardware with monitoring and detailed documentation and overview was needed. The number of active components has been reduced from 25 to 9 Cisco Catalyst 24- or 48-port switches. They are the same type as other PSI switches, thus a replacement emergency stock is not an issue anymore. We would like to present how we successfully achieved this goal and the advantages of the clean and well documented network infrastructure. (authors)

  14. The joint project for high-intensity proton accelerators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) agreed to promote the joint project integrating both the Neutron Science Project (NSP) of JAERI and the Japan Hadron Facility Project (JHF) of KEK for comprehensive studies on basic science and technology using high-intensity proton accelerator. This document describes the joint proposal prepared by the Joint Project Team of JAERI and KEK to construct accelerators and research facilities necessary both for the NSP and the JHF at the site of JAERI Tokai Establishment. (author)

  15. JAERI-KEK joint project on high intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2000-01-01

    Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Organization (KEK) are promoting the joint project integrating both the Neutron Science Project (NSP) of JAERI and the Japan Hadron Facility Project (JHF) of KEK for comprehensive studies on basic science and technology using high-intensity proton accelerator. This paper describes the joint project prepared by the Joint Project Team of JAERI and KEK to construct accelerators and research facilities necessary both for the NSP and the JHF at the site of JAERI Tokai Establishment. (author)

  16. High energy proton PIXE [HEPP

    International Nuclear Information System (INIS)

    McKee, J.S.C.

    1993-01-01

    Studies of particle induced X-ray emission (PIXE) have been widespread and detailed in recent years and despite the fact that most data obtained are from low energy 1-3 MeV experiments, the value of higher energy proton work with its emphasis on K X-ray emission has become more marked as time has progressed. The purpose of this review paper is to outline the history of analysis using high energy protons and to compare and contrast the results obtained with those from lower energy analysis using more firmly established analytical techniques. The work described will concentrate exclusively on proton induced processes and will attempt to outline the rationale for selecting an energy, greater than 20 and up to 70 MeV protons for initiating particles. The relative ease and accuracy of the measurements obtained will be addressed. Clearly such X-ray studies should be seen as complementing low energy work in many instances rather than competing directly with them. However, it will be demonstrated that above a Z value of approximately 20, K X-ray analysis using high energy protons is the only way to go in this type of analysis. (author)

  17. High energy high intensity coherent photon beam for the SSC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of π 0 in the neutral beam, are converted to e + e - pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator

  18. High intensity proton accelerator and its application (Proton Engineering Center)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, Spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  19. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS

    International Nuclear Information System (INIS)

    Wei, J.; Macek, R.J.

    2002-01-01

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures

  20. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  1. Proton induction linacs as high-intensity neutron sources

    International Nuclear Information System (INIS)

    Keefe, D.; Hoyer, E.

    1981-01-01

    Proton induction linacs are explored as high intensity neutron sources. The induction linac - concept, properties, experience with electrons, and possibilities - and its limitations for accelerating ions are reviewed. A number of proton induction linac designs are examined with the LIACEP program and general conclusions are given. Results suggest that a proton induction accelerator of the lowest voltage, consistent with good neutron flux, is preferred and could well be cost competitive with the usual rf linac/storage ring designs. (orig.)

  2. High intensity proton linear accelerator for Neutron Science Project

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1999-01-01

    JAERI has been proposing the Neutron Science Project (NSP) which will be composed of a high intensity proton accelerator and various research facilities. With an energy of 1.5 GeV and a beam power of 8 MW, the accelerator is required for basic research fields and nuclear waste transmutation studies. The R and D work has been carried out for the components of the accelerator. In the low energy accelerator part, a beam test with an ion source and an RFQ has been performed with a current of 80 mA and a duty factor of 10% at an energy of 2 MeV. A 1 m long high power test model of DTL has been fabricated and tested with a duty factor of 20%. In the high energy accelerator part, a superconducting (SC) linac has been selected as a main option from 100 MeV to 1.5 GeV. A test stand for SC linac cavity with equipment of cryogenics, vacuum, RF source and cavity processing and cleaning system has been prepared to test the fabrication process and physics issues. The vertical tests of β = 0.5 (145 MeV) and β = 0.89 (1.1 GeV) single cell SC cavities have been made resulting in a maximum electric field strength of 44 MV/m and 47 MV/m at 2 K, respectively. (author)

  3. Status of spallation neutron source program in High Intensity Proton Accelerator Project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    2001-01-01

    Japan Atomic Energy Research Institute and High Energy Accelerator Organization are jointly designing a 1 MW spallation neutron source as one of the research facilities planned in the High Intensity Proton Accelerator Project. The spallation neutron source is driven by 3 GeV proton beam with a mercury target and liquid hydrogen moderators. The present status of design for these spallation source and relevant facility is overviewed. (author)

  4. Reuse Recycler: High Intensity Proton Stacking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermilab

    2016-07-17

    After a successful career as an antiproton storage and cooling ring, Recycler has been converted to a high intensity proton stacker for the Main Injector. We discuss the commissioning and operation of the Recycler in this new role, and the progress towards the 700 kW design goal.

  5. An outline of research facilities of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  6. Proton and Ion Sources for High Intensity Accelerators

    CERN Multimedia

    Scrivens, R

    2004-01-01

    Future high intensity ion accelerators, including the Spallation Neutron Source (SNS), the European Spallation Source (ESS), the Superconducting Proton Linac (SPL) etc, will require high current and high duty factor sources for protons and negative hydrogen ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.

  7. KEK/JAERI joint project on high intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2002-01-01

    From JFY01, which started on April 1, 2001, a new accelerator project to provide high-intensity proton beams proceeded into a construction phase. This project is conducted under a cooperation of two institutions, KEK and JAERI. The accelerator complex will provide 1 MW proton beams at 3 GeV and 0.75 MW beams at 50 GeV. The project will be completed within six years. In this article I will describe a) the project itself, b) sciences to be pursued at this new accelerator complex and c) the present status and future plans of the project. (author)

  8. Ultra-High Intensity Proton Accelerators and their Applications

    International Nuclear Information System (INIS)

    Weng, W. T.

    1997-01-01

    The science and technology of proton accelerators have progressed considerably in the past three decades. Three to four orders of magnitude increase in both peak intensity and average flux have made it possible to construct high intensity proton accelerators for modern applications, such as: spallation neutron sources, kaon factory, accelerator production of tritium, energy amplifier and muon collider drivers. The accelerator design focus switched over from intensity for synchrotrons, to brightness for colliders to halos for spallation sources. An overview of this tremendous progress in both accelerator science and technology is presented, with special emphasis on the new challenges of accelerator physics issues such as: H(-) injection, halo formation and reduction of losses

  9. Pulsed Power Applications in High Intensity Proton Rings

    CERN Document Server

    Zhang, Wu; Ducimetière, Laurent; Fowler, Tony; Kawakubo, Tadamichi; Mertens, Volker; Sandberg, Jon; Shirakabe, Yoshihisa

    2005-01-01

    The pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  10. High intensity proton linear accelerator development for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Mizumoto, M.; Hasegawa, K.; Oguri, H.; Ito, N.; Kusano, J.; Okumura, Y.; Murata, H.; Sakogawa, K.

    1997-01-01

    A high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 10 mA has been proposed for various engineering tests for the transmutation system of nuclear waste by JAERI. The conceptual and optimization studies for this accelerator performed for a proper choice of operating frequency, high b structure, mechanical engineering considerations and RF source aspects are briefly described

  11. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  12. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine

    International Nuclear Information System (INIS)

    Haddad, Ferid; Guertin, Arnaud; Michel, Nathalie; Ferrer, Ludovic; Carlier, Thomas; Barbet, Jacques; Chatal, Jean-Francois

    2008-01-01

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ( 67 Cu, 47 Sc) or alpha ( 211 At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ( 64 Cu, 124 I, 44 Sc), or that can be generator-produced ( 82 Rb, 68 Ga) or providing the opportunity of a new imaging modality ( 44 Sc) are considered to have a great interest at short term whereas 86 Y, 52 Fe, 55 Co, 76 Br or 89 Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs. (orig.) 5

  13. High intensity proton linac activities at Los Alamos

    International Nuclear Information System (INIS)

    Rusnak, B.; Chan, K.C.; Campbell, B.

    1998-01-01

    High-current proton linear accelerators offer an attractive alternative for generating the intense neutron fluxes needed for transmutations technologies, tritium production and neutron science. To achieve the fluxes required for tritium production, a 100-mA, 1700-MeV cw proton accelerator is being designed that uses superconducting cavities for the high-energy portion of the linac, from 211 to 1,700 MeV. The development work supporting the linac design effort is focused on three areas: superconducting cavity performance for medium-beta cavities at 700 MHz, high power rf coupler development, and cryomodule design. An overview of the progress in these three areas is presented

  14. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  15. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  16. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  17. Overview of high intensity proton accelerator facility, J-PARC

    International Nuclear Information System (INIS)

    Ikeda, Y.

    2010-01-01

    The J-PARC project of high intensity proton accelerator research complex, conducted jointly by JAERI and KEK, has been completed with demonstration of all beam productions in 2009 as the facility construction phase, and the operation started to offer the secondary beams of neutron, muon, kaon, and neutrino, to the advanced scientific experimental research aiming at making breakthroughs in materials and life science, nuclear and elementary physics, etc. This text describes the overview of the J-PARC present status with emphasis of a performance toward to 1MW power as user facilities. (author)

  18. High-energy proton scattering on nuclei

    CERN Document Server

    Klovning, A; Schlüpmann, K

    1973-01-01

    High-energy proton scattering on Be, C, Cu and Pb targets is studied using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/c, the square of the four-momentum transfer varied from t=0.1 to t =4.4 GeV/sup 2/. Momentum distributions of scattered protons are recorded in the high-momentum range. An application of multiple- scattering theory yielded agreement of calculation and experimental results to within a +or-30% uncertainty of the former. (15 refs).

  19. Report of the Snowmass M6 Working Group on high intensity proton sources

    Energy Technology Data Exchange (ETDEWEB)

    Weiren Chou and J. Wei

    2002-08-20

    The U.S. high-energy physics program needs an intense proton source, a 1-4 MW Proton Driver (PD), by the end of this decade. This machine will serve as a stand-alone facility that will provide neutrino superbeams and other high intensity secondary beams such as kaons, muons, neutrons, and anti-protons (cf. E1 and E5 group reports) and also serve as the first stage of a neutrino factory (cf. M1 group report). It can also be a high brightness source for a VLHC. Based on present accelerator technology and project construction experience, it is both feasible and cost-effective to construct a 1-4 MW Proton Driver. Two recent PD design studies have been made, one at FNAL and the other at the BNL. Both designed PD's for 1 MW proton beams at a cost of about U.S. $200M (excluding contingency and overhead) and both designs were upgradeable to 4 MW. An international collaboration between FNAL, BNL and KEK on high intensity proton facilities is addressing a number of key design issues. The superconducting (sc) RF cavities, cryogenics, and RF controls developed for the SNS can be directly adopted to save R&D efforts, cost, and schedule. PD studies are also actively being pursued at Europe and Japan.

  20. High intensity proton operation at the Brookhaven AGS accelerator complex

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-01-01

    With the completion of the AGS rf upgrade, and the implementation of a transition open-quotes jumpclose quotes, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle

  1. Simplified shielding calculation system for high-intensity proton accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Masumura, Tomomi; Nakashima, Hiroshi; Nakane, Yoshihiro; Sasamoto, Nobuo [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-06-01

    A simplified shielding calculation system is developed for applying conceptual shielding design of facilities in the joint project for high-intensity proton accelerators. The system is composed of neutron transmission calculation part for bulk shielding using simplified formulas: Moyer model and Tesch's formula, and neutron skyshine calculation part using an empirical formula: Stapleton's formula. The system is made with the Microsoft Excel software for user's convenience. This report provides a manual for the system as well as calculation conditions used in the calculation such as Moyer model's parameters. In this report preliminary results based on data at December 8, 1999, are also shown as an example. (author)

  2. Injection and capture simulations for a high intensity proton synchrotron

    International Nuclear Information System (INIS)

    Cho, Y.; Lessner, E.; Symon, K.; Univ. of Wisconsin, Madison, WI

    1994-01-01

    The injection and capture processes in a high intensity, rapid cycling, proton synchrotron are simulated by numerical integration. The equations of motion suitable for rapid numerical simulation are derived so as to maintain symplecticity and second-order accuracy. By careful bookkeeping, the authors can, for each particle that is lost, determine its initial phase space coordinates. They use this information as a guide for different injection schemes and rf voltage programming, so that a minimum of particle losses and dilution are attained. A fairly accurate estimate of the space charge fields is required, as they influence considerably the particle distribution and reduce the capture efficiency. Since the beam is represented by a relatively coarse ensemble of macro particles, the authors study several methods of reducing the statistical fluctuations while retaining the fine structure (high intensity modulations) of the beam distribution. A pre-smoothing of the data is accomplished by the cloud-in-cell method. The program is checked by making sure that it gives correct answers in the absence of space charge, and that it reproduces the negative mass instability properly. Results of simulations for stationary distributions are compared to their analytical predictions. The capture efficiency for the rapid-cycling synchrotron is analyzed with respect to variations in the injected beam energy spread, bunch length, and rf programming

  3. REPORT OF THE SNOWMASS M6 WORKING GROUP ON HIGH INTENSITY PROTON SOURCES.

    Energy Technology Data Exchange (ETDEWEB)

    CHOU,W.; WEI,J.

    2001-08-14

    The M6 working group had more than 40 active participants (listed in Section 4). During the three weeks at Snowmass, there were about 50 presentations, covering a wide range of topics associated with high intensity proton sources. The talks are listed in Section 5. This group also had joint sessions with a number of other working groups, including E1 (Neutrino Factories and Muon Colliders), E5 (Fixed-Target Experiments), M1 (Muon Based Systems), T4 (Particle Sources), T5 (Beam dynamics), T7 (High Performance Computing) and T9 (Diagnostics). The M6 group performed a survey of the beam parameters of existing and proposed high intensity proton sources, in particular, of the proton drivers. The results are listed in Table 1. These parameters are compared with the requirements of high-energy physics users of secondary beams in Working Groups E1 and E5. According to the consensus reached in the E1 and E5 groups, the U.S. HEP program requires an intense proton source, a 1-4 MW Proton Driver, by the end of this decade.

  4. REPORT OF THE SNOWMASS M6 WORKING GROUP ON HIGH INTENSITY PROTON SOURCES

    International Nuclear Information System (INIS)

    CHOU, W.; WEI, J.

    2001-01-01

    The M6 working group had more than 40 active participants (listed in Section 4). During the three weeks at Snowmass, there were about 50 presentations, covering a wide range of topics associated with high intensity proton sources. The talks are listed in Section 5. This group also had joint sessions with a number of other working groups, including E1 (Neutrino Factories and Muon Colliders), E5 (Fixed-Target Experiments), M1 (Muon Based Systems), T4 (Particle Sources), T5 (Beam dynamics), T7 (High Performance Computing) and T9 (Diagnostics). The M6 group performed a survey of the beam parameters of existing and proposed high intensity proton sources, in particular, of the proton drivers. The results are listed in Table 1. These parameters are compared with the requirements of high-energy physics users of secondary beams in Working Groups E1 and E5. According to the consensus reached in the E1 and E5 groups, the U.S. HEP program requires an intense proton source, a 1-4 MW Proton Driver, by the end of this decade

  5. Longitudinal tracking studies for a high intensity proton synchrotron

    International Nuclear Information System (INIS)

    Lessner, E.; Cho, Y.; Harkay, K.; Symon, K.

    1995-01-01

    Results from longitudinal tracking studies for a high intensity proton synchrotron designed for a 1-MW spallation source are presented. The machine delivers a proton beam of 0.5 mA time-averaged current at a repetition rate of 30 Hz. The accelerator is designed to have radiation levels that allow hands-on-maintenance. However, the high beam intensity causes strong space charge fields whose effects may lead to particle loss and longitudinal instabilities. The space charge fields modify the particle distribution, distort the stable bucket area and reduce the rf linear restoring force. Tracking simulations were conducted to analyze the space charge effects on the dynamics of the injection and acceleration processes and means to circumvent them. The tracking studies led to the establishment of the injected beam parameters and rf voltage program that minimized beam loss and longitudinal instabilities. Similar studies for a 10-GeV synchrotron that uses the 2-GeV synchrotron as its injector are also discussed

  6. Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Benedikt, Michael

    With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...

  7. Technical development of high intensity proton accelerators in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1995-01-01

    Science and Technology Agency decided 'Options making extra gains of actinides and fission products (OMEGA)' and to promote the related researches. Also in JAERI, the research on the group separation method for separating transuranic elements, strontium and cesium from high level radioactive wastes has been carried out since the beginning of 1970s. Also the concept of the fast reactors using minor actinide mixture fuel is being established, and the accelerator annihilation treatment utilizing the nuclear spallation reaction by high energy protons has been examined. In this report, from the viewpoint of the application of accelerators to atomic energy field, the annihilation treatment method by the nuclear spallation reaction utilizing high intensity proton accelerators, the plan of the various engineering utilization of proton beam, and the development of accelerators in JAERI are described. The way of thinking on the annihilation treatment of radioactive waste, the system using fast neutrons, the way of thinking on the development of high intensity proton accelerator technology, the steps of the development, the research and development for constructing the basic technology accelerator, 2 MeV beam acceleration test, the basic technology accelerator utilization facility and so on are reported. (K.I.)

  8. Medium energy high intensity proton accelerator (MEHIPA): Reference Design Report (RDR) Ver. 1.0

    International Nuclear Information System (INIS)

    2016-11-01

    Recent progress in accelerator technology has made it possible to use a proton accelerator to produce nuclear energy. In an accelerator-driven system (ADS), a high-intensity proton accelerator is used to produce protons of around 1 GeV energy, which strike a target such as lead or tungsten to produce spallation neutrons. ADS can be used to produce power, incinerate minor actinides and long-lived fission products, and for the utilization of thorium as an alternative nuclear fuel. The accelerator for ADS has to produce high energy (1 GeV) protons, and deliver tens of milli amperes of beam current with minimum (< 1 nA/m) beam loss for hands-on maintenance of the accelerator. This makes the development of accelerators for ADS very challenging. In India, it is planned to take a staged approach towards development of the requisite accelerator technology, and it is planned to develop the accelerator in three phases: 20 MeV, 200 MeV and 1 GeV. This report presents a reference design report for the Medium Energy High Intensity Proton Accelerator (MEHIPA) which will accelerate the beam to 200 MeV. The linac consists of a 3 MeV normal conducting RFQ followed by three families of superconducting Single Spoke Resonators (SSR) to accelerate the beam to 200 MeV. The major elements of the physics design of MEHIPA, as well as layouts and specifications of the major accelerator sub-systems are presented in this report. (author)

  9. Proton Drivers for neutrino beams and other high intensity applications

    CERN Document Server

    Garoby, R; Koseki, T; Thomason, J

    2013-01-01

    CERN, Fermilab, J-PARC and RAL tentatively plan to have proton accelerators delivering multi-MW of beam power in view of enhancing their physics reach especially in the domain of neutrinos. These plans are described, together with their benefits for other applications.

  10. The Energy Efficiency of High Intensity Proton Driver Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Vyacheslav [Fermilab; Grillenberger, Joachim [PSI, Villigen; Kim, Sang-Ho [ORNL, Oak Ridge (main); Seidel, Mike [PSI, Villigen; Yoshii, Masahito [JAEA, Ibaraki

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  11. High intensity negative proton beams from a SNICS ion source

    International Nuclear Information System (INIS)

    Evans, C.R.; Hollander, M.G.

    1991-01-01

    For the past year we have been involved in a project to develop an intense (> 100μA) negative proton beam from a SNICS (Source of Negative Ions by Cesium Sputtering) ion source. This report will cover how we accomplished and exceeded this goal by more than 40%. Included in these observations will be the following: A description of an effective method for making titanium hydride cathodes. How to overcome the limitations of the titanium hydride cathode. The modification of the SNICS source to improve output; including the installation of the conical ionizer and the gas cathode. A discussion of problems including: poisoning the proton beam with oxygen, alternative gas cathode materials, the clogging of the gas inlet, long burn-in times, and limited cathode life times. Finally, how to optimize source performance when using a gas cathode, and what is the mechanism by which a gas cathode operates; facts, fantasies, or myth

  12. High energy proton-nucleus scattering

    International Nuclear Information System (INIS)

    Beurtey, R.M.

    1977-01-01

    This paper is restricted to an overall global criticism of what has been produced, experimentally and theoretically, during the past ten years, concerning elastic proton scattering at intermediate energy: theoretical models and approximations, phenomenological analysis, criticisms and suggestions on experimental methods

  13. Radiation protection around high energy proton accelerators

    International Nuclear Information System (INIS)

    Bourgois, L.

    1996-01-01

    Proton accelerators are intense radiation sources because of the particle beam itself, secondary radiation and structure activation. So radiation protection is required around these equipment during running time but even during downtime. This article presents some estimated values about structure and air activation and applies the Moyer model to get dose rate behind shielding. (A.C.)

  14. Two-dimensional computer simulation of high intensity proton beams

    CERN Document Server

    Lapostolle, Pierre M

    1972-01-01

    A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).

  15. Material studies for pulsed high-intensity proton beam targets

    International Nuclear Information System (INIS)

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W-T.; McDonald, K.; Yoshimura, K.

    2004-01-01

    Intense beams for muon colliders and neutrino facilities require high-performance target stations of 1-4 MW proton beams. The physics requirements for such a system push the envelope of our current knowledge as to how materials behave under high-power beams for both short and long exposure. The success of an adopted scheme that generates, captures and guides secondary particles depends on the useful life expectancy of this critical system. This paper presents an overview of what has been achieved during the various phases of the experimental effort including a tentative plan to continue the effort by expanding the material matrix. The first phase of the project was to study the changes after irradiation in mechanical properties and specially in thermal expansion coefficient of various materials. During phase-I the study attention was primarily focused on Super-invar and in a lesser degree on Inconel-718. Invar is a metal alloy which predominantly consists of 62% Fe, 32% Ni and 5% Co. It is showed that this metal, whose non-irradiated properties held such promise, can only be considered a serious target candidate for an intense proton beam only if one can anneal the atomic displacements followed by the appropriate heat treatment to restore its favorable expansion coefficient. New materials that have been developed for various industrial needs by optimizing key properties, might be of value for the accelerator community. These materials like carbon-carbon composites, titanium alloys, the Toyota 'gum metal', the Vascomax material and the AlBeMet alloy will be explored and tested in the second phase of the project. (A.C.)

  16. Handling of high intensity proton beams at 12 GeV

    International Nuclear Information System (INIS)

    Takasaki, M.; Minakawa, M.; Yamanoi, Y.; Ieiri, M.; Kato, Y.; Ishii, H.; Suzuki, Y.; Suzuki, T.; Tanaka, K.H.

    1990-01-01

    A new counter experimental hall is now being constructed at the KEK (National Laboratory for High Energy Physics, Japan) 12 GeV Proton Synchrotron (KEK-PS). This hall will be completed by the end of 1989, immediately followed by magnet installation. The present report describes the new technical achievements employed at the hall. The most important and essential feature of the equipment is that the beam-handling system is maintenance-free, though in case of need, maintenance should be carried out quickly from a distant location in order to reduce the absorbed dose during the maintenance work. This paper is divided into three parts. The first part outlines the general design concept of the hall, focusing on the handling of high-intensity beams. The second part addresses the development of a quick-disconnect system, focusing on electric power, interlock signals, cooling water, pumping port, and vacuum flange. The third part describes the development of radiation-resistant instruments, focusing on polyimide magnets and cement magnets. (N.K.)

  17. Biological effectiveness of high-energy protons - Target fragmentation

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Shinn, J.; Hajnal, F.

    1991-01-01

    High-energy protons traversing tissue produce local sources of high-linear-energy-transfer ions through nuclear fragmentation. The contribution of these target fragments to the biological effectiveness of high-energy protons using the cellular track model is examined. The effects of secondary ions are treated in terms of the production collision density using energy-dependent parameters from a high-energy fragmentation model. Calculations for mammalian cell cultures show that at high dose, at which intertrack effects become important, protons deliver damage similar to that produced by gamma rays, and with fragmentation the relative biological effectiveness (RBE) of protons increases moderately from unity. At low dose, where sublethal damage is unimportant, the contribution from target fragments dominates, causing the proton effectiveness to be very different from that of gamma rays with a strongly fluence-dependent RBE. At high energies, the nuclear fragmentation cross sections become independent of energy. This leads to a plateau in the proton single-particle-action cross section, below 1 keV/micron, since the target fragments dominate. 29 refs

  18. Physics with a high-intensity proton accelerator below 30 GeV

    International Nuclear Information System (INIS)

    Hoffman, C.M.

    1982-01-01

    The types of physics that would be pursued at a high-intensity, moderate-energy proton accelerator are discussed. The discussion is drawn from the deliberations of the 30-GeV subgroup of the Fixed-Target Group at this workshop

  19. Amide proton transfer imaging of high intensity focused ultrasound-treated tumor tissue

    NARCIS (Netherlands)

    Hectors, S.J.C.G.; Jacobs, I.; Strijkers, G.J.; Nicolay, K.

    2014-01-01

    Purpose: In this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. Methods: APT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  20. Amide Proton Transfer Imaging of High Intensity Focused Ultrasound-Treated Tumor Tissue

    NARCIS (Netherlands)

    Hectors, Stefanie J. C. G.; Jacobs, Igor; Strijkers, Gustav J.; Nicolay, Klaas

    2014-01-01

    PurposeIn this study, the suitability of amide proton transfer (APT) imaging as a biomarker for the characterization of high intensity focused ultrasound (HIFU)-treated tumor tissue was assessed. MethodsAPT imaging was performed on tumor-bearing mice before (n=15), directly after (n=15) and at 3

  1. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2005-01-01

    Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of these data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality factors to consider the consistency between radiation weighting factors and Q-L relationship. The effective dose conversion coefficients obtained in this work were in good agreement with those recently evaluated by using FLUKA code for photons and electrons with all energies, and neutrons and protons below 500 MeV. There were some discrepancy between two data owing to the difference of cross sections in the nuclear reaction models. The dose conversion coefficients of effective dose equivalents for high energy radiations based on Q-L relation in ICRP Publication 60 were evaluated only in this work. The previous comparison between effective dose and effective dose equivalent made it clear that the radiation weighting factors for high energy neutrons and protons were overestimated and the modification was required. (author)

  2. ATLAS proton-proton event containing two high energy photons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event where two energetic photons ("gammas") are produced in a proton-proton collision in ATLAS. Many events of this type are produced by well-understood Standard Model processes ("backgrounds") which do not involve Higgs particles. A small excess of events of this type with similar masses could indicate evidence for Higgs particle production, but any specific event is most likely to be from the background. The photons are indicated, in the different projections and views, by the clusters of energy shown in yellow.

  3. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  4. High-energy test of proton radiography concepts

    International Nuclear Information System (INIS)

    Amann, J.F.; Atencio, L.G.; Espinoza, C.J.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this work was to demonstrate the use of high energy protons to produce radiographs of heavy metal test objects. The authors executed a proof-of-principle experiment using GeV proton beams available at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS). The experiment produced proton radiographs of a suitably dense, unclassified test object. The experiment tested capabilities in data collection, image reconstruction, and hydro-code simulation and validated models of high-energy proton radiography. A lens was designed using existing quadrupole magnets, constructed on the A1 beam line of the AGS and used to image 10-GeV protons. The results include: (1) images made with an integrating detector, (2) measurements of the background and measurements of the resolution functions, and (3) forward model fits to the transmission data. In all cases the results agree with initial estimates and provide strong support for the utility of proton radiography as a new hydrotest diagnostic

  5. Superconducting Magnet Technology for Future High Energy Proton Colliders

    Science.gov (United States)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  6. Operation of the LHC with Protons at High Luminosity and High Energy

    CERN Document Server

    Papotti, Giulia; Alemany-Fernandez, Reyes; Crockford, Guy; Fuchsberger, Kajetan; Giachino, Rossano; Giovannozzi, Massimo; Hemelsoet, Georges-Henry; Höfle, Wolfgang; Jacquet, Delphine; Lamont, Mike; Nisbet, David; Normann, Lasse; Pojer, Mirko; Ponce, Laurette; Redaelli, Stefano; Salvachua, Belen; Solfaroli Camillocci, Matteo; Suykerbuyk, Ronaldus; Uythoven, Jan; Wenninger, Jorg

    2016-01-01

    In 2015 the Large Hadron Collider (LHC) entered the first year in its second long Run, after a 2-year shutdown that prepared it for high energy. The first two months of beam operation were dedicated to setting up the nominal cycle for proton-proton operation at 6.5 TeV/beam, and culminated with the first physics with 3 nominal bunches/ring at 13 TeV CoM on 3 June. The year continued with a stepwise intensity ramp up that allowed reaching 2244 bunches/ring for a peak luminosity of ~5·10³³ cm⁻²s^{−1} and a total of just above 4 fb-1 delivered to the high luminosity experiments. Beam operation was shaped by the high intensity effects, e.g. electron cloud and macroparticle-induced fast losses (UFOs), which on a few occasions caused the first beam induced quenches at high energy. This paper describes the operational experience with high intensity and high energy at the LHC, together with the issues that had to be tackled along the way.

  7. Development plan of basic technology for a high intensity proton linear accelerator

    International Nuclear Information System (INIS)

    Mizumoto, M.

    1990-01-01

    The national program called OMEGA (Option Making Extra Gains from Actinide and Fission Products) has started with the aim of promoting the research and development of the new technologies for nuclear waste partitioning and transmutation. As a part of this program, Japan Atomic Energy Research Institute, JAERI, has laid out several R and D plans for accelerator based actinide transmutation. The present article first outlines the status of the high intensity proton linear accelerator. Then it describes the time schedule for the development of a high intensity proton linac, focusing on the first step development (basic technology accelerator), second step development (engineering test accelerator, and third step development (commercial plant). It also outlines the conceptual design study and preliminary design calculations for basic technology accelerator, focusing on general consideration, ion source, radio frequency quadrupole, drift tube linac, and high beta linac. (N.K.)

  8. KEK/JAERI Joint Project on high-intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2003-01-01

    From JFY01, which started on April 1, 2001, a new accelerator project to provide high-intensity proton beams proceeded into a construction phase. This project is conducted under a cooperation of two institutions, KEK and JAERI. The accelerator complex will provide 1 MW proton beams at 3 GeV and 0.75 MW beams at 50 GeV. The project will be completed within 6 years. In this article I will describe (a) the project itself, (b) sciences to be pursued at this new accelerator complex and (c) the present status and future plans of the project

  9. The practical Pomeron for high energy proton collimation

    Science.gov (United States)

    Appleby, R. B.; Barlow, R. J.; Molson, J. G.; Serluca, M.; Toader, A.

    2016-10-01

    We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC.

  10. The practical Pomeron for high energy proton collimation

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, R.B. [University of Manchester, The Cockcroft Institute, Manchester (United Kingdom); Barlow, R.J.; Toader, A. [The University of Huddersfield, Huddersfield (United Kingdom); Molson, J.G. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, LAL, Orsay (France); Serluca, M. [CERN, Geneva (Switzerland)

    2016-10-15

    We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC. (orig.)

  11. Quarkonium production in high energy proton-proton and proton-nucleus collisions

    International Nuclear Information System (INIS)

    Conesa del Valle, Z.; Corcella, G.; Fleuret, F.; Ferreiro, E.G.; Kartvelishvili, V.; Kopeliovich, B.; Lansberg, J.P.; Lourenco, C.; Martinez, G.; Papadimitriou, V.; Satz, H.; Scomparin, E.; Ullrich, T.; Teryaev, O.; Vogt, R.; Wang, J.X.

    2011-01-01

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarisation studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  12. Investigation of high-energy-proton effects in aluminum

    International Nuclear Information System (INIS)

    Czajkowski, C.J.; Snead, C.L. Jr.; Todosow, M.

    1997-01-01

    Specimens of 1100 aluminum were exposed to several fluences of 23.5-GeV protons at the Brookhaven Alternating Gradient Synchrotron. Although this energy is above those currently being proposed for spallation-neutron applications, the results can be viewed as indicative of trends and other microstructural evolution with fluence that take place with high-energy proton exposures such as those associated with an increasing ratio of gas generation to dpa. TEM investigation showed significantly larger bubble size and lower density of bubbles compared with lower-energy proton results. Additional testing showed that the tensile strength increased with fluence as expected, but the microhardness decreased, a result for which an intepretation is still under investigation

  13. A research plan based on high intensity proton accelerator Neutron Science Research Center

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1997-01-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  14. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  15. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  16. High-energy polarized proton beams a modern view

    CERN Document Server

    Hoffstaetter, Georg Heinz

    2006-01-01

    This monograph begins with a review of the basic equations of spin motion in particle accelerators. It then reviews how polarized protons can be accelerated to several tens of GeV using as examples the preaccelerators of HERA, a 6.3 km long cyclic accelerator at DESY / Hamburg. Such techniques have already been used at the AGS of BNL / New York, to accelerate polarized protons to 25 GeV. But for acceleration to energies of several hundred GeV as in RHIC, TEVATRON, HERA, LHC, or a VLHC, new problems can occur which can lead to a significantly diminished beam polarization. For these high energies, it is necessary to look in more detail at the spin motion, and for that the invariant spin field has proved to be a useful tool. This is already widely used for the description of high-energy electron beams that become polarized by the emission of spin-flip synchrotron radiation. It is shown that this field gives rise to an adiabatic invariant of spin-orbit motion and that it defines the maximum time average polarizat...

  17. The JAERI-KEK joint project on high intensity proton accelerator and overview of nuclear transmutation experimental facilities

    International Nuclear Information System (INIS)

    Ikeda, Yujiro

    2001-01-01

    A status of the JAERI/KEK joint project on High Intensity Proton Accelerator is overviewed. It is highlighted that Experimental facilities for development of the accelerator driven system (ADS) for nuclear transmutation technology is proposed under the project. (author)

  18. Correlation between the pionization region and the fragmentation region in high energy proton-proton collisions

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C

    1973-01-01

    Measurements are reported of two-particle correlations in high energy proton-proton collisions with one particle in the pionization region and the other a proton in the fragmentation region. The correlation function is independent of x of the fragmentation proton for 0.55

  19. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  20. A New High-intensity Proton Irradiation Facility at the CERN PS East Area

    CERN Document Server

    Gkotse, B; Lima, P; Matli, E; Moll, M; Ravotti, F

    2014-01-01

    and IRRAD2), were heavily and successfully used for irradiation of particle detectors, electronic components and materials since 1992. These facilities operated with particle bursts - protons with momentum of 24GeV/c - delivered from the PS accelerator in “spills” of about 400ms (slow extraction). With the increasing demand of irradiation experiments, these facilities suffered from a number of restrictions such as the space availability, the maximum achievable particle flux and several access constraints. In the framework of the AIDA project, an upgrade of these facilities has been realized during the CERN long shutdown (LS1). While the new proton facility (IRRAD) will continue to be mainly devoted to the radiation hardness studies for the High Energy Physics (HEP) experimental community, the new mixed-field facility (CHARM) will mainly host irradiation experiments for the validation of electronic systems used in a...

  1. Design Considerations of Fast Kicker Systems for High Intensity Proton Accelerators

    International Nuclear Information System (INIS)

    Zhang, W.; Sandberg, J.; Parson, W.M.; Walstrom, P.; Murray, M.M.; Cook, E.; Hartouni, E.

    2001-01-01

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed

  2. Final Report for 'Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators'

    International Nuclear Information System (INIS)

    Veitzer, Seth A.

    2009-01-01

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  3. A conceptual design of the RF system for the NSP high intensity proton accelerator at JAERI

    International Nuclear Information System (INIS)

    Chishiro, Etsuji; Kusano, Joichi; Mizumoto, Motoharu; Touchi, Yutaka; Kaneko, Hiroshi; Takado, Hiroshi; Sawada, Junichi

    1999-03-01

    JAERI has been proposing the Neutron Science Project which aims at exploring the fields of basic science and nuclear technology using a high power spallation neutron source. The neutron source will be driven by a high intensity linear accelerator with an energy of 1.5 GeV and an average beam current of 5.33 mA and beam power of 8 MW. The RF system for the accelerator consists of a high-energy accelerator part and a low energy accelerator part. The maximum RF power requirements at the high and low energy accelerator parts are 25 MW and 8.3 MW, respectively. In this report, we describe the conceptual design of the RF system. In the low energy accelerator part, we estimated the requirement for the high-power amplifier tube and made the basis design for RF components. In the high energy accelerator part, we studied the effect of tuning errors, Lorentz forces and microphonics in the superconducting cavity. We calculated the klystron efficiency and supply power in the arrangement of where one klystron distributes the RF power to four cavities. We also considered an IOT RF system. Finally, we describe the electrical capacity and quantity of cooling water in the RF system. (author)

  4. A new impact picture for low and high energy proton-proton elastic scattering

    International Nuclear Information System (INIS)

    Bourrely, C.; Soffer, J.; Wu, Tai Tsun

    1978-05-01

    The impact picture that was used several years ago to predict the increase of total and integrated differential cross sections at high energies was improved significantly. The major improvements consist of the following: (1) the dependence of the Pomeron term on the momentum transfer is taken from a modified version of the relation between matter distribution and charge distribution; (2) Regge backgrounds are properly taken into account; and (3) a simple non-trivial form is used for the hadronic matter current in the proton. For proton-proton elastic scattering, the phenomenological differential cross section is in good agreement with the experimental data in the laboratory momentum range of 14 GeV/c to 2000 GeV/c, and is predicted for ISABELLE energy. Because of the third improvement, predictions are obtained for both polarization and R parameters for proton-proton elastic scattering

  5. High-intensity, subkolovolt x-ray calibration facility using a Cockroft--Walton proton accelerator

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    Considerable need has arisen for the development of well-calibrated x-ray detectors capable of detecting photons with energies between 100 and 1000 electron-volts. This energy region is of significant interest since the x-ray emission from high-temperature (kT approximately 1.0 keV), laser-produced plasmas is predominantly in this range. A high-intensity, subkilovolt x-ray calibration source was developed which utilizes proton-induced inner-shell atomic fluorescence of low-Z elements. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide an intense, nearly monoenergetic x-ray calibration source for detector development applications. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable liquid-cooled targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. A description of the facility is presented. Typical x-ray spectra (B-K, C-K, Ti-L, Fe-L and Cu-L) and flux values will be shown. Problems such as spectral contamination due to carbon buildup on the target and to backscattered particles are discussed

  6. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    Science.gov (United States)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Séguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005), 10.1364/OPN.16.7.000030], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006), 10.1103/PhysRevLett.97.045001]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D3He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006), 10.1063/1.2228252]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  7. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    International Nuclear Information System (INIS)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Seguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005)], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006)]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D 3 He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006)]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  8. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jose V., E-mail: josev.mathew@gmail.com; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ∼16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ∼20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs. -- Highlights: • An improved permanent magnet quadrupole (PMQ) design with larger good field region is proposed. • We investigate four PMQ designs, including the widely used Halbach and bullet nosed designs. • Analytical calculations are backed by 2D as well as 3D numerical solvers, PANDIRA and RADIA. • The optimized 16 segment rectangular PMQ design is identified to exhibit the largest good field region. • The effect of easy axis orientation

  9. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    International Nuclear Information System (INIS)

    Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ∼16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ∼20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs. -- Highlights: • An improved permanent magnet quadrupole (PMQ) design with larger good field region is proposed. • We investigate four PMQ designs, including the widely used Halbach and bullet nosed designs. • Analytical calculations are backed by 2D as well as 3D numerical solvers, PANDIRA and RADIA. • The optimized 16 segment rectangular PMQ design is identified to exhibit the largest good field region. • The effect of easy axis orientation

  10. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Arun [Univ. of Delhi, New Delhi (India)

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  11. A new description of high energy antiproton (proton)-proton elastic scattering

    International Nuclear Information System (INIS)

    Barshay, S.; Technion-Israel Inst. of Tech., Haifa. Dept. of Physics); Goldberg, J.

    1987-01-01

    We develop a generalization of the geometric picture for high-energy antiproton (proton)-proton elastic scattering. The eikonal at each impact parameter is considered to have fluctuations about an average value, and is thus characterized by a distribution. A connection to parton branching is made through the specific form of the distribution function for the eikonal. A unified physical theory with significant fluctuations accurately describes the anti p(p)-p data at both √s = 546 GeV and 53 GeV. The fluctuation parameter is remarkably well given by that directly observed in multiparticle production. (orig.)

  12. New description of high energy antiproton (proton)-proton elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Barshay, S; Goldberg, J

    1987-10-15

    We develop a generalization of the geometric picture for high-energy antiproton (proton)-proton elastic scattering. The eikonal at each impact parameter is considered to have fluctuations about an average value, and is thus characterized by a distribution. A connection to parton branching is made through the specific form of the distribution function for the eikonal. A unified physical theory with significant fluctuations accurately describes the anti p(p)-p data at both ..sqrt..s = 546 GeV and 53 GeV. The fluctuation parameter is remarkably well given by that directly observed in multiparticle production.

  13. Proton multiplicity distributions in high-energy hadron-nuclei collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1979-01-01

    The fast proton emission process is analyzed in high-energy hadron-nuclei collisions. The formula describing the proton multiplicity distributions is derived. It describes well enough the proton multiplicity distribution of pion-nuclei and proton-nuclei collisions at 200 and 400 GeV

  14. Neural network model for proton-proton collision at high energy

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.; El-Metwally, K.A.

    2003-01-01

    Developments in artificial intelligence (AI) techniques and their applications to physics have made it feasible to develop and implement new modeling techniques for high-energy interactions. In particular, AI techniques of artificial neural networks (ANN) have recently been used to design and implement more effective models. The primary purpose of this paper is to model the proton-proton (p-p) collision using the ANN technique. Following a review of the conventional techniques and an introduction to the neural network, the paper presents simulation test results using an p-p based ANN model trained with experimental data. The p-p based ANN model calculates the multiplicity distribution of charged particles and the inelastic cross section of the p-p collision at high energies. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness

  15. A conceptual design of the DTL-SDTL for the JAERI high intensity proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Hiroshi; Kabeya, Zenzaburo [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Chishiro, Etsuji; Ouchi, Nobuo; Hasegawa, Kazuo; Mizumoto, Motoharu

    1998-08-01

    A high intensity proton linear accelerator with an energy of 1.5 GeV and an average beam power of 8 MW has been proposed for the Neutron Science Project (NSP) at JAERI. This linac starts with radio-frequency quadrupole (RFQ) linac, which is followed by a drift-tube linac (DTL), separated-type DTL (SDTL), and a superconducting structure. In this report, we focus on the DTL and SDTL part of the accelerator. The DTL accelerates the beam from 2 to 51 MeV, and SDTL accelerates the beam from 51 to 10 MeV. Since the main features of the requirement for the DTL-SDTL are high peak current ({approx}30 mA) and a high-duty factor ({approx}CW), the conceptual design should be determined not only based on the result of a beam-dynamics calculation, but by careful study of the cooling problems. The design processes of the DTL-SDTL and the matching sections (RFQ to DTL, CW-Pulse merge section, and SDTL to SCC) and the result of a heat transfer analysis of DTL are described. (author)

  16. Proton probing of ultra-thin foil dynamics in high intensity regime

    Science.gov (United States)

    Prasad, Rajendra; Aktan, Esin; Aurand, Bastian; Cerchez, Mirela; Willi, Oswald

    2017-10-01

    The field of laser driven ion acceleration has been enriched significantly over the past decade, thanks to the advanced laser technologies. Already, from 100s TW class systems, laser driven sources of particles and radiations are being considered in number of potential applications in science and medicine due to their unique properties. New physical effects unearthed at these systems may help understand and conduct successful experiments at several PW class multi-beam facilities with high rep rate systems, e.g. ELI. Here we present the first experimental results on ultra-thin foil dynamics irradiated by an ultra-high intensity (1020 W/cm2) , ultra-high contrast (10-12) laser pulse at ARCTURUS laser facility at HHU Duesseldorf. By employing the elegant proton probing technique it is observed that for the circular polarization of laser light, a 100nm thin target is pushed forward as a compressed layer due to the radiation pressure of light. Whereas, the linear polarization seems to decompress the target drastically. 2D particle-in-cell simulations corroborate the experimental findings. Our results confirm the previous simulation studies investigating the fundamental role played by light polarization, finite focus spot size effect and eventually electron heating including the oblique incidence at the target edges.

  17. Timing Comparisons for GLEs and High-energy Proton Events using GPS Proton Measurements

    Science.gov (United States)

    Bernstein, V.; Winter, L. M.; Carver, M.; Morley, S.

    2017-12-01

    The newly released LANL GPS particle sensor data offers a unique snapshot of access of relativistic particles into the geomagnetic field. Currently, 23 of the 31 operational GPS satellites host energetic particle detectors which can detect the arrival of high-energy solar protons associated with Ground Level Enhancements (GLEs). We compare the timing profiles of solar energetic proton detections from GPS satellites as well as from ground-based Neutron Monitors and GOES spacecraft at geostationary orbit in order to understand how high-energy protons from the Sun enter the geomagnetic field and investigate potential differences in arrival time of energetic protons at GPS satellites as a function of location. Previous studies could only use one or two spacecraft at a similar altitude to track the arrival of energetic particles. With GPS data, we can now test whether the particles arrive isotropically, as assumed, or whether there exist differences in the timing and energetics viewed by each of the individual satellites. Extensions of this work could lead to improvements in space weather forecasting that predict more localized risk estimates for space-based technology.

  18. Triple parton scatterings in high-energy proton-proton collisions arXiv

    CERN Document Server

    d'Enterria, David

    2017-01-01

    A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (pp) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σeff,TPS. The value of σeff,TPS is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σeff,TPS=12.5±4.5  mb. Estimates for triple charm (cc¯) and bottom (bb¯) production in pp collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single cc¯, bb¯ cross sections. At s≈100  TeV, about 15% of the pp collisions produce three cc¯ pairs from three different parton-parton scatterings.

  19. High energy collisions and the proton structure: an ambiguity

    International Nuclear Information System (INIS)

    Franca, H.M.

    1980-01-01

    It is pointed out an ambiguity in the determination of the sign of the imaginary part of the proton-proton elastic-scattering amplitude for ]t]>]t min . Some implications of such and ambiguity concerning the proton structure are discussed and finally, an experimental analysis which could solve it is suggested. (L.C.) [pt

  20. Generalized z-scaling in proton-proton collisions at high energies

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.

    2006-01-01

    New generalization of z-scaling in inclusive particle production is proposed. The scaling variable z is a fractal measure which depends on kinematical characteristics of the underlying subprocess expressed in terms of the momentum fractions x 1 and x 2 of the incoming protons. In the generalized approach, the x 1 and x 2 are functions of the momentum fractions y a and y b of the scattered and recoil constituents carried out by the inclusive particle and recoil object, respectively. The scaling function ψ(z) for charged and identified hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of the produced medium entering definition of the z are established to obtain energy, angular and multiplicity independence of the ψ(z). The scheme allows unique description of data on inclusive cross sections of charged particles, pions, kaons, antiprotons, and lambdas at high energies. The obtained results are of interest to use z-scaling as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at the proton-proton colliders RHIC and LHC

  1. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines

    Czech Academy of Sciences Publication Activity Database

    Weber, Stefan A.; Bechet, Sabrina; Borneis, S.; Brabec, Lukáš; Bučka, Martin; Chacon-Golcher, Edwin; Ciappina, Marcelo F.; De Marco, Massimo; Fajstavr, Antonín; Falk, Kateřina; Garcia, E.-R.; Grosz, Jakub; Gu, Yanjun; Hernandez Martin, Juan C.; Holec, M.; Janečka, Pavel; Jantač, Martin; Jirka, Martin; Kadlecová, Hedvika; Khikhlukha, Danila; Klimo, Ondřej; Korn, Georg; Kramer, Daniel; Batheja, Deepak Kumar; Laštovička, Tomáš; Lutoslawski, P.; Morejon, L.; Olšovcová, Veronika; Rajdl, Marek; Renner, Oldřich; Rus, Bedřich; Singh, Sushil K.; Šmíd, Michal; Sokol, Martin; Versaci, Roberto; Vrána, Roman; Vranic, M.; Vyskočil, Jiří; Wolf, Adam; Yu, Q.

    2017-01-01

    Roč. 2, č. 4 (2017), s. 149-176 E-ISSN 2468-080X R&D Projects: GA MŠk LQ1606; GA MŠk LM2015065; GA MŠk EF15_008/0000162; GA MŠk EF15_003/0000449 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162; OP VVV - HiFi(XE) CZ.02.1.01/0.0/0.0/15_003/0000449 Institutional support: RVO:68378271 Keywords : high-energy-density- physics * ultra-high-intensity * warm dense matter * laboratory astrophysics * high repetition rate lasers * plasma optics * inertial confinement fusion Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics )

  2. Thermalization in high energy proton-nucleus collisions

    International Nuclear Information System (INIS)

    Wedemann, R.S.

    1988-03-01

    A relativistic proton-nucleus collision using the intranuclear cascade model is studied. The purpose is to verify the equilibration hypothesis at fragmentation time made by many nuclear fragmentation models. (author)

  3. Comparison of proton-proton and proton-antiproton scattering at very high energies

    International Nuclear Information System (INIS)

    Gauron, P.; Nicolescu, B.; Univ. Pierre et Marie Curie, 75 - Paris; Leader, E.

    1985-09-01

    The ISR results on the differential cross-sections for pp and anti-pp show unambiguously that the crossing-odd amplitude is still important at very high energies. Comparison of ISR and CERN collider anti-pp data suggests that the crossing-odd amplitude is growing maximally fast with energy. We explore the phenomenological consequences of such a ''maximal odderon'' behaviour at TeV energies

  4. LRSPC, Proton High-Energy Loss in Matter

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: The LRSPC program is designed to estimate the energy loss, due to ionization and excitation, and the range of charged particles passing through matter. The code treats protons in elements or mixtures composed of elements with atomic numbers ranging from 1 to 100. The results for protons are generally valid from 1 MeV to 100 GeV. The code may be extended to treat other charged particles such as muons, pions, hyperons, deuterons, tritons and alphas by changing the particle mass, charge and range at 2 MeV. 2 - Method of solution: Stopping power is calculated from the Bethe-Bloch equation with shell and density corrections included. Range is calculated by integrating the reciprocal of the stopping power from an initial value at 2 MeV. The K-shell correction is taken from Walske's data. The L-shell and higher shell corrections are adjusted to fit low energy measurements fro 30 elements. The density correction is calculated by a method similar to that of Sternheimer, differing chiefly in the large number of electron shells considered. LRSPC computes improved proton range and stopping power data for use in the proton penetration code, LPPC (CCC-0051). It is packages separately and may be requested independently. 3 - Restrictions on the complexity of the problem: Number of elements in mixture ≤ 10, Atomic number of element ≤ 100, Number of energy points ≤ 500

  5. Neutron-proton elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem (Punjab Univ., Lahore (Pakistan). Dept. of Physics)

    1980-09-06

    The most recent measurements of the differential and total cross sections of neutron-proton elastic scattering from 70 to 400 GeV/c have been explained by using rho as a simple pole and pomeron as a dipole. The predictions are also made regarding the energy dependence of dip and bump structure in angular distribution.

  6. Study of a power coupler for superconducting RF cavities used in high intensity proton accelerator

    International Nuclear Information System (INIS)

    Souli, M.

    2007-07-01

    The coaxial power coupler needed for superconducting RF cavities used in the high energy section of the EUROTRANS driver should transmit 150 kW (CW operation) RF power to the protons beam. The calculated RF and dielectric losses in the power coupler (inner and outer conductor, RF window) are relatively high. Consequently, it is necessary to design very carefully the cooling circuits in order to remove the generated heat and to ensure stable and reliable operating conditions for the coupler cavity system. After calculating all type of losses in the power coupler, we have designed and validated the inner conductor cooling circuit using numerical simulations results. We have also designed and optimized the outer conductor cooling circuit by establishing its hydraulic and thermal characteristics. Next, an experiment dedicated to study the thermal interaction between the power coupler and the cavity was successfully performed at CRYOHLAB test facility. The critical heat load Qc for which a strong degradation of the cavity RF performance was measured leading to Q c in the range 3 W-5 W. The measured heat load will be considered as an upper limit of the residual heat flux at the outer conductor cold extremity. A dedicated test facility was developed and successfully operated for measuring the performance of the outer conductor heat exchanger using supercritical helium as coolant. The test cell used reproduces the realistic thermal boundary conditions of the power coupler mounted on the cavity in the cryo-module. The first experimental results have confirmed the excellent performance of the tested heat exchanger. The maximum residual heat flux measured was 60 mW for a 127 W thermal load. As the RF losses in the coupler are proportional to the incident RF power, we can deduce that the outer conductor heat exchanger performance is continued up to 800 kW RF power. Heat exchanger thermal conductance has been identified using a 2D axisymmetric thermal model by comparing

  7. Recent research on nuclear reaction using high-energy proton and neutron

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study

    1997-11-01

    The presently available high-energy neutron beam facilities are introduced. Then some interesting research on nuclear reaction using high-energy protons are reported such as the intermediate mass fragments emission and neutron spectrum measurements on various targets. As the important research using high-energy neutron, the (p,n) reactions on Mn, Fe, and Ni, the elastic scattering of neutrons, and the shielding experiments are discussed. (author)

  8. Acceleration of polarized proton in high energy accelerators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1991-01-01

    In low to medium energy accelerators, betatron tune jumps and vertical orbit harmonic correction methods have been used to overcome the intrinsic and imperfection resonances. At high energy accelerators, snakes are needed to preserve polarization. The author analyzes the effects of snake resonances, snake imperfections, and overlapping resonances on spin depolarization. He discusses also results of recent snake experiments at the IUCF Cooler Ring. The snake can overcome various kinds of spin depolarization resonances. These experiments pointed out further that partial snake can be used to cure the imperfection resonances in low to medium energy accelerators

  9. QCD in high-energy proton-proton and proton-antiproton collisions

    International Nuclear Information System (INIS)

    Baier, R.

    1985-01-01

    The experimental and theoretical investigation of nucleon-nucleon collisions at high energies allows to explore the structure of the nucleon by large momentum transfer (deep-inelastic) processes. In these lectures the structure of the nucleon from momentum scales Q > 1 GeV/c ( -16 cm) is discussed. In the first lecture the basic concepts of the parton model and of perturbative quantum chromodynamics (QCD) are introduced, and applied to deep inelastic lepton-nucleon scattering. The following lectures cover large transverse momentum, psub(T), hadronic processes, massive dilepton production and production of prompt real photons at large psub(T). The present status of the theoretical understanding of these processes is summarized. (Auth.)

  10. Radiation damage in silicon exposed to high-energy protons

    International Nuclear Information System (INIS)

    Davies, Gordon; Hayama, Shusaku; Murin, Leonid; Krause-Rehberg, Reinhard; Bondarenko, Vladimir; Sengupta, Asmita; Davia, Cinzia; Karpenko, Anna

    2006-01-01

    Photoluminescence, infrared absorption, positron annihilation, and deep-level transient spectroscopy (DLTS) have been used to investigate the radiation damage produced by 24 GeV/c protons in crystalline silicon. The irradiation doses and the concentrations of carbon and oxygen in the samples have been chosen to monitor the mobility of the damage products. Single vacancies (and self-interstitials) are introduced at the rate of ∼1 cm -1 , and divacancies at 0.5 cm -1 . Stable di-interstitials are formed when two self-interstitials are displaced in one damage event, and they are mobile at room temperature. In the initial stages of annealing the evolution of the point defects can be understood mainly in terms of trapping at the impurities. However, the positron signal shows that about two orders of magnitude more vacancies are produced by the protons than are detected in the point defects. Damage clusters exist, and are largely removed by annealing at 700 to 800 K, when there is an associated loss of broad band emission between 850 and 1000 meV. The well-known W center is generated by restructuring within clusters, with a range of activation energies of about 1.3 to 1.6 eV, reflecting the disordered nature of the clusters. Comparison of the formation of the X centers in oxygenated and oxygen-lean samples suggests that the J defect may be interstitial related rather than vacancy related. To a large extent, the damage and annealing behavior may be factorized into point defects (monitored by sharp-line optical spectra and DLTS) and cluster defects (monitored by positron annihilation and broadband luminescence). Taking this view to the limit, the generation rates for the point defects are as predicted by simply taking the damage generated by the Coulomb interaction of the protons and Si nuclei

  11. On a method for high-energy electron beam production in proton synchrotrons

    International Nuclear Information System (INIS)

    Bessonov, E.G.; Vazdik, Ya.A.

    1979-01-01

    It is suggested to produce high-energy electron beams in such a way that the ultrarelativistic protons give an amount of their kinetic energy to the electrons of a thin target, placed inside the working volume of the proton synchrotron. The kinematics of the elastic scattering of relativistic protons on electrons at rest is treated. Evaluation of a number of elastically-scattered electrons by 1000 GeV and 3000 GeV proton beams is presented. The method under consideration is of certain practical interest and may appear to be preferable in a definite energy range of protons and electrons

  12. Observation of high energy electrons and protons in the South Atlantic geomagnetic anomaly by Ohzora Satellite

    International Nuclear Information System (INIS)

    Nagata, K.; Murakami, H.; Nakamoto, A.; Hasebe, N.; Kikuche, J.; Doke, T.

    1988-01-01

    Observed results of the high energy electrons (0.19 - 3.2 MeV) and protons (0.58 - 35 MeV) of the South Atlantic Geomagnetic Anomaly are presented. Two silicon Δ E-E telescopes on the ohzora satellite (EXOS-C, 1984-15A) were used to observe the high energy particle and the maximum intensity of electrons and protons. The powers of energy spectra above 1 MeV have different values from energy region below 1 MeV. The electron and proton intensities are greatest at pitch angle maximized at 90 0 . (author) [pt

  13. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines

    Directory of Open Access Journals (Sweden)

    S. Weber

    2017-07-01

    Full Text Available ELI-Beamlines (ELI-BL, one of the three pillars of the Extreme Light Infrastructure endeavour, will be in a unique position to perform research in high-energy-density-physics (HEDP, plasma physics and ultra-high intensity (UHI (>1022W/cm2 laser–plasma interaction. Recently the need for HED laboratory physics was identified and the P3 (plasma physics platform installation under construction in ELI-BL will be an answer. The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones, high-pressure quantum ones, warm dense matter (WDM and ultra-relativistic plasmas. HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion (ICF. Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses. This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI, and gives a brief overview of some research under way in the field of UHI, laboratory astrophysics, ICF, WDM, and plasma optics.

  14. Nuclear design aspect of the Korean high intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa; Song, Tae-Yung [Korea Atomic Energy Research Inst., Yusong, Taejon (Korea, Republic of)

    1998-11-01

    A plan to construct a high current proton accelerator has been proposed by KAERI. We are presenting the required nuclear design to support the project as well as a brief overview of the proposed proton accelerator. The target and core design is highlighted to show feasibility of incineration of minor actinides from the spent fuel of light water reactors. Radiation shielding and activation analyses are also important for the design and the license of the accelerator. (author)

  15. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Directory of Open Access Journals (Sweden)

    S. Busold

    2013-10-01

    Full Text Available Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 10^{9} particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30  mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  16. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  17. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  18. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)

  19. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    CERN Document Server

    Yoshida, K; Takada, H

    2003-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated.

  20. High intensity proton injector for facility of antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.; Hollinger, R.; Ivanova, V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Chauvin, N.; Delferriere, O.; Tuske, O. [Commissariat à l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191 Gif-sur-Yvette (France); Ullmann, C. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Institut für Angewandte Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany)

    2016-02-15

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBT is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.

  1. High yield of low-energy pions from a high-energy primary proton beam

    International Nuclear Information System (INIS)

    Bertin, A.; Capponi, S.; De Castro, S.

    1987-01-01

    This paper presents the results of the first measurement on the yield of pions with momentum smaller than 220 MeV/c, produced by a 300 GeV/c proton beam. The measurements, performed at the CERN super proton synchrotron using tungsten production targets of different lengths, are discussed referring to the possibility of extending to high-energy laboratories the access to fundamental research involving low-energy pions and muons

  2. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  3. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  4. Development of residual gas ionization profile monitor for high intensity proton beams

    CERN Document Server

    Sato, Y; Hirose, E; Ieiri, M; Igarashi, Y; Inaba, S; Katoh, Y; Minakawa, M; Noumi, H; Saitó, M; Suzuki, Y; Takahashi, H; Takasaki, M; Tanaka, K; Toyoda, A; Yamada, Y; Yamanoi, Y; Watanabe, H

    2006-01-01

    Nondestructive beam profile monitor utilizing ionizations of residual gas has been developed for continuous monitoring of 3?0(J-PARC). Knock-on electrons produced in the ionizations of residual gas vacuumed to 1 Pa are collected with a uniform electric field applied between electrodes. Applying a uniform electric field parallel to the electric field is essential to reduce diffusion of electrons crossing over magnetic flux. A prototype monitor has been constructed and installed in EP2-C beam line at KEK 12 GeV proton synchrotron (12 Ge V-PS). The profiles measured with the present monitor agree with the ones measured with the existing destructive profile monitor. The present monitor shows sufficient performances as a candidate of the profile monitor at J-PARC. In the present article, the working principle of the present monitor, the results of test experiments, and further developments are described in detail.

  5. Experimental study of proton acceleration with ultra-high intensity, high contrast laser beam

    International Nuclear Information System (INIS)

    Flacco, A.

    2008-07-01

    This thesis reports experimental work in the domain of laser-matter interaction to study the production of energetic proton beams. The ion beams accelerated by laser have been increasing in quality, in energy and in repeatability as laser technology keeps improving. The presence of the pedestal before the high peak laser pulse introduces many unknowns in the accelerating conditions that are created on the front and on the rear surface of the target. The first part of the experimental activities is focused to a better comprehension and the experimental validation of the interaction of a 'pedestal-like', moderate intensity, laser pulse on Aluminum targets. The developed interferometric technique proved to be reliable and produced a complete set of maps of the early stages of the plasma expansion. The reflectometry experiment stresses the importance of the quality of the metallic targets and underlines some obscure points on the behaviour of the rear surface of the illuminated foil. For instance the reflectometry measurements on the thicker targets are significantly different from what is foreseen by the simulations about the timescale of the shock break out. In the second part, the XPW laser pulse is used in ion acceleration from thin metal foils. The laser and target parameters are varied to put in evidence the dependence of the ion beam to the experimental condition. In conclusion I can say that first, during the variation of the target thickness, an optimum is put in evidence. Secondly, the correlation between the laser pulse duration and the proton cutoff energy is qualitatively different between thicker (15 μm) and thinner (1.5 μm, 3 μm) targets. For the first, an optimal pulse duration exists while for the seconds, no variation is found - in the searched space - from the monotonic decreasing of the cutoff energy with the peak intensity. The experimental results put however in evidence some points that are not completely understood. (A.C.)

  6. FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.

    2016-01-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10 5 ) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10 3 , similar to those of comparably sized well-connected (W20–W90) SEP events.

  7. Single event upset and charge collection measurements using high energy protons and neutrons

    International Nuclear Information System (INIS)

    Normand, E.; Oberg, D.L.; Wert, J.L.; Ness, J.D.; Majewski, P.P.; Wender, S.; Gavron, A.

    1994-01-01

    RAMs, microcontrollers and surface barrier detectors were exposed to beams of high energy protons and neutrons to measure the induced number of upsets as well as energy deposition. The WNR facility at Los Alamos provided a neutron spectrum similar to that of the atmospheric neutrons. Its effect on devices was compared to that of protons with energies of 200, 400, 500, and 800 MeV. Measurements indicate that SEU cross sections for 400 MeV protons are similar to those induced by the atmospheric neutron spectrum

  8. Determination of kinetic coefficients for proton-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Rizzato, C.M.

    1987-01-01

    From the effective proton dynamics, the approximations in the context of high energy collisions which lead to the Boltzmann equation, are established. From this equation, general expressions for the kinetic coefficients are deduced. Using a simple model, analytical expressions for kinetic coefficients are obtained. The importance of the effect of Pauli blocking is also shown. (author) [pt

  9. High energy electron and proton observations in the South Atlantic geomagnetic anomaly

    International Nuclear Information System (INIS)

    Nakamura, Y.; Takahashi, H.; Nagata, K.; Kohno, T.; Murakami, H.

    1988-01-01

    The method developed by researchers of cooperation agreement between Japan and Brazil, to observe high energy particles in the South Atlantic Geomagnetic Anomaly, is described. The energy spectra and pitch angle distributions of electrons and protons, using silicon detectors of good energy resolution and two spectrometers with different geometrical factors, on board of the OHZORA satellite, were determined. (M.C.K.) [pt

  10. Observation of gaseous nitric acid production at a high-energy proton accelerator facility

    CERN Document Server

    Kanda, Y; Nakajima, H

    2005-01-01

    High-energy protons and neutrons produce a variety of radionuclides as well as noxious and oxidative gases, such as ozone and nitric acid, in the air mainly through the nuclear spallation of atmospheric elements. Samples were collected from the surfaces of magnets, walls, and floors in the neutrino beamline tunnel and the target station of the KEK 12-GeV proton synchrotron facility by wiping surfaces with filter paper. Considerably good correlations were found between the amounts of nitrate and tritium and between those of nitrate and /sup 7/Be. This finding gives evidence that at high-energy proton facilities, nitric acid is produced in the radiolysis of air in beam- loss regions. Also, the nitric acid on the surfaces was found to be desorbed and tended to be more uniform throughout the tunnel due to air circulation. The magnitude of diminishing from the surfaces was in the order of tritium>nitrate>/sup 7/Be1).

  11. Spatial distribution of moderated neutrons along a Pb target irradiated by high-energy protons

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Kulakov, B.A.; Krivopustov, M.I.; Sosnin, A.N.; Debeauvais, M.; Adloff, J.C.; Zamani Valasiadou, M.

    2006-01-01

    High-energy protons in the range of 0.5-7.4 GeV have irradiated an extended Pb target covered with a paraffin moderator. The moderator was used in order to shift the hard Pb spallation neutron spectrum to lower energies and to increase the transmutation efficiency via (n,γ) reactions. Neutron distributions along and inside the paraffin moderator were measured. An analysis of the experimental results was performed based on particle production by high-energy interactions with heavy targets and neutron spectrum shifting by the paraffin. Conclusions about the spallation neutron production in the target and moderation through the paraffin are presented. The study of the total neutron fluence on the moderator surface as a function of the proton beam energy shows that neutron cost is improved up to 1 GeV. For higher proton beam energies it remains constant with a tendency to decline

  12. Electromagnetic design of a β=0.4 superconducting spoke resonator for a high intensity proton linac

    International Nuclear Information System (INIS)

    Pathak, Abhishek; Krishnagopal, Srinivas

    2015-01-01

    Here we present electromagnetic design simulations of a superconducting single-spoke resonator with a geometrical beta of 0.4 and operating at 325 MHz for a high intensity proton linac (HIPL). The spoke equatorial and base parameters were optimized to minimize the peak electric and peak magnetic fields and maximize the shunt impedance, while keeping the same resonant frequency. Variation of the surface magnetic fields was investigated as a function of the spoke base shape, and it was found that an elliptical profile is preferred over a circular or racecourse profile with E peak /E acc =4.71, E peak /E acc =4.33 (mT/(MV/m)) and R/Q=272 Ω. (author)

  13. Beam commission of the high intensity proton source developed at INFN-LNS for the European Spallation Source

    Science.gov (United States)

    Neri, L.; Celona, L.; Gammino, S.; Miraglia, A.; Leonardi, O.; Castro, G.; Torrisi, G.; Mascali, D.; Mazzaglia, M.; Allegra, L.; Amato, A.; Calabrese, G.; Caruso, A.; Chines, F.; Gallo, G.; Longhitano, A.; Manno, G.; Marletta, S.; Maugeri, A.; Passarello, S.; Pastore, G.; Seminara, A.; Spartà, A.; Vinciguerra, S.

    2017-07-01

    At the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.

  14. Development of bunch shape monitor for high-intensity beam on the China ADS proton LINAC Injector II

    Science.gov (United States)

    Zhu, Guangyu; Wu, Junxia; Du, Ze; Zhang, Yong; Xue, Zongheng; Xie, Hongming; Wei, Yuan; Jing, Long; Jia, Huan

    2018-05-01

    The development, performance, and testing of the longitudinal bunch shape monitor, namely, the Fast Faraday Cup (FFC), are presented in this paper. The FFC is an invasive instrument controlled by a stepper motor, and its principle of operation is based on a strip line structure. The longitudinal bunch shape was determined by sampling a small part of the beam hitting the strip line through a 1-mm hole. The rise time of the detector reached 24 ps. To accommodate experiments that utilize high-intensity beams, the materials of the bunch shape monitor were chosen to sustain high temperatures. Water cooling was also integrated in the detector system to enhance heat transfer and prevent thermal damage. We also present an analysis of the heating caused by the beam. The bunch shape monitor has been installed and commissioned at the China ADS proton LINAC Injector II.

  15. Thick target benchmark test for the code used in the design of high intensity proton accelerator project

    International Nuclear Information System (INIS)

    Meigo, Shin-ichiro; Harada, Masatoshi

    2003-01-01

    In the neutronics design for the JAERI and KEK Joint high intensity accelerator facilities, transport codes of NMTC/JAM, MCNPX and MARS are used. In order to confirm the predict ability for these code, it is important to compare with the experiment result. For the validation of the source term of neutron, the calculations are compared with the experimental spectrum of neutrons produced from thick target, which are carried out at LANL and KEK. As for validation of low energy incident case, the calculations are compared with experiment carried out at LANL, in which target of C, Al, Fe, and 238 U are irradiated with 256-MeV protons. By the comparison, it is found that both NMTC/JAM and MCNPX show good agreement with the experiment within by a factor of 2. MARS shows good agreement for C and Al target. MARS, however, gives rather underestimation for all targets in the neutron energy region higher than 30 MeV. For the validation high incident energy case, the codes are compared with the experiment carried out at KEK. In this experiment, W and Pb targets are bombarded with 0.5- and 1.5-GeV protons. Although slightly disagreement exists, NMTC/JAM, MCNPX and MARS are in good agreement with the experiment within by a factor of 2. (author)

  16. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  17. Inclusive spectra of mesons with large transverse momenta in proton-nuclear collisions at high energies

    International Nuclear Information System (INIS)

    Lykasov, G.I.; Sherkhonov, B.Kh.

    1982-01-01

    Basing on the proposed earlier quark model of hadron-nucleus processes with large transverse momenta psub(perpendicular) the spectra of π +- , K +- meson production with large psub(perpendicular) in proton-nucleus collisions at high energies are calculated. The performed comparison of their dependence of the nucleus-target atomic number A with experimental data shows a good agreement. Theoretical and experimental ratios of inclusive spectra of K +- and π +- mesons in the are compared. Results of calculations show a rather good description of experimental data on large psub(perpendicular) meson production at high energies

  18. Possibilities of polarized protons in Sp anti p S and other high energy hadron colliders

    International Nuclear Information System (INIS)

    Courant, E.D.

    1984-01-01

    The requirements for collisions with polarized protons in hadron colliders above 200 GeV are listed and briefly discussed. Particular attention is given to the use of the ''Siberan snake'' to eliminate depolarizing resonances, which occur when the spin precession frequency equals a frequency contained in the spectrum of the field seen by the beam. The Siberian snake is a device which makes the spin precession frequency essentially constant by using spin rotators, which precess the spin by 180 0 about either the longitudinal or transverse horizontal axis. It is concluded that operation with polarized protons should be possible at all the high energy hadron colliders

  19. High energy proton-induced radioactivity in HgI2 crystals

    International Nuclear Information System (INIS)

    Porras, E.; Ferrero, J.L.; Sanchez, F.; Ruiz, J.A.; Lei, F.

    1995-01-01

    Mercuric iodide (HgI 2 ) semiconductor crystals are generating a lot of interest as room temperature solid state detectors for hard X-ray astronomy observations. For these applications one of the most important background sources is the cosmic proton induced radioactivity in the detector material. In order to study this background noise contribution a 1x1x1 cm HgI 2 crystal was irradiated with high energy protons. The resulting long-lived unstable isotopes and their production rates have been identified and compared with Monte Carlo simulations. ((orig.))

  20. Correlations between high momentum particles in proton-proton collisions at high energies

    International Nuclear Information System (INIS)

    Bobbink, G.J.

    1981-01-01

    This thesis describes an experiment performed at the CERN Intersecting Storage Rings. The experiment studies the reaction p+p→h 1 +h 2 +X at two centre-of-mass energies, √s=44.7 GeV and √s=62.3 GeV. Two of the outgoing particles (h 1 and h 2 ) are detected in opposite c.m.s. hemispheres at small polar angles with respect to the direction of two incident protons. The remaining particles produced (X) are not detected. The hadrons hsub(i) are identified mesons (π + , π - , K + , K - ) or baryons (p, Λ) with relatively large longitudinal psub(L) and small transverse momentum psub(T). The aim of the experiment is twofold. The first aim is to study whether the momentum distributions of the fast particles hsub(i) are correlated and thereby to constrain the possible interaction mechanisms responsible for the production of high psub(L), low psub(T) particles. The second aim is to establish to what extent the production of pions and kaons in inclusive proton-proton collisions (e.g. p+p→π+X, X=all other particles) resembles the production of pions and kaons in diffractive proton-proton collisions (e.g. p+p→p+π+X, in which the final-state proton has a momentum close to its maximum possible value). (Auth.)

  1. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    Science.gov (United States)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  2. Radiation protection of the operation of accelerator facilities. On high energy proton and electron accelerators

    International Nuclear Information System (INIS)

    Kondo, Kenjiro

    1997-01-01

    Problems in the radiation protection raised by accelerated particles with energy higher than several hundreds MeV in strong accelerator facilities were discussed in comparison with those with lower energy in middle- and small-scale facilities. The characteristics in the protection in such strong accelerator facilities are derived from the qualitative changes in the interaction between the high energy particles and materials and from quantitative one due to the beam strength. In the former which is dependent on the emitting mechanism of the radiation, neutron with broad energy spectrum and muon are important in the protection, and in the latter, levels of radiation and radioactivity which are proportional to the beam strength are important. The author described details of the interaction between high energy particles and materials: leading to the conclusion that in the electron accelerator facilities, shielding against high energy-blemsstrahlung radiation and -neutron is important and in the proton acceleration, shielding against neutron is important. The characteristics of the radiation field in the strong accelerator facilities: among neutron, ionized particles and electromagnetic wave, neutron is most important in shielding since it has small cross sections relative to other two. Considerations for neutron are necessary in the management of exposure. Multiplicity of radionuclides produced: which is a result of nuclear spallation reaction due to high energy particles, especially to proton. Radioactivation of the accelerator equipment is a serious problem. Other problems: the interlock systems, radiation protection for experimenters and maintenance of the equipment by remote systems. (K.H.). 11 refs

  3. High energy protons application for radiotherapy of the esophagus affected with cancer

    International Nuclear Information System (INIS)

    Ruderman, A.I.; Astrakhan, B.V.; Kulakov, G.A.; Makarova, G.V.; Zhuravleva, N.T.

    1975-01-01

    As in radiation therapy of tumours located elsewhere, local radiation treatment of an esophagus tumour is often aggravated by the development, after some time, of a trophic ulcer as a result of decreased regenerative ability of the irradiated sound tissues and also of newly formed hystostructures which have replaced the destroyed tumorous tissue. It has been established that the number of complications increases with the total focal dose, but at the same time (up to a certain point) the number of local curings increases as well. Some promise was shown by high-energy protons with their physical advantages unique for radiation therapy, such as the strictly controlled free path length of particles in the tissues, the presence of the Bragg peak, the absence of lateral scattering, i.e. features which permit of a high dose in the target with a minimum injury to the sound tissues surrounding the tumour. Proton therapy of esophagus cancer was carried out by two techniques, static and shuttle-rotary. The results of proton therapy of esophagus cancer indicate that the use of high-energy protons for treating esophagus cancer holds promise

  4. Polarization of protons produced in diffractive disintegration of deuterons by high-energy pions

    International Nuclear Information System (INIS)

    Gakh, G.Yi.; Rekalo, M.P.

    1996-01-01

    For the process of diffractive disintegration of unpolarized deuterons by the high-energy pions, π + d → π + p + n, the polarization characteristics of produced protons are calculated. Using the vector nature of the Pomeron exchange, the general structure of all components of proton polarization vector is found for d (π, π p) n. By the Pomeron-photon analogy, the amplitude of the process P + d → n + p is approximated by the isoscalar contribution of four Born diagrams similar to the case of deuteron electrodisintegration. Unitarization of the amplitude is achieved by introducing in multipole amplitudes the corresponding phases of np-scattering. The numerical calculation of all components of the polarization vector of protons, produced in the case of noncomplanar kinematics of the reaction π + d → π + p + n, is realized

  5. Study of measurement method of tritium induced in concrete of high-energy proton accelerator facilities

    International Nuclear Information System (INIS)

    Ohtsuka, N.; Ishihama, S.; Kunifuda, T.; Hayasaka, N.; Miura, T.

    2001-01-01

    Various long-loved radionuclides, 3 H, 7 Be, 22 Na, 51 Cr, 54 Mn, 56 Co, 57 Co, 60 Co, 134 Cs, 152 Eu and 154 Eu, have been produced in the shielding concrete of high energy proton accelerator facility through both nuclear spallation reactions and thermal neutron capture reactions of concrete elements, during machine operation. Tritium is the most important nuclide from the radiation protection. There were, however, few measurements of tritium concentration induced in the shielding concrete. In this study, the conditions of measurement method of tritium concentration induced in shielding concrete have been investigated using the activated shielding concrete of the 12 GeV proton beam-line tunnel at KEK and the standard rock (JG-1) irradiated of thermal neutron at the reactor. And the depth profiles of tritium induced in the shielding concrete of slow extracted proton beam line at KEK were determined using this method. (author)

  6. On some methods to produce high-energy polarized electron beams by means of proton synchrotrons

    International Nuclear Information System (INIS)

    Bessonov, E.G.; Vazdik, Ya.A.

    1980-01-01

    Some methods of production of high-energy polarized electron beams by means of proton synchrotrons are considered. These methods are based on transfer by protons of a part of their energy to the polarized electrons of a thin target placed inside the working volume of the synchrotron. It is suggested to use as a polarized electron target a magnetized crystalline iron in which proton channeling is realized, polarized atomic beams and the polarized plasma. It is shown that by this method one can produce polarized electron beams with energy approximately 100 GeV, energy spread +- 5 % and intensity approximately 10 7 electron/c, polarization approximately 30% and with intensity approximately 10 4 -10 5 electron/c, polarization approximately 100% [ru

  7. High-energy monoenergetic proton beams from two stage acceleration with a slow laser pulse

    Directory of Open Access Journals (Sweden)

    H. Y. Wang

    2015-02-01

    Full Text Available We present a new regime to generate high-energy quasimonoenergetic proton beams in a “slow-pulse” regime, where the laser group velocity v_{g}proton beams can be generated. It is shown by multidimensional particle-in-cell simulation that quasimonoenergetic proton beams with energy up to hundreds of MeV can be generated at laser intensities of 10^{21}  W/cm^{2}.

  8. Carbon filament beam profile monitor for high energy proton-antiproton storage rings

    International Nuclear Information System (INIS)

    Evans, L.R.; Shafer, R.E.

    1979-01-01

    The measurement of the evolution of the transverse profile of the stored beams in high energy proton storage rings such as the p-anti p colliders at CERN and at FNAL is of considerable importance. In the present note, a simple monitor is discussed which will allow almost non-destructive measurement of the profile of each individual proton and antiproton bunch separately. It is based on the flying wire technique first used at CEA and more recently at the CPS. A fine carbon filament is passed quickly through the beam, acting as a target for secondary particle production. The flux of secondary particles is measured by two scintillator telescopes, one for protons and one for antiprotons, having an angular acceptance between 30 and 100 mrad. Measurements of secondary particle production performed at FNAL in this angular range show that a very respectable flux can be expected

  9. 3-dimensional shielding design for a spallation neutron source facility in the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaya; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Evaluation of shielding performance for a 1 MW spallation neutron source facility in the Materials and Life Science Facility being constructed in the High-Intensity Proton Accelerator Project (J-PARC) is important from a viewpoint of radiation safety and optimization of arrangement of components. This report describes evaluated results for the shielding performance with modeling three-dimensionally whole structural components including gaps between them in detail. A Monte Carlo calculation method with MCNPX2.2.6 code and LA-150 library was adopted. Streaming and void effects, optimization of shield for cost reduction and optimization of arrangement of structures such as shutters were investigated. The streaming effects were investigated quantitatively by changing the detailed structure of components and gap widths built into the calculation model. Horizontal required shield thicknesses were ranged from about 6.5 m to 7.5 m as a function of neutron beam line angles. A shutter mechanism for a horizontal neutron reflectometer that was directed downward was devised, and it was shown that the shielding performance of the shutter was acceptable. An optimal biological shield configuration was finally determined according to the calculated results. (author)

  10. Design study on large-scale mercury loop for engineering test of target of high-intensity proton accelerator

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Haga, Katsuhiro; Aita, Hideki; Sekita, Kenji; Sudo, Yukio; Koiso, Kohji; Kaminaga, Masanori; Takahashi, Hiromichi.

    1997-03-01

    A heavy liquid-metal target has been proposed as a representative target of a 5MW-scale neutron source for a neutron scattering facility coupled with a high-intensity proton accelerator. In the report, about mercury considered to be the best material of the heavy liquid-metal target, its properties needed for the design were formulated, and results of research on mercury treatment and of evaluation of heat removal performance on the basis of generating heat obtained by a numerical calculation of a spallation reaction were presented. From these results, a 1.5MW-scale mercury loop which equals to that for the first stage operation of the neutron science program of JAERI was designed conceptually for obtaining design data of the mercury target, and basic flow diagram of the loop and specifications of components were decided: diameter of pipelines flowing mercury at the velocity below 1m/s, power of an electro-magnet pump and structure of a cooler. Through the design, engineering problems were made clear such as selection and development of mercury-resistant materials and optimization of the loop and components for decreasing mercury inventory. (author)

  11. High energy proton simulation of 14-MeV neutron damage in Al2O3

    International Nuclear Information System (INIS)

    Muir, D.W.; Bunch, J.M.

    1975-01-01

    High-energy protons are a potentially useful tool for simulating the radiation damage produced by 14-MeV neutrons in CTR materials. A comparison is given of calculations and measurements of the relative damage effectiveness of these two types of radiation in single-crystal Al 2 O 3 . The experiments make use of the prominent absorption band at 206 nm as an index to lattice damage, on the assumption that peak absorption is proportional to the concentration of lattice vacancies. The induced absorption is measured for incident proton energies ranging from 5 to 15 MeV and for 14-MeV neutrons. Recoil-energy spectra are calculated for elastic and inelastic scattering using published angular distributions. Recoil-energy spectra also are calculated for the secondary alpha particles and 12 C nuclei produced by (p,p'α) reactions on 16 O. The recoil spectra are converted to damage-energy spectra and then integrated to yield the damage-energy cross section at each proton energy and for 14 MeV neutrons. A comparison of the calculations with experimental results suggests that damage energy, at least at high energies, is a reasonable criterion for estimating this type of radiation damage. (auth)

  12. High energy proton induced radiation damage of rare earth permanent magnet quadrupoles

    Science.gov (United States)

    Schanz, M.; Endres, M.; Löwe, K.; Lienig, T.; Deppert, O.; Lang, P. M.; Varentsov, D.; Hoffmann, D. H. H.; Gutfleisch, O.

    2017-12-01

    Permanent magnet quadrupoles (PMQs) are an alternative to common electromagnetic quadrupoles especially for fixed rigidity beam transport scenarios at particle accelerators. Using those magnets for experimental setups can result in certain scenarios, in which a PMQ itself may be exposed to a large amount of primary and secondary particles with a broad energy spectrum, interacting with the magnetic material and affecting its magnetic properties. One specific scenario is proton microscopy, where a proton beam traverses an object and a collimator in which a part of the beam is scattered and deflected into PMQs used as part of a diagnostic system. During the commissioning of the PRIOR (Proton Microscope for Facility for Antiproton and Ion Research) high energy proton microscope facility prototype at Gesellschaft für Schwerionenforschung in 2014, a significant reduction of the image quality was observed which was partially attributed to the demagnetization of the used PMQ lenses and the corresponding decrease of the field quality. In order to study this phenomenon, Monte Carlo simulations were carried out and spare units manufactured from the same magnetic material—single wedges and a fully assembled PMQ module—were deliberately irradiated by a 3.6 GeV intense proton beam. The performed investigations have shown that in proton radiography applications the above described scattering may result in a high irradiation dose in the PMQ magnets. This did not only decrease the overall magnetic strength of the PMQs but also caused a significant degradation of the field quality of an assembled PMQ module by increasing the parasitic multipole field harmonics which effectively makes PMQs impractical for proton radiography applications or similar scenarios.

  13. Can high-energy proton events in solar wind be predicted via classification of precursory structures?

    Energy Technology Data Exchange (ETDEWEB)

    Hallerberg, Sarah [Chemnitz University of Technology (Germany); Ruzmaikin, Alexander; Feynman, Joan [Jet Propulsion Laboratory, California Institute of Technology (United States)

    2011-07-01

    Shock waves in the solar wind associated with solar coronal mass ejections produce fluxes of high-energy protons and ions with energies larger than 10 MeV. These fluxes present a danger to humans and electronic equipment in space, and also endanger passengers of over-pole air flights. The approaches that have been exploited for the prediction of high-energy particle events so far consist in training artificial neural networks on catalogues of events. Our approach towards this task is based on the identification of precursory structures in the fluxes of particles. In contrast to artificial neural networks that function as a ''black box'' transforming data into predictions, this classification approach can additionally provide information on relevant precursory events and thus might help to improve the understanding of underlying mechanisms of particle acceleration.

  14. An improved simulation routine for modelling coherent high-energy proton interactions with bent crystals

    CERN Document Server

    AUTHOR|(CDS)2210072; Mirarchi, Daniele; Redaelli, Stefano

    The planes in crystalline solids can constrain the directions that charged particles take as they pass through. Physicists can use this "channelling" property of crystals to steer particle beams. In a bent crystal, for example, channelled particles follow the bend and can change their direction. Experiments are being carried out to study in detail this phenomenon. The UA9 collaboration is using high energy protons and heavy ions beams from the SPS accelerator at CERN to verify the possibility of using bent crystals as primary collimators in high energy hadron colliders like the LHC. Simulations have been developed to model the coherent interaction with crystal planes. The goal of the thesis is indeed to analyze the data and develop an improved simulation routine to better describe the data’s subtleties, in particular the transition between the volume reflection and amorphous modes of beam interaction with the crystal.

  15. Induced radioactivity studies of the shielding and beamline equipment of the high intensity proton accelerator facility at PSI

    Directory of Open Access Journals (Sweden)

    Otiougova Polina

    2017-01-01

    Full Text Available The Paul Scherrer Institute (PSI is the largest national research center in Switzerland. Its multidisciplinary research is dedicated to a wide ↓eld in natural science and technology as well as particle physics. The High Intensity Proton Accelerator Facility (HIPA has been in operation at PSI since 1974. It includes an 870 keV Cockroft-Walton pre-accelerator, a 72 MeV injector cyclotron as well as a 590 MeV ring cyclotron. The experimental facilities, the meson production graphite targets, Target E and Target M, and the spallation target stations (SINQ and UCN are used for material research and particle physics. In order to ful↓ll the request of the regulatory authorities and to be reported to the regulators, the expected radioactive waste and nuclide inventory after an anticipated ↓nal shutdown in the far future has to be estimated. In this contribution, calculations for the 20 m long beamline between Target E and the 590 MeV beam dump of HIPA are presented. The ↓rst step in the calculations was determining spectra and spatial particle distributions around the beamlines using the Monte-Carlo particle transport code MCNPX2.7.0 [1]. To perform the analysis of the MCNPX output and to determine the radionuclide inventory as well as the speci↓c activity of the nuclides, an activation script [2] using the FISPACT10 code with the cross sections from the European Activation File (EAF2010 [3] was applied. The speci↓c activity values were compared to the currently existing Swiss exemption limits (LE [4] as well as to the Swiss liberation limits (LL [5], becoming e↑ective in the near future. The obtained results were used to estimate the total volume of the radioactive waste produced at HIPA and have to be reported to the Swiss regulatory authorities. The comparison of the performed calculations to measurements is discussed as well.

  16. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, Kavin; et al.

    2017-05-01

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples for various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.

  17. Study of the proton-proton elastic scattering at high energies through eikonal models

    International Nuclear Information System (INIS)

    Martini, Alvaro Favinha

    1995-01-01

    The proton-proton elastic scattering in the center of mass energy region 23 to 63 GeV is investigated through a multiple diffraction model. As an introduction to the subject, a detailed review of the fundamental basis of the Multiple Diffraction Formalism and a survey of the multiple diffraction models (geometrical) currently used are presented. The goal of this investigation is to reformulate one of these models, which makes use of an elementary (parton-parton) amplitude purely imaginary and is not able to predict the ρ-parameter (the ratio of the forward real and imaginary parts of the hadronic amplitude). Introducing a real part for the elementary amplitude proportional to the imaginary part, improvements in the formalism are obtained. It is shown that this new approach is able to reproduce all experimental data on differential and integrated cross sections (total, elastic and inelastic), but not the ρ-parameter as function of the energy. Then, starting from fitting of this parameter an overall reproduction of the physical observables is obtained, with the exception of the dip region (diffractive minimum in the differential cross section) overall description are also not firmly reached in all these models. Finally, alternatives to improve the results in a future research are suggested and discussed. (author)

  18. Electron loss from multiply protonated lysozyme ions in high energy collisions with molecular oxygen

    DEFF Research Database (Denmark)

    Hvelplund, P; Nielsen, SB; Sørensen, M

    2001-01-01

    We report on the electron loss from multiply protonated lysozyme ions Lys-Hn(n)+ (n = 7 - 17) and the concomitant formation of Lys-Hn(n+1)+. in high-energy collisions with molecular oxygen (laboratory kinetic energy = 50 x n keV). The cross section for electron loss increases with the charge state...... of the precursor from n = 7 to n = 11 and then remains constant when n increases further. The absolute size of the cross section ranges from 100 to 200 A2. The electron loss is modeled as an electron transfer process between lysozyme cations and molecular oxygen....

  19. Transverse-energy distribution in proton-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Liu, F.H.

    2001-01-01

    Based on the model of nuclear-collision geometry, the independent N - N collision picture and participant contribution picture are used to describe the transverse-energy distribution in p-A collisions at high energy. In the independent N - N collision picture, the energy loss of leading proton in each p-N collision is considered. The calculated results are in agreement with the experimental data of p-Al, p-Cu, p-U collisions at 200 GeV/c. (author)

  20. The CERN Super Proton Synchrotron as a tool to study high energy density physics

    CERN Document Server

    Tahir, N A; Brugger, M; Assmann, R; Shutov, A V; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov3, V E

    2008-01-01

    An experimental facility named HiRadMat, will be constructed at CERN to study the impact of the 450 GeV c−1 proton beam generated by the Super Proton Synchrotron (SPS) on solid targets. This is designed to study damage caused to the equipment including absorbers, collimators and others in case of an accidental release of the beam energy. This paper presents two-dimensional numerical simulations of target behavior irradiated by the SPS beam. These numerical simulations have shown that the target will be completely destroyed in such an accident, thereby generating high energy density (HED) matter. This study therefore suggests that this facility may also be used for carrying out dedicated experiments to study HED states in matter.

  1. Physical measurements with a high-energy proton beam using liquid and solid tissue substitutes

    International Nuclear Information System (INIS)

    Constantinou, C.; Kember, N.F.; Huxtable, G.; Whitehead, C.

    1980-01-01

    The measurement of the physical parameters of a high-energy proton beam, using a range of liquid and solid tissue substitutes, is described. The system, the detectors used and the experimental verification of the tissue equivalence of the new tissue substitutes is presented. The measurements with the scattered but uncollimated proton beam in muscle-and brain-equivalent liquids and in water are compared to similar data obtained from the scattered but collimated beam. The effect of lung, fat and bone on the dose distributions in composite phantoms is also investigated and the necessary corrections established. A simulated patient treatment indicated that the Bragg peak can be positioned with an error not exceeding +-0.5 mm. (author)

  2. Development of an abort gap monitor for high-energy proton rings

    International Nuclear Information System (INIS)

    Beche, Jean-Francois; Byrd, John; De Santis, Stefano; Denes, Peter; Placidi, Massimo; Turner, William; Zolotorev, Max

    2004-01-01

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the ''abort gap'' and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  3. Development of an Abort Gap Monitor for High-Energy Proton Rings

    International Nuclear Information System (INIS)

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-01-01

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the 'abort gap', and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  4. Study of the effects of high-energy proton beams on escherichia coli

    Science.gov (United States)

    Park, Jeong Chan; Jung, Myung-Hwan

    2015-10-01

    Antibiotic-resistant bacterial infection is one of the most serious risks to public health care today. However, discouragingly, the development of new antibiotics has progressed little over the last decade. There is an urgent need for alternative approaches to treat antibiotic-resistant bacteria. Novel methods, which include photothermal therapy based on gold nano-materials and ionizing radiation such as X-rays and gamma rays, have been reported. Studies of the effects of high-energy proton radiation on bacteria have mainly focused on Bacillus species and its spores. The effect of proton beams on Escherichia coli (E. coli) has been limitedly reported. Escherichia coli is an important biological tool to obtain metabolic and genetic information and is a common model microorganism for studying toxicity and antimicrobial activity. In addition, E. coli is a common bacterium in the intestinal tract of mammals. In this research, the morphological and the physiological changes of E. coli after proton irradiation were investigated. Diluted solutions of cells were used for proton beam radiation. LB agar plates were used to count the number of colonies formed. The growth profile of the cells was monitored by using the optical density at 600 nm. The morphology of the irradiated cells was observed with an optical microscope. A microarray analysis was performed to examine the gene expression changes between irradiated samples and control samples without irradiation. E coli cells have observed to be elongated after proton irradiation with doses ranging from 13 to 93 Gy. Twenty-two were up-regulated more than twofold in proton-irradiated samples (93 Gy) compared with unexposed one.

  5. Experimental results of beryllium exposed to intense high energy proton beam pulses

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Butcher, M; Guinchard, M; Calviani, M; Losito, R; Roberts, S; Kuksenko, V; Atherton, A; Caretta, O; Davenne, T; Densham, C; Fitton, M; Loveridge, J; O'Dell, J

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and co...

  6. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K.; Hurh, P.; Zwaska, R.; Atherton, A.; Caretta, O.; Davenne,T.; Densham, C.; Fitton, M.; Loveridge, P.; O'Dell, J.; Roberts, S.; Kuksenko, V.; Butcher, M.; Calviani, M.; Guinchard, M.; Losito, R.

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  7. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  8. Study of proton-nucleus collisions at high energies based on the hydrodynamical model

    International Nuclear Information System (INIS)

    Masuda, N.; Weiner, R.M.

    1978-01-01

    We study proton-nucleus collisions at high energies using the one-dimensional hydrodynamical model of Landau with special emphasis on the effect of the size of the target nucleus and of the magnitude of velocity of sound of excited hadronic matter. We convert a collision problem of a proton and a nucleus with a spherical shape into that of a proton and a one-dimensional nuclear tunnel whose length is determined from the average impact parameter. By extending the methods developed by Milekhin and Emelyanov, we obtain the solutions of the hydrodynamical equations of proton-nucleus collisions for arbitrary target tunnel length and arbitrary velocity of sound. The connection between these solutions and observable physical quantities is established as in the work of Cooper, Frye, and Schonberg. Extensive numerical analyses are made at E/sub lab/ = 200 GeV and for the velocity of sound u = 1/√3 of a relativistic ideal Bose gas and u = 1/(7.5)/sup 1/2/ of an interacting Bose gas. In order to compare proton-nucleus collisions with proton-proton collisions, all the analyses are made in the equal-velocity frame. We find the following results. (1) In comparing the number of secondary particles produced in p-A collisions N/sub p/A with those in p-p collisions N/sub p/p, while most of the excess of N/sub p/A over N/sub p/p is concentrated in the backward rapidity region, there exists also an increase of N/sub p/A with A in the forward rapidity region. This result is at variance with the predictions of the energy-flux-cascade model and of the coherent-production model. (2) The excess energies are contained exclusively in the backward region. We also find evidence for new phenomena in proton-nucleus collisions. (3) The existence of an asymmetry of average energies of secondary particles between forward and backward regions, in particular, >> for larger nuclear targets. Thus, energetic particles are predominantly produced in the backward region

  9. Bounds on the maximum attainable equilibrium spin polarization of protons at high energy in HERA

    International Nuclear Information System (INIS)

    Vogt, M.

    2000-12-01

    For some years HERA has been supplying longitudinally spin polarised electron and positron (e ± ) beams to the HERMES experiment and in the future longitudinal polarisation will be supplied to the II1 and ZEUS experiments. As a result there has been a development of interest in complementing the polarised e ± beams with polarised protons. In contrast to the case of e ± where spin flip due to synchrotron radiation in the main bending dipoles leads to self polarisation owing to an up-down asymmetry in the spin flip rates (Sokolov-Ternov effect), there is no convincing self polarisation mechanism for protons at high energy. Therefore protons must be polarised almost at rest in a source and then accelerated to the working energy. At HERA, if no special measures are adopted, this means that the spins must cross several thousand ''spin-orbit resonances''. Resonance crossing can lead to loss of polarisation and at high energy such effects are potentially strong since spin precession is very pronounced in the very large magnetic fields needed to contain the proton beam in HERA-p. Moreover simple models which have been successfully used to describe spin motion at low and medium energies are no longer adequate. Instead, careful numerical spin-orbit tracking simulations are needed and a new, mathematically rigorous look at the theoretical concepts is required. This thesis describes the underlying theoretical concepts, the computational tools (SPRINT) and the results of such a study. In particular strong emphasis is put on the concept of the invariant spin field and its non-perturbative construction. The invariant spin field is then used to define the amplitude dependent spin tune and to obtain numerical non-perturbative estimates of the latter. By means of these two key concepts the nature of higher order resonances in the presence of snakes is clarified and their impact on the beam polarisation is analysed. We then go on to discuss the special aspects of the HERA-p ring

  10. Proton Therapy as Salvage Treatment for Local Relapse of Prostate Cancer Following Cryosurgery or High-Intensity Focused Ultrasound

    International Nuclear Information System (INIS)

    Holtzman, Adam L.; Hoppe, Bradford S.; Letter, Haley P.; Bryant, Curtis; Nichols, Romaine C.; Henderson, Randal H.; Mendenhall, William M.; Morris, Christopher G.; Williams, Christopher R.; Li, Zuofeng; Mendenhall, Nancy P.

    2016-01-01

    Purpose: Local recurrence of prostate cancer after cryosurgery (CS) and high-intensity focused ultrasound (HIFU) is an emerging problem for which optimal management is unknown. Proton therapy (PT) may offer advantages over other local therapeutic options. This article reviews a single institution's experience using PT for salvage of local recurrent disease after HIFU or CS. Methods and Materials: We reviewed the medical records of 21 consecutive patients treated with salvage PT following a local recurrence of prostate cancer after CS (n=12) or HIFU (n=9) between January 2007 and July 2014. Patients were treated to a median dose of 74 Gy(relative biological effectiveness [RBE]; range: 74-82 Gy[RBE]) and 8 patients received androgen deprivation therapy with radiation therapy. Patients were evaluated for quality of life (QOL) by using the Expanded Prostate Index Composite questionnaire and toxicity by using Common Terminology Criteria for Adverse Events, version 3.0, weekly during treatment, every 6 months for 2 years after treatment, and then annually. Results: Median follow-up was 37 months (range: 6-95 months). The 3-year biochemical progression-free survival (bPFS) rate was 77%. The 3-year grade 3 toxicity rate was 17%; however, 2 of these patients had pre-existing grade 3 GU toxicities from their HIFU/CRYO prior to PT. At 1 year, bowel summary, urinary incontinence, and urinary obstructive QOL scores declined, but only the bowel QOL score at 12 months met the minimally important difference threshold. Conclusions: PT achieved a high rate of bPFS with acceptable toxicity and minimal changes in QOL scores compared with baseline pre-PT functions. Although most patients have done fairly well, the study size is small, follow-up is short, and early results suggest that outcomes with PT for salvage after HIFU or CS failure are inferior to outcomes with PT given in the de novo setting with respect to disease control, toxicity, and QOL.

  11. Induced radioactivity studies of the shielding and beamline equipment of the high intensity proton accelerator facility at PSI

    Science.gov (United States)

    Otiougova, Polina; Bergmann, Ryan; Kiselev, Daniela; Talanov, Vadim; Wohlmuther, Michael

    2017-09-01

    The Paul Scherrer Institute (PSI) is the largest national research center in Switzerland. Its multidisciplinary research is dedicated to a wide ↓eld in natural science and technology as well as particle physics. The High Intensity Proton Accelerator Facility (HIPA) has been in operation at PSI since 1974. It includes an 870 keV Cockroft-Walton pre-accelerator, a 72 MeV injector cyclotron as well as a 590 MeV ring cyclotron. The experimental facilities, the meson production graphite targets, Target E and Target M, and the spallation target stations (SINQ and UCN) are used for material research and particle physics. In order to ful↓ll the request of the regulatory authorities and to be reported to the regulators, the expected radioactive waste and nuclide inventory after an anticipated ↓nal shutdown in the far future has to be estimated. In this contribution, calculations for the 20 m long beamline between Target E and the 590 MeV beam dump of HIPA are presented. The ↓rst step in the calculations was determining spectra and spatial particle distributions around the beamlines using the Monte-Carlo particle transport code MCNPX2.7.0 [1]. To perform the analysis of the MCNPX output and to determine the radionuclide inventory as well as the speci↓c activity of the nuclides, an activation script [2] using the FISPACT10 code with the cross sections from the European Activation File (EAF2010) [3] was applied. The speci↓c activity values were compared to the currently existing Swiss exemption limits (LE) [4] as well as to the Swiss liberation limits (LL) [5], becoming e↑ective in the near future. The obtained results were used to estimate the total volume of the radioactive waste produced at HIPA and have to be reported to the Swiss regulatory authorities. The comparison of the performed calculations to measurements is discussed as well. Note to the reader: the pdf file has been changed on September 22, 2017.

  12. Proton Therapy as Salvage Treatment for Local Relapse of Prostate Cancer Following Cryosurgery or High-Intensity Focused Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Holtzman, Adam L. [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States); Hoppe, Bradford S., E-mail: bhoppe@floridaproton.org [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States); Letter, Haley P.; Bryant, Curtis; Nichols, Romaine C.; Henderson, Randal H.; Mendenhall, William M.; Morris, Christopher G. [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States); Williams, Christopher R. [Department of Surgery, University of Florida College of Medicine, Jacksonville, Florida (United States); Li, Zuofeng; Mendenhall, Nancy P. [University of Florida Health Proton Therapy Institute, University of Florida College of Medicine, Jacksonville, Florida (United States)

    2016-05-01

    Purpose: Local recurrence of prostate cancer after cryosurgery (CS) and high-intensity focused ultrasound (HIFU) is an emerging problem for which optimal management is unknown. Proton therapy (PT) may offer advantages over other local therapeutic options. This article reviews a single institution's experience using PT for salvage of local recurrent disease after HIFU or CS. Methods and Materials: We reviewed the medical records of 21 consecutive patients treated with salvage PT following a local recurrence of prostate cancer after CS (n=12) or HIFU (n=9) between January 2007 and July 2014. Patients were treated to a median dose of 74 Gy(relative biological effectiveness [RBE]; range: 74-82 Gy[RBE]) and 8 patients received androgen deprivation therapy with radiation therapy. Patients were evaluated for quality of life (QOL) by using the Expanded Prostate Index Composite questionnaire and toxicity by using Common Terminology Criteria for Adverse Events, version 3.0, weekly during treatment, every 6 months for 2 years after treatment, and then annually. Results: Median follow-up was 37 months (range: 6-95 months). The 3-year biochemical progression-free survival (bPFS) rate was 77%. The 3-year grade 3 toxicity rate was 17%; however, 2 of these patients had pre-existing grade 3 GU toxicities from their HIFU/CRYO prior to PT. At 1 year, bowel summary, urinary incontinence, and urinary obstructive QOL scores declined, but only the bowel QOL score at 12 months met the minimally important difference threshold. Conclusions: PT achieved a high rate of bPFS with acceptable toxicity and minimal changes in QOL scores compared with baseline pre-PT functions. Although most patients have done fairly well, the study size is small, follow-up is short, and early results suggest that outcomes with PT for salvage after HIFU or CS failure are inferior to outcomes with PT given in the de novo setting with respect to disease control, toxicity, and QOL.

  13. Long-duration high-energy proton events observed by GOES in October 1989

    Directory of Open Access Journals (Sweden)

    A. Anttila

    1998-08-01

    Full Text Available We consider the prolonged injection of the high-energy (>10 MeV protons during the three successive events observed by GOES in October 1989. We apply a solar-rotation-stereoscopy approach to study the injection of the accelerated particles from the CME-driven interplanetary shock waves in order to find out how the effectiveness of the particle acceleration and/or escape depends on the angular distance from the shock axis. We use an empirical model for the proton injection at the shock and a standard model of the interplanetary transport. The model can reproduce rather well the observed intensity–time profiles of the October 1989 events. The deduced proton injection rate is highest at the nose of the shock; the injection spectrum is always harder near the Sun. The results seem to be consistent with the scheme that the CME-driven interplanetary shock waves accelerate a seed particle population of coronal origin.Key words. Interplanetary physics · Energetic particles · Solar physics · astrophysics and astronomy · Flares and mass ejections

  14. High energy nuclear data evaluations for neutron-, proton-, and photon-induced reactions at KAERI

    International Nuclear Information System (INIS)

    Lee, Young Ouk; Chang, Jong Hwa; Kim, Doo Hwan; Lee, Jeong Yeon; Han, Yinlu; Sukhovitski, Efrem Sh.

    2001-01-01

    The Korea Atomic Energy Research Institute (KAERI) is building high energy neutron-, proton-, and photon-induced nuclear data libraries for energies up to hundreds MeV in response to nuclear data needs from various R and Ds and applications. The librares provide nuclear data needed for the accelerator-driven transmutation of nuclear waste and radiation transport simulations of cancer radiotherapy. The neutron library currently has 10 isotopes such as C-12, N-14, O-16, Al-27, Si-28, Ca-40, Fe-56, Ni-58, Zr-90, Sn-120, and Pb-208 for energies from 20 up to 400 MeV. The proton nuclear data were evaluated in a consistent manner with the neutron case, using the same nuclear model parameters. In addition to the same isotopes included in the neutron library, the proton library has 70 extra isotopes of 24 elements ranging from nitrogen to lead up to 150 MeV for which the evaluations are focused on the medical and activation analyses applications. The photonuclear data library has been built along with international collaboration by participating in the IAEA's Coordinated Research Project (CRP) which ended last year. Currently the KAERI photonuclear library includes 143 isotopes of 39 elements

  15. High energy physics program of KEK proton synchrotron in FY 1980

    International Nuclear Information System (INIS)

    Kusumegi, Asao; Watase, Yoshiyuki; Yoshimura, Yoshio.

    1981-01-01

    In this report, the experimental program with the KEK 12 GeV proton synchrotron in FY 1980 is described. Main experiments have been carried out in two low momentum, separated beam lines, K 2 and K 3, together with the internal target beam line, π 2. At the same time, new beam lines, hyperon beam line N 1 and high momentum unseparated beam line π 1, have been under construction in this year. The research E 10 (KDECAY) searched for a rare decay mode of K + , but did not find any candidate for the decay. The expected upper limit of the branching ratio was reduced from the world average value. The polarization measurement E 34 of K + N elastic and charge exchange reactions was carried out in the K 2 beam line. The phase shift analysis has been under way by this group, and the polarization measurement E 75 of PN elastic scattering provided with the data for the phase shift analysis of a two-nucleon system. In the high energy hadron-nucleus experiment E 71 in the π 2 beam line, the multiplicity of charged particles emerged from a nucleus target and the correlation of these particles were measured. In the KEK 1-m bubble chamber, the films for three experiments E 57, E 62 and E 79 were taken with the beams of protons, pions and anti-protons. The records of the experiments carried out and accelerator operation are attached. (Kako, I.)

  16. Monte carlo calculation of energy deposition and ionization yield for high energy protons

    International Nuclear Information System (INIS)

    Wilson, W.E.; McDonald, J.C.; Coyne, J.J.; Paretzke, H.G.

    1985-01-01

    Recent calculations of event size spectra for neutrons use a continuous slowing down approximation model for the energy losses experienced by secondary charged particles (protons and alphas) and thus do not allow for straggling effects. Discrepancies between the calculations and experimental measurements are thought to be, in part, due to the neglect of straggling. A tractable way of including stochastics in radiation transport calculations is via the Monte Carlo method and a number of efforts directed toward simulating positive ion track structure have been initiated employing this technique. Recent results obtained with our updated and extended MOCA code for charged particle track structure are presented here. Major emphasis has been on calculating energy deposition and ionization yield spectra for recoil proton crossers since they are the most prevalent event type at high energies (>99% at 14 MeV) for small volumes. Neutron event-size spectra can be obtained from them by numerical summing and folding techniques. Data for ionization yield spectra are presented for simulated recoil protons up to 20 MeV in sites of diameters 2-1000 nm

  17. High-energy and high-fluence proton irradiation effects in silicon solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Taylor, S.J.; Yang, M.; Matsuda, S.; Kawasaki, O.; Hisamatsu, T.

    1996-01-01

    We have examined proton irradiation damage in high-energy (1 endash 10 MeV) and high-fluence (approx-gt 10 13 cm -2 ) Si n + -p-p + structure space solar cells. Radiation testing has revealed an anomalous increase in short-circuit current I sc followed by an abrupt decrease and cell failure, induced by high-fluence proton irradiation. We propose a model to explain these phenomena by expressing the change in carrier concentration p of the base region as a function of the proton fluence in addition to the well-known model where the short-circuit current is decreased by minority-carrier lifetime reduction after irradiation. The reduction in carrier concentration due to majority-carrier trapping by radiation-induced defects has two effects. First, broadening of the depletion layer increases both the generation endash recombination current and also the contribution of the photocurrent generated in this region to the total photocurrent. Second, the resistivity of the base layer is increased, resulting in the abrupt decrease in the short circuit current and failure of the solar cells. copyright 1996 American Institute of Physics

  18. Three-hadron angular correlations in high-energy proton-proton and nucleus-nucleus collisions from perturbative QCD

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Ortiz, Antonio; Paic, Guy; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena

    2011-01-01

    We study three-hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider at midrapidity. We use the leading-order parton matrix elements for 2→3 processes and include the effect of parton energy loss in the quark-gluon plasma using the modified fragmentation function approach. For the case when the produced hadrons have either the same or not too different momenta, we observe two away-side peaks at 2π/3 and 4π/3. We consider the dependence of the angular correlations on energy loss parameters that have been used in studies of single inclusive hadron production at RHIC. Our results on the angular dependence of the cross section agree well with preliminary data by the PHENIX Collaboration. We comment on the possible contribution of 2→3 processes to dihadron angular correlations and how a comparison of the two processes may help characterize the plasma further.

  19. The Biological Effect of Fast Neutrons and High-Energy Protons

    International Nuclear Information System (INIS)

    Moskalev, Ju.I.; Petrovich, I.K.; Strel'cova, V.N.

    1964-01-01

    The paper gives the results of comparative experiments on the effects of fast neutrons and high-energy protons (500 MeV) on life expectancy, peripheral blood, incidence and rate of appearance of tumours in the rat as a function of administered dose and time of observation. The neutron experiment was performed on 573 and the proton experiment on 490 white rats. The animals irradiated with fast neutrons were given doses between 8.5 and 510 rad, and those irradiated with protons received doses between 28 and 1008 rad. The effective doses for the acute, sub-acute and chronic forms of sickness were established for fast neutrons and for protons. LD 50/30 for neutrons was 408 and for protons 600 rad, and the corresponding LD 50 / 120 values were 380 and 600 rad. The conditions governing rat mortality were analysed both in the early and the later stages of the experiment. It is shown that the average life expectancy of rats irradiated with fast neutrons does not depend on sex. The shape of the dose-effect curve for the various peripheral-blood indexes is strongly dependent not only on the radiosensitivity of the blood cells in question but also on the time of observation. It may change greatly in time for one and the same index. A considerable time after irradiation with either fast neutrons or protons, benign and malignant tumours appear in different tissues of the rats, including the haemopoeitic tissues, mammary glands, pituitary, uterus, ovaries, prostate gland, testicles, liver, kidneys, lungs, gastro-intestinal tract, subcutaneous tissue, lymph nodes, urinary bladder, etc. The over-all incidence of tumours and the number of cases of multi centred neoplasms in females are two to three times higher than in males. The minimum tumour dose for the mammary glands with neutron irradiation is apparently rather less than 42.5 rad. The maximum incidence of tumours of the pituitary is found after irradiation with a dose of 42.5 rad.- At this same dose leucosis and tumour of the

  20. Development of a 130-mA, 75-kV high voltage column for high-intensity dc proton injectors

    International Nuclear Information System (INIS)

    Sherman, J.; Arvin, A.; Hansborough, L.; Hodgkins, D.; Meyer, E.; Schneider, J.D.; Stevens, R.R. Jr.; Zaugg, T.

    1997-01-01

    A reliable high-voltage (HV) column has been developed for dc proton injectors with applications to high-intensity cw linacs. The HV column is coupled with a microwave-driven plasma generator to produce a 75-keV, 110-mA dc proton beam. Typical proton fraction from this source is 85--90%, requiring the HV column and accelerating electrodes to operate with a 130-mA hydrogen-ion beam current. A glow-discharge, which was caused by the ion source axial magnetic field, was initially observed in the HV column. This problem was solved by scaling the electron production processes, the magnetic field, and the HV column pressure into a favorable regime. A subsequent 168 hour reliability run on the 75-keV injector showed that the ion source (plasma generator and HV column) has >98% beam availability

  1. Experimental results of beryllium exposed to intense high energy proton beam pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Zwaska, R. [Fermilab; Butcher, M. [CERN; Guinchard, M. [CERN; Calviani, M. [CERN; Losito, R. [CERN; Roberts, S. [Culham Lab; Kuksenko, V. [Oxford U.; Atherton, A. [Rutherford; Caretta, O. [Rutherford; Davenne, T. [Rutherford; Densham, C. [Rutherford; Fitton, M. [Rutherford; Loveridge, J. [Rutherford; O' Dell, J. [Rutherford

    2017-02-10

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and compare surface evolution and microstructural response of the test matrix specimens.

  2. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  3. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV

    Directory of Open Access Journals (Sweden)

    S. Busold

    2014-03-01

    Full Text Available We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 10^{9} particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E_{0} at FWHM. A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf field is applied via a rf cavity for energy compression at a synchronous phase of -90  deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  4. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  5. Particle size of radioactive aerosols generated during machine operation in high-energy proton accelerators

    International Nuclear Information System (INIS)

    Oki, Yuichi; Kanda, Yukio; Kondo, Kenjiro; Endo, Akira

    2000-01-01

    In high-energy accelerators, non-radioactive aerosols are abundantly generated due to high radiation doses during machine operation. Under such a condition, radioactive atoms, which are produced through various nuclear reactions in the air of accelerator tunnels, form radioactive aerosols. These aerosols might be inhaled by workers who enter the tunnel just after the beam stop. Their particle size is very important information for estimation of internal exposure doses. In this work, focusing on typical radionuclides such as 7 Be and 24 Na, their particle size distributions are studied. An aluminum chamber was placed in the EP2 beam line of the 12-GeV proton synchrotron at High Energy Accelerator Research Organization (KEK). Aerosol-free air was introduced to the chamber, and aerosols formed in the chamber were sampled during machine operation. A screen-type diffusion battery was employed in the aerosol-size analysis. Assuming that the aerosols have log-normal size distributions, their size distributions were obtained from the radioactivity concentrations at the entrance and exit of the diffusion battery. Radioactivity of the aerosols was measured with Ge detector system, and concentrations of non-radioactive aerosols were obtained using condensation particle counter (CPC). The aerosol size (radius) for 7 Be and 24 Na was found to be 0.01-0.04 μm, and was always larger than that for non-radioactive aerosols. The concentration of non-radioactive aerosols was found to be 10 6 - 10 7 particles/cm 3 . The size for radioactive aerosols was much smaller than ordinary atmospheric aerosols. Internal doses due to inhalation of the radioactive aerosols were estimated, based on the respiratory tract model of ICRP Pub. 66. (author)

  6. The Impact of Intrinsic Heavy Quark Distributions in the Proton on New Physics Searches at the High Intensity Frontier

    International Nuclear Information System (INIS)

    Broksky, Stanley

    2012-01-01

    The possibility of an intense proton facility, at 'Project X' or elsewhere, will provide many new opportunities for searches for physics beyond the Standard Model. A Project X can serve a yet broader role in the search for new physics, and in this note we highlight the manner in which thus-enabled studies of the flavor structure of the proton, particularly of its intrinsic heavy quark content, facilitate other direct and indirect searches for new physics. Intrinsic heavy quarks in both light and heavy hadrons play a key role in searches for physics BSM with hadrons - and their study at the Intensity Frontier may prove crucial to establishing its existence.

  7. Multiple collision effects on the antiproton production by high energy proton (100 GeV - 1000 GeV)

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    Antiproton production rates which take into account multiple collision are calculated using a simple model. Methods to reduce capture of the produced antiprotons by the target are discussed, including geometry of target and the use of a high intensity laser. Antiproton production increases substantially above 150 GeV proton incident energy. The yield increases almost linearly with incident energy, alleviating space charge problems in the high current accelerator that produces large amounts of antiprotons

  8. High temperature tensile testing of modified 9Cr-1Mo after irradiation with high energy protons

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Hamilton, M.L.; Maloy, S.A.

    2003-01-01

    This study examines the effect of tensile test temperatures ranging from 50 to 600 deg. C on the tensile properties of a modified 9Cr-1Mo ferritic steel after high energy proton irradiation at about 35-67 deg. C to doses from 1 to 3 dpa and 9 dpa. For the specimens irradiated to doses between 1 and 3 dpa, it was observed that the yield strength and ultimate strength decreased monotonically as a function of tensile test temperature, whereas the uniform elongation (UE) remained at approximately 1% for tensile test temperatures up to 250 deg. C and then increased for tensile test temperatures up to and including 500 deg. C. At 600 deg. C, the UE was observed to be less than the values at 400 and 500 deg. C. UE of the irradiated material tensile tested at 400-600 deg. C was observed to be greater than the values for the unirradiated material at the same temperatures. Tensile tests on the 9 dpa specimens followed similar trends

  9. Efficiency of steel-concrete compositions in a side shielding of high-energy proton accelerators

    International Nuclear Information System (INIS)

    Getmanov, V.B.; Kryuchkov, V.P.; Lebedev, V.N.

    1983-01-01

    Aiming at the study of efficiency of application of heavy concretes with the density up to 6.3 g/cm -3 with iron-ore aggregate and steel scrap with shot the calculational study on high-energy radiation attenuation in the accelerator side shield has been carried out. The calculation is made for five concretes with the density 2.38; 3.66; 4.68; 5.34; 6.30 g x cm -3 and for pure iron. The real chemical composition of each concrete, including hydrogen, is taken into account. The real spectrum of hadron generated in the materiai of evacuated ionguide wall under the effect of the 70 GeV proton beam incident on the wall at a narrow angle THETA -3 ensuring the same ratio of the dose or hadron fluence with the energy > 20 MeV attenuation is accepted as a relative shield efficiency of the material. It is shown, that for steel-concrete compositions with the density > 5.6 gxcm -3 the relative shield efficiency decreases sharply. It is also shown, that aplication of concretes with the density 3.6-3.7 gxcm -3 is expedient and economically profitable

  10. DeVelopment of the high-intensity polarized H- source with proton charge exchange on sodium optically oriented atoms

    International Nuclear Information System (INIS)

    Zelenskij, A.N.; Kokhanovskij, S.A.

    1982-01-01

    The results of experimental study on the source of polarized H - ions at polarized electron capture by proton from optically oriented sodium atoms are presented. Circular-polarized dye laser radiation with lamp pumping is used for polarization of highly dense sodium vapors in the pulsed mode. A facility for polarization measurement in the ion source is described. Dependence of the counting rate of metastables for the right and left circular radiation polarization in respect to wave length is presented. The results of measuring the degree of polarization under change of sodium density are revealed. The measurements have disclosed that obtaining of high polarization degree at 20-30% charge exchange effectiveness is possible but large radiation power is required. Use of a dense charge exchange target provides high effectiveness of hte whole polarization process. Yield of polarized H - ions can approach 10 μA/1 mA of the initial proton current

  11. 90 deg.Neutron emission from high energy protons and lead ions on a thin lead target

    CERN Document Server

    Agosteo, S; Foglio-Para, A; Mitaroff, W A; Silari, Marco; Ulrici, L

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: sup 2 sup 0 sup 8 Pb sup 8 sup 2 sup + lead ions at 40 GeV/c per nucleon and 158 GeV/c per nucleon, and 40 GeV/c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90 deg.with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that--for such high energy heavy ion beams--a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0...

  12. A plausible picture of high-energy proton-nucleus collisions

    International Nuclear Information System (INIS)

    Kim, C.O.

    1976-01-01

    Results experimentally obtained from jets of E(p)=10-10 3 GeV in nuclear emulsion show that the target nucleus in proton-nucleus collisions seems to present ''limiting fragmentation''. In the same energy range, proton-nucleus collisions resemble closely proton-proton collisions and asymmetric shape of rapidities is only caused by the break-up products of heavy targets [fr

  13. Commissioning of the ECR ion source of the high intensity proton injector of the Facility for Antiproton and Ion Research (FAIR)

    Science.gov (United States)

    Tuske, O.; Chauvin, N.; Delferriere, O.; Fils, J.; Gauthier, Y.

    2018-05-01

    The CEA at Saclay is in charge of developing and building the ion source and the low energy line of the proton linac of the FAIR (Facility for Antiproton and Ion Research) accelerator complex located at GSI (Darmstadt) in Germany. The FAIR facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics, and biophysics. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7 × 1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be delivered by a dedicated 75 mA/70 MeV proton linac. A 2.45 GHz microwave ion source will deliver a 100 mA H+ beam pulsed at 4 Hz with an energy of 95 keV. A 2 solenoids low energy beam transport line allows the injection of the proton beam into the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm. rms). An electrostatic chopper system located between the second solenoid and the RFQ is used to cut the beam macro-pulse from the source to inject 36 μs long beam pulses into the RFQ. At present time, a Ladder-RFQ is under construction at the University of Frankfurt. This article reports the first beam measurements obtained since mid of 2016. Proton beams have been extracted from the ECR ion source and analyzed just after the extraction column on a dedicated diagnostic chamber. Emittance measurements as well as extracted current and species proportion analysis have been performed in different configurations of ion source parameters, such as magnetic field profile, radio frequency power, gas injection, and puller electrode voltage.

  14. A high-energy (35-500 MeV) proton monitor for the Gravity Probe-B Mission

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. E-mail: stil@may.ie; Rusznyak, Peter; Buchman, Sasha; Shestople, Paul; Thatcher, John

    2003-02-11

    An innovative fault tolerant, high-energy particle monitor designed to record protons in the range 35-500 MeV when in polar orbit aboard NASA's Gravity Probe B spacecraft, is described. This device, which is configured to provide continuous, reliable operation in the hostile particle environment traversed by the spacecraft, can potentially be used either as an onboard monitor or as a scientific experiment.

  15. Kinetic description of electron-proton instability in high-intensity proton linacs and storage rings based on the Vlasov-Maxwell equations

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    1999-05-01

    Full Text Available The present analysis makes use of the Vlasov-Maxwell equations to develop a fully kinetic description of the electrostatic, electron-ion two-stream instability driven by the directed axial motion of a high-intensity ion beam propagating in the z direction with average axial momentum γ_{b}m_{b}β_{b}c through a stationary population of background electrons. The ion beam has characteristic radius r_{b} and is treated as continuous in the z direction, and the applied transverse focusing force on the beam ions is modeled by F_{foc}^{b}=-γ_{b}m_{b}ω_{βb}^{0^{2}}x_{⊥} in the smooth-focusing approximation. Here, ω_{βb}^{0}=const is the effective betatron frequency associated with the applied focusing field, x_{⊥} is the transverse displacement from the beam axis, (γ_{b}-1m_{b}c^{2} is the ion kinetic energy, and V_{b}=β_{b}c is the average axial velocity, where γ_{b}=(1-β_{b}^{2}^{-1/2}. Furthermore, the ion motion in the beam frame is assumed to be nonrelativistic, and the electron motion in the laboratory frame is assumed to be nonrelativistic. The ion charge and number density are denoted by +Z_{b}e and n_{b}, and the electron charge and number density by -e and n_{e}. For Z_{b}n_{b}>n_{e}, the electrons are electrostatically confined in the transverse direction by the space-charge potential φ produced by the excess ion charge. The equilibrium and stability analysis retains the effects of finite radial geometry transverse to the beam propagation direction, including the presence of a perfectly conducting cylindrical wall located at radius r=r_{w}. In addition, the analysis assumes perturbations with long axial wavelength, k_{z}^{2}r_{b}^{2}≪1, and sufficiently high frequency that |ω/k_{z}|≫v_{Tez} and |ω/k_{z}-V_{b}|≫v_{Tbz}, where v_{Tez} and v_{Tbz} are the characteristic axial thermal speeds of the background electrons and beam ions. In this regime, Landau damping (in axial velocity space v_{z} by resonant ions and

  16. Moderator/collimator for a proton/deuteron linac to produce a high-intensity, high-quality thermal neutron beam for neutron radiography

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.; Imel, G.R.; McMichael, G.E.

    1995-01-01

    Reactor based high resolution neutron radiography facilities are able to deliver a well-collimated (L/D ≥100) thermal flux of 10 6 n/cm 2 ·sec to an image plane. This is well in excess of that achievable with the present accelerator based systems such as sealed tube D-T sources, Van der Graaff's, small cyclotrons, or low duty factor linacs. However, continuous wave linacs can accelerate tens of milliamperes of protons to 2.5 to 4 MeV. The MCNP code has been used to analyze target/moderator configurations that could be used with Argonne's Continuous Wave Linac (ACWL). These analyses have shown that ACWL could be modified to generate a neutron beam that has a high intensity and is of high quality

  17. Effects of High-Energy Proton-Beam Irradiation on the Magnetic Properties of ZnO Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Kue; Kwon, Hyeok-Jung; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    There are still many problem for the application due to its unstable magnetism state and too small magnetization values. Here we investigate magnetic properties of ZnO nanorods after high-energy proton-beam irradiation. Electron spin resonance (ESR) measurement on temperature was made to identify intrinsic or extrinsic defects as well as to observe magnetic ordering after irradiation. Understanding the effects of proton beam irradiation on magnetic behavior may help to shed light on the mechanism responsible for the magnetic ordering in this material. We have investigated proton-beam irradiation effects on the magnetic properties of ZnO nanorods. After irradiation a broad ESR line is observed, indicating emergence of ferromagnetic ordering up to room temperature. In M-H curve, stronger coercive field is observed after irradiation.

  18. Paintings - high-energy protons detect pigments and paint-layers

    International Nuclear Information System (INIS)

    Denker, A.; Opitz-Coutureau, J.

    2004-01-01

    High-energy PIXE was used to identify pigment composition, sequencing and the thickness of paint-layers. Before applying the technique to valuable masterpieces, mock-ups were examined in a collaboration with the Kunsthistorisches Museum, Vienna. The results of high-energy PIXE were compared to conventional cross-section analysis. In addition, the non-destructiveness of the technique was investigated thoroughly. After this preparative work, two ancient paintings have been examined and the results are presented in this paper

  19. Baryon, charged hadron, Drell-Yan and J/ψ production in high energy proton-nucleus collisions

    International Nuclear Information System (INIS)

    Gale, Charles; Jeon, Sangyong; Kapusta, Joseph

    1999-01-01

    We show that the distributions of outgoing protons and charged hadrons in high energy proton-nucleus collisions are described rather well by a linear extrapolation from proton-proton collisions. The only adjustable parameter required is the shift in rapidity of a produced charged meson when it encounters a target nucleon. Its fitted value is 0.16. Next, we apply this linear extrapolation to precisely measured Drell-Yan cross sections for 800 GeV protons incident on a variety of nuclear targets which exhibit a deviation from linear scaling in the atomic number A. We show that this deviation can be accounted for by energy degradation of the proton as it passes through the nucleus if account is taken of the time delay of particle production due to quantum coherence. We infer an average proper coherence time of 0.4±0.1 fm/c, corresponding to a coherence path length of 8±2 fm in the rest frame of the nucleus. Finally, we apply the linear extrapolation to measured J/ψ production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets. Our analysis takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/ψ on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, which is consistent with Drell-Yan production, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/ψ on nuclear targets

  20. Some aspects of radiation protection near high-energy proton accelerators

    CERN Document Server

    Tuyn, Jan Willem Nicolaas

    1977-01-01

    The CERN site near Geneva borders Satigny and Meyrin in Switzerland and Saint-Genis-Pouilly and Prevention in France. The 600 MeV proton synchrocyclotron (SC) has been in operation since 1957, the 28 GeV proton synchrotron (PS) since 1960, and the Intersecting Storage Rings (ISR) since 1971. A fourth large accelerator, the 400 GeV super proton synchrotron (SPS), will soon be in service. The internal and external radiation protection problems caused by these machines, together with the solutions, are reviewed in the light of experience. (5 refs).

  1. Influence of High-Energy Proton Irradiation on β-Ga2O3 Nanobelt Field-Effect Transistors.

    Science.gov (United States)

    Yang, Gwangseok; Jang, Soohwan; Ren, Fan; Pearton, Stephen J; Kim, Jihyun

    2017-11-22

    The robust radiation resistance of wide-band gap materials is advantageous for space applications, where the high-energy particle irradiation deteriorates the performance of electronic devices. We report on the effects of proton irradiation of β-Ga 2 O 3 nanobelts, whose energy band gap is ∼4.85 eV at room temperature. Back-gated field-effect transistor (FET) based on exfoliated quasi-two-dimensional β-Ga 2 O 3 nanobelts were exposed to a 10 MeV proton beam. The proton-dose- and time-dependent characteristics of the radiation-damaged FETs were systematically analyzed. A 73% decrease in the field-effect mobility and a positive shift of the threshold voltage were observed after proton irradiation at a fluence of 2 × 10 15 cm -2 . Greater radiation-induced degradation occurs in the conductive channel of the β-Ga 2 O 3 nanobelt than at the contact between the metal and β-Ga 2 O 3 . The on/off ratio of the exfoliated β-Ga 2 O 3 FETs was maintained even after proton doses up to 2 × 10 15 cm -2 . The radiation-induced damage in the β-Ga 2 O 3 -based FETs was significantly recovered after rapid thermal annealing at 500 °C. The outstanding radiation durability of β-Ga 2 O 3 renders it a promising building block for space applications.

  2. Review of high energy diffraction in real and virtual photon proton scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, G.

    2009-07-15

    The electron-proton collider HERA at DESY opened the door for the study of diffraction in real and virtual photon-proton scattering at center-of-mass energies W up to 250 GeV and for large negative mass squared -Q{sup 2} of the virtual photon up to Q{sup 2}=1600 GeV{sup 2}. At W = 220 GeV and Q{sup 2}=4 GeV{sup 2}, diffraction accounts for about 15% of the total virtual photon proton cross section decreasing to {approx}5% at Q{sup 2}=200 GeV{sup 2}. An overview of the results obtained by the experiments H1 and ZEUS on the production of neutral vector mesons and on inclusive diffraction up to the year 2008 is presented. (orig.)

  3. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    Science.gov (United States)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8

  4. Proton rapidity distribution in nucleus-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Liu, F.H.

    2002-01-01

    The proton rapidity distributions in nucleus-nucleus collisions at the Alternating Gradient Synchrotron (AGS) and the Super Proton Synchrotron (SPS) energies are analysed by the revised thermalized cylinder model. The calculated results are compared and found to he in agreement with the experimental data of Si-AI and Si-Pb collisions at 14.6 A GeV/c, Pb-Pb collisions at 158 A GeV/c, and S-S collisions at 200 A GeV/c. (Author)

  5. High current, high energy proton beams accelerated by a sub-nanosecond laser

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Picciotto, A.; Torrisi, L.; Láska, Leoš; Velyhan, Andriy; Prokůpek, Jan; Ryc, L.; Parys, P.; Ullschmied, Jiří; Rus, Bedřich

    2011-01-01

    Roč. 653, č. 1 (2011), s. 159-163 ISSN 0168-9002 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA AV ČR IAA100100715; GA MŠk(CZ) 7E09092 EU Projects: European Commission(XE) 212105 - ELI-PP Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-acceleration * proton beam * high ion current * time -of-flight * proton energy distribution Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  6. Recent results of the STAR high-energy polarized proton-proton program at RHIC at BNL

    International Nuclear Information System (INIS)

    Surrow, Bernd

    2007-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is carrying out a spin physics program colliding transverse or longitudinal polarized proton beams at √(s) 200 - 500GeV to gain a deeper insight into the spin structure and dynamics of the proton. These studies provide fundamental tests of Quantum Chromodynamics (QCD).One of the main objectives of the STAR spin physics program is the determination of the polarized gluon distribution function through a measurement of the longitudinal double-spin asymmetry, ALL, for various processes. Recent results will be shown on the measurement of ALL for inclusive jet production, neutral pion production and charged pion production at √(s) = 200GeV. In addition to these measurements involving longitudinal polarized proton beams, the STAR collaboration has performed several important measurements employing transverse polarized proton beams. New results on the measurement of the transverse single-spin asymmetry, AN, for forward neutral pion production and the first measurement of AN for mid-rapidity di-jet production will be discussed

  7. Relative biological effectiveness of high energy protons for a human melanoma

    International Nuclear Information System (INIS)

    Petrovic, I.; Ristic-Fira, A.; Todorovic, D.; Valastro, I.; Cirrone, P.; Cuttone, G.

    2005-01-01

    Relative biological effectiveness (RBE) for the survival of human melanoma cells induced by high linear energy transfer (LET) protons was investigated. Exponentially growing HTB140 cells were irradiated close to the Bragg peak maximum of the 62 MeV protons, as well as with 60 Co γ-rays, over single doses, ranging from 8-24 Gy. Clonogenic survival and cell viability were assessed up to 48 h post-irradiation, therefore considered as early inactivation effects. Dose dependent cell inactivation induced by high LET protons was observed. Surviving fractions have shown great overlapping with estimated cell viability, both with the increase of dose and with prolonged cell incubation. Evaluated RBEs were higher with the rise of dose, being in the range from 2 to 3. All analyzes performed have demonstrated a very radio-resistant nature of HTB140 melanoma cells. However, high LET protons are able to inactivate these cells in a larger extent compared to the effects of γ-rays. (author)

  8. Hard X-ray bremsstrahlung production in solar flares by high-energy proton beams

    Science.gov (United States)

    Emslie, A. G.; Brown, J. C.

    1985-01-01

    The possibility that solar hard X-ray bremsstrahlung is produced by acceleration of stationary electrons by fast-moving protons, rather than vice versa, as commonly assumed, was investigated. It was found that a beam of protons which involves 1836 times fewer particles, each having an energy 1836 times greater than that of the electrons in the equivalent electron beam model, has exactly the same bremsstrahlung yield for a given target, i.e., the mechanism has an energetic efficiency equal to that of conventional bremsstrahlung models. Allowance for the different degrees of target ionization appropriate to the two models (for conventional flare geometries) makes the proton beam model more efficient than the electron beam model, by a factor of order three. The model places less stringent constraints than a conventional electron beam model on the flare energy release mechanism. It is also consistent with observed X-ray burst spectra, intensities, and directivities. The altitude distribution of hard X-rays predicted by the model agrees with observations only if nonvertical injection of the protons is assumed. The model is inconsistent with gamma-ray data in terms of conventional modeling.

  9. One photon exchange processes and the calibration of polarization of high energy protons

    International Nuclear Information System (INIS)

    Margolis, B.; Thomas, G.H.

    1978-01-01

    Polarization phenomena in small momentum transfer high energy one-photon exchange processes in the reaction p + A → X + A where A is a complex nucleus and X is anything are examined. It is shown that these polarizations can be related directly to photoproduction polarization effects in the reaction γ + p → X at low energies. Explicit formulae are written for polarization effects in the case where X → π 0 + p

  10. Irradiation of optically activated SI-GaAs high-voltage switches with low and high energy protons

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Russo, P; Bisogni, M G; Bottigli, U; Fantacci, M E; Stefanini, A; Cola, A; Quaranta, F; Vasanelli, L; Stefanini, G

    1999-01-01

    Semi-Insulating Gallium Arsenide (SI-GaAs) devices have been tested for radiation hardness with 3-4 MeV or 24 GeV proton beams. These devices can be operated in dc mode as optically activated electrical switches up to 1 kV. Both single switches (vertical Schottky diodes) and multiple (8) switches (planar devices) have been studied, by analyzing their current-voltage (I-V) reverse characteristics in the dark and under red light illumination, both before and after irradiation. We propose to use them in the system of high-voltage (-600 V) switches for the microstrip gas chambers for the CMS experiment at CERN. Low energy protons (3-4 MeV) were used in order to produce a surface damage below the Schottky contact: their fluence (up to 2.6*10/sup 15/ p/cm/sup 2/) gives a high-dose irradiation. The high energy proton irradiation (energy: 24 GeV, fluence: 1.1*10/sup 14/ p/cm/sup 2/) reproduced a ten years long proton exposure of the devices in CMS experiment conditions. For low energy irradiation, limited changes of ...

  11. EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Lynch, M.; Kwon, S.

    2001-01-01

    A high-intensity proton linac, such as that being planned for the SNS, requires accurate RF control of cavity fields for the entire pulse in order to avoid beam spill. The current design requirement for the SNS is RF field stability within ±0.5% and ±0.5 o [1]. This RF control capability is achieved by the control electronics using the excess RF power to correct disturbances. To minimize the initial capital costs, the RF system is designed with 'just enough' RF power. All the usual disturbances exist, such as beam noise, klystron/HVPS noise, coupler imperfections, transport losses, turn-on and turn-off transients, etc. As a superconducting linac, there are added disturbances of large magnitude, including Lorentz detuning and microphonics. The effects of these disturbances and the power required to correct them are estimated, and the result shows that the highest power systems in the SNS have just enough margin, with little or no excess margin

  12. Study of the proton-proton elastic scattering at high energies through eikonal models; Estudo do espalhamento elastico proton-proton a altas energias atraves de modelos eiconais

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Alvaro Favinha

    1995-12-31

    The proton-proton elastic scattering in the center of mass energy region 23 to 63 GeV is investigated through a multiple diffraction model. As an introduction to the subject, a detailed review of the fundamental basis of the Multiple Diffraction Formalism and a survey of the multiple diffraction models (geometrical) currently used are presented. The goal of this investigation is to reformulate one of these models, which makes use of an elementary (parton-parton) amplitude purely imaginary and is not able to predict the {rho}-parameter (the ratio of the forward real and imaginary parts of the hadronic amplitude). Introducing a real part for the elementary amplitude proportional to the imaginary part, improvements in the formalism are obtained. It is shown that this new approach is able to reproduce all experimental data on differential and integrated cross sections (total, elastic and inelastic), but not the {rho}-parameter as function of the energy. Then, starting from fitting of this parameter an overall reproduction of the physical observables is obtained, with the exception of the dip region (diffractive minimum in the differential cross section) overall description are also not firmly reached in all these models. Finally, alternatives to improve the results in a future research are suggested and discussed. (author) 69 refs., 69 figs., 20 tabs.

  13. High energy proton irradiation effects on SiC Schottky rectifiers

    International Nuclear Information System (INIS)

    Nigam, S.; Kim, Jihyun; Ren, F.; Chung, G.Y.; MacMillan, M.F.; Dwivedi, R.; Fogarty, T.N.; Wilkins, R.; Allums, K.K.; Abernathy, C.R.; Pearton, S.J.; Williams, J.R.

    2002-01-01

    4H-SiC Schottky rectifiers with dielectric overlap edge termination were exposed to 40 MeV protons at fluences from 5x10 7 -5x10 9 cm -2 . The reverse breakdown voltage decreased from ∼500 V in unirradiated devices to ∼-450 V after the highest proton dose. The reverse leakage current at -250 V was approximately doubled under these conditions. The forward current at -2 V decreased by ∼1% (fluence of 5x10 7 cm -2 ) to ∼42% (fluence of 5x10 9 cm -2 ), while the current at lower biases was increased due to the introduction of defect centers. The ideality factor, on-state resistance, and forward turn-on voltage showed modest increases for fluences of ≤5x10 8 cm -2 , but were more strongly affected (increase of 40%-75%) at the highest dose employed

  14. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Korovin, Y.A.; Konobeyev, A.Y.; Pereslavtsev, P.E. [Obninsk Institute of Nuclear Power Engineering, Obninsk (Russian Federation)

    1995-10-01

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclide transmutation. All calculations have been performed using the SNT code.

  15. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target

    Czech Academy of Sciences Publication Activity Database

    Bulanov, S.S.; Esarey, E.; Schroeder, C.B.; Leemans, W.P.; Bulanov, S.V.; Margarone, Daniele; Korn, Georg; Haberer, T.

    2015-01-01

    Roč. 18, č. 6 (2015), "061302-1"-"061302-6" ISSN 1098-4402 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : ion accelerators * tumor-therapy * proton * beams * plasmas Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.500, year: 2015

  16. Baseline measures for net-proton distributions in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Netrakanti, P.K.; Mishra, D.K.; Mohanty, A.K.; Mohanty, B.

    2014-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider facility has reported results for the cumulants and their ratios from the net-proton distributions upto the fourth order cumulants at various collision energies. These measurements were carried to look for the signatures of the possible critical point (CP) in the phase diagram for a system undertaking strong interactions. The results show an intriguing dependence of the cumulant ratios C 3 /C 2 and C 4 /C 2 as a function of beam energy. The beam energy dependence appears to be non-monotonic in nature. However the experiment also reports that the energy dependence is observed to be consistent with expectation from an approach based on the independent production of proton and anti-protons in the collisions. In this paper we emphasize the need to have a proper baseline for appropriate interpretation of the cumulant measurements and argue that the comparison to independent production approach needs to be done with extreme caution

  17. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    Science.gov (United States)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  18. Approach to a very high intensity beam at J-PARC

    International Nuclear Information System (INIS)

    Yamazaki, Y.

    2007-01-01

    The high-intensity, high-energy proton accelerator project, J-PARC, comprises the 400-MeV proton linac, the 3-GeV, 1-MW Rapid-Cycling Synchrotron (RCS) and the 50-GeV Marin Ring (MR) Synchrotron. The secondary particles such as neutrons, muons, Kaons, neutrinos and so forth will be fully made use of for materials science, life science, nuclear physics, and particle physics. Even the industrial use of the neutrons and the nuclear energy application are incorporated in the project. The rationale for choosing the accelerator schemes are presented together with the present status of the project and research and development for the high-intensity, high-energy proton accelerators J-PARC. The development of the high-field gradient RF cavity system making use of the magnetic alloy (MA), which is really necessary for the future development of the high-power proton accelerators, is reported in detail. (author)

  19. Polarization measurements in high energy elastic scattering of pions, kaons, protons and antiprotons on protons and comparison with Regge phenomenology

    International Nuclear Information System (INIS)

    Gaidot, A.; Bruneton, C.; Bystricky, J.; Cozzika, G.; Deregel, J.; Ducros, Y.; Khantine-Langlois, F.; Lehar, F.; Lesquen, A. de; Merlo, J.P.; Miyashita, S.; Movchet, J.; Pierrard, J.; Raoul, J.C.; Van Rossum, L.; Kanavets, V.P.

    1975-01-01

    The polarization parameter P has been measured for elastic scattering on polarized protons, of π - , K - and anti-p at 40GeV/c and of π + , K + and p at 45GeV/c. Four-momentum transfer ranges from -0.08 to -1.8(GeV/c) 2 for π - p and pp, and from -0.08 to -1.2(GeV/c) 2 for π + , K + or K - and anti-p [fr

  20. Formation of proton-fragments in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Bazarov, E.Kh.; Olimov, K.; Petrov, V.I.; Lutpullaev, S.L.

    2006-01-01

    Full text: The investigation of production of protons in hadron- and nucleus-nucleus interactions is a key problem allowing one to establish the singularities of dynamics of nuclear interactions. The formation of proton-fragments at high energies of colliding particles proceeds within both the interaction of hadrons with nuclei and in the process of decay of the nucleus or its de-excitation at peripheral interactions. At different stages of interaction of impinging particle with target nucleus, the different mechanisms of formation of proton-fragments: the direct knock-out of intranuclear nucleons in the process of high energy cascade of an initial hadron, intranuclear cascade of produced particles, decay of the excited multi-nucleon fragments and of the thermalized remnant nucleus, and the coalescence of nuclear fragments to the new clusters are realized with the certain probability, connected to the interaction parameters (the interaction energy, the parameter of collision, the intranuclear density, the configuration of Fermi momentum of nucleons and clusters of target nucleus et al.). In its turn, the mechanisms of formation of the final nuclear fragments are closely related to the type of excitation of an initial nucleus. The peripheral interactions proceed at small transfers of the momentum of an impinging particle and represent the wide class of reactions covering the processes from diffractive or coulomb collective excitations of the whole nucleus to the direct quasi-elastic knock-out of the separate nucleons. Non-peripheral interactions are caused by comparatively high local transfers of momentum to the intranuclear clusters allowing the development of intranuclear cascade and the asymmetric redistribution of energy of an impinging particle. The central collisions causing the full decay of nucleus on nucleons or few-nucleon fragments, are the limiting case of the maximal development of the intranuclear cascade. The interaction of the initial particles with

  1. Calculations of the photon dose behind concrete shielding of high energy proton accelerators

    International Nuclear Information System (INIS)

    Dworak, D.; Tesch, K.; Zazula, J.M.

    1992-02-01

    The photon dose per primary beam proton behind lateral concrete shieldings was calculated by using an extension of the Monte Carlo particle shower code FLUKA. The following photon-producing processes were taken into account: capture of thermal neutrons, deexcitation of nuclei after nuclear evaporation, inelastic neutron scattering and nuclear reactions below 140 MeV, as well as photons from electromagnetic cascades. The obtained ratio of the photon dose to the neutron dose equivalent varies from 8% to 20% and it well compares with measurements performed recently at DESY giving a mean ratio of 14%. (orig.)

  2. A point kernel shielding code, PKN-HP, for high energy proton incident

    Energy Technology Data Exchange (ETDEWEB)

    Kotegawa, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-06-01

    A point kernel integral technique code PKN-HP, and the related thick target neutron yield data have been developed to calculate neutron and secondary gamma-ray dose equivalents in ordinary concrete and iron shields for fully stopping length C, Cu and U-238 target neutrons produced by 100 MeV-10 GeV proton incident in a 3-dimensional geometry. The comparisons among calculation results of the present code and other calculation techniques, and measured values showed the usefulness of the code. (author)

  3. Physico-chemical modification of polyethersulphone induced by high energy proton, C+ and Ne6+ ions

    International Nuclear Information System (INIS)

    Vinodh Kumar, S.; Biswavarathi, V.; Jal, P.; Dey, K.; Krishna, J.B.M.; Saha, A.

    2004-01-01

    Polyehersulphone (PES) was irradiated with 4 MeV proton, 3.6 MeV C + and 145 MeV Ne 6+ ions at different ion fluences. The ion induced spectral changes were analyzed by UV-visible and fluorescence spectroscopy. The increase in optical absorption, which shifts gradually from near UV to the visible region with increase in fluence for the three different types of bombarding ions was observed. A significant loss in fluorescence intensity with increase in fluence for three different ions was observed. (author)

  4. Resistivity changes in superconducting-cavity-grade Nb following high-energy proton irradiation

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Hanson, A.; Greene, G.A.

    1997-01-01

    Niobium superconducting rf cavities are proposed for use in the proton LINAC accelerators for spallation-neutron applications. Because of accidental beam loss and continual halo losses along the accelerator path, concern for the degradation of the superconducting properties of the cavities with accumulating damage arises. Residual-resistivity-ratio (RRR) specimens of Nb, with a range of initial RRR's were irradiated at room temperature with protons at energies from 200 to 2000 MeV. Four-probe resistance measurements were made at room temperature and at 4.2 K both prior to and after irradiation. Nonlinear increases in resistivity simulate expected behavior in cavity material after extended irradiation, followed by periodic anneals to room temperature: For RRR = 316 material, irradiations to (2 - 3) x 10 15 p/cm 2 produce degradations up to the 10% level, a change that is deemed operationally acceptable. Without. periodic warming to room temperature, the accumulated damage energy would be up to a factor of ten greater, resulting in unacceptable degradations. Likewise, should higher-RRR material be used, for the same damage energy imparted, relatively larger percentage changes in the RRR will result

  5. Irradiation effects in beryllium exposed to high energy protons of the NuMI neutrino source

    Energy Technology Data Exchange (ETDEWEB)

    Kuksenko, V., E-mail: viacheslav.kuksenko@materials.ox.ac.uk [University of Oxford, Oxford (United Kingdom); Ammigan, K.; Hartsell, B. [Fermi National Accelerator Laboratory, Batavia (United States); Densham, C. [Rutherford Appleton Laboratory, Didcot (United Kingdom); Hurh, P. [Fermi National Accelerator Laboratory, Batavia (United States); Roberts, S. [University of Oxford, Oxford (United Kingdom)

    2017-07-15

    A beryllium primary vacuum-to-air beam ‘window’ of the 'Neutrinos at the Main Injector' (NuMI) beamline at Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, USA, has been irradiated by 120 GeV protons over 7 years, with a maximum integrated fluence at the window centre of 2.06 10{sup 22} p/cm{sup 2} corresponding to a radiation damage level of 0.48 dpa. The proton beam is pulsed at 0.5 Hz leading to an instantaneous temperature rise of 40 °C per pulse. The window is cooled by natural convection and is estimated to operate at an average of around 50 °C. The microstructure of this irradiated material was investigated by SEM/EBSD and Atom Probe Tomography, and compared to that of unirradiated regions of the beam window and that of stock material of the same PF-60 grade. Microstructural investigations revealed a highly inhomogeneous distribution of impurity elements in both unirradiated and irradiated conditions. Impurities were mainly localised in precipitates, and as segregations at grain boundary and dislocation lines. Low levels of Fe, Cu, Ni, C and O were also found to be homogeneously distributed in the beryllium matrix. In the irradiated materials, up to 440 appm of Li, derived from transmutation of beryllium was homogeneously distributed in solution in the beryllium matrix.

  6. Evaluation of internal and external doses from $^{11}C$ produced in the air in high energy proton accelerator tunnels

    CERN Document Server

    Endo, A; Kanda, Y; Oishi, T; Kondo, K

    2001-01-01

    Air has been irradiated with high energy protons at the 12 GeV proton synchrotron to obtain the following parameters essential for the internal dose evaluation from airborne /sup 11/C produced through nuclear spallation reactions: the abundance of gaseous and particulate /sup 11/C, chemical forms, and particle size distribution. It was found that more than 98% of /sup 11/C is present as gas and the rest is aerosol. The gaseous components were only /sup 11/CO and /sup 11/CO/sub 2/ and their proportions were approximately 80% and 20%, respectively. The particulate /sup 11/C was found to be sulphate and/or nitrate aerosols having a log-normal size distribution; the measurement using a diffusion battery showed a geometric mean radius of 0.035 mu m and a geometric standard deviation of 1.8 at a beam intensity of 6.8*10/sup 11/ proton.pulse /sup -1/ and an irradiation time of 9.6 min. By taking the chemical composition and particle size into account, effective doses both from internal and from external exposures pe...

  7. An improved simulation routine for modelling coherent high-energy proton interactions with bent crystals

    CERN Document Server

    Forcher, Francesco; Redaelli, Stefano; Zanetti, Marco; CERN. Geneva. ATS Department

    2018-01-01

    The planes in crystalline solids can constrain the directions that charged particles take as they pass through. Physicists can use this "channelling" property of crystals to steer particle beams. In a bent crystal, for example, channelled particles follow the bend and can change their direction. Several studies are on-going at CERN to verify the possibility of using bent crystals as primary collimators in high energy hadron colliders like the LHC. Simulations have been developed to model the coherent interaction with crystalline planes. The goal of this note is to analyze the data collected on extracted beam from the SPS and develop an improved model to simulate the data’s subtleties, in particular the transition between the volume reflection and amorphous interactions of the beam with crystals.

  8. Transverse and Longitudinal Beam Collimation in a High-Energy Proton Collider (LHC)

    CERN Document Server

    Catalan-Lasheras, N

    1998-01-01

    In the Large Hadron Collider (LHC), particles from the beam halo might potentially impinge on the vacuum chamber, effecting harmful transitions of the superconducting magnets ("quenches"). This can be prevented by the collimation system which confines the particle losses to special, non superconducting sections of the machine. Due to the high energy and intensity of the LHC, any removal system must attain an unprecedented efficiency. The cleaning system was designed on the basis of purely geometric and optical models which neglect non linear effects and assume perfectly absorbing materials. In a second step, true scattering in matter is considered. A series of machine developments (MD) were carried out in 1996-7 with the principal aim of validating the design assumptions. A collimation system comparable to that of the LHC was employed. The predictions of the numerical model used to compute the LHC collimation system efficiency were compared with the data acquired during the measurement sessions. The experimen...

  9. In Bern high-energy physics shares proton beams with the hospital

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    A joint venture bringing together public institutions and private companies is building a new facility on the campus of Inselspital, Bern’s university hospital. The facility will host a cyclotron for the production of radiopharmaceuticals for use in PET as well as in multidisciplinary research laboratories for the development of new products for medical imaging. The Laboratory for High Energy Physics (LHEP) of Bern University, which is deeply involved in the project, will have access to a dedicated beam line and specialized labs.     Construction of the new facility is ongoing at Bern's University Hospital, where the cyclotron will be installed.   The first Bern Cyclotron symposium will take place on 6 and 7 June this year. The event is being organised by LHEP in collaboration with Bern’s Inselspital and will bring together experts – including several from CERN – to promote research activities at the new Bern Cyclotron Laboratory. &ld...

  10. Which potentials have to be surface peaked to reproduce large angle proton scattering at high energy?

    International Nuclear Information System (INIS)

    Raynal, J.

    1990-01-01

    Corrections to the usual form factors of the optical potential are studied with a view to getting a better fit for proton elastic scattering at large angles on 40 Ca at 497 and 800 MeV. When a real surface form factor is added to the central potential in the Schrodinger formalism, the experimental data are as well reproduced as in the standard Dirac formalism. Coupling to the strong 3 - collective state gives a better fit. The use of surface corrections to the imaginary Dirac potential also gives improved results. A slightly better fit is obtained by coupling to the 3 - state with, at the same time, a weakening of these corrections. Further corrections to the potential do not give significant improvements

  11. Studies and calculations of transverse emittance growth in high-energy proton storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.; Jackson, G.

    1989-03-01

    In the operation of proton-antiproton colliders, an important goal is to maximize the integrated luminosity. During such operations in the Fermilab Tevatron, the transverse beam emittances were observed to grow unexpectedly quickly, thus causing a serious reduction of the luminosity. We have studied this phenomenon experimentally and theoretically. A formula for the emittance growth rate, due to random dipole kicks, is derived. In the experiment, RF phase noise of known amplitude was deliberately injected into the Tevatron to kick the beam randomly, via dispersion at the RF cavities. Theory and experiment are found to agree reasonably well. We also briefly discuss the problem of quadrupole kicks. 14 refs., 2 figs., 3 tabs

  12. Massive mercury target for thallium isotope production on the beam of high energy protons

    International Nuclear Information System (INIS)

    Novgorodov, A.F.; Kolachkovski, A.; Nguen Kong Chang.

    1980-01-01

    The yields of thallium radioisotopes in a massive mercury target irradiated with 660 MeV protons have been determined. The constancy of isotopic composition of radiothallium along the whole length (40 cm) of the target has been found. The yields of 200 Tl, 201 Tl and 202 Tl amount to 22.9+-2.8; 3.42+-0.45 and 0.459+-0.61 mCu/mkA h, respectively. It has been shown that the extraction of radioisotopes of thallium and some other elements from large amounts of mercury as well as their subsequent concentration may be carried out fully and relatavely fast when using dilute solutions of acetic acid

  13. Studies of absorbed dose determinations and spatial dose distributions for high energy proton beams

    International Nuclear Information System (INIS)

    Hiraoka, Takeshi

    1982-01-01

    Absolute dose determinations were made with three types of ionization chamber and a Faraday cup. Methane based tissue equivalent (TE) gas, nitrogen, carbon dioxide, air were used as an ionizing gas with flow rate of 10 ml per minute. Measurements were made at the entrance position of unmodulated beams and for a beam of a spread out Bragg peak at a depth of 17.3 mm in water. For both positions, the mean value of dose determined by the ionization chambers was 0.993 +- 0.014 cGy for which the value of TE gas was taken as unity. The agreement between the doses estimated by the ionization chambers and the Faraday cup was within 5%. Total uncertainty estimated in the ionization chamber and the Faraday cup determinations is 6 and 4%, respectively. Common sources of error in calculating the dose from ionization chamber measurements are depend on the factors of ion recombination, W value, and mass stopping power ratio. These factors were studied by both experimentally and theoretically. The observed values for the factors show a good agreement to the predicted one. Proton beam dosimetry intercomparison between Japan and the United States was held. Good agreement was obtained with standard deviation of 1.6%. The value of the TE calorimeter is close to the mean value of all. In the proton spot scanning system, lateral dose distributions at any depth for one spot beam can be simulated by the Gaussian distribution. From the Gaussian distributions and the central axis depth doses for one spot beam, it is easy to calculate isodose distributions in the desired field by superposition of dose distribution for one spot beam. Calculated and observed isodose curves were agreed within 1 mm at any dose levels. (J.P.N.)

  14. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    International Nuclear Information System (INIS)

    Lourenço, Ana; Thomas, Russell; Bouchard, Hugo; Kacperek, Andrzej; Vondracek, Vladimir; Royle, Gary; Palmans, Hugo

    2016-01-01

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  15. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lourenço, Ana, E-mail: am.lourenco@ucl.ac.uk [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Thomas, Russell; Bouchard, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Kacperek, Andrzej [National Eye Proton Therapy Centre, Clatterbridge Cancer Centre, Wirral CH63 4JY (United Kingdom); Vondracek, Vladimir [Proton Therapy Center, Budinova 1a, Prague 8 CZ-180 00 (Czech Republic); Royle, Gary [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom); Palmans, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW, United Kingdom and Medical Physics Group, EBG MedAustron GmbH, A-2700 Wiener Neustadt (Austria)

    2016-07-15

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  16. QCD suggested high-energy asymptotics of the diffraction proton-proton scattering and the cosmic ray data

    International Nuclear Information System (INIS)

    Kopeliovich, V.Z.; Nikolaev, N.N.; Potashnikova, I.K.

    1986-01-01

    Asymptotics of nucleon-nucleon crosss sections is discussed within the perturbation quantum chromodynamics representations. At moderately high energies the perturbative two-gluon exchange satisfactorily reproduces the constant part of the total cross section. As the energy goes up, a series of the j-plane poles at Δ = j-1>0, dominates, the higher the energy, the bigger Δsub(eff). It is shown that the data on absorption of cosmic rays in atmosphere within the 10 5 - 10 6 TeV energy range need σsub(tot)sup(pp) approximately = 160-200 mbn which could be reproduced quantitatively, if only in asymptotics Δ approximately = 0.25-0.35. Standard one-pole description gives at these energies a sufficiently smaller cross section, approximately 100 mbn, and does not reproduce the cosmic ray data. The quoted in literature determinations from σsub(abs)(pAir) to σsub(tot)(pp) are erroneous. An important observation is that violation of the scaling of the fragment spectra is strongly correlated with the value of σsub(abs)(pAir). Making allowance for this dependence should essentially increase the reliability of σsub(abs)(pAir) determination

  17. Z-scaling in proton-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.V.; Panebrattsev, Yu.A.; Skoro, G.P.

    1997-01-01

    New scaling, z-scaling, in the inclusive particle production in pA collisions is studied. The scaling function H A (z) is expressed via the inclusive cross section of particle production Ed 3 σ/dq 3 and the particle multiplicity density dN/dη at pseudorapidity η=0 in the corresponding nucleon-nucleon (NN) center-of-mass (CMS) system. The dependence of H A (z) on scaling variable z, the center-of-mass energy √, and the detection angle θ is investigated. The available experimental data on inclusive particle production (π ± , K ± ) in pA interactions at high energies are used to verify the universality of z-scaling found in hadron-hadron collisions. The A-dependence of H A (z) for π + -meson production is studied. It is shown that the experimental data >from pd collisions confirm the scaling properties of the function H d (z). Some predictions for H au (z) concerning production of π + -mesons in pAu interaction using the HIJING Monte Carlo code have been made. The obtained results can be of interest for future experiments at RHI and LHC in searching the signals of quark-gluon plasma formation

  18. Effect of free-particle collisions in high energy proton and pion-induced nuclear reactions

    International Nuclear Information System (INIS)

    Jacob, N.P. Jr.

    1975-07-01

    The effect of free-particle collisions in simple ''knockout'' reactions of the form (a,aN) and in more complex nuclear reactions of the form (a,X) was investigated by using protons and pions. Cross sections for the 48 Ti(p,2p) 47 Sc and the 74 Ge(p,2p) 73 Ga reactions were measured from 0.3 to 4.6 GeV incident energy. The results indicate a rise in (p,2p) cross section for each reaction of about (25 +- 3) percent between the energies 0.3 and 1.0 GeV, and are correlated to a large increase in the total free-particle pp scattering cross sections over the same energy region. Results are compared to previous (p,2p) excitation functions in the GeV energy region and to (p,2p) cross section calculations based on a Monte Carlo intranuclear cascade-evaporation model. Cross section measurements for (π/sup +-/, πN) and other more complex pion-induced spallation reactions were measured for the light target nuclei 14 N, 16 O, and 19 F from 45 to 550 MeV incident pion energy. These measurements indicate a broad peak in the excitation functions for both (π,πN) and (π,X) reactions near 180 MeV incident energy. This corresponds to the large resonances observed in the free-particle π + p and π - p cross sections at the same energy. Striking differences in (π,πN) cross section magnitudes are observed among the light nuclei targets. The experimental cross section ratio sigma(π - ,π - n)/sigma(π + ,πN) at 180 MeV is 1.7 +- 0.2 for all three targets. The experimental results are compared to previous pion and analogous proton-induced reactions, to Monte Carlo intranuclear cascade-evaporation calculations, and to a semi-classical nucleon charge exchange model. (108 references) (auth)

  19. Radiation effects for high-energy protons and X-ray in integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M.A.G.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Medina, N.H.; Added, N.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cirne, K.H. [Empresa Brasileira de Aeronautica S.A. (EMBRAER), Sao Jose dos Campos, SP (Brazil)

    2012-07-01

    Full text: Electronic circuits are strongly influenced by ionizing radiation. The necessity to develop integrated circuits (IC's) featuring radiation hardness is largely growing to meet the stringent environment in space electronics [1]. This work aims to development a test platform to qualify electronic devices under the influence of high radiation dose, for aerospace applications. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them heavy ions, alpha particles, protons, gamma and X-rays. Radiation effects on the ICs are usually divided into three categories: Total Ionizing Dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; Single Events Effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits and Displacement Damage (DD) which can change the arrangement of the atoms in the lattice [2]. In this study we are investigating the radiation effects in rectangular-gate and circular-gate MOSFETs, manufactured with standard CMOS fabrication process, using particle beams produced in electrostatic tandem accelerators and X-rays. Initial tests for TID effects were performed using the 1.7 MV 5SDH tandem Pelletron accelerator of the Instituto de Fisica da USP with a proton beam of 2.6 MeV. The devices were exposed to different doses, varying the beam current, and irradiation time with the accumulated dose reaching up to Grad. To study the effect of X-rays on the electronic devices, an XRD-7000 (Shimadzu) X-ray setup was used as a primary X-ray source. The devices were irradiated with a total dose from krad to Grad using different dose rates. The results indicate that changes of the I-V characteristic curve are strongly dependents on the geometry of the devices. [1] Duzellier, S., Aerospace Science and Technology 9, p. 93

  20. Fabrication and characterization of microcavity lasers in rhodamine B doped SU8 using high energy proton beam

    Science.gov (United States)

    Venugopal Rao, S.; Bettiol, A. A.; Vishnubhatla, K. C.; Bhaktha, S. N. B.; Narayana Rao, D.; Watt, F.

    2007-03-01

    The authors present their results on the characterization of individual dye-doped microcavity polymer lasers fabricated using a high energy proton beam. The lasers were fabricated in rhodamine B doped SU8 resist with a single exposure step followed by chemical processing. The resulting trapezoidal shaped cavities had dimensions of ˜250×250μm2. Physical characterization of these structures was performed using a scanning electron microscope while the optical characterization was carried out by recording the emission subsequent to pumping the lasers with 532nm, 6 nanosecond pulses. The authors observed intense, narrow emission near 624nm with the best emission linewidth full width at half maximum of ˜9nm and a threshold ˜150μJ/mm2.

  1. X-ray diffraction patterns in high-energy proton implanted silicon

    International Nuclear Information System (INIS)

    Wieteska, K.; Dluzewska, K.D.; Wierzchowski, W.; Graeff, W.

    1998-01-01

    Silicon crystals implanted with 1 and 1.6 MeV protons were studied by means of conventional source double-crystal and synchrotron multi-crystal arrangements. Both the rocking curves and series of topographs were recorded in different parallel settings employing different reflections and wavelengths of radiation. A comparison of rocking curves in different regions of implanted areas was performed in synchrotron multi-crystal arrangement with a beam of a very small diameter. The rocking curves exhibited subsidiary interference maxima with increasing periodicity on the low angle side. The plane wave topographs taken at different angular setting revealed characteristic fringes whose number decreased with increasing distance from the main maximum. The fringe pattern did not depend on the direction of the diffraction vector. The number of fringes for equivalent angular distance from the maximum was larger for higher order of reflection. The shape of the rocking curve and other diffraction patterns were reasonably explained assuming the lattice parameter change depth distribution proportional to the profile obtained from the Biersack-Ziegler theory and lateral non-uniformity of ion dose. A good approximation of the experimental results was obtained using numerical integration of the Takagi-Taupin equations. (orig.)

  2. Study and optimization of a LINAC drift tube for high intensity proton acceleration; Etude et optimisation d'un LINAC a tubes de glissement pour acceleration de forts courants de protons en continu

    Energy Technology Data Exchange (ETDEWEB)

    Bernaudin, P.E

    2002-09-01

    High intensity proton accelerators lead to specific problems related to the need to limit beam losses. The problem is more acute in the low energy part (up to 20 MeV) where the beam transport is the most difficult. The drift tube linac (DTL) remains the reference structure for energies of a few MeV to a few dozens MeV despite the arising of some new cavity types. This thesis purpose is to design such a DTL for a high intensity proton accelerator. Until now, no such continuous wave cavity has ever been operated. To ensure the viability of such an accelerator, a short four cells prototype is designed, built and tested under nominal RF conditions. This prototype is fully representative of a complete machine except for its length. The design complexity comes from the combination of RF electromagnetism, thermal exchanges, mechanics, ultra-vacuum engineering and manufacturing constraints. More specifically, the electromagnets alignment is a primary factor, and reliability, despite being usually of secondary importance in particles accelerator science, is here a major concern considering potential industrial applications of this machine. The prototype design includes the cavity itself, but also quadrupole electromagnets whose feasibility is a limiting factor, considering the very small space available to them. Two different magnet types and associated drift tubes are studied and manufactured, to be tested in the prototype cavity. The experimental part is focused on mechanical and thermal aspects. The electromagnetic properties of the cavity are also checked. As a conclusion of this thesis, technical and conceptual improvements as suggested by the manufacturing and experimental phases are presented, to be implemented in a complete cavity. (author)

  3. Effects of high-energy proton irradiation on the superconducting properties of Fe(Se,Te) thin films

    Science.gov (United States)

    Sylva, G.; Bellingeri, E.; Ferdeghini, C.; Martinelli, A.; Pallecchi, I.; Pellegrino, L.; Putti, M.; Ghigo, G.; Gozzelino, L.; Torsello, D.; Grimaldi, G.; Leo, A.; Nigro, A.; Braccini, V.

    2018-05-01

    In this paper we explore the effects of 3.5 MeV proton irradiation on Fe(Se,Te) thin films grown on CaF2. In particular, we carry out an experimental investigation with different irradiation fluences up to 7.30 · 1016 cm‑2 and different proton implantation depths, in order to clarify whether and to what extent the critical current is enhanced or suppressed, what are the effects of irradiation on the critical temperature, resistivity, and critical magnetic fields, and finally what is the role played by the substrate in this context. We find that the effect of irradiation on superconducting properties is generally small compared to the case of other iron-based superconductors. The irradiation effect is more evident on the critical current density Jc, while it is minor on the transition temperature Tc, normal state resistivity ρ, and on the upper critical field Hc2 up to the highest fluences explored in this work. In more detail, our analysis shows that when protons implant in the substrate far from the superconducting film, the critical current can be enhanced up to 50% of the pristine value at 7 T and 12 K; meanwhile, there is no appreciable effect on critical temperature and critical fields together with a slight decrease in resistivity. On the contrary, when the implantation layer is closer to the film–substrate interface, both critical current and temperature show a decrease accompanied by an enhancement of the resistivity and lattice strain. This result evidences that possible modifications induced by irradiation in the substrate may affect the superconducting properties of the film via lattice strain. The robustness of the Fe(Se,Te) system to irradiation-induced damage makes it a promising compound for the fabrication of magnets in high-energy accelerators.

  4. Hypofractionated high-energy proton-beam irradiation is an alternative treatment for WHO grade I meningiomas.

    Science.gov (United States)

    Vlachogiannis, Pavlos; Gudjonsson, Olafur; Montelius, Anders; Grusell, Erik; Isacsson, Ulf; Nilsson, Kristina; Blomquist, Erik

    2017-12-01

    Radiation treatment is commonly employed in the treatment of meningiomas. The aim of this study was to evaluate the effectiveness and safety of hypofractionated high-energy proton therapy as adjuvant or primary treatment for WHO grade I meningiomas. A total of 170 patients who received irradiation with protons for grade I meningiomas between 1994 and 2007 were included in the study. The majority of the tumours were located at the skull base (n = 155). Eighty-four patients were treated post subtotal resection, 42 at tumour relapse and 44 with upfront radiotherapy after diagnosis based on the typical radiological image. Irradiation was given in a hypofractionated fashion (3-8 fractions, usually 5 or 6 Gy) with a mean dose of 21.9 Gy (range, 14-46 Gy). All patients were planned for follow-up with clinical controls and magnetic resonance imaging scans at 6 months and 1, 2, 3, 5, 7 and 10 years after treatment. The median follow-up time was 84 months. Age, gender, tumour location, Simpson resection grade and target volume were assessed as possible prognostic factors for post-irradiation tumour progression and radiation related complications. The actuarial 5- and 10-year progression-free survival rates were 93% and 85% respectively. Overall mortality rate was 13.5%, while disease-specific mortality was 1.7% (3/170 patients). Older patients and patients with tumours located in the middle cranial fossa had a lower risk for tumour progression. Radiation-related complications were seen in 16 patients (9.4%), with pituitary insufficiency being the most common. Tumour location in the anterior cranial fossa was the only factor that significantly increased the risk of complications. Hypofractionated proton-beam radiation therapy may be used particularly in the treatment of larger World Health Organisation grade I meningiomas not amenable to total surgical resection. Treatment is associated with high rates of long-term tumour growth control and acceptable risk for

  5. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  6. The use the a high intensity neutrino beam from the ESS proton linac for measurement of neutrino CP violation and mass hierarchy

    CERN Document Server

    Baussan, E.; Ekelof, T.; Martinez, E.Fernandez; Ohman, H.; Vassilopoulos, N.

    2012-01-01

    It is proposed to complement the ESS proton linac with equipment that would enable the production, concurrently with the production of the planned ESS beam used for neutron production, of a 5 MW beam of 10$^{23}$ 2.5 GeV protons per year in microsecond short pulses to produce a neutrino Super Beam, and to install a megaton underground water Cherenkov detector in a mine to detect $\

  7. High-altitude cosmic ray neutrons: probable source for the high-energy protons of the earth's radiation belts

    International Nuclear Information System (INIS)

    Hajnal, F.; Wilson, J.

    1992-01-01

    'Full Text:' Several High-altitude cosmic-ray neutron measurements were performed by the NASA Ames Laboratory in the mid-to late-1970s using airplanes flying at about 13km altitude along constant geomagnetic latitudes of 20, 44 and 51 degrees north. Bonner spheres and manganese, gold and aluminium foils were used in the measurements. In addition, large moderated BF-3 counters served as normalizing instruments. Data analyses performed at that time did not provide complete and unambiguous spectral information and field intensities. Recently, using our new unfolding methods and codes, and Bonner-sphere response function extensions for higher energies, 'new' neutron spectral intensities were obtained, which show progressive hardening of neutron spectra as a function of increasing geomagnetic latitude, with substantial increases in the energy region iron, 1 0 MeV to 10 GeV. For example, we found that the total neutron fluences at 20 and 51 degrees magnetic north are in the ratio of 1 to 5.2 and the 10 MeV to 10 GeV fluence ratio is 1 to 18. The magnitude of these ratios is quite remarkable. From the new results, the derived absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the main source of the high-energy protons trapped in the Earth's inner radiation belt. In addition, the results, depending on the extrapolation scheme used, indicate that the neutron dose equivalent rate may be as high as 0.1 mSv/h near the geomagnetic north pole and thus a significant contributor to the radiation exposures of pilots, flight attendants and the general public. (author)

  8. Do you want to build such a machine? : Designing a high energy proton accelerator for Argonne National Laboratory

    International Nuclear Information System (INIS)

    Paris, E.

    2004-01-01

    Argonne National Laboratory's efforts toward researching, proposing and then building a high-energy proton accelerator have been discussed in a handful of studies. In the main, these have concentrated on the intense maneuvering amongst politicians, universities, government agencies, outside corporations, and laboratory officials to obtain (or block) approval and/or funds or to establish who would have control over budgets and research programs. These ''top-down'' studies are very important but they can also serve to divorce such proceedings from the individuals actually involved in the ground-level research which physically served to create theories, designs, machines, and experiments. This can lead to a skewed picture, on the one hand, of a lack of effect that so-called scientific and technological factors exert and, on the other hand, of the apparent separation of the so-called social or political from the concrete practice of doing physics. An exception to this approach can be found in the proceedings of a conference on ''History of the ZGS'' held at Argonne at the time of the Zero Gradient Synchrotron's decommissioning in 1979. These accounts insert the individuals quite literally as they are, for the most part, personal reminiscences of those who took part in these efforts on the ground level. As such, they are invaluable raw material for historical inquiry but generally lack the rigor and perspective expected in a finished historical work. The session on ''Constructing Cold War Physics'' at the 2002 annual History of Science Society Meeting served to highlight new approaches circulating towards history of science and technology in the post-WWII period, especially in the 1950s. There is new attention towards the effects of training large numbers of scientists and engineers as well as the caution not to equate ''national security'' with military preparedness, but rather more broadly--at certain points--with the explicit ''struggle for the hearts and minds of

  9. Investigation of the effects of high-energy proton-beam irradiation on metal-oxide surfaces by using methane adsorption isotherms

    International Nuclear Information System (INIS)

    Kim, Euikwoun; Lee, Junggil; Kim, Jaeyong; Kim, Kyeryung

    2012-01-01

    The creation of possible local defects on metal-oxide surfaces due to irradiation with a high-energy proton beam was investigated by using a series of gas adsorption isotherms for methane (CH 4 ) on a MgO powder surface. After a MgO powder surface having only a (100) surface had been irradiated with a 35-MeV proton beam, the second atomic layer of methane had completely disappeared while two distinct atomic layers were found in a layer-by-layer fashion on the surfaces of unirradiated samples. This subtle modification of the surface is evidenced by a change of the contrasts in the morphologies measured a using a transmission electron microscopy. Combined results obtained from an electron microscopy and methane adsorption isotherms strongly suggest that the high-energy proton-beam irradiation induced a local surface modification by imparting kinetic energy to the sample. The calculation of the 2-dimensional compressibility values, which are responsible for the formation of the atomic layers, confirmed the surface modification after irradiating surface-clean MgO powders with a proton beam.

  10. Experimental study on neutronics in bombardment of thick targets by high energy proton beams for accelerator-driven sub-critical system

    CERN Document Server

    Guo Shi Lun; Shi Yong Qian; Shen Qing Biao; Wan Jun Sheng; Brandt, R; Vater, P; Kulakov, B A; Krivopustov, M I; Sosnin, A N

    2002-01-01

    The experimental study on neutronics in the target region of accelerator-driven sub-critical system is carried out by using the high energy accelerator in Joint Institute for Nuclear Research, Dubna, Russia. The experiments with targets U(Pb), Pb and Hg bombarded by 0.533, 1.0, 3.7 and 7.4 GeV proton beams show that the neutron yield ratio of U(Pb) to Hg and Pb to Hg targets is (2.10 +- 0.10) and (1.76 +- 0.33), respectively. Hg target is disadvantageous to U(Pb) and Pb targets to get more neutrons. Neutron yield drops along 20 cm thick targets as the thickness penetrated by protons increases. The lower the energy of protons, the steeper the neutron yield drops. In order to get more uniform field of neutrons in the targets, the energy of protons from accelerators should not be lower than 1 GeV. The spectra of secondary neutrons produced by different energies of protons are similar, but the proportion of neutrons with higher energy gradually increases as the proton energy increases

  11. Photoluminescence study of high energy proton irradiation on Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bonhyeong [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, June Hyuk [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Shin, Donghyeop [Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 (United States); Ahn, Byung Tae, E-mail: btahn@kaist.ac.kr [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Shin, Byungha, E-mail: byungha@kaist.ac.kr [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2016-03-31

    We have studied the effect of proton irradiation on Cu(In,Ga)Se{sub 2} (CIGS) thin films using photoluminescence (PL). We used a 10 MeV proton beam with varying doses from 10{sup 9} to 10{sup 12} cm{sup −2}. Intensity-dependent low temperature PL measurements suggest that the proton irradiation does not create a new defect level but instead changes the number of preexisting defects in the detection range of the PL system. By comparing PL spectra after the proton irradiation with those obtained after thermal annealing under inert gas as well as under hydrogen gas ambient, we find that the irradiation-induced change in the defect structure does not originate from the incorporation of hydrogen but from energetics of the irradiating particles. Electrical resistivity of the proton irradiated CIGS thin films is shown to decrease after the proton irradiation, and this is explained by the reduction of the concentration of compensating donor-like defects, specifically selenium vacancies, based on the PL results. - Highlights: • Photoluminescence study of 10 MeV proton irradiation on CIGS at 10 K. • Irradiation modified population of existing defects without introducing new levels. • Changes in CIGS by 10 MeV irradiation are due to energetics of irradiating protons.

  12. Radiation environment in the tunnel of a high-energy proton accelerator at energies near 1 TeV

    International Nuclear Information System (INIS)

    McCaslin, J.B.; Sun, R.K.S.; Swanson, W.P.

    1987-12-01

    Neutron energy spectra, fluence distributions and rates in the FNAL Tevatron tunnel are summarized. This work has application to radiation damage to electronics and research equipment at high energy accelerators, as well as to radiological protection. 7 refs., 4 figs

  13. High intensity hadron accelerators

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  14. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  15. Do you want to build such a machine? : Designing a high energy proton accelerator for Argonne National Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Paris, E.

    2004-04-05

    Argonne National Laboratory's efforts toward researching, proposing and then building a high-energy proton accelerator have been discussed in a handful of studies. In the main, these have concentrated on the intense maneuvering amongst politicians, universities, government agencies, outside corporations, and laboratory officials to obtain (or block) approval and/or funds or to establish who would have control over budgets and research programs. These ''top-down'' studies are very important but they can also serve to divorce such proceedings from the individuals actually involved in the ground-level research which physically served to create theories, designs, machines, and experiments. This can lead to a skewed picture, on the one hand, of a lack of effect that so-called scientific and technological factors exert and, on the other hand, of the apparent separation of the so-called social or political from the concrete practice of doing physics. An exception to this approach can be found in the proceedings of a conference on ''History of the ZGS'' held at Argonne at the time of the Zero Gradient Synchrotron's decommissioning in 1979. These accounts insert the individuals quite literally as they are, for the most part, personal reminiscences of those who took part in these efforts on the ground level. As such, they are invaluable raw material for historical inquiry but generally lack the rigor and perspective expected in a finished historical work. The session on ''Constructing Cold War Physics'' at the 2002 annual History of Science Society Meeting served to highlight new approaches circulating towards history of science and technology in the post-WWII period, especially in the 1950s. There is new attention towards the effects of training large numbers of scientists and engineers as well as the caution not to equate ''national security'' with military preparedness, but rather

  16. Induction of Cell Death through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    Science.gov (United States)

    Ramesh, Govindarajan; Wu, Honglu

    2012-01-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  17. Neutron transmission benchmark problems for iron and concrete shields in low, intermediate and high energy proton accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Katsumi [and others

    1996-09-01

    Benchmark problems were prepared for evaluating the calculation codes and the nuclear data for accelerator shielding design by the Accelerator Shielding Working Group of the Research Committee on Reactor Physics in JAERI. Four benchmark problems: transmission of quasi-monoenergetic neutrons generated by 43 MeV and 68 MeV protons through iron and concrete shields at TIARA of JAERI, neutron fluxes in and around an iron beam stop irradiated by 500 MeV protons at KEK, reaction rate distributions inside a thick concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and hadron fluxes inside an iron beam stop irradiated by 24 GeV protons at CERN are compiled in this document. Calculational configurations and neutron reaction cross section data up to 500 MeV are provided. (author)

  18. [Neoplastic transformation of mouse fibroblasts under the influence of high-energy protons and gamma-rays].

    Science.gov (United States)

    Voskanian, K Sh

    2004-01-01

    Oncoginic transformations of mouse fibroblasts C3H10T1/2 after exposure to proton energies 150 and 584 MeV were compared with fibroblast effects of gamma-radiation. Prior to exposure, cell populations (2.7 x 10(3) cells/cm2) were inoculated in plastic vials with the surface area of 75 cm2 and cultivated 11 days. Survivability was determined by comparing the number of cell colonies in irradiated and non-irradiated (control) vials. Transformation rate was calculated by dividing the total transformation focus number by the number of survived cells in a vial. Rate of oncogenic transformations after gamma- and proton (584 MeV) irradiation was essentially identical, i.e. the parameter grew rapidly at the doses 1 Gy. In the dose interval between 1 and 5 Gy, transformation rate for proton energy 150 MeV was found low compared with gamma-radiation and proton energy 584 MeV. It is hypothesized that the different transformation rate after exposure to proton energy 150 MeV is linked with the high linear energy transfer as compared with the proton energy of 584 MeV and gamma-radiation.

  19. The First Asymmetry Measurements in High-Energy Polarized Proton-Nucleus Collision at PHENIX-RHIC

    Directory of Open Access Journals (Sweden)

    Nakagawa Itaru

    2017-01-01

    Full Text Available The single spin asymmetries in very forward neutron production had been first observed about a decade ago at RHIC in transversely polarized proton + proton collision at √s = 200 GeV. Although neutron production near zero degrees is well described by the one-pion exchange (OPE framework, the OPE appeared to be not satisfactory to describe the observed analyzing power AN. The absorptive correction to the OPE generates the asymmetry as a consequence of a phase shift between the spin flip and non-spin flip amplitudes. However the amplitude predicted by the OPE is too small to explain the large observed asymmetries. Only the model which introduces interference between major pion and small a1-Reggeon exchange amplitudes has been successful in reproducing the experimental data. During RHIC Run-15, RHIC delivered polarized proton collisions with Au and Al for the first time, enabling the exploration of the mechanism of transverse single-spin asymmetries with nuclear collisions. A very striking A-dependence was discovered in very forward neutron production at PHENIX in transversely polarized proton + nucleus collision at √s = 200 GeV. Such a dependence has not been predicted from the existing framework which has been succesful in proton + proton collision. In this report, experimental and theoretical efforts are discussed to disentangle the mysterious A-dependence in the very forward neutron asymmetry.

  20. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  1. LHC Report: reaching high intensity

    CERN Multimedia

    Jan Uythoven

    2015-01-01

    After both beams having been ramped to their full energy of 6.5 TeV, the last two weeks saw the beam commissioning process advancing on many fronts. An important milestone was achieved when operators succeeded in circulating a nominal-intensity bunch. During the operation, some sudden beam losses resulted in beam dumps at top energy, a problem that needed to be understood and resolved.   In 2015 the LHC will be circulating around 2800 bunches in each beam and each bunch will contain just over 1 x 1011 protons. Until a few days ago commissioning was taking place with single bunches of 5 x 109 protons. The first nominal bunch with an intensity of 1 x 1011 protons was injected on Tuesday, 21 April. In order to circulate such a high-intensity bunch safely, the whole protection system must be working correctly: collimators, which protect the aperture, are set at preliminary values known as coarse settings; all kicker magnets for injecting and extracting the beams are commissioned with beam an...

  2. Study of a power coupler for superconducting RF cavities used in high intensity proton accelerator; Etude et developpement d'un coupleur de puissance pour les cavites supraconductrices destinees aux accelerateurs de protons de haute intensite

    Energy Technology Data Exchange (ETDEWEB)

    Souli, M

    2007-07-15

    The coaxial power coupler needed for superconducting RF cavities used in the high energy section of the EUROTRANS driver should transmit 150 kW (CW operation) RF power to the protons beam. The calculated RF and dielectric losses in the power coupler (inner and outer conductor, RF window) are relatively high. Consequently, it is necessary to design very carefully the cooling circuits in order to remove the generated heat and to ensure stable and reliable operating conditions for the coupler cavity system. After calculating all type of losses in the power coupler, we have designed and validated the inner conductor cooling circuit using numerical simulations results. We have also designed and optimized the outer conductor cooling circuit by establishing its hydraulic and thermal characteristics. Next, an experiment dedicated to study the thermal interaction between the power coupler and the cavity was successfully performed at CRYOHLAB test facility. The critical heat load Qc for which a strong degradation of the cavity RF performance was measured leading to Q{sub c} in the range 3 W-5 W. The measured heat load will be considered as an upper limit of the residual heat flux at the outer conductor cold extremity. A dedicated test facility was developed and successfully operated for measuring the performance of the outer conductor heat exchanger using supercritical helium as coolant. The test cell used reproduces the realistic thermal boundary conditions of the power coupler mounted on the cavity in the cryo-module. The first experimental results have confirmed the excellent performance of the tested heat exchanger. The maximum residual heat flux measured was 60 mW for a 127 W thermal load. As the RF losses in the coupler are proportional to the incident RF power, we can deduce that the outer conductor heat exchanger performance is continued up to 800 kW RF power. Heat exchanger thermal conductance has been identified using a 2D axisymmetric thermal model by comparing

  3. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R.; Bohl, T.; Bracco, C.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Chattopadhyay, S.; Cipiccia, S.; Feldbaumer, E.; Fonseca, R.A.; Goddard, B.; Gross, M.; Grulke, O.; Gschwendtner, E.; Holloway, J.; Huang, C.; Jaroszynski, D.; Jolly, S.; Kempkes, P.; Lopes, N.; Lotov, K.; Machacek, J.; Mandry, S.R.; McKenzie, J.W.; Meddahi, M.; Militsyn, B.L.; Moschuering, N.; Muggli, P.; Najmudin, Z.; Noakes, T.C.Q.; Norreys, P.A.; Oz, E.; Pardons, A.; Petrenko, A.; Pukhov, A.; Rieger, K.; Reimann, O.; Ruhl, H.; Shaposhnikova, E.; Silva, L.O.; Sosedkin, A.; Tarkeshian, R.; Trines, R.M.G.N.; Tuckmantel, T.; Vieira, J.; Vincke, H.; Wing, M.; Xia, G.

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  4. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    International Nuclear Information System (INIS)

    Assmann, R; Gross, M; Bingham, R; Holloway, J; Bohl, T; Bracco, C; Butterworth, A; Feldbaumer, E; Goddard, B; Gschwendtner, E; Buttenschön, B; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Jaroszynski, D; Fonseca, R A; Grulke, O; Kempkes, P; Huang, C; Jolly, S

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN—the AWAKE experiment—has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator. (paper)

  5. The quantification of wound healing as a method to assess late radiation damage in primate skin exposed to high-energy protons

    Science.gov (United States)

    Cox, A. B.; Lett, J. T.

    In an experiment examining the effects of space radiations on primates, different groups of rhesus monkeys (Macaca mulatta) were exposed to single whole-body doses of 32- or 55-MeV protons. Survivors of those exposures, together with age-matched controls, have been monitored continuously since 1964 and 1965. Late effects of nominal proton doses ranging from 2-6 Gray have been measured in vitro using skin fibroblasts from the animals. A logical extension of that study is reported here, and it involves observations of wound healing after 3-mm diameter dermal punches were removed from the ears (pinnae) of control and irradiated monkeys. Tendencies in the reduction of competence to repair cutaneous wound have been revealed by the initial examinations of animals that received doses greater than 2 Gy more than 2 decades earlier. These trends indicate that this method of assessing radiation damage to skin exposed to high-energy radiations warrants further study.

  6. High-efficiency deflection of high energy protons due to channeling along the 〈110〉 axis of a bent silicon crystal

    Directory of Open Access Journals (Sweden)

    W. Scandale

    2016-09-01

    Full Text Available A deflection efficiency of about 61% was observed for 400 GeV/c protons due to channeling, most strongly along the 〈110〉 axis of a bent silicon crystal. It is comparable with the deflection efficiency in planar channeling and considerably larger than in the case of the 〈111〉 axis. The measured probability of inelastic nuclear interactions of protons in channeling along the 〈110〉 axis is only about 10% of its amorphous level whereas in channeling along the (110 planes it is about 25%. High efficiency deflection and small beam losses make this axial orientation of a silicon crystal a useful tool for the beam steering of high energy charged particles.

  7. The two-proton halo nucleus {sup 17}Ne studied in high-energy nuclear breakup reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wamers, Felix [EMMI, GSI, Darmstadt (Germany); FIAS, Frankfurt (Germany); IKP, TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Marganiec, Justyna [IKP, TU Darmstadt, Darmstadt (Germany); EMMI, GSI, Darmstadt (Germany); GSI, Darmstadt (Germany); Aumann, Thomas [IKP, TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerce (United States); Chulkov, Leonid [GSI, Darmstadt (Germany); NRC Kurchatov Institute, Moscow (Russian Federation); Heil, Michael; Simon, Haik [GSI, Darmstadt (Germany); Plag, Ralf [GSI, Darmstadt (Germany); Goethe Universitaet, Frankfurt (Germany); Savran, Deniz [EMMI, GSI, Darmstadt (Germany); FIAS, Frankfurt (Germany); Collaboration: R3B-Collaboration

    2014-07-01

    We report on exclusive measurements of nuclear breakup reactions of highly-energetic (500 MeV) unstable {sup 17}Ne beams impinging on light targets in an experiment at the R{sup 3}B-LAND complete-kinematics reaction setup at GSI. Focusing on the properties of beam-like {sup 15}O-p (={sup 16}F) systems produced in one-proton-removal reactions, we are presenting a comprehensive analysis of the s-/d-wave configuration mixing of the {sup 17}Ne valence-proton pair that is used to quantify its halo-nature. The results include the {sup 15}O-p relative-energy spectrum, {sup 16}F momentum distributions, and their corresponding momentum profile.

  8. Toward real-time temperature monitoring in fat and aqueous tissue during magnetic resonance-guided high-intensity focused ultrasound using a three-dimensional proton resonance frequency T1 method.

    Science.gov (United States)

    Diakite, Mahamadou; Odéen, Henrik; Todd, Nick; Payne, Allison; Parker, Dennis L

    2014-07-01

    To present a three-dimensional (3D) segmented echoplanar imaging (EPI) pulse sequence implementation that provides simultaneously the proton resonance frequency shift temperature of aqueous tissue and the longitudinal relaxation time (T1 ) of fat during thermal ablation. The hybrid sequence was implemented by combining a 3D segmented flyback EPI sequence, the extended two-point Dixon fat and water separation, and the double flip angle T1 mapping techniques. High-intensity focused ultrasound (HIFU) heating experiments were performed at three different acoustic powers on excised human breast fat embedded in ex vivo porcine muscle. Furthermore, T1 calibrations with temperature in four different excised breast fat samples were performed, yielding an estimate of the average and variation of dT1 /dT across subjects. The water only images were used to mask the complex original data before computing the proton resonance frequency shift. T1 values were calculated from the fat-only images. The relative temperature coefficients were found in five fat tissue samples from different patients and ranged from 1.2% to 2.6%/°C. The results demonstrate the capability of real-time simultaneous temperature mapping in aqueous tissue and T1 mapping in fat during HIFU ablation, providing a potential tool for treatment monitoring in organs with large fat content, such as the breast. Copyright © 2013 Wiley Periodicals, Inc.

  9. Comparison of calculated and experimental values of the yields of xenon isotopes in reactions with high-energy protons

    International Nuclear Information System (INIS)

    Shukolyukov, A.Yu.; Katargin, N.V.; Baishev, I.S.

    1989-01-01

    Calculations of the cumulative yields of isotopes of Xe have been carried out on the basis of the semi-empirical formula of Silverberg and Tsao for Ba- and Dy-targets and bombarding proton energies in the range 100-1050 MeV. Results are compared with experimental data for the yields of Xe isotopes, and domains of applicability of the semi-empirical formula are determined

  10. Measurements of activation reaction rate distributions on a mercury target bombarded with high-energy protons at AGS

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ino, Takashi; Kawai, Masayoshi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Jerde, Eric; Glasgow, David [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2000-02-01

    A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the {sup 115}In(n,n'){sup 115m}In, {sup 93}Nb(n,2n){sup 92m}Nb, and {sup 209}Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured {sup 115}In(n,n'){sup 115m}In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)

  11. Measurements of activation reaction rate distributions on a mercury target bombarded with high-energy protons at AGS

    International Nuclear Information System (INIS)

    Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro; Jerde, Eric; Glasgow, David

    2000-02-01

    A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the 115 In(n,n') 115m In, 93 Nb(n,2n) 92m Nb, and 209 Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured 115 In(n,n') 115m In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)

  12. Duke University high energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and Χ meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report

  13. Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

    Directory of Open Access Journals (Sweden)

    N. Simos

    2016-11-01

    Full Text Available A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace industries due to their unique combination of high temperature stability, low density, and high strength. The performance of carbon-carbon composites and compounds under intense proton beams and long-term irradiation have been studied in a series of experiments and compared with the performance of graphite. The 24-GeV proton beam experiments confirmed the inherent ability of a 3D C/C fiber composite to withstand a thermal shock. A series of irradiation damage campaigns explored the response of different C/C structures as a function of the proton fluence and irradiating environment. Radiolytic oxidation resulting from the interaction of oxygen molecules, the result of beam-induced radiolysis encountered during some of the irradiation campaigns, with carbon atoms during irradiation with the presence of a water coolant emerged as a dominant contributor to the observed structural integrity loss at proton fluences ≥5×10^{20}  p/cm^{2}. The carbon-fiber composites were shown to exhibit significant anisotropy in their dimensional stability driven by the fiber weave and the microstructural behavior of the fiber and carbon matrix accompanied by the presence of manufacturing porosity and defects. Carbon-fiber-reinforced molybdenum-graphite compounds (MoGRCF selected for their impedance properties in the Large Hadron Collider beam collimation exhibited significant decrease in postirradiation load-displacement behavior even after low dose levels (∼5×10^{18}

  14. Study of crosslinking onset and hydrogen annealing of ultra-high molecular weight polyethylene irradiated with high-energy protons

    Science.gov (United States)

    Wilson, John Ford

    1997-09-01

    Ultra high molecular weight polyethylene (UHMW-PE) is used extensively in hip and knee endoprostheses. Radiation damage from the sterilization of these endoprostheses prior to surgical insertion results in polymer crosslinking and decreased oxidative stability. The motivation for this study was to determine if UHMW-PE could be crosslinked by low dose proton irradiation with minimal radiation damage and its subsequent deleterious effects. I found that low dose proton irradiation and post irradiation hydrogen annealing did crosslink UHMW-PE and limit post irradiation oxidation. Crosslinking onset was investigated for UHMW-PE irradiated with 2.6 and 30 MeV H+ ions at low doses from 5.7 × 1011-2.3 × 1014 ions/cm2. Crosslinking was determined from gel permeation chromatography (GPC) of 1,2,4 trichlorobenzene sol fractions and increased with dose. Fourier transform infrared spectroscopy (FTIR) showed irradiation resulted in increased free radicals confirmed from increased carbonyl groups. Radiation damage, especially at the highest doses observed, also showed up in carbon double bonds and increased methyl end groups. Hydrogen annealing after ion irradiation resulted in 40- 50% decrease in FTIR absorption associated with carbonyl. The hydrogen annealing prevented further oxidation after aging for 1024 hours at 80oC. Hydrogen annealing was successful in healing radiation damage through reacting with the free radicals generated during proton irradiation. Polyethylenes, polyesters, and polyamides are used in diverse applications by the medical profession in the treatment of orthopedic impairments and cardiovascular disease and for neural implants. These artificial implants are sterilized with gamma irradiation prior to surgery and the resulting radiation damage can lead to accelerated deterioration of the implant properties. The findings in this study will greatly impact the continued use of these materials through the elimination of many problems associated with radiation

  15. Neutral escape at Mars induced by the precipitation of high-energy protons and hydrogen atoms of the solar wind origin

    Science.gov (United States)

    Shematovich, Valery I.

    2017-04-01

    One of the first surprises of the NASA MAVEN mission was the observation by the SWIA instrument of a tenuous population of protons with solar wind energies travelling anti-sunward near periapsis, at altitudes of 150-250 km (Halekas et al., 2015). While the penetration of solar wind protons to low altitude is not completely unexpected given previous Mars Express results, this population maintains exactly the same velocity as the solar wind observed. From previous studies it was known that some fraction of the solar wind can interact with the extended corona of Mars. By charge exchange with the neutral particles in this corona, some fraction of the incoming solar wind protons can gain an electron and become an energetic neutral hydrogen atom. Once neutral, these particles penetrate through the Martian induced magnetosphere with ease, with free access to the collisional atmosphere/ionosphere. The origin, kinetics and transport of the suprathermal O atoms in the transition region (from thermosphere to exosphere) of the Martian upper atmosphere due to the precipitation of the high-energy protons and hydrogen atoms are discussed. Kinetic energy distribution functions of suprathermal and superthermal (ENA) oxygen atoms formed in the Martian upper atmosphere were calculated using the kinetic Monte Carlo model (Shematovich et al., 2011, Shematovich, 2013) of the high-energy proton and hydrogen atom precipitation into the atmosphere. These functions allowed us: (a) to estimate the non-thermal escape rates of neutral oxygen from the Martian upper atmosphere, and (b) to compare with available MAVEN measurements of oxygen corona. Induced by precipitation the escape of hot oxygen atoms may become dominant under conditions of extreme solar events - solar flares and coronal mass ejections, - as it was shown by recent observations of the NASA MAVEN spacecraft (Jakosky et al., 2015). This work is supported by the RFBR project and by the Basic Research Program of the Praesidium of

  16. High intensity SRF proton linac workshop (vugraphs)

    International Nuclear Information System (INIS)

    Rusnak, B.A.

    1995-01-01

    The meeting is divided into four sections. The first section is the general introduction and included opening remarks and an overview of APT (accelerator product of tritium). The second section contains vugraphs from the cavity-structures working group. The third section is comprised of vugraphs from the couplers and rf working group. And the fourth section contains vugraphs of the system integration group

  17. Development of high intensity beam handling system, 4

    International Nuclear Information System (INIS)

    Yamanoi, Yutaka; Tanaka, Kazuhiro; Minakawa, Michifumi

    1992-01-01

    We have constructed the new counter experimental hall at the KEK 12 GeV Proton Synchrotron (KEK-PS) in order to handle high intensity primary proton beams of up to 1x10 3 pps (protons per second), which is one order of magnitude greater than the present beam intensity of the KEK-PS, 1x10 12 pps. New technologies for handling high-intensity beams have, then, been developed and employed in the construction of the new hall. A part of our R/D work on handling high intensity beams will be reported. (author)

  18. Elastic high-energy proton scattering on 40Ca with exact expression for nucleon-nucleon amplitude and flucton correlations

    International Nuclear Information System (INIS)

    Antonov, A.N.; Christov, Chr.V.; Nikolov, E.N.

    1989-01-01

    Differential cross-section of the 1.04 GeV - proton elastic scattering from 40 Ca is calculated within the Glauber-Sitenko theoretical scheme using the coherent density fluctuation model (CDFM). It is shown that the use of exact noneikonal expression for the two-body scattering amplitude (which describes the p-p data) leads to a satisfactory agreement with the experimental data. The influence of the flucton correlations on the differential cross-sections is considerable as the use of a realistic charge density distribution leads to a better agreement with the experimental data of the CDFM which is not for the case of the independent-particle model. 20 refs.; 4 figs

  19. Relativistic corrections to η{sub c}-pair production in high energy proton–proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, A.P., E-mail: a.p.martynenko@samsu.ru [Samara State University, Pavlov Street 1, 443011, Samara (Russian Federation); Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086, Samara (Russian Federation); Trunin, A.M., E-mail: amtrnn@gmail.com [Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086, Samara (Russian Federation)

    2013-06-10

    On the basis of perturbative QCD and the relativistic quark model we calculate relativistic corrections to the double η{sub c} meson production in proton–proton interactions at LHC energies. Relativistic terms in the production amplitude connected with the relative motion of heavy quarks and the transformation law of the bound state wave functions to the reference frame of moving charmonia are taken into account. For the gluon and quark propagators entering the amplitude we use a truncated expansion in relative quark momenta up to the second order. Relativistic corrections to the quark bound state wave functions are considered by means of the Breit-like potential. It turns out that the examined effects decrease total non-relativistic cross section more than two times and on 20 percents in the rapidity region of LHCb detector.

  20. Proton radiography of dynamic electric and magnetic fields in laser-produced high-energy-density plasmas

    International Nuclear Information System (INIS)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Manuel, M.; Casey, D.; Sinenian, N.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Rygg, J. R.; Town, R. P. J.; Betti, R.; Meyerhofer, D. D.; Delettrez, J.; Knauer, J. P.; Marshall, F.; Sangster, T. C.; Smalyuk, V. A.; Soures, J. M.; Shvarts, D.

    2009-01-01

    Time-gated, monoenergetic-proton radiography provides unique measurements of the electric (E) and magnetic (B) fields produced in laser-foil interactions and during the implosion of inertial-confinement-fusion capsules. These experiments resulted in the first observations of several new and important features: (1) observations of the generation, decay dynamics, and instabilities of megagauss B fields in laser-driven planar plastic foils, (2) the observation of radial E fields inside an imploding capsule, which are initially directed inward, reverse direction during deceleration, and are likely related to the evolution of the electron pressure gradient, and (3) the observation of many radial filaments with complex electromagnetic field striations in the expanding coronal plasmas surrounding the capsule. The physics behind and implications of such observed fields are discussed.

  1. Transverse-momentum scaling in pi /sup +or-/, K/sup +or-/, p, p production in proton-proton inclusive reactions at very high energies

    CERN Document Server

    Misra, R C

    1975-01-01

    Experimental measurements made on pp reactions at CERN ISR are discussed. The dependence on transverse momentum is approximately exponential for pi /sup +or-/ and K/sup +or-/ production, while for antiprotons and protons in the fragmentation region the dependence is better represented by a Gaussian form. It is shown that a generalised formalism can be set up, similar to KNO scaling, for the transverse momentum distribution of the produced particles and the production process can be either exponential or Gaussian. (11 refs).

  2. From the Proton Synchrotron to the Large Hadron Collider: 50 Years of Nobel Memories in High-Energy Physics

    CERN Multimedia

    Directorate Office

    As a new era in particle physics approaches with the start of the LHC, a symposium to commemorate many significant events that have marked high-energy physics in the past 50 years will be held at CERN on 3-4 December 2009. The list of confirmed distinguished speakers reads like the Who’s Who of particle physics of the second half of the 20th Century, including the Nobel Laureates James Cronin, Jerome Friedman, Sheldon Glashow, David Gross, Gerardus ‘t Hooft, Leon Lederman, Burton Richter, Carlo Rubbia, Jack Steinberger, Samuel Ting, Martinus Veltman, Stephen Weinberg and Frank Wilczek. They will share with us memories of several landmark events that, over the past 50 years, have shaped our field of science. These events include the discovery of the J/ψ particle by Richter and Ting in the 1970s; the work of Glashow, Salam and Weinberg on the theory of the unified weak and electromagnetic interactions; the discovery of fundamental asymmetries in the K-meson sector by Cronin and Fitch...

  3. The production of photons with large transverse momentum in proton-proton interaction at high energy in the center of mass, at the ISR of CERN

    International Nuclear Information System (INIS)

    Riedinger, Michel.

    1977-01-01

    The production of photons with large transverse momentun emitted in pp interactions at high energy, at the ISR of CERN, is studied. The inclusive distributions of photons were measured in the interval 0.7 2 sigma sub(γ)/dpdΩ=Aexp(Bpsub(t)+Cpsub(t) 2 ). The π 0 cross sections were deduced from these photon cross sections. At psub(t)( 2 at 3GeV /c), than the approximately exp(-6psub(t)) decrease, as well as an increase with the energy √s. A fit of the π 0 cross-sections, compatible with a power-law behaviour is given [fr

  4. Bragg-case synchrotron section topography of silicon implanted with high-energy protons and α particles

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.; Graeff, W.

    1997-01-01

    Back reflection section topography using white-beam synchrotron radiation has been applied for the investigation of silicon implanted with 1 and 1.6 MeV protons and 4.8 MeV α particles. The beam width was limited to 5 μm, and a series of spots in the vicinity of a centrally adjusted reflection were indexed and analysed. The back-reflection section pattern of implanted crystals usually exhibits fringes corresponding to the reflection from the surface and a series of fringes corresponding to the rear region of the shot-through layer, the destroyed layer and the bulk. The patterns were used for direct evaluation of ion ranges and thicknesses of the shot-through layer. The overall characteristics of the obtained patterns were successfully reproduced in simulations based on numerical integration of the Takagi-Taupin equations. The agreement between the simulation and experiment proves that the lattice-parameter depth-distribution profiles can be assumed to be proportional to interstitial-vacancy distributions obtained using the Monte Carlo method from the Biersack-Ziegler theory. The simulation also reproduced interference tails observed in some section patterns. It was found that these tails are caused by the ion-dose change along the beam and they were probably formed due to the interference between the radiation reflected from the bulk and those rays reflected by the rear region of the shot-through layer. (orig.)

  5. Analysis of the proton-induced reactions at 150 MeV - 24 GeV by high energy nuclear reaction code JAM

    International Nuclear Information System (INIS)

    Niita, Koji; Nara, Yasushi; Takada, Hiroshi; Nakashima, Hiroshi; Chiba, Satoshi; Ikeda, Yujiro

    1999-09-01

    We are developing a nucleon-meson transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI. NMTC/JAM implements the high energy nuclear reaction code JAM for the infra-nuclear cascade part. By using JAM, the upper limits of the incident energies in NMTC/JAERI, 3.5 GeV for nucleons and 2.5 GeV for mesons, are increased drastically up to several hundreds GeV. We have modified the original JAM code in order to estimate the residual nucleus and its excitation energy for nucleon or pion induced reactions by assuming a simple model for target nucleus. As a result, we have succeeded in lowering the applicable energies of JAM down to about 150 MeV. In this report, we describe the main components of JAM code, which should be implemented in NMTC/JAM, and compare the results calculated by JAM code with the experimental data and with those by LAHET2.7 code for proton induced reactions from 150 MeV to several 10 GeV. It has been found that the results of JAM can reproduce quite well the experimental double differential cross sections of neutrons and pions emitted from the proton induced reactions from 150 MeV to several 10 GeV. On the other hand, the results of LAHET2.7 show the strange behavior of the angular distribution of nucleons and pions from the reactions above 4 GeV. (author)

  6. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  7. [Research in high energy physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  8. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  9. High performance liquid chromatographic separation of beryllium from some transition metals produced in high energy proton irradiations of medium mass elements: measurement of (p,7Be) cross sections

    International Nuclear Information System (INIS)

    Fassbender, M.; Spellerberg, S.; Qaim, S.M.

    1996-01-01

    A high performance liquid chromatographic (HPLC) method was developed for the separation of 7 Be formed in high energy proton irradiation of medium mass elements like Fe, Cu etc. The bulk of the target material was removed in a preseparation step. Thereafter beryllium was obtained in a high purity within a few minutes elution time using a mixture of 5 mM citric acid and 1.0 mM pyridinedicarboxylic acid as eluent and a SYKAM KO2 analytical cation-exchange column. The effect of Be-carrier on the quality of separation was investigated. The quality of separation deteriorated with the increasing Be-carrier column loading. A certain amount of Be-carrier was, however, necessary in order to quantitate the results. By using low Be-carrier amounts (∝100 μg) and determining the elution yield via a conductometric method, it was possible to obtain quantitative separation results. Besides the analytical column, a semi-preparative column was also used, and the Be separation yield determined gravimetrically. The cross sections for the (p, 7 Be) process on Cu obtained using the two separation columns (analytical and semipreparative) and the two separation yield determination methods agreed within 15%. (orig.)

  10. Study of nuclear reactions involving heavy nuclei and intermediate- and high-energy protons and an application in nuclear reactor physics (ADS)

    International Nuclear Information System (INIS)

    Matuoka, Paula Fernanda Toledo

    2016-01-01

    In the present work, intermediate- and high-energy nuclear reactions involving heavy nuclei and protons were studied with the Monte Carlo CRISP (Rio - Ilheus - Sao Paulo Collaboration) model. The most relevant nuclear processes studied were intranuclear cascade and fission-evaporation competition. Preliminary studies showed fair agreement between CRISP model calculation and experimental data of multiplicity of evaporated neutrons (E 20 MeV) were emitted mostly in the intranuclear cascade stage, while evaporation presented larger neutron multiplicity. Fission cross section of 209 mb and spallation cross section of 1788 mb were calculated { both in agreement with experimental data. The fission process resulted in a symmetric mass distribution. Another Monte Carlo code, MCNP, was used for radiation transport in order to understand the role of a spallation neutron source in a ADS (Accelerator Driven System) nuclear reactor. Initially, a PWR reactor was simulated to study the isotopic compositions in spent nuclear fuel. As a rst attempt, a spallation neutron source was adapted to an industrial size nuclear reactor. The results showed no evidence of incineration of transuranic elements and modifications were suggested. (author)

  11. High energy medical accelerators

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1990-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (carbon, oxygen, neon), has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. These high energy medical accelerators are presented in this paper. (author) 15 refs.; 14 figs.; 8 tabs

  12. Compton scattering at high intensities

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-12-01

    High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.

  13. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  14. Prospects at high energies

    International Nuclear Information System (INIS)

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs

  15. High Energy $\

    CERN Multimedia

    2002-01-01

    This experiment is a high statistics exposure of BEBC filled with hydrogen to both @n and &bar.@n beams. The principal physics aims are : \\item a) The study of the production of charmed mesons and baryons using fully constrained events. \\end{enumerate} b) The study of neutral current interactions on the free proton. \\item c) Measurement of the cross-sections for production of exclusive final state N* and @D resonances. \\item d) Studies of hadronic final states in charged and neutral current reactions. \\item e) Measurement of inclusive charged current cross-sections and structure functions. \\end{enumerate}\\\\ \\\\ The neutrino flux is determined by monitoring the flux of muons in the neutrino shield. The Internal Picket Fence and External Muon Identifier of BEBC are essential parts of the experiment. High resolution cameras are used to search for visible decays of short-lived particles.

  16. High energy

    International Nuclear Information System (INIS)

    Bonner, B.E.; Roberts, J.B. Jr.

    1990-01-01

    We report here on the considerable progress that we made for the year beginning November 1, 1989, for DOE Contract No. AS05-76ERO5096. One of our Fermilab experiments, E704 -- polarization studies with 200 GeV protons, was run from February through August of this year. This experiment has been in the planning, construction, and commissioning stages for over ten years. In this report we detail just what measurements we managed to complete during the run. Our other Fermilab experiment, E683 -- photoproduction of jets, has had parasitic test beam during most of the same period. There was also a one week engineering test run in June. The schedule calls for a three month data run beginning in January, 1991. We also had three test runs for our CERN experiment, NA47 (SMC) -- spin dependent structure functions for the proton and neutron. We are in the midst of major apparatus construction for this experiment. More of our plans for the future are included in the accompanying Renewal Proposal. As in recent years, the format we follow in both the Progress Report and the Renewal Proposal is to have a brief writeup on each individual experiment and to include in the appendices copies of published papers which provide much greater detail. For manuscripts that have been submitted for publication and experimental proposals, we provide only the cover and abstract page. The aim is to concentrate on the physics goals, results and their significance in the main body of the report. For our two Fermilab experiments and the SMC experiment, exhaustive reports of the physics goals have been provided in previous years and are not repeated here

  17. High energy particle transport code NMTC/JAM

    International Nuclear Information System (INIS)

    Niita, K.; Takada, H.; Meigo, S.; Ikeda, Y.

    2001-01-01

    We have developed a high energy particle transport code NMTC/JAM, which is an upgrade version of NMTC/JAERI97. The available energy range of NMTC/JAM is, in principle, extended to 200 GeV for nucleons and mesons including the high energy nuclear reaction code JAM for the intra-nuclear cascade part. We compare the calculations by NMTC/JAM code with the experimental data of thin and thick targets for proton induced reactions up to several 10 GeV. The results of NMTC/JAM code show excellent agreement with the experimental data. From these code validation, it is concluded that NMTC/JAM is reliable in neutronics optimization study of the high intense spallation neutron utilization facility. (author)

  18. Theoretical study of the effect of the size of a high-energy proton beam of the Large Hadron Collider on the formation and propagation of shock waves in copper irradiated by 450-GeV proton beams

    Science.gov (United States)

    Ryazanov, A. I.; Stepakov, A. V.; Vasilyev, Ya. S.; Ferrari, A.

    2014-02-01

    The interaction of 450-GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the analysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsystem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron-phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6, 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90, 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic and ionic subsystems of the irradiated material and is based on the hydrodynamic approximation proposed by Zel'dovich [Ya.B. Zel'dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002)]. This model makes it possible to obtain the space-time distributions of the main physical characteristics (temperatures of the ionic and electronic subsystems, density, pressure, etc.) in materials irradiated by high-energy proton beams and to analyze the formation and propagation of shock waves in them. The nonlinear differential equations describing the conservation laws of mass, energy, and momentum of electrons and ions in the Euler variables in the case of the propagation of shock waves has been solved with the Godunov scheme [S. K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian

  19. A unified treatment of high energy interactions

    International Nuclear Information System (INIS)

    Drescher, H.J.; Werner, K.; Ostapchenko, S.; Centre National de la Recherche Scientifique, 44 - Nantes

    1999-01-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author)

  20. Future of high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  1. High-intensity laser physics

    International Nuclear Information System (INIS)

    Mohideen, U.

    1993-01-01

    This thesis is a study of the effect of high intensity lasers on atoms, free electrons and the generation of X-rays from solid density plasmas. The laser produced 50 milli Joule 180 femto sec pulses at 5 Hz. This translates to a maximum intensity of 5 x 10 18 W/cm 2 . At such high fields the AC stark shifts of atoms placed at the focus is much greater than the ionization energy. The characteristics of multiphoton ionization of atoms in intense laser fields was studied by angle resolved photoelectron spectroscopy. Free electrons placed in high intensity laser fields lead to harmonic generation. This phenomenon of Nonlinear Compton Scattering was theoretically investigated. Also, when these high intensity pulses are focused on solids a hot plasma is created. This plasma is a bright source of a short X-ray pulse. The pulse-width of X-rays from these solid density plasmas was measured by time-resolved X-ray spectroscopy

  2. A High Intensity Hadron Facility, AGS II

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Lowenstein, D.I.

    1988-01-01

    We have present one of several possibilities for the evolution of the AGS complex into a high intensity hadron facility. One could consider other alternatives, such as using the AGS as the Collector and constructing a new 9-30 GeV machine. We believe the most responsible scenario must minimize the cost and downtime to the ongoing physics program. With a stepwise approach, starting with the Booster, the physics program can evolve without a single major commitment in funds. At each step an evaluation of the funds versus physics merit can be made. As a final aside, each upgrade at the AGS and Booster is presently being implemented to support an interleaved operation of both protons and ions. 1 fig., 6 tabs

  3. Tolerable Beam Loss at High-Intensity Machines

    International Nuclear Information System (INIS)

    Krivosheev, Oleg E.; Mokhov, Nikolai V.

    2000-01-01

    Tolerable beam losses are estimated for high-intensity ring accelerators with proton energy of 3 to 16 GeV. Dependence on beam energy, lattice and magnet geometry is studied via full Monte Carlo MARS14 simulations in lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic fields

  4. Nuclear diagnostics of high intensity laser plasma interactions

    International Nuclear Information System (INIS)

    Krushelnick, K.; Santala, M.I.K.; Beg, F.N.; Clark, E.L.; Dangor, A.E.; Tatarakis, M.; Watts, I.; Wei, M.S.; Zepf, M.; Ledingham, K.W.D.; McCanny, T.; Spencer, I.; Clarke, R.J.; Norreys, P.A.

    2002-01-01

    Nuclear activation has been observed in materials exposed to energetic protons and heavy ions generated from high intensity laser-solid interactions (at focused intensities up to 5x10 19 W/cm 2 ). The energy spectrum of the protons is determined through the use of these nuclear activation techniques and is found to be consistent with other ion diagnostics. Heavy ion fusion reactions and large neutron fluxes from the (p, n) reactions were also observed. The reduction of proton emission and increase in heavy ion energy using heated targets was also observed

  5. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  6. High intensity neutrino oscillation facilities in Europe

    CERN Document Server

    Edgecock, T.R.; Davenne, T.; Densham, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo-Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrzycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A.C.; Kravchuk, V.L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T.Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S.K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J.J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López-Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L.J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J.J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J.S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  7. High intensity radiation imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1976-01-01

    A nuclear imaging system is described for mapping a spatially distributed source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound in which the nuclear energy is spatially coded by a zone plate positioned between the source and a spatial detector, and a half tone screen is positioned between the source and the zone plate to increase the definition of the image

  8. Selection and acquisition of data for the measurement of the spin rotation parameters in pion-proton scattering at high energies

    International Nuclear Information System (INIS)

    Raoul, Jean-Claude

    1971-01-01

    The experiment consists in measuring the polarisation of the recoil protons from elastic scattering of positive or negative pions on a polarised proton target (L. M. N.). The polarimeter consists in carbon plates alternated with wire spark chambers, The associated electronics has the following main functions: selective triggering of the spark chambers, acquisition and transcription on magnetic tape of all relevant information, continuous check of the various parts of the equipment. About one hundred scintillation counters provide information on the geometry of the pion-proton scattering. A fast logic treats these information. This logic, made of integrated circuits MECL, generates the selective trigger with a transit time of less than 150 ns, it reduces the triggering rate on background events by almost one order of magnitude. A small computer is used for acquisition and transcription of the data, and for the control of the experiment. (author) [fr

  9. High intensity neutrino oscillation facilities in Europe

    Directory of Open Access Journals (Sweden)

    T. R. Edgecock

    2013-02-01

    Full Text Available The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ^{+} and μ^{-} beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular ^{6}He and ^{18}Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  10. Use of a low energy proton accelerator for calibrating a large NaI(Tl) array in a high energy physics experiment

    International Nuclear Information System (INIS)

    Kirkbride, G.I.; O'Reilly, J.G.; Tompkins, J.C.

    1978-01-01

    The use of a 500 keV Van de Graaff proton accelerator to produce γ-rays in the range 4 - 18 MeV via nuclear reactions for the purpose of calibrating a large NaI(Tl) crystal array is reported. Data analysis indicates an energy calibration to approx. 1% over this range

  11. High energy physics problems

    International Nuclear Information System (INIS)

    Arbuzov, B.A.

    1977-01-01

    Described are modern views on the particle structure and particle interactions at high energies. According to the latest data recieved, all particles can be classified in three groups: 1) strong interacting hadrons; 2) leptons, having no strong interactions; 3) photon. The particle structure is described in a quark model, and with the use of gluons. The elementary particle theory is based on the quantum field theory. The energy increase of interacting particles enables to check the main theory principles, such as conventions for causality, relativistic invariance and unitarity. Investigations of weak interactions are of great importance. The progress in this field is connected with unified gauge theories of weak and electromagnetic interactions. For weak interactions promissing are the experiments with colliding electron-proton rings. The new data, especially at higher energies, will lead to a further refinement of the nature of particles and their interactions

  12. Effects of next-to-leading order DGLAP evolution on generalized parton distributions of the proton and deeply virtual Compton scattering at high energy

    Energy Technology Data Exchange (ETDEWEB)

    Khanpour, Hamzeh [University of Science and Technology of Mazandaran, Department of Physics, Behshahr (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Goharipour, Muhammad [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Guzey, Vadim [Petersburg Nuclear Physics Institute (PNPI), National Research Center ' ' Kurchatov Institute' ' , Gatchina (Russian Federation)

    2018-01-15

    We studied the effects of NLO Q{sup 2} evolution of generalized parton distributions (GPDs) using the aligned-jet model for the singlet quark and gluon GPDs at an initial evolution scale. We found that the skewness ratio for quarks is a slow logarithmic function of Q{sup 2}, reaching r{sup S} = 1.5-2 at Q{sup 2} = 100 GeV{sup 2} and r{sup g} ∼ 1 for gluons in a wide range of Q{sup 2}. Using the resulting GPDs, we calculated the DVCS cross section on the proton in NLO pQCD and found that this model in conjunction with modern parameterizations of proton PDFs (CJ15 and CT14) provides a good description of the available H1 and ZEUS data in a wide kinematic range. (orig.)

  13. Measurement of activation reaction rate distribution on a mercury target with a lead-reflector and light-water-moderator for high energy proton bombardment using AGS accelerator

    International Nuclear Information System (INIS)

    Kasugai, Yoshimi; Takada, Hiroshi; Meigo, Shin-ichiro

    2001-02-01

    Characteristic of spallation neutrons driven by GeV protons from a mercury target with a lead-reflector and light-water-moderator was studied experimentally using the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Several reaction rates along with the mercury target were measured with the activation method at incident proton energies of 1.94, 12 and 24 GeV. Indium, niobium, aluminum, cobalt, nickel and bismuth were used as activation detectors to cover the threshold energy of between 0.33 and 40.9 MeV. This report summarizes the experimental procedure with all the measured data. (author)

  14. Comparative yields of alkali elements and thallium from uranium irradiated with high-energy protons, /sup 3/He and /sup 12/C

    CERN Document Server

    Gustafsson, Hans Åke; Jonson, B; Jonsson, O C; Lindfors, V; Mattsson, S; Poskanzer, A M; Ravn, H L; Schardt, D

    1981-01-01

    Mass-separated ion beams of the alkali elements Na, K, and Fr, and of the element Tl are produced by bombarding a uranium target with 600 Me V protons, 890 MeV /sup 3/He/sup 2+/, and 936 MeV /sup 12/C/sup 4+/. Isotopic production yields are reported. In the case of the /sup 12/C beam these are thick target yields. Absolute cross-sections for the proton-beam data were deduced by normalizing the delay-time corrected yield curves to measured cross-sections. For products farthest away from stability the /sup 3/He/sup 2+/ beam generally gives the highest yields. (17 refs).

  15. High Intensity Source Laboratory (HISL)

    International Nuclear Information System (INIS)

    1992-01-01

    The High Intensity Source Laboratory (HISL) is a laboratory facility operated for the US Department of Energy (DOE) by EG ampersand G, Energy Measurements (EG ampersand G/EM). This document is intended as an overview -- primarily for external users -- of the general purposes and capabilities of HISL; numerous technical details are beyond its scope. Moreover, systems at HISL are added, deleted, and modified to suit current needs, and upgraded with continuing development. Consequently, interested parties are invited to contact the HISL manager for detailed, current, technical, and administrative information. The HISL develops and operates pulsed radiation sources with energies, intensities, and pulse widths appropriate for several applications. Principal among these are development, characterization, and calibration of various high-bandwidth radiation detectors and diagnostic systems. Hardness/vulnerability of electronic or other sensitive components to radiation is also tested. In this connection, source development generally focuses on attending (1) the highest possible intensities with (2) reasonably short pulse widths and (3) comprehensive output characterization

  16. Characteristics of the Biological Effects and the RBE of High Energy Protons; Caracteristiques des Effets Biologiques et EBR des Protons de Haute Energie; Osobennosti biologicheskogo dejstviya i obeh protonov vysokikh ehnergii; Caracteristicas de los Efectos Biologicos y de la EBR de los Protones de Elevada Energia

    Energy Technology Data Exchange (ETDEWEB)

    Grigor' ev, Ju. G.; Darenskaja, N. G.; Domshlak, M. M.; Lebedinskij, A. V.; Nefedov, Ju. G.; Ryzhov, N. I.

    1964-03-15

    The characteristics of the biological effects of high-energy protons (120, 240 and 510 MeV) were studied in experiments on mice, rats and dogs. It was shown that together with a certain resemblance or identity in radiation damage due to the effects of X-rays and protons, there were certain differences in the case of proton irradiation. In the proton irradiation of dogs the haemorrhagic syndrome was more pronounced. Haemorrhage appeared earlier in the animals and was more abundant. A difference was found in proton RBE levels for small animals (rats, mice) and large animals (dogs). This difference is quite large and equals respectively 0.7 and 1.0 * 1.15. Some considerations are presented in the report on the cause of these differences. (author) [French] Les auteurs ont etudie les caracteristiques des effets biologiques des protons de haute energie (120, 240 et 510 MeV) au cours d'experiences sur des souris, des rats et des chiens. Ils montrent que si les dommages causes par les rayons X et les protons presentent une certaine ressemblance ou des caracteres identiques, on observe des differences dans le cas de l'irradiation par les protons. Chez les chiens exposes aux protons, le syndrome hemorragique etait plus prononce. L'hemorragie s'est manifestee plus tot chez ces animaux et etait plus abondante. Les auteurs ont decele une difference dans l*EBRdes protons pour les petits animaux (rats, souris) et pour les grands animaux (chiens). Cette difference etait importante: 0,7 dans le premier cas et de 1,0 a 1,15 dans le second cas. On trouve dans le memoire quelques considerations sur la cause de ces differences. (author) [Spanish] Los autores estudiaron las caracteristicas de los efectos biologicos de los protones de elevada energia (120, 240 y 510 MeV) mediante experimentos con ratones, ratas y perros. Comprobaron que a pesar de ciertas semejanzas en las radiolesiones causadas por los rayos X y los protones, los efectos de estos ultimos acusan algunas diferencias. El

  17. Spin asymmetries $A_1$ of the proton and the deuteron in the low $x$ and low $Q^2$ region from polarized high energy muon scattering

    CERN Document Server

    AUTHOR|(CDS)2067425; Arvidson, A; Badelek, B; Baum, G; Berglund, P; Betev, L; De Botton, N R; Bradamante, Franco; Bravar, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krämer, Dietrich; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Reicherz, G; Roberts, J; Rodríguez, M; Rondio, Ewa; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Willumeit, R; Windmolders, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    We present the results of the spin asymmetries $A_1$ of the proton and the deuteron in the kinematic region extending down to $x=6\\cdot 10^{-5}$ and $Q^2=0.01$ GeV$^2$. The data were taken with a dedicated low $x$ trigger, which required hadron detection in addition to the scattered muon, so as to reduce the background at low $x$. The results complement our previous measurements and the two sets are consistent in the overlap region. No sig\\-ni\\-fi\\-cant spin effects are found in the newly explored region.

  18. P-West High Intensity Secondary Beam Area Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.; Currier, R.; Eartly, D.; Guthke, A.; Johnson, G.; Lee, D.; Dram, R.; Villegas, E.; Rest, J.; Tilles, E.; Vander Arend, P.

    1977-03-01

    This report gives the initial design parameters of a 1000 GeV High Intensity Superconducting Secondary Beam Laboratory to be situated in the Proton Area downstream of the existing Proton West experimental station. The area will provide Fermilab with a major capability for experimentation with pion and antiproton beams of intensities and of energies available at no other laboratory and with an electron beam with excellent spot size, intensity, and purity at energies far above that available at electron machines. Detailed beam design, area layouts, and cost estimates are presented, along with the design considerations.

  19. Isotopic distribution of Rb, In and Cs, produced in interactions of high energy protons, deuterons and alpha particles with Ta nuclei

    International Nuclear Information System (INIS)

    Avdeev, S.P.; Karnaukhov, V.A.; Korovin, G.Yu.; Kuznetsov, V.D.; Nad', T.; Petrov, L.A.

    1982-01-01

    The purpose of the paper is to clarify how the isotopical distribution form of deep fissaon products depends on the type of the bombarding particles. Isotopical distributions of Rb, In, Cs, produced at interactions of protons, deuterons ( 8 GeV) and α particles (15.2 GeV) with Ta nuclei are measured by means of the ''off-line'' mass separation. The isotopical distributions are obtained by the experimentally measured yields directly without complex procedure of processing necessary for transition to the charge distribution. It was found that neither the position of the maximum, nor the shape of the curve are changed essentially at variation of the projectile. In all the cases the relative behaviour of the distribution is in a qualitative agreement with the calculations based upon the semiempirical formula by Rudstam. For indium the mesurements are performed also with the proton beam of energy 0.66 GeV. In this case the shape of the isotopic distribution is influenced by the fission process [ru

  20. High Intensity Polarized Electron Sources

    International Nuclear Information System (INIS)

    Poelker, Benard; Adderley, Philip; Brittian, Joshua; Clark, J.; Grames, Joseph; Hansknecht, John; McCarter, James; Stutzman, Marcy; Suleiman, Riad; Surles-law, Kenneth

    2008-01-01

    During the 1990s, at numerous facilities world wide, extensive RandD devoted to constructing reliable GaAs photoguns helped ensure successful accelerator-based nuclear and high-energy physics programs using spin polarized electron beams. Today, polarized electron source technology is considered mature, with most GaAs photoguns meeting accelerator and experiment beam specifications in a relatively trouble-free manner. Proposals for new collider facilities however, require electron beams with parameters beyond today's state-of-the-art and serve to renew interest in conducting polarized electron source RandD. And at CEBAF/Jefferson Lab, there is an immediate pressing need to prepare for new experiments that require considerably more beam current than before. One experiment in particular?Q-weak, a parity violation experiment that will look for physics beyond the Standard Model?requires 180 uA average current at polarization >80% for a duration of one year, with run-averaged helicity correlate

  1. A high intensity beam handling system at the KEK-PS new experimental hall

    International Nuclear Information System (INIS)

    Tanaka, K.H.; Minakawa, M.; Yamanoi, Y.

    1991-01-01

    We would like to summarize newly developed technology for handling high-intensity beams. This was practically employed in the beam-handling system of primary protons at the KEK-PS new experimental hall. (author)

  2. Designing high energy accelerators under DOE's ''New Culture'' for environment and safety: An example, the Fermilab 150 GeV Main Injector proton synchrotron

    International Nuclear Information System (INIS)

    Fowler, W.B.

    1991-05-01

    Fermilab has initiated a design for a new Main Injector (150 GeV proton synchrotron) to take the place of the current Main Ring accelerator. ''New Culture'' environmental and safety questions are having to be addressed. The paper will detail the necessary steps that have to be taken in order to obtain the permits which control the start of construction. Obviously these depend on site-specific circumstances, however some steps are universally applicable. In the example, floodplains and wetlands are affected and therefore the National Environmental Policy Act (NEPA) compliance is a significant issue. The important feature is to reduce the relevant regulations to a concise set of easily understandable requirements. The effort required and the associated time line will be presented so that other new accelerator proposals can benefit from the experience gained from this example

  3. CIGS Solar Cells for Space Applications: Numerical Simulation of the Effect of Traps Created by High-Energy Electron and Proton Irradiation on the Performance of Solar Cells

    Science.gov (United States)

    Dabbabi, Samar; Ben Nasr, Tarek; Turki Kamoun, Najoua

    2018-02-01

    Numerical simulation is carried out using the Silvaco ATLAS software to predict the effect of 1-MeV electron and 4-MeV proton irradiation on the performance of a Cu(In, Ga)Se2 (CIGS) solar cell that operates under the air mass zero spectrum (AM0). As a consequence of irradiation, two types of traps are induced including the donor- and acceptor-type traps. Only one of them (the donor-type trap) is found responsible for the degradation of the open-circuit voltage (V OC), fill factor (FF) and efficiency (η), while the short circuit current (J SC) remains essentially unaffected. The modelling simulation validity is verified by comparison with the experimental data. This article shows that CIGS solar cells are suited for space applications.

  4. Designing high energy accelerators under DOE's 'New Culture' for environment and safety: An example, the Fermilab 150 GeV Main Injector proton synchrotron

    International Nuclear Information System (INIS)

    Fowler, W.B.

    1991-01-01

    Fermilab has initiated a design for a new Main Injector (150 GeV proton synchrotron) to take the place of the current Main Ring accelerator. 'New Culture' environmental and safety questions are having to be addressed. The paper details the necessary steps that have to be taken in order to obtain the permits which control the start of construction. Obviously these depend on site-specific circumstances, however some steps are universally applicable. In the example, floodplains and wetlands are affected and therefore the National Environmental Policy Act (NEPA) compliance is a significant issue. The important feature is to reduce the relevant regulations to a concise set of easily understandable requirements. The effort required and the associated time line are presented so that other new accelerator proposals can benefit from the experience gained from this example

  5. Constructing high energy accelerators under DOE's open-quotes New Cultureclose quotes for environment and safety: An example, the Fermilab 150 GeV Main Injector proton synchrotron

    International Nuclear Information System (INIS)

    Fowler, W.

    1993-01-01

    Fermilab has initiated construction of a new Main Injector (150 GeV proton synchrotron) to take the place of the current Main RIng accelerator. open-quotes New Cultureclose quotes environmental and safety questions have been addressed. The paper will detail the necessary steps that were accomplished in order to obtain the permits which controlled the start of construction. Obviously these depend on site-specific circumstances, however, some steps are universally applicable. In the example, floodplains and wetlands were affected and therefore the National Environmental Protection Act (NEPA) compliance was a significant issue. The important feature was to reduce the relevant regulations to a concise set of easily understandable requirements and to perform the work required in order to proceed with the accelerator construction in a timely fashion. The effort required and the associated time line will be presented so that other new accelerator proposals can benefit from the experience gained from this example

  6. Improved forced impulse method calculations of single and double ionization of helium by collision with high-energy protons and antiprotons

    International Nuclear Information System (INIS)

    Ford, A.L.; Reading, J.F.

    1994-01-01

    Our previous forced impulse method calculations of single and double ionization of helium by protons and antiprotons have been improved by including d orbitals in the target centre basis. The calculations are in good agreement with experimental measurements of the ratio R of double to single ionization, without the 1.35 scaling factor we applied to our previous results. We also compare the separate single and double ionization cross sections to experiment and find good agreement. Experimental cross sections differential in projectile scattering angle at large angle (greater than 2.5 mrad) are compared to our impact parameter dependent ionization probabilities at small impact parameter, for the double to single ratio. The agreement is good, except at the lowest energy we have considered, 0.3 eV. (Author)

  7. Spin asymmetries $A_1$ and structure functions $g_1$ of the proton and the deuteron from polarized high energy muon scattering

    CERN Document Server

    AUTHOR|(CDS)2067425; Arik, E; Arvidson, A; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; Björkholm, P; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Golutvin, I A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiryushin, Yu T; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Pussieux, T; Rädel, G; Rijllart, A; Reicherz, G; Roberts, J; Rock, S E; Rodríguez, M; Rondio, Ewa; Ropelewski, Leszek; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Seitz, R; Semertzidis, Y K; Sergeev, S; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zamiatin, N I; Zhao, J

    1998-01-01

    We present the final results of the spin asymmetries $A_1$ and the spin structure functions $g_1$ of the proton and the deuteron in the kinematic range $0.0008

  8. [Research in high energy physics

    International Nuclear Information System (INIS)

    LoSecco, J.

    1989-01-01

    We review the efforts of the Notre Dame non accelerator high energy physics group. Our major effort has been directed toward the IMB deep underground detector. Since the departure of the Michigan group our responsibilities to the group have grown. We are also very active in pursuing physics with the IMB 3 detector. Currently we are studying proton decay, point neutrino sources and neutrino oscillations with the contained event sample

  9. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  10. The linear proton accelerator for the MYRRHA-ADS

    International Nuclear Information System (INIS)

    Vandeplassche, D.; Medeiros Ramao, L.

    2013-01-01

    The article discusses the development of a linear proton accelerator for the MYRRHA Accelerator Driven System (ADS). The linear proton accelerator provides a high energy and high intensity proton beam that is directed to a spallation target, which will deliver neutrons to a subcritical nuclear reactor core. The article describes the MYRRHA linear accelerator, which mainly consists of a sequence of superconducting accelerating radiofrequent cavities that are positioned in a linear configuration. The beam requirements for MYRRHA are discussed involving, amongst others, a continuous wave beam delivery mode with a high reliability goal. The key concepts to increase the reliability of the accelerator are described.

  11. Microstructural evolution in modified 9Cr-1Mo ferritic/martensitic steel irradiated with mixed high-energy proton and neutron spectra at low temperatures

    International Nuclear Information System (INIS)

    Sencer, B.H.; Garner, F.A.; Gelles, D.S.; Bond, G.M.; Maloy, S.A.

    2002-01-01

    Modified 9Cr-1Mo ferritic/martensitic steel was exposed at 32-57 deg. C to a mixed proton/neutron particle flux and spectrum at the Los Alamos Neutron Science Center. The microstructure of unirradiated 9Cr-1Mo consists of laths, dislocations and carbides. Examination of electron diffraction patterns obtained from extraction replicas of unirradiated 9Cr-1Mo revealed that the precipitate microstructure was primarily dominated by M 23 C 6 carbides. The post-irradiation microstructure contained black-spot damage in addition to precipitates and dislocations. Examination of electron diffraction patterns revealed diffuse rings from M 23 C 6 carbides, indicating amorphization and/or nanocrystallinity. Crystalline MC carbides were also found. No cavity formation was found although a significant amount of helium and hydrogen generation had been generated. TEM-EDS examination of extraction replicas for carbides from unirradiated and irradiated samples did not show any detectable changes in composition of either M 23 C 6 or MC carbides. There was also no evident change in carbide size. Lattice images of M 23 C 6 carbides revealed an amorphous microstructure following irradiation, but MC carbides were still crystalline

  12. High energy hadron spin-flip amplitude

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    2016-01-01

    The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru

  13. Composition Changes After the "Halloween" Solar Proton Event: The High-Energy Particle Precipitation in the Atmosphere (HEPPA) Model Versus MIPAS Data Intercomparison Study

    Science.gov (United States)

    Funke, B.; Baumgaertner, A.; Calisto, M.; Egorova, T.; Jackman, C. H.; Kieser, J.; Krivolutsky, A.; Lopez-Puertas, M.; Marsh. D. R.; Reddmann, T.; hide

    2010-01-01

    We have compared composition changes of NO, NO2, H2O2,O3, N2O, HNO3 , N2O5, HNO4, ClO, HOCl, and ClONO2 as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat in the aftermath of the "Halloween" solar proton event (SPE) in October/November 2003 at 25-0.01 hPa in the Northern hemisphere (40-90 N) and simulations performed by the following atmospheric models: the Bremen 2D model (B2dM) and Bremen 3D Chemical Transport Model (B3dCTM), the Central Aerological Observatory (CAO) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the ECHAM5/MESSY Atmospheric Chemistry (EMAC) model, the modeling tool for SO1ar Climate Ozone Links studies (SOCOL and SOCOLi), and the Whole Atmosphere Community Climate Model (WACCM4). The large number of participating models allowed for an evaluation of the overall ability of atmospheric models to reproduce observed atmospheric perturbations generated by SPEs, particularly with respect to NOS, and ozone changes. We have further assessed the meteorological conditions and their implications on the chemical response to the SPE in both the models and observations by comparing temperature and tracer (CH4 and CO) fields. Simulated SPE-induced ozone losses agree on average within 5% with the observations. Simulated NO(y) enhancements around 1 hPa, however, are typically 30% higher than indicated by the observations which can be partly attributed to an overestimation of simulated electron-induced ionization. The analysis of the observed and modeled NO(y) partitioning in the aftermath of the SPE has demonstrated the need to implement additional ion chemistry (HNO3 formation via ion-ion recombination and water cluster ions) into the chemical schemes. An overestimation of observed H2O2 enhancements by all models hints at an underestimation of the OH/HO2 ratio in the upper polar stratosphere during the SPE. The

  14. Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA model versus MIPAS data intercomparison study

    Directory of Open Access Journals (Sweden)

    B. Funke

    2011-09-01

    Full Text Available We have compared composition changes of NO, NO2, H2O2, O3, N2O, HNO3, N2O5, HNO4, ClO, HOCl, and ClONO2 as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on Envisat in the aftermath of the "Halloween" solar proton event (SPE in late October 2003 at 25–0.01 hPa in the Northern Hemisphere (40–90° N and simulations performed by the following atmospheric models: the Bremen 2-D model (B2dM and Bremen 3-D Chemical Transport Model (B3dCTM, the Central Aerological Observatory (CAO model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA, the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA, the ECHAM5/MESSy Atmospheric Chemistry (EMAC model, the modeling tool for SOlar Climate Ozone Links studies (SOCOL and SOCOLi, and the Whole Atmosphere Community Climate Model (WACCM4. The large number of participating models allowed for an evaluation of the overall ability of atmospheric models to reproduce observed atmospheric perturbations generated by SPEs, particularly with respect to NOy and ozone changes. We have further assessed the meteorological conditions and their implications for the chemical response to the SPE in both the models and observations by comparing temperature and tracer (CH4 and CO fields.

    Simulated SPE-induced ozone losses agree on average within 5 % with the observations. Simulated NOy enhancements around 1 hPa, however, are typically 30 % higher than indicated by the observations which are likely to be related to deficiencies in the used ionization rates, though other error sources related to the models' atmospheric background state and/or transport schemes cannot be excluded. The analysis of the observed and modeled NOy partitioning in the aftermath of the SPE has demonstrated the need to implement

  15. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  16. Half-integer resonance crossing in high-intensity rings

    Directory of Open Access Journals (Sweden)

    A. V. Fedotov

    2002-02-01

    Full Text Available A detailed study of the influence of space charge on the crossing of second-order resonances is presented and associated with the space-charge limit of high-intensity rings. Two-dimensional simulation studies are compared with envelope models, which agree in the finding of an increased intensity limit due to the coherent frequency shift. This result is also found for realistic bunched beams with multiturn injection painting. Characteristic features such as the influence of tune splitting, structure resonances, and the role of envelope instabilities are discussed in detail. The theoretical limits are found to be in good agreement with the performance of high-intensity proton machines.

  17. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  18. H- Ion Sources for High Intensity Proton Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dudnikov, Vadim [Muons, Inc., Batavia, IL (United States)

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  19. High intensity proton acceleration at the Brookhaven AGS -- An update

    International Nuclear Information System (INIS)

    Ahrens, L.; Alessi, J.; Blaskiewicz, M.

    1997-01-01

    The AGS accelerator complex is into its third year of 60+ x 10 12 (teraproton = Tp) per cycle operation. The hardware making up the complex as configured in 1997 is briefly mentioned. The present level of accelerator performance is discussed. This includes beam transfer efficiencies at each step in the acceleration process, i.e. losses; which are a serious issue at this intensity level. Progress made in understanding beam behavior at the Linac-to-Booster (LtB) injection, at the Booster-to-AGS (BtA) transfer as well as across the 450 ms AGS accumulation porch is presented. The state of transition crossing, with the gamma-tr jump is described. Coherent effects including those driven by space charge are important at all of these steps

  20. Fermilab Plan with a High Intensity Proton Source

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Fermilab, the US’s primary laboratory for particle physics, proposes a plan to maintain leadership for the laboratory and U.S. particle physics in the quest to discover the fundamental nature of the physical universe in the decades ahead. Discoveries of the physics of the Quantum Universe would come from powerful next generation particle accelerators. Fermilab’s Tevatron, currently the world’s most powerful particle accelerator, will shut down by the end of this decade after the LHC at CERN begins operations. At the LHC, U.S. physicists will join scientists from around the world in the exploration of the physics of the Terascale. To follow the LHC, physicists propose the International Linear Collider, a globally funded and operated accelerator to build on LHC results and illuminate Terascale science. Fermilab will work to host the proposed ILC in the U.S. as soon as possible, maintaining the nation’s historic leadership of frontier particle physics. Should events postpone the start of the ILC, Ferm...

  1. High energy density plasma physics using high intensity lasers: past and future

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1999-01-01

    Inertial Confinement Fusion (ICF) research in the US is in a dynamic upswing based on the construction of the National Ignition Facility (NIF). The US Congress has appropriated more than two-thirds of the funds necessary to build NIF. The NIF laser building shell is complete, the concrete structure for the target area is rising above ground level, and contracts for producing the laser hardware are rapidly going into place. The entire facility will be complete by the end of 2003 with eight beams becoming operational at the end of 2001 to begin experiments. All external reviews have recommended that the DOE encourage international collaborations on NIF and the DOE has directed the Project Team to design the facility so that is possible. The DOE has begun expanding several bilateral agreements on fusion energy to include inertial fusion energy (IFE). The DOE has also proposed to the International Energy Agency that its fusion energy activities include IFE. This paper will describe how NIF and the ICF Program intend to implement these changes and outlines some of the proposed experiments

  2. Harvard University High Energy Physics

    International Nuclear Information System (INIS)

    1993-01-01

    The mainly experimental research program in high energy physics at Harvard is summarized in a descriptive fashion according to the following outline: Proton endash antiproton colliding beam program at Fermilab -- CDF (forward/backward electromagnetic calorimeters -- FEM, central muon extension -- CMX, gas calorimetry and electronics development, front-end electronics upgrades, software development, physics analysis, timetable), electron -- positron collisions in the upsilon region -- CLEO (the hardware projects including CLEO II barrel TOF system and silicon drift detector R ampersand D, physics analysis), search for ν μ to ν τ oscillations with the NOMAD experiment at CERN, the solenoidal detector collaboration at the SSC, muon scattering at FNAL -- E665, the L3 experiment, and phenomenological analysis of high-energy bar pp cross sections. 149 refs

  3. Theoretical study of the effect of the size of a high-energy proton beam of the Large Hadron Collider on the formation and propagation of shock waves in copper irradiated by 450-GeV proton beams

    CERN Document Server

    Ryazanov, A I; Vasilyev, Ya S; Ferrari, A

    2014-01-01

    The interaction of 450GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the anal ysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsy stem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron–phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4 , 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6 , 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90 , 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic an...

  4. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  5. Performance of GEM detectors in high intensity particle beams

    CERN Document Server

    Bachmann, S; Ketzer, B; Deutel, M; Ropelewski, Leszek; Sauli, Fabio; Bondar, A E; Buzulutskov, A F; Shekhtman, L I; Sokolov, A; Tatarinov, A A; Vasilev, A; Kappler, S; Schulte, E C

    2001-01-01

    We describe extensive tests of Double GEM and Triple GEM detectors, including full size prototypes for the COMPASS experiment, exposed to high intensity muon, proton and pion beams at the Paul~Scherrer Institute and at CERN. The measurements aim at detecting problems possible under these operation conditions, the main concern being the occurrence of discharges induced by beam particles. Results on the dependence of the probability for induced discharges on the experimental environment are presented and discussed. Implications for the application of GEM~detectors in experiments at high luminosity colliders are illustrated.

  6. Weak interactions at high energies

    International Nuclear Information System (INIS)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references

  7. High Intensity Exercise in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Wens, Inez; Dalgas, Ulrik; Vandenabeele, Frank

    2015-01-01

    Introduction Low-to-moderate intensity exercise improves muscle contractile properties and endurance capacity in multiple sclerosis (MS). The impact of high intensity exercise remains unknown. Methods Thirty-four MS patients were randomized into a sedentary control group (SED, n = 11) and 2...... exercise groups that performed 12 weeks of a high intensity interval (HITR, n = 12) or high intensity continuous cardiovascular training (HCTR, n = 11), both in combination with resistance training. M.vastus lateralis fiber cross sectional area (CSA) and proportion, knee-flexor/extensor strength, body...... composition, maximal endurance capacity and self-reported physical activity levels were assessed before and after 12 weeks. Results Compared to SED, 12 weeks of high intensity exercise increased mean fiber CSA (HITR: +21±7%, HCTR: +23±5%). Furthermore, fiber type I CSA increased in HCTR (+29±6%), whereas type...

  8. High-intensity, subkilovolt x-ray calibration facility

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    A high-intensity subkilovolt x-ray calibration source utilizing proton-induced inner-shell atomic fluorescence of low-Z elements is described. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide intense, nearly monoenergetic x-ray beams. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. Methods of reducing spectral contamination due to hydrocarbon build-up on the target are discussed. Typical x-ray spectra (Cu-L, C-K and B-K) are shown

  9. Development of apparatus for high-intensity beam lines at the KEK-PS new experimental hall

    International Nuclear Information System (INIS)

    Yamanoi, Yutaka; Tanaka, Kazuhiro; Minakawa, Michifumi

    1992-01-01

    The new counter experimental hall was constructed at the KEK 12 GeV Proton Synchrotron (the KEK-PS) in order to handle high-intensity primary proton beams of up to 1 x 10 13 pps (protons per second), which is one order of magnitude greater than the present beam intensity of the KEK-PS, 1 x 10 12 pps. New technologies for handling high-intensity beams have, then, been developed and employed in the new hall construction. A part of our R/D work on handling high intensity beam is briefly reported. (author)

  10. HIGH ENERGY HADRON POLARIMETRY

    International Nuclear Information System (INIS)

    BUNCE, G.

    2007-01-01

    Proton polarimetry at RHIC uses the interference of electromagnetic (EM) and hadronic scattering amplitudes. The EM spin-flip amplitude for protons is responsible for the proton's anomalous magnetic moment, and is large. This then generates a significant analyzing power for small angle elastic scattering. RHIC polarimetry has reached a 5% uncertainty on the beam polarization, and seem capable of reducing this uncertainty further. Polarized neutron beams ax also interesting for RHIC and for a polarized electron-polarized proton/ion collider in the fume. In this case, deuterons, for example, have a very small anomalous magnetic moment, making the approach used for protons impractical. Although it might be possible to use quasielastic scattering from the protons in the deuteron to monitor the polarization. 3-He beams can provide polarized neutrons, and do have a large anomalous magnetic moment, making a similar approach to proton polarimetry possible

  11. Pulsed system for obtaining microdosimetric data with high intensity beams

    International Nuclear Information System (INIS)

    Zaider, M.; Dicello, J.F.; Hiebert, R.D.

    1977-01-01

    The use of heavy particle accelerators for radiation therapy requires high intensity beams in order to produce useful dose rates. The 800-MeV proton beam at LAMPF passes through different production targets to generate secondary pion beams. Conventional microdosimetric techniques are not applicable under these conditions because exceedingly high count rates result in detector damage, gas breakdown, and saturation effects in the electronics. We describe a new microdosimetric system developed at the Pion Biomedical Channel of LAMPF. The accelerator provides a variable low intensity pulse once every ten high intensity macropulses. The voltage on the detector is pulsed in coincidence with the low intensity pulse so that we were able to operate the detector under optimum data-taking conditions. A low noise two-stage preamplifier was built in connection with the pulsed mode operation. A comparison is made between data obtained in pulsed (high intensity beam) and unpulsed (low intensity beam) modes. The spectra obtained by the two methods agree within the experimental uncertainties

  12. Ultra high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  13. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  14. First observations of power MOSFET burnout with high energy neutrons

    International Nuclear Information System (INIS)

    Oberg, D.L.; Wert, J.L.; Normand, E.; Majewski, P.P.; Wender, S.A.

    1996-01-01

    Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage ≥400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed

  15. Radioactive airborne species formed in the air in high energy accelerator tunnels

    International Nuclear Information System (INIS)

    Kondo, K.

    2005-01-01

    Many radioactive airborne species have been observed in the air of high energy accelerator tunnels during machine operation. Radiation protection against these induced airborne radioactivities is one of the key issues for radiation safety, especially at high-energy and high-intense proton accelerators such as the J-PARC (Japan Proton Accelerator Research Complex, Joint project of KEK and JAERI), which is now under construction at the TOKAI site of JAERI. Information on the chemical forms and particle sizes of airborne radioactivities is essential for the estimation of internal doses. For that purpose, the study on radioactive airborne species formed in the air of beam-line tunnels at high-energy accelerators have been extensively conducted by our group. For Be-7, Na-24, S-38, Cl-38,-39, C-11, and N-13, formed by various types of nuclear reactions including nuclear spallation reactions, their aerosol and gaseous fractions are determined by a filter technique. A parallel plate diffusion battery is used for the measurement of aerosol size distributions, and the formation of radioactive aerosols is explained by the attachment of radionuclides to ambient non-radioactive aerosols which are formed through radiation induced reactions. The chemical forms of gaseous species are also determined by using a selective collection method based on a filter technique. A review is given of the physico-chemical properties of these airborne radionuclides produced in the air of accelerator beam-line tunnels.

  16. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  17. The high energy galaxy

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  18. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1993-02-01

    The NIU high energy physics group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, members of the group participate in the SDC collaboration at the SSC

  19. High energy physics and nuclear structure

    International Nuclear Information System (INIS)

    Measday, D.F.; Thomas, A.W.

    1980-01-01

    These proceedings contain the papers presented at the named conference. These concern eletromagnetic interactions, weak interactions, strong interactions at intermediate energy, pion reactions, proton reactions, strong interactions at high energy, as well as new facilities and applications. See hints under the relevant topics. (HSI)

  20. High energy astrophysics

    International Nuclear Information System (INIS)

    Engel, A.R.

    1979-01-01

    High energy astrophysical research carried out at the Blackett Laboratory, Imperial College, London is reviewed. Work considered includes cosmic ray particle detection, x-ray astronomy, gamma-ray astronomy, gamma and x-ray bursts. (U.K.)

  1. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  2. The Biological Effect of Fast Neutrons and High-Energy Protons; Effets Biologiques des Neutrons Rapides et des Protons de Haute Energie; Biologicheskoe dejstvie bystrykh nejtronov i protonov vysokikh ehnergii; Efectos Biologicos de los Neutrones Rapidos y de los Protones de Elevada Energia

    Energy Technology Data Exchange (ETDEWEB)

    Moskalev, Ju. I.; Petrovich, I. K.; Strel' cova, V. N.

    1964-03-15

    The paper gives the results of comparative experiments on the effects of fast neutrons and high-energy protons (500 MeV) on life expectancy, peripheral blood, incidence and rate of appearance of tumours in the rat as a function of administered dose and time of observation. The neutron experiment was performed on 573 and the proton experiment on 490 white rats. The animals irradiated with fast neutrons were given doses between 8.5 and 510 rad, and those irradiated with protons received doses between 28 and 1008 rad. The effective doses for the acute, sub-acute and chronic forms of sickness were established for fast neutrons and for protons. LD{sub 50/30} for neutrons was 408 and for protons 600 rad, and the corresponding LD{sub 50}/{sub 120} values were 380 and 600 rad. The conditions governing rat mortality were analysed both in the early and the later stages of the experiment. It is shown that the average life expectancy of rats irradiated with fast neutrons does not depend on sex. The shape of the dose-effect curve for the various peripheral-blood indexes is strongly dependent not only on the radiosensitivity of the blood cells in question but also on the time of observation. It may change greatly in time for one and the same index. A considerable time after irradiation with either fast neutrons or protons, benign and malignant tumours appear in different tissues of the rats, including the haemopoeitic tissues, mammary glands, pituitary, uterus, ovaries, prostate gland, testicles, liver, kidneys, lungs, gastro-intestinal tract, subcutaneous tissue, lymph nodes, urinary bladder, etc. The over-all incidence of tumours and the number of cases of multi centred neoplasms in females are two to three times higher than in males. The minimum tumour dose for the mammary glands with neutron irradiation is apparently rather less than 42.5 rad. The maximum incidence of tumours of the pituitary is found after irradiation with a dose of 42.5 rad.- At this same dose leucosis and

  3. High energy physics at UC Riverside

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given

  4. Overview of High Intensity Linac Programs in Europe

    CERN Document Server

    Garoby, R

    2004-01-01

    Recent years have seen a boost in the support by the European Union (EU) of accelerator research in Europe. Provided they coordinate their efforts and define common goals and strategies, laboratories and institutions from the member states can receive a financial support reaching 50% of the total project cost. In the field of High Intensity Linacs, the EU has already supported the EURISOL initiative for nuclear physics, which this year is applying for funding of a Design Study, and the development of linacs for Waste Transmutation. More recently, an initiative for high-energy physics has been approved, which includes a programme for the development of pulsed linac technologies. The coordination and synergy imposed by the EU rules increase the benefit of the allocated resources. Combined with the ongoing internal projects in the partner laboratories, these European initiatives represent a strong effort focussed towards the development of linac technologies. This paper summarises the requests from the various E...

  5. 'J-KAREN' - high intensity, high contrast laser

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Okada, Hajime; Sasao, Hajime; Sagisaka, Akito; Ochi, Yoshihiro; Tanaka, Momoko; Kondo, Kiminori; Tateno, Ryo; Sugiyama, Akira; Daido, Hiroyuki; Koike, Masato; Kawanishi, Syunichi; Shimomura, Takuya; Tanoue, Manabu; Wakai, Daisuke; Kondo, Shuji; Kanazawa, Shuhei

    2010-01-01

    We report on the high intensity, high contrast double chirped-pulse amplification (CPA) Ti:sapphire laser system (named J-KAREN). By use of an optical parametric chirped-pulse amplification (OPCPA) preamplifier that is seeded by a cleaned high-energy pulse, a background amplified spontaneous emission (ASE) level of 10 -10 relative to the peak main femtosecond pulse on the picosecond timescales demonstrated with an output energy of 1.7 J and a pulse duration of 30 fs, corresponding to a peak power of 60TW at a 10 Hz repetition rate. This system which uses a cryogenically-cooled Ti:sapphire final amplifier generates focused peak intensity in excess of 10 20 W/cm 2 at a 10 Hz repetition rate. (author)

  6. Applications of super - high intensity lasers in nuclear engineering

    International Nuclear Information System (INIS)

    Salomaa, R.; Hakola, A.; Santala, M.

    2007-01-01

    Laser-plasma interactions arising when a super intense ultrashort laser pulse impinges a solid target creates intense partly collimated and energy resolved photons, high energy electron and protons and neutrons. In addition the plasma plume can generate huge magnetic and electric fields. Also ultra short X-ray pulses are created. We have participated in some of such experiments at Rutherford and Max-Planck Institute and assessed the applications of such kind as laser-driven accelerators. This paper discusses applications in nuclear engineering (neutron sources, isotope separation, fast ignition and transmutation, etc). In particular the potential for extreme time resolution and to partial energy resolution are assessed

  7. Study of nuclear reactions involving heavy nuclei and intermediate- and high-energy protons and an application in nuclear reactor physics (ADS); Estudo das reacoes nucleares envolvendo nucleos pesados e protons a energias intermediarias e altas de uma aplicacao em fisica de reatores nucleares (ADS)

    Energy Technology Data Exchange (ETDEWEB)

    Matuoka, Paula Fernanda Toledo

    2016-07-01

    In the present work, intermediate- and high-energy nuclear reactions involving heavy nuclei and protons were studied with the Monte Carlo CRISP (Rio - Ilheus - Sao Paulo Collaboration) model. The most relevant nuclear processes studied were intranuclear cascade and fission-evaporation competition. Preliminary studies showed fair agreement between CRISP model calculation and experimental data of multiplicity of evaporated neutrons (E < 20 MeV) from the p(1200 MeV) + {sup 208}Pb reaction and of spallation residues from the p(1000 MeV) + {sup 208}Pb reaction. The investigation of neutron multiplicity from proton-induced fission of {sup 232}Th up to 85 MeV showed that it was being overestimated by CRISP model; on the other hand, fission cross section were being underestimated. This behavior is due to limitations of the intranuclear cascade model for low-energies (around 50 MeV). The p(1200 MeV) + {sup 208}Pb reaction was selected for the study of a spallation neutron source. High-energy neutrons (E > 20 MeV) were emitted mostly in the intranuclear cascade stage, while evaporation presented larger neutron multiplicity. Fission cross section of 209 mb and spallation cross section of 1788 mb were calculated both in agreement with experimental data. The fission process resulted in a symmetric mass distribution. Another Monte Carlo code, MCNP, was used for radiation transport in order to understand the role of a spallation neutron source in a ADS (Accelerator Driven System) nuclear reactor. Initially, a PWR reactor was simulated to study the isotopic compositions in spent nuclear fuel. As a rst attempt, a spallation neutron source was adapted to an industrial size nuclear reactor. The results showed no evidence of incineration of transuranic elements and modifications were suggested. (author)

  8. SPES: A new cyclotron-based facility for research and applications with high-intensity beams

    Science.gov (United States)

    Maggiore, M.; Campo, D.; Antonini, P.; Lombardi, A.; Manzolaro, M.; Andrighetto, A.; Monetti, A.; Scarpa, D.; Esposito, J.; Silvestrin, L.

    2017-06-01

    In 2016, Laboratori Nazionali di Legnaro (Italy) started the commissioning of a new accelerator facility based on a high-power cyclotron able to deliver proton beams up to 70 MeV of energy and 700 μA current. Such a machine is the core of the Selective Production of Exotic Species (SPES) project whose main goal is to provide exotics beam for nuclear and astrophysics research and to deliver high-intensity proton beams for medical applications and neutrons generator.

  9. Very high intensity reaction chamber design

    International Nuclear Information System (INIS)

    Devaney, J.J.

    1975-09-01

    The problem of achieving very high intensity irradiation by light in minimal regions was studied. Three types of irradiation chamber are suggested: the common laser-reaction chamber, the folded concentric or near-concentric resonator, and the asymmetric confocal resonator. In all designs the ratio of high-intensity illuminated volume to other volume is highly dependent (to the 3 / 2 power) on the power and fluence tolerances of optical elements, primarily mirrors. Optimization of energy coupling is discussed for the common cavity. For the concentric cavities, optimization for both coherent and incoherent beams is treated. Formulae and numerical examples give the size of chambers, aspect ratios, maximum pass number, image sizes, fluences, and the like. Similarly for the asymmetric confocal chamber, formulae and numerical examples for fluences, dimensions, losses, and totally contained pass numbers are given

  10. High energy radiation detector

    International Nuclear Information System (INIS)

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  11. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  12. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  13. Beam halo in high-intensity hadron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Gerigk, F

    2006-12-21

    This document aims to cover the most relevant mechanisms for the development of beam halo in high-intensity hadron linacs. The introduction outlines the various applications of high-intensity linacs and it will explain why, in the case of the CERN Superconducting Proton Linac (SPL) study a linac was chosen to provide a high-power beam, rather than a different kind of accelerator. The basic equations, needed for the understanding of halo development are derived and employed to study the effects of initial and distributed mismatch on high-current beams. The basic concepts of the particle-core model, envelope modes, parametric resonances, the free-energy approach, and the idea of core-core resonances are introduced and extended to study beams in realistic linac lattices. The approach taken is to study the behavior of beams not only in simplified theoretical focusing structures but to highlight the beam dynamics in realistic accelerators. All effects which are described and derived with simplified analytic models, are tested in realistic lattices and are thus related to observable effects in linear accelerators. This approach involves the use of high-performance particle tracking codes, which are needed to simulate the behavior of the outermost particles in distributions of up to 100 million macro particles. In the end a set of design rules are established and their impact on the design of a typical high-intensity machine, the CERN SPL, is shown. The examples given in this document refer to two different design evolutions of the SPL study: the first conceptual design report (SPL I) and the second conceptual design report (SPL II). (orig.)

  14. Structural dynamic response of target container against proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Kenji; Ishikura, Syuichi; Futakawa, Masatoshi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)

  15. Structural dynamic response of target container against proton beam

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Ishikura, Syuichi; Futakawa, Masatoshi; Hino, Ryutaro

    1997-01-01

    Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)

  16. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1992-01-01

    This progress report discusses research by Columbia University staff in high energy physics. Some of the topics discussed are as follows: lattice gauge theory; quantum chromodynamics; parity doublets; solitons; baryon number violation; black holes; magnetic monopoles; gluon plasma; Chern-Simons theory; and the inflationary universe

  17. High energy astrophysics

    International Nuclear Information System (INIS)

    Shklorsky, I.S.

    1979-01-01

    A selected list of articles of accessible recent review articles and conference reports, wherein up-to-date summaries of various topics in the field of high energy astrophysics can be found, is presented. A special report outlines work done in the Soviet Union in this area. (Auth.)

  18. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  19. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  20. High energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  1. High Energy Physics

    Science.gov (United States)

    Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP

  2. Bevalac, a high-energy heavy-ion facility: status and outlook

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1974-01-01

    The high-energy heavy-ion facility, which has commonly been referred to as the Bevalac, is a synchrotron with B rho of 9000 [kG-in or 2.3 x 10 2 kG-m] having special injectors. The synchrotron has three injectors. The 50 MeV proton injector, originally from BNL, is a tool left over from the high-energy high-intensity days of this productive synchrotron. The 20 MeV linac is a proton linac, designed so conservatively that it was possible to accelerate modest but useful beams of 12 C, 14 N, and 16 O as well as deuterons and alpha particles in the 2 β lambda mode. This was accomplished in 1971. After our first trials, a suggestion made earlier by A. Ghiorso to inject from the SuperHILAC into the synchrotron was actively pursued. Reasons as to why the SuperHILAC is being used as injector to the Bevatron are given

  3. Moderate and high intensity pulsed electric fields

    OpenAIRE

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for pasteurisation are high intensity pulsed electric fields aiming for minimal heat load, with an electric field strength (E) in the range of 15 − 20 kV/cm and pulse width (τ) between 2 − 20 μs. Alternativel...

  4. Cryogenic semiconductor high-intensity radiation monitors

    International Nuclear Information System (INIS)

    Palmieri, V.G.; Bell, W.H.; Borer, K.; Casagrande, L.; Da Via, C.; Devine, S.R.H.; Dezillie, B.; Esposito, A.; Granata, V.; Hauler, F.; Jungermann, L.; Li, Z.; Lourenco, C.; Niinikoski, T.O.; Shea, V. O'; Ruggiero, G.; Sonderegger, P.

    2003-01-01

    This paper describes a novel technique to monitor high-intensity particle beams by means of a semiconductor detector. It consists of cooling a semiconductor detector down to cryogenic temperature to suppress the thermally generated leakage current and to precisely measure the integrated ionization signal. It will be shown that such a device provides very good linearity and a dynamic range wider than is possible with existing techniques. Moreover, thanks to the Lazarus effect, extreme radiation hardness can be achieved providing in turn absolute intensity measurements against precise calibration of the device at low beam flux

  5. The utilization of high-intensity lasers

    International Nuclear Information System (INIS)

    Fabre, E.

    1988-01-01

    The 1988 progress report of the laboratory for the Utilization of High-Intensity Lasers (Polytechnic School, France), is presented. The research program is focused on the laser-plasma physics, on the generation of high pressures by means of laser shock heating, on the laser spectroscopy and on the laser implosions. Numerical simulation codes are developed. Concerning the atomic physics, the investigations on dense plasmas and the x-laser research developments are carried out. The research activities of the laboratory teams, the published papers, the national and international cooperations, are given [fr

  6. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  7. Physics of high intensity nanosecond electron source

    International Nuclear Information System (INIS)

    Herrera-Gomez, A.; Spicer, W.E.

    1993-08-01

    A new high-intensity, short-time electron source is now being used at the Stanford Linear Accelerator Center (SLAC). Using a GaAs negative affinity semiconductor in the construction of the cathode, it is possible to fulfill operation requirements such as peak currents of tens of amperes, peak widths of the order of nanoseconds, hundreds of hours of operation stability, and electron spin polarization. The cathode is illuminated with high intensity laser pulses, and photoemitted electrons constitute the yield. Because of the high currents, some nonlinear effects are present. Very noticeable is the so-called Charge Limit (CL) effect, which consists of a limit on the total charge in each pulse-that is, the total bunch charge stops increasing as the light pulse total energy increases. In this paper, we explain the mechanism of the CL and how it is caused by the photovoltaic effect. Our treatment is based on the Three-Step model of photoemission. We relate the CL to the characteristics of the surface and bulk of the semiconductor, such as doping, band bending, surface vacuum level, and density of surface states. We also discuss possible ways to prevent the Char's Level effect

  8. High intensity discharge device containing oxytrihalides

    Science.gov (United States)

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  9. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  10. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  11. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  12. High energy dosimetry

    International Nuclear Information System (INIS)

    Ruhm, W.

    2010-01-01

    Full text: Currently, quantification of doses from high-energy radiation fields is a topical issue. This is so because high-energy neutrons play an important role for radiation exposure of air crew members and personnel outside the shielding of ion therapy facilities. In an effort to study air crew exposure from cosmic radiation in detail, two Bonner Sphere Spectrometers (BSSs) have recently been installed to measure secondary neutrons from cosmic radiation, one at the environmental research station 'Schneefernerhaus' at an altitude of 2650 m on the Zugspitze mountain, Germany, the other at the Koldewey station close to the North Pole on Spitsbergen. Based on the measured neutron fluence distributions and on fluence-to-dose conversion coefficients, mean ambient dose equivalent rate values of 75.0 ± 2.9 nSv/h and 8.7 ± 0.6 nSv/h were obtained for October 2008, respectively. Neutrons with energies above about 20 MeV contribute about 50% to dose, at 2650 m. Ambient dose equivalent rates measured by means of a standard rem counter and an extended rem counter at the Schneefernerhaus confirm this result. In order to study the response of state-of-the-art radiation instrumentation in such a high-energy radiation field, a benchmark exercise that included both measurements in and simulation of the stray neutron radiation field at the high-energy particle accelerator at GSI, Germany, were performed. This CONRAD (COordinated Network for RAdiation Dosimetry) project was funded by the European Commission, and the organizational framework was provided by the European Radiation Dosimetry Group, EURADOS. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers suggest the neutron fluence distributions to be very similar to those of secondary neutrons from cosmic radiation. The results of this intercomparison exercise in terms of ambient dose equivalent are also discussed

  13. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  14. High energy particles from {gamma}-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Waxman, E [Weizmann Institute of Science, Rehovot (Israel)

    2001-11-15

    A review is presented of the fireball model of {gamma}-ray bursts (GRBs), and of the production in GRB fireballs of high energy protons and neutrinos. Constraints imposed on the model by recent afterglow observations, which support the association of GRB and ultra-high energy cosmic-ray (UHECR) sources, are discussed. Predictions of the GRB model for UHECR production, which can be tested with planned large area UHECR detectors and with planned high energy neutrino telescopes, are reviewed. (author)

  15. SLAC workshop on high energy electroproduction and spin physics

    International Nuclear Information System (INIS)

    1992-01-01

    These Proceedings contain copies of the transparencies presented at the Workshop on High Energy Electroproduction and Spin Physics held at SLAC on February 5--8, 1992. The purpose of this Workshop was to bring people together to discuss the possibilities for new experiments using the SLAC high intensity electron and photon beams and the facilities of End Station A

  16. Applications of SSNTD's in high energy physics

    International Nuclear Information System (INIS)

    Otterlund, I.

    1976-09-01

    Different applications of the emulsion technique in high energy physics are given. Investigations of heavy ion and proton-nucleus reactions with the conventional emulsion technique are presented together with a short interpretation of recent results. Methods of using nuclear emulsion with embedded targets will be discussed. Emulsion stacks in hybrid systems with electronic tagging suggest a new and interesting application of the emulsion technique. (Auth.)

  17. High-energy accelerators in medicine

    CERN Document Server

    Mandrillon, Pierre

    1992-05-04

    The treatment of tumours with charged particles, ranging from protons to "light ions" ( Carbon, Oxygen, Neon) has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. The rationale for this new radiotherapy, the high energy accelerators and the beam delivery systems are presented in these two lectures.

  18. Production of high intensity radioactive beams

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of ∼10 39 cm -2 s -1 , which would yield radioactive beams in excess of 10 11 s -1 . 9 refs., 3 figs., 7 tabs

  19. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  20. Performances of BNL high-intensity synchrotrons

    International Nuclear Information System (INIS)

    Weng, W.T.

    1998-03-01

    The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 x 10 13 ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 x 10 13 ppp surpassing the design goal of 1.5 x 10 13 ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented

  1. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  2. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  3. High energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1991-01-01

    This progress report presents a review of research done over the past five years by the Duke High Energy Physics Group. This research has been centered at Fermilab where we have had a continuing involvement with both the Tevatron collider and fixed-target programs. In 1988 we began extensive detector R ampersand D for the SSC through its Major Subsystem Program. Duke has been an active member of the Solenoidal Detector Collaboration (SDC) since its formation. These last five years has also been used to finish the analysis of data from a series of hybrid bubble chamber experiments which formed the core of Duke's research program in the early 1980's

  4. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  5. Establishment and Study of Dose Fields for the Irradiation of Experimental Animals with High-Energy Protons; Creation et Etude de Champs de Rayonnements pour l'Irradiation d'Animaux de Grande Taille par des Protons de Haute Energie; Sozdanie i issledovanie doznykh polej dlya oblucheniya ehksperimental'nykh zhivotnykh protonami bol'shoj ehnergii; Produccion y Estudio de Campos Radia Torios para la Exposicion de Animales de Laboratorio a Protones de Elevada Energia

    Energy Technology Data Exchange (ETDEWEB)

    Afanas' ev, V. P.; Keirim-Markus, I. B.; Kuznecova, S. S.; Litvinova, Je. G.; Sokolova, I. K.; Stukina, L. E.

    1964-03-15

    Present-day accelerators make it possible to obtain beams of protons which have adequate intensity but are not suitable for the general irradiation of large experimental animals. Using the synchrotron of the Joint Institute of Nuclear Research it has been shown that with the aid of absorbers it is possible to expand a proton beam to the dimensions required, without introducing the accompanying radiations. Dose fields, uniform within {+-} 10%, in which primary protons constitute between 99 and 88% of the tissue dose, were obtained for irradiation of dogs with protons of energy 510, 250 and 120 MeV. The tissue doses and the radiation composition were studied in a dog phantom. Irradiation conditions for ensuring uniform radiation of the dog's body are proposed. Various questions of high-energy proton dosimetry are discussed, and the use of different types of dosimeter are considered in this connection. The paper also describes a method of determining the contribution of cascade neutrons to the proton flux, using activation detectors. (author) [French] Les accelerateurs actuels permettent d'obtenir des faisceaux de protons d'une intensite suffisante mais impropres a l'irradiation generale de grands animaux d'experience. A l'aide du synchrocyclotron OIAI, on a montre que le recours aux absorbants permet d'elargir le faisceau de protons jusqu'aux dimensions voulues sans y introduire de rayonnements secondaires. Pour irradier des chiens par des protons de 510, 250 et 120 MeV, on a pu ainsi realiser des champs de rayonnements uniformes a {+-}10% pres, dans lesquels les protons primaires constituaient 99 a 88% de la dose tissulaire. Les auteurs ont etudie des doses tissulaires et la composition du rayonnement a l'interieur d'un fantome de chien. Ils indiquent dans quelles conditions on assure une irradiation uniforme du corps de l'animal. Les auteurs examinent plusieurs questions relatives a la dosimetrie des neutrons de grande energie. Ils justifient l'emploide divers

  6. Neutrino oscillations at proton accelerators

    International Nuclear Information System (INIS)

    Michael, Douglas

    2002-01-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments

  7. Neutrino Oscillations at Proton Accelerators

    Science.gov (United States)

    Michael, Douglas

    2002-12-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.

  8. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  9. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  10. High-intensity laser application in Orthodontics

    Directory of Open Access Journals (Sweden)

    Eduardo Franzotti Sant’Anna

    Full Text Available ABSTRACT Introduction: In dental practice, low-level laser therapy (LLLT and high-intensity laser therapy (HILT are mainly used for dental surgery and biostimulation therapy. Within the Orthodontic specialty, while LLLT has been widely used to treat pain associated with orthodontic movement, accelerate bone regeneration after rapid maxillary expansion, and enhance orthodontic tooth movement, HILT, in turn, has been seen as an alternative for addressing soft tissue complications associated to orthodontic treatment. Objective: The aim of this study is to discuss HILT applications in orthodontic treatment. Methods: This study describes the use of HILT in surgical treatments such as gingivectomy, ulotomy, ulectomy, fiberotomy, labial and lingual frenectomies, as well as hard tissue and other dental restorative materials applications. Conclusion: Despite the many applications for lasers in Orthodontics, they are still underused by Brazilian practitioners. However, it is quite likely that this demand will increase over the next years - following the trend in the USA, where laser therapies are more widely used.

  11. ''High intensity per bunch'' working group

    International Nuclear Information System (INIS)

    2001-01-01

    Third Generation Light Sources are supposed to store high intensity beams not only in many tightly spaced bunches (multibunch operation), but also in few bunch or even single lunch modes of operation, required for example for time structure experiments. Single bunch instabilities, driven by short-range wake fields, however spoil the beam quality, both longitudinally and transversely. Straightforward ways of handling them, by pushing up the chromaticity (ζ = ΔQ/(Δp/p)) for example, enabled to raise the charge per bunch, but to the detriment of beam lifetime. In addition, since the impedance of the vacuum chamber deteriorates with the installation of new insertion devices, the current thresholds tend to dope down continuously. The goal of this Working Group was then to review these limitations in the existing storage rings, where a large number of beam measurements have been performed to characterise them, and to discuss different strategies which are used against them. About 15 different laboratories reported on the present performance of storage rings, experiences gained in high charge per bunch, and on simulation results and theoretical studies. More than 25 presentations addressed the critical issues and stimulated the discussion. Four main topics came out: - Observation and experimental data; - Impedance studies and tracking codes; - Theoretical investigations; - Cures and feedback. (author)

  12. Pulmonary Vein Isolation by High Intensity Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Matthias Antz

    2007-04-01

    Full Text Available Pulmonary vein isolation (PVI using radiofrequency current (RFC ablation is a potentially curative treatment option for patients with atrial fibrillation (AF. The shortcomings of the RFC technology (technically challenging, long procedure times, complications steadily kindle the interest in new energy sources and catheter designs. High intensity focused ultrasound (HIFU has the ability to precisely focus ultrasound waves in a defined area with a high energy density. HIFU balloon catheters (BC positioned at the PV ostia appear to be an ideal tool to transmit the ablation energy in a circumferential manner to the PV ostia and may therefore bear substantial advantage over conventional ablation catheters in PVI procedures. In clinical trials the HIFU BC has shown promising success rates similar to RFC catheter ablation for PVI in patients with AF. However, procedure times are still long and serious complications have been observed. Therefore, it may be a valuable alternative to the conventional techniques in selected patients but further clinical trials have to be initiated.

  13. High Intensity Organic Light-emitting Diodes

    Science.gov (United States)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  14. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  15. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  16. Production and Studies of Photocathodes for High Intensity Electron Beams

    CERN Document Server

    Chevallay, E; Legros, P; Suberlucq, Guy; Trautner, H

    2000-01-01

    For short, high-intensity electron bunches, alkali-tellurides have proved to be a reliable photo-cathode material. Measurements of lifetimes in an rf gun of the CLIC Test Facility II at field strengths greater than 100 MV/m are presented. Before and after using them in this gun, the spectral response of the CS-Te and Rb-Te cathodes were determined with the help of an optical parametric oscillator. The behaviour of both materials can be described by Spicer's 3-step model. Whereas during the use the threshold for photo-emission in Cs-Te was shifted to higher proton energies, that of Rb-Te did not change. Our latest investigations on the stoichiometric ratio of the components are shown. The preparation of the photo-cathodes was monitored with 320 nm wavelength light , with the aim of improving the measurement sensitivity. The latest results on the protection of Cs-Te cathode surfaces with CsBr against pollution are summarized. New investigations on high mean current production are presented.,

  17. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb - 1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989

  18. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10 5 Z's by the end of 1989 and 10 6 in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry

  19. High energy plasma accelerators

    International Nuclear Information System (INIS)

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  20. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1985-05-01

    The conclusions are relatively simple, but represent a considerable challenge to the machine builder. High luminosity is essential. We may in the future discover some new kind of high cross section physics, but all we know now indicates that the luminosity has to increase as the square of the center of mass energy. A reasonable luminosity to scale from for electron machines would be 10 33 cm -2 s -1 at a center of mass energy of 3 TeV. The required emittances in very high energy machines are small. It will be a real challenge to produce these small emittances and to maintain them during acceleration. The small emittances probably make acceleration by laser techniques easier, if such techniques will be practical at all. The beam spot sizes are very small indeed. It will be a challenge to design beam transport systems with the necessary freedom from aberration required for these small spot sizes. It would of course help if the beta functions at the collision points could be reduced. Beam power will be large - to paraphrase the old saying, ''power is money'' - and efficient acceleration systems will be required

  1. Proposal for a High Energy Nuclear Database

    International Nuclear Information System (INIS)

    Brown, David A.; Vogt, Ramona

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews

  2. A high-energy nuclear database proposal

    International Nuclear Information System (INIS)

    Brown, D.A.; Vogt, R.; UC Davis, CA

    2006-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews. (author)

  3. Proposal for a High Energy Nuclear Database

    International Nuclear Information System (INIS)

    Brown, D A; Vogt, R

    2005-01-01

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews

  4. A Highly intense DC muon source, MuSIC and muon CLFV search

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Y.; Kuno, Y.; Sato, A. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Sakamoto, H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Y.; Tran, N.H.; Hashim, I.H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fukuda, M.; Hayashida, Y. [Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ogitsu, T.; Yamamoto, A.; Yoshida, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-08-15

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10{sup 8} muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  5. A Highly intense DC muon source, MuSIC and muon CLFV search

    International Nuclear Information System (INIS)

    Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N.H.; Hashim, I.H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.

    2014-01-01

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10 8 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion

  6. Wet high-intensity magnetic separation

    International Nuclear Information System (INIS)

    Levin, J.; Shanks, R.I.

    1980-01-01

    Miscellaneous laboratory tests (most of them on cyanide residues) were undertaken to supplement on-site pilot-plant work on wet high intensity magnetic separation (WHIMS). Initially, the main concern was with blockage of the matrix, and consideration was given to the use of a reverse-flushing system. The laboratory tests on this system were encouraging, but they were not of sufficiently long duration to be conclusive. The velocity of the pulp through the matrix is important, because it determines the capacity of the separator and the recovery obtainable. Of almost equal importance is the magnetic load, which affects the velocity of the pulp and the recovery. Typically, a recovery of 51 per cent of the uranium was reduced to one of 40 per cent as the magnetic load was increased from 25 to 100 g/l, while the pulp velocity decreased from 62 to 36 mm/s. There was some indication that, for the same pulp velocity, lower recoveries are obtained when free-fall feeding is used. Some benefit was observed in the application of WHIMS to coarsely ground ore; from a Blyvooruitzicht rod-mill product, 25 per cent of the total uranium was recovered when only 29 per cent of the rod-mill product (the finest portion) was treated. A similar recovery was made from 43 per cent of the rod-mill product from Stilfontein; a second stage of treatment after regrinding raised the overall recovery of uranium to 76,4 per cent. Recoveries of 55 and 42 per cent of the uranium were obtained in tests on two flotation tailings from Free State Geduld. In a determination of the mass magnetic susceptibilities of the constituents in a typical concentrate obtained by WHIMS, it was found that some 20 per cent of the magnetic product had a susceptibility of less than 5,4 X 10 -6 e.m.u. but contained 38 per cent of the uranium recovered by WHIMS. A few tests were conducted on different types of matrix. A matrix of spaced horizontal rods is recommended for possible future consideration [af

  7. Determination on Mice and other Organisms of the RBE of High-Energy Protons and Electrons; Efficacite Biologique Relative sur la Souris et d'Autres Organismes des Protons et des Electrons De Haute Energie; Opredelenie obeh pri obluchenii myshej i drugikh organizmov protonami i ehlektronami vysokikh ehnergij; Determinacion de la Eficacia Biologica Relativa de los Protones y de los Electrones de Elevada Emergia en el Raton y en Otros Organismos

    Energy Technology Data Exchange (ETDEWEB)

    Bonet-Maury, P.; Baarli, J.; Kahn, T.; Dardenne, G.; Frilley, M.; Deysine, A. [Institut du Radium, Paris (France)

    1964-03-15

    The general effects of 157- and 592-MeV protons and 150- and 950-MeV electrons were observed on mice exposed to lethal doses of whole-body irradiation. The irradiated animals displayed the same general symptoms as those produced by X - or gamma-rays. The biological tests did not bring to light any particular phenomenon which can be considered as characteristic of these high-energy particles. As determined in four tests (LD{sub 50}, average expectation of life and diminution of thymus and testicles), the RBE is close to 1. This corresponds to the mean LET of the particles and, in the case of the protons, does not appear to be increased by the higher local LET of the spallation fragments. (author) [French] Les effets generaux des protons de 157 et 592 MeV et des electrons de 150 et 950 MeV oiit ete observes sur des souris irradiees in toto, a des doses letales. Les animaux irradies presentent les memes symptomes generaux que ceux produits par les rayonnements de reference X ou {gamma}. Aucun phenomene caracteristique de ces particules de haute energie n'a pu etre mis en evidence avec les tests biologiques choisis. Lfefficacite biologique relative determinee sur 4 tests (DL{sub 50}, survie moyenne, reduction du thymus et des testicules) est peu differente de 1; cette EBR correspond au TEL moyen des particules et, pour les protons, ne parait pas augmentee par le TEL local plus eleve des etoiles de spallation. (author) [Spanish] Se han observado los efectos generales de los protones de 157 y 592 MeV y de los electrones de 150 y 950 MeV sobre ratones expuestos in toto, a dosis letales de radiaciones. Los animales irradiados presentan los mismos sintomas generales que los producidos por los rayos X o los rayos gamma adoptados como radiaciones de referencia. Los ensayos biologicos llevados a cabo no han puesto de manifiesto ningun fenomeno caracteristico de la accion de estas particulas de elevada energia. La eficacia biologica relativa determinada en cuatro ensayo (DL

  8. High intensity hadron facility, AGS II

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Lowenstein, D.I.

    1989-01-01

    There is a large and growing community of particle and nuclear physicists around the world who are actively lobbying for the construction of an accelerator that could provide 1-2 orders of magnitude increase in proton intensity above that of the present AGS. There have been a series of proposals from Canada, Europe, Japan, and the USA. They can all be characterized as machines varying in energy from 12-60 GeV and intensities of 30-100 μA. The community of physicists using the AGS are in a unique position however. The AGS is the only machine available that can provide the beams to execute the physics program that this large international community is interested in. The BNL approach to the communities interests involves a stepwise intensity upgrade program. At present the AGS slow extracted beam current is 1 μA. With the completion of the Booster in 1990 and the associated AGS modifications, the current will rise to 4-5 μA. With the subsequent addition of the Stretcher which is under design, the current will rise to 8-10 μA and approximately 100% duty factor. The possibility of a further enhancement to a current level of 40-50 μA CW is now being examined. 2 figures, 6 tables

  9. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  10. [High energy physics

    International Nuclear Information System (INIS)

    Bonner, B.E.; Roberts, J.B. Jr.

    1991-01-01

    An intense analysis effort on the data we obtained in a seven month run on E704 last year has produced a flood of new results on polarization effects in particle production at 200 GeV/c. We are fortunate to be able to report in detail on those results. Our other Fermilab experiment, E683 (photoproduction of jets) has been delayed an unbelievable amount of time by Fermilab schedule slippages. It was scheduled and ready for beam two years ago exclamation point As this report is being written, we have been running for two months and are expecting four months of production data taking. In this report we show some of our preliminary results. In addition we are near the end of a six month run on our CERN experiment, NA47 (SMC) which will measure the spin dependent structure functions for the proton and neutron. It is with a sense of relief, mixed with pride, that we report that all the equipment which we constructed for that experiment is currently working as designed. The random coincidence of accelerator schedules has left us slightly dazed, but all experiments are getting done and analyzed in a timely fashion. As members of the Solenoidal Detector Collaboration, we have been preparing for the only currently approved experiment at the SSC. Here we report on our scintillating fiber tracker design and simulation activities. In addition we report the results of our investigation of the detector response to heavy Z particles. Since our last report, we have joined the D0 collaboration with the primary aim of contributing to the D0 upgrade over the next few years. It is also important for us to gain experience in collider physics during the period leading up to the SDC turn-on

  11. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Albanese, R.C.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March--December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  12. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March through December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  13. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contact AC02-87ER40368 during the period from March of 1989 to February of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a precision study of the A-dependence of massive muon-pion production and a study of low-multiplicity decay modes of charm. We are also participating in the design of detectors for the SSC. Finally, a minor effort is being given to analyzing data from Fermilab of particles with lifetime between 10 -12 and 10 -13 seconds. A more detailed description of the work of the NIU high energy physics group can be found in the narrative accompanying our grant renewal proposal. 10 refs

  14. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    1991-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract FG02-91ER40641 during the period from March 1991 to December 1991. Our group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, we are also members of the SDC collaboration at the SSC

  15. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1993-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from July of 1990 to June of 1991 and from February to March 1992. Our group has three main efforts which will be discussed in this paper. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789 which involved detection of meson decays. Finally, we discuss our work with the SDC collaboration at the SSC

  16. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  17. High intensive short laser pulse interaction with submicron clusters media

    International Nuclear Information System (INIS)

    Faenov, A. Ya

    2008-01-01

    The interaction of short intense laser pulses with structured targets, such as clusters, exhibits unique features, stemming from the enhanced absorption of the incident laser light compared to solid targets. Due to the increased absorption, these targets are heated significantly, leading to enhanced emission of x rays in the keV range and generation of electrons and multiple charged ions with kinetic energies from tens of keV to tens of MeV. Possible applications of these targets can be an electron/ion source for a table top accelerator, a neutron source for a material damage study, or an x ray source for microscopy or lithography. The overview of recent results, obtained by the high intensive short laser pulse interaction with different submicron clusters media will be presented. High resolution K and L shell spectra of plasma generated by superintense laser irradiation of micron sized Ar, Kr and Xe clusters have been measured with intensity 10"17"-10"19"W/cm"2"and a pulse duration of 30-1000fs. It is found that hot electrons produced by high contrast laser pulses allow the isochoric heating of clusters and shift the ion balance toward the higher charge states, which enhances both the X ray line yield and the ion kinetic energy. Irradiation of clusters, produced from such gas mixture, by a fs Ti:Sa laser pulses allows to enhance the soft X ray radiation of Heβ(665.7eV)and Lyα(653.7eV)of Oxygen in 2-8 times compare with the case of using as targets pure CO"2"or N"2"O clusters and reach values 2.8x10"10"(∼3μJ)and 2.7x10"10"(∼2.9μJ)ph/(sr·pulse), respectively. Nanostructure conventional soft X ray images of 100nm thick Mo and Zr foils in a wide field of view (cm"2"scale)with high spatial resolution (700nm)are obtained using the LiF crystals as soft X ray imaging detectors. When the target used for the ion acceleration studies consists of solid density clusters embedded into the background gas, its irradiation by high intensity laser light makes the target

  18. Production processes at extremely high energies

    CERN Document Server

    Gastmans, R; Wu, Tai Tsun

    2013-01-01

    The production processes are identified that contribute to the rise of the total cross section in proton-proton scattering at extremely high energies, s->~. At such energies, the scattering can be described by a black disk (completely absorptive) with a radius expanding logarithmically with energy surrounded by a gray fringe (partially absorptive). For the leading term of (lns)^2 in the increasing total cross section, the gray fringe is neglected, and geometrical optics is generalized to production processes. It is known that half of the rise in the total cross section is due to elastic scattering. The other half is found to originate from the production of jets with relatively small momenta in the center-of-mass system.

  19. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  20. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  1. Technical characteristics of the TRISPAL system high-energy end

    International Nuclear Information System (INIS)

    Meot, F.

    1996-04-01

    This document presents an overview of the principle design of the high-energy end of the TRISPAL high-intensity LINAC system, with detailed schemes of the different constituent parts and of the beam envelopes. This schemes are presented with the geometric and magnetic parameters of the optical elements. The aim of this document is to allow the cost evaluation of the complete system. (J.S.). 5 refs., 5 figs., 5 tabs., 1 append

  2. Dosimetry of High-Energy Protons by Measurement of Beryllium-7 Formed in the Tissues; Dosimetrie des Protons de Haute Energie par Mesure de Beryllium-7 Forme dans les Tissus; 041e 0422 041d 041e 0421 0414 ; Dosimetria Relativa Mediante Berillo-7 Despues de Irradiar con Protones de Altas Energias (600 Mev Y 3 Gev)

    Energy Technology Data Exchange (ETDEWEB)

    Legeay, G. [Service Biologique et Veterinaire des Armees, Detache au D.P.S. (France); Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Fontenay-aux-Roses (France); Court, L.; Prat, L [Service de Sante des Armees, Detaches au D.P.S. (France); Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Fontenay-aux-Roses (France); Jeanmaire, L.; Daburon, M. L. [Commissariat a l' Energie Atomique (France); Nucleaires de Fontenay-aux-Roses, Centre d' Etudes [France; De Kerviler, H.; Tardy-Joubert, P. [Service de Protection Contre les Radiations, Centre d' Etudes Nucleaires de Saclay (France)

    1965-06-15

    In the course of biological experiments at the CERN cyclotron at Geneva (using 600 MeV protons) and the Saturne synchrotron at the Saclay Nuclear Studies Centre, the radioactivity induced in living beings was investigated by gamma-spectrography. Whereas most of the induced radioisotopes (gamma emitters) are short-lived, the beryllium-7 produced by spallation reactions on, in particular, oxygen, carbon and nitrogen atoms, has an activity peak which stands out abruptly from the spectrum as a whole at the 479-keV level. As its half-life is 54. 5 d, it can be recorded for a sufficiently long time. An experiment carried out with Whitsar rats given whole-body exposures of between 400 and 800 rad with 600-MeV protons and of 200 to 1000 rad with 3-GeV protons, disclosed a linear response of the Be{sup 7} activity in relation to the dose absorbed per gram of tissue. The authors compare their experimental results with the activities calculated in terms of energy on the basis of published cross-sections. The accidental exposure of human beings to proton beams can only be local. Exposure of the heads of Fauve de Bourgogne rabbits weighing approximately 2 kg show that the activity measured on the head, in relation to the rest of the body, is of the order of 1.8 {+-} 5. Be{sup 7} can be detected during the first days in spite of some diffusion. Relative dosimetry, indicating the scale of the accidental exposure received, is therefore possible. (author) [French] Dans le cadre d'experimentations biologiques conduites au synchrocyclotron du CERN a Geneve avec des protons de 600 MeV et au synchrotron Saturne du Centre d*etudes nucleaires de Saclay, une exploration de la radioactivite induite chez des etres vivants a ete faite par spectrographie gamma. Si la plupart des radioelements, emetteurs gamma, induits presentent une periode tres courte, le beryllium-7 resultant de reactions de spoliation sur les atomes d'oxygene, de carbone et d'azote notamment, donne un pic d'activite qui se

  3. Neutrino fluxes produced by high energy solar flare particles

    International Nuclear Information System (INIS)

    Kolomeets, E.V.; Shmonin, V.L.

    1975-01-01

    In this work the calculated differential energy spectra of neutrinos poduced by high energy protons accelerated during 'small' solar flares are presented. The muon flux produced by neutrino interactions with the matter at large depths under the ground is calculated. The obtained flux of muons for the total number of solar flare accelerated protons of 10 28 - 10 32 is within 10 9 - 10 13 particles/cm 2 X s x ster. (orig.) [de

  4. Monotonous braking of high energy hadrons in nuclear matter

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1979-01-01

    Propagation of high energy hadrons in nuclear matter is discussed. The possibility of the existence of the monotonous energy losses of hadrons in nuclear matter is considered. In favour of this hypothesis experimental facts such as pion-nucleus interactions (proton emission spectra, proton multiplicity distributions in these interactions) and other data are presented. The investigated phenomenon in the framework of the hypothesis is characterized in more detail

  5. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Aurand, B.; Willi, O. [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kerr, S. [University of Alberta, Edmonton, Alberta T6G 1R1 (Canada); Ramakrishna, B. [Indian Institute of Technology, Hyderabad (India); Rödel, C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Friedrich-Schiller-University Jena, Jena (Germany)

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  6. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Pinston, J.A.; Nifenecker, H.; Nifenecker, H.

    1989-01-01

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  7. Computing in high energy physics

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  8. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  9. Experimental microdosimetry in high energy radiation fields

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Bottollier-Depois, J.-F.; Molokanov, A.G.

    2000-01-01

    To determine microdosimetric characteristics in the beams and fields of high energy panicles with the goal, also, to compare the classical method of experimental microdosimetry, a tissue equivalent low pressure proportional counter (TEPC) with the linear energy transfer (LET) spectrometer based on a chemically etched polyallyldiglycolcarbonate as a track etched detector (TED). To test the use of TED LET spectrometer in the conditions, where the use or TEPC is not possible (high energy charged particle beams at high dose rates). The results obtained with the TEPC NAUSICAA were used in this work to compare them with other data. This TEPC measures directly the linear energy in the interval between 0.15 and 1500 keV/μm in tissue, the low gas pressure (propan based TE mixture) permits to simulate a tissue element of about 3 μm. It can be used in the fields with instantaneous dose equivalent rates between 1 μSv/hour and 1 mSv/ hour. TED LET spectrometer developed to determine LET spectra between 10 and 700 keV/μm in tissue. Primarily, track-to-bulk etch rate ratios are determined through the track parameters measurements, the spectra of these ratios are convened to LET spectra using the calibration curve established by means of heavy charge panicles. The critical volume of thi spectrometer is supposed to be a few nm. There is no limit of use for the dose rate, the background tracks limit the lowest threshold to about 1 mSv, the overlapping of tracks (the highest one) to 100 mSv. Both experimental microdosimetry methods have been used in on board aircraft radiation fields, in on-Earth high energy radiation reference fields, and in the beams of protons with energies up to 300 MeV (Dubna, Moscow, Loma Linda). First, it should be emphasized, that in all high energy radiation fields studied, we concentrated our analysis on the region, where both methods overlap, i.e. between 10 and 1000 keV/μm in tissue. It should be also stressed, that the events observed in this region

  10. Nucleus fragmentation induced by a high-energy hadron. Pt. 1

    International Nuclear Information System (INIS)

    Zielinski, P.

    1981-08-01

    The author gives a review about high-energy hadron reactions on nuclei. Especially he discusses the proton-proton correlation at low relative momentum, the angular distribution of 30-100 MeV protons, and the emission of fast deuterons. (HSI)

  11. Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments

    Science.gov (United States)

    Kim, J. B.; Göde, S.; Glenzer, S. H.

    2016-11-01

    The advent of high-intensity, high-repetition-rate lasers has led to the need for replenishing targets of interest for high energy density sciences. We describe the design and characterization of a cryogenic microjet source, which can deliver a continuous stream of liquid hydrogen with a diameter of a few microns. The jet has been imaged at 1 μm resolution by shadowgraphy with a short pulse laser. The pointing stability has been measured at well below a mrad, for a stable free-standing filament of solid-density hydrogen.

  12. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  13. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S P; Jamieson, D N; Nugent, K W; Prawer, S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  14. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  15. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references

  16. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  17. Ultra high energy cosmic rays and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Engel, Ralph; Alvarez-Muniz, Jaime; Seckel, David

    2002-07-01

    We follow the propagation of ultra high energy protons in the presence of random and regular magnetic fields and discuss some of the changes in the angular and energy distributions of these particles introduced by the scattering in the magnetic fields.

  18. Ultra high energy cosmic rays and magnetic fields

    International Nuclear Information System (INIS)

    Stanev, Todor; Engel, Ralph; Alvarez-Muniz, Jaime; Seckel, David

    2002-01-01

    We follow the propagation of ultra high energy protons in the presence of random and regular magnetic fields and discuss some of the changes in the angular and energy distributions of these particles introduced by the scattering in the magnetic fields

  19. Design features and performance of the LAMPF high-intensity beam area

    International Nuclear Information System (INIS)

    Agnew, L.; Grisham, D.; Macek, R.J.; Sommer, W.F.; Werbeck, R.D.

    1983-01-01

    LAMPF is a multi-purpose high-intensity meson factory capable of producing a 1 mA beam of 800-MeV protons. The three target cells and the beam stop facilities in the high intensity area have many special design features that are required for operation in the presence of high heat loads and intense radiation fields where accessibility is extremely limited. Reliable targets, beam windows, beam stops, beam transport and diagnostic components, vacuum enclosures, and auxiliary systems have been developed. Sophisticated remote-handling systems are employed for maintenance. Complex protection systems have been developed to guard against damage caused by errant beam. Beam availability approaching 90% has been achieved at currents of 600 to 700 μA. A new facility for direct proton and neutron radiation effects studies will be installed in 1985. The new facility will provide an integrated spallation neutron flux of up to 5 x 10 17 m -2 s -1 and will anable proton irradiation studies in the primary beam

  20. High Energy Transport Code HETC

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1985-09-01

    The physics contained in the High Energy Transport Code (HETC), in particular the collision models, are discussed. An application using HETC as part of the CALOR code system is also given. 19 refs., 5 figs., 3 tabs

  1. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  2. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  3. Problems of high energy physics

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.

    1989-01-01

    Some problems of high energy physics are discussed. The main attention is paid to describibg the standard model. The model comprises quantum chromodynamics and electroweak interaction theory. The problem of CP breaking is considered as well. 8 refs.; 1 tab

  4. Developments in high energy theory

    Indian Academy of Sciences (India)

    journal of. July 2009 physics pp. 3–60. Developments in high energy theory .... and operated by CERN (European Organization for Nuclear Research), this ma- ...... [2] S Dodelson, Modern cosmology (Academic Press, Amsterdam, 2003).

  5. Current status of high energy nucleon-meson transport code

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi; Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Current status of design code of accelerator (NMTC/JAERI code), outline of physical model and evaluation of accuracy of code were reported. To evaluate the nuclear performance of accelerator and strong spallation neutron origin, the nuclear reaction between high energy proton and target nuclide and behaviors of various produced particles are necessary. The nuclear design of spallation neutron system used a calculation code system connected the high energy nucleon{center_dot}meson transport code and the neutron{center_dot}photon transport code. NMTC/JAERI is described by the particle evaporation process under consideration of competition reaction of intranuclear cascade and fission process. Particle transport calculation was carried out for proton, neutron, {pi}- and {mu}-meson. To verify and improve accuracy of high energy nucleon-meson transport code, data of spallation and spallation neutron fragment by the integral experiment were collected. (S.Y.)

  6. Development of the High Energy Linac Systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Han Sung; Chung, Byung Chul; Jang, Ji Ho; Gao, Changgi; Li, Yingmin; Sun, An; Tang, Yazhe; Zhang, Lipoing; Hwang, Yong Seok

    2008-05-01

    The main purpose of this project is studying the extension plan of the proton engineering frontier project (PEFP) 100-MeV Linac. It includes three categories. One is studying operation plan of the PEFP linac and its extended accelerators, and developing a distribution system of 100-MeV proton beams with a laser striping. Other is designing superconducting RF (SRF) modules and fabricating and testing a copper cavity model. The other is designing a rapid cycling synchrotron (RCS). The operation scheme of the PEFP linac is related to the optimization in the operation of the 100-MeV linac, 200-MeV SRF, and RCS. We studied several operational method to increase the validity of the accelerators. The beam distribution system has two roles. One is supplying proton beams of 100 MeV to the user group. The laser stripping of the negative hydrogen atoms is used in this case. The other beams are directed to the next high energy accelerators. This study contributes to increase the availability of the proton beams. The SRF is one of candidates to extend the PEFP linac system. Since the accelerating gradient of the SRF is much higher than the normal conducting accelerator, a lot of institutes over the world are developing the SRF structure. Main purposes are designing an SRF module, fabricating and testing an copper model which has similar material properties as Nb of the usual SRF cavity material. The RCS is a synchrotron whose injector is the PEFP 100-MeV linac. Main purposes are determining the lattice structure, studying the fast and slow extraction system, simulating beam behavior in the designed synchrotron. The RCS will be used as the spallation neutron source and tools in the basic and applied science including medical application

  7. Report of the 1985 High Energy Physics Advisory Panel Study of the US High Energy Physics Program, 1985-1995

    International Nuclear Information System (INIS)

    1985-09-01

    The present study was motivated by the desire to examine the US High Energy Physics Program in depth, to reassess the Superconducting Super Collider (SSC) goal in light of recent scientific and technical developments, and to understand how this project would affect and interact with the US high energy program in the period before it becomes operational. It is recommended that the SSC research and development be given highest priority in the US High Energy Physics Program so that the project can proceed to an early construction start and rapid completion. A limited number of programs are identified as ''forefront programs'' - those which enter a new experimental regime in such a way as to have clear promise for new fundamental discoveries - and it is recommended that these proceed with priority. Research opportunities available during the next ten years are explored, including proton-antiproton colliders, electron-proton collider, electron-positron colliders, fixed-target experiments, and non-accelerator experiments

  8. A high-intensity He-jet production source for radioactive beams

    International Nuclear Information System (INIS)

    Vieira, D.J.; Kimberly, H.J.; Grisham, D.L.; Talbert, W.L.; Wouters, J.M.; Rosenauer, D.; Bai, Y.

    1993-01-01

    The use of a thin-target, He-jet transport system operating with high primary beam intensities is explored as a high-intensity production source for radioactive beams. This method is expected to work well for short-lived, non-volatile species. As such the thin-target, He-jet approach represents a natural complement to the thick-target ISOL method in which such species are not, in general, rapidly released. Highlighted here is a thin-target, He-jet system that is being prepared for a 500 + μA, 800-MeV proton demonstration experiment at LAMPF this summer

  9. Apparatus for controlled mixing in a high intensity mixer

    International Nuclear Information System (INIS)

    Crocker, Z.; Gupta, V.P.

    1982-01-01

    An apparatus and a process is disclosed for controlled mixing of a mixable material in a high intensity mixer. The system enables instantaneous, precise and continual monitoring of a batch in a high intensity mixer which heretofore could not be achieved. The process comprises the steps of feeding a batch of material into a high intensity mixer, agitating the batch in the mixer, monitoring batch temperature separately from mixer temperature and discharging the batch from the mixer when the batch temperature reaches a final predetermined level. The apparatus includes means for monitoring batch temperature in a high intensity mixer separately from mixer temperature, and means responsive to the batch temperature to discharge the batch when the batch temperature reaches a final predetermined level

  10. Feasibility of high-intensity training in asthma

    DEFF Research Database (Denmark)

    Tønnesen, Louise Lindhardt; Sørensen, E D; Hostrup, Morten

    2018-01-01

    Background: High-intensity interval training is an effective and popular training regime but its feasibility in untrained adults with asthma is insufficiently described. Objective: The randomized controlled trial 'EFFORT Asthma' explored the effects of behavioural interventions including high......-intensity interval training on clinical outcomes in nonobese sedentary adults with asthma. In this article we present a sub analysis of data aiming to evaluate if patients' pre-intervention levels of asthma control, FEV1, airway inflammation and airway hyperresponsiveness (AHR) predicted their training response...... to the high-intensity interval training program, measured as increase in maximal oxygen consumption (VO2max). Design: We used data from the EFFORT Asthma Study. Of the 36 patients randomized to the 8-week exercise intervention consisting of high-intensity training three times per week, 29 patients (45...

  11. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  12. Directions in high energy physics

    International Nuclear Information System (INIS)

    DiLella, L.; Altarelli, G.

    1988-01-01

    This volume reviews the physics studied at the CERN proton-antiproton collider during its first phase of operation, from the first physics run in 1981 to the last one at the end of 1985. The volume consists of a series of review articles written by physicists who are actively involved with the collider research program. Contents: The CERN Proton-Antiproton Collider; Elastic Scattering and Total Cross-Section; Properties of Soft Proton-Antiproton Collisions; Physics of Hadronic Jets; Physics of the Intermediate Vector Bosons; Heavy Flavour Production; Searches for New Physics; Physics with ACOL; Physics at Supercolliders

  13. Case Study on Justification: High Intensity Discharge Lamps. Annex II

    International Nuclear Information System (INIS)

    2016-01-01

    High intensity discharge lamps produce bright white light of a high intensity in an energy efficient manner. These lamps are typically used in large numbers in public and professional settings such as shops, warehouses, hotels and offices. They are also used in outdoor applications to illuminate streets, buildings, statues, flags and gardens and further as architectural lighting. They also have applications associated with film projection in cinemas, manufacture of semiconductors, fluorescence endoscopy and microscopy, schlieren photography, hologram projection, ultraviolet curing, sky beamers and car headlights. Some types of high intensity discharge lamp, as well as certain other consumer products for lighting, contain radioactive substances for functional reasons. The radionuclides that are typically incorporated into high intensity discharge lamps are 85 Kr and 232 Th. Given the wide range of uses, specific decisions on justification may be required for different applications. A small number of safety assessments for high intensity discharge lamps have been carried out and published. No published decisions at the national level specifically addressing the justification of the use of high intensity discharge lamps have been identified

  14. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  15. Predictions of diffractive cross sections in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)

    2013-04-15

    We review our pre-LHC predictions of the total, elastic, total-inelastic, and diffractive components of proton-proton cross sections at high energies, expressed in the form of unitarized expressions based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors and compare with recent LHC results.

  16. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  17. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  18. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  19. High energy cosmic ray astronomy

    International Nuclear Information System (INIS)

    Fonseca, V.

    1996-01-01

    A brief introduction to High Energy Cosmic Ray Astronomy is presented. This field covers a 17 decade energy range (2.10 4 -10 20 ) eV. Recent discoveries done with gamma-ray detectors on-board satellites and ground-based Cherenkov devices are pushing for a fast development of new and innovative techniques, specially in the low energy region which includes the overlapping of satellite and ground-based measurements in the yet unexplored energy range 20 keV-250 GeV. Detection of unexpected extremely high energy events have triggered the interest of the international scientific community. (orig.)

  20. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  1. Beam loss studies in high-intensity heavy-ion linacs

    International Nuclear Information System (INIS)

    Ostroumov, P.N.; Aseev, V.N.; Lessner, E.S.; Mustapha, B.

    2004-01-01

    A low beam-loss budget is an essential requirement for high-intensity machines and represents one of their major design challenges. In a high-intensity heavy-ion machine, losses are required to be below 1 W/m for hands-on-maintenance. The driver linac of the Rare Isotope Accelerator (RIA) is designed to accelerate beams of any ion to energies from 400 MeV per nucleon for uranium up to 950 MeV for protons with a beam power of up to 400 kW. The high intensity of the heaviest ions is achieved by acceleration of multiple-charge-state beams, which requires a careful beam dynamics optimization to minimize effective emittance growth and beam halo formation. For beam loss simulation purposes, large number of particles must be tracked through the linac. Therefore the computer code TRACK has been parallelized and calculations are being performed on the JAZZ cluster recently inaugurated at ANL. This paper discusses how this powerful tool is being used for simulations for the RIA project to help decide on the high-performance and cost-effective design of the driver linac

  2. DCHAIN-SP 2001: High energy particle induced radioactivity calculation code

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Tetsuya; Maekawa, Fujio; Kasugai, Yoshimi; Takada, Hiroshi; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kosako, Kazuaki [Sumitomo Atomic Energy Industries, Ltd., Tokyo (Japan)

    2001-03-01

    For the purpose of contribution to safety design calculations for induced radioactivities in the JAERI/KEK high-intensity proton accelerator project facilities, the DCHAIN-SP which calculates the high energy particle induced radioactivity has been updated to DCHAIN-SP 2001. The following three items were improved: (1) Fission yield data are included to apply the code to experimental facility design for nuclear transmutation of long-lived radioactive waste where fissionable materials are treated. (2) Activation cross section data below 20 MeV are revised. In particular, attentions are paid to cross section data of materials which have close relation to the facilities, i.e., mercury, lead and bismuth, and to tritium production cross sections which are important in terms of safety of the facilities. (3) User-interface for input/output data is sophisticated to perform calculations more efficiently than that in the previous version. Information needed for use of the code is attached in Appendices; the DCHAIN-SP 2001 manual, the procedures of installation and execution of DCHAIN-SP, and sample problems. (author)

  3. Predicting Induced Radioactivity at High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto

    1999-08-27

    Radioactive nuclides are produced at high-energy electron accelerators by different kinds of particle interactions with accelerator components and shielding structures. Radioactivity can also be induced in air, cooling fluids, soil and groundwater. The physical reactions involved include spallations due to the hadronic component of electromagnetic showers, photonuclear reactions by intermediate energy photons and low-energy neutron capture. Although the amount of induced radioactivity is less important than that of proton accelerators by about two orders of magnitude, reliable methods to predict induced radioactivity distributions are essential in order to assess the environmental impact of a facility and to plan its decommissioning. Conventional techniques used so far are reviewed, and a new integrated approach is presented, based on an extension of methods used at proton accelerators and on the unique capability of the FLUKA Monte Carlo code to handle the whole joint electromagnetic and hadronic cascade, scoring residual nuclei produced by all relevant particles. The radiation aspects related to the operation of superconducting RF cavities are also addressed.

  4. High energy physics at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Samios, N.P.

    1982-01-01

    The high energy plans at BNL are centered around the AGS and ISABELLE, or a variant thereof. At present the AGS is maintaining a strong and varied program. This last year a total of 4 x 10 19 protons were delivered on target in a period of approximately 20 weeks. Physics interest is very strong, half of the submitted proposals are rejected (thereby maintaining high quality experiments) and the program is full over the next two years. The future colliding beam facility will utilize the AGS as an injector and will be a dedicated facility. It will have six intersection regions, run > 10 7 sec/year, and explore a new domain of energy and luminosity. Common to all the considered alternatives is a large aperture proton ring. These possible choices involve pp, ep, and heavy ion variants. The long term philosophy is to run the AGS as much as possible, continuously to upgrade it in performance and reliability, and then to phase it down as the new collider begins operation

  5. Photon-photon scattering at the high-intensity frontier

    Science.gov (United States)

    Gies, Holger; Karbstein, Felix; Kohlfürst, Christian; Seegert, Nico

    2018-04-01

    The tremendous progress in high-intensity laser technology and the establishment of dedicated high-field laboratories in recent years have paved the way towards a first observation of quantum vacuum nonlinearities at the high-intensity frontier. We advocate a particularly prospective scenario, where three synchronized high-intensity laser pulses are brought into collision, giving rise to signal photons, whose frequency and propagation direction differ from the driving laser pulses, thus providing various means to achieve an excellent signal to background separation. Based on the theoretical concept of vacuum emission, we employ an efficient numerical algorithm which allows us to model the collision of focused high-intensity laser pulses in unprecedented detail. We provide accurate predictions for the numbers of signal photons accessible in experiment. Our study is the first to predict the precise angular spread of the signal photons, and paves the way for a first verification of quantum vacuum nonlinearity in a well-controlled laboratory experiment at one of the many high-intensity laser facilities currently coming online.

  6. Fluctuations in high-energy particle collisions

    International Nuclear Information System (INIS)

    Gronqvist, Hanna

    2016-01-01

    We study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of 'sources' in the colliding nuclei. Furthermore, we

  7. High energy HF pulsed lasers

    International Nuclear Information System (INIS)

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  8. Comments on the interaction between theory and experiment in high energy physics

    International Nuclear Information System (INIS)

    Derrick, M.

    1990-01-01

    This paper discusses work being conducted in High Energy Physics and Nuclear Physics where theory and experiment go hand in hand. Pion capture, proton-antiproton interactions, kaon-pion interactions and hypernuclei decay are discussed as examples

  9. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  10. High energy physics: Progress report

    International Nuclear Information System (INIS)

    Phillips, G.C.; Roberts, J.B. Jr.; Bonner, B.E.

    1987-01-01

    Analysis of data on collision of protons with targets of He, Be, C, Al, Sn, and Pb continued. A jet signal has been clearly observed from all nuclei. A collaboration has been formed for carrying out an experiment studying the photoproduced jets from nuclei and propagation of quarks and gluons through nuclear matter. The production of lambda hyperons was studied using the primary polarized beam at BNL/AGS at 13.3 and 18.5 GeV/c. The effect of the proton beam polarization on the lambda production, A/sub N/ and spin transfer have been measured. A request was approved for additional polarized proton beam at the AGS to continue measurements of the spin transfer to hyperons. Progress is reported on an initial 200 GeV/c polarized beam-polarized target experiment. A collaborative experiment was approved for the saearch for exotic/hybrid mesons. Investigations in quantum field theories, especially quantum chromodynamics, were contined

  11. High energy heavy ion beam lithography in silicon

    International Nuclear Information System (INIS)

    Rout, Bibhudutta; Dymnikov, Alexander D.; Zachry, Daniel P.; Eschenazi, Elia V.; Wang, Yongqiang Q.; Greco, Richard R.; Glass, Gary A.

    2007-01-01

    As high energy ions travel through a crystalline semiconductor materials they produce damage along the path which results in resistance to some of the wet chemical etching. A series of preliminary experiments have been performed at the Louisiana Accelerator Center (LAC) to examine the feasibility of irradiating high energy (keV-MeV) ions such as protons, xenon and gold through microscale masked structures on crystalline (n-type) Si substrates followed by wet chemical etch with KOH for attaining deep micromachining in Si. The results of these experiments are reported

  12. Bench mark spectra for high-energy neutron dosimetry

    International Nuclear Information System (INIS)

    Dierckx, R.

    1986-01-01

    To monitor radiation damage experiments, activation detectors are commonly used. The precision of the results obtained by the multiple foil analysis is largely increased by the intercalibration in bench-mark spectra. This technique is already used in dosimetry measurements for fission reactors. To produce neutron spectra similar to fusion reactor and high-energy high-intensity neutron sources (d-Li or spallation), accelerators can be used. Some possible solutions as p-Be and d-D 2 O neutron sources, useful as bench-mark spectra are described. (author)

  13. Assessment of Proton Deflectometry for Exploding Wire Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat Nadeem [University of California San Diego

    2013-09-25

    This project provides the first demonstration of the application of proton deflectometry for the diagnosis of electromagnetic field topology and current-carrying regions in Z-pinch plasma experiments. Over the course of this project several milestones were achieved. High-energy proton beam generation was demonstrated on the short-pulse high-intensity Leopard laser, (10 Joules in ~350 femtoseconds, and the proton beam generation was shown to be reproducible. Next, protons were used to probe the electromagnetic field structure of short circuit loads in order to benchmark the two numerical codes, the resistive-magnetohydrodynamics (MHD) code, Gorgon, and the hybrid particle-in-cell code, LSP for the interpretation of results. Lastly, the proton deflectometry technique was used to map the magnetic field structure of pulsed-power-driven plasma loads including wires and supersonic jets formed with metallic foils. Good agreement between the modeling and experiments has been obtained. The demonstrated technique holds great promise to significantly improve the understanding of current flow and electromagnetic field topology in pulsed power driven high energy density plasmas. Proton probing with a high intensity laser was for the first time implemented in the presence of the harsh debris and x-ray producing z-pinch environment driven by a mega-ampere-scale pulsed-power machine. The intellectual merit of the program was that it investigated strongly driven MHD systems and the influence of magnetic field topology on plasma evolution in pulsed power driven plasmas. The experimental program involved intense field-matter interaction in the generation of the proton probe, as well as the generation of plasma subjected to 1 MegaGauss scale magnetic fields. The computational aspect included two well-documented codes, in combination for the first time to provide accurate interpretation of the experimental results. The broader impact included the support of 2 graduate students, one at

  14. Computing in high energy physics

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Hoogland, W.

    1986-01-01

    This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume

  15. Multiprocessors for high energy physics

    International Nuclear Information System (INIS)

    Pohl, M.

    1987-01-01

    I review the role, status and progress of multiprocessor projects relevant to high energy physics. A short overview of the large variety of multiprocessors architectures is given, with special emphasis on machines suitable for experimental data reconstruction. A lot of progress has been made in the attempt to make the use of multiprocessors less painful by creating a ''Parallel Programming Environment'' supporting the non-expert user. A high degree of usability has been reached for coarse grain (event level) parallelism. The program development tools available on various systems (subroutine packages, preprocessors and parallelizing compilers) are discussed in some detail. Tools for execution control and debugging are also developing, thus opening the path from dedicated systems for large scale, stable production towards support of a more general job mix. At medium term, multiprocessors will thus cover a growing fraction of the typical high energy physics computing task. (orig.)

  16. A high energy physics perspective

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1997-01-01

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional open-quotes Hidden Symmetries close quotes are discussed. Experimental approaches to uncover open-quotes New Physicsclose quotes associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given

  17. Cosmology for high energy physicists

    International Nuclear Information System (INIS)

    Albrecht, A.

    1987-11-01

    The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs

  18. High Energy Physics in Europe

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A thorough survey of the present and possible future activities and resources in high energy physics in the CERN Member States has been carried out by a Working Group of ECFA (European Committee for Future Accelerators) under the Chairmanship of John Mulvey. The aim has been to obtain a view of the present European scene and to see whether it looks well adapted to the effective exploitation of possible future machines in Europe (particular LEP) and the rest of the world

  19. Ultra-high energy cosmic rays and prompt TeV gamma rays from ...

    Indian Academy of Sciences (India)

    physics pp. 789-792. Ultra-high energy cosmic rays and prompt. TeV gamma rays from gamma ray bursts ... The origin of the observed ultra-high energy cosmic ray (UHECR) events with ... are proton and electron rest mass, respectively.

  20. Statistical issues in searches for new phenomena in High Energy Physics

    Science.gov (United States)

    Lyons, Louis; Wardle, Nicholas

    2018-03-01

    Many analyses of data in High Energy Physics are concerned with searches for New Physics. We review the statistical issues that arise in such searches, and then illustrate these using the specific example of the recent successful search for the Higgs boson, produced in collisions between high energy protons at CERN’s Large Hadron Collider.