WorldWideScience

Sample records for high-fructose diet induces

  1. Insulin Resistance Induced by a High Fructose Diet in Rats Due to Hepatic Disturbance

    International Nuclear Information System (INIS)

    Heibashy, M.I.A.; Mazen, G.M.A.; Kelada, N.A.H.

    2013-01-01

    High consumption of dietary fructose is accused of being responsible for the development of the insulin resistance (IR) syndrome. Concern has arisen because of the realization that fructose, at elevated concentrations, can promote metabolic changes that are potentially deleterious. Among these changes is IR which manifests as a decreased biological response to normal levels of plasma insulin. Therefore, this experiment was designed to evaluate the role of high fructose diet on metabolic syndrome in rats. The experimental animals were divided into two batches. The control batch received a control diet; the second batch was given a high-fructose diet as the sole source of carbohydrate. The rats were continued on the dietary regimen for 1, 2 and 3 months. After the experimental periods, fructose fed rats groups showed significant elevations in the levels of glucose, insulin sensitivity, liver function tests, nitric oxide and tumor necrosis factor-α when compared to their corresponding values in the rats fed normal diet. Moreover, liver lipid peroxidation [thiobarbituric acid-reactive substance (TBARS) and lipid hydroperoxide concentrations were remarkably increased in high-fructose-fed rats according to the time of administration (1, 2 and 3 months). On the other hand, the activities of enzymatic antioxidants (glutathione reductase and glutathione peroxidase) and glyoxalase I and II were significantly declined in this group. In conclusion, high fructose feeding raises liver dysfunction and causes the features of metabolic syndrome (insulin resistance) in rats dependent on the time of administration due to different mechanisms which were discussed in this work according to available recent researches

  2. A high-fructose diet induces changes in pp185 phosphorylation in muscle and liver of rats

    Directory of Open Access Journals (Sweden)

    M. Ueno

    2000-12-01

    Full Text Available Insulin stimulates the tyrosine kinase activity of its receptor resulting in the tyrosine phosphorylation of pp185, which contains insulin receptor substrates IRS-1 and IRS-2. These early steps in insulin action are essential for the metabolic effects of insulin. Feeding animals a high-fructose diet results in insulin resistance. However, the exact molecular mechanism underlying this effect is unknown. In the present study, we determined the levels and phosphorylation status of the insulin receptor and pp185 (IRS-1/2 in liver and muscle of rats submitted to a high-fructose diet evaluated by immunoblotting with specific antibodies. Feeding fructose (28 days induced a discrete insulin resistance, as demonstrated by the insulin tolerance test. Plasma glucose and serum insulin and cholesterol levels of the two groups of rats, fructose-fed and control, were similar, whereas plasma triacylglycerol concentration was significantly increased in the rats submitted to the fructose diet (P<0.05. There were no changes in insulin receptor concentration in the liver or muscle of either group. However, insulin-stimulated receptor autophosphorylation was reduced to 72 ± 4% (P<0.05 in the liver of high-fructose rats. The IRS-1 protein levels were similar in both liver and muscle of the two groups of rats. In contrast, there was a significant decrease in insulin-induced pp185 (IRS-1/2 phosphorylation, to 83 ± 5% (P<0.05 in liver and to 77 ± 4% (P<0.05 in muscle of the high-fructose rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance induced by high-fructose feeding.

  3. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Prabhakar, Pankaj; Reeta, K H; Maulik, Subir Kumar; Dinda, Amit Kumar; Gupta, Yogendra Kumar

    2017-01-01

    This study investigated the effect of α-amyrin (a pentacyclic triterpene) on high-fructose diet (HFD)-induced metabolic syndrome in rats. Male Wistar rats were randomly distributed into different groups. The control group was fed normal rat chow diet. The HFD group was fed HFD (60%; w/w) for 42 days. Pioglitazone (10 mg/kg, orally, once daily) was used as a standard drug. α-Amyrin was administered in 3 doses (50, 100, and 200 mg/kg, orally, once daily along with HFD). Plasma glucose, total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) were estimated. Changes in blood pressure, oral glucose tolerance, and insulin tolerance were measured. Hepatic oxidative stress as well as messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) were analyzed. A significant increase in systolic blood pressure, plasma glucose, total cholesterol, and plasma triglycerides and a significant decrease in HDL-C were observed in HFD rats as compared with control rats. Glucose tolerance and insulin tolerance were also significantly impaired with HFD. α-Amyrin prevented these changes in a dose-dependent manner. Hepatic oxidative stress as well as micro- and macrovesicular fatty changes in hepatocytes caused by HFD were also attenuated by α-amyrin. α-Amyrin preserved the hepatic mRNA and protein levels of PPAR-α, which was reduced in HFD group. This study thus demonstrates that α-amyrin attenuates HFD-induced metabolic syndrome in rats.

  4. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  5. High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine.

    Science.gov (United States)

    Pan, Ying; Kong, Ling-Dong

    2018-04-01

    Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs

  6. Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver.

    Science.gov (United States)

    Chukijrungroat, Natsasi; Khamphaya, Tanaporn; Weerachayaphorn, Jittima; Songserm, Thaweesak; Saengsirisuwan, Vitoon

    2017-08-01

    The role of gender in the progression of fatty liver due to chronic high-fat high-fructose diet (HFFD) has not been studied. The present investigation assessed whether HFFD induced hepatic perturbations differently between the sexes and examined the potential mechanisms. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were fed either a control diet or HFFD for 12 wk. Indexes of liver damage and hepatic steatosis were analyzed biochemically and histologically together with monitoring changes in hepatic gene and protein expression. HFFD induced a higher degree of hepatic steatosis in females, with significant increases in proteins involved in hepatic lipogenesis, whereas HFFD significantly induced liver injury, inflammation, and oxidative stress only in males. Interestingly, a significant increase in hepatic fibroblast growth factor 21 (FGF21) protein expression was observed in HFFD-fed males but not in HFFD-fed females. Ovarian hormone deprivation by itself led to a significant reduction in FGF21 with hepatic steatosis, and HFFD further aggravated hepatic fat accumulation in OVX rats. Importantly, estrogen replacement restored hepatic FGF21 levels and reduced hepatic steatosis in HFFD-fed OVX rats. Collectively, our results indicate that male rats are more susceptible to HFFD-induced hepatic inflammation and that the mechanism underlying this sex dimorphism is mediated through hepatic FGF21 expression. Our findings reveal sex differences in the development of HFFD-induced fatty liver and indicate the protective role of estrogen against HFFD-induced hepatic steatosis. Copyright © 2017 the American Physiological Society.

  7. Effect of taurine supplementation on hyperhomocysteinemia and markers of oxidative stress in high fructose diet induced insulin resistance

    Directory of Open Access Journals (Sweden)

    El Mesallamy Hala O

    2010-06-01

    Full Text Available Abstract Background High intake of dietary fructose is accused of being responsible for the development of the insulin resistance (IR syndrome. Concern has arisen because of the realization that fructose, at elevated concentrations, can promote metabolic changes that are potentially deleterious. Among these changes is IR which manifests as a decreased biological response to normal levels of plasma insulin. Methods Oral glucose tolerance tests (OGTT were carried out, homeostasis model assessment of insulin resistance (HOMA was calculated, homocysteine (Hcy, lipid concentrations and markers of oxidative stress were measured in male Wistar rats weighing 170-190 g. The rats were divided into four groups, kept on either control diet or high fructose diet (HFD, and simultaneously supplemented with 300 mg/kg/day taurine via intra-peritoneal (i.p. route for 35 days. Results Fructose-fed rats showed significantly impaired glucose tolerance, impaired insulin sensitivity, hypertriglyceridemia, hypercholesterolemia, hyperhomocysteinemia (HHcy, lower total antioxidant capacity (TAC, lower paraoxonase (PON activity, and higher nitric oxide metabolites (NOx concentration, when compared to rats fed on control diet. Supplementing the fructose-fed rats with taurine has ameliorated the rise in HOMA by 56%, triglycerides (TGs by 22.5%, total cholesterol (T-Chol by 11%, and low density lipoprotein cholesterol (LDL-C by 21.4%. Taurine also abolished any significant difference of TAC, PON activity and NOx concentration among treated and control groups. TAC positively correlated with PON in both rats fed on the HFD and those received taurine in addition to the HFD. Fructose-fed rats showed 34.7% increase in Hcy level. Taurine administration failed to prevent the observed HHcy in the current dosage and duration. Conclusion Our results indicate that HFD could induce IR which could further result in metabolic syndrome (MS, and that taurine has a protective role against

  8. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    Science.gov (United States)

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Beneficial Effects of Phyllanthus amarus Against High Fructose Diet Induced Insulin Resistance and Hepatic Oxidative Stress in Male Wistar Rats.

    Science.gov (United States)

    Putakala, Mallaiah; Gujjala, Sudhakara; Nukala, Srinivasulu; Desireddy, Saralakumari

    2017-11-01

    Insulin resistance (IR) is a characteristic feature of obesity, type 2 diabetes mellitus, and cardiovascular diseases. Emerging evidence suggests that the high-fructose consumption is a potential and important factor responsible for the rising incidence of IR. The present study investigates the beneficial effects of aqueous extract of Phyllanthus amarus (PAAE) on IR and oxidative stress in high-fructose (HF) fed male Wistar rats. HF diet (66% of fructose) and PAAE (200 mg/kg body weight/day) were given concurrently to the rats for a period of 60 days. Fructose-fed rats showed weight gain, hyperglycemia, hyperinsulinemia, impaired glucose tolerance, impaired insulin sensitivity, dyslipidemia, hyperleptinemia, and hypoadiponectinemia (P diet significantly ameliorated all these alterations. Regarding hepatic antioxidant status, higher lipid peroxidation and protein oxidation, lower reduced glutathione levels and lower activities of enzymatic antioxidants, and the histopathological changes like mild to severe distortion of the normal architecture as well as the prominence and widening of the liver sinusoids observed in the HF diet-fed rats were significantly prevented by PAAE treatment. These findings indicate that PAAE is beneficial in improving insulin sensitivity and attenuating metabolic syndrome and hepatic oxidative stress in fructose-fed rats.

  10. The effects of resveratrol on hepatic oxidative stress in metabolic syndrome model induced by high fructose diet.

    Science.gov (United States)

    Yilmaz Demirtas, C; Bircan, F S; Pasaoglu, O T; Turkozkan, N

    2018-01-01

    The purpose of this study was to evaluate probable protective effects of resveratrol treatment on hepatic oxidative events in a rat model of metabolic syndrome (MetS). Thirty-two male adult rats were randomly divided into 4 groups: control, fructose, resveratrol, and fructose plus resveratrol. To induce MetS, fructose solution (20 % in drinking water) was used. Resveratrol (10 mg/kg/day) was given by oral gavage. All treatments were given for 8 weeks. Serum lipid profile, glucose and insulin levels, liver total oxidant status (TOS) levels and paraoxonase (PON), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) activities were analyzed. Fructose-fed rats displayed statistically significant increases in TOS levels, and decreases in PON activity compared to the control group. Resveratrol treatment moderately prevented the decrease in liver PON activity caused by fructose. On the other hand, resveratrol, alone or in combination with fructose, did not change the TOS levels when compared to the fructose group. The SOD and CAT activities in all groups did not change. In this experimental design, high-fructose consumption led to elevated TOS levels and low PON activities. The resveratrol therapy shown beneficial effects on PON activity. However, it was found to behave like a prooxidant when administered together with fructose and alone in some parameters. Our results can inspire the development of new clinical therapy in patients with MetS (Tab. 2, Ref. 34).

  11. A High-Fructose-High-Coconut Oil Diet Induces Dysregulating Expressions of Hippocampal Leptin and Stearoyl-CoA Desaturase, and Spatial Memory Deficits in Rats.

    Science.gov (United States)

    Lin, Ching-I; Shen, Chu-Fu; Hsu, Tsui-Han; Lin, Shyh-Hsiang

    2017-06-16

    We investigated the effects of high-fructose-high-fat diets with different fat compositions on metabolic parameters, hippocampal-dependent cognitive function, and brain leptin (as well as stearoyl-CoA desaturase (SCD1) mRNA expressions). Thirty-two male Wistar rats were divided into 3 groups, a control group ( n = 8), a high-fructose soybean oil group (37.5% of fat calories, n = 12), and a high-fructose coconut oil group (37.5% of fat calories, n = 12) for 20 weeks. By the end of the study, the coconut oil group exhibited significantly higher serum fasting glucose, fructosamine, insulin, leptin, and triglyceride levels compared to those of the control and soybean oil groups. However, hippocampal leptin expression and leptin receptor mRNA levels were significantly lower, while SCD1 mRNA was significantly higher in rats fed the high-fructose-high-coconut oil diet than in rats fed the other experimental diets. In addition, the coconut oil group spent significantly less time in the target quadrant on the probe test in the Morris water maze (MWM) task. Rats fed the high-fructose-high-coconut oil diet for 20 weeks were prone to develop hyperglycemia, hyperinsulinemia, hyperleptinemia, and hypertriglyceridemia. These metabolic consequences may contribute to hippocampal-dependent memory impairment, accompanied by a lower central leptin level, and a higher SCD1 gene expression in the brain.

  12. Beneficiary effect of Commiphora mukul ethanolic extract against high fructose diet induced abnormalities in carbohydrate and lipid metabolism in wistar rats

    Directory of Open Access Journals (Sweden)

    Ramesh Bellamkonda

    2018-01-01

    Full Text Available The present study was proposed to elucidate the effect of Commiphora mukul gum resin elthanolic extract treatment on alterations in carbohydrate and lipid metabolisms in rats fed with high-fructose diet. Male Wistar rats were divided into four groups: two of these groups (group C and C+CM were fed with standard pellet diet and the other two groups (group F and F+CM were fed with high fructose (66 % diet. C. mukul suspension in 5% Tween-80 in distilled water (200 mg/kg body weight/day was administered orally to group C+CM and group F+CM. At the end of 60-day experimental period, biochemical parameters related to carbohydrate and lipid metabolisms were assayed. C. mukul treatment completely prevented the fructose-induced increased body weight, hyperglycemia, and hypertriglyceridemia. Hyperinsulinemia and insulin resistance observed in group F decreased significantly with C. mukul treatment in group F+CM. The alterations observed in the activities of enzymes of carbohydrate and lipid metabolisms and contents of hepatic tissue lipids in group F rats were significantly restored to near normal values by C. mukul treatment in group F+CM. In conclusion, our study demonstrated that C. mukul treatment is effective in preventing fructose-induced insulin resistance and hypertriglyceridemia while attenuating the fructose induced alterations in carbohydrate and lipid metabolisms by the extract which was further supported by histopathological results from liver samples which showed regeneration of the hepatocytes. This study suggests that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it.

  13. Maternal Melatonin Therapy Attenuated Maternal High-Fructose Combined with Post-Weaning High-Salt Diets-Induced Hypertension in Adult Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2018-04-01

    Full Text Available Consumption of food high in fructose and salt is associated with the epidemic of hypertension. Hypertension can originate from early life. Melatonin, a pleiotropic hormone, regulates blood pressure. We examined whether maternal melatonin therapy can prevent maternal high-fructose combined with post-weaning high-salt diet-induced programmed hypertension in adult offspring. Pregnant Sprague-Dawley rats received either a normal diet (ND or a 60% fructose diet (HF during pregnancy and the lactation period. Male offspring were on either the ND or a high-salt diet (HS, 1% NaCl from weaning to 12 weeks of age and were assigned to five groups (n = 8/group: ND/ND, HF/ND, ND/HS, HF/HS, and HF/HS+melatonin. Melatonin (0.01% in drinking water was administered during pregnancy and lactation. We observed that maternal HF combined with post-weaning HS diets induced hypertension in male adult offspring, which was attenuated by maternal melatonin therapy. The beneficial effects of maternal melatonin therapy on HF/HS-induced hypertension related to regulating several nutrient-sensing signals, including Sirt1, Sirt4, Prkaa2, Prkab2, Pparg, and Ppargc1a. Additionally, melatonin increased protein levels of mammalian targets of rapamycin (mTOR, decreased plasma asymmetric dimethylarginine (ADMA and symmetric dimethylarginine levels, and increased the l-arginine-to-ADMA ratio. The reprogramming effects by which maternal melatonin therapy protects against hypertension of developmental origin awaits further elucidation.

  14. Aqueous seed extract of Hunteria umbellata (K. Schum.) Hallier f. (Apocynaceae) palliates hyperglycemia, insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Ajiboye, T O; Hussaini, A A; Nafiu, B Y; Ibitoye, O B

    2017-02-23

    Hunteria umbellata is used in the management and treatment of diabetes and obesity in Nigeria. This study evaluates the effect of aqueous seed extract of Hunteria umbellata on insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome MATERIALS AND METHODS: Rats were randomized into seven groups (A-G). Control (group A) and group C rats received control diet for nine weeks while rats in groups B, D - G were placed on high-fructose diet for 9 weeks. In addition to the diets, groups C - F rats orally received 400, 100, 200 and 400mg/kg body weight aqueous seed extract of Hunteria umbellata for 3 weeks starting from 6th - 9th week. High-fructose diet (when compared to control rats) mediated a significant (phigh-density lipoprotein cholesterol was decreased significantly. Levels of proinflammatory factor, tumour necrosis factor-α, interleukin-6 and 8 were also increased by the high fructose diet. Moreover, it mediated decrease in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and level of glutathione reduced. Conversely, levels of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and fragmented DNA were elevated. Aqueous seed extract of Hunteria umbellata significantly ameliorated the high fructose diet-mediated alterations. From this study, it is concluded that aqueous seed extract of Hunteria umbellata possesses hypoglycemic, hypolipidemic and antioxidants abilities as evident from its capability to extenuate insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats.

    Science.gov (United States)

    Nasri, Rim; Abdelhedi, Ola; Jemil, Ines; Daoued, Ines; Hamden, Khaled; Kallel, Choumous; Elfeki, Abdelfattah; Lamri-Senhadji, Myriem; Boualga, Ahmed; Nasri, Moncef; Karra-Châabouni, Maha

    2015-12-05

    This study investigated the therapeutic potential of undigested goby fish (Zosterisessor ophiocephalus) muscle proteins (UGP) and their hydrolysates on high-fat-high-fructose diet (HFFD)-fed rats. HFFD induced hyperglycemia, manifested by a significant increase in the levels of glucose and glycogen as well as α-amylase activity when compared to normal rats. The administration of GPHs to HFFD-fed rats significantly decreased α-amylase activity and the contents of blood glucose and hepatic glycogen. By contrast, the UGP increased the glucose metabolic disorders in HFFD-fed rats. Furthermore, HFFD-fed rats showed oxidative stress, as evidenced by decreased antioxidant enzyme activities and glutathione (GSH) levels and increased concentration of the lipid peroxidation product malondialdehyde in liver and kidney. Interestingly, the daily gavage of UGP and GPHs improved the redox status in liver and kidney of HFFD-rats by ameliorating or reversing the above-mentioned changes. Moreover, GPHs exhibited a renal protective role by reversing the HFFD-induced decease of uric acid and increase of creatinine levels in serum and preventing some HFFD-induced changes in kidney architecture. The results demonstrate that GPHs contain bioactive peptides that possess significant hypoglycemic and antioxidant properties, and ameliorate renal damage in rats fed hypercaloric diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Low intensity exercise prevents disturbances in rat cardiac insulin signaling and endothelial nitric oxide synthase induced by high fructose diet.

    Science.gov (United States)

    Stanišić, Jelena; Korićanac, Goran; Ćulafić, Tijana; Romić, Snježana; Stojiljković, Mojca; Kostić, Milan; Pantelić, Marija; Tepavčević, Snežana

    2016-01-15

    Increase in fructose consumption together with decrease in physical activity contributes to the development of metabolic syndrome and consequently cardiovascular diseases. The current study examined the preventive role of exercise on defects in cardiac insulin signaling and function of endothelial nitric oxide synthase (eNOS) in fructose fed rats. Male Wistar rats were divided into control, sedentary fructose (received 10% fructose for 9 weeks) and exercise fructose (additionally exposed to low intensity exercise) groups. Concentration of triglycerides, glucose, insulin and visceral adipose tissue weight were determined to estimate metabolic syndrome development. Expression and/or phosphorylation of cardiac insulin receptor (IR), insulin receptor substrate 1 (IRS1), tyrosine-specific protein phosphatase 1B (PTP1B), Akt, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and eNOS were evaluated. Fructose overload increased visceral adipose tissue, insulin concentration and homeostasis model assessment index. Exercise managed to decrease visceral adiposity and insulin level and to increase insulin sensitivity. Fructose diet increased level of cardiac PTP1B and pIRS1 (Ser307), while levels of IR and ERK1/2, as well as pIRS1 (Tyr 632), pAkt (Ser473, Thr308) and pERK1/2 were decreased. These disturbances were accompanied by reduced phosphorylation of eNOS at Ser1177. Exercise managed to prevent most of the disturbances in insulin signaling caused by fructose diet (except phosphorylation of IRS1 at Tyr 632 and phosphorylation and protein expression of ERK1/2) and consequently restored function of eNOS. Low intensity exercise could be considered as efficient treatment of cardiac insulin resistance induced by fructose diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Effect of Papaya Seed Extract (Carica papaya Linn. on Glucose Transporter 4 (GLUT 4 Expression of Skeletal Muscle Tissue in Diabetic Mice Induced by High Fructose Diet

    Directory of Open Access Journals (Sweden)

    Devyani Diah Wulansari

    2017-08-01

    Full Text Available Ethnobotany surveys show that papaya seeds are widely used as herbs for the management of some diseases such as abdominal discomfort, pain, malaria, diabetes, obesity, and infection. This research was conducted to analyze the effect of papaya seed extract on GLUT4 expression on skeletal muscle tissue of DM type II model induced by high fructose diet. This study used 24 animals, divided into 4 groups of negative control group, treated with papaya seed extract 100 mg / kgBB, 200 mg / kgBW and 300 mg / kgBW, was adapted for 14 days then induced by fructose solution 20% Orally with a dose of 1.86 grams / kgBB for 56 days. The treatment group was given papaya seed extract in accordance with the dose of each group for 14 days. GDP levels was measured using a spectrophotometer. Skeletal muscle tissue is used on the gastrocnemius part. GLUT4 expression was measured through a Immunoreactive Score (IRS method with immunohistochemical staining using GLUT4 polyclonal antibodies. Comparative test results showed that there were significant differences between groups (p <0.05 in final GDP variables and GLUT4 expression. Pearson correlation test results show that the value p = 0.001, meaning there is a significant relationship between GLUT4 expression with final GDP levels. The result of simple linear regression analysis showed that p = 0,000 (<0,05, meaning that dose of papaya seed extract had a significant influence on GLUT4 expression.

  18. A High-Fat, High-Fructose Diet Induces Antioxidant Imbalance and Increases the Risk and Progression of Nonalcoholic Fatty Liver Disease in Mice

    Directory of Open Access Journals (Sweden)

    Kanokwan Jarukamjorn

    2016-01-01

    Full Text Available Excessive fat liver is an important manifestation of nonalcoholic fatty liver disease (NAFLD, associated with obesity, insulin resistance, and oxidative stress. In the present study, the effects of a high-fat, high-fructose diet (HFFD on mRNA levels and activities of the antioxidant enzymes, including superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx, were determined in mouse livers and brains. The histomorphology of the livers was examined and the state of nonenzymatic reducing system was evaluated by measuring the glutathione system and the lipid peroxidation. Histopathology of the liver showed that fat accumulation and inflammation depended on the period of the HFFD-consumption. The levels of mRNA and enzymatic activities of SOD, CAT, and GPx were raised, followed by the increases in malondialdehyde levels in livers and brains of the HFFD mice. The oxidized GSSG content was increased while the total GSH and the reduced GSH were decreased, resulting in the increase in the GSH/GSSG ratio in both livers and brains of the HFFD mice. These observations suggested that liver damage and oxidative stress in the significant organs were generated by continuous HFFD-consumption. Imbalance of antioxidant condition induced by long-term HFFD-consumption might increase the risk and progression of NAFLD.

  19. Effects of ferulic acid and γ-oryzanol on high-fat and high-fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Wang, Ou; Liu, Jia; Cheng, Qian; Guo, Xiaoxuan; Wang, Yong; Zhao, Liang; Zhou, Feng; Ji, Baoping

    2015-01-01

    The high morbidity of metabolic dysfunction diseases has heightened interest in seeking natural and safe compounds to maintain optimal health. γ-Oryzanol (OZ), the ferulic acid (FA) ester with phytosterols, mainly present in rice bran has been shown to improve markers of metabolic syndrome. This study investigates the effects of FA and OZ on alleviating high-fat and high-fructose diet (HFFD)-induced metabolic syndrome parameters. Male SD rats were fed with a regular rodent diet, HFFD, or HFFD supplemented with 0.05% FA or 0.16% OZ (equimolar concentrations) for 13 weeks. Food intake, organ indices, serum lipid profiles, glucose metabolism, insulin resistance (IR) index and cytokine levels were analyzed. The mechanisms were further investigated in oleic acid-stimulated HepG2 cells by analyzing triglyceride (TG) content and lipogenesis-related gene expressions. In the in vivo study, FA and OZ exhibited similar effects in alleviating HFFD-induced obesity, hyperlipidemia, hyperglycemia, and IR. However, only OZ treatment significantly decreased liver index and hepatic TG content, lowered serum levels of C-reactive protein and IL-6, and increased serum concentration of adiponectin. In the in vitro assay, only OZ administration significantly inhibited intracellular TG accumulation and down-regulated expression of stearoyl coenzyme-A desaturase-1, which might facilitate OZ to enhance its hepatoprotective effect. OZ is more effective than FA in inhibiting hepatic fat accumulation and inflammation. Thus, FA and OZ could be used as dietary supplements to alleviate the deleterious effects of HFFD.

  20. Effects of ferulic acid and γ-oryzanol on high-fat and high-fructose diet-induced metabolic syndrome in rats.

    Directory of Open Access Journals (Sweden)

    Ou Wang

    Full Text Available The high morbidity of metabolic dysfunction diseases has heightened interest in seeking natural and safe compounds to maintain optimal health. γ-Oryzanol (OZ, the ferulic acid (FA ester with phytosterols, mainly present in rice bran has been shown to improve markers of metabolic syndrome. This study investigates the effects of FA and OZ on alleviating high-fat and high-fructose diet (HFFD-induced metabolic syndrome parameters.Male SD rats were fed with a regular rodent diet, HFFD, or HFFD supplemented with 0.05% FA or 0.16% OZ (equimolar concentrations for 13 weeks. Food intake, organ indices, serum lipid profiles, glucose metabolism, insulin resistance (IR index and cytokine levels were analyzed. The mechanisms were further investigated in oleic acid-stimulated HepG2 cells by analyzing triglyceride (TG content and lipogenesis-related gene expressions.In the in vivo study, FA and OZ exhibited similar effects in alleviating HFFD-induced obesity, hyperlipidemia, hyperglycemia, and IR. However, only OZ treatment significantly decreased liver index and hepatic TG content, lowered serum levels of C-reactive protein and IL-6, and increased serum concentration of adiponectin. In the in vitro assay, only OZ administration significantly inhibited intracellular TG accumulation and down-regulated expression of stearoyl coenzyme-A desaturase-1, which might facilitate OZ to enhance its hepatoprotective effect.OZ is more effective than FA in inhibiting hepatic fat accumulation and inflammation. Thus, FA and OZ could be used as dietary supplements to alleviate the deleterious effects of HFFD.

  1. Regulatory landscape of AGE-RAGE-oxidative stress axis and its modulation by PPARγ activation in high fructose diet-induced metabolic syndrome.

    Science.gov (United States)

    Cannizzaro, Luca; Rossoni, Giuseppe; Savi, Federica; Altomare, Alessandra; Marinello, Cristina; Saethang, Thammakorn; Carini, Marina; Payne, D Michael; Pisitkun, Trairak; Aldini, Giancarlo; Leelahavanichkul, Asada

    2017-01-01

    The AGE-RAGE-oxidative stress (AROS) axis is involved in the onset and progression of metabolic syndrome induced by a high-fructose diet (HFD). PPARγ activation is known to modulate metabolic syndrome; however a systems-level investigation looking at the protective effects of PPARγ activation as related to the AROS axis has not been performed. The aim of this work is to simultaneously characterize multiple molecular parameters within the AROS axis, using samples taken from different body fluids and tissues of a rat model of HFD-induced metabolic syndrome, in the presence or absence of a PPARγ agonist, Rosiglitazone (RGZ). Rats were fed with 60% HFD for the first half of the treatment duration (21 days) then continued with either HFD alone or HFD plus RGZ for the second half. Rats receiving HFD alone showed metabolic syndrome manifestations including hypertension, dyslipidemia, increased glucose levels and insulin resistance, as well as abnormal kidney and inflammatory parameters. Systolic blood pressure, plasma triglyceride and glucose levels, plasma creatinine, and albuminuria were significantly improved in the presence of RGZ. The following molecular parameters of the AROS axis were significantly upregulated in our rat model: carboxymethyl lysine (CML) in urine and liver; carboxyethyl lysine (CEL) in urine; advanced glycation end products (AGEs) in plasma; receptor for advanced glycation end products (RAGE) in liver and kidney; advanced oxidation protein products (AOPP) in plasma; and 4-hydroxynonenal (HNE) in plasma, liver, and kidney. Conversely, with RGZ administration, the upregulation of AOPP and AGEs in plasma, CML and CEL in urine, RAGE in liver as well as HNE in plasma and liver was significantly counteracted/prevented. Our data demonstrate (i) the systems-level regulatory landscape of HFD-induced metabolic syndrome involving multiple molecular parameters, including HNE, AGEs and their receptor RAGE, and (ii) attenuation of metabolic syndrome by

  2. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity

    OpenAIRE

    Meyers, Allison M.; Mourra, Devry; Beeler, Jeff A.

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study ...

  3. Carrot juice ingestion attenuates high fructose-induced circulatory pro-inflammatory mediators in weanling Wistar rats.

    Science.gov (United States)

    Mahesh, Malleswarapu; Bharathi, Munugala; Raja Gopal Reddy, Mooli; Pappu, Pranati; Putcha, Uday Kumar; Vajreswari, Ayyalasomayajula; Jeyakumar, Shanmugam M

    2017-03-01

    Adipose tissue, an endocrine organ, plays a vital role not only in energy homeostasis, but also in the development and/or progression of various metabolic diseases, such as insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD), via several factors and mechanisms, including inflammation. This study tested, whether carrot juice administration affected the adipose tissue development and its inflammatory status in a high fructose diet-induced rat model. For this purpose, male weanling Wistar rats were divided into four groups and fed either control or high fructose diet of AIN-93G composition with or without carrot juice ingestion for an 8 week period. Administration of carrot juice did not affect the adiposity and cell size of visceral fat depot; retroperitoneal white adipose tissue (RPWAT), which was corroborated with unaltered expression of genes involved in adipogenic and lipogenic pathways. However, it significantly reduced the high fructose diet-induced elevation of plasma free fatty acid (FFA) (P ≤ 0.05), macrophage chemoattractant protein 1 (MCP1) (P ≤ 0.01) and high sensitive C-reactive protein (hsCRP) (P ≤ 0.05) levels. Carrot juice administration attenuated the high fructose diet-induced elevation of levels of circulatory FFA and pro-inflammatory mediators; MCP1 and hsCRP without affecting the adiposity and cell size of visceral fat depot; RPWAT. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Dioscoreophyllum cumminsii (Stapf) Diels leaves halt high-fructose induced metabolic syndrome: Hyperglycemia, insulin resistance, inflammation and oxidative stress.

    Science.gov (United States)

    Ajiboye, T O; Aliyu, H; Tanimu, M A; Muhammad, R M; Ibitoye, O B

    2016-11-04

    Dioscoreophyllum cumminsii is widely used in the management and treatment of diabetes and obesity in Nigeria. This study evaluates the effect of aqueous leaf extract of D. cumminsii on high-fructose diet-induced metabolic syndrome. Seventy male rats were randomized into seven groups. All rats were fed with high-fructose diet for 9 weeks except groups A and C rats, which received control diet. In addition to the diet treatment, groups A and B rats received distilled water for 3 weeks starting from the seventh week of the experimental period. Rats in groups C-F orally received 400, 100, 200 and 400mg/kg body weight of aqueous leaf extract of D. cumminsii respectively, while group G received 300mg/kg bodyweight of metformin for 3 weeks starting from the seventh week. There was significant (phigh-fructose diet-mediated increase in body weight, body mass index, abdominal circumference, blood glucose, insulin, leptin and insulin resistance by aqueous leaf extract of D. cumminsii. Conversely, high-fructose diet-mediated decrease in adiponectin was reversed by the extract. Increased levels of cholesterol, triglycerides, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, atherogenic index, cardiac index and coronary artery index were significantly lowered by the extract, while high-fructose diet mediated decrease in high-density lipoprotein cholesterol was increased by the extract. Tumour necrosis factor-α, interleukin-6 and interleukin-8 levels increased significantly in high-fructose diet-fed rats, which were significantly reversed by the extract. High-fructose mediated-decrease in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and glutathione reduced were significantly reversed by aqueous leaf extract of D. cumminsii. Conversely, elevated levels of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and fragmented DNA were significantly lowered by the

  5. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone

    Science.gov (United States)

    Diet-induced obesity has been suggested to lead to increased susceptibility to air pollutants such as ozone (03); however, there is little experimental evidence. Thirty day old male and female Brown Norway rats were fed a normal, high-fructose or high-fat diet for 12 weeks and th...

  6. High fructose diet feeding accelerates diabetic nephropathy in Spontaneously Diabetic Torii (SDT) rats.

    Science.gov (United States)

    Toyoda, Kaoru; Suzuki, Yusuke; Muta, Kyotaka; Masuyama, Taku; Kakimoto, Kochi; Kobayashi, Akio; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Diabetic nephropathy (DN) is one of the complications of diabetes and is now the most common cause of end-stage renal disease. Fructose is a simple carbohydrate that is present in fruits and honey and is used as a sweetener because of its sweet taste. Fructose has been reported to have the potential to progress diabetes and DN in humans even though fructose itself does not increase postprandial plasma glucose levels. In this study, we investigated the effects of high fructose intake on the kidney of the Spontaneously Diabetic Torii (SDT) rats which have renal lesions similar to those in DN patients and compared these with the effects in normal SD rats. This study revealed that a 4-week feeding of the high fructose diet increased urinary excretion of kidney injury makers for tubular injury and accelerated mainly renal tubular and interstitial lesions in the SDT rats but not in normal rats. The progression of the nephropathy in the SDT rats was considered to be related to increased internal uric acid and blood glucose levels due to the high fructose intake. In conclusion, high fructose intake exaggerated the renal lesions in the SDT rats probably due to effects on the tubules and interstitium through metabolic implications for uric acid and glucose.

  7. HO-1 Upregulation Attenuates Adipocyte Dysfunction, Obesity, and Isoprostane Levels in Mice Fed High Fructose Diets

    Directory of Open Access Journals (Sweden)

    Zeid Khitan

    2014-01-01

    Full Text Available Background. Fructose metabolism is an unregulated metabolic pathway and excessive fructose consumption is known to activate ROS. HO-1 is a potent antioxidant gene that plays a key role in decreasing ROS and isoprostanes. We examined whether the fructose-mediated increase in adipocyte dysfunction involves an increase in isoprostanes and that pharmacological induction of HO-1 would decrease both isoprostane levels and adipogenesis. Methods and Results. We examined the effect of fructose, on adipogenesis in human MSCs in the presence and absence of CoPP, an inducer of HO-1. Fructose increased adipogenesis and the number of large lipid droplets while decreasing the number of small lipid droplets (P<0.05. Levels of heme and isoprostane in fructose treated MSC-derived adipocytes were increased. CoPP reversed these effects and markedly increased HO-1 and the Wnt signaling pathway. The high fructose diet increased heme levels in adipose tissue and increased circulating isoprostane levels (P<0.05 versus control. Fructose diets decreased HO-1 and adiponectin levels in adipose tissue. Induction of HO-1 by CoPP decreased isoprostane synthesis (P<0.05 versus fructose. Conclusion. Fructose treatment resulted in increased isoprostane production and adipocyte dysfunction, which was reversed by the increased expression of HO-1.

  8. Antioxidant and anti hyperglycemic role of wine grape powder in rats fed with a high fructose diet

    Directory of Open Access Journals (Sweden)

    Romina Hernández-Salinas

    2015-01-01

    Full Text Available BACKGROUND: Metabolic syndrome is a growing worldwide health problem. We evaluated the effects of wine grape powder (WGP, rich in antioxidants and fiber, in a rat model of metabolic syndrome induced by a high fructose diet. We tested whether WGP supplementation may prevent glucose intolerance and decrease oxidative stress in rats fed with a high fructose diet. METHODS: Male Sprague-Dawley rats weighing 180 g were divided into four groups according to their feeding protocols. Rats were fed with control diet (C, control plus 20 % WGP (C + WGP, 50 % high fructose (HF or 50 % fructose plus 20 % WGP (HF + WGP for 16 weeks. Blood glucose, insulin and triglycerides, weight, and arterial blood pressure were measured. Homeostasis model assessment (HOMA index was calculated using insulin and glucose values. A glucose tolerance test was performed 2 days before the end of the experiment. As an index of oxidative stress, thio-barbituric acid reactive substances (TBARS level was measured in plasma and kidney, and superoxide dismutase was measured in the kidney. RESULTS: Thiobarbituric acid reactive substances in plasma and renal tissue were significantly higher when compared to the control group. In addition, the area under the curve of the glucose tolerance test was higher in HF fed animals. Furthermore, fasting blood glucose, plasma insulin levels, and the HOMA index, were also increased. WGP supplementation prevented these alterations in rats fed with the HF diet. We did not find any significant difference in body weight or systolic blood pressure in any of the groups. CONCLUSIONS: Our results show that WGP supplementation prevented hyperglycemia, insulin resistance and reduced oxidative stress in rats fed with HF diet. We propose that WGP may be used as a supplement in human food as well.

  9. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Science.gov (United States)

    Meyers, Allison M; Mourra, Devry; Beeler, Jeff A

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  10. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Directory of Open Access Journals (Sweden)

    Allison M Meyers

    Full Text Available The contribution of high fructose corn syrup (HFCS to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6 received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  11. Alpha lipoic acid attenuates high-fructose-induced pancreatic toxicity.

    Science.gov (United States)

    Topsakal, Senay; Ozmen, Ozlem; Cankara, Fatma Nihan; Yesilot, Sukriye; Bayram, Dilek; Genç Özdamar, Nilüfer; Kayan, Sümeyra

    2016-01-01

    Chronic consumption of high-fructose corn syrup (HFCS) causes several problems such as insulin resistance. The goal of the study was to investigate pancreatic damage induced by chronic HFCS consumption and the protective effects of alpha lipoic acid (ALA) on pancreatic cells. Wistar Albino, 4-month-old, female rats weighing 250-300 g were randomly distributed into three groups, each containing eight rats. The study included an HFCS group, an HFCS + ALA-administered group and a control group (CON). The prepared 30% solution of HFCS (F30) (24% fructose, 28% dextrose) was added to the drinking water for 10 weeks. ALA treatment was begun 4 weeks after the first HFCS administration (100 mg/kg/oral, last 6 weeks). Rats were anaesthetised and euthanised by cervical dislocation 24 h after the last ALA administration. Blood samples for biochemical tests (amylase, lipase, malondialdehyde (MDA) and catalase (CAT)) and tissue samples for histopathological and immunohistochemical examinations (caspase-3, insulin and glucagon) were collected. Comparing the control and HFCS groups, serum glucose (150.92 ± 39.77 and 236.50 ± 18.28, respectively, p < 0.05), amylase (2165.00 ± 150.76 and 3027.66 ± 729.19, respectively, p < 0.01), lipase (5.58 ± 2.22 and 11.51 ± 2.74, respectively, p < 0.01) and pancreatic tissue MDA (0.0167 ± 0.004 and 0.0193 ± 0.006, respectively, p < 0.05) levels were increased, whereas tissue CAT (0.0924 ± 0.029 and 0.0359 ± 0.023, respectively, p < 0.05) activity decreased in the HFCS group significantly. Histopathological examination revealed degenerative and necrotic changes in Langerhans islet cells and slight inflammatory cell infiltration in pancreatic tissue in the HFCS group. Immunohistochemically there was a significant decrease in insulin (2.85 ± 0.37 and 0.87 ± 0.64, respectively, p < 0.001) and glucagon (2.71 ± 0.48 and 1.00 ± 0.75, respectively, p < 0.001) secreting cell scores, whereas a

  12. Effect of L-Carnitine on Skeletal Muscle Lipids and Oxidative Stress in Rats Fed High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Panchamoorthy Rajasekar

    2007-01-01

    Full Text Available There is evidence that high-fructose diet induces insulin resistance, alterations in lipid metabolism, and oxidative stress in rat tissues. The purpose of this study was to evaluate the effect of L-carnitine (CAR on lipid accumulation and peroxidative damage in skeletal muscle of rats fed high-fructose diet. Fructose-fed animals (60 g/100 g diet displayed decreased glucose/insulin (G/I ratio and insulin sensitivity index (ISI0,120 indicating the development of insulin resistance. Rats showed alterations in the levels of triglycerides, free fatty acids, cholesterol, and phospholipids in skeletal muscle. The condition was associated with oxidative stress as evidenced by the accumulation of lipid peroxidation products, protein carbonyls, and aldehydes along with depletion of both enzymic and nonenzymic antioxidants. Simultaneous intraperitoneal administration of CAR (300 mg/kg/day to fructose-fed rats alleviated the effects of fructose. These rats showed near-normal levels of the parameters studied. The effects of CAR in this model suggest that CAR supplementation may have some benefits in patients suffering from insulin resistance.

  13. Bitter melon extract ameliorates palmitate-induced apoptosis via inhibition of endoplasmic reticulum stress in HepG2 cells and high-fat/high-fructose-diet-induced fatty liver

    Directory of Open Access Journals (Sweden)

    Hwa Joung Lee

    2018-03-01

    Full Text Available Background: Bitter melon (BM improves glucose level, lipid homeostasis, and insulin resistance in vivo. However, the preventive mechanism of BM in nonalcoholic fatty liver disease (NAFLD has not been elucidated yet. Aim & Design: To determine the protective mechanism of bitter melon extract (BME, we performed experiments in vitro and in vivo. BME were treated palmitate (PA-administrated HepG2 cells. C57BL/6J mice were divided into two groups: high-fat/high-fructose (HF/HFr without or with BME supplementation (100 mg/kg body weight. Endoplasmic reticulum (ER stress, apoptosis, and biochemical markers were then examined by western blot and real-time PCR analyses. Results: BME significantly decreased expression levels of ER-stress markers (including phospho-eIF2α, CHOP, and phospho-JNK [Jun N-terminal kinases] in PA-treated HepG2 cells. BME also significantly decreased the activity of cleaved caspase-3 (a well known apoptotic-induced molecule and DNA fragmentation. The effect of BME on ER stress–mediated apoptosis in vitro was similarly observed in HF/HFr-fed mice in vivo. BME significantly reduced HF/HFr-induced hepatic triglyceride (TG and serum alanine aminotransferase (ALT as markers of hepatic damage in mice. In addition, BME ameliorated HF/HFr-induced serum TG and serum-free fatty acids. Conclusion: These data indicate that BME has protective effects against ER stress mediated apoptosis in HepG2 cells as well as in HF/HFr-induced fatty liver of mouse. Therefore, BME might be useful for preventing and treating NAFLD.

  14. Modulation of hepatic inflammation and energy-sensing pathways in the rat liver by high-fructose diet and chronic stress.

    Science.gov (United States)

    Veličković, Nataša; Teofilović, Ana; Ilić, Dragana; Djordjevic, Ana; Vojnović Milutinović, Danijela; Petrović, Snježana; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-29

    High-fructose consumption and chronic stress are both associated with metabolic inflammation and insulin resistance. Recently, disturbed activity of energy sensor AMP-activated protein kinase (AMPK) was recognized as mediator between nutrient-induced stress and inflammation. Thus, we analyzed the effects of high-fructose diet, alone or in combination with chronic stress, on glucose homeostasis, inflammation and expression of energy sensing proteins in the rat liver. In male Wistar rats exposed to 9-week 20% fructose diet and/or 4-week chronic unpredictable stress we measured plasma and hepatic corticosterone level, indicators of glucose homeostasis and lipid metabolism, hepatic inflammation (pro- and anti-inflammatory cytokine levels, Toll-like receptor 4, NLRP3, activation of NFκB, JNK and ERK pathways) and levels of energy-sensing proteins AMPK, SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). High-fructose diet led to glucose intolerance, activation of NFκB and JNK pathways and increased intrahepatic IL-1β, TNFα and inhibitory phosphorylation of insulin receptor substrate 1 on Ser 307 . It also decreased phospho-AMPK/AMPK ratio and increased SIRT1 expression. Stress alone increased plasma and hepatic corticosterone but did not influence glucose tolerance, nor hepatic inflammatory or energy-sensing proteins. After the combined treatment, hepatic corticosterone was increased, glucose tolerance remained preserved, while hepatic inflammation was partially prevented despite decreased AMPK activity. High-fructose diet resulted in glucose intolerance, hepatic inflammation, decreased AMPK activity and reduced insulin sensitivity. Chronic stress alone did not exert such effects, but when applied together with high-fructose diet it could partially prevent fructose-induced inflammation, presumably due to increased hepatic glucocorticoids.

  15. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Li

    Full Text Available Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  16. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    Science.gov (United States)

    Li, Yi-Chieh; Hsieh, Chang-Chi

    2014-01-01

    Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  17. Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup.

    Science.gov (United States)

    Wheeler, Marsha M; Robinson, Gene E

    2014-07-17

    Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture.

  18. The expression and activity of antioxidant enzymes in the liver of rats exposed to high-fructose diet in the period from weaning to adulthood.

    Science.gov (United States)

    Glban, Alhadi M; Vasiljević, Ana; Veličković, Nataša; Nikolić-Kokić, Aleksandra; Blagojević, Duško; Matić, Gordana; Nestorov, Jelena

    2015-08-30

    Increased fructose consumption correlates with rising prevalence of various metabolic disorders, some of which were linked to oxidative stress. The relationship between fructose consumption and oxidative stress is complex and effects of a fructose-rich diet on the young population have not been fully elucidated. The aim of this study was to investigate whether high-fructose diet applied in the period from weaning to adulthood induces oxidative stress in the liver, thus contributing to induction or aggravation of metabolic disturbances in later adulthood. To that end we examined the effects of high-fructose diet on expression and activity of antioxidant enzymes, markers of lipid peroxidation and protein damage in the liver as the main fructose metabolizing tissue. High-fructose diet increased only SOD2 (mitochondrial manganese superoxide dismutase) activity, with no effect on other antioxidant enzymes, lipid peroxidation or accumulation of damaged proteins in the liver. The results show that fructose-induced metabolic disturbances could not be attributed to oxidative stress, at least not at young age. The absence of oxidative stress in the liver observed herein implies that young organisms are capable of maintaining redox homeostasis when challenged by fructose-derived energy overload. © 2014 Society of Chemical Industry.

  19. Three months of high-fructose feeding fails to induce excessive weight gain or leptin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Erik J Tillman

    Full Text Available High-fructose diets have been implicated in obesity via impairment of leptin signaling in humans and rodents. We investigated whether fructose-induced leptin resistance in mice could be used to study the metabolic consequences of fructose consumption in humans, particularly in children and adolescents. Male C57Bl/6 mice were weaned to a randomly assigned diet: high fructose, high sucrose, high fat, or control (sugar-free, low-fat. Mice were maintained on their diets for at least 14 weeks. While fructose-fed mice regularly consumed more kcal and expended more energy, there was no difference in body weight compared to control by the end of the study. Additionally, after 14 weeks, both fructose-fed and control mice displayed similar leptin sensitivity. Fructose-feeding also did not change circulating glucose, triglycerides, or free fatty acids. Though fructose has been linked to obesity in several animal models, our data fail to support a role for fructose intake through food lasting 3 months in altering of body weight and leptin signaling in mice. The lack of impact of fructose in the food of growing mice on either body weight or leptin sensitivity over this time frame was surprising, and important information for researchers interested in fructose and body weight regulation.

  20. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.

    Science.gov (United States)

    Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F

    2013-10-01

    Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Liver-Specific Activation of AMPK Prevents Steatosis on a High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Angela Woods

    2017-03-01

    Full Text Available AMP-activated protein kinase (AMPK plays a key role in integrating metabolic pathways in response to energy demand. We identified a mutation in the γ1 subunit (γ1D316A that leads to activation of AMPK. We generated mice with this mutation to study the effect of chronic liver-specific activation of AMPK in vivo. Primary hepatocytes isolated from these mice have reduced gluconeogenesis and fatty acid synthesis, but there is no effect on fatty acid oxidation compared to cells from wild-type mice. Liver-specific activation of AMPK decreases lipogenesis in vivo and completely protects against hepatic steatosis when mice are fed a high-fructose diet. Our findings demonstrate that liver-specific activation of AMPK is sufficient to protect against hepatic triglyceride accumulation, a hallmark of non-alcoholic fatty liver disease (NAFLD. These results emphasize the clinical relevance of activating AMPK in the liver to combat NAFLD and potentially other associated complications (e.g., cirrhosis and hepatocellular carcinoma.

  2. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats

    Science.gov (United States)

    Harrell, Constance S.; Burgado, Jillybeth; Kelly, Sean D.; Johnson, Zachary P.; Neigh, Gretchen N.

    2015-01-01

    Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats. PMID:26356038

  3. The protective role of low-concentration alcohol in high-fructose induced adverse cardiovascular events in mice.

    Science.gov (United States)

    Wu, Xiaoqi; Pan, Bo; Wang, Ying; Liu, Lingjuan; Huang, Xupei; Tian, Jie

    2018-01-01

    Cardiovascular disease remains a worldwide public health issue. As fructose consumption is dramatically increasing, it has been demonstrated that a fructose-rich intake would increase the risk of cardiovascular disease. In addition, emerging evidences suggest that low concentration alcohol intake may exert a protective effect on cardiovascular system. This study aimed to investigate whether low-concentration alcohol consumption would prevent the adverse effects on cardiovascular events induced by high fructose in mice. From the results of hematoxylin-eosin staining, echocardiography, heart weight/body weight ratio and the expression of hypertrophic marker ANP, we found high-fructose result in myocardial hypertrophy and the low-concentration alcohol consumption would prevent the cardiomyocyte hypertrophy from happening. In addition, we observed low-concentration alcohol consumption could inhibit mitochondria swollen induced by high-fructose. The elevated levels of glucose, triglyceride, total cholesterol in high-fructose group were reduced by low concentration alcohol. Low expression levels of SIRT1 and PPAR-γ induced by high-fructose were significantly elevated when fed with low-concentration alcohol. The histone lysine 9 acetylation (acH3K9) level was decreased in PPAR-γ promoter in high-fructose group but elevated when intake with low concentration alcohol. The binding levels of histone deacetylase SIRT1 were increased in the same region in high-fructose group, while the low concentration alcohol can prevent the increased binding levels. Overall, our study indicates that low-concentration alcohol consumption could inhibit high-fructose related myocardial hypertrophy, cardiac mitochondria damaged and disorders of glucose-lipid metabolism. Furthermore, these findings also provide new insights into histone acetylation-deacetylation mechanisms of low-concentration alcohol treatment that may contribute to the prevention of cardiovascular disease induced by high-fructose

  4. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone

    Data.gov (United States)

    U.S. Environmental Protection Agency — pulmonary parameters, BALF biomarkers, body composition, motor activity data collected from rats exposed to ozone after high fructose or high fat diets. This dataset...

  5. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men.

    Science.gov (United States)

    Johnston, Richard D; Stephenson, Mary C; Crossland, Hannah; Cordon, Sally M; Palcidi, Elisa; Cox, Eleanor F; Taylor, Moira A; Aithal, Guruprasad P; Macdonald, Ian A

    2013-11-01

    Diets high in fructose have been proposed to contribute to nonalcoholic fatty liver disease. We compared the effects of high-fructose and matched glucose intake on hepatic triacylglycerol (TAG) concentration and other liver parameters. In a double-blind study, we randomly assigned 32 healthy but centrally overweight men to groups that received either a high-fructose or high-glucose diet (25% energy). These diets were provided during an initial isocaloric period of 2 weeks, followed by a 6-week washout period, and then again during a hypercaloric 2-week period. The primary outcome measure was hepatic level of TAG, with additional assessments of TAG levels in serum and soleus muscle, hepatic levels of adenosine triphosphate, and systemic and hepatic insulin resistance. During the isocaloric period of the study, both groups had stable body weights and concentrations of TAG in liver, serum, and soleus muscle. The high-fructose diet produced an increase of 22 ± 52 μmol/L in the serum level of uric acid, whereas the high-glucose diet led to a reduction of 23 ± 25 μmol/L (P fructose diet also produced an increase of 0.8 ± 0.9 in the homeostasis model assessment of insulin resistance, whereas the high-glucose diet produced an increase of only 0.1 ± 0.7 (P = .03). During the hypercaloric period, participants in the high-fructose and high-glucose groups had similar increases in weight (1.0 ± 1.4 vs 0.6 ± 1.0 kg; P = .29) and absolute concentration of TAG in liver (1.70% ± 2.6% vs 2.05% ± 2.9%; P = .73) and serum (0.36 ± 0.75 vs 0.33 ± 0.38 mmol/L; P = .91), and similar results in biochemical assays of liver function. Body weight changes were associated with changes in liver biochemistry and concentration of TAGs. In the isocaloric period, overweight men who were on a high-fructose or a high-glucose diet did not develop any significant changes in hepatic concentration of TAGs or serum levels of liver enzymes. However, in the hypercaloric period

  6. High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress.

    Science.gov (United States)

    Balakumar, M; Raji, L; Prabhu, D; Sathishkumar, C; Prabu, P; Mohan, V; Balasubramanyam, M

    2016-12-01

    In the context of high human consumption of fructose diets, there is an imperative need to understand how dietary fructose intake influence cellular and molecular mechanisms and thereby affect β-cell dysfunction and insulin resistance. While evidence exists for a relationship between high-fat-induced insulin resistance and metabolic disorders, there is lack of studies in relation to high-fructose diet. Therefore, we attempted to study the effect of different diets viz., high-fat diet (HFD), high-fructose diet (HFS), and a combination (HFS + HFD) diet on glucose homeostasis and insulin sensitivity in male Wistar rats compared to control animals fed with normal pellet diet. Investigations include oral glucose tolerance test, insulin tolerance test, histopathology by H&E and Masson's trichrome staining, mRNA expression by real-time PCR, protein expression by Western blot, and caspase-3 activity by colorimetry. Rats subjected to high-fat/fructose diets became glucose intolerant, insulin-resistant, and dyslipidemic. Compared to control animals, rats subjected to different combination of fat/fructose diets showed increased mRNA and protein expression of a battery of ER stress markers both in pancreas and liver. Transcription factors of β-cell function (INSIG1, SREBP1c and PDX1) as well as hepatic gluconeogenesis (FOXO1 and PEPCK) were adversely affected in diet-induced insulin-resistant rats. The convergence of chronic ER stress towards apoptosis in pancreas/liver was also indicated by increased levels of CHOP mRNA & increased activity of both JNK and Caspase-3 in rats subjected to high-fat/fructose diets. Our study exposes the experimental support in that high-fructose diet is equally detrimental in causing metabolic disorders.

  7. Carrot Juice Administration Decreases Liver Stearoyl-CoA Desaturase 1 and Improves Docosahexaenoic Acid Levels, but Not Steatosis in High Fructose Diet-Fed Weanling Wistar Rats.

    Science.gov (United States)

    Mahesh, Malleswarapu; Bharathi, Munugala; Reddy, Mooli Raja Gopal; Kumar, Manchiryala Sravan; Putcha, Uday Kumar; Vajreswari, Ayyalasomayajula; Jeyakumar, Shanmugam M

    2016-09-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases associated with an altered lifestyle, besides genetic factors. The control and management of NAFLD mostly depend on lifestyle modifications, due to the lack of a specific therapeutic approach. In this context, we assessed the effect of carrot juice on the development of high fructose-induced hepatic steatosis. For this purpose, male weanling Wistar rats were divided into 4 groups, fed either a control (Con) or high fructose (HFr) diet of AIN93G composition, with or without carrot juice (CJ) for 8 weeks. At the end of the experimental period, plasma biochemical markers, such as triglycerides, alanine aminotransferase, and β-hydroxy butyrate levels were comparable among the 4 groups. Although, the liver injury marker, aspartate aminotransferase, levels in plasma showed a reduction, hepatic triglycerides levels were not significantly reduced by carrot juice ingestion in the HFr diet-fed rats (HFr-CJ). On the other hand, the key triglyceride synthesis pathway enzyme, hepatic stearoyl-CoA desaturase 1 (SCD1), expression at mRNA level was augmented by carrot juice ingestion, while their protein levels showed a significant reduction, which corroborated with decreased monounsaturated fatty acids (MUFA), particularly palmitoleic (C16:1) and oleic (C18:1) acids. Notably, it also improved the long chain n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA; C22:6) content of the liver in HFr-CJ. In conclusion, carrot juice ingestion decreased the SCD1-mediated production of MUFA and improved DHA levels in liver, under high fructose diet-fed conditions. However, these changes did not significantly lower the hepatic triglyceride levels.

  8. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effect of skim milk and dahi (yogurt) on blood glucose, insulin, and lipid profile in rats fed with high fructose diet.

    Science.gov (United States)

    Yadav, Hariom; Jain, Shalini; Sinha, P R

    2006-01-01

    In the present study, the effect of skim milk and the fermented milk product named dahi (yogurt) on plasma glucose, insulin, and lipid levels as well as on liver glycogen and lipid contents in rats fed with high fructose diet has been investigated. Rats were fed with high fructose diet (21%) supplemented with skim milk, dahi (10 g/day each), or no milk product (control group) for 6 weeks. After 6 weeks of high fructose diet administration, the plasma glucose became significantly higher in control animals (246 mg/dL), whereas it was lower in skim milk (178 mg/dL)- and dahi (143 mg/dL)-fed rats. The glucose tolerance became impaired at the third week of feeding of high fructose diet in control animals, whereas in skim milk- and dahi-fed animals achievement of glucose intolerance was delayed until the fourth and fifth week, respectively. Blood glycosylated hemoglobin and plasma insulin were significantly lower in skim milk (10% and 34%, respectively)- and dahi (17%, and 48%, respectively)-fed animals than those of the control group. Plasma total cholesterol, triglycerides, low-density lipoprotein-cholesterol, and very-low-density lipoprotein-cholesterol and blood free fatty acids were significantly lower in skim milk (13%, 14%, 14%, 19%, and 14%, respectively)- and dahi (22%, 33%, 30%, 33%, and 29%, respectively)-fed animals as compared with control animals. Moreover, the total cholesterol, triglyceride, and glycogen contents in liver tissues were also lower in skim milk (55%, 50%, and 36%, respectively)- and dahi (64%, 27%, and 4%, respectively)-fed animals as compared with control animals. In contrast, high-density lipoprotein-cholesterol in plasma was higher in skim milk (14%)- and dahi (29%)-fed animals as compared with control animals. These results indicate that skim milk and its fermented milk product, dahi, delay the progression of fructose-induced diabetes and dyslipidemia in rats and that these may be useful as antidiabetic food supplements that can be

  10. Early adaptive response of the retina to a pro-diabetogenic diet: Impairment of cone response and gene expression changes in high-fructose fed rats.

    Science.gov (United States)

    Thierry, Magalie; Pasquis, Bruno; Buteau, Bénédicte; Fourgeux, Cynthia; Dembele, Doulaye; Leclere, Laurent; Gambert-Nicot, Ségolène; Acar, Niyazi; Bron, Alain M; Creuzot-Garcher, Catherine P; Bretillon, Lionel

    2015-06-01

    The lack of plasticity of neurons to respond to dietary changes, such as high fat and high fructose diets, by modulating gene and protein expression has been associated with functional and behavioral impairments that can have detrimental consequences. The inhibition of high fat-induced rewiring of hypothalamic neurons induced obesity. Feeding rodents with high fructose is a recognized and widely used model to trigger obesity and metabolic syndrome. However the adaptive response of the retina to short term feeding with high fructose is poorly documented. We therefore aimed to characterize both the functional and gene expression changes in the neurosensory retina of Brown Norway rats fed during 3 and 8 days with a 60%-rich fructose diet (n = 16 per diet and per time point). Glucose, insulin, leptin, triacylglycerols, total cholesterol, HDL-cholesterol, LDL-cholesterol and fructosamine were quantified in plasma (n = 8 in each group). Functionality of the inner retina was studied using scotopic single flash electroretinography (n = 8 in each group) and the individual response of rod and cone photoreceptors was determined using 8.02 Hz Flicker electroretinography (n = 8 in each group). Analysis of gene expression in the neurosensory retina was performed by Affymetrix genechips, and confirmed by RT-qPCR (n = 6 in each group). Elevated glycemia (+13%), insulinemia (+83%), and leptinemia (+172%) was observed after 8 days of fructose feeding. The cone photoreceptor response was altered at day 8 in high fructose fed rats (Δ = 0.5 log unit of light stimulus intensity). Affymetrix analysis of gene expression highlighted significant modulation of the pathways of eIF2 signaling and endoplasmic reticulum stress, regulation of eIF4 and p70S6K signaling, as well as mTOR signaling and mitochondrial dysfunction. RT-qPCR analysis confirmed the down regulation of Crystallins, Npy, Nid1 and Optc genes after 3 days of fructose feeding, and up regulation of End2. Meanwhile, a trend

  11. Reduced-calorie avocado paste attenuates metabolic factors associated with a hypercholesterolemic-high fructose diet in rats.

    Science.gov (United States)

    Pahua-Ramos, María Elena; Garduño-Siciliano, Leticia; Dorantes-Alvarez, Lidia; Chamorro-Cevallos, German; Herrera-Martínez, Julieta; Osorio-Esquivel, Obed; Ortiz-Moreno, Alicia

    2014-03-01

    The objective of this study was to evaluate the effect of reduced-calorie avocado paste on lipid serum profile, insulin sensitivity, and hepatic steatosis in rats fed a hypercholesterolemic-high fructose diet. Thirty five male Wistar rats were randomly separated in five groups: Control group (ground commercial diet); hypercholesterolemic diet plus 60% fructose solution (HHF group); hypercholesterolemic diet plus 60% fructose solution supplemented with avocado pulp (HHF+A group); hypercholesterolemic diet plus 60% fructose solution supplemented with reduced-calorie avocado paste (HHF+P group); and hypercholesterolemic diet plus 60% fructose solution supplemented with a reduced-calorie avocado paste plus fiber (HHF+FP group). The A, P, and FP were supplemented at 2 g/kg/d. The study was carried out for seven weeks. Rats belonging to the HHF group exhibited significantly (P ≤ 0.05) higher total cholesterol, triglycerides, and insulin levels in serum as well as lower insulin sensitivity than the control group. Supplementation with reduced-calorie avocado paste showed a significant (P ≤ 0.05) decrease in total cholesterol (43.1%), low-density lipoprotein (45.4%), and triglycerides (32.8%) in plasma as well as elevated insulin sensitivity compared to the HHF group. Additionally, the liver enzymes alanine aminotransferase and aspartate aminotransferase decreased significantly in the HHF-P group (39.8 and 35.1%, respectively). These results are likely due to biocompounds present in the reduced-calorie avocado paste, such as polyphenols, carotenoids, chlorophylls, and dietary fibre, which are capable of reducing oxidative stress. Therefore, reduced-calorie avocado paste attenuates the effects of a hypercholesterolemic-high fructose diet in rats.

  12. Effects of high fructose diets on central appetite signaling and cognitive function

    Directory of Open Access Journals (Sweden)

    Katrien eLowette

    2015-03-01

    Full Text Available The consumption of fructose has increased tremendously over the last five decades, which is to a large extent due to the development of high fructose corn syrup (HFCS, a commercial sugar additive that contains high amounts of free fructose. HFCS is often added to processed food and beverages partly because it is a powerful sweetener but even more so because the production is cheap. Although fructose in combination with fiber, vitamins and minerals, as present in fruits, is a healthy source of energy, isolated fructose, in processed food products has been associated with several health disorders such as insulin resistance and hypertension. Apart from its metabolic consequences, a growing body of literature suggests that free fructose can also affect neuronal systems. High fructose intake may on the one hand affect central appetite regulation by altering specific components of the endocannabinoid system. On the other hand it appears to impact on cognitive function by affecting phosphorylation levels of insulin receptor, synapsin 1 and synaptophysin. The present report reviews the recent evidence showing a negative effect of free fructose consumption on central appetite control, as well as cognitive function.

  13. Long-term feeding of red algae (Gelidium amansii ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model

    Directory of Open Access Journals (Sweden)

    Hshuan-Chen Liu

    2017-07-01

    Full Text Available This study was designed to investigate the effect of Gelidium amansii (GA on carbohydrate and lipid metabolism in rats with high fructose (HF diet (57.1% w/w. Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1 control diet group (Con; (2 HF diet group (HF; and (3 HF with GA diet group (HF + 5% GA. The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model.

  14. Long-term feeding of red algae (Gelidium amansii) ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model.

    Science.gov (United States)

    Liu, Hshuan-Chen; Chang, Chun-Ju; Yang, Tsung-Han; Chiang, Meng-Tsan

    2017-07-01

    This study was designed to investigate the effect of Gelidium amansii (GA) on carbohydrate and lipid metabolism in rats with high fructose (HF) diet (57.1% w/w). Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1) control diet group (Con); (2) HF diet group (HF); and (3) HF with GA diet group (HF + 5% GA). The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC) and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model. Copyright © 2016. Published by Elsevier B.V.

  15. Eicosapentaenoic acid (EPA) vs. Docosahexaenoic acid (DHA): Effects in epididymal white adipose tissue of mice fed a high-fructose diet.

    Science.gov (United States)

    Bargut, Thereza Cristina Lonzetti; Santos, Larissa Pereira; Machado, Daiana Guimarães Lopes; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to be beneficial for many diseases, including those associated with the metabolic syndrome (e.g. insulin resistance and hypertension). Nevertheless, not only their actions are not entirely understood, but also their only effects were not yet elucidated. Therefore, we aimed to compare the effects of EPA and DHA, alone or in combination, on the epididymal white adipose tissue (WAT) metabolism in mice fed a high-fructose diet. 3-mo-old C57Bl/6 mice were fed a control diet (C) or a high-fructose diet (HFru). After three weeks on the diets, the HFru group was subdivided into four new groups for another five weeks: HFru, HFru+EPA, HFru+DHA, and HFru-EPA+DHA (n=10/group). Besides evaluating biometric and metabolic parameters of the animals, we measured the adipocyte area and performed molecular analyses (inflammation and lipolysis) in the epididymal WAT. The HFru group showed adipocyte hypertrophy, inflammation, and uncontrolled lipolysis. The treated animals showed a reversion of adipocyte hypertrophy, inhibition of inflammation with activation of anti-inflammatory mediators, and regularization of lipolysis. Overall, the beneficial effects were more marked with DHA than EPA. Although the whole-body metabolic effects were similar between EPA and DHA, DHA appeared to be the central actor in WAT metabolism, modulating pro and anti-inflammatory pathways and alleviating adipocytes abnormalities. Therefore, when considering fructose-induced adverse effects in WAT, the most prominent actions were observed with DHA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone

    Science.gov (United States)

    pulmonary parameters, BALF biomarkers, body composition, motor activity data collected from rats exposed to ozone after high fructose or high fat diets.This dataset is associated with the following publication:Gordon , C., P. Phillips , A. Johnstone , T. Beasley , A. Ledbetter , M. Schladweiler , S. Snow, and U. Kodavanti. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone. INHALATION TOXICOLOGY. Taylor & Francis, Inc., Philadelphia, PA, USA, 28(5): 203-15, (2016).

  17. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Liu

    2015-12-01

    Full Text Available This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF diet (63.1%. Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1 normal group (normal; (2 HF group; (3 chitosan + HF group (HF + C. The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 105 Dalton and degree of deacetylation was about 89.8% significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF-α, Interleukin (IL-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC and triglyceride (TG contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C, very-low-density lipoprotein cholesterol (VLDL-C, the TC/high-density lipoprotein cholesterol (HDL-C ratio, and increased the HDL-C/(LDL-C + VLDL-C ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4 protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment

  18. Prenatal Metformin Therapy Attenuates Hypertension of Developmental Origin in Male Adult Offspring Exposed to Maternal High-Fructose and Post-Weaning High-Fat Diets

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2018-04-01

    Full Text Available Widespread consumption of a Western diet, comprised of highly refined carbohydrates and fat, may play a role in the epidemic of hypertension. Hypertension can take origin from early life. Metformin is the preferred treatment for type 2 diabetes. We examined whether prenatal metformin therapy can prevent maternal high-fructose plus post-weaning high-fat diets-induced hypertension of developmental origins via regulation of nutrient sensing signals, uric acid, oxidative stress, and the nitric oxide (NO pathway. Gestating Sprague–Dawley rats received regular chow (ND or chow supplemented with 60% fructose diet (HFR throughout pregnancy and lactation. Male offspring were onto either the ND or high-fat diet (HFA from weaning to 12 weeks of age. A total of 40 male offspring were assigned to five groups (n = 8/group: ND/ND, HFR/ND, ND/HFA, HFR/HFA, and HFR/HFA+metformin. Metformin (500 mg/kg/day was administered via gastric gavage for three weeks during the pregnancy period. Combined maternal HFR plus post-weaning HFA induced hypertension in male adult offspring, which prenatal metformin therapy prevented. The protective effects of prenatal metformin therapy on HFR/HFA-induced hypertension, including downregulation of the renin-angiotensin system, decrease in uric acid level, and reduction of oxidative stress. Our results highlighted that the programming effects of metformin administered prenatally might be different from those reported in adults, and that deserves further elucidation.

  19. Polyphenolic compounds of red wine: relationship with the antioxidant properties and effects on the metabolic syndrome induced in high-fructose fed rats

    Directory of Open Access Journals (Sweden)

    D. Di Majo

    2009-01-01

    Full Text Available Epidemiologists have observed that a diet rich in polyphenolic compounds may provide a positive effects due to their antioxidant properties. Red wine is an excellent source of polyphenolic compounds. Objective of this work is a review of the polyphenolic compounds of red wine. The first study evaluates the antioxidant properties of Sicilian red wines in relationship with their polyphenolic composition; the second investigates the corrective offects of some phenolic molecules on the metabolic syndrome induced in high-fructose fed rats.

  20. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes.

    Directory of Open Access Journals (Sweden)

    Richard A Anderson

    Full Text Available Insulin resistance leads to memory impairment. Cinnamon (CN improves peripheral insulin resistance but its effects in the brain are not known. Changes in behavior, insulin signaling and Alzheimer-associated mRNA expression in the brain were measured in male Wistar rats fed a high fat/high fructose (HF/HFr diet to induce insulin resistance, with or without CN, for 12 weeks. There was a decrease in insulin sensitivity associated with the HF/HFr diet that was reversed by CN. The CN fed rats were more active in a Y maze test than rats fed the control and HF/HFr diets. The HF/HFr diet fed rats showed greater anxiety in an elevated plus maze test that was lessened by feeding CN. The HF/HFr diet also led to a down regulation of the mRNA coding for GLUT1 and GLUT3 that was reversed by CN in the hippocampus and cortex. There were increases in Insr, Irs1 and Irs2 mRNA in the hippocampus and cortex due to the HF/HFr diet that were not reversed by CN. Increased peripheral insulin sensitivity was also associated with increased glycogen synthase in both hippocampus and cortex in the control and HF/HFr diet animals fed CN. The HF/HFr diet induced increases in mRNA associated with Alzheimers including PTEN, Tau and amyloid precursor protein (App were also alleviated by CN. In conclusion, these data suggest that the negative effects of a HF/HFr diet on behavior, brain insulin signaling and Alzheimer-associated changes were alleviated by CN suggesting that neuroprotective effects of CN are associated with improved whole body insulin sensitivity and related changes in the brain.

  1. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  2. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  3. Endothelial dysfunction in high fructose containing diet fed rats: Increased nitric oxide and decreased endothelin-1 levels in liver tissue

    Directory of Open Access Journals (Sweden)

    Zeki Arı

    2010-09-01

    Full Text Available Objectives: Dietary high fructose consumption which is closely associated with endothelial dysfunction via insulin re-sistance has recently increased in developed countries. Insulin resistance has a promoter effect on many metabolic disorders such as syndrome X, polycystic ovary syndrome, Type 2 diabetes mellitus etc. Our aim in this study is to understand the impact of increased fructose intake on metabolisms of glucose, insulin and endothelial dysfunction by measuring nitric oxide (NO and endothelin-1 (ET-1 levels in hepatic tissue which is crucial in fructose metabolism.Materials and Methods: We designed an animal study to understand increased fructose intake on hepatic endothe-lium. Twenty adult male albino rats were divided into two groups; the study group (group 1, n=10 received isocaloric fructose enriched diet (fructose-fed rats, containing 18.3% protein, 60.3% fructose and 5.2% fat while the control group received purified regular chow (group 2, n=10 for 2 weeks. After feeding period, blood and hepatic tissue samples were collected and glucose, insulin, NO and ET-1 levels were analysed.Results: We found increased fasting glucose and insulin levels and impaired glucose tolerance in fructose fed rats. Higher NO and lower ET–1 levels were also detected in hepatic tissue samples of the group 1.Conclusion: Increased fructose consumption has deleterious effects on glucose tolerance, insulin resistance and may cause to endothelial dysfunction.

  4. Oat beta-glucan ameliorates insulin resistance in mice fed on high-fat and high-fructose diet

    Directory of Open Access Journals (Sweden)

    Jie Zheng

    2013-12-01

    Full Text Available Methods: This study sought to evaluate the impact of oat beta-glucan on insulin resistance in mice fed on high-fat and high-fructose diet with fructose (10%, w/v added in drinking water for 10 weeks. Results: The results showed that supplementation with oat beta-glucan could significantly reduce the insulin resistance both in low-dose (200 mg/kg−1 body weight and high-dose (500 mg/kg−1 body weight groups, but the high-dose group showed a more significant improvement in insulin resistance (P<0.01 compared with model control (MC group along with significant improvement in hepatic glycogen level, oral glucose, and insulin tolerance. Moreover, hepatic glucokinase activity was markedly enhanced both in low-dose and high-dose groups compared with that of MC group (P<0.05. Conclusion: These results suggested that supplementation of oat beta-glucan alleviated insulin resistance and the effect was dose dependent.

  5. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia

    OpenAIRE

    Jessie R. Wilburn; Jeffrey Bourquin; Andrea Wysong; Christopher L. Melby

    2015-01-01

    Introduction Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs) in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Methods Eight ...

  6. Magnetic resonance spectroscopy detects differential lipid composition in mammary glands on low fat, high animal fat versus high fructose diets.

    Directory of Open Access Journals (Sweden)

    Dianning He

    Full Text Available The effects of consumption of different diets on the fatty acid composition in the mammary glands of SV40 T-antigen (Tag transgenic mice, a well-established model of human triple-negative breast cancer, were investigated with magnetic resonance spectroscopy and spectroscopic imaging. Female C3(1 SV40 Tag transgenic mice (n = 12 were divided into three groups at 4 weeks of age: low fat diet (LFD, high animal fat diet (HAFD, and high fructose diet (HFruD. MRI scans of mammary glands were acquired with a 9.4 T scanner after 8 weeks on the diet. 1H spectra were acquired using point resolved spectroscopy (PRESS from two 1 mm3 boxes on each side of inguinal mammary gland with no cancers, lymph nodes, or lymph ducts. High spectral and spatial resolution (HiSS images were also acquired from nine 1-mm slices. A combination of Gaussian and Lorentzian functions was used to fit the spectra. The percentages of poly-unsaturated fatty acids (PUFA, mono-unsaturated fatty acids (MUFA, and saturated fatty acids (SFA were calculated from each fitted spectrum. Water and fat peak height images (maps were generated from HiSS data. The results showed that HAFD mice had significantly lower PUFA than both LFD (p < 0.001 and HFruD (p < 0.01 mice. The mammary lipid quantity calculated from 1H spectra was much larger in HAFD mice than in LFD (p = 0.03 but similar to HFruD mice (p = 0.10. The average fat signal intensity over the mammary glands calculated from HiSS fat maps was ~60% higher in HAFD mice than in LFD (p = 0.04 mice. The mean or median of calculated parameters for the HFruD mice were between those for LFD and HAFD mice. Therefore, PRESS spectroscopy and HiSS MRI demonstrated water and fat composition changes in mammary glands due to a Western diet, which was low in potassium, high in sodium, animal fat, and simple carbohydrates. Measurements of PUFA with MRI could be used to evaluate cancer risk, improve cancer detection and diagnosis, and guide preventative

  7. Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet.

    Directory of Open Access Journals (Sweden)

    Komal Sodhi

    Full Text Available Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD, obesity and cardiovascular disease (CVD. Heme Oxygenase-1 (HO-1 is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1 belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox.We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction.We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05. Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05. Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose. These beneficial effects of CoPP were reversed by SnMP.Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the development of hepatic fibrosis and abates

  8. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    Science.gov (United States)

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[ 14 C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The effects of four hypocaloric diets containing different levels of sucrose or high fructose corn syrup on weight loss and related parameters

    OpenAIRE

    Lowndes, Joshua; Kawiecki, Diana; Pardo, Sabrina; Nguyen, Von; Melanson, Kathleen J; Yu, Zhiping; Rippe, James M

    2012-01-01

    Abstract Background The replacement of sucrose with HFCS in food products has been suggested as playing a role in the development of obesity as a public health issue. The objective of this study was to examine the effects of four equally hypocaloric diets containing different levels of sucrose or high fructose corn syrup (HFCS). Methods This was a randomized, prospective, double blind trial, with overweight/obese participants measured for body composition and blood chemistry before and after ...

  10. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia

    Directory of Open Access Journals (Sweden)

    Jessie R. Wilburn

    2015-01-01

    Full Text Available Introduction Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Methods Eight apparently healthy men (Mean ± SEM; age = 27 ± 2 years participated in a crossover study to examine the effects of acute resistance exercise on next-day postprandial lipemia resulting from a high-fructose, high-fat meal. Participants completed three separate two-day conditions in a random order: (1 EX-COMP: a full-body weightlifting workout with the provision of additional kilocalories to compensate for the estimated net energy cost of exercise on day 1, followed by the consumption of a high-fructose, high-fat liquid test meal the next morning (day 2 (~600 kcal and the determination of the plasma glucose, lactate, insulin, and TAG responses during a six-hour postprandial period; (2 EX-DEF: same condition as EX-COMP but without exercise energy compensation on day 1; and (3 CON: no exercise control. Results The six-hour postprandial plasma insulin and lactate responses did not differ between conditions. However, the postprandial plasma TAG concentrations were 16.5% and 24.4% lower for EX-COMP (551.0 ± 80.5 mg/dL x 360 minutes and EX-DEF (499.4 ± 73.5 mg/dL x 360 minutes, respectively, compared to CON (660.2 ± 95.0 mg/dL x 360 minutes ( P < 0.05. Conclusions A single resistance exercise bout, performed ~15 hours prior to a high-fructose, high-fat meal, attenuated the postprandial TAG response, as compared to a no-exercise control condition, in healthy, resistance-trained men.

  11. Resistance Exercise Attenuates High-Fructose, High-Fat-Induced Postprandial Lipemia.

    Science.gov (United States)

    Wilburn, Jessie R; Bourquin, Jeffrey; Wysong, Andrea; Melby, Christopher L

    2015-01-01

    Meals rich in both fructose and fat are commonly consumed by many Americans, especially young men, which can produce a significant postprandial lipemic response. Increasing evidence suggests that aerobic exercise can attenuate the postprandial increase in plasma triacylglycerols (TAGs) in response to a high-fat or a high-fructose meal. However, it is unknown if resistance exercise can dampen the postprandial lipemic response to a meal rich in both fructose and fat. Eight apparently healthy men (Mean ± SEM; age = 27 ± 2 years) participated in a crossover study to examine the effects of acute resistance exercise on next-day postprandial lipemia resulting from a high-fructose, high-fat meal. Participants completed three separate two-day conditions in a random order: (1) EX-COMP: a full-body weightlifting workout with the provision of additional kilocalories to compensate for the estimated net energy cost of exercise on day 1, followed by the consumption of a high-fructose, high-fat liquid test meal the next morning (day 2) (~600 kcal) and the determination of the plasma glucose, lactate, insulin, and TAG responses during a six-hour postprandial period; (2) EX-DEF: same condition as EX-COMP but without exercise energy compensation on day 1; and (3) CON: no exercise control. The six-hour postprandial plasma insulin and lactate responses did not differ between conditions. However, the postprandial plasma TAG concentrations were 16.5% and 24.4% lower for EX-COMP (551.0 ± 80.5 mg/dL × 360 minutes) and EX-DEF (499.4 ± 73.5 mg/dL × 360 minutes), respectively, compared to CON (660.2 ± 95.0 mg/dL × 360 minutes) (P < 0.05). A single resistance exercise bout, performed ~15 hours prior to a high-fructose, high-fat meal, attenuated the postprandial TAG response, as compared to a no-exercise control condition, in healthy, resistance-trained men.

  12. Docosapentaenoic acid and docosahexaenoic acid are positively associated with insulin sensitivity in rats fed high-fat and high-fructose diets.

    Science.gov (United States)

    Huang, Jiung-Pang; Cheng, Mei-Ling; Hung, Cheng-Yu; Wang, Chao-Hung; Hsieh, Po-Shiuan; Shiao, Ming-Shi; Chen, Jan-Kan; Li, Dai-Er; Hung, Li-Man

    2017-10-01

    The aim of the present study was to compare insulin resistance and metabolic changes using a global lipidomic approach. Rats were fed a high-fat diet (HFD) or a high-fructose diet (HFrD) for 12 weeks to induce insulin resistance (IR) syndrome. After 12 weeks feeding, physiological and biochemical parameters were examined. Insulin sensitivity and plasma metabolites were evaluated using a euglycemic-hyperinsulinemic clamp and mass spectrometry, respectively. Pearson's correlation coefficient was used to investigate the strength of correlations. Rats on both diets developed IR syndrome, characterized by hypertension, hyperlipidemia, hyperinsulinemia, impaired fasting glucose, and IR. Compared with HFrD-fed rats, non-esterified fatty acids were lower and body weight and plasma insulin levels were markedly higher in HFD-fed rats. Adiposity and plasma leptin levels were increased in both groups. However, the size of adipocytes was greater in HFD- than HFrD-fed rats. Notably, the lipidomic heat map revealed metabolites exhibiting greater differences in HFD- and HFrD-fed rats compared with controls. Plasma adrenic acid levels were higher in HFD- than HFrD-fed rats. Nevertheless, linoleic and arachidonic acid levels decreased in HFrD-fed rats compared with controls. Plasma concentrations of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) were significantly reduced after feeding of both diets, particularly the HFrD. There was a strong positive correlation between these two fatty acids and the insulin sensitivity index. The systemic lipidomic analysis indicated that a reduction in DHA and DPA was strongly correlated with IR in rats under long-term overnutrition. These results provide a potential therapeutic target for IR and metabolic syndrome. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  13. High fructose intake fails to induce symptomatic adaptation but may induce intestinal carriers

    Directory of Open Access Journals (Sweden)

    Debra Heilpern

    2010-01-01

    Full Text Available Fructose has several interactions in man, including intolerance and promotion of some diseases. However, fructose in fruits and in prebiotics may be associated with benefits. Adaptation to regular fructose ingestion as defined for lactose could support a beneficial rather than a deleterious effect. This study was undertaken to evaluate symptomatic response and potential underlying mechanisms of fecal bacterial change and breath hydrogen response to short term regular fructose supplementation. Forty-five participants were recruited for a 3 day recall diet questionnaire and a 50 g fructose challenge. Breath hydrogen was measured for 4.5 hrs and symptoms were recorded. Thirty-eight subjects provided stool samples for analysis by selective culture of 4 groups of bacteria, including bifidobacteria and lactobacilli. Intolerant subjects returned a second time 15 days later. Ten of these served as controls and 16 received 30 g fructose twice a day. Ten of the latter returned 27 days later, after stopping fructose for a third challenge test. Student’s paired, unpaired t-tests and Pearson correlations were used. Significance was accepted at P<0.05. After fructose rechallenge there were no significant reductions in symptoms scores in volunteers in either the fructose supplemented or non supplemented groups. However, total breath hydrogen was reduced between test 1 and test 2 (P=0.03 or test 3 (P=0.04 in the group given fructose then discontinued, compared with controls. There were no statistically significant changes in bacterial numbers between test 2 and 1. This study shows that regular consumption of high dose fructose does not follow the lactose model of adaptation. Observed changes in hydrogen breath tests raise the possibility that intestinal carriers of fructose may be induced potentially aggravating medical problems attributed to fructose.

  14. Gallic Acid Alleviates Hypertriglyceridemia and Fat Accumulation via Modulating Glycolysis and Lipolysis Pathways in Perirenal Adipose Tissues of Rats Fed a High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Da-Wei Huang

    2018-01-01

    Full Text Available This study investigated the ameliorative effect of gallic acid (GA on hypertriglyceridemia and fat accumulation in perirenal adipose tissues of high-fructose diet (HFD-induced diabetic rats. The previous results showed that orally administered GA (30 mg/kg body weight for four weeks significantly reduced the levels of plasma glucose and triglyceride (TG in HFD rats. GA also markedly decreased the perirenal adipose tissues weight of HFD rats in present study (p < 0.05. Western blot assay indicated that GA restored expression of insulin signaling-related proteins, such as insulin receptor (IR, protein kinase C-zeta (PKC-ζ, and glucose transporter-4 (GLUT4 in the perirenal adipose tissues of HFD rats. Moreover, GA enhanced expression of glycolysis-related proteins, such as phosphofructokinase (PFK and pyruvate kinase (PK, and increased the expression of lipolysis-related proteins, such as adipose triglyceride lipase (ATGL, which is involved in lipolysis in the perirenal adipose tissues of HFD rats. This study revealed that GA may alleviate hypertriglyceridemia and fat accumulation through enhancing glycolysis and lipolysis pathways in perirenal adipose tissues of HFD rats. These findings also suggest the potential of GA in preventing the progression of diabetes mellitus (DM complications.

  15. Goat Milk Kefir Supplemented with Porang Glucomannan Improves Lipid Profile and Haematological Parameter in Rat Fed High Fat and High Fructose Diet

    Directory of Open Access Journals (Sweden)

    Nurliyani

    2018-03-01

    Full Text Available Background and Aims: Diet with a high fat and high sugar is associated with an increased incindence of the metabolic syndrome. Kefir has been known as a natural probiotic, while glucomannan from porang (Amorphophallus oncophyllus tuber was demonstrated as prebiotic in vivo. Probiotics and prebiotics can be used adjuvant nutritional therapy for metabolic syndrome. The aim of this study was to evaluate the effect of goat milk kefir supplemented with porang glucomannan on the lipid profile and haematological parameters in rats fed with a high-fat/high-fructose (HFHF diet.

  16. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparα).

    Science.gov (United States)

    Shi, Li-juan; Shi, Lei; Song, Guang-yao; Zhang, He-fang; Hu, Zhi-juan; Wang, Chao; Zhang, Dong-hui

    2013-08-15

    The aim of this study was to examine the therapeutic effect of oxymatrine, a monomer isolated from the medicinal plant Sophora flavescens Ait, on the hepatic lipid metabolism in non-alcoholic fatty liver (NAFLD) rats and to explore the potential mechanism. Rats were fed with high fructose diet for 8 weeks to establish the NAFLD model, then were given oxymatrine treatment (40, 80, and 160 mg/kg, respectively) for another 8 weeks. Body weight gain, liver index, serum and liver lipids, and histopathological evaluation were measured. Enzymatic activity and gene expression of the key enzymes involved in the lipogenesis and fatty acid oxidation were assayed. The results showed that oxymatrine treatment reduced body weight gain, liver weight, liver index, dyslipidemia, and liver triglyceride level in a dose dependant manner. Importantly, the histopathological examination of liver confirmed that oxymatrine could decrease the liver lipid accumulation. The treatment also decreased the fatty acid synthase (FAS) enzymatic activity and increased the carnitine palmitoyltransferase 1A (CPT1A) enzymatic activity. Besides, oxymatrine treatment decreased the mRNA expression of sterol regulatory element binding transcription factor 1(Srebf1), fatty acid synthase (Fasn), and acetyl CoA carboxylase (Acc), and increased the mRNA expression of peroxisome proliferator activated receptor alpha (Pparα), carnitine palmitoyltransferase 1A (Cpt1a), and acyl CoA oxidase (Acox1) in high fructose diet induced NAFLD rats. These results suggested that the therapeutic effect of oxymatrine on the hepatic steatosis in high fructose diet induced fatty liver rats is partly due to down-regulating Srebf1 and up-regulating Pparα mediated metabolic pathways simultaneously. © 2013 Elsevier B.V. All rights reserved.

  17. Sesamol ameliorates high-fat and high-fructose induced cognitive defects via improving insulin signaling disruption in the central nervous system.

    Science.gov (United States)

    Liu, Zhigang; Sun, Yali; Qiao, Qinglian; Zhao, Tong; Zhang, Wentong; Ren, Bo; Liu, Qian; Liu, Xuebo

    2017-02-22

    Sesamol, a nutritional component from sesame, possesses antioxidant, lipid lowering and antidepressant activities. Nonetheless, few studies report its effects on high-energy-dense diet-induced cognitive loss. The present research aimed to elucidate the action of sesamol on high-fat and high-fructose (HFFD) "western"-diet-induced central nervous system insulin resistance and learning and memory impairment, and further determined the possible underlying mechanism. 3 month-old C57BL/6J mice were divided into 3 groups with/without sesamol in the drinking water (0.05%, w/v) and standard diet, HFFD, and HFFD with sesamol supplementation. Morris water maze tests demonstrated that sesamol improved HFFD-elicited learning and memory loss. Sesamol was also found to attenuate neuron damage in HFFD-fed mice. Importantly, sesamol treatment up-regulated brain insulin signaling by stimulating IRS-1/AKT as well as ERK/CREB/BDNF pathways; meanwhile it down-regulated neuronal death signaling GSK3β and JNK. Moreover, sesamol also normalized mRNA expressions of neurotrophins including BDNF and NT-3, as well as expressions of mitochondrial metabolic and biogenesis related genes Sirt1 and PGC1α. Consistently, sesamol also reversed high-glucose-induced oxidized cellular status, mitochondrial membrane potential loss, insulin signaling inhibition and cell death in SH-SY5Y neuronal cells. Taken together, the current study proved that sesamol reduced western-diet-induced cognitive defects in a mouse model by inhibiting insulin resistance, normalizing mitochondrial function and cell redox status, and improving IRS/AKT cell surviving and energy metabolism regulating signaling. This compelling evidence indicated that sesamol is a potential nutritional supplement to prevent unhealthy-diet-induced learning and memory loss.

  18. The effects of four hypocaloric diets containing different levels of sucrose or high fructose corn syrup on weight loss and related parameters

    Science.gov (United States)

    2012-01-01

    Background The replacement of sucrose with HFCS in food products has been suggested as playing a role in the development of obesity as a public health issue. The objective of this study was to examine the effects of four equally hypocaloric diets containing different levels of sucrose or high fructose corn syrup (HFCS). Methods This was a randomized, prospective, double blind trial, with overweight/obese participants measured for body composition and blood chemistry before and after the completion of 12 weeks following a hypocaloric diet. The average caloric deficit achieved on the hypocaloric diets was 309 kcal. Results Reductions were observed in all measures of adiposity including body mass, BMI,% body fat, waist circumference and fat mass for all four hypocaloric groups, as well as reductions in the exercise only group for body mass, BMI and waist circumference. Conclusions Similar decreases in weight and indices of adiposity are observed when overweight or obese individuals are fed hypocaloric diets containing levels of sucrose or high fructose corn syrup typically consumed by adults in the United States. PMID:22866961

  19. The effects of four hypocaloric diets containing different levels of sucrose or high fructose corn syrup on weight loss and related parameters

    Directory of Open Access Journals (Sweden)

    Lowndes Joshua

    2012-08-01

    Full Text Available Abstract Background The replacement of sucrose with HFCS in food products has been suggested as playing a role in the development of obesity as a public health issue. The objective of this study was to examine the effects of four equally hypocaloric diets containing different levels of sucrose or high fructose corn syrup (HFCS. Methods This was a randomized, prospective, double blind trial, with overweight/obese participants measured for body composition and blood chemistry before and after the completion of 12 weeks following a hypocaloric diet. The average caloric deficit achieved on the hypocaloric diets was 309 kcal. Results Reductions were observed in all measures of adiposity including body mass, BMI,% body fat, waist circumference and fat mass for all four hypocaloric groups, as well as reductions in the exercise only group for body mass, BMI and waist circumference. Conclusions Similar decreases in weight and indices of adiposity are observed when overweight or obese individuals are fed hypocaloric diets containing levels of sucrose or high fructose corn syrup typically consumed by adults in the United States.

  20. The effects of four hypocaloric diets containing different levels of sucrose or high fructose corn syrup on weight loss and related parameters.

    Science.gov (United States)

    Lowndes, Joshua; Kawiecki, Diana; Pardo, Sabrina; Nguyen, Von; Melanson, Kathleen J; Yu, Zhiping; Rippe, James M

    2012-08-06

    The replacement of sucrose with HFCS in food products has been suggested as playing a role in the development of obesity as a public health issue. The objective of this study was to examine the effects of four equally hypocaloric diets containing different levels of sucrose or high fructose corn syrup (HFCS). This was a randomized, prospective, double blind trial, with overweight/obese participants measured for body composition and blood chemistry before and after the completion of 12 weeks following a hypocaloric diet. The average caloric deficit achieved on the hypocaloric diets was 309 kcal. Reductions were observed in all measures of adiposity including body mass, BMI,% body fat, waist circumference and fat mass for all four hypocaloric groups, as well as reductions in the exercise only group for body mass, BMI and waist circumference. Similar decreases in weight and indices of adiposity are observed when overweight or obese individuals are fed hypocaloric diets containing levels of sucrose or high fructose corn syrup typically consumed by adults in the United States.

  1. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice.

    Science.gov (United States)

    Hu, Yuanyuan; Hou, Zuoxu; Yi, Ruokun; Wang, Zhongming; Sun, Peng; Li, Guijie; Zhao, Xin; Wang, Qiang

    2017-08-01

    The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.

  2. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets

    Directory of Open Access Journals (Sweden)

    Cariou Bertrand

    2013-01-01

    Full Text Available Abstract Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9 is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2 and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D patients that are more prone to develop insulin resistance, including: i acute post-prandial hyperlipidemic challenge (n=10, ii 4 days of high-fat (HF or high-fat/high-protein (HFHP (n=10, iii 7 (HFruc1, n=16 or 6 (HFruc2, n=9 days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1. Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05 in healthy volunteers and by 34% (p=0.001 in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p Conclusions Plasma PCSK9 concentrations vary

  3. A diet containing grape powder ameliorates the cognitive decline in aged rats with a long-term high-fructose-high-fat dietary pattern.

    Science.gov (United States)

    Chou, Liang-Mao; Lin, Ching-I; Chen, Yue-Hwa; Liao, Hsiang; Lin, Shyh-Hsiang

    2016-08-01

    Research has suggested that the consumption of foods rich in polyphenols is beneficial to the cognitive functions of the elderly. We investigated the effects of grape consumption on spatial learning, memory performance and neurodegeneration-related protein expression in aged rats fed a high-fructose-high-fat (HFHF) diet. Six-week-old Wistar rats were fed an HFHF diet to 66 weeks of age to establish a model of an HFHF dietary pattern, before receiving intervention diets containing different amounts of grape powder for another 12 weeks in the second part of the experiment. Spatial learning, memory performance and cortical and hippocampal protein expression levels were assessed. After consuming the HFHF diet for a year, results showed that the rats fed a high grape powder-containing diet had significantly better spatial learning and memory performance, lower expression of β-amyloid and β-secretase and higher expression of α-secretase than the rats fed a low grape powder-containing diet. Therefore, long-term consumption of an HFHF diet caused a decline in cognitive functions and increased the risk factors for neurodegeneration, which could subsequently be ameliorated by the consumption of a polyphenol-rich diet. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet.

    Science.gov (United States)

    Liao, Hsiang; Chou, Liang-Mao; Chien, Yi-Wen; Wu, Chi-Hao; Chang, Jung-Su; Lin, Ching-I; Lin, Shyh-Hsiang

    2017-05-01

    Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose-high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats.

    Science.gov (United States)

    Paśko, Paweł; Zagrodzki, Paweł; Bartoń, Henryk; Chłopicka, Joanna; Gorinstein, Shela

    2010-12-01

    The effect of Chenopodium quinoa seeds on lipid profile, glucose level, protein metabolism and selected essential elements (Na, K, Ca, Mg) level was determined in high-fructose fed male Wistar rats. Fructose decreased significantly LDL [42%, pquinoa indicated, that these seeds effectively reduced serum total cholesterol [26%, pQuinoa seeds also significantly reduced the level of glucose [10%, pquinoa seeds were added into the diet the decrease of HDL level was inhibited. Quinoa seeds did not prevent any adverse effect of increasing triglyceride level caused by fructose. It was shown in this study that quinoa seeds can reduce most of the adverse effects exerted by fructose on lipid profile and glucose level.

  6. Involvement of glucocorticoid prereceptor metabolism and signaling in rat visceral adipose tissue lipid metabolism after chronic stress combined with high-fructose diet.

    Science.gov (United States)

    Bursać, Biljana; Djordjevic, Ana; Veličković, Nataša; Milutinović, Danijela Vojnović; Petrović, Snježana; Teofilović, Ana; Gligorovska, Ljupka; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-03

    Both fructose overconsumption and increased glucocorticoids secondary to chronic stress may contribute to overall dyslipidemia. In this study we specifically assessed the effects and interactions of dietary fructose and chronic stress on lipid metabolism in the visceral adipose tissue (VAT) of male Wistar rats. We analyzed the effects of 9-week 20% high fructose diet and 4-week chronic unpredictable stress, separately and in combination, on VAT histology, glucocorticoid prereceptor metabolism, glucocorticoid receptor subcellular redistribution and expression of major metabolic genes. Blood triglycerides and fatty acid composition were also measured to assess hepatic Δ9 desaturase activity. The results showed that fructose diet increased blood triglycerides and Δ9 desaturase activity. On the other hand, stress led to corticosterone elevation, glucocorticoid receptor activation and decrease in adipocyte size, while phosphoenolpyruvate carboxykinase, adipose tissue triglyceride lipase, FAT/CD36 and sterol regulatory element binding protein-1c (SREBP-1c) were increased, pointing to VAT lipolysis and glyceroneogenesis. The combination of stress and fructose diet was associated with marked stimulation of fatty acid synthase and acetyl-CoA carboxylase mRNA level and with increased 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase protein levels, suggesting a coordinated increase in hexose monophosphate shunt and de novo lipogenesis. It however did not influence the level of peroxisome proliferator-activated receptor-gamma, SREBP-1c and carbohydrate responsive element-binding protein. In conclusion, our results showed that only combination of dietary fructose and stress increase glucocorticoid prereceptor metabolism and stimulates lipogenic enzyme expression suggesting that interaction between stress and fructose may be instrumental in promoting VAT expansion and dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Effects of Mucuna pruriens on Free Fatty Acid Levels and Histopathological Changes in the Brains of Rats Fed a High Fructose Diet.

    Science.gov (United States)

    Akgun, Bekir; Sarı, Aysel; Ozturk, Sait; Erol, Fatih Serhat; Ozercan, Ibrahim Hanifi; Ulu, Ramazan

    2017-01-01

    To investigate free fatty acid levels and histopathological changes in the brain of rats fed a high fructose diet (HFrD) and to evaluate the effects of Mucuna pruriens, known to have antidiabetic activity, on these changes. The study comprised 28 mature female Wistar rats. The rats were divided into 4 groups, each included 7 rats. Group 1: control; group 2: fed an HFrD; group 3: fed normal rat chow and M. pruriens; group 4: fed an HFrD and M. pruriens for 6 weeks. At the end of 6 weeks, the rats were decapitated, blood and brain tissues were obtained. Serum glucose and triglyceride levels were measured. Free fatty acid levels were measured in 1 cerebral hemisphere of each rat and histopathological changes in the other. The Mann-Whitney U test was used to compare quantitative continuous data between 2 independent groups, and the Kruskal-Wallis test was used to compare quantitative continuous data between more than 2 independent groups. Arachidonic acid and docosahexaenoic acid levels were significantly higher in group 2 than in group 1 (p pruriens could have therapeutic effects on free fatty acid metabolism and local inflammatory responses in the brains of rats fed an HFrD. © 2017 The Author(s) Published by S. Karger AG, Basel.

  8. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice.

    Science.gov (United States)

    de Sousa Rodrigues, Maria Elizabeth; Bekhbat, Mandakh; Houser, Madelyn C; Chang, Jianjun; Walker, Douglas I; Jones, Dean P; Oller do Nascimento, Claudia M P; Barnum, Christopher J; Tansey, Malú G

    2017-01-01

    The mechanisms underlying the association between chronic psychological stress, development of metabolic syndrome (MetS), and behavioral impairment in obesity are poorly understood. The aim of the present study was to assess the effects of mild chronic psychological stress on metabolic, inflammatory, and behavioral profiles in a mouse model of diet-induced obesity. We hypothesized that (1) high-fat high-fructose diet (HFHF) and psychological stress would synergize to mediate the impact of inflammation on the central nervous system in the presence of behavioral dysfunction, and that (2) HFHF and stress interactions would impact insulin and lipid metabolism. C57Bl/6 male mice underwent a combination of HFHF and two weeks of chronic psychological stress. MetS-related conditions were assessed using untargeted plasma metabolomics, and structural and immune changes in the gut and liver were evaluated. Inflammation was measured in plasma, liver, gut, and brain. Our results show a complex interplay of diet and stress on gut alterations, energetic homeostasis, lipid metabolism, and plasma insulin levels. Psychological stress and HFHF diet promoted changes in intestinal tight junctions proteins and increases in insulin resistance and plasma cholesterol, and impacted the RNA expression of inflammatory factors in the hippocampus. Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment. HFHF increased hippocampal and hepatic Lcn2 mRNA expression as well as LCN2 plasma levels. Behavioral changes were associated with HFHF and stress. Collectively, these results suggest that diet and stress as pervasive factors exacerbate MetS-related conditions through an inflammatory mechanism that ultimately can impact behavior. This rodent model may prove useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Hibiscus sabdariffa calyx palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in fructose-induced metabolic syndrome rats.

    Science.gov (United States)

    Ajiboye, Taofeek O; Raji, Hikmat O; Adeleye, Abdulwasiu O; Adigun, Nurudeen S; Giwa, Oluwayemisi B; Ojewuyi, Oluwayemisi B; Oladiji, Adenike T

    2016-03-30

    The effect of Hibiscus sabdariffa calyx extract was evaluated in high-fructose-induced metabolic syndrome rats. Insulin resistance, hyperglycemia, dyslipidemia and oxidative rout were induced in rats using high-fructose diet. High-fructose diet-fed rats were administered 100 and 200 mg kg(-1) body weight of H. sabdariffa extract for 3 weeks, starting from week 7 of high-fructose diet treatment. High-fructose diet significantly (P Hibiscus extract. Overall, aqueous extract of H. sabdariffa palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in high-fructose-induced metabolic syndrome rats. © 2015 Society of Chemical Industry.

  10. High Fructose/High Fat Diets Mediate Changes in Protein Carbonyl Content in the Rat Brain With and Without Ozone Exposure

    Science.gov (United States)

    The consumption of diets rich in fat or fructose have been correlated to a rise in type-2 diabetes and obesity. These diet-induced physiological changes have been shown previously to cause an increase in responsiveness to air pollutants such as ozone (03). 03 is a pervasive air p...

  11. Effects of salicylic acid-induced wine rich in anthocyanins on metabolic parameters and adipose insulin signaling in high-fructose fed rats.

    Science.gov (United States)

    Rodriguez Lanzi, Cecilia; de Rosas, Inés; Perdicaro, Diahann J; Ponce, María Teresa; Martinez, Liliana; Miatello, Roberto M; Cavagnaro, Bruno; Vazquez Prieto, Marcela A

    2016-12-01

    We evaluated the effects of Syrah red wine treated with salicylic acid (RW SA) and its control red wine (RW) on metabolic parameters, systolic blood pressure and adipose tissue insulin signaling in high-fructose (F) fed rats. Grape treated with SA increased the anthocyanin (ANTs) levels in RW. F induced increased systolic blood pressure, dislipidemia and insulin resistance (HOMA:IR). F rats treated with RW significantly prevented these alterations while RW SA partially attenuated triglycerides levels and HOMA:IR without modifications in HDL cholesterol levels. F impaired the adipose tissue response to insulin. Supplementation with RW and RW SA partially attenuated these alterations. Rats supplemented with RW SA had lesser beneficial effects on metabolic alterations than control RW, while both RW and RW SA attenuated altered adipose response to insulin. More studies are necessary to deeply evaluate the effect on SA-induced RW rich in ANTs levels on metabolic alterations associated to MetS.

  12. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    Science.gov (United States)

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  13. Erythrocyte osmotic fragility and general health status of adolescent Sprague Dawley rats supplemented with Hibiscus sabdariffa aqueous calyx extracts as neonates followed by a high-fructose diet post-weaning.

    Science.gov (United States)

    Ibrahim, K G; Lembede, B W; Chivandi, E; Erlwanger, K

    2018-02-01

    High-fructose diets (HFD) can cause oxidative damage to tissues including erythrocyte cell membranes. Hibiscus sabdariffa (HS) has protective antioxidant properties. Rats were used to investigate whether the consumption of HS by neonates would result in long-term effects on their erythrocyte osmotic fragility (EOF) and general health when later fed a high-fructose diet post-weaning through adolescence. Eighty of four-day-old Sprague Dawley rat pups were divided randomly into three treatment groups. The controls (n = 27) received distilled water at 10 ml/kg b. w, while the other groups received either 50 mg/kg (n = 28) or 500 mg/kg (n = 25) of an HS aqueous calyx extract orally till post-natal day 14. The rats in each group were weaned and divided into two subgroups; one continued on normal rat chow, and the other received fructose (20% w/v) in their drinking water for 30 days. Blood was collected in heparinised tubes and added to serially diluted (0.0-0.85%) phosphate-buffered saline to determine the EOF. Clinical markers of health status were determined with an automated chemical analyser. HS extracts did not programme metabolism in the growing rats to alter their general health and EOF in response to the HFD. © 2017 Blackwell Verlag GmbH.

  14. Aqueous Extract of Black Maca Prevents Metabolism Disorder via Regulating the Glycolysis/Gluconeogenesis-TCA Cycle and PPARα Signaling Activation in Golden Hamsters Fed a High-Fat, High-Fructose Diet.

    Science.gov (United States)

    Wan, Wenting; Li, Hongxiang; Xiang, Jiamei; Yi, Fan; Xu, Lijia; Jiang, Baoping; Xiao, Peigen

    2018-01-01

    Maca ( Lepidium meyenii Walpers) has been used as a dietary supplement and ethnomedicine for centuries. Recently, maca has become a high profile functional food worldwide because of its multiple biological activities. This study is the first explorative research to investigate the prevention and amelioration capacity of the aqueous extract of black maca (AEM) on high-fat, high-fructose diet (HFD)-induced metabolism disorder in golden hamsters and to identify the potential mechanisms involved in these effects. For 20 weeks, 6-week-old male golden hamsters were fed the following respective diets: (1) a standard diet, (2) HFD, (3) HFD supplemented with metformin, or (4) HFD supplemented with three doses of AEM (300, 600, or 1,200 mg/kg). After 20 weeks, the golden hamsters that received daily AEM supplementation presented with the beneficial effects of improved hyperlipidemia, hyperinsulinemia, insulin resistance, and hepatic steatosis in vivo . Based on the hepatic metabolomic analysis results, alterations in metabolites associated with pathological changes were examined. A total of 194 identified metabolites were mapped to 46 relative metabolic pathways, including those of energy metabolism. In addition, via in silico profiling for secondary maca metabolites by a joint pharmacophore- and structure-based approach, a compound-target-disease network was established. The results revealed that 32 bioactive compounds in maca targeted 16 proteins involved in metabolism disorder. Considering the combined metabolomics and virtual screening results, we employed quantitative real-time PCR assays to verify the gene expression of key enzymes in the relevant pathways. AEM promoted glycolysis and inhibited gluconeogenesis via regulating the expression of key genes such as Gck and Pfkm . Moreover, AEM upregulated tricarboxylic acid (TCA) cycle flux by changing the concentrations of intermediates and increasing the mRNA levels of Aco2 , Fh , and Mdh2 . In addition, the lipid

  15. Aqueous Extract of Black Maca Prevents Metabolism Disorder via Regulating the Glycolysis/Gluconeogenesis-TCA Cycle and PPARα Signaling Activation in Golden Hamsters Fed a High-Fat, High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Wenting Wan

    2018-04-01

    Full Text Available Maca (Lepidium meyenii Walpers has been used as a dietary supplement and ethnomedicine for centuries. Recently, maca has become a high profile functional food worldwide because of its multiple biological activities. This study is the first explorative research to investigate the prevention and amelioration capacity of the aqueous extract of black maca (AEM on high-fat, high-fructose diet (HFD-induced metabolism disorder in golden hamsters and to identify the potential mechanisms involved in these effects. For 20 weeks, 6-week-old male golden hamsters were fed the following respective diets: (1 a standard diet, (2 HFD, (3 HFD supplemented with metformin, or (4 HFD supplemented with three doses of AEM (300, 600, or 1,200 mg/kg. After 20 weeks, the golden hamsters that received daily AEM supplementation presented with the beneficial effects of improved hyperlipidemia, hyperinsulinemia, insulin resistance, and hepatic steatosis in vivo. Based on the hepatic metabolomic analysis results, alterations in metabolites associated with pathological changes were examined. A total of 194 identified metabolites were mapped to 46 relative metabolic pathways, including those of energy metabolism. In addition, via in silico profiling for secondary maca metabolites by a joint pharmacophore- and structure-based approach, a compound-target-disease network was established. The results revealed that 32 bioactive compounds in maca targeted 16 proteins involved in metabolism disorder. Considering the combined metabolomics and virtual screening results, we employed quantitative real-time PCR assays to verify the gene expression of key enzymes in the relevant pathways. AEM promoted glycolysis and inhibited gluconeogenesis via regulating the expression of key genes such as Gck and Pfkm. Moreover, AEM upregulated tricarboxylic acid (TCA cycle flux by changing the concentrations of intermediates and increasing the mRNA levels of Aco2, Fh, and Mdh2. In addition, the lipid

  16. Imoxin attenuates high fructose-induced oxidative stress and apoptosis in renal epithelial cells via downregulation of protein kinase R pathway.

    Science.gov (United States)

    Kalra, Jaspreet; Mangali, Suresh Babu; Bhat, Audesh; Dhar, Indu; Udumula, Mary Priyanka; Dhar, Arti

    2018-02-11

    Double-stranded RNA (dsRNA)-activated protein kinase R (PKR), a ubiquitously expressed serine/threonine kinase, is a key inducer of inflammation, insulin resistance, and glucose homeostasis in obesity. Recent studies have demonstrated that PKR can respond to metabolic stress in mice as well as in humans. However, the underlying molecular mechanism is not fully understood. The aim of this study was to examine the effect of high fructose (HF) in cultured renal tubular epithelial cells (NRK-52E) derived from rat kidney and to investigate whether inhibition of PKR could prevent any deleterious effects of HF in these cells. PKR expression was determined by immunofluorescence staining and Western blotting. Oxidative damage and apoptosis were measured by flow cytometry. HF-treated renal cells developed a significant increase in PKR expression. A significant increase in reactive oxygen species generation and apoptosis was also observed in HF-treated cultured renal epithelial cells. All these effects of HF were attenuated by a selective PKR inhibitor, imoxin (C16). In conclusion, our study demonstrates PKR induces oxidative stress and apoptosis, is a significant contributor involved in vascular complications and is a possible mediator of HF-induced hypertension. Inhibition of PKR pathway can be used as a therapeutic strategy for the treatment of cardiovascular and metabolic disorders. © 2018 Société Française de Pharmacologie et de Thérapeutique.

  17. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Koji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Munetsuna, Eiji [Department of Biochemistry, Fujita Health University School of Medicine, Toyoake (Japan); Yamada, Hiroya, E-mail: hyamada@fujita-hu.ac.jp [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan); Ando, Yoshitaka [Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake (Japan); Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Suzuki, Koji [Department of Public Health, Fujita Health University School of Health Sciences, Toyoake (Japan); Teradaira, Ryoji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Hashimoto, Shuji [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan)

    2015-12-04

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  18. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    International Nuclear Information System (INIS)

    Ohashi, Koji; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki; Suzuki, Koji; Teradaira, Ryoji; Hashimoto, Shuji

    2015-01-01

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  19. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets.

    Science.gov (United States)

    de Oliveira Sá, Guilherme; Dos Santos Neves, Vívian; de Oliveira Fraga, Shyrlei R; Souza-Mello, Vanessa; Barbosa-da-Silva, Sandra

    2017-11-15

    HIIT (high-intensity interval training) has the potential to reduce cardiometabolic risk factors, but the effects on cardiac remodeling and local RAS (renin-angiotensin system) in mice fed high-fat or high-fructose diets still need to be fully addressed. Sixty male C57BL/6 mice (12weeks old) were randomly divided into three groups, control (C), High-fat (HF), or High-fructose diet (HRU) and were monitored for eight weeks before being submitted to the HIIT. Each group was randomly assigned to 2 subgroups, one subgroup was started on a 12-week HIIT protocol (T=trained group), while the other subgroup remained non-exercised (NT=not-trained group). HIIT reduced BM and systolic blood pressure in high-fat groups, while enhanced insulin sensitivity after high-fat or high-fructose intake. Moreover, HIIT reduced left ventricular hypertrophy in HF-T and HFRU-T. Notably, HIIT modulated key factors in the local left ventricular renin-angiotensin-system (RAS): reduced protein expression of renin, ACE (Angiotensin-converting enzyme), and (Angiotensin type 2 receptor) AT2R in HF-T and HFRU-T groups but reduced (Angiotensin type 1 receptor) AT1R protein expression only in the high-fat trained group. HIIT modulated ACE2/Ang (1-7)/Mas receptor axis. ACE2 mRNA gene expression was enhanced in HF-T and HFRU-T groups, complying with elevated Mas (Mas proto-oncogene, G protein-coupled receptor) receptor mRNA gene expression after HIIT. This study shows the effectiveness of HIIT sessions in producing improvements in insulin sensitivity and mitigating LV hypertrophy, though hypertension was controlled only in the high-fat-fed submitted to HIIT protocol. Local RAS system in the heart mediates these findings and receptor MAS seems to play a pivotal role when it comes to the amelioration of cardiac structural and functional remodeling due to HIIT. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The response of male and female rats to a high-fructose diet during adolescence following early administration of Hibiscus sabdariffa aqueous calyx extracts.

    Science.gov (United States)

    Ibrahim, K G; Chivandi, E; Mojiminiyi, F B O; Erlwanger, K H

    2017-12-01

    Metabolic syndrome is linked to the consumption of fructose-rich diets. Nutritional and pharmacological interventions perinatally can cause epigenetic changes that programme an individual to predispose or protect them from the development of metabolic diseases later. Hibiscus sabdariffa (HS) reportedly has anti-obesity and hypocholesterolaemic properties in adults. We investigated the impact of neonatal intake of HS on the programming of metabolism by fructose. A total of 85 4-day-old Sprague Dawley rats were divided randomly into three groups. The control group (n=27, 12 males, 15 females) received distilled water at 10 ml/kg body weight. The other groups received either 50 mg/kg (n=30, 13 males, 17 females) or 500 mg/kg (n=28, 11 males, 17 females) of an HS aqueous calyx extract orally till postnatal day (PND) 14. There was no intervention from PND 14 to PND 21 when the pups were weaned. The rats in each group were then divided into two groups; one continued on a normal diet and the other received fructose (20% w/v) in their drinking water for 30 days. The female rats that were administered with HS aqueous calyx extract as neonates were protected against fructose-induced hypertriglyceridaemia and increased liver lipid deposition. The early administration of HS resulted in a significant (P⩽0.05) increase in plasma cholesterol concentrations with or without a secondary fructose insult. In males, HS prevented the development of fructose-induced hypercholesterolaemia. The potential beneficial and detrimental effects of neonatal HS administration on the programming of metabolism in rats need to be considered in the long-term well-being of children.

  1. Kefir peptides prevent high-fructose corn syrup-induced non-alcoholic fatty liver disease in a murine model by modulation of inflammation and the JAK2 signaling pathway

    Science.gov (United States)

    Chen, H L; Tsai, T C; Tsai, Y C; Liao, J W; Yen, C C; Chen, C M

    2016-01-01

    Objective: In recent years, people have changed their eating habits, and high-fructose-containing bubble tea has become very popular. High-fructose intake has been suggested to be a key factor that induces non-alcoholic fatty liver disease (NAFLD). Kefir, a fermented milk product composed of microbial symbionts, has demonstrated numerous biological activities, including antibacterial, antioxidant and immunostimulating effects. The present study aims to evaluate the effects of kefir peptides on high-fructose-induced hepatic steatosis and the possible molecular mechanism. Results: An animal model of 30% high-fructose-induced NAFLD in C57BL/6J mice was established. The experiment is divided into the following six groups: (1) normal: H2O drinking water; (2) mock: H2O+30% fructose; (3) KL: low-dose kefir peptides (50 mg kg−1)+30% fructose; (4) KM: medium-dose kefir peptides (100 mg kg−1)+30% fructose; (5) KH: high-dose kefir peptides (150 mg kg−1)+30% fructose; and (6) CFM: commercial fermented milk (100 mg kg−1)+30% fructose. The results show that kefir peptides improve fatty liver syndrome by decreasing body weight, serum alanine aminotransferase, triglycerides, insulin and hepatic triglycerides, cholesterol, and free fatty acids as well as the inflammatory cytokines (TNF-α, IL-6 and IL-1β) that had been elevated in fructose-induced NAFLD mice. In addition, kefir peptides markedly increased phosphorylation of AMPK to downregulate its targeted enzymes, ACC (acetyl-CoA carboxylase) and SREBP-1c (sterol regulatory element-binding protein 1), and inhibited de novo lipogenesis. Furthermore, kefir peptides activated JAK2 to stimulate STAT3 phosphorylation, which can translocate to the nucleus, and upregulated several genes, including the CPT1 (carnitine palmitoyltransferase-1) involved in fatty acid oxidation. Conclusion: Our data have demonstrated that kefir peptides can improve the symptoms of NAFLD, including body weight, energy intake

  2. Kefir peptides prevent high-fructose corn syrup-induced non-alcoholic fatty liver disease in a murine model by modulation of inflammation and the JAK2 signaling pathway.

    Science.gov (United States)

    Chen, H L; Tsai, T C; Tsai, Y C; Liao, J W; Yen, C C; Chen, C M

    2016-12-12

    In recent years, people have changed their eating habits, and high-fructose-containing bubble tea has become very popular. High-fructose intake has been suggested to be a key factor that induces non-alcoholic fatty liver disease (NAFLD). Kefir, a fermented milk product composed of microbial symbionts, has demonstrated numerous biological activities, including antibacterial, antioxidant and immunostimulating effects. The present study aims to evaluate the effects of kefir peptides on high-fructose-induced hepatic steatosis and the possible molecular mechanism. An animal model of 30% high-fructose-induced NAFLD in C57BL/6J mice was established. The experiment is divided into the following six groups: (1) normal: H 2 O drinking water; (2) mock: H 2 O+30% fructose; (3) KL: low-dose kefir peptides (50 mg kg -1 )+30% fructose; (4) KM: medium-dose kefir peptides (100 mg kg -1 )+30% fructose; (5) KH: high-dose kefir peptides (150 mg kg -1 )+30% fructose; and (6) CFM: commercial fermented milk (100 mg kg -1 )+30% fructose. The results show that kefir peptides improve fatty liver syndrome by decreasing body weight, serum alanine aminotransferase, triglycerides, insulin and hepatic triglycerides, cholesterol, and free fatty acids as well as the inflammatory cytokines (TNF-α, IL-6 and IL-1β) that had been elevated in fructose-induced NAFLD mice. In addition, kefir peptides markedly increased phosphorylation of AMPK to downregulate its targeted enzymes, ACC (acetyl-CoA carboxylase) and SREBP-1c (sterol regulatory element-binding protein 1), and inhibited de novo lipogenesis. Furthermore, kefir peptides activated JAK2 to stimulate STAT3 phosphorylation, which can translocate to the nucleus, and upregulated several genes, including the CPT1 (carnitine palmitoyltransferase-1) involved in fatty acid oxidation. Our data have demonstrated that kefir peptides can improve the symptoms of NAFLD, including body weight, energy intake, inflammatory reaction and the

  3. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet.

    Science.gov (United States)

    Wada, Tsutomu; Miyashita, Yusuke; Sasaki, Motohiro; Aruga, Yusuke; Nakamura, Yuto; Ishii, Yoko; Sasahara, Masakiyo; Kanasaki, Keizo; Kitada, Munehiro; Koya, Daisuke; Shimano, Hitoshi; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2013-12-01

    Because the renin-angiotensin-aldosterone system has been implicated in the development of insulin resistance and promotion of fibrosis in some tissues, such as the vasculature, we examined the effect of eplerenone, a selective mineralocorticoid receptor (MR) antagonist, on nonalcoholic steatohepatitis (NASH) and metabolic phenotypes in a mouse model reflecting metabolic syndrome in humans. We adopted liver-specific transgenic (Tg) mice overexpressing the active form of sterol response element binding protein-1c (SREBP-1c) fed a high-fat and fructose diet (HFFD) as the animal model in the present study. When wild-type (WT) C57BL/6 and liver-specific SREBP-1c Tg mice grew while being fed HFFD for 12 wk, body weight and epididymal fat weight increased in both groups with an elevation in blood pressure and dyslipidemia. Glucose intolerance and insulin resistance were also observed. Adipose tissue hypertrophy and macrophage infiltration with crown-like structure formation were also noted in mice fed HFFD. Interestingly, the changes noted in both genotypes fed HFFD were significantly ameliorated with eplerenone. HFFD-fed Tg mice exhibited the histological features of NASH in the liver, including macrovesicular steatosis and fibrosis, whereas HFFD-fed WT mice had hepatic steatosis without apparent fibrotic changes. Eplerenone effectively ameliorated these histological abnormalities. Moreover, the direct suppressive effects of eplerenone on lipopolysaccharide-induced TNFα production in the presence and absence of aldosterone were observed in primary-cultured Kupffer cells and bone marrow-derived macrophages. These results indicated that eplerenone prevented the development of NASH and metabolic abnormalities in mice by inhibiting inflammatory responses in both Kupffer cells and macrophages.

  4. Diet induced thermogenesis

    NARCIS (Netherlands)

    Westerterp, K.R.

    2004-01-01

    OBJECTIVE: Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. METHODS: Measuring

  5. Diet induced thermogenesis

    OpenAIRE

    Westerterp KR

    2004-01-01

    Objective Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. Methods Measuring conditions include nutritional status of the subject, physical activity and duration of the observation. Diet characteristics are energy content and macronutrient composition. Resu...

  6. Diet induced thermogenesis

    Directory of Open Access Journals (Sweden)

    Westerterp KR

    2004-08-01

    Full Text Available Objective Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. Methods Measuring conditions include nutritional status of the subject, physical activity and duration of the observation. Diet characteristics are energy content and macronutrient composition. Results Most studies measure diet-induced thermogenesis as the increase in energy expenditure above basal metabolic rate. Generally, the hierarchy in macronutrient oxidation in the postprandial state is reflected similarly in diet-induced thermogenesis, with the sequence alcohol, protein, carbohydrate, and fat. A mixed diet consumed at energy balance results in a diet induced energy expenditure of 5 to 15 % of daily energy expenditure. Values are higher at a relatively high protein and alcohol consumption and lower at a high fat consumption. Protein induced thermogenesis has an important effect on satiety. In conclusion, the main determinants of diet-induced thermogenesis are the energy content and the protein- and alcohol fraction of the diet. Protein plays a key role in body weight regulation through satiety related to diet-induced thermogenesis.

  7. Chromium regulation of multiple gene expression in rats with high-fructose diet-induced metabolic syndrome

    Science.gov (United States)

    Chromium (Cr) supplementation alleviates the metabolic syndrome, glucose intolerance, depression, excess body fat, and type 2 diabetes. However, not all studies have reported beneficial effects of Cr. Molecular evidence is lacking on the effects of Cr. The objective of this study was to investigate ...

  8. 21 CFR 184.1866 - High fructose corn syrup.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true High fructose corn syrup. 184.1866 Section 184.1866... Listing of Specific Substances Affirmed as GRAS § 184.1866 High fructose corn syrup. (a) High fructose... partial enzymatic conversion of glucose (dextrose) to fructose using an insoluble glucose isomerase enzyme...

  9. Effect of homeopathic preparations of Syzygium jambolanum and Cephalandra indica on gastrocnemius muscle of high fat and high fructose-induced type-2 diabetic rats.

    Science.gov (United States)

    Sampath, Sathish; Narasimhan, Akilavalli; Chinta, Raveendar; Nair, K R Janardanan; Khurana, Anil; Nayak, Debadatta; Kumar, Alok; Karundevi, Balasubramanian

    2013-07-01

    Homeopathy is a holistic method of treatment that uses microdoses of natural substances originating from plants, minerals, or animal parts. Syzygium jambolanum and Cephalandra indica are used in homeopathy for treatment of type-2 diabetes. However, the molecular mechanisms responsible for such effects are not known. Homeopathic preparations of S. jambolanum and C. indica in mother tincture, 6c and 30c were used to examine the molecular mechanism of antidiabetic effects in the skeletal muscle of rats with high fat and fructose-induced type-2 diabetes mellitus. After 30 days treatment, fasting blood glucose, serum insulin and insulin signaling molecules in the skeletal muscle (gastrocnemius) were measured. Diabetic rats showed a significant decrease in serum insulin and lipid profile as well as low levels of insulin receptor (IR), v-akt murine thymoma viral oncogene homolog (Akt), p-Akt(ser473) and glucose transporter-4 (GLUT4) protein expression (p Homeopathy. Published by Elsevier Ltd. All rights reserved.

  10. (p-ClPhSe)2 stimulates carbohydrate metabolism and reverses the metabolic alterations induced by high fructose load in rats.

    Science.gov (United States)

    Quines, Caroline B; Rosa, Suzan G; Chagas, Pietro M; Velasquez, Daniela; Prado, Vinicius C; Nogueira, Cristina W

    2017-09-01

    The modern life leads to excess consumption of food rich in fructose; however, the long-term changes in carbohydrate and lipid metabolism could lead to metabolic dysfunction in humans. The present study evaluated the in vitro insulin-mimetic action of p-chloro-diphenyl diselenide (p-ClPhSe) 2 . The second aim of this study was to investigate if (p-ClPhSe) 2 reverses metabolic dysfunction induced by fructose load in Wistar rats. The insulin-mimetic action of (p-ClPhSe) 2  at concentrations of 50 and 100 μM was determined in slices of rat skeletal muscle. (p-ClPhSe) 2  at a concentration of 50 μM stimulated the glucose uptake by 40% in skeletal muscle. A dose-response curve revealed that (p-ClPhSe) 2  at a dose of 25 mg/kg reduced (∼20%) glycemia in rats treated with fructose (5 g/kg, i.g.). The administration of fructose impaired the liver homeostasis and (p-ClPhSe) 2 (25 mg/kg) protected against the increase (∼25%) in the G-6-Pase and isocitrate dehydrogenase activities and reduced the triglyceride content (∼25%) in the liver. (p-ClPhSe) 2 regulated the liver homeostasis by stimulating hexokinase activity (∼27%), regulating the TCA cycle activity (increased the ATP and citrate synthase activity (∼15%)) and increasing the glycogen levels (∼67%). In conclusion, (p-ClPhSe) 2 stimulated carbohydrate metabolism and reversed metabolic dysfunction in rats fed with fructose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption

    Directory of Open Access Journals (Sweden)

    Ting Li

    2016-09-01

    Full Text Available Background: Insulin resistance, which is associated with an increased risk of cardiovascular morbidity and mortality, has become a leading nutrition problem. Inorganic nitrate enriched in spinach has been demonstrated to reverse the pathological features of insulin resistance and endothelial dysfunction. However, the effects of a direct intake of nitrate-enriched spinach on insulin resistance and endothelial dysfunction have not been studied. Objective: To investigate the effects of spinach nitrate on insulin resistance, lipid metabolism, endothelial function, and inflammation in mice fed with a high-fat and high-fructose diet. Design: A diet intervention of spinach with or without nitrate was performed in mice. A high-fat and high-fructose diet was used to cause insulin resistance, endothelial dysfunction, and inflammation in mice. The impacts of spinach nitrate on lipid profile, insulin resistance, markers of endothelial function, and inflammation were determined in mice. Results: Spinach nitrate improved the vascular endothelial function of the mice with high-fat and high-fructose consumption, as evidenced by the elevated plasma nitrite level, increased serum nitric oxide (NO level and decreased serum ET-1 level after spinach nitrate intervention. Spinach nitrate also reduced serum triglycerides, total cholesterol, and low-density lipoprotein-cholesterol levels and elevated serum high-density lipoprotein-cholesterol levels in the mice fed with a high-fat and high-fructose diet. Mice receiving spinach with 60 mg/kg of nitrate (1.02±0.34 showed a significantly low homeostasis model assessment-insulin resistance index as compared with the model mice (2.05±0.58, which is indicating that spinach nitrate could effectively improve the insulin resistance. In addition, spinach nitrate remarkably decreased the elevated serum C-reactive protein, tumor necrosis factor α, and interleukin-6 levels induced by a high-fat and high-fructose diet

  12. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup.

    Science.gov (United States)

    Stanhope, Kimber L; Havel, Peter J

    2008-12-01

    Our laboratory has investigated 2 hypotheses regarding the effects of fructose consumption: 1) the endocrine effects of fructose consumption favor a positive energy balance, and 2) fructose consumption promotes the development of an atherogenic lipid profile. In previous short- and long-term studies, we showed that consumption of fructose-sweetened beverages with 3 meals results in lower 24-h plasma concentrations of glucose, insulin, and leptin in humans than does consumption of glucose-sweetened beverages. We have also tested whether prolonged consumption of high-fructose diets leads to increased caloric intake or decreased energy expenditure, thereby contributing to weight gain and obesity. Results from a study conducted in rhesus monkeys produced equivocal results. Carefully controlled and adequately powered long-term studies are needed to address these hypotheses. In both short- and long-term studies, we showed that consumption of fructose-sweetened beverages substantially increases postprandial triacylglycerol concentrations compared with glucose-sweetened beverages. In the long-term studies, apolipoprotein B concentrations were also increased in subjects consuming fructose, but not in those consuming glucose. Data from a short-term study comparing consumption of beverages sweetened with fructose, glucose, high-fructose corn syrup, and sucrose suggest that high-fructose corn syrup and sucrose increase postprandial triacylglycerol to an extent comparable with that induced by 100% fructose alone. Increased consumption of fructose-sweetened beverages along with increased prevalence of obesity, metabolic syndrome, and type 2 diabetes underscore the importance of investigating the metabolic consequences of fructose consumption in carefully controlled experiments.

  13. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  14. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats

    Science.gov (United States)

    Nugroho, Agung Endro; Andrie, Mohamad; Warditiani, Ni Kadek; Siswanto, Eka; Pramono, Suwidjiyo; Lukitaningsih, Endang

    2012-01-01

    Objectives: Andrographis paniculata (Burm. f.) Nees originates from India and grows widely in many areas in Southeast Asian countries. Andrographis paniculata (Burm. f.) Nees has shown an antidiabetic effect in type 1 DM rats. The present study investigates the purified extract of the plant and its active compound andrographolide for antidiabetic and antihyperlipidemic effects in high-fructose-fat-fed rats, a model of type 2 DM rats. Materials and Methods: Hyperglycemia in rats was induced by high-fructose-fat diet containing 36% fructose, 15% lard, and 5% egg yolks in 0.36 g/200 gb.wt. 55 days. The rats were treated with the extract or test compound on the 50th day. Antidiabetic activity was measured by estimating mainly the pre– and postprandial blood glucose levels and other parameters such as cholesterol, LDL, triglyceride, and body weight. Results: The purified extract and andrographolide significantly (PAndrographis paniculata (Burm. f.) Nees or its active compound andrographolide showed hypoglycemic and hypolipidemic effects in high-fat-fructose-fed rat. PMID:22701250

  15. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent.

    Science.gov (United States)

    Tetri, Laura H; Basaranoglu, Metin; Brunt, Elizabeth M; Yerian, Lisa M; Neuschwander-Tetri, Brent A

    2008-11-01

    The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fructose corn syrup (HFCS) equivalent for 1-16 wk were compared with mice fed standard chow or mice with trans fats or HFCS omitted. Cage racks were removed from western diet mice to promote sedentary behavior. By 16 wk, trans fat-fed mice became obese and developed severe hepatic steatosis with associated necroinflammatory changes. Plasma alanine aminotransferase levels increased, as did liver TNF-alpha and procollagen mRNA, indicating an inflammatory and profibrogenic response to injury. Glucose intolerance and impaired fasting glucose developed within 2 and 4 wk, respectively. Plasma insulin, resistin, and leptin levels increased in a profile similar to that seen in patients with NASH. The individual components of this diet contributed to the phenotype independently; isocaloric replacement of trans fats with lard established that trans fats played a major role in promoting hepatic steatosis and injury, whereas inclusion of HFCS promoted food consumption, obesity, and impaired insulin sensitivity. Combining risk factors for the metabolic syndrome by feeding mice trans fats and HFCS induced histological features of NASH in the context of a metabolic profile similar to patients with this disease. Because dietary trans fats promoted liver steatosis and injury, their role in the epidemic of NASH needs further evaluation.

  16. The effects of high fructose syrup.

    Science.gov (United States)

    Moeller, Suzen M; Fryhofer, Sandra Adamson; Osbahr, Albert J; Robinowitz, Carolyn B

    2009-12-01

    High fructose corn syrup (HFCS) has become an increasingly common food ingredient in the last 40 years. However, there is concern that HFCS consumption increases the risk for obesity and other adverse health outcomes compared to other caloric sweeteners. The most commonly used types of HFCS (HFCS-42 and HFCS-55) are similar in composition to sucrose (table sugar), consisting of roughly equal amounts of fructose and glucose. The primary difference is that these monosaccharides exist free in solution in HFCS, but in disaccharide form in sucrose. The disaccharide sucrose is easily cleaved in the small intestine, so free fructose and glucose are absorbed from both sucrose and HFCS. The advantage to food manufacturers is that the free monosaccharides in HFCS provide better flavor enhancement, stability, freshness, texture, color, pourability, and consistency in foods in comparison to sucrose. Because the composition of HFCS and sucrose is so similar, particularly on absorption by the body, it appears unlikely that HFCS contributes more to obesity or other conditions than sucrose does. Nevertheless, few studies have evaluated the potentially differential effect of various sweeteners, particularly as they relate to health conditions such as obesity, which develop over relatively long periods of time. Improved nutrient databases are needed to analyze food consumption in epidemiologic studies, as are more strongly designed experimental studies, including those on the mechanism of action and relationship between fructose dose and response. At the present time, there is insufficient evidence to ban or otherwise restrict use of HFCS or other fructose-containing sweeteners in the food supply or to require the use of warning labels on products containing HFCS. Nevertheless, dietary advice to limit consumption of all added caloric sweeteners, including HFCS, is warranted.

  17. Effects of dietary high fructose corn syrup on regulation of energy intake and leptin gene expression in rats

    Directory of Open Access Journals (Sweden)

    Guadalupe López-Rodríguez

    2015-12-01

    Full Text Available OBJECTIVE: To evaluate in Wistar rats the effect of chronic use of high fructose corn syrup on serum lipids, body weight, energy intake regulation, and expression of associated genes. METHODS: For 11 weeks, male rats were fed a standard diet with either water (control or 15% high fructose corn syrup solution, or fed a high-fat diet. The rats' food intake and body weight were measured weekly. Expression of leptin and fatty acid synthase genes was quantified in their brain and adipose tissue upon sacrifice at age 119 days using real-time polymerase chain reaction. RESULTS: The intake of 15% high fructose corn syrup did not affect the rats' weight, only the rats on the high-fat diet gained significant weight. The rats in both diets had lower levels of leptin expression and high levels of fatty acid synthase in the brain, which were associated with high serum triglycerides. CONCLUSION: Fifteen percent high fructose corn syrup intake and the high-fat diet reduced leptin gene expression in the brain of Wistar rats, with differential effects on weight gain.

  18. Excess free fructose, high-fructose corn syrup and adult asthma: the Framingham Offspring Cohort.

    Science.gov (United States)

    DeChristopher, Luanne R; Tucker, Katherine L

    2018-05-01

    There is growing evidence that intakes of high-fructose corn syrup (HFCS), HFCS-sweetened soda, fruit drinks and apple juice - a high-fructose 100 % juice - are associated with asthma, possibly because of the high fructose:glucose ratios and underlying fructose malabsorption, which may contribute to enteral formation of pro-inflammatory advanced glycation end products, which bind receptors that are mediators of asthma. Cox proportional hazards models were used to assess associations between intakes of these beverages and asthma risk, with data from the Framingham Offspring Cohort. Diet soda and orange juice - a 100 % juice with a 1:1 fructose:glucose ratio - were included for comparison. Increasing intake of any combination of HFCS-sweetened soda, fruit drinks and apple juice was significantly associated with progressively higher asthma risk, plateauing at 5-7 times/week v. never/seldom, independent of potential confounders (hazard ratio 1·91, Pfructose:glucose ratios, and fructose malabsorption. Recommendations to reduce consumption may be inadequate to address asthma risk, as associations are evident even with moderate intake of these beverages, including apple juice - a 100 % juice. The juice reductions in the US Special Supplemental Nutrition Program for Women, Infants, and Children in 2009, and the plateauing/decreasing asthma prevalence (2010-2013), particularly among non-Hispanic black children, may be related. Further research regarding the consequences of fructose malabsorption is needed.

  19. The effects of Mucuna pruriens on the renal oxidative stress and transcription factors in high-fructose-fed rats.

    Science.gov (United States)

    Ulu, Ramazan; Gozel, Nevzat; Tuzcu, Mehmet; Orhan, Cemal; Yiğit, İrem Pembegül; Dogukan, Ayhan; Telceken, Hafize; Üçer, Özlem; Kemeç, Zeki; Kaman, Dilara; Juturu, Vijaya; Sahin, Kazim

    2018-05-31

    In the present study, we evaluated the effects of M. pruriens administration on metabolic parameters, oxidative stress and kidney nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathways in high-fructose fed rats. Male rats (n = 28) were divided into 4 groups as control, M. pruriens, fructose, and M. pruriens plus fructose. All rats were fed a standard diet supplemented or no supplemented with M. pruriens (200 mg/kg/d by gavage). Fructose was given in drinking water for 8 weeks. High fructose consumption led to an increase in the serum level of glucose, triglyceride, urea and renal malondialdehyde (MDA) levels. Although M. pruriens treatment reduced triglyceride and MDA levels, it did not affect other parameters. M. pruriens supplementation significantly decreased the expression of NF-ҡB and decreased expression of Nrf2 and HO-1 proteins in the kidney. This study showed that the adverse effects of high fructose were alleviated by M. pruriens supplementation via modulation of the expression of kidney nuclear transcription factors in rats fed high fructose diet. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Dietary cranberry, blueberry, and black raspberry affects the development of dyslipidemia and insulin insensitivity associated with metabolic syndrome in high fructose fed rats

    Science.gov (United States)

    Effects of feeding cranberry, blueberry, and black raspberry powder on selected parameters of metabolic syndrome were investigated in 40 growing male Sprague Dawley rats. Animals were divided into five dietary treatments of 1) control AIN93G diet, 2) high fructose (65% by weight, HF) diet, and 3-5) ...

  1. Enzymatic production of high fructose syrup from Agave tequilana ...

    African Journals Online (AJOL)

    The conditions for producing high fructose syrup from the fructans contained in the head of the Agave tequilana Weber var. blue were determined and their physicochemical properties were compared with those of commercial corn syrup (Frudex-55®). Both syrups behave as Newtonian fluids and showed no significant ...

  2. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent

    OpenAIRE

    Tetri, Laura H.; Basaranoglu, Metin; Brunt, Elizabeth M.; Yerian, Lisa M.; Neuschwander-Tetri, Brent A.

    2008-01-01

    The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fr...

  3. Potassium and calcium channel gene expression in small arteries in porcine and rat models of diet-induced obesity (Poster)

    DEFF Research Database (Denmark)

    Jensen, Lars Jørn; Salomonsson, Max; Sørensen, Charlotte Mehlin

    2014-01-01

    Obesity is an increasing problem worldwide leading to cardiovascular morbidity. Only limited information exists on the transcriptional regulation of arterial K+ and Ca2+ channels in obesity. We quantified, by real-time PCR, mRNA expression of K+ channels and L-type Ca2+ channels (LTCC) in small...... mesenteric (MA), middle cerebral (MCA), and left coronary arteries (LCA) of lean vs. obese rats and minipigs. Male Sprague Dawley rats were fed a high-fat (FAT; N=5), high-fructose (FRUC; N=7), high-fat/high-fructose (FAT/FRUC; N=7) or standard diet (STD; N=7-11) for 28 Weeks. FAT and FAT/FRUC became obese...... increased in OB and OB+DIAB. BKca, IKca, SKca and/or LTCC mRNA was up-regulated in LCA from OB and OB+DIAB (n.s.). Expression of BKca mRNA was increased, whereas IKca mRNA decreased in MCA from OB (n.s.). SKca mRNA was decreased in MA from OB (n.s.). Diet-induced obesity in rats and minipigs lead to complex...

  4. Trigonella foenum-graecum water extract improves insulin sensitivity and stimulates PPAR and γ gene expression in high fructose-fed insulin-resistant rats

    Directory of Open Access Journals (Sweden)

    Abbas Mohammadi

    2016-01-01

    Conclusion: This study demonstrates the beneficial effects of trigonella foenum-graecum extract on insulin resistance in rats fed on a high-fructose diet. At least three mechanisms are involved, including direct insulin-like effect, increase in adiponectin levels, and PPARγ protein expression.

  5. High-fructose corn syrup: everything you wanted to know, but were afraid to ask.

    Science.gov (United States)

    Fulgoni, Victor

    2008-12-01

    The annual American Society for Nutrition Public Information Committee symposium for 2007 titled "High Fructose Corn Syrup (HFCS): Everything You Wanted to Know, But Were Afraid to Ask" served as a platform to address the controversy surrounding HFCS. Speakers from academia and industry came together to provide up-to-date information on this food ingredient. The proceedings from the symposium covered 1) considerable background on what HFCS is and why it is used as a food ingredient, 2) the contribution HFCS makes to consumers' diets, and 3) the latest research on the metabolic effects of HFCS. The data presented indicated that HFCS is very similar to sucrose, being about 55% fructose and 45% glucose, and thus, not surprisingly, few metabolic differences were found comparing HFCS and sucrose. That said, HFCS does contribute to added sugars and calories, and those concerned with managing their weight should be concerned about calories from beverages and other foods, regardless of HFCS content.

  6. Consumption of sucrose and high-fructose corn syrup does not increase liver fat or ectopic fat deposition in muscles.

    Science.gov (United States)

    Bravo, Stephen; Lowndes, Joshua; Sinnett, Stephanie; Yu, Zhiping; Rippe, James

    2013-06-01

    It has been postulated that fructose-induced triglyceride synthesis is augmented when accompanied by glucose. Chronic elevations could lead to excess fat accumulation in the liver and ectopic fat deposition in muscles, which in turn could contribute to the induction of abnormalities in glucose homeostasis, insulin resistance, and the subsequent development of type 2 diabetes. Our objective was to evaluate the effect of the addition of commonly consumed fructose- and (or) glucose-containing sugars in the usual diet on liver fat content and intramuscular adipose tissue. For 10 weeks, 64 individuals (mean age, 42.16 ± 11.66 years) consumed low-fat milk sweetened with either high-fructose corn syrup (HFCS) or sucrose; the added sugar matched consumption levels of fructose in the 25th, 50th, and 90th percentiles of the population. The fat content of the liver was measured with unenhanced computed tomography imaging, and the fat content of muscle was assessed with magnetic resonance imaging. When the 6 HFCS and sucrose groups were averaged, there was no change over the course of 10 weeks in the fat content of the liver (13.32% ± 10.49% vs. 13.21% ± 10.75%; p > 0.05), vastus lateralis muscle (3.07 ± 0.74 g per 100 mL vs. 3.15 ± 0.84 g per 100 mL; p > 0.05), or gluteus maximus muscle (4.08 ± 1.50 g per 100 mL vs. 4.24 ± 1.42 g per 100 mL; p > 0.05). Group assignment did not affect the result (interaction > 0.05). These data suggest that when fructose is consumed as part of a typical diet in normally consumed sweeteners, such as sucrose or HFCS, ectopic fat storage in the liver or muscles is not promoted.

  7. Emodin Prevents Intrahepatic Fat Accumulation, Inflammation and Redox Status Imbalance During Diet-Induced Hepatosteatosis in Rats

    Directory of Open Access Journals (Sweden)

    Valerio Nobili

    2012-02-01

    Full Text Available High-fat and/or high-carbohydrate diets may predispose to several metabolic disturbances including liver fatty infiltration (hepatosteatosis or be associated with necro-inflammation and fibrosis (steatohepatitis. Several studies have emphasized the hepatoprotective effect of some natural agents. In this study, we investigated the potential therapeutic effects of the treatment with emodin, an anthraquinone derivative with anti-oxidant and anti-cancer abilities, in rats developing diet-induced hepatosteatosis and steatohepatitis. Sprague-Dawley rats were fed a standard diet (SD for 15 weeks, or a high-fat/high-fructose diet (HFD/HF. After 5 weeks, emodin was added to the drinking water of some of the SD and HFD/HF rats. The experiment ended after an additional 10 weeks. Emodin-treated HFD/HF rats were protected from hepatosteatosis and metabolic derangements usually observed in HFD/HF animals. Furthermore, emodin exerted anti-inflammatory activity by inhibiting the HFD/HF-induced increase of tumor necrosis factor (TNF-α. Emodin also affected the hepatocytes glutathione homeostasis and levels of the HFD/HF-induced increase of glutathionylated/phosphorylated phosphatase and tensin homolog (PTEN. In conclusion, we demonstrated that a natural agent such as emodin can prevent hepatosteatosis, preserving liver from pro-inflammatory and pro-oxidant damage caused by HFD/HF diet. These findings are promising, proposing emodin as a possible hindrance to progression of hepatosteatosis into steatohepatitis.

  8. High-fructose corn syrup, energy intake, and appetite regulation.

    Science.gov (United States)

    Melanson, Kathleen J; Angelopoulos, Theodore J; Nguyen, Von; Zukley, Linda; Lowndes, Joshua; Rippe, James M

    2008-12-01

    High-fructose corn syrup (HFCS) has been implicated in excess weight gain through mechanisms seen in some acute feeding studies and by virtue of its abundance in the food supply during years of increasing obesity. Compared with pure glucose, fructose is thought to be associated with insufficient secretion of insulin and leptin and suppression of ghrelin. However, when HFCS is compared with sucrose, the more commonly consumed sweetener, such differences are not apparent, and appetite and energy intake do not differ in the short-term. Longer-term studies on connections between HFCS, potential mechanisms, and body weight have not been conducted. The main objective of this review was to examine collective data on associations between consumption of HFCS and energy balance, with particular focus on energy intake and its regulation.

  9. Diet-induced mating preference in Drosophila

    OpenAIRE

    Rosenberg, Eugene; Zilber-Rosenberg, Ilana; Sharon, Gil; Segal, Daniel

    2018-01-01

    Diet-induced mating preference was initially observed by Dodd (1). Subsequently, we reported that diet-induced mating preference occurred in Drosophila melanogaster. Treatment of the flies with antibiotics abolished the mating preference, suggesting that fly-associated commensal bacteria were responsible for the phenomenon (2). The hypothesis was confirmed when it was shown that colonizing antibiotic-treated flies with Lactobacillus plantarum reestablished mating preference in multiple-choice...

  10. High fructose corn syrup and diabetes prevalence: a global perspective.

    Science.gov (United States)

    Goran, Michael I; Ulijaszek, Stanley J; Ventura, Emily E

    2013-01-01

    The overall aim of this study was to evaluate, from a global and ecological perspective, the relationships between availability of high fructose corn syrup (HFCS) and prevalence of type 2 diabetes. Using published resources, country-level estimates (n =43 countries) were obtained for: total sugar, HFCS and total calorie availability, obesity, two separate prevalence estimates for diabetes, prevalence estimate for impaired glucose tolerance and fasting plasma glucose. Pearson's correlations and partial correlations were conducted in order to explore associations between dietary availability and obesity and diabetes prevalence. Diabetes prevalence was 20% higher in countries with higher availability of HFCS compared to countries with low availability, and these differences were retained or strengthened after adjusting for country-level estimates of body mass index (BMI), population and gross domestic product (adjusted diabetes prevalence=8.0 vs. 6.7%, p=0.03; fasting plasma glucose=5.34 vs. 5.22 mmol/L, p=0.03) despite similarities in obesity and total sugar and calorie availability. These results suggest that countries with higher availability of HFCS have a higher prevalence of type 2 diabetes independent of obesity.

  11. Dietary Omega-3 Fatty Acid Deficiency and High Fructose Intake in the Development of Metabolic Syndrome, Brain Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Artemis P. Simopoulos

    2013-07-01

    Full Text Available Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS. Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD, promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health.

  12. High-fructose corn syrup: is this what's for dinner?

    Science.gov (United States)

    Duffey, Kiyah J; Popkin, Barry M

    2008-12-01

    Research on trends in consumption of added sugar and high-fructose corn syrup (HFCS) in the United States has largely focused on calorically sweetened beverages and ignored other sources. We aimed to examine US consumption of added sugar and HFCS to determine long-term trends in availability and intake from beverages and foods. We used 2 estimation techniques and data from the Nationwide Food Consumption Surveys (1965 and 1977), Continuing Survey of Food Intake by Individuals (1989-1991), and the National Health and Nutrition Examination Surveys (1999-2000, 2001-2002, and 2003-2004) to examine trends in HFCS and added sugar both overall and within certain food and beverage groups. Availability and consumption of HFCS and added sugar increased over time until a slight decline between 2000 and 2004. By 2004, HFCS provided roughly 8% of total energy intake compared with total added sugar of 377 kcal x person(-1) x d(-1), accounting for 17% of total energy intake. Although food and beverage trends were similar, soft drinks and fruit drinks provided the most HFCS (158 and 40 kcal x person(-1) x d(-1) in 2004, respectively). Moreover, among the top 20% of individuals, 896 kcal x person(-1) x d(-1) of added sugar was consumed compared with 505 kcal x person(-1) x d(-1) of HFCS. Among consumers, sweetened tea and desserts also represented major contributors of calories from added sugar (>100 kcal x person(-1) x d(-1)). Although increased intake of calories from HFCS is important to examine, the health effect of overall trends in added caloric sweeteners should not be overlooked.

  13. Health Implications of High-Fructose Intake and Current Research12

    Science.gov (United States)

    Dornas, Waleska C; de Lima, Wanderson G; Pedrosa, Maria L; Silva, Marcelo E

    2015-01-01

    Although fructose consumption has dramatically increased and is suspected to be causally linked to metabolic abnormalities, the mechanisms involved are still only partially understood. We discuss the available data and investigate the effects of dietary fructose on risk factors associated with metabolic disorders. The evidence suggests that fructose may be a predisposing cause in the development of insulin resistance in association with the induction of hypertriglyceridemia. Experiments in animals have shown this relation when they are fed diets very high in fructose or sucrose, and human studies also show this relation, although with conflicting results due to the heterogeneity of the studies. The link between increased fructose consumption and increases in uric acid also has been confirmed as a potential risk factor for metabolic syndrome, and insulin resistance/hyperinsulinemia may be causally related to the development of hypertension. Collectively, these results suggest a link between high fructose intake and insulin resistance, although future studies must be of reasonable duration, use defined populations, and improve comparisons regarding the effects of relevant doses of nutrients on specific endpoints to fully understand the effect of fructose intake in the absence of potential confounding factors. PMID:26567197

  14. Reduction of abdominal fat accumulation in rats by 8-week ingestion of a newly developed sweetener made from high fructose corn syrup.

    Science.gov (United States)

    Iida, Tetsuo; Yamada, Takako; Hayashi, Noriko; Okuma, Kazuhiro; Izumori, Ken; Ishii, Reika; Matsuo, Tatsuhiro

    2013-06-01

    Many studies have shown that ingestion of high-fructose corn syrup (HFCS) may cause an increase in body weight and abdominal fat. We recently developed a new sweetener containing rare sugars (rare sugar syrup; RSS) by slight isomerization of HFCS. Here, the functional effects of RSS on body weight and abdominal fat, and biochemical parameters in Wistar rats were examined. Rats (n=30) were randomly divided into three groups and maintained for 8-weeks on starch, starch+HFCS (50:50), and starch+RSS (50:50) diets. Rats in the Starch and HFCS groups gained significantly more body weight and abdominal fat than the RSS group. Fasting serum insulin in the RSS group was significantly lower than in the Starch and HFCS groups, although serum glucose in the HFCS and RSS groups was significantly lower than that in the Starch group. Thus, the substitution of HFCS with RSS prevents obesity induced by the consumption of HFCS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effect of Restriction of Foods with High Fructose Corn Syrup Content on Metabolic Indices and Fatty Liver in Obese Children.

    Science.gov (United States)

    Ibarra-Reynoso, Lorena Del Rocio; López-Lemus, Hilda Lissette; Garay-Sevilla, Ma Eugenia; Malacara, Juan Manuel

    2017-01-01

    We examined the effect of restriction of foods with high fructose content in obese school children. In a clinical study, we selected 54 obese children 6 to 11 years old with high fructose consumption (>70 g/day) in order indicate dietary fructose restriction (glucose, insulin, lipids, leptin, IGFBP1, and RBP4 serum levels were collected. The group of children had 80% adherence and reported decreased fructose consumption (110 ± 38.6 to 11.4 ± 12.0 g/day) and also a significant decrease in caloric (2,384 ± 568 to 1,757 ± 387 kcal/day) and carbohydrate consumption (302 ± 80.4 to 203 ± 56.0 g/day). The severity of steatosis improved significantly after fructose restriction (p fructose foods with a decrease of caloric and carbohydrate intake at 6 weeks did not induce weight loss; however, triglyceride levels and hepatic steatosis decreased. Differences with other studies in regard to weight loss may be explained by adaptive changes on metabolic expenditure. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  16. Central and Metabolic Effects of High Fructose Consumption: Evidence from Animal and Human Studies

    Directory of Open Access Journals (Sweden)

    Alexandra Stoianov

    2014-12-01

    Full Text Available Fructose consumption has increased dramatically in the last 40 years, and its role in the pathogenesis of the metabolic syndrome has been implicated by many studies. It is most often encountered in the diet as sucrose (glucose and fructose or high-fructose corn syrup (55% fructose. At high levels, dietary exposure to fructose triggers a series of metabolic changes originating in the liver, leading to hepatic steatosis, hypertriglyceridemia, insulin resistance, and decreased leptin sensitivity. Fructose has been identified to alter biological pathways in other tissues including the central nervous system (CNS, adipose tissue, and the gastrointestinal system. Unlike glucose, consumption of fructose produces smaller increases in the circulating satiety hormone glucagon-like peptide 1 (GLP-1, and does not attenuate levels of the appetite suppressing hormone ghrelin. In the brain, fructose contributes to increased food consumption by activating appetite and reward pathways, and stimulating hypothalamic AMPK activity, a nutrient-sensitive regulator of food intake. Recent studies investigating the neurophysiological factors linking fructose consumption and weight gain in humans have demonstrated differential activation of brain regions that govern appetite, motivation and reward processing. Compared to fructose, glucose ingestion produces a greater reduction of hypothalamic neuronal activity, and increases functional connectivity between the hypothalamus and other reward regions of the brain, indicating that these two sugars regulate feeding behavior through distinct neural circuits. This review article outlines the current findings in fructose-feeding studies in both human and animal models, and discusses the central effects on the CNS that may lead to increased appetite and food intake. Keywords: Fructose, Metabolic syndrome, Appetite, Central nervous system

  17. Energy Expenditure and Hormone Responses in Humans After Overeating High-Fructose Corn Syrup Versus Whole-Wheat Foods.

    Science.gov (United States)

    Ibrahim, Mostafa; Bonfiglio, Susan; Schlögl, Mathias; Vinales, Karyne L; Piaggi, Paolo; Venti, Colleen; Walter, Mary; Krakoff, Jonathan; Thearle, Marie S

    2018-01-01

    This study sought to understand how the dietary source of carbohydrates, either high-fructose corn syrup (HFCS) or complex carbohydrates, affects energy expenditure (EE) measures, appetitive sensations, and hormones during 24 hours of overfeeding. Seventeen healthy participants with normal glucose regulation had 24-hour EE measures and fasting blood and 24-hour urine collection during four different 1-day diets, including an energy-balanced diet, fasting, and two 75% carbohydrate diets (5% fat) given at 200% of energy requirements with either HFCS or whole-wheat foods as the carbohydrate source. In eight volunteers, hunger was assessed with visual analog scales the morning after the diets. Compared with energy balance, 24-hour EE increased 12.8% ± 6.9% with carbohydrate overfeeding (P < 0.0001). No differences in 24-hour EE or macronutrient utilization were observed between the two high-carbohydrate diets; however, sleeping metabolic rate was higher after the HFCS diet (Δ = 35 ± 48 kcal [146 ± 200 kJ]; P = 0.01). Insulin, ghrelin, and triglycerides increased the morning after both overfeeding diets. Urinary cortisol concentrations (82.8 ± 35.9 vs. 107.6 ± 46.9 nmol/24 h; P = 0.01) and morning-after hunger scores (Δ = 2.4 ± 2.0 cm; P = 0.01) were higher with HFCS overfeeding. The dietary carbohydrate source while overeating did not affect 24-hour EE, but HFCS overconsumption may predispose individuals to further overeating due to increased glucocorticoid release and increased hunger the following morning. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  18. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    Science.gov (United States)

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  19. Energy and Fructose From Beverages Sweetened With Sugar or High-Fructose Corn Syrup Pose a Health Risk for Some People 1 2

    OpenAIRE

    Bray, George A.

    2013-01-01

    Sugar intake in the United States has increased by >40 fold since the American Revolution. The health concerns that have been raised about the amounts of sugar that are in the current diet, primarily as beverages, are the subject of this review. Just less than 50% of the added sugars (sugar and high-fructose corn syrup) are found in soft drinks and fruit drinks. The intake of soft drinks has increased 5-fold between 1950 and 2000. Most meta-analyses have shown that the risk of obesity, diabet...

  20. High Fructose Corn Syrup, Mercury, and Autism--Is There a Link?

    Science.gov (United States)

    Opalinski, Heather A.

    2012-01-01

    The purpose of this article is to review relevant background literature and research regarding the evidence linking high fructose corn syrup (HFCS), mercury, and the increased incidence of autism among the population in the United States. Results of review suggest that rigorous scientific studies need to be performed to conclusively identify the…

  1. High fructose corn syrup use in beverages: Composition, manufacturing, properties, consumption, and health effects

    Science.gov (United States)

    High-fructose corn syrup (HFCS) has been used in beverages for more than 30 years. Technology to produce it was developed in the 1960s, it was introduced to the food and beverage industry as a liquid sweetener alternative to sucrose (sugar) in the 1970s, and it fully replaced sucrose in the USA in m...

  2. Are agrochemicals present in high fructose corn syrup fed to honey bees (Apis mellifera L.)?

    Science.gov (United States)

    Honey bee colonies are commonly fed high fructose corn syrup (HFCS) as a nectar substitute. Many agrochemicals are applied to corn during cultivation including systemic neonicotinoids. Whether agrochemicals are present in HFCS fed to bees is unknown. Samples from the major manufacturers and distri...

  3. Diet induced thermogenesis measured over 24h in a respiration chamber: effect of diet composition.

    NARCIS (Netherlands)

    Westerterp, K.R.; Wilson, S.A.; Rolland, V.

    1999-01-01

    Department of Human Biology, Maastricht University, The Netherlands. OBJECTIVE: To study the effect of diet composition on diet-induced thermogenesis (DIT) over 24h in a respiration chamber. SUBJECTS: Eight healthy female volunteers (age 27 +/- 3 y; body mass index, BMI 23 +/- 3 kg/m2). DIETS: A

  4. A Simple Diet- and Chemical-Induced Murine NASH Model with Rapid Progression of Steatohepatitis, Fibrosis and Liver Cancer.

    Science.gov (United States)

    Tsuchida, Takuma; Lee, Youngmin A; Fujiwara, Naoto; Ybanez, Maria; Allen, Brittany; Martins, Sebastiao; Fiel, M Isabel; Goossens, Nicolas; Chou, Hsin-I; Hoshida, Yujin; Friedman, Scott L

    2018-03-20

    Although the majority of patients with nonalcoholic fatty liver disease (NAFLD) have only steatosis without progression, a sizable fraction develop non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis and hepatocellular carcinoma (HCC). Many established diet-induced mouse models for NASH require 24-52 weeks, which makes testing for drug response costly and time consuming. We have sought to establish a murine NASH model with rapid progression of extensive fibrosis and HCC by using a western diet (WD), which is high-fat, high-fructose and high-cholesterol, combined with low dose weekly intraperitoneal carbon tetrachloride (CCl 4 ), which served as an accelerator. C57BL/6J mice were fed a normal chow diet (ND) ± CCl 4 or WD ± CCl 4 for 12 and 24 weeks. Addition of CCl 4 exacerbated histological features of NASH, fibrosis, and tumor development induced by WD, which resulted in stage 3 fibrosis at 12 weeks and HCC development at 24 weeks. Furthermore, whole liver transcriptomic analysis indicated that dysregulated molecular pathways in WD/CCl 4 mice and immunologic features were closely similar to those of human NASH. Our mouse NASH model exhibits rapid progression of advanced fibrosis and HCC, and mimics histological, immunological and transcriptomic features of human NASH, suggesting that it will be a useful experimental tool for preclinical drug testing. A carefully characterized model has been developed in mice that recapitulates the progressive stages of human fatty liver disease, from simple steatosis, to inflammation, fibrosis and cancer. The functional pathways of gene expression and immune abnormalities in this model closely resemble human disease. The ease and reproducibility of this model makes it ideal to study disease pathogenesis and test new treatments. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Biocatalytic strategies for the production of high fructose syrup from inulin.

    Science.gov (United States)

    Singh, R S; Chauhan, Kanika; Pandey, Ashok; Larroche, Christian

    2018-04-03

    The consumption of natural and low calorie sugars has increased enormously from the past few decades. To fulfil the demands, the production of healthy sweeteners as an alternative to sucrose has recently received considerable interest. Fructose is the most health beneficial and safest sugar amongst them. It is generally recognised as safe (GRAS) and has become an important food ingredient due its sweetening and various health promising functional properties. Commercially, high fructose syrup is prepared from starch by multienzymatic process. Single-step enzymatic hydrolysis of inulin using inulinase has emerged as an alternate to the conventional approach to reduce complexity, time and cost. The present review, outlines the enzymatic strategies used for the preparation of high fructose syrup from inulin/inulin-rich plant materials in batch and continuous systems, and its conclusions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Comparison of breath testing with fructose and high fructose corn syrups in health and IBS

    OpenAIRE

    Skoog, S. M.; Bharucha, A. E.; Zinsmeister, A. R.

    2008-01-01

    Although incomplete fructose absorption has been implicated to cause gastrointestinal symptoms, foods containing high fructose corn syrup (HFCS) contain glucose. Glucose increases fructose absorption in healthy subjects. Our hypothesis was that fructose intolerance is less prevalent after HFCS consumption compared to fructose alone in healthy subjects and irritable bowel syndrome (IBS). Breath hydrogen levels and gastrointestinal symptoms were assessed after 40 g of fructose (12% solution) pr...

  7. Preparation of 5-hydroxymethylfurfuraldehyde from high fructose corn syrup and other carbohydrates

    Energy Technology Data Exchange (ETDEWEB)

    Szmant, H H; Chundury, D D

    1981-01-01

    5-Hydroxymethylfurfuraldehyde (HMF) was prepared from high fructose corn syrup (HFCS), or crystalline D-fructose, in high yield and purity. A 95%-97% conversion of fructose to HMF was achieved using 25 mol% (based on fructose) boron trifluoride etherate catalyst in dimethyl sulphoxide, under a nitrogen atmosphere, a reaction temperature of 273 K, and 30 minutes reaction time. Inferior yields of HMF were obtained from glucose and starch.

  8. Diet-induced obesity attenuates fasting-induced hyperphagia.

    Science.gov (United States)

    Briggs, D I; Lemus, M B; Kua, E; Andrews, Z B

    2011-07-01

    Obesity impairs arcuate (ARC) neuropeptide Y (NPY)/agouti-releated peptide (AgRP) neuronal function and renders these homeostatic neurones unresponsive to the orexigenic hormone ghrelin. In the present study, we investigated the effect of diet-induced obesity (DIO) on feeding behaviour, ARC neuronal activation and mRNA expression following another orexigenic stimulus, an overnight fast. We show that 9 weeks of high-fat feeding attenuates fasting-induced hyperphagia by suppressing ARC neuronal activation and hypothalamic NPY/AgRP mRNA expression. Thus, the lack of appropriate feeding responses in DIO mice to a fast is caused by failure ARC neurones to recognise and/or respond to orexigenic cues. We propose that fasting-induced hyperphagia is regulated not by homeostatic control of appetite in DIO mice, but rather by changes in the reward circuitry. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.

  9. Circadian Rhythms in Diet-Induced Obesity.

    Science.gov (United States)

    Engin, Atilla

    2017-01-01

    The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in

  10. No differences in satiety or energy intake after high-fructose corn syrup, sucrose, or milk preloads.

    Science.gov (United States)

    Soenen, Stijn; Westerterp-Plantenga, Margriet S

    2007-12-01

    It is unclear whether energy-containing drinks, especially those sweetened with high-fructose corn syrup (HFCS), promote positive energy balance and thereby play a role in the development of obesity. The objective was to examine the satiating effects of HFCS and sucrose in comparison with milk and a diet drink. The effects of four 800-mL drinks [corrected] containing no energy or 1.5 MJ from sucrose, HFCS, or milk on satiety were assessed, first in 15 men and 15 women with a mean (+/-SD) body mass index (BMI; in kg/m(2)) of 22.1 +/- 1.9 according to visual analogue scales (VAS) and blood variables and second in 20 men and 20 women (BMI: 22.4 +/- 2.1) according to ingestion of a standardized ad libitum meal (granola cereal + yogurt, 10.1 kJ/g). Fifty minutes after consumption of the 1.5-MJ preload drinks containing sucrose, HFCS, or milk, 170%-mm VAS changes in satiety were observed. Glucagon-like peptide 1 (GLP-1) (P glucose, GLP-1, and ghrelin concentrations. Changes in appetite VAS ratings were a function of changes in GLP-1, ghrelin, insulin, and glucose concentrations. Energy balance consequences of HFCS-sweetened soft drinks are not different from those of other isoenergetic drinks, eg, a sucrose-drink or milk.

  11. Sucrose, high-fructose corn syrup, and fructose, their metabolism and potential health effects: what do we really know?

    Science.gov (United States)

    Rippe, James M; Angelopoulos, Theodore J

    2013-03-01

    Both controversy and confusion exist concerning fructose, sucrose, and high-fructose corn syrup (HFCS) with respect to their metabolism and health effects. These concerns have often been fueled by speculation based on limited data or animal studies. In retrospect, recent controversies arose when a scientific commentary was published suggesting a possible unique link between HFCS consumption and obesity. Since then, a broad scientific consensus has emerged that there are no metabolic or endocrine response differences between HFCS and sucrose related to obesity or any other adverse health outcome. This equivalence is not surprising given that both of these sugars contain approximately equal amounts of fructose and glucose, contain the same number of calories, possess the same level of sweetness, and are absorbed identically through the gastrointestinal tract. Research comparing pure fructose with pure glucose, although interesting from a scientific point of view, has limited application to human nutrition given that neither is consumed to an appreciable degree in isolation in the human diet. Whether there is a link between fructose, HFCS, or sucrose and increased risk of heart disease, metabolic syndrome, or fatty infiltration of the liver or muscle remains in dispute with different studies using different methodologies arriving at different conclusions. Further randomized clinical trials are needed to resolve many of these issues. The purpose of this review is to summarize current knowledge about the metabolism, endocrine responses, and potential health effects of sucrose, HFCS, and fructose.

  12. Sucrose, High-Fructose Corn Syrup, and Fructose, Their Metabolism and Potential Health Effects: What Do We Really Know?12

    Science.gov (United States)

    Rippe, James M.; Angelopoulos, Theodore J.

    2013-01-01

    Both controversy and confusion exist concerning fructose, sucrose, and high-fructose corn syrup (HFCS) with respect to their metabolism and health effects. These concerns have often been fueled by speculation based on limited data or animal studies. In retrospect, recent controversies arose when a scientific commentary was published suggesting a possible unique link between HFCS consumption and obesity. Since then, a broad scientific consensus has emerged that there are no metabolic or endocrine response differences between HFCS and sucrose related to obesity or any other adverse health outcome. This equivalence is not surprising given that both of these sugars contain approximately equal amounts of fructose and glucose, contain the same number of calories, possess the same level of sweetness, and are absorbed identically through the gastrointestinal tract. Research comparing pure fructose with pure glucose, although interesting from a scientific point of view, has limited application to human nutrition given that neither is consumed to an appreciable degree in isolation in the human diet. Whether there is a link between fructose, HFCS, or sucrose and increased risk of heart disease, metabolic syndrome, or fatty infiltration of the liver or muscle remains in dispute with different studies using different methodologies arriving at different conclusions. Further randomized clinical trials are needed to resolve many of these issues. The purpose of this review is to summarize current knowledge about the metabolism, endocrine responses, and potential health effects of sucrose, HFCS, and fructose. PMID:23493540

  13. The health implications of sucrose, high-fructose corn syrup, and fructose: what do we really know?

    Science.gov (United States)

    Rippe, James M

    2010-07-01

    The epidemic of obesity and related metabolic diseases continues to extract an enormous health toll. Multiple potential causes for obesity have been suggested, including increased fat consumption, increased carbohydrate consumption, decreased physical activity, and, most recently, increased fructose consumption. Most literature cited in support of arguments suggesting a link between obesity and fructose consumption is epidemiologic and does not establish cause and effect. The causes of obesity are well-known and involve the overconsumption of calories from all sources. Research employing a pure fructose model distorts the real-world situation of fructose consumption, which predominantly comes from sweeteners containing roughly equal proportions of glucose and fructose. The fructose hypothesis has the potential to distract us from further exploration and amelioration of known causes of obesity. Randomized prospective trials of metabolic consequences of fructose consumption at normal population levels and from sources typically found in the human diet such as sucrose and high-fructose corn syrup are urgently needed. 2010 Diabetes Technology Society.

  14. Diet-induced obesity attenuates endotoxin-induced cognitive deficits.

    Science.gov (United States)

    Setti, Sharay E; Littlefield, Alyssa M; Johnson, Samantha W; Kohman, Rachel A

    2015-03-15

    Activation of the immune system can impair cognitive function, particularly on hippocampus dependent tasks. Several factors such as normal aging and prenatal experiences can modify the severity of these cognitive deficits. One additional factor that may modulate the behavioral response to immune activation is obesity. Prior work has shown that obesity alters the activity of the immune system. Whether diet-induced obesity (DIO) influences the cognitive deficits associated with inflammation is currently unknown. The present study explored whether DIO alters the behavioral response to the bacterial endotoxin, lipopolysaccharide (LPS). Female C57BL/6J mice were fed a high-fat (60% fat) or control diet (10% fat) for a total of five months. After consuming their respective diets for four months, mice received an LPS or saline injection and were assessed for alterations in spatial learning. One month later, mice received a second injection of LPS or saline and tissue samples were collected to assess the inflammatory response within the periphery and central nervous system. Results showed that LPS administration impaired spatial learning in the control diet mice, but had no effect in DIO mice. This lack of a cognitive deficit in the DIO female mice is likely due to a blunted inflammatory response within the brain. While cytokine production within the periphery (i.e., plasma, adipose, and spleen) was similar between the DIO and control mice, the DIO mice failed to show an increase in IL-6 and CD74 in the brain following LPS administration. Collectively, these data indicate that DIO can reduce aspects of the neuroinflammatory response as well as blunt the behavioral reaction to an immune challenge. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Long-term characterization of the diet-induced obese and diet-resistant rat model

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel

    2010-01-01

    , namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization......, the results underscore the effectiveness of GLP-1 mimetics both as anti-diabetes and anti-obesity agents....

  16. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats.

    Science.gov (United States)

    Gun, Aburrahman; Ozer, Mehmet Kaya; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.

  17. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats

    Directory of Open Access Journals (Sweden)

    Aburrahman Gun

    2016-01-01

    Full Text Available Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS. HFCS (6 weeks, 30% fed with drinking water caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.

  18. Troxerutin attenuates diet-induced oxidative stress, impairment of mitochondrial biogenesis and respiratory chain complexes in mice heart.

    Science.gov (United States)

    Rajagopalan, Geetha; Chandrasekaran, Sathiya Priya; Carani Venkatraman, Anuradha

    2017-01-01

    Mitochondrial abnormality is thought to play a key role in cardiac disease originating from the metabolic syndrome (MS). We evaluated the effect of troxerutin (TX), a semi-synthetic derivative of the natural bioflavanoid rutin, on the respiratory chain complex activity, oxidative stress, mitochondrial biogenesis and dynamics in heart of high fat, high fructose diet (HFFD) -induced mouse model of MS. Adult male Mus musculus mice of body weight 25-30 g were fed either control diet or HFFD for 60 days. Mice from each dietary regimen were divided into two groups on the 16th day and were treated or untreated with TX (150 mg/kg body weight [bw], per oral) for the next 45 days. At the end of experimental period, respiratory chain complex activity, uncoupling proteins (UCP)-2 and -3, mtDNA content, mitochondrial biogenesis and dynamics, oxidative stress markers and reactive oxygen species (ROS) generation were analyzed. Reduced mtDNA abundance with alterations in the expression of genes related to mitochondrial biogenesis and fission and fusion processes were observed in HFFD-fed mice. Disorganized and smaller mitochondria, reduction in complexes I, III and IV activities (by about 55%) and protein levels of UCP-2 (52%) and UCP-3 (46%) were noted in these mice. TX administration suppressed oxidative stress, improved the oxidative capacity and biogenesis and restored fission/fusion imbalance in the cardiac mitochondria of HFFD-fed mice. TX protects the myocardium by modulating the putative molecules of mitochondrial biogenesis and dynamics and by its anti-oxidant function in a mouse model of MS. © 2016 John Wiley & Sons Australia, Ltd.

  19. Straight talk about high-fructose corn syrup: what it is and what it ain't.

    Science.gov (United States)

    White, John S

    2008-12-01

    High-fructose corn syrup (HFCS) is a fructose-glucose liquid sweetener alternative to sucrose (common table sugar) first introduced to the food and beverage industry in the 1970s. It is not meaningfully different in composition or metabolism from other fructose-glucose sweeteners like sucrose, honey, and fruit juice concentrates. HFCS was widely embraced by food formulators, and its use grew between the mid-1970s and mid-1990s, principally as a replacement for sucrose. This was primarily because of its sweetness comparable with that of sucrose, improved stability and functionality, and ease of use. Although HFCS use today is nearly equivalent to sucrose use in the United States, we live in a decidedly sucrose-sweetened world: >90% of the nutritive sweetener used worldwide is sucrose. Here I review the history, composition, availability, and characteristics of HFCS in a factual manner to clarify common misunderstandings that have been a source of confusion to health professionals and the general public alike. In particular, I evaluate the strength of the popular hypothesis that HFCS is uniquely responsible for obesity. Although examples of pure fructose causing metabolic upset at high concentrations abound, especially when fed as the sole carbohydrate source, there is no evidence that the common fructose-glucose sweeteners do the same. Thus, studies using extreme carbohydrate diets may be useful for probing biochemical pathways, but they have no relevance to the human diet or to current consumption. I conclude that the HFCS-obesity hypothesis is supported neither in the United States nor worldwide.

  20. Diet-Induced Ketosis Improves Cognitive Performance in Aged Rats

    Science.gov (United States)

    Xu, Kui; Sun, Xiaoyan; Eroku, Bernadette O.; Tsipis, Constantinos P.; Puchowicz, Michelle A.; LaManna, Joseph C.

    2010-01-01

    Aging is associated with increased susceptibility to hypoxic/ischemic insult and declines in behavioral function which may be due to attenuated adaptive/defense responses. We investigated if diet-induced ketosis would improve behavioral performance in the aged rats. Fischer 344 rats (3- and 22-month-old) were fed standard (STD) or ketogenic (KG) diet for 3 weeks and then exposed to hypobaric hypoxia. Cognitive function was measured using the T-maze and object recognition tests. Motor function was measured using the inclined-screen test. Results showed that KG diet significantly increased blood ketone levels in both young and old rats. In the aged rats, the KG diet improved cognitive performance under normoxic and hypoxic conditions; while motor performance remained unchanged. Capillary density and HIF-1α levels were elevated in the aged ketotic group independent of hypoxic challenge. These data suggest that diet-induced ketosis may be beneficial in the treatment of neurodegenerative conditions. PMID:20204773

  1. High-fructose corn syrup and sucrose have equivalent effects on energy-regulating hormones at normal human consumption levels.

    Science.gov (United States)

    Yu, Zhiping; Lowndes, Joshua; Rippe, James

    2013-12-01

    Intake of high-fructose corn syrup (HFCS) has been suggested to contribute to the increased prevalence of obesity, whereas a number of studies and organizations have reported metabolic equivalence between HFCS and sucrose. We hypothesized that HFCS and sucrose would have similar effects on energy-regulating hormones and metabolic substrates at normal levels of human consumption and that these values would not change over a 10-week, free-living period at these consumption levels. This was a randomized, prospective, double-blind, parallel group study in which 138 adult men and women consumed 10 weeks of low-fat milk sweetened with either HFCS or sucrose at levels of the 25th, 50th, and 90th percentile population consumption of fructose (the equivalent of 40, 90, or 150 g of sugar per day in a 2000-kcal diet). Before and after the 10-week intervention, 24-hour blood samples were collected. The area under the curve (AUC) for glucose, insulin, leptin, active ghrelin, triglyceride, and uric acid was measured. There were no group differences at baseline or posttesting for all outcomes (interaction, P > .05). The AUC response of glucose, active ghrelin, and uric acid did not change between baseline and posttesting (P > .05), whereas the AUC response of insulin (P < .05), leptin (P < .001), and triglyceride (P < .01) increased over the course of the intervention when the 6 groups were averaged. We conclude that there are no differences in the metabolic effects of HFCS and sucrose when compared at low, medium, and high levels of consumption. © 2013 Elsevier Inc. All rights reserved.

  2. Resveratrol protects rabbits against cholesterol diet- induced ...

    African Journals Online (AJOL)

    ... groups compared to HFD group only. In conclusion, the findings indicated that Resveratrol may contain polar products able to lower plasma lipid concentrations and might be beneficial in treatment of hyperlipidemia and atherosclerosis. Keywords: Cholesterol diet, Lipidaemia, Rabbit; Resveratrol, LDL-c, HDL-c, TC, TG ...

  3. Milk diets influence doxorubicin-induced intestinal toxicity in piglets

    DEFF Research Database (Denmark)

    Shen, R. L.; Pontoppidan, P. E.; Rathe, M.

    2016-01-01

    IL-8 levels compared with DOX-Form (all P diet. Thus a single dose of DOX induces intestinal toxicity in preweaned pigs...... and may lead to a systemic inflammatory response. The toxicity is affected by type of enteral nutrition with more pronounced GI toxicity when formula is fed compared with bovine colostrum. The results indicate that bovine colostrum may be a beneficial supplementary diet for children subjected...

  4. A Drosophila model of high sugar diet-induced cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Jianbo Na

    Full Text Available Diets high in carbohydrates have long been linked to progressive heart dysfunction, yet the mechanisms by which chronic high sugar leads to heart failure remain poorly understood. Here we combine diet, genetics, and physiology to establish an adult Drosophila melanogaster model of chronic high sugar-induced heart disease. We demonstrate deterioration of heart function accompanied by fibrosis-like collagen accumulation, insulin signaling defects, and fat accumulation. The result was a shorter life span that was more severe in the presence of reduced insulin and P38 signaling. We provide evidence of a role for hexosamine flux, a metabolic pathway accessed by glucose. Increased hexosamine flux led to heart function defects and structural damage; conversely, cardiac-specific reduction of pathway activity prevented sugar-induced heart dysfunction. Our data establish Drosophila as a useful system for exploring specific aspects of diet-induced heart dysfunction and emphasize enzymes within the hexosamine biosynthetic pathway as candidate therapeutic targets.

  5. Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people.

    Science.gov (United States)

    Bray, George A

    2013-03-01

    Sugar intake in the United States has increased by >40 fold since the American Revolution. The health concerns that have been raised about the amounts of sugar that are in the current diet, primarily as beverages, are the subject of this review. Just less than 50% of the added sugars (sugar and high-fructose corn syrup) are found in soft drinks and fruit drinks. The intake of soft drinks has increased 5-fold between 1950 and 2000. Most meta-analyses have shown that the risk of obesity, diabetes, cardiovascular disease, and metabolic syndrome are related to consumption of beverages sweetened with sugar or high-fructose corn syrup. Calorically sweetened beverage intake has also been related to the risk of nonalcoholic fatty liver disease, and, in men, gout. Calorically sweetened beverages contribute to obesity through their caloric load, and the intake of beverages does not produce a corresponding reduction in the intake of other food, suggesting that beverage calories are "add-on" calories. The increase in plasma triglyceride concentrations by sugar-sweetened beverages can be attributed to fructose rather than glucose in sugar. Several randomized trials of sugar-containing soft drinks versus low-calorie or calorie-free beverages show that either sugar, 50% of which is fructose, or fructose alone increases triglycerides, body weight, visceral adipose tissue, muscle fat, and liver fat. Fructose is metabolized primarily in the liver. When it is taken up by the liver, ATP decreases rapidly as the phosphate is transferred to fructose in a form that makes it easy to convert to lipid precursors. Fructose intake enhances lipogenesis and the production of uric acid. By worsening blood lipids, contributing to obesity, diabetes, fatty liver, and gout, fructose in the amounts currently consumed is hazardous to the health of some people.

  6. Cultivation and utilization of Jerusalem artichoke for ethanol, single cell protein, and high-fructose syrup production

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, P.K.; Bajpai, Pratima (Thapar Corporate Research and Development Center, Patiala (IN). Div. of Chemical and Biochemical Engineering)

    1991-04-01

    Jerusalem artichoke has one of the highest carbohydrate yields of the known agricultural crops and has many distinct advantages over traditional crops. This brief review presents data on the yield and composition of Jerusalem artichoke, techniques of carbohydrate extraction and its utilization for the production of ethanol, single cell protein (SCP), and high-fructose syrup, along with economic considerations. (author).

  7. Antiseizure effects of ketogenic diet on seizures induced with ...

    African Journals Online (AJOL)

    Antiseizure effects of ketogenic diet on seizures induced with pentylenetetrazole, 4-aminopyridine and strychnine in wistar rats. E.O. Sanya, A.O. Soladoye, O.O. Desalu, P.M. Kolo, L. A. Olatunji, J.K. Olarinoye ...

  8. Ginger-supplemented diet ameliorates ammonium nitrate-induced ...

    African Journals Online (AJOL)

    The present study was designed to evaluate the capacity of ginger to repair the oxidative stress induced by ammonium nitrate. 50 male rats were divided into 5 groups; they underwent an oral treatment of ammonium nitrate and/or ginger (N mg/kg body weight + G% in diet) during 30 days. Group I served as control (C); ...

  9. Impact of perinatal exposure to sucrose or high fructose corn syrup (HFCS-55) on adiposity and hepatic lipid composition in rat offspring.

    Science.gov (United States)

    Toop, Carla R; Muhlhausler, Beverly S; O'Dea, Kerin; Gentili, Sheridan

    2017-07-01

    Fructose-containing sugars, including sucrose and high fructose corn syrup (HFCS), have been implicated in the epidemics of obesity and type 2 diabetes. Few studies have evaluated the impact of perinatal exposure to these sugars on metabolic and physiological outcomes in the offspring. Using a rat model, offspring exposed to a maternal sucrose or HFCS diet during the prenatal and/or suckling periods were found to have altered adiposity and liver fat content and composition at weaning. Plasma levels of free fatty acids remained elevated in young adulthood, but consumption of a control diet following weaning appeared to ameliorate most other effects of perinatal exposure to a maternal high-sugar diet. Guidelines for maternal nutrition should advise limiting consumption of fructose-containing sugars, and it is particularly important that these recommendations include maternal nutrition during lactation. Perinatal exposure to excess maternal intake of added sugars, including fructose and sucrose, is associated with an increased risk of obesity and type 2 diabetes in adult life. However, it is unknown to what extent the type of sugar and the timing of exposure affect these outcomes. The aim of this study was to determine the impact of exposure to maternal consumption of a 10% (w/v) beverage containing sucrose or high fructose corn syrup-55 (HFCS-55) during the prenatal and/or suckling periods on offspring at 3 and 12 weeks, utilising a cross-fostering approach in a rodent model. Perinatal sucrose exposure decreased plasma glucose concentrations in offspring at 3 weeks, but did not alter glucose tolerance. Increased adiposity was observed in 3-week-old offspring exposed to sucrose or HFCS-55 during suckling, with increased hepatic fat content in HFCS-55-exposed offspring. In terms of specific fatty acids, hepatic monounsaturated (omega-7 and -9) fatty acid content was elevated at weaning, and was most pronounced in sucrose offspring exposed during both the prenatal and

  10. Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet.

    Science.gov (United States)

    Takeuchi, H; Matsuo, T; Tokuyama, K; Shimomura, Y; Suzuki, M

    1995-04-01

    The objectives of the present study were to examine the effects of dietary fats differing in fatty acid composition on diet-induced thermogenesis, sympathetic activity in brown adipose tissue and body fat accumulation in rats. Rats were meal-fed for 12 wk an isoenergetic diet based on lard, high oleic acid safflower oil, safflower oil or linseed oil, and norepinephrine turnover rates in brown adipose tissue were then estimated. Whole-body oxygen consumption after the meal indicated that diet-induced thermogenesis was significantly lower in rats fed the lard diet than in those fed the other diets. The norepinephrine turnover rate in the interscapular brown adipose tissue was also significantly lower in the lard diet group than in the other diet groups. The carcass fat content was significantly higher in the lard diet group than in the other diet groups, whereas the abdominal adipose tissue weights were the same in all diet groups. These results suggest that the intake of animal fats rich in saturated fatty acids, compared with the intake of vegetable oils rich in monounsaturated or polyunsaturated fatty acids, decreases diet-induced thermogenesis by a decline of sympathetic activity in brown adipose tissue, resulting in the promotion of body fat accumulation.

  11. Environmental stimulation rescues maternal high fructose intake-impaired learning and memory in female offspring: Its correlation with redistribution of histone deacetylase 4.

    Science.gov (United States)

    Wu, Kay L H; Wu, Chih-Wei; Tain, You-Lin; Huang, Li-Tung; Chao, Yung-Mei; Hung, Chun-Ying; Wu, Jin-Cheng; Chen, Siang-Ru; Tsai, Pei-Chia; Chan, Julie Y H

    2016-04-01

    Impairment of learning and memory has been documented in the later life of offspring to maternal consumption with high energy diet. Environmental stimulation enhances the ability of learning and memory. However, potential effects of environmental stimulation on the programming-associated deficit of learning and memory have not been addressed. Here, we examined the effects of enriched-housing on hippocampal learning and memory in adult female offspring rats from mother fed with 60% high fructose diet (HFD) during pregnancy and lactation. Impairment of spatial learning and memory performance in HFD group was observed in offspring at 3-month-old. Hippocampal brain-derived neurotrophic factor (BDNF) was decreased in the offspring. Moreover, the HFD group showed an up-regulation of histone deacetylase 4 (HDAC4) in the nuclear fractions of hippocampal neurons. Stimulation to the offspring for 4weeks after winning with an enriched-housing environment effectively rescued the decrease in cognitive function and hippocampal BDNF level; alongside a reversal of the increased distribution of nuclear HDAC4. Together these results suggest that later life environmental stimulation effectively rescues the impairment of hippocampal learning and memory in female offspring to maternal HFD intake through redistributing nuclear HDAC4 to increase BDNF expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The Effect of Normally Consumed Amounts of Sucrose or High Fructose Corn Syrup on Lipid Profiles, Body Composition and Related Parameters in Overweight/Obese Subjects

    Directory of Open Access Journals (Sweden)

    Joshua Lowndes

    2014-03-01

    Full Text Available The American Heart Association (AHA has advocated that women and men not consume more than 100 and 150 kcal/day, respectively, from added sugars. These levels are currently exceeded by over 90% of the adult population in the United States. Few data exist on longer-term metabolic effects when sucrose and High Fructose Corn Syrup (HFCS, the principal sources of added dietary sugars, are consumed at levels typical of the general population. Sixty five overweight and obese individuals were placed on a eucaloric (weight stable diet for 10-weeks, which incorporated sucrose- or HFCS-sweetened, low-fat milk at 10% or 20% of calories in a randomized, double-blinded study. All groups responded similarly (interaction p > 0.05. There was no change in body weight in any of the groups over the 10-week study, or in systolic or diastolic blood pressure. Likewise, there were no changes in total cholesterol, triglycerides, low-density lipoprotein (LDL, or apolipoprotein B (Apo B. We conclude that (1 when consumed as part of a eucaloric diet fructose—when given with glucose (as normally consumed does not promote weight gain or an atherogenic lipid profile even when consumed at two to four times the level recently recommended by the AHA. (2 There were no differences between HFCS and sucrose on these parameters.

  13. The effect of normally consumed amounts of sucrose or high fructose corn syrup on lipid profiles, body composition and related parameters in overweight/obese subjects.

    Science.gov (United States)

    Lowndes, Joshua; Sinnett, Stephanie; Pardo, Sabrina; Nguyen, Von T; Melanson, Kathleen J; Yu, Zhiping; Lowther, Britte E; Rippe, James M

    2014-03-17

    The American Heart Association (AHA) has advocated that women and men not consume more than 100 and 150 kcal/day, respectively, from added sugars. These levels are currently exceeded by over 90% of the adult population in the United States. Few data exist on longer-term metabolic effects when sucrose and High Fructose Corn Syrup (HFCS), the principal sources of added dietary sugars, are consumed at levels typical of the general population. Sixty five overweight and obese individuals were placed on a eucaloric (weight stable) diet for 10-weeks, which incorporated sucrose- or HFCS-sweetened, low-fat milk at 10% or 20% of calories in a randomized, double-blinded study. All groups responded similarly (interaction p > 0.05). There was no change in body weight in any of the groups over the 10-week study, or in systolic or diastolic blood pressure. Likewise, there were no changes in total cholesterol, triglycerides, low-density lipoprotein (LDL), or apolipoprotein B (Apo B). We conclude that (1) when consumed as part of a eucaloric diet fructose--when given with glucose (as normally consumed) does not promote weight gain or an atherogenic lipid profile even when consumed at two to four times the level recently recommended by the AHA. (2) There were no differences between HFCS and sucrose on these parameters.

  14. Comparison of breath testing with fructose and high fructose corn syrups in health and IBS.

    Science.gov (United States)

    Skoog, S M; Bharucha, A E; Zinsmeister, A R

    2008-05-01

    Although incomplete fructose absorption has been implicated to cause gastrointestinal symptoms, foods containing high fructose corn syrup (HFCS) contain glucose. Glucose increases fructose absorption in healthy subjects. Our hypothesis was that fructose intolerance is less prevalent after HFCS consumption compared to fructose alone in healthy subjects and irritable bowel syndrome (IBS). Breath hydrogen levels and gastrointestinal symptoms were assessed after 40 g of fructose (12% solution) prepared either in water or as HFCS, administered in double-blind randomized order on 2 days in 20 healthy subjects and 30 patients with IBS. Gastrointestinal symptoms were recorded on 100-mm Visual Analogue Scales. Breath hydrogen excretion was more frequently abnormal (P fructose (68%) than HFCS (26%) in controls and patients. Fructose intolerance (i.e. abnormal breath test and symptoms) was more prevalent after fructose than HFCS in healthy subjects (25% vs. 0%, P = 0.002) and patients (40% vs. 7%, P = 0.062). Scores for several symptoms (e.g. bloating r = 0.35) were correlated (P fructose but not HFCS; in the fructose group, this association did not differ between healthy subjects and patients. Symptoms were not significantly different after fructose compared to HFCS. Fructose intolerance is more prevalent with fructose alone than with HFCS in health and in IBS. The prevalence of fructose intolerance is not significantly different between health and IBS. Current methods for identifying fructose intolerance should be modified to more closely reproduce fructose ingestion in daily life.

  15. A critical examination of the evidence relating high fructose corn syrup and weight gain.

    Science.gov (United States)

    Forshee, Richard A; Storey, Maureen L; Allison, David B; Glinsmann, Walter H; Hein, Gayle L; Lineback, David R; Miller, Sanford A; Nicklas, Theresa A; Weaver, Gary A; White, John S

    2007-01-01

    The use of high fructose corn syrup (HFCS) has increased over the past several decades in the United States while overweight and obesity rates have risen dramatically. Some scientists hypothesize that HFCS consumption has uniquely contributed to the increasing mean body mass index (BMI) of the U.S. population. The Center for Food, Nutrition, and Agriculture Policy convened an expert panel to discuss the published scientific literature examining the relationship between consumption of HFCS or "soft drinks" (proxy for HFCS) and weight gain. The authors conducted original analysis to address certain gaps in the literature. Evidence from ecological studies linking HFCS consumption with rising BMI rates is unreliable. Evidence from epidemiologic studies and randomized controlled trials is inconclusive. Studies analyzing the differences between HFCS and sucrose consumption and their contributions to weight gain do not exist. HFCS and sucrose have similar monosaccharide compositions and sweetness values. The fructose:glucose (F:G) ratio in the U.S. food supply has not appreciably changed since the introduction of HFCS in the 1960s. It is unclear why HFCS would affect satiety or absorption and metabolism of fructose any differently than would sucrose. Based on the currently available evidence, the expert panel concluded that HFCS does not appear to contribute to overweight and obesity any differently than do other energy sources. Research recommendations were made to improve our understanding of the association of HFCS and weight gain.

  16. Rats' preferences for high fructose corn syrup vs. sucrose and sugar mixtures.

    Science.gov (United States)

    Ackroff, Karen; Sclafani, Anthony

    2011-03-28

    High fructose corn syrup (HFCS) has replaced sucrose in many food products, which has prompted research comparing these two sweeteners in rodents. The present study examined the relative palatability of HFCS and sucrose for rats, offering 11% carbohydrate solutions to match the content of common beverages for human consumption. The animals initially preferred HFCS to sucrose but after separate experience with each solution they switched to sucrose preference. Approximating the composition of HFCS with a mixture of fructose and glucose (55:45) yielded a solution that was less attractive than sucrose or HFCS. However, HFCS contains a small amount of glucose polymers, which are very attractive to rats. A 55:42:3 mixture of fructose, glucose and glucose polymers (Polycose) was equally preferred to HFCS and was treated similarly to HFCS in comparisons vs. sucrose. Post-oral effects of sucrose, which is 50% fructose and 50% glucose, may be responsible for the shift in preference with experience. This shift, and the relatively small magnitude of differences in preference for HFCS and sucrose, suggest that palatability factors probably do not contribute to any possible difference in weight gain responses to these sweeteners. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Sugar or high fructose corn syrup-what should nurses teach patients and families?

    Science.gov (United States)

    Sobel, Linda L; Dalby, Elizabeth

    2014-04-01

    There is lack of consensus in the lay literature to support consumption of table sugar as a preferred sweetener when compared to high fructose corn syrup (HFCS). The purpose of this study was to search the literature for evidence to determine the health effects of consumption of table sugar (sucrose) and HFCS on blood glucose, lipid levels, obesity, and appetite as well as to make recommendations for patient and family teaching of those at risk for developing negative health outcomes, including coronary heart disease. Nursing and health-related databases, including CINAHL, PubMed, Cochrane Central Registry of Controlled Trials, and Health and Wellness were searched for research articles, which were compared and evaluated for purpose, sample size, procedure, findings, and level of evidence. Five studies that met inclusion criteria were evaluated. No difference was found in changes in blood glucose levels, lipid levels, or appetite between table sugar consumption and HFCS consumption. When only fructose was consumed, lipid levels were significantly increased. The evidence suggests that fructose, found in both table sugar and HFCS, has a negative effect on health outcomes. Clinicians should teach patients and families that all sugar consumption should be closely monitored and kept below the 40 g/day recommended by the World Health Organization. © 2014 Sigma Theta Tau International.

  18. Immobilization of Recombinant Glucose Isomerase for Efficient Production of High Fructose Corn Syrup.

    Science.gov (United States)

    Jin, Li-Qun; Xu, Qi; Liu, Zhi-Qiang; Jia, Dong-Xu; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2017-09-01

    Glucose isomerase is the important enzyme for the production of high fructose corn syrup (HFCS). One-step production of HFCS containing more than 55% fructose (HFCS-55) is receiving much attention for its industrial applications. In this work, the Escherichia coli harboring glucose isomerase mutant TEGI-W139F/V186T was immobilized for efficient production of HFCS-55. The immobilization conditions were optimized, and the maximum enzyme activity recovery of 92% was obtained. The immobilized glucose isomerase showed higher pH, temperature, and operational stabilities with a K m value of 272 mM and maximum reaction rate of 23.8 mM min -1 . The fructose concentration still retained above 55% after the immobilized glucose isomerase was reused for 10 cycles, and more than 85% of its initial activity was reserved even after 15 recycles of usage at temperature of 90 °C. The results highlighted the immobilized glucose isomerase as a potential biocatalyst for HFCS-55 production.

  19. Does consumption of high-fructose corn syrup beverages cause obesity in children?

    Science.gov (United States)

    Morgan, R E

    2013-08-01

    The consumption of high-fructose corn syrup (HFCS) beverages has increased since the 1970s. At the same time, childhood obesity is on the rise, causing children to be at risk of heart disease, diabetes and other diseases. Healthcare providers have attributed childhood obesity to the consumption of HFCS in the form of beverages. This article will look at the available research and determine if there is scientific evidence underlying the idea that sweetened soft drinks, especially those containing HFCS, could cause or contribute to childhood obesity. A thorough literature search was performed using the ISI Web of Sciences, PubMed and Scopus databases within the years 2006-2012. The search generated 19 results. The articles were screened, and six were deemed eligible: four systematic reviews and two meta-analyses. Two systematic reviews found that there is no relationship between consumption of HFCS beverages and obesity in children. The other two systematic reviews found possible links between HFCS and childhood obesity. The meta-analysis articles found that consumption of HFCS beverages can contribute to childhood obesity, and limitation of sweetened beverages may help decrease obesity in children. Available research studies demonstrate inconclusive scientific evidence definitively linking HFCS to obesity in children. © 2013 The Author. Pediatric Obesity © 2013 International Association for the Study of Obesity.

  20. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation.

    Science.gov (United States)

    Mock, Kaitlin; Lateef, Sundus; Benedito, Vagner A; Tou, Janet C

    2017-01-01

    High-fructose corn syrup-55 (HFCS-55) has been suggested to be more lipogenic than sucrose, which increases the risk for nonalcoholic fatty liver disease (NAFLD) and dyslipidemia. The study objectives were to determine the effects of drinking different sugar-sweetened solutions on hepatic gene expression in relation to liver fatty acid composition and risk of NAFLD. Female rats were randomly assigned (n=7 rats/group) to drink water or water sweetened with 13% (w/v) HFCS-55, sucrose or fructose for 8 weeks. Rats drinking HFCS-55 solution had the highest (P=.03) hepatic total lipid and triglyceride content and histological evidence of fat infiltration. Rats drinking HFCS-55 solution had the highest hepatic de novo lipogenesis indicated by the up-regulation of stearoyl-CoA desaturase-1 and the highest (Ptriglyceride-rich lipoprotein from the liver was increased as shown by up-regulation of gene expression of microsomal triglyceride transfer protein in rats drinking sucrose, but not HFCS-55 solution. The observed lipogenic effects were attributed to the slightly higher fructose content of HFCS-55 solution in the absence of differences in macronutrient and total caloric intake between rats drinking HFCS-55 and sucrose solution. Results from gene expression and fatty acid composition analysis showed that, in a hypercaloric state, some types of sugars are more detrimental to the liver. Based on these preclinical study results, excess consumption of caloric sweetened beverage, particularly HFCS-sweetened beverages, should be limited. Published by Elsevier Inc.

  1. Maternal perinatal diet induces developmental programming of bone architecture.

    Science.gov (United States)

    Devlin, M J; Grasemann, C; Cloutier, A M; Louis, L; Alm, C; Palmert, M R; Bouxsein, M L

    2013-04-01

    Maternal high-fat (HF) diet can alter offspring metabolism via perinatal developmental programming. This study tests the hypothesis that maternal HF diet also induces perinatal programming of offspring bone mass and strength. We compared skeletal acquisition in pups from C57Bl/6J mice fed HF or normal diet from preconception through lactation. Three-week-old male and female pups from HF (HF-N) and normal mothers (N-N) were weaned onto normal diet. Outcomes at 14 and 26 weeks of age included body mass, body composition, whole-body bone mineral content (WBBMC) via peripheral dual-energy X-ray absorptiometry, femoral cortical and trabecular architecture via microcomputed tomography, and glucose tolerance. Female HF-N had normal body mass and glucose tolerance, with lower body fat (%) but higher serum leptin at 14 weeks vs. N-N (Pbone volume fraction was 20% higher at 14 weeks in female HF-N vs. N-N (Pbone area was 6% higher at 14 weeks vs. N-N (Pbone, supporting the hypothesis that maternal diet alters postnatal skeletal homeostasis.

  2. Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice.

    Science.gov (United States)

    Cho, Sungjoon; Tripathi, Ashutosh; Chlipala, George; Green, Stefan; Lee, Hyunwoo; Chang, Eugene B; Jeong, Hyunyoung

    2017-01-01

    Acetaminophen (APAP) is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp) 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet) on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v) fructose in water (or regular water) for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes) was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold) higher basal glutathione levels and (~2 fold) lower basal (mRNA and activity) levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.

  3. Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice.

    Directory of Open Access Journals (Sweden)

    Sungjoon Cho

    Full Text Available Acetaminophen (APAP is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v fructose in water (or regular water for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold higher basal glutathione levels and (~2 fold lower basal (mRNA and activity levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.

  4. Antibody-Directed Glucocorticoid Targeting to CD163 in M2-type Macrophages Attenuates Fructose-Induced Liver Inflammatory Changes

    DEFF Research Database (Denmark)

    Svendsen, Pia; Graversen, Jonas Heilskov; Etzerodt, Anders

    2017-01-01

    Increased consumption of high-caloric carbohydrates contributes substantially to endemic non-alcoholic fatty liver disease in humans, covering a histological spectrum from fatty liver to steatohepatitis. Hypercaloric intake and lipogenetic effects of fructose and endotoxin-driven activation...... changes in rats on a high-fructose diet. The diet induced severe non-alcoholic steatohepatitis (NASH)-like changes within a few weeks but the antibody-drug conjugate strongly reduced inflammation, hepatocyte ballooning, fibrosis, and glycogen deposition. Non-conjugated dexamethasone or dexamethasone...... seems to be a promising approach for safe treatment of fructose-induced liver inflammation....

  5. Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose.

    Science.gov (United States)

    Volynets, Valentina; Louis, Sandrine; Pretz, Dominik; Lang, Lisa; Ostaff, Maureen J; Wehkamp, Jan; Bischoff, Stephan C

    2017-05-01

    Background: The consumption of a Western-style diet (WSD) and high fructose intake are risk factors for metabolic diseases. The underlying mechanisms are largely unclear. Objective: To unravel the mechanisms by which a WSD and fructose promote metabolic disease, we investigated their effects on the gut microbiome and barrier function. Methods: Adult female C57BL/6J mice were fed a sugar- and fat-rich WSD or control diet (CD) for 12 wk and given access to tap water or fructose-supplemented water. The microbiota was analyzed with the use of 16S rRNA gene sequencing. Barrier function was studied with the use of permeability tests, and endotoxin, mucus thickness, and gene expressions were measured. Results: The WSD increased body weight gain but not endotoxin translocation compared with the CD. In contrast, high fructose intake increased endotoxin translocation 2.6- and 3.8-fold in the groups fed the CD + fructose and WSD + fructose, respectively, compared with the CD group. The WSD + fructose treatment also induced a loss of mucus thickness in the colon (-46%) and reduced defensin expression in the ileum and colon. The lactulose:mannitol ratio in the WSD + fructose mice was 1.8-fold higher than in the CD mice. Microbiota analysis revealed that fructose, but not the WSD, increased the Firmicutes:Bacteroidetes ratio by 88% for CD + fructose and 63% for WSD + fructose compared with the CD group. Bifidobacterium abundance was greater in the WSD mice than in the CD mice (63-fold) and in the WSD + fructose mice than in the CD + fructose mice (330-fold). Conclusions: The consumption of a WSD or high fructose intake differentially affects gut permeability and the microbiome. Whether these differences are related to the distinct clinical outcomes, whereby the WSD primarily promotes weight gain and high fructose intake causes barrier dysfunction, needs to be investigated in future studies. © 2017 American Society for Nutrition.

  6. Hypercaloric diet prevents sexual impairment induced by maternal food restriction.

    Science.gov (United States)

    Bernardi, M M; Macrini, D J; Teodorov, E; Bonamin, L V; Dalboni, L C; Coelho, C P; Chaves-Kirsten, G P; Florio, J C; Queiroz-Hazarbassanov, N; Bondan, E F; Kirsten, T B

    2017-05-01

    Prenatal undernutrition impairs copulatory behavior and increases the tendency to become obese/overweight, which also reduces sexual behavior. Re-feeding rats prenatally undernourished with a normocaloric diet can restore their physiological conditions and copulatory behavior. Thus, the present study investigated whether a hypercaloric diet that is administered in rats during the juvenile period prevents sexual impairments that are caused by maternal food restriction and the tendency to become overweight/obese. Female rats were prenatally fed a 40% restricted diet from gestational day 2 to 18. The pups received a hypercaloric diet from postnatal day (PND) 23 to PND65 (food restricted hypercaloric [FRH] group) or laboratory chow (food restricted control [FRC] group). Pups from non-food-restricted dams received laboratory chow during the entire experiment (non-food-restricted [NFR] group). During the juvenile period and adulthood, body weight gain was evaluated weekly. The day of balanopreputial separation, sexual behavior, sexual organ weight, hypodermal adiposity, striatal dopamine and serotonin, serum testosterone, and tumor necrosis factor α (TNF-α) were evaluated. The FRH group exhibited an increase in body weight on PND58 and PND65. The FRC group exhibited an increase in the latency to the first mount and intromission and an increase in serum TNF-α levels but a reduction of dopaminergic activity. The hypercaloric diet reversed all of these effects but increased adiposity. We concluded that the hypercaloric diet administered during the juvenile period attenuated reproductive impairments that were induced by maternal food restriction through increases in the energy expenditure but not the tendency to become overweight/obese. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    Science.gov (United States)

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways. © 2016 Society for Endocrinology.

  8. High-Fructose Corn Syrup: Is this what’s for dinner?

    Science.gov (United States)

    Duffey, Kiyah J.; Popkin, Barry M.

    2009-01-01

    Background Research on trends in consumption of added sugar and high fructose corn syrup (HFCS) in the U.S. has largely focused on calorically-sweetened beverages, ignoring other sources. Objective To examine U.S. consumption of added sugar and HFCS to determine long-term trends in availability and intake from beverages and foods. Design We used two estimation techniques and data from the Nationwide Food Consumption Surveys (1965 and 1977), Continuing Survey of Food Intake in Individuals (1989–1991) and the National Health and Nutrition Examination Surveys (1999–2000, 2001–2002 and 2003–2004) to examine trends in HFCS and added sugar, including: (a) overall trends, and (b) within certain food and beverage groups. Results Availability and consumption of HFCS and added sugar increased over time until a slight decline between 2000 and 2004. By 2004, HFCS provided roughly 8% of total energy intake compared to total added sugar of 377 kcal/person/d, accounting for 17% of total energy intake. While food and beverage trends were similar, soft drinks and fruit drinks provided the most HFCS (158 and 40 kcal/person/d in 2004, respectively). Moreover, among the top 20% of individuals, 896 kcal/person/d of added sugar was consumed compared to 505 kcal/person/d of HFCS. Among consumers, sweetened tea and desserts also represented major contributors of calories from added sugar (over 100 kcal/person/d). Conclusion While increased intake of calories from HFCS is important to examine, the health affect of overall trends in added caloric sweeteners should not be overlooked. PMID:19064537

  9. Fructose content in popular beverages made with and without high-fructose corn syrup.

    Science.gov (United States)

    Walker, Ryan W; Dumke, Kelly A; Goran, Michael I

    2014-01-01

    Excess fructose consumption is hypothesized to be associated with risk for metabolic disease. Actual fructose consumption levels are difficult to estimate because of the unlabeled quantity of fructose in beverages. The aims of this study were threefold: 1) re-examine the fructose content in previously tested beverages using two additional assay methods capable of detecting other sugars, especially maltose, 2) compare data across all methods to determine the actual free fructose-to-glucose ratio in beverages made either with or without high-fructose corn syrup (HFCS), and 3) expand the analysis to determine fructose content in commonly consumed juice products. Sugar-sweetened beverages (SSBs) and fruit juice drinks that were either made with or without HFCS were analyzed in separate, independent laboratories via three different methods to determine sugar profiles. For SSBs, the three independent laboratory methods showed consistent and reproducible results. In SSBs made with HFCS, fructose constituted 60.6% ± 2.7% of sugar content. In juices sweetened with HFCS, fructose accounted for 52.1% ± 5.9% of sugar content, although in some juices made from 100% fruit, fructose concentration reached 65.35 g/L accounting for 67% of sugars. Our results provide evidence of higher than expected amounts of free fructose in some beverages. Popular beverages made with HFCS have a fructose-to-glucose ratio of approximately 60:40, and thus contain 50% more fructose than glucose. Some pure fruit juices have twice as much fructose as glucose. These findings suggest that beverages made with HFCS and some juices have a sugar profile very different than sucrose, in which amounts of fructose and glucose are equivalent. Current dietary analyses may underestimate actual fructose consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Temporal metabolomic responses of cultured HepG2 liver cells to high fructose and high glucose exposures.

    Science.gov (United States)

    Meissen, John K; Hirahatake, Kristin M; Adams, Sean H; Fiehn, Oliver

    2015-06-01

    High fructose consumption has been implicated with deleterious effects on human health, including hyperlipidemia elicited through de novo lipogenesis. However, more global effects of fructose on cellular metabolism have not been elucidated. In order to explore the metabolic impact of fructose-containing nutrients, we applied both GC-TOF and HILIC-QTOF mass spectrometry metabolomic strategies using extracts from cultured HepG2 cells exposed to fructose, glucose, or fructose + glucose. Cellular responses were analyzed in a time-dependent manner, incubated in media containing 5.5 mM glucose + 5.0 mM fructose in comparison to controls incubated in media containing either 5.5 mM glucose or 10.5 mM glucose. Mass spectrometry identified 156 unique known metabolites and a large number of unknown compounds, which revealed metabolite changes due to both utilization of fructose and high-carbohydrate loads independent of hexose structure. Fructose was shown to be partially converted to sorbitol, and generated higher levels of fructose-1-phosphate as a precursor for glycolytic intermediates. Differentially regulated ratios of 3-phosphoglycerate to serine pathway intermediates in high fructose media indicated a diversion of carbon backbones away from energy metabolism. Additionally, high fructose conditions changed levels of complex lipids toward phosphatidylethanolamines. Patterns of acylcarnitines in response to high hexose exposure (10.5 mM glucose or glucose/fructose combination) suggested a reduction in mitochondrial beta-oxidation.

  11. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis.

    Science.gov (United States)

    Chung, Mei; Ma, Jiantao; Patel, Kamal; Berger, Samantha; Lau, Joseph; Lichtenstein, Alice H

    2014-09-01

    Concerns have been raised about the concurrent temporal trend between simple sugar intakes, especially of fructose or high-fructose corn syrup (HFCS), and rates of nonalcoholic fatty liver disease (NAFLD) in the United States. We examined the effect of different amounts and forms of dietary fructose on the incidence or prevalence of NAFLD and indexes of liver health in humans. We conducted a systematic review of English-language, human studies of any design in children and adults with low to no alcohol intake and that reported at least one predetermined measure of liver health. The strength of the evidence was evaluated by considering risk of bias, consistency, directness, and precision. Six observational studies and 21 intervention studies met the inclusion criteria. The overall strength of evidence for observational studies was rated insufficient because of high risk of biases and inconsistent study findings. Of 21 intervention studies, 19 studies were in adults without NAFLD (predominantly healthy, young men) and 1 study each in adults or children with NAFLD. We found a low level of evidence that a hypercaloric fructose diet (supplemented by pure fructose) increases liver fat and aspartate aminotransferase (AST) concentrations in healthy men compared with the consumption of a weight-maintenance diet. In addition, there was a low level of evidence that hypercaloric fructose and glucose diets have similar effects on liver fat and liver enzymes in healthy adults. There was insufficient evidence to draw a conclusion for effects of HFCS or sucrose on NAFLD. On the basis of indirect comparisons across study findings, the apparent association between indexes of liver health (ie, liver fat, hepatic de novo lipogenesis, alanine aminotransferase, AST, and γ-glutamyl transpeptase) and fructose or sucrose intake appear to be confounded by excessive energy intake. Overall, the available evidence is not sufficiently robust to draw conclusions regarding effects of fructose

  12. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis1234

    Science.gov (United States)

    Chung, Mei; Ma, Jiantao; Patel, Kamal; Berger, Samantha; Lau, Joseph; Lichtenstein, Alice H

    2014-01-01

    Background: Concerns have been raised about the concurrent temporal trend between simple sugar intakes, especially of fructose or high-fructose corn syrup (HFCS), and rates of nonalcoholic fatty liver disease (NAFLD) in the United States. Objective: We examined the effect of different amounts and forms of dietary fructose on the incidence or prevalence of NAFLD and indexes of liver health in humans. Design: We conducted a systematic review of English-language, human studies of any design in children and adults with low to no alcohol intake and that reported at least one predetermined measure of liver health. The strength of the evidence was evaluated by considering risk of bias, consistency, directness, and precision. Results: Six observational studies and 21 intervention studies met the inclusion criteria. The overall strength of evidence for observational studies was rated insufficient because of high risk of biases and inconsistent study findings. Of 21 intervention studies, 19 studies were in adults without NAFLD (predominantly healthy, young men) and 1 study each in adults or children with NAFLD. We found a low level of evidence that a hypercaloric fructose diet (supplemented by pure fructose) increases liver fat and aspartate aminotransferase (AST) concentrations in healthy men compared with the consumption of a weight-maintenance diet. In addition, there was a low level of evidence that hypercaloric fructose and glucose diets have similar effects on liver fat and liver enzymes in healthy adults. There was insufficient evidence to draw a conclusion for effects of HFCS or sucrose on NAFLD. Conclusions: On the basis of indirect comparisons across study findings, the apparent association between indexes of liver health (ie, liver fat, hepatic de novo lipogenesis, alanine aminotransferase, AST, and γ-glutamyl transpeptase) and fructose or sucrose intake appear to be confounded by excessive energy intake. Overall, the available evidence is not sufficiently robust

  13. Arterial stiffening precedes systolic hypertension in diet-induced obesity.

    Science.gov (United States)

    Weisbrod, Robert M; Shiang, Tina; Al Sayah, Leona; Fry, Jessica L; Bajpai, Saumendra; Reinhart-King, Cynthia A; Lob, Heinrich E; Santhanam, Lakshmi; Mitchell, Gary; Cohen, Richard A; Seta, Francesca

    2013-12-01

    Stiffening of conduit arteries is a risk factor for cardiovascular morbidity. Aortic wall stiffening increases pulsatile hemodynamic forces that are detrimental to the microcirculation in highly perfused organs, such as the heart, brain, and kidney. Arterial stiffness is associated with hypertension but presumed to be due to an adaptive response to increased hemodynamic load. In contrast, a recent clinical study found that stiffness precedes and may contribute to the development of hypertension although the mechanisms underlying hypertension are unknown. Here, we report that in a diet-induced model of obesity, arterial stiffness, measured in vivo, develops within 1 month of the initiation of the diet and precedes the development of hypertension by 5 months. Diet-induced obese mice recapitulate the metabolic syndrome and are characterized by inflammation in visceral fat and aorta. Normalization of the metabolic state by weight loss resulted in return of arterial stiffness and blood pressure to normal. Our findings support the hypothesis that arterial stiffness is a cause rather than a consequence of hypertension.

  14. A ketogenic diet reduces metabolic syndrome-induced allodynia and promotes peripheral nerve growth in mice.

    Science.gov (United States)

    Cooper, Michael A; Menta, Blaise W; Perez-Sanchez, Consuelo; Jack, Megan M; Khan, Zair W; Ryals, Janelle M; Winter, Michelle; Wright, Douglas E

    2018-08-01

    Current experiments investigated whether a ketogenic diet impacts neuropathy associated with obesity and prediabetes. Mice challenged with a ketogenic diet were compared to mice fed a high-fat diet or a high-fat diet plus exercise. Additionally, an intervention switching to a ketogenic diet following 8 weeks of high-fat diet was performed to compare how a control diet, exercise, or a ketogenic diet affects metabolic syndrome-induced neural complications. When challenged with a ketogenic diet, mice had reduced bodyweight and fat mass compared to high-fat-fed mice, and were similar to exercised, high-fat-fed mice. High-fat-fed, exercised and ketogenic-fed mice had mildly elevated blood glucose; conversely, ketogenic diet-fed mice were unique in having reduced serum insulin levels. Ketogenic diet-fed mice never developed mechanical allodynia contrary to mice fed a high-fat diet. Ketogenic diet fed mice also had increased epidermal axon density compared all other groups. When a ketogenic diet was used as an intervention, a ketogenic diet was unable to reverse high-fat fed-induced metabolic changes but was able to significantly reverse a high-fat diet-induced mechanical allodynia. As an intervention, a ketogenic diet also increased epidermal axon density. In vitro studies revealed increased neurite outgrowth in sensory neurons from mice fed a ketogenic diet and in neurons from normal diet-fed mice given ketone bodies in the culture medium. These results suggest a ketogenic diet can prevent certain complications of prediabetes and provides significant benefits to peripheral axons and sensory dysfunction. Published by Elsevier Inc.

  15. Weight classification does not influence the short-term endocrine or metabolic effects of high-fructose corn syrup-sweetened beverages.

    Science.gov (United States)

    Heden, Timothy D; Liu, Ying; Kearney, Monica L; Kanaley, Jill A

    2014-05-01

    Obesity and high-fructose corn syrup (HFCS)-sweetened beverages are associated with an increased risk of chronic disease, but it is not clear whether obese (Ob) individuals are more susceptible to the detrimental effects of HFCS-sweetened beverages. The purpose of this study was to examine the endocrine and metabolic effects of consuming HFCS-sweetened beverages, and whether weight classification (normal weight (NW) vs. Ob) influences these effects. Ten NW and 10 Ob men and women who habitually consumed ≤355 mL per day of sugar-sweetened beverages were included in this study. Initially, the participants underwent a 4-h mixed-meal test after a 12-h overnight fast to assess insulin sensitivity, pancreatic and gut endocrine responses, insulin secretion and clearance, and glucose, triacylglycerol, and cholesterol responses. Next, the participants consumed their normal diet ad libitum, with 1065 mL per day (117 g·day(-1)) of HFCS-sweetened beverages added for 2 weeks. After the intervention, the participants repeated the mixed-meal test. HFCS-sweetened beverages did not significantly alter body weight, insulin sensitivity, insulin secretion or clearance, or endocrine, glucose, lipid, or cholesterol responses in either NW or Ob individuals. Regardless of previous diet, Ob individuals, compared with NW individuals, had ∼28% lower physical activity levels, 6%-9% lower insulin sensitivity, 12%-16% lower fasting high-density-lipoprotein cholesterol concentrations, 84%-144% greater postprandial triacylglycerol concentrations, and 46%-79% greater postprandial insulin concentrations. Greater insulin responses were associated with reduced insulin clearance, and there were no differences in insulin secretion. These findings suggest that weight classification does not influence the short-term endocrine and metabolic effects of HFCS-sweetened beverages.

  16. Effects of Depilation-Induced Skin Pigmentation and Diet-Induced Fluorescence on In Vivo Fluorescence Imaging

    OpenAIRE

    Kwon, Sunkuk; Sevick-Muraca, Eva M.

    2017-01-01

    Near-infrared fluorescence imaging (NIRFI) and far-red fluorescence imaging (FRFI) were used to investigate effects of depilation-induced skin pigmentation and diet-induced background fluorescence on fluorescent signal amplitude and lymphatic contraction frequency in C57BL6 mice. Far-red fluorescent signal amplitude, but not frequency, was affected by diet-induced fluorescence, which was removed by feeding the mice an alfalfa-free diet, and skin pigmentation further impacted the amplitude mea...

  17. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects.

    Science.gov (United States)

    Le, Myphuong T; Frye, Reginald F; Rivard, Christopher J; Cheng, Jing; McFann, Kim K; Segal, Mark S; Johnson, Richard J; Johnson, Julie A

    2012-05-01

    It is unclear whether high-fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared with sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- vs sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hours. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Fructose area under the curve and maximum concentration, dose-normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared with sucrose-sweetened beverages. Compared with sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Effects of high fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects

    Science.gov (United States)

    Le, MyPhuong T.; Frye, Reginald F.; Rivard, Christopher J.; Cheng, Jing; McFann, Kim K.; Segal, Mark S.; Johnson, Richard J.; Johnson, Julie A.

    2011-01-01

    Objective It is unclear whether high fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared to sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- versus sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Materials/Methods Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hr. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Results Fructose area under the curve and maximum concentration, dose normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared to sucrose-sweetened beverages. Conclusions Compared to sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. PMID:22152650

  19. Intake of high-fructose corn syrup sweetened soft drinks, fruit drinks and apple juice is associated with prevalent arthritis in US adults, aged 20-30 years.

    Science.gov (United States)

    DeChristopher, L R; Uribarri, J; Tucker, K L

    2016-03-07

    There is a link between joint and gut inflammation of unknown etiology in arthritis. Existing research indicates that regular consumption of high-fructose corn syrup sweetened (HFCS) soft drinks, but not diet soft drinks, may be associated with increased risk of seropositive rheumatoid arthritis (RA) in women, independent of other dietary and lifestyle factors. One unexplored hypothesis for this association is that fructose malabsorption, due to regular consumption of excess free fructose (EFF) and HFCS, contributes to fructose reactivity in the gastrointestinal tract and intestinal in situ formation of enFruAGEs, which once absorbed, travel beyond the intestinal boundaries to other tissues and promote inflammation. In separate studies, the accumulation of advanced glycation end-products has been associated with joint inflammation in RA. Objective of this study was to assess the association between EFF beverages intake and non-age, non-wear and tear-associated arthritis in US young adults. In this cross sectional study of 1209 adults aged 20-30y, (Nutrition and Health Examination Surveys 2003-2006) exposure variables were high EFF beverages, including HFCS sweetened soft drinks, and any combination of HFCS sweetened soft drinks, fruit drinks (FD) and apple juice, referred to as tEFF. Analyses of diet soda and diet FD were included for comparison. The outcome was self-reported arthritis. Rao Scott Ҳ(2) was used for prevalence differences and logistic regression for associations, adjusted for confounders. Young adults consuming any combination of high EFF beverages (tEFF) ⩾5 times/week (but not diet soda) were three times as likely to have arthritis as non/low consumers (odds ratios=3.01; p⩽0.021; 95% confidence intervals=1.20-7.59), independent of all covariates, including physical activity, other dietary factors, blood glucose and smoking. EFF beverage intake is significantly associated with arthritis in US adults aged 20-30 years, possibly due to the

  20. Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity.

    Science.gov (United States)

    Drager, Luciano F; Li, Jianguo; Reinke, Christian; Bevans-Fonti, Shannon; Jun, Jonathan C; Polotsky, Vsevolod Y

    2011-11-01

    Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6-8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P obesity.

  1. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Directory of Open Access Journals (Sweden)

    Hitoshi Watanabe

    Full Text Available There are two independent serotonin (5-HT systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  2. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Science.gov (United States)

    Watanabe, Hitoshi; Nakano, Tatsuya; Saito, Ryo; Akasaka, Daisuke; Saito, Kazuki; Ogasawara, Hideki; Minashima, Takeshi; Miyazawa, Kohtaro; Kanaya, Takashi; Takakura, Ikuro; Inoue, Nao; Ikeda, Ikuo; Chen, Xiangning; Miyake, Masato; Kitazawa, Haruki; Shirakawa, Hitoshi; Sato, Kan; Tahara, Kohji; Nagasawa, Yuya; Rose, Michael T; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi

    2016-01-01

    There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  3. ABCB4 mediates diet-induced hypercholesterolemia in laboratory opossums.

    Science.gov (United States)

    Chan, Jeannie; Mahaney, Michael C; Kushwaha, Rampratap S; VandeBerg, Jane F; VandeBerg, John L

    2010-10-01

    High-responding opossums are susceptible to developing hypercholesterolemia on a high-cholesterol diet, but low-responding opossums are resistant. The observation of low biliary cholesterol and low biliary phospholipids in high responders suggested that the ABCB4 gene affects response to dietary cholesterol. Two missense mutations (Arg29Gly and Ile235Leu) were found in the ABCB4 gene of high responders. High responders (ATHH strain) were bred with low responders (ATHE or ATHL strain) to produce F1 and F2 progeny in two different genetic crosses (KUSH6 and JCX) to determine the effect of ABCB4 allelic variants on plasma cholesterol concentrations after a dietary challenge. Pedigree-based genetic association analyses consistently implicated a variant in ABCB4 or a closely linked locus as a major, but not the sole, genetic contributor to variation in the plasma cholesterol response to dietary cholesterol. High responders, but not low responders, developed liver injury as indicated by elevated plasma biomarkers of liver function, probably reflecting damage to the canalicular membrane by bile salts because of impaired phospholipid secretion. Our results implicate ABCB4 as a major determinant of diet-induced hypercholesterolemia in high-responding opossums and suggest that other genes interact with ABCB4 to regulate lipemic response to dietary cholesterol.

  4. Addiction-like Synaptic Impairments in Diet-Induced Obesity.

    Science.gov (United States)

    Brown, Robyn Mary; Kupchik, Yonatan Michael; Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2017-05-01

    There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core considered hallmarks of addiction. Sprague Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO-prone and DIO-resistant subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed ratio 1, 3, and 5 and progressive ratio schedules. Subsequently, nucleus accumbens brain slices were prepared, and we tested for changes in the ratio between α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate currents and the ability to exhibit long-term depression. We found that propensity to develop DIO is linked to deficits in the ability to induce long-term depression in the nucleus accumbens, as well as increased potentiation at these synapses as measured by AMPA/N-methyl-D-aspartate currents. Consistent with these impairments, we observed addictive-like behavior in DIO-prone rats, including 1) heightened motivation for palatable food; 2) excessive intake; and 3) increased food seeking when food was unavailable. Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  5. Addiction-like synaptic impairments in diet-induced obesity

    Science.gov (United States)

    Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2016-01-01

    Background There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature, and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core (NAcore) considered hallmarks of addiction. Methods Sprague-Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO prone (OP) and resistant (OR) subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed (FR1, 3 and 5) and progressive ratio (PR) schedules. Subsequently, NAcore brain slices were prepared and we tested for changes in the ratio between AMPA and NMDA currents (AMPA/NMDA) and the ability to exhibit long-term depression (LTD). Results We found that propensity to develop DIO is linked to deficits in the ability to induce LTD in the NAcore, as well as increased potentiation at these synapses as measured by AMPA/NMDA currents. Consistent with these impairments, we observed addictive-like behavior in OP rats, including i) heightened motivation for palatable food (ii) excessive intake and (iii) increased food-seeking when food was unavailable. Conclusions Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. PMID:26826876

  6. Diet-induced obesity: dopamine transporter function, impulsivity and motivation.

    Science.gov (United States)

    Narayanaswami, V; Thompson, A C; Cassis, L A; Bardo, M T; Dwoskin, L P

    2013-08-01

    A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. Striatal D2-receptor density was determined by in vitro kinetic analysis of [(3)H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [(3)H]dopamine uptake, methamphetamine-evoked [(3)H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [(3)H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The current animal model shows that

  7. Effects of high-fructose corn syrup and sucrose consumption on circulating glucose, insulin, leptin, and ghrelin and on appetite in normal-weight women.

    Science.gov (United States)

    Melanson, Kathleen J; Zukley, Linda; Lowndes, Joshua; Nguyen, Von; Angelopoulos, Theodore J; Rippe, James M

    2007-02-01

    Fructose has been implicated in obesity, partly due to lack of insulin-mediated leptin stimulation and ghrelin suppression. Most work has examined effects of pure fructose, rather than high-fructose corn syrup (HFCS), the most commonly consumed form of fructose. This study examined effects of beverages sweetened with HFCS or sucrose (Suc), when consumed with mixed meals, on blood glucose, insulin, leptin, ghrelin, and appetite. Thirty lean women were studied on two randomized 2-d visits during which HFCS- and Suc-sweetened beverages were consumed as 30% of energy on isocaloric diets during day 1 while blood was sampled. On day 2, food was eaten ad libitum. Subjects rated appetite at designated times throughout visits. No significant differences between the two sweeteners were seen in fasting plasma glucose, insulin, leptin, and ghrelin (P > 0.05). The within-day variation in all four items was not different between the two visits (P > 0.05). Net areas under the curve were similar for glucose, insulin, and leptin (P > 0.05). There were no differences in energy or macronutrient intake on day 2. The only appetite variable that differed between sweeteners was desire to eat, which had a higher area under the curve the day after Suc compared with HFCS. These short-term results suggest that, when fructose is consumed in the form of HFCS, the measured metabolic responses do not differ from Suc in lean women. Further research is required to examine appetite responses and to determine if these findings hold true for obese individuals, males, or longer periods.

  8. Effect of Substitution of Sugar by High Fructose Corn Syrup on the Physicochemical Properties of Bakery and Dairy Products: A Review

    Directory of Open Access Journals (Sweden)

    Azizollaah Zargaraan

    2016-10-01

    Full Text Available High fructose corn syrup (HFCS is commonly found in soft drinks and juice beverages, as well as in many pre-packaged foods such as breakfast cereals, baked goods and dairy desserts. Historically, sucrose (table sugar was primarily added to processed foods and beverages as the sweetening agent. In recent years, the use of HFCS has significantly increased in popularity due to its sweetness, ability to enhance flavor and shelf life, and its low cost. HFCF made by enzymatic isomerization of glucose to fructose was introduced as HFCS-42 (42% fructose and HFCS-55 (55% fructose and opened a new frontier for the sweetener and soft drink industries. Using a glucose isomerase, the starch in corn can be efficiently converted into glucose and then to various amounts of fructose. Hydrolysis of sucrose produces a 50:50 molar mixture of fructose and glucose. The primary difference is that these monosaccharides exist free in solution in HFCS, but in sucrose bonded together. The disaccharide sucrose is easily cleaved in the small intestine, so free fructose and glucose are absorbed from both sucrose and HFCS. The advantage to food manufacturers is that the free monosaccharide in HFCS provides better flavor enhancement, stability, freshness, texture, color, pourability, and consistency in foods in comparison to sucrose. The development of these inexpensive, sweet corn-based syrups made it profitable to replace sucrose (sugar and simple sugars with HFCS in our diet. In the present study, the replacement of sucrose with HFCS and its effect on the functionality and organoleptic properties of different food products were reviewed.

  9. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women.

    Science.gov (United States)

    Stanhope, Kimber L; Bremer, Andrew A; Medici, Valentina; Nakajima, Katsuyuki; Ito, Yasuki; Nakano, Takamitsu; Chen, Guoxia; Fong, Tak Hou; Lee, Vivien; Menorca, Roseanne I; Keim, Nancy L; Havel, Peter J

    2011-10-01

    The American Heart Association Nutrition Committee recommends women and men consume no more than 100 and 150 kcal of added sugar per day, respectively, whereas the Dietary Guidelines for Americans, 2010, suggests a maximal added sugar intake of 25% or less of total energy. To address this discrepancy, we compared the effects of consuming glucose, fructose, or high-fructose corn syrup (HFCS) at 25% of energy requirements (E) on risk factors for cardiovascular disease. PARTICIPANTS, DESIGN AND SETTING, AND INTERVENTION: Forty-eight adults (aged 18-40 yr; body mass index 18-35 kg/m(2)) resided at the Clinical Research Center for 3.5 d of baseline testing while consuming energy-balanced diets containing 55% E complex carbohydrate. For 12 outpatient days, they consumed usual ad libitum diets along with three servings per day of glucose, fructose, or HFCS-sweetened beverages (n = 16/group), which provided 25% E requirements. Subjects then consumed energy-balanced diets containing 25% E sugar-sweetened beverages/30% E complex carbohydrate during 3.5 d of inpatient intervention testing. Twenty-four-hour triglyceride area under the curve, fasting plasma low-density lipoprotein (LDL), and apolipoprotein B (apoB) concentrations were measured. Twenty-four-hour triglyceride area under the curve was increased compared with baseline during consumption of fructose (+4.7 ± 1.2 mmol/liter × 24 h, P = 0.0032) and HFCS (+1.8 ± 1.4 mmol/liter × 24 h, P = 0.035) but not glucose (-1.9 ± 0.9 mmol/liter × 24 h, P = 0.14). Fasting LDL and apoB concentrations were increased during consumption of fructose (LDL: +0.29 ± 0.082 mmol/liter, P = 0.0023; apoB: +0.093 ± 0.022 g/liter, P = 0.0005) and HFCS (LDL: +0.42 ± 0.11 mmol/liter, P glucose (LDL: +0.012 ± 0.071 mmol/liter, P = 0.86; apoB: +0.0097 ± 0.019 g/liter, P = 0.90). Consumption of HFCS-sweetened beverages for 2 wk at 25% E increased risk factors for cardiovascular disease comparably with fructose and more than glucose in

  10. Gamma delta T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice

    Science.gov (United States)

    Gamma delta T cells are resident in adipose tissue and increase during diet-induced obesity. Their possible contribution to the inflammatory response that accompanies diet-induced obesity was investigated in mice after a 5-10 week high milk fat diet. The high milk fat diet resulted in significant in...

  11. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice

    NARCIS (Netherlands)

    Vroegrijk, Irene O. C. M.; van Diepen, Janna A.; van den Berg, Sjoerd; Westbroek, Irene; Keizer, Hiskias; Gambelli, Luisa; Hontecillas, Raquel; Bassaganya-Riera, Josep; Zondag, Gerben C. M.; Romijn, Johannes A.; Havekes, Louis M.; Voshol, Peter J.

    2011-01-01

    Pomegranate seed oil has been shown to protect against diet induced obesity and insulin resistance. To characterize the metabolic effects of punicic acid on high fat diet induced obesity and insulin resistance. High-fat diet or high-fat diet with 1% Pomegranate seed oil (PUA) was fed for 12weeks to

  12. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice.

    NARCIS (Netherlands)

    Vroegrijk, I.O.; Diepen, J.A. van; Berg, S.; Westbroek, I.; Keizer, H.; Gambelli, L.; Hontecillas, R.; Bassaganya-Riera, J.; Zondag, G.C.; Romijn, J.A.; Havekes, L.M.; Voshol, P.J.

    2011-01-01

    BACKGROUND: Pomegranate seed oil has been shown to protect against diet induced obesity and insulin resistance. OBJECTIVE: To characterize the metabolic effects of punicic acid on high fat diet induced obesity and insulin resistance. DESIGN: High-fat diet or high-fat diet with 1% Pomegranate seed

  13. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    Science.gov (United States)

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Change in postprandial substrate oxidation after a high fructose meal is related to Body Mass Index (BMI) in Healthy Men

    Science.gov (United States)

    Smeraglio, Anne C.; Kennedy, Emily K.; Horgan, Angela; Purnell, Jonathan Q.; Gillingham, Melanie B.

    2013-01-01

    Oral fructose decreases fat oxidation and increases carbohydrate (CHO) oxidation in obese subjects, but the metabolic response to fructose in lean individuals is less well understood. The purpose of this study was to assess the effects of a single fructose-rich mixed meal on substrate oxidation in young healthy non-obese males. We hypothesized that a decrease in fat oxidation and an increase in carbohydrate oxidation would be observed following a fructose-rich mixed meal compared to a glucose-rich mixed meal. Twelve healthy males, normal to overweight and age 23–31 years old, participated in a double-blind, cross-over study. Each participant completed two study visits, eating a mixed meal containing 30% of the calories from either fructose or glucose. Blood samples for glucose, insulin, triglycerides, and leptin as well as gas exchange by indirect calorimetry were measured intermittently for 7 hours. Serum insulin was higher after a fructose mixed meal but plasma glucose, plasma leptin and serum triglycerides were not different. Mean postprandial respiratory quotient and estimated fat oxidation did not differ between the fructose and glucose meals. The change in fat oxidation between the fructose and glucose rich meals negatively correlated with BMI (r=−0.59, P=0.04 and r=−0.59, P=0.04 at the 4 and 7 hour time points, respectively). In healthy non-obese males, BMI correlates with altered postprandial fat oxidation after a high-fructose mixed meal. The metabolic response to a high fructose meal may be modulated by BMI. PMID:23746558

  15. Differential effect of weight loss with low-fat diet or high-fat diet restriction on inflammation in the liver and adipose tissue of mice with diet-induced obesity

    Science.gov (United States)

    We studied the effects of weight loss induced by either a low-fat normal diet or restriction of high-fat diet on hepatic steatosis, inflammation in the liver and adipose tissue, and blood monocytes of obese mice. In mice with high-fat diet-induced obesity, weight loss was achieved by switching from ...

  16. Deleterious Metabolic Effects of High Fructose Intake: The Preventive Effect of Lactobacillus kefiri Administration.

    Science.gov (United States)

    Zubiría, María Guillermina; Gambaro, Sabrina Eliana; Rey, María Amanda; Carasi, Paula; Serradell, María de Los Ángeles; Giovambattista, Andrés

    2017-05-17

    Modern lifestyle and diets have been associated with metabolic disorders and an imbalance in the normal gut microbiota. Probiotics are widely known for their health beneficial properties targeting the gut microbial ecosystem. The aim of our study was to evaluate the preventive effect of Lactobacillus kefiri ( L. kefiri ) administration in a fructose-rich diet (FRD) mice model. Mice were provided with tap water or fructose-added (20% w / v ) drinking water supplemented or not with L. kefiri . Results showed that probiotic administration prevented weight gain and epidydimal adipose tissue (EAT) expansion, with partial reversion of the adipocyte hypertrophy developed by FRD. Moreover, the probiotic prevented the increase of plasma triglycerides and leptin, together with the liver triglyceride content. Leptin adipocyte secretion was also improved by L. kefiri , being able to respond to an insulin stimulus. Glucose intolerance was partially prevented by L. kefiri treatment (GTT) and local inflammation (TNFα; IL1β; IL6 and INFγ) was completely inhibited in EAT. L. kefiri supplementation generated an impact on gut microbiota composition, changing Bacteroidetes and Firmicutes profiles. Overall, our results indicate that the administration of probiotics prevents the deleterious effects of FRD intake and should therefore be promoted to improve metabolic disorders.

  17. Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals.

    Science.gov (United States)

    Stanhope, Kimber L; Griffen, Steven C; Bair, Brandi R; Swarbrick, Michael M; Keim, Nancy L; Havel, Peter J

    2008-05-01

    We have reported that, compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin, and leptin concentrations and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. High-fructose corn syrup (HFCS) has replaced sucrose as the predominant sweetener in beverages in the United States. We compared the metabolic/endocrine effects of HFCS with sucrose and, in a subset of subjects, with pure fructose and glucose. Thirty-four men and women consumed 3 isocaloric meals with either sucrose- or HFCS-sweetened beverages, and blood samples were collected over 24 h. Eight of the male subjects were also studied when fructose- or glucose-sweetened beverages were consumed. In 34 subjects, 24-h glucose, insulin, leptin, ghrelin, and TG profiles were similar between days that sucrose or HFCS was consumed. Postprandial TG excursions after HFCS or sucrose were larger in men than in women. In the men in whom the effects of 4 sweeteners were compared, the 24-h glucose and insulin responses induced by HFCS and sucrose were intermediate between the lower responses during consumption of fructose and the higher responses during glucose. Unexpectedly, postprandial TG profiles after HFCS or sucrose were not intermediate but comparably high as after pure fructose. Sucrose and HFCS do not have substantially different short-term endocrine/metabolic effects. In male subjects, short-term consumption of sucrose and HFCS resulted in postprandial TG responses comparable to those induced by fructose.

  18. Daily exercise prevents diastolic dysfunction and oxidative stress in a female mouse model of western diet induced obesity by maintaining cardiac heme oxygenase-1 levels.

    Science.gov (United States)

    Bostick, Brian; Aroor, Annayya R; Habibi, Javad; Durante, William; Ma, Lixin; DeMarco, Vincent G; Garro, Mona; Hayden, Melvin R; Booth, Frank W; Sowers, James R

    2017-01-01

    Obesity is a global epidemic with profound cardiovascular disease (CVD) complications. Obese women are particularly vulnerable to CVD, suffering higher rates of CVD compared to non-obese females. Diastolic dysfunction is the earliest manifestation of CVD in obese women but remains poorly understood with no evidence-based therapies. We have shown early diastolic dysfunction in obesity is associated with oxidative stress and myocardial fibrosis. Recent evidence suggests exercise may increase levels of the antioxidant heme oxygenase-1 (HO-1). Accordingly, we hypothesized that diastolic dysfunction in female mice consuming a western diet (WD) could be prevented by daily volitional exercise with reductions in oxidative stress, myocardial fibrosis and maintenance of myocardial HO-1 levels. Four-week-old female C57BL/6J mice were fed a high-fat/high-fructose WD for 16weeks (N=8) alongside control diet fed mice (N=8). A separate cohort of WD fed females was allowed a running wheel for the entire study (N=7). Cardiac function was assessed at 20weeks by high-resolution cardiac magnetic resonance imaging (MRI). Functional assessment was followed by immunohistochemistry, transmission electron microscopy (TEM) and Western blotting to identify pathologic mechanisms and assess HO-1 protein levels. There was no significant body weight decrease in exercising mice, normalized body weight 14.3g/mm, compared to sedentary mice, normalized body weight 13.6g/mm (p=0.38). Total body fat was also unchanged in exercising, fat mass of 6.6g, compared to sedentary mice, fat mass 7.4g (p=0.55). Exercise prevented diastolic dysfunction with a significant reduction in left ventricular relaxation time to 23.8ms for exercising group compared to 33.0ms in sedentary group (pstress and myocardial fibrosis with improved mitochondrial architecture. HO-1 protein levels were increased in the hearts of exercising mice compared to sedentary WD fed females. This study provides seminal evidence that exercise

  19. Voluntary feed intake in rainbow trout is regulated by diet-induced differences in oxygen use.

    Science.gov (United States)

    Saravanan, Subramanian; Geurden, Inge; Figueiredo-Silva, A Cláudia; Kaushik, Sadasivam; Verreth, Johan; Schrama, Johan W

    2013-06-01

    This study investigated the hypothesis that the voluntary feed intake in fish is regulated by diet-induced differences in oxygen use. Four diets were prepared with a similar digestible protein:digestible energy ratio (18 mg/kJ), but which differed in the composition of nonprotein energy source. This replacement of fat (F) by starch (S) was intended to create a diet-induced difference in oxygen use (per unit of feed): diets F30-S70, F50-S50, F65-S35, and F80-S20 with digestible fat providing 28, 49, 65, and 81% of the nonprotein digestible energy (NPDE), respectively. Each diet was fed to satiation to triplicate groups of 20 rainbow trout for 6 wk. As expected, diet-induced oxygen use decreased linearly (R(2) = 0.89; P digestible and metabolizable energy intakes of trout slightly increased with increasing NPDE as fat (i.e., decreasing starch content) (R(2) = 0.30, P = 0.08; and R(2) = 0.34, P = 0.05, respectively). Oxygen consumption of trout fed to satiation declined with increasing dietary NPDE as fat (R(2) = 0.48; P = 0.01). The inverse relation between digestible energy intake of trout and the diet-induced oxygen use (R(2) = 0.33; P = 0.05) suggests a possible role of diet-induced oxygen use in feed intake regulation as shown by the replacement of dietary fat by starch.

  20. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    OpenAIRE

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission el...

  1. Diets

    Science.gov (United States)

    ... beef and pork, and sweets is limited. Drinking wine in moderation is encouraged. Studies have shown that ... levels and improve cholesterol levels. This diet can benefit people with high blood pressure and may benefit ...

  2. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity.

    Science.gov (United States)

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-05-23

    The uroguanylin-GUCY2C gut-brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ER(T2)-Rosa-STOP(loxP/loxP)-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression of intestinal uroguanylin impairs hypothalamic mechanisms

  3. Antihyperglycemic and antidyslipidemic activity of Musa paradisiaca-based diet in alloxan-induced diabetic rats.

    Science.gov (United States)

    Ajiboye, Basiru O; Oloyede, Hussein O B; Salawu, Musa O

    2018-01-01

    This study was aimed at investigating the antihyperglycemic and antidyslipidemic activity of Musa paradisiaca -based diets in alloxan-induced diabetic mellitus rats. Diabetes was induced by a single intraperitoneal injection of alloxan (150 mg/kg b.w) in 48 randomly selected rats. The rats were randomly grouped into four as follows: normal rats fed Dioscorea rotundata -based diet, diabetic control rats fed D. rotundata -based diet, diabetic rats fed D. rotundata -based diet and administered metformin (14.2 mg/kg body weight) orally per day, and diabetic rats fed M. paradisiaca -based diet. Body weight and fasting blood glucose level were monitored, on 28th days the rats were sacrificed, liver was excised. Thereafter, the hyperglycemic and dyslipidemic statii of the induced diabetic animals were determined. The M. paradisiaca -based diet significantly ( p  paradisiaca -based diet demonstrated significant reduction ( p  paradisiaca -based diet significantly ( p  <   .05) reversed the activities of aspartate aminotransferase and alanine aminotransferase when compared with diabetic control animals. The consumption of this diet may be useful in ameliorating hyperglycemia and dyslipidemia in diabetes mellitus patients.

  4. Increased expression of PPARγ in high fat diet-induced liver steatosis in mice

    International Nuclear Information System (INIS)

    Inoue, Mitsutaka; Ohtake, Takaaki; Motomura, Wataru; Takahashi, Nobuhiko; Hosoki, Yayoi; Miyoshi, Shigeki; Suzuki, Yasuaki; Saito, Hiroyuki; Kohgo, Yutaka; Okumura, Toshikatsu

    2005-01-01

    The present study was performed to examine a hypothesis that peroxisome proliferator-activated receptor γ (PPARγ) is implicated in high fat diet-induced liver steatosis. Mice were fed with control or high fat diet containing approximately 10% or 80% cholesterol, respectively. Macroscopic and microscopic findings demonstrated that lipid accumulation in the liver was observed as early as 2 weeks after high fat diet and that high fat diet for 12 weeks developed a fatty liver phenotype, establishing a novel model of diet-induced liver steatosis. Gene profiling with microarray and real-time PCR studies demonstrated that among genes involved in lipid metabolism, adipogenesis-related genes, PPARγ and its targeted gene, CD36 mRNA expression was specifically up-regulated in the liver by high fat diet for 2 weeks. Immunohistochemical study revealed that PPARγ protein expression is increased in the nuclei of hepatocytes by high fat diet. It was also shown that protein expression of cAMP response element-binding protein (CREB), an upstream molecule of PPARγ, in the liver was drastically suppressed by high fat diet. All these results suggest for the first time that the CREB-PPARγ signaling pathway may be involved in the high fat diet-induced liver steatosis

  5. High fructose consumption in pregnancy alters the perinatal environment without increasing metabolic disease in the offspring.

    Science.gov (United States)

    Lineker, Christopher; Kerr, Paul M; Nguyen, Patricia; Bloor, Ian; Astbury, Stuart; Patel, Nikhil; Budge, Helen; Hemmings, Denise G; Plane, Frances; Symonds, Michael E; Bell, Rhonda C

    2016-10-01

    Maternal carbohydrate intake is one important determinant of fetal body composition, but whether increased exposure to individual sugars has long-term adverse effects on the offspring is not well established. Therefore, we examined the effect of fructose feeding on the mother, placenta, fetus and her offspring up to 6 months of life when they had been weaned onto a standard rodent diet and not exposed to additional fructose. Dams fed fructose were fatter, had raised plasma insulin and triglycerides from mid-gestation and higher glucose near term. Maternal resistance arteries showed changes in function that could negatively affect regulation of blood pressure and tissue perfusion in the mother and development of the fetus. Fructose feeding had no effect on placental weight or fetal metabolic profiles, but placental gene expression for the glucose transporter GLUT1 was reduced, whereas the abundance of sodium-dependent neutral amino acid transporter-2 was raised. Offspring born to fructose-fed and control dams were similar at birth and had similar post-weaning growth rates, and neither fat mass nor metabolic profiles were affected. In conclusion, raised fructose consumption during reproduction results in pronounced maternal metabolic and vascular effects, but no major detrimental metabolic effects were observed in offspring up to 6 months of age.

  6. Predictors of diet-induced weight loss in overweight adults with type 2 diabetes

    NARCIS (Netherlands)

    K.A.C. Berk (Kirsten); M.T. Mulder (Monique); A.J.M. Verhoeven; Van Wietmarschen, H. (Herman); Boessen, R. (Ruud); Pellis, L.P. (Linette P.); Van Spijker, A.T. (Adriaan T); R. Timman (Reinier); B. Özcan (Behiye); E.J.G. Sijbrands (Eric)

    2016-01-01

    textabstractAims A very low calorie diet improves the metabolic regulation of obesity related type 2 diabetes, but not for all patients, which leads to frustration in patients and professionals alike. The aim of this study was to develop a prediction model of diet-induced weight loss in type 2

  7. Predictors of diet-induced weight loss in overweight adults with type 2 diabetes

    NARCIS (Netherlands)

    Berk, K.A.; Mulder, M.T.; Verhoeven, A.J.M.; Wietmarschen, H. van; Boessen, R.; Pellis, L.P.; Spijker, A.T. van; Timman, R.; Ozcan, B.; Sijbrands, E.J.G.

    2016-01-01

    Aims A very low calorie diet improves the metabolic regulation of obesity related type 2 diabetes, but not for all patients, which leads to frustration in patients and professionals alike. The aim of this study was to develop a prediction model of diet-induced weight loss in type 2 diabetes. Methods

  8. Effects of exercise and diet change on cognition function and synaptic plasticity in high fat diet induced obese rats

    Science.gov (United States)

    2013-01-01

    Background Nutritional imbalance-induced obesity causes a variety of diseases and in particular is an important cause of cognitive function decline. This study was performed on Sprague Dawley (SD) rats with 13-weeks of high fat diet-induced obesity in connection to the effects of regular exercise and dietary control for 8 weeks on the synaptic plasticity and cognitive abilities of brain. Methods Four weeks-old SD rats were adopted classified into normal-normal diet-sedentary (NNS, n = 8), obesity-high fat diet-sedentary (OHS, n = 8), obesity-high fat diet-training (OHT, n = 8), obesity-normal diet-sedentary (ONS, n = 8) and obesity- normal diet-training (ONT, n = 8). The exercise program consisted of a treadmill exercise administered at a speed of 8 m/min for 1–4 weeks, and 14 m/min for 5–8 weeks. The Western blot method was used to measure the expression of NGF, BDNF, p38MAPK and p-p38MAPK proteins in hippocampus of the brain, and expressions of NGF, BDNF, TrkA, TrkB, CREB and synapsin1 mRNA were analyzed through qRT-PCR. Results The results suggest cognitive function-related protein levels and mRNA expression to be significantly decreased in the hippocampus of obese rats, and synaptic plasticity as well as cognitive function signaling sub-pathway factors were also significantly decreased. In addition, 8-weeks exercises and treatment by dietary change had induced significant increase of cognitive function-related protein levels and mRNA expression as well as synaptic plasticity and cognitive function signaling sub-pathway factors in obese rats. In particular, the combined treatment had presented even more positive effect. Conclusions Therefore, it was determined that the high fat diet-induced obesity decreases plasticity and cognitive function of the brain, but was identified as being improved by exercises and dietary changes. In particular, it is considered that regular exercise has positive effects on memory span and learning

  9. Modulatory role of chelating agents in diet-induced hypercholesterolemia in rats

    Directory of Open Access Journals (Sweden)

    Heba M. Mahmoud

    2014-06-01

    Conclusion: Pretreatment of hypercholesterolemic rats with simvastatin, CaNa2EDTA or DMSA attenuated most of the changes induced by feeding rats with cholesterol-rich diet owing to their observed anti-hyperlipidemic and antioxidant properties.

  10. Effects of growth hormone plus a hyperproteic diet on methotrexate-induced injury in rat intestines.

    Science.gov (United States)

    Ortega, M; Gomez-de-Segura, I A; Vázquez, I; López, J M; de Guevara, C L; De-Miguel, E

    2001-01-01

    The aim of this study was to determine whether growth hormone treatment reduces injury to the intestinal mucosa induced by methotrexate (MTX). Wistar rats with intestinal injury induced by methotrexate were treated with daily growth hormone, beginning 3 days before MTX treatment until 3 or 4 days after MTX administration. The rats were killed at 3 or 7 days post-MTX administration. The rats were fed with either a normoproteic diet or a hyperproteic diet. Body weight, mortality, bacterial translocation, intestinal morphometry, proliferation and apoptosis and blood somatostatin and IGF-1 were determined. Combined administration of growth hormone and a hyperproteic diet reduces MTX-induced mortality. This effect was accompanied by increased cell proliferation and decreased apoptosis within the crypt. Morphometric data showed complete recovery of the mucosa by day 7 post-MTX administration. These results indicate a synergistic protective action of growth hormone combined with a hyperproteic diet to MTX-induced injury.

  11. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis.

    Science.gov (United States)

    Sydor, Svenja; Sowa, Jan-Peter; Megger, Dominik A; Schlattjan, Martin; Jafoui, Sami; Wingerter, Lena; Carpinteiro, Alexander; Baba, Hideo A; Bechmann, Lars P; Sitek, Barbara; Gerken, Guido; Gulbins, Erich; Canbay, Ali

    2017-05-01

    Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD). Acid sphingomyelinase (ASM) converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1 -/- ) genotype affects diet-induced NAFLD. Smpd1 -/- mice and wild type controls were fed either a standard or Western diet (WD) for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Although Smpd1 -/- mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1 -/- , we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1 -/- mice indicated a reduction in Rictor (mTORC2) activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation.

  12. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Su-Kyung Shin

    2016-02-01

    Full Text Available Obesity, along with its related complications, is a serious health problem worldwide. Many studies reported the anti-diabetic effect of phlorizin, while little is known about its anti-obesity effect. We investigated the beneficial effects of phlorizin on obesity and its complications, including diabetes and inflammation in obese animal. Male C57BL/6J mice were divided into three groups and fed their respective experimental diets for 16 weeks: a normal diet (ND, 5% fat, w/w, high-fat diet (HFD, 20% fat, w/w, or HFD supplemented with phlorizin (PH, 0.02%, w/w. The findings revealed that the PH group had significantly decreased visceral and total white adipose tissue (WAT weights, and adipocyte size compared to the HFD. Plasma and hepatic lipids profiles also improved in the PH group. The decreased levels of hepatic lipids in PH were associated with decreased activities of enzymes involved in hepatic lipogenesis, cholesterol synthesis and esterification. The PH also suppressed plasma pro-inflammatory adipokines levels such as leptin, adipsin, tumor necrosis factor-α, monocyte chemoattractant protein-1, interferon-γ, and interleukin-6, and prevented HFD-induced collagen accumulation in the liver and WAT. Furthermore, the PH supplementation also decreased plasma glucose, insulin, glucagon, and homeostasis model assessment of insulin resistance levels. In conclusion, phlorizin is beneficial for preventing diet-induced obesity, hepatic steatosis, inflammation, and fibrosis, as well as insulin resistance.

  13. Diet-induced metabolic hamster model of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Bhathena J

    2011-06-01

    Full Text Available Jasmine Bhathena, Arun Kulamarva, Christopher Martoni, Aleksandra Malgorzata Urbanska, Meenakshi Malhotra, Arghya Paul, Satya PrakashBiomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, CanadaBackground: Obesity, hypercholesterolemia, elevated triglycerides, and type 2 diabetes are major risk factors for metabolic syndrome. Hamsters, unlike rats or mice, respond well to diet-induced obesity, increase body mass and adiposity on group housing, and increase food intake due to social confrontation-induced stress. They have a cardiovascular and hepatic system similar to that of humans, and can thus be a useful model for human pathophysiology.Methods: Experiments were planned to develop a diet-induced Bio F1B Golden Syrian hamster model of dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hamsters were fed a normal control diet, a high-fat/high-cholesterol diet, a high-fat/high-cholesterol/methionine-deficient/choline-devoid diet, and a high-fat/high-cholesterol/choline-deficient diet. Serum total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, atherogenic index, and body weight were quantified biweekly. Fat deposition in the liver was observed and assessed following lipid staining with hematoxylin and eosin and with oil red O.Results: In this study, we established a diet-induced Bio F1B Golden Syrian hamster model for studying dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hyperlipidemia and elevated serum glucose concentrations were induced using this diet. Atherogenic index was elevated, increasing the risk for a cardiovascular event. Histological analysis of liver specimens at the end of four weeks showed increased fat deposition in the liver of animals fed

  14. Green tea (-)-epigallocatechin-3-gallate counteracts daytime overeating induced by high-fat diet in mice.

    Science.gov (United States)

    Li, Hongyu; Kek, Huiling Calvina; Lim, Joy; Gelling, Richard Wayne; Han, Weiping

    2016-12-01

    High-fat diet (HFD) induces overeating and obesity. Green tea (-)-epigallocatechin-3-gallate (EGCG) reduces HFD-induced body weight and body fat gain mainly through increased lipid metabolism and fat oxidation. However, little is known about its effect on HFD-induced alterations in feeding behavior. Three diet groups of wildtype C57B/6j male mice at 5 months old were fed on normal chow diet, 1 week of HFD (60% of energy) and 3 months of HFD (diet-induced obesity (DIO)) prior to EGCG supplement in respective diet. EGCG had no effect on feeding behavior in normal chow diet group. Increased daytime feeding induced by HFD was selectively corrected by EGCG treatment in HFD groups, including reversed food intake, feeding frequency and meal size in HFD + EGCG group, and reduced food intake and feeding frequency in DIO + EGCG group. Moreover, EGCG treatment altered diurnally oscillating expression pattern of key appetite-regulating genes, including AGRP, POMC, and CART, and key circadian genes Clock and Bmal1 in hypothalamus of DIO mice, indicating its central effect on feeding regulation. Our study demonstrates that EGCG supplement specifically counteracts daytime overeating induced by HFD in mice, suggesting its central role in regulating feeding behavior and energy homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Madsen, Andreas N

    2013-01-01

    locomotor activity. Moreover, diet-induced obese Gprc6a KO mice had increased circulating insulin and leptin levels relative to WT animals, thereby demonstrating that endocrine abnormalities associate with the reported disturbances in energy balance. The phenotype was further accompanied by disruptions...... complications is still elusive. In the present study, we investigated the impact of GPRC6A deficiency in a murine model of diet-induced obesity (DIO). Male Gprc6a knockout (KO) mice and WT littermates were subjected to a high-fat diet (HFD) for 25 weeks and exposed to comprehensive metabolic phenotyping...

  16. High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats

    NARCIS (Netherlands)

    Chaumontet, C.; Even, P.C.; Schwarz, Jessica; Simonin-Foucault, A.; Piedcoq, J.; Fromentin, G.; Tomé, D.; Azzout-Marniche, D.

    2015-01-01

    High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the

  17. Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice.

    Directory of Open Access Journals (Sweden)

    Iina Tuominen

    Full Text Available Obesity is an important risk factor for colon cancer in humans, and numerous studies have shown that a high fat diet enhances colon cancer development. As both increased adiposity and high fat diet can promote tumorigenesis, we examined the effect of diet-induced obesity, without ongoing high fat diet, on colon tumor development. C57BL/6J male mice were fed regular chow or high fat diet for 8 weeks. Diets were either maintained or switched resulting in four experimental groups: regular chow (R, high fat diet (H, regular chow switched to high fat diet (RH, and high fat diet switched to regular chow (HR. Mice were then administered azoxymethane to induce colon tumors. Tumor incidence and multiplicity were dramatically smaller in the R group relative to all groups that received high fat diet at any point. The effect of obesity on colon tumors could not be explained by differences in aberrant crypt foci number. Moreover, diet did not alter colonic expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, interleukin-1β, and interferon-γ, which were measured immediately after azoxymethane treatment. Crypt apoptosis and proliferation, which were measured at the same time, were increased in the HR relative to all other groups. Our results suggest that factors associated with obesity - independently of ongoing high fat diet and obesity - promote tumor development because HR group animals had significantly more tumors than R group, and these mice were fed the same regular chow throughout the entire carcinogenic period. Moreover, there was no difference in the number of aberrant crypt foci between these groups, and thus the effect of obesity appears to be on subsequent stages of tumor development when early preneoplastic lesions transition into adenomas.

  18. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis

    Directory of Open Access Journals (Sweden)

    Svenja Sydor

    2017-05-01

    Full Text Available Objective: Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD. Acid sphingomyelinase (ASM converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1−/− genotype affects diet-induced NAFLD. Methods: Smpd1−/− mice and wild type controls were fed either a standard or Western diet (WD for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Results: Although Smpd1−/− mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1−/−, we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1−/− mice indicated a reduction in Rictor (mTORC2 activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. Conclusion: These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation. Keywords: Ceramide, NAFLD, Rictor, Western diet

  19. Partial purification and characterization of exoinulinase from Kluyveromyces marxianus YS-1 for preparation of high-fructose syrup.

    Science.gov (United States)

    Singh, Ram Sarup; Dhaliwal, Rajesh; Puri, Munish

    2007-05-01

    An extracellular exoinulinase (2,1-beta-D fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable (100%) for 3 h at the optimum temperature of 50 degrees C. Mn2+ and Ca2+ produced a 2.4-fold and 1.2-fold enhancement in enzyme activity, whereas Hg2+ and Ag2+ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6 mg/ml and 41.3 mg/ml, respectively.

  20. Evidence of changes in alpha-1/AT1 receptor function generated by diet-induced obesity.

    Science.gov (United States)

    Juarez, Esther; Tufiño, Cecilia; Querejeta, Enrique; Bracho-Valdes, Ismael; Bobadilla-Lugo, Rosa A

    2017-11-01

    To study whether hypercaloric diet-induced obesity deteriorates vascular contractility of rat aorta through functional changes in α 1 adrenergic and/or AT1 Angiotensin II receptors. Angiotensin II- or phenylephrine-induced contraction was tested on isolated aorta rings with and without endothelium from female Wistar rats fed for 7 weeks with hypercaloric diet or standard diet. Vascular expression of Angiotensin II Receptor type 1 (AT1R), Angiotensin II Receptor type 2 (AT2R), Cyclooxygenase-1 (COX-1), Cyclooxygenase-2 (COX-2), inducible Nitric Oxide Synthase (iNOS) and endothelial Nitric Oxide Synthase (eNOS), as well as blood pressure, glucose, insulin and angiotensin II blood levels were measured. Diet-induced obesity did not significantly change agonist-induced contractions (Emax and pD 2 hypercaloric diet vs standard diet n.s.d.) of both intact (e+) or endothelium free (e-) vessels but significantly decrease both phenylephrine and angiotensin II contraction (Emax p obesity did not change angiotensin II AT1, AT2 receptor proteins expression but reduced COX-1 and NOS2 ( p obesity produces alterations in vascular adrenergic and angiotensin II receptor dynamics that suggest an endothelium-dependent adrenergic/angiotensin II crosstalk. These changes reflect early-stage vascular responses to obesity.

  1. Urticarial vasculitis induced by OTC diet pills: a case report.

    Science.gov (United States)

    Chérrez Ojeda, Iván; Loayza, Enrique; Greiding, Leonardo; Calderón, Juan Carlos; Cherrez, Annia; Adum, Farid

    2015-01-01

    Urticarial Vasculitis (UV) is in most of the cases idiopathic; however it has been associated with several conditions and drugs. Over the counter (OTC) diet pills are widely available, even on-line, but they are rarely regulated by pharmaceutical control. We present the case of a 35-year-old female patient suffering of pruriginous and painful wheals more than 1 cm in diameter, with a burning sensation. The eruption lasted more than 24 hours and was accompanied by angioedema, headache and myalgia. No remarkable medical history was found, except for previous intake of OTC diet pills. UV diagnosis was confirmed by the skin biopsy of a lesion. OTC diet pills are widely available worldwide, and due to its widespread use, allergologists and dermatologist should be able to recognize symptoms and lesions of cutaneous vasculitis, which may be under reported.

  2. The hypolipidaemic effect of gum tragacanth in diet induced hyperlipidaemia in rats.

    Science.gov (United States)

    Amer, S; Kamil, R; Siddiqui, P Q

    1999-07-01

    Previous research indicated that fiber in the diet of men lowers plasma lipid and LDL cholesterol concentration. To further study the lipid lowering effect of fibre, we conducted an animal study using rats with diet induced hyperlipidaemia. Rats were randomly assigned to one of the three experimental diets. Two of the diets contained cholesterol and choice acid to induce hyperlipidaemia, the fiber source in the hyperlipidaemic diet was gum tragacanth (5%). The rats consumed one of the three diets ad libitum for 4 weeks before they were killed. Plasma LDL cholesterol and total cholesterol concentrations were significantly higher in the hyperlipidaemic group than in the non hyperlipidaemic control group. A marked improvement in the plasma LDL cholesterol and total cholesterol concentration was observed in the rats that were fed hyperlipidaemic diet containing grum tragacanth. No significant difference in the plasma triglyceride concentration was detected in the three groups. Plasma HDL concentration was significantly higher in the non-hyperlipidaemic group than in the hyperlipidaemic group than. Addition of gum tragacanth to the hyperlipidaemic diet significantly improved the plasma HDL concentration in the hyperlipidaemic rats. These results suggest that fiber from gum tragacanth lowers plasma cholesterol and LDL in hyperlipidaemia. Gum tragacanth could be useful adjunct to the dietary management of hyperlipidaemia.

  3. Antioxidative Diet Supplementation Reverses High-Fat Diet-Induced Increases of Cardiovascular Risk Factors in Mice

    Directory of Open Access Journals (Sweden)

    Hilda Vargas-Robles

    2015-01-01

    Full Text Available Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD. Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications.

  4. Improvement of Diet-induced Obesity by Ingestion of Mushroom Chitosan Prepared from Flammulina velutipes.

    Science.gov (United States)

    Miyazawa, Noriko; Yoshimoto, Hiroaki; Kurihara, Shoichi; Hamaya, Tadao; Eguchi, Fumio

    2018-02-01

    The anti-obesity effects of mushroom chitosan prepared from Flammulina velutipes were investigated using an animal model with diet-induced obesity. In this study, 5-week-old imprinting control region (ICR) mice were divided into six groups of 10 mice each and fed different diets based on the MF powdered diet (standard diet) for 6 weeks: standard diet control group, high-fat diet control group (induced dietary obesity) consisting of the standard diet and 20% lard, and mushroom chitosan groups consisting of the high-fat diet with mushroom chitosan added at 100, 500, 1,000, and 2,000 mg/kg body weight. On the final day of the experiment, mean body weight was 39.1 g in the high-fat control group and 36.3 g in the 2,000 mg/kg mushroom chitosan group, compared to 35.8 g in the standard diet control group. In the mushroom chitosan groups, a dose-dependent suppression of weight gain and marked improvements in serum triglycerides, total cholesterol, LDL-cholesterol, and HDL-cholesterol were found. The mushroom chitosan groups showed fewer and smaller fat deposits in liver cells than the high-fat diet control group, and liver weight was significantly reduced. Glutamic oxaloacetic transaminase (GOT) and glutamate pyruvic transaminase (GPT), which are indices of the hepatic function, all showed dose-dependent improvement with mushroom chitosan administration. These results suggested that mushroom chitosan acts to suppress enlargement of the liver from fat deposition resulting from a high-fat diet and to restore hepatic function. The lipid content of feces showed a marked increase correlated with the mushroom chitosan dose. These findings suggest the potential use of mushroom chitosan as a functional food ingredient that contributes to the prevention or improvement of dietary obesity by inhibiting digestion and absorption of fats in the digestive tract and simultaneously promotes lipolysis in adipocytes.

  5. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue

    NARCIS (Netherlands)

    Schafer, M.J.; White, T.A.; Evans, G.; Tonne, J.M.; Verzosa, G.C.; Stout, M.B.; Mazula, D.L.; Palmer, A.K.; Baker, D.J.; Jensen, M.D.; Torbenson, M.S.; Miller, J.D.; Ikeda, Y.; Tchkonia, T.; Deursen, J.M.A. van; Kirkland, J.L.; LeBrasseur, N.K.

    2016-01-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the

  6. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  7. Maternal Diet-Induced Obesity Programmes Cardiac Dysfunction in Male Mice Independently of Post-Weaning Diet.

    Science.gov (United States)

    Loche, Elena; Blackmore, Heather L; Carpenter, Asha A M; Beeson, Jessica H; Pinnock, Adele; Ashmore, Thomas J; Aiken, Catherine E; de Almeida-Faria, Juliana; Schoonejans, Josca; Giussani, Dino A; Fernandez-Twinn, Denise S; Ozanne, Susan E

    2018-04-04

    Obesity during pregnancy increases risk of cardiovascular disease (CVD) in the offspring and individuals exposed to over-nutrition during fetal life are likely to be exposed to a calorie-rich environment postnatally. Here, we established the consequences of combined exposure to a maternal and post-weaning obesogenic diet on offspring cardiac structure and function using an established mouse model of maternal diet-induced obesity. The impact of the maternal and postnatal environment on the offspring metabolic profile, arterial blood pressure, cardiac structure and function was assessed in 8-week old C57BL/6 male mice. Measurement of cardiomyocyte cell area, the transcriptional re-activation of cardiac fetal genes as well as genes involved in the regulation of contractile function and matrix remodelling in the adult heart were determined as potential mediators of effects on cardiac function. In the adult offspring: a post-weaning obesogenic diet coupled with exposure to maternal obesity increased serum insulin (P<0.0001) and leptin levels (P<0.0001); maternal obesity (P=0.001) and a post-weaning obesogenic diet (P=0.002) increased absolute heart weight; maternal obesity (P=0.01) and offspring obesity (P=0.01) caused cardiac dysfunction but effects were not additive; cardiac dysfunction resulting from maternal obesity was associated with re-expression of cardiac fetal genes (Myh7:Myh6 ratio; P=0.0004), however these genes were not affected by offspring diet; maternal obesity (P=0.02) and offspring obesity (P=0.05) caused hypertension and effects were additive. Maternal diet-induced obesity and offspring obesity independently promote cardiac dysfunction and hypertension in adult male progeny. Exposure to maternal obesity alone programmed cardiac dysfunction, associated with hallmarks of pathological left ventricular hypertrophy, including increased cardiomyocyte area, upregulation of fetal genes and remodelling of cardiac structure. These data highlight that the

  8. Impact of basal diet on dextran sodium sulphate (DSS)-induced colitis in rats.

    Science.gov (United States)

    Boussenna, Ahlem; Goncalves-Mendes, Nicolas; Joubert-Zakeyh, Juliette; Pereira, Bruno; Fraisse, Didier; Vasson, Marie-Paule; Texier, Odile; Felgines, Catherine

    2015-12-01

    Dextran sodium sulphate (DSS)-induced colitis is a widely used model for inflammatory bowel disease. However, various factors including nutrition may affect the development of this colitis. This study aimed to compare and characterize the impact of purified and non-purified basal diets on the development of DSS-induced colitis in the rat. Wistar rats were fed a non-purified or a semi-synthetic purified diet for 21 days. Colitis was then induced in half of the rats by administration of DSS in drinking water (4% w/v) during the last 7 days of experimentation. At the end of the experimental period, colon sections were taken for histopathological examination, determination of various markers of inflammation (myeloperoxidase: MPO, cytokines) and oxidative stress (superoxide dismutase: SOD, catalase: CAT, glutathione peroxidase: GPx and glutathione reductase: GRed activities), and evaluation of the expression of various genes implicated in this disorder. DSS ingestion induced a more marked colitis in animals receiving the purified diet, as reflected by higher histological score and increased MPO activity. A significant decrease in SOD and CAT activities was also observed in rats fed the purified diet. Also, in these animals, administration of DSS induced a significant increase in interleukin (IL)-1α, IL-1β and IL-6. In addition, various genes implicated in inflammation were over-expressed after ingestion of DSS by rats fed the purified diet. These results show that a purified diet promotes the onset of a more severe induced colitis than a non-purified one, highlighting the influence of basal diet in colitis development.

  9. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats.

    Science.gov (United States)

    Hsu, Ted M; Konanur, Vaibhav R; Taing, Lilly; Usui, Ryan; Kayser, Brandon D; Goran, Michael I; Kanoski, Scott E

    2015-02-01

    Excessive consumption of added sugars negatively impacts metabolic systems; however, effects on cognitive function are poorly understood. Also unknown is whether negative outcomes associated with consumption of different sugars are exacerbated during critical periods of development (e.g., adolescence). Here we examined the effects of sucrose and high fructose corn syrup-55 (HFCS-55) intake during adolescence or adulthood on cognitive and metabolic outcomes. Adolescent or adult male rats were given 30-day access to chow, water, and either (1) 11% sucrose solution, (2) 11% HFCS-55 solution, or (3) an extra bottle of water (control). In adolescent rats, HFCS-55 intake impaired hippocampal-dependent spatial learning and memory in a Barne's maze, with moderate learning impairment also observed for the sucrose group. The learning and memory impairment is unlikely based on nonspecific behavioral effects as adolescent HFCS-55 consumption did not impact anxiety in the zero maze or performance in a non-spatial response learning task using the same mildly aversive stimuli as the Barne's maze. Protein expression of pro-inflammatory cytokines (interleukin 6, interleukin 1β) was increased in the dorsal hippocampus for the adolescent HFCS-55 group relative to controls with no significant effect in the sucrose group, whereas liver interleukin 1β and plasma insulin levels were elevated for both adolescent-exposed sugar groups. In contrast, intake of HFCS-55 or sucrose in adults did not impact spatial learning, glucose tolerance, anxiety, or neuroinflammatory markers. These data show that consumption of added sugars, particularly HFCS-55, negatively impacts hippocampal function, metabolic outcomes, and neuroinflammation when consumed in excess during the adolescent period of development. © 2014 Wiley Periodicals, Inc.

  10. High-Fructose Corn-Syrup-Sweetened Beverage Intake Increases 5-Hour Breast Milk Fructose Concentrations in Lactating Women

    Directory of Open Access Journals (Sweden)

    Paige K. Berger

    2018-05-01

    Full Text Available This study determined the effects of consuming a high-fructose corn syrup (HFCS-sweetened beverage on breast milk fructose, glucose, and lactose concentrations in lactating women. At six weeks postpartum, lactating mothers (n = 41 were randomized to a crossover study to consume a commercially available HFCS-sweetened beverage or artificially sweetened control beverage. At each session, mothers pumped a complete breast milk expression every hour for six consecutive hours. The baseline fasting concentrations of breast milk fructose, glucose, and lactose were 5.0 ± 1.3 µg/mL, 0.6 ± 0.3 mg/mL, and 6.8 ± 1.6 g/dL, respectively. The changes over time in breast milk sugars were significant only for fructose (treatment × time, p < 0.01. Post hoc comparisons showed the HFCS-sweetened beverage vs. control beverage increased breast milk fructose at 120 min (8.8 ± 2.1 vs. 5.3 ± 1.9 µg/mL, 180 min (9.4 ± 1.9 vs. 5.2 ± 2.2 µg/mL, 240 min (7.8 ± 1.7 vs. 5.1 ± 1.9 µg/mL, and 300 min (6.9 ± 1.4 vs. 4.9 ± 1.9 µg/mL (all p < 0.05. The mean incremental area under the curve for breast milk fructose was also different between treatments (14.7 ± 1.2 vs. −2.60 ± 1.2 µg/mL × 360 min, p < 0.01. There was no treatment × time interaction for breast milk glucose or lactose. Our data suggest that the consumption of an HFCS-sweetened beverage increased breast milk fructose concentrations, which remained elevated up to five hours post-consumption.

  11. High-Fructose Corn-Syrup-Sweetened Beverage Intake Increases 5-Hour Breast Milk Fructose Concentrations in Lactating Women.

    Science.gov (United States)

    Berger, Paige K; Fields, David A; Demerath, Ellen W; Fujiwara, Hideji; Goran, Michael I

    2018-05-24

    This study determined the effects of consuming a high-fructose corn syrup (HFCS)-sweetened beverage on breast milk fructose, glucose, and lactose concentrations in lactating women. At six weeks postpartum, lactating mothers ( n = 41) were randomized to a crossover study to consume a commercially available HFCS-sweetened beverage or artificially sweetened control beverage. At each session, mothers pumped a complete breast milk expression every hour for six consecutive hours. The baseline fasting concentrations of breast milk fructose, glucose, and lactose were 5.0 ± 1.3 µg/mL, 0.6 ± 0.3 mg/mL, and 6.8 ± 1.6 g/dL, respectively. The changes over time in breast milk sugars were significant only for fructose (treatment × time, p fructose at 120 min (8.8 ± 2.1 vs. 5.3 ± 1.9 µg/mL), 180 min (9.4 ± 1.9 vs. 5.2 ± 2.2 µg/mL), 240 min (7.8 ± 1.7 vs. 5.1 ± 1.9 µg/mL), and 300 min (6.9 ± 1.4 vs. 4.9 ± 1.9 µg/mL) (all p fructose was also different between treatments (14.7 ± 1.2 vs. -2.60 ± 1.2 µg/mL × 360 min, p glucose or lactose. Our data suggest that the consumption of an HFCS-sweetened beverage increased breast milk fructose concentrations, which remained elevated up to five hours post-consumption.

  12. Comparison of diet-induced thermogenesis of foods containing medium- versus long-chain triacylglycerols.

    Science.gov (United States)

    Kasai, Michio; Nosaka, Naohisa; Maki, Hideaki; Suzuki, Yoshie; Takeuchi, Hiroyuki; Aoyama, Toshiaki; Ohra, Atsushi; Harada, Youji; Okazaki, Mitsuko; Kondo, Kazuo

    2002-12-01

    The purpose of this study was to investigate the effect of 5-10 g of medium-chain triacylglycerols (MCT) on diet-induced thermogenesis in healthy humans. The study compared diet-induced thermogenesis after ingestion of test foods containing MCT and long-chain triacylglycerols (LCT), using a double-blind, crossover design. Eight male and eight female subjects participated in study 1 and study 2, respectively. In both studies, the LCT was a blend of rapeseed oil and soybean oil. In study 1, the liquid meals contained 10 g MCT (10M), a mixture of 5 g MCT and 5 g LCT (5M5L), and 10 g LCT (10L). In study 2, the subjects were given a meal (sandwich and clear soup) with the mayonnaise or margarine containing 5 g of MCT or LCT. Postprandial energy expenditure was measured by indirect calorimetry before and during the 6 h after ingestion of the test meals. Diet-induced thermogenesis was significantly greater after 5M5L and 10M Ingestion as compared to 10L ingestion. Ingestion of the mayonnaise or margarine containing 5 g MCT caused significantly larger diet-induced thermogenesis as compared to that of LCT. These results suggest that, in healthy humans, the intake of 5-10 g of MCT causes larger diet-induced thermogenesis than that of LCT, irrespective of the form of meal containing the MCT.

  13. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity

    OpenAIRE

    Rauckhorst, Adam J.; Gray, Lawrence R.; Sheldon, Ryan D.; Fu, Xiaorong; Pewa, Alvin D.; Feddersen, Charlotte R.; Dupuy, Adam J.; Gibson-Corley, Katherine N.; Cox, James E.; Burgess, Shawn C.; Taylor, Eric B.

    2017-01-01

    Objective: Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. T...

  14. High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise.

    Science.gov (United States)

    Kohn, Julie C; Azar, Julian; Seta, Francesca; Reinhart-King, Cynthia A

    2018-03-01

    Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.

  15. Moringa oleifera Supplemented Diets Prevented Nickel-Induced Nephrotoxicity in Wistar Rats

    Directory of Open Access Journals (Sweden)

    O. S. Adeyemi

    2014-01-01

    Full Text Available Background. The Moringa oleifera plant has been implicated for several therapeutic potentials. Objective. To evaluate whether addition of M. oleifera to diet has protective effect against nickel-induced nephrotoxicity in rats. Methodology. Male Wistar rats were assigned into six groups of five. The rats were given oral exposure to 20 mg/kg nickel sulphate (NiSO4 in normal saline and sustained on either normal diet or diets supplemented with Moringa oleifera at different concentrations for 21 days. 24 hours after cessation of treatments, all animals were sacrificed under slight anesthesia. The blood and kidney samples were collected for biochemical and histopathology analyses, respectively. Results. NiSO4 exposure reduced the kidney-to-body weight ratio in rats and caused significant elevation in the levels of plasma creatinine, urea, and potassium. Also, the plasma level of sodium was decreased by NiSO4 exposure. However, addition of M. oleifera to diets averted the nickel-induced alteration to the level of creatinine and urea. The histopathology revealed damaged renal tubules and glomerular walls caused by NiSO4 exposure. In contrast, the damages were ameliorated by the M. oleifera supplemented diets. Conclusion. The addition of M. oleifera to diet afforded significant protection against nickel-induced nephrotoxicity.

  16. Moringa oleifera Supplemented Diets Prevented Nickel-Induced Nephrotoxicity in Wistar Rats

    Science.gov (United States)

    Adeyemi, O. S.; Elebiyo, T. C.

    2014-01-01

    Background. The Moringa oleifera plant has been implicated for several therapeutic potentials. Objective. To evaluate whether addition of M. oleifera to diet has protective effect against nickel-induced nephrotoxicity in rats. Methodology. Male Wistar rats were assigned into six groups of five. The rats were given oral exposure to 20 mg/kg nickel sulphate (NiSO4) in normal saline and sustained on either normal diet or diets supplemented with Moringa oleifera at different concentrations for 21 days. 24 hours after cessation of treatments, all animals were sacrificed under slight anesthesia. The blood and kidney samples were collected for biochemical and histopathology analyses, respectively. Results. NiSO4 exposure reduced the kidney-to-body weight ratio in rats and caused significant elevation in the levels of plasma creatinine, urea, and potassium. Also, the plasma level of sodium was decreased by NiSO4 exposure. However, addition of M. oleifera to diets averted the nickel-induced alteration to the level of creatinine and urea. The histopathology revealed damaged renal tubules and glomerular walls caused by NiSO4 exposure. In contrast, the damages were ameliorated by the M. oleifera supplemented diets. Conclusion. The addition of M. oleifera to diet afforded significant protection against nickel-induced nephrotoxicity. PMID:25295181

  17. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats.

    Science.gov (United States)

    Touati, Sabeur; Meziri, Fayçal; Devaux, Sylvie; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-03-01

    Chronic consumption of a high-fat diet induces obesity. We investigated whether exercise would reverse the cardiometabolic disorders associated with obesity without it being necessary to change from a high- to normal-fat diet. Sprague-Dawley rats were placed on a high-fat (HFD) or control diet (CD) for 12 wk. HFD rats were then divided into four groups: sedentary HFD (HFD-S), exercise trained (motor treadmill for 12 wk) HFD (HFD-Ex), modified diet (HFD to CD; HF/CD-S), and exercise trained with modified diet (HF/CD-Ex). Cardiovascular risk parameters associated with metabolic syndrome were measured, and contents of aortic Akt, phospho-Akt at Ser (473), total endothelial nitric oxide synthase (eNOS), and phospho-eNOS at Ser (1177) were determined by Western blotting. Chronic consumption of HFD induced a metabolic syndrome. Exercise and dietary modifications reduced adiposity, improved glucose and insulin levels and plasma lipid profile, and exerted an antihypertensive effect. Exercise was more effective than dietary modification in improving plasma levels of thiobarbituric acid-reacting substance and in correcting the endothelium-dependent relaxation to acetylcholine and insulin. Furthermore, independent of the diet used, exercise increased Akt and eNOS phosphorylation. Metabolic syndrome induced by HFD is reversed by exercise and diet modification. It is demonstrated that exercise training induces these beneficial effects without the requirement for dietary modification, and these beneficial effects may be mediated by shear stress-induced Akt/eNOS pathway activation. Thus, exercise may be an effective strategy to reverse almost all the atherosclerotic risk factors linked to obesity, particularly in the vasculature.

  18. Diet-induced increases in chemerin are attenuated by exercise and mediate the effect of diet on insulin and HOMA-IR

    Science.gov (United States)

    Lloyd, Jesse W.; Zerfass, Kristy M.; Heckstall, Ebony M.; Evans, Kristin A.

    2015-01-01

    Objectives: Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. Methods: We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Results: Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p diet-induced increases in insulin and HOMA-IR. Conclusion: Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin. PMID:26445641

  19. High fructose feeding induces copper deficiency in Sprague-Dawley rats: A novel mechanism for obesity related fatty liver

    Science.gov (United States)

    Dietary copper deficiency is associated with a variety of manifestations of the metabolic syndrome, including hyperlipidemia and fatty liver. Fructose feeding has been reported to exacerbate complications of copper deficiency. In this study, we investigated whether copper deficiency plays a role in ...

  20. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  1. Sulfur Amino Acids in Diet-induced Fatty Liver: A New Perspective Based on Recent Findings

    Directory of Open Access Journals (Sweden)

    John I. Toohey

    2014-06-01

    Full Text Available The relationship of sulfur amino acids to diet-induced fatty liver was established 80 years ago, with cystine promoting the condition and methionine preventing it. This relationship has renewed importance today because diet-induced fatty liver is relevant to the current epidemics of obesity, non-alcoholic fatty liver disease, metabolic syndrome, and type 2 diabetes. Two recent papers provide the first evidence linking sulfane sulfur to diet-induced fatty liver opening a new perspective on the problem. This review summarizes the early data on sulfur amino acids in fatty liver and correlates that data with current knowledge of sulfur metabolism. Evidence is reviewed showing that the lipotropic effect of methionine may be mediated by sulfane sulfur and that the hepatosteatogenic effect of cystine may be related to the removal of sulfane sulfur by cysteine catabolites. Possible preventive and therapeutic strategies are discussed.

  2. Effects of diet-induced obesity on motivation and pain behavior in an operant assay.

    Science.gov (United States)

    Rossi, H L; Luu, A K S; Kothari, S D; Kuburas, A; Neubert, J K; Caudle, R M; Recober, A

    2013-04-03

    Obesity has been associated with multiple chronic pain disorders, including migraine. We hypothesized that diet-induced obesity would be associated with a reduced threshold for thermal nociception in the trigeminal system. In this study, we sought to examine the effect of diet-induced obesity on facial pain behavior. Mice of two different strains were fed high-fat or regular diet (RD) and tested using a well-established operant facial pain assay. We found that the effects of diet on behavior in this assay were strain and reward dependent. Obesity-prone C57BL/6J mice fed a high-fat diet (HFD) display lower number of licks of a caloric, palatable reward (33% sweetened condensed milk or 30% sucrose) than control mice. This occurred at all temperatures, in both sexes, and was evident even before the onset of obesity. This diminished reward-seeking behavior was not observed in obesity-resistant SKH1-E (SK) mice. These findings suggest that diet and strain interact to modulate reward-seeking behavior. Furthermore, we observed a difference between diet groups in operant behavior with caloric, palatable rewards, but not with a non-caloric neutral reward (water). Importantly, we found no effect of diet-induced obesity on acute thermal nociception in the absence of inflammation or injury. This indicates that thermal sensation in the face is not affected by obesity-associated peripheral neuropathy as it occurs when studying pain behaviors in the rodent hindpaw. Future studies using this model may reveal whether obesity facilitates the development of chronic pain after injury or inflammation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Latendresse, John R.; Mehendale, Harihara M.

    2007-01-01

    Clinical use of doxorubicin (Adriamycin (registered) ), an antitumor agent, is limited by its oxyradical-mediated cardiotoxicity. We tested the hypothesis that moderate diet restriction protects against doxorubicin-induced cardiotoxicity by decreasing oxidative stress and inducing cardioprotective mechanisms. Male Sprague-Dawley rats (250-275 g) were maintained on diet restriction [35% less food than ad libitum]. Cardiotoxicity was estimated by measuring biomarkers of cardiotoxicity, cardiac function, lipid peroxidation, and histopathology. A LD 100 dose of doxorubicin (12 mg/kg, ip) administered on day 43 led to 100% mortality in ad libitum rats between 7 and 13 days due to higher cardiotoxicity and cardiac dysfunction, whereas all the diet restricted rats exhibited normal cardiac function and survived. Toxicokinetic analysis revealed equal accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the ad libitum and diet restricted hearts. Mechanistic studies revealed that diet restricted rats were protected due to (1) lower oxyradical stress from increased cardiac antioxidants leading to downregulation of uncoupling proteins 2 and 3, (2) induction of cardiac peroxisome proliferators activated receptor-α and plasma adiponectin increased cardiac fatty acid oxidation (666.9 ±14.0 nmol/min/g heart in ad libitum versus 1035.6 ± 32.3 nmol/min/g heart in diet restriction) and mitochondrial AMPα2 protein kinase. The changes led to 51% higher cardiac ATP levels (17.7 ± 2.1 μmol/g heart in ad libitum versus 26.7 ± 1.9 μmol/g heart in diet restriction), higher ATP/ADP ratio, and (3) increased cardiac erythropoietin and decreased suppressor of cytokine signaling 3, which upregulates cardioprotective JAK/STAT3 pathway. These findings collectively show that moderate diet restriction renders resiliency against doxorubicin cardiotoxicity by lowering oxidative stress, enhancing ATP synthesis, and inducing the JAK/STAT3 pathway

  4. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  5. Effects of macronutrient composition and cyclooxygenase-inhibition on diet-induced obesity, low grade inflammation and glucose homeostasis

    DEFF Research Database (Denmark)

    Fjære, Even

    - or protein based background, and supplemented with either corn- or fish oil. These experiments were conducted to determine whether macronutrient composition and type of dietary fat can modulate diet-induced obesity, and associated metabolic consequences. The use of non-steroidal anti-inflammatory drugs...... was combined with a low fat diet. This further highlights the importance of the background diet and macronutrient composition of experimental diets. Conclusions: In summary, our results demonstrate that the composition of background diet modulates the obesogenic effect of the high fat diet. The obesogenic...

  6. Diet-Induced Ketosis Protects Against Focal Cerebral Ischemia in Mouse.

    Science.gov (United States)

    Xu, Kui; Ye, Lena; Sharma, Katyayini; Jin, Yongming; Harrison, Matthew M; Caldwell, Tylor; Berthiaume, Jessica M; Luo, Yu; LaManna, Joseph C; Puchowicz, Michelle A

    2017-01-01

    Over the past decade we have consistently shown that ketosis is neuroprotective against ischemic insults in rats. We reported that diet-induced ketotic rats had a significant reduction in infarct volume when subjected to middle cerebral artery occlusion (MCAO), and improved survival and recovery after cardiac arrest and resuscitation. The neuroprotective mechanisms of ketosis (via ketogenic diet; KG) include (i) ketones are alternate energy substrates that can restore energy balance when glucose metabolism is deficient and (ii) ketones modulate cell-signalling pathways that are cytoprotective. We investigated the effects of diet-induced ketosis following transient focal cerebral ischemia in mice. The correlation between levels of ketosis and hypoxic inducible factor-1alpha (HIF-1α), AKT (also known as protein kinase B or PKB) and 5' AMP-activated protein kinase (AMPK) were determined. Mice were fed with KG diet or standard lab-chow (STD) diet for 4 weeks. For the MCAO group, mice underwent 60 min of MCAO and total brain infarct volumes were evaluated 48 h after reperfusion. In a separate group of mice, brain tissue metabolites, levels of HIF-1α, phosphorylated AKT (pAKT), and AMPK were measured. After feeding a KG diet, levels of blood ketone bodies (beta-hydroxyburyrate, BHB) were increased. There was a proportional decrease in infarct volumes with increased blood BHB levels (KG vs STD; 4.2 ± 0.6 vs 7.8 ± 2.2 mm 3 , mean ± SEM). A positive correlation was also observed with HIF-1α and pAKT relative to blood BHB levels. Our results showed that chronic ketosis can be induced in mice by KG diet and was neuroprotective against focal cerebral ischemia in a concentration dependent manner. Potential mechanisms include upregulation of cytoprotective pathways such as those associated with HIF-1α, pAKT and AMPK.

  7. Dexras1 mediates glucocorticoid-associated adipogenesis and diet-induced obesity

    Science.gov (United States)

    Cha, Jiyoung Y.; Kim, Hyo Jung; Yu, Jung Hwan; Xu, Jing; Kim, Daham; Paul, Bindu D.; Choi, Hyeonjin; Kim, Seyun; Lee, Yoo Jeong; Ho, Gary P.; Rao, Feng; Snyder, Solomon H.; Kim, Jae-woo

    2013-01-01

    Adipogenesis, the conversion of precursor cells into adipocytes, is associated with obesity and is mediated by glucocorticoids acting via hitherto poorly characterized mechanisms. Dexras1 is a small G protein of the Ras family discovered on the basis of its marked induction by the synthetic glucocorticoid dexamethasone. We show that Dexras1 mediates adipogenesis and diet-induced obesity. Adipogenic differentiation of 3T3-L1 cells is abolished with Dexras1 depletion, whereas overexpression of Dexras1 elicits adipogenesis. Adipogenesis is markedly reduced in mouse embryonic fibroblasts from Dexras1-deleted mice, whereas adiposity and diet-induced weight gain are diminished in the mutant mice. PMID:24297897

  8. PENGARUH DIET KACANG MERAH TERHADAP KADAR GULA DARAH TIKUS DIABETIK INDUKSI ALLOXAN [Effect of Red Bean Diet on Blood Glucose Concentration of Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Y. Marsono 1

    2003-04-01

    Full Text Available Hypoglycemic response of red bean were evaluated in alloxan-induced diabetic rats. The objective of this research was to evaluate the effect of red bean (Vigna umbellata diet compare with soy bean diet on blood glucose concentration in alloxan-induced diabetic rats.Thirty male Sprague-Dawley (SD rats (250-300 g were diabetic induced by alloxan injection (80 mg/kg of body weight by intra muscular injection. They were divided into three groups of ten rats. They were fed (1 Standard diet (STD, (2 Red bean diet (KM, and (3 Soy bean diet (KD for 28 days. Concentration of serum glucose were determined before injection (0 day,after injection (day 17th and every sweek during diet intervention (day 24,31,38 and 45thIt was found that alloxan injection increased serum glucose concentration of STD, KM, and KD rats. After 28 days intervention, red bean decreased the serum glucose concentration from 217, 87 mg/dL to 57,70 mg/dL (69 % in KM groups and from 218,94 mg/dL to 76,82 mg/dL (65 % in KD groups, but standard diet (STD were decreased less than both of KM and KD diet.

  9. Effectiveness of a structured diet program in antipsychotic-induced weight gain in patients with schizophrenia.

    Science.gov (United States)

    Direk, Nese; Ucok, Alp

    2008-01-01

    Objective.The aim of this study was to evaluate the effectiveness of a structured diet program in weight loss in patients with schizophrenia. Methods. A total of 38 outpatients diagnosed with schizophrenia according to DSM-IV and who had complaints of weight gain during treatment with various antipsychotic drugs were invited to participate in a 3-month structured diet program. Thirty-two patients and another 40 patients were included as the control group. At the beginning of the diet program, the patients were given a form in order to evaluate their eating habits, and blood samples were taken to measure plasma lipid profile, and fasting blood glucose (FBG) level. Patients' baseline weight, body mass index (BMI), and basal metabolism rate (BMR) were recorded. Results. Thirty-two patients with schizophrenia, who attended a 3-month structured diet program had mean weight loss of 6.19 kg, whereas patients in the control group gained 1.6 kg. Conclusion. Our findings show that a diet program is effective in managing antipsychotic-induced weight gain. The degree of weight loss seems to be correlated with the duration in which the patient is on the diet program. However; younger patients had less benefit from the diet program.

  10. Identification and quantification of six major α-dicarbonyl process contaminants in high-fructose corn syrup.

    Science.gov (United States)

    Gensberger, Sabrina; Mittelmaier, Stefan; Glomb, Marcus A; Pischetsrieder, Monika

    2012-07-01

    High-fructose corn syrup (HFCS) is a widely used liquid sweetener produced from corn starch by hydrolysis and partial isomerization of glucose to fructose. During these processing steps, sugars can be considerably degraded, leading, for example, to the formation of reactive α-dicarbonyl compounds (α-DCs). The present study performed targeted screening to identify the major α-DCs in HFCS. For this purpose, α-DCs were selectively converted with o-phenylendiamine to the corresponding quinoxaline derivatives, which were analyzed by liquid chromatography with hyphenated diode array-tandem mass spectrometry (LC-DAD-MS/MS) detection. 3-Deoxy-D-erythro-hexos-2-ulose (3-deoxyglucosone), D-lyxo-hexos-2-ulose (glucosone), 3-deoxy-D-threo-hexos-2-ulose (3-deoxygalactosone), 1-deoxy-D-erythro-hexos-2,3-diulose (1-deoxyglucosone), 3,4-dideoxyglucosone-3-ene, methylglyoxal, and glyoxal were identified by enhanced mass spectra as well as MS/MS product ion spectra using the synthesized standards as reference. Addition of diethylene triamine pentaacetic acid and adjustment of the derivatization conditions ensured complete derivatization without de novo formation for all identified α-DCs in HFCS matrix except for glyoxal. Subsequently, a ultra-high performance LC-DAD-MS/MS method was established to quantify 3-deoxyglucosone, glucosone, 3-deoxygalactosone, 1-deoxyglucosone, 3,4-dideoxyglucosone-3-ene, and methylglyoxal in HFCS. Depending on the α-DC compound and concentration, the recovery ranged between 89.2% and 105.8% with a relative standard deviation between 1.9% and 6.5%. Subsequently, the α-DC profiles of 14 commercial HFCS samples were recorded. 3-Deoxyglucosone was identified as the major α-DC with concentrations up to 730 μg/mL HFCS. The total α-DC content ranged from 293 μg/mL to 1,130 μg/mL HFCS. Significantly different α-DC levels were not detected between different HFCS specifications, but between samples of various manufacturers indicating that the

  11. Dietary supplementation of grape skin extract improves glycemia and inflammation in diet-induced obese mice fed a Western high fat diet.

    Science.gov (United States)

    Hogan, Shelly; Canning, Corene; Sun, Shi; Sun, Xiuxiu; Kadouh, Hoda; Zhou, Kequan

    2011-04-13

    Dietary antioxidants may provide a cost-effective strategy to promote health in obesity by targeting oxidative stress and inflammation. We recently found that the antioxidant-rich grape skin extract (GSE) also exerts a novel anti-hyperglycemic activity. This study investigated whether 3-month GSE supplementation can improve oxidative stress, inflammation, and hyperglycemia associated with a Western diet-induced obesity. Young diet-induced obese (DIO) mice were randomly divided to three treatment groups (n = 12): a standard diet (S group), a Western high fat diet (W group), and the Western diet plus GSE (2.4 g GSE/kg diet, WGSE group). By week 12, DIO mice in the WGSE group gained significantly more weight (24.6 g) than the W (20.2 g) and S groups (11.2 g); the high fat diet groups gained 80% more weight than the standard diet group. Eight of 12 mice in the W group, compared to only 1 of 12 mice in the WGSE group, had fasting blood glucose levels above 140 mg/dL. Mice in the WGSE group also had 21% lower fasting blood glucose and 17.1% lower C-reactive protein levels than mice in the W group (P < 0.05). However, the GSE supplementation did not affect oxidative stress in diet-induced obesity as determined by plasma oxygen radical absorbance capacity, glutathione peroxidase, and liver lipid peroxidation. Collectively, the results indicated a beneficial role of GSE supplementation for improving glycemic control and inflammation in diet-induced obesity.

  12. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats.

    Directory of Open Access Journals (Sweden)

    Fang Xie

    Full Text Available To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD or high-fat, high-sucrose and high-salt diets (HFSSD relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG, insulin, free fatty acids (FFA, homeostasis model assessment-insulin resistance index (HOMA-IR, thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF as well as unmyelinated fibers (UMF in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension and prediabetic conditions (impaired fasting glucose could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals.

  13. High Energy Diets-Induced Metabolic and Prediabetic Painful Polyneuropathy in Rats

    Science.gov (United States)

    Hou, Jun-Feng; Jiao, Kai; Costigan, Michael; Chen, Jun

    2013-01-01

    To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD) or high-fat, high-sucrose and high-salt diets (HFSSD) relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG), insulin, free fatty acids (FFA), homeostasis model assessment-insulin resistance index (HOMA-IR), thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF) as well as unmyelinated fibers (UMF) in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension) and prediabetic conditions (impaired fasting glucose) could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt) deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals. PMID:23451227

  14. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity.

    Science.gov (United States)

    Robinson, Mike J F; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-08-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or 'wanting'). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened 'wanting' was not due to individual differences in the hedonic impact ('liking') of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal 'hot-spots' that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation.

  15. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity

    Science.gov (United States)

    Robinson, Mike JF; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-01-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or ‘wanting’). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened ‘wanting’ was not due to individual differences in the hedonic impact (‘liking’) of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal ‘hot-spots’ that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation. PMID:25761571

  16. Spontaneous motor activity during the development and maintenance of diet-induced obesity in the rat.

    Science.gov (United States)

    Levin, B E

    1991-09-01

    More than 80% of most daily spontaneous activities (assessed in an Omnitech activity monitor) occurred during the last hour of light and 12 h of the dark phase in 8 chow-fed male Sprague-Dawley rats. Thirty additional rats were, therefore, monitored over this 13-h period to assess the relationship of activity to the development and maintenance of diet-induced obesity (DIO) on a diet high in energy, fat and sucrose (CM diet). Nine of 20 rats became obese after 3 months on the CM diet, with 71% greater weight gain than 10 chow-fed controls. Eleven of 20 rats were diet resistant (DR), gaining the same amount of weight as chow-fed rats. Neither initial activity levels nor initial body weights on chow (Period I) differed significantly across retrospectively identified groups. After 3 months on CM diet or chow (Period II), as well as after an additional 3 months after CM diet-fed rats returned to chow (Period III), there were significant inverse correlations (r = -.606 to -.370) between body weight at the time of testing and various measures of movement in the horizontal plane. There was no relationship to dietary content nor consistent correlations of body weight or diet group to vertical movements, an indirect measure of ingestive behavior. Patterns of time spent in the vertical position were significantly different for DIO vs. DR rats in Period III, however. Thus, differences in food intake and metabolic efficiency, rather than differences in nocturnal activity, are probably responsible for the greater weight gain in DIO-prone rats placed on CM diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Diet composition modifies embryotoxic effects induced by experimental diabetes in rats.

    Science.gov (United States)

    Giavini, E; Broccia, M L; Prati, M; Domenico Roversi, G

    1991-01-01

    Despite improvements in prenatal care, the incidence of congenital malformations in diabetic pregnancies is still 3-4 times higher than in normal pregnancies. These defects could be attributed to alterations of intrauterine environment due to disorder of the maternal metabolism. If this were true, the quality of food could play a role in diabetes-induced embryotoxicity. To check this hypothesis, female CD rats were made diabetic by injecting intravenously 50 mg/kg of streptozotocin 2 weeks before mating. From the first day of pregnancy they were divided into three groups and maintained on the following diets: (1) standard diet (Italiana Mangimi); (2) purified high protein diet (protein 55%, carbohydrates 25.5%, fat 7.5%, fiber 4.5%, ash 7.5%); (3) purified normoprotein diet (protein 19%, carbohydrates 62.5%, fat 7.5%, fiber 4%, ash 7%). Nondiabetic pregnant females fed with standard diet served as negative control. No significant differences were observed in blood glucose levels among the groups (range 410-500 mg/dl). The group fed on normoprotein diet showed at term of pregnancy: (1) higher rate of resorptions; (2) lower fetal weight; (3) higher frequency of major malformations than the groups fed standard and hyperproteic diets. Although we are not able at this time to discriminate between a protective effect of a diet with a high protein content and a disruptive effect of a diet containing high quantity of carbohydrates, the results of this trial support the hypothesis of a fuel-mediated teratogenesis in diabetic pregnancy.

  18. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity.

    Science.gov (United States)

    Di Luccia, Blanda; Crescenzo, Raffaella; Mazzoli, Arianna; Cigliano, Luisa; Venditti, Paola; Walser, Jean-Claude; Widmer, Alex; Baccigalupi, Loredana; Ricca, Ezio; Iossa, Susanna

    2015-01-01

    A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.

  19. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity.

    Directory of Open Access Journals (Sweden)

    Blanda Di Luccia

    Full Text Available A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.

  20. Effects of proportions of dietary macronutrients on glucocorticoid metabolism in diet-induced obesity in rats.

    Directory of Open Access Journals (Sweden)

    Roland H Stimson

    2010-01-01

    Full Text Available Tissue glucocorticoid levels in the liver and adipose tissue are regulated by regeneration of inactive glucocorticoid by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1 and inactivation by 5alpha- and 5beta-reductases. A low carbohydrate diet increases hepatic 11beta-HSD1 and reduces glucocorticoid metabolism during weight loss in obese humans. We hypothesized that similar variations in macronutrient proportions regulate glucocorticoid metabolism in obese rats. Male Lister Hooded rats were fed an obesity-inducing ad libitum 'Western' diet (37% fat, n = 36 for 22 weeks, then randomised to continue this diet (n = 12 or to switch to either a low carbohydrate (n = 12 or a moderate carbohydrate (n = 12 diet for the final 8 weeks. A parallel lean control group were fed an ad libitum control diet (10% fat, n = 12 throughout. The low and moderate carbohydrate diets decreased hepatic 11beta-HSD1 mRNA compared with the Western diet (both 0.7+/-0.0 vs 0.9+/-0.1 AU; p<0.01, but did not alter 11beta-HSD1 in adipose tissue. 5Alpha-reductase mRNA was increased on the low carbohydrate compared with the moderate carbohydrate diet. Compared with lean controls, the Western diet decreased 11beta-HSD1 activity (1.6+/-0.1 vs 2.8+/-0.1 nmol/mcg protein/hr; p<0.001 and increased 5alpha-reductase and 5beta-reductase mRNAs (1.9+/-0.3 vs 1.0+/-0.2 and 1.6+/-0.1 vs 1.0+/-0.1 AU respectively; p<0.01 in the liver, and reduced 11beta-HSD1 mRNA and activity (both p<0.01 in adipose tissue. Although an obesity-inducing high fat diet in rats recapitulates the abnormal glucocorticoid metabolism associated with human obesity in liver (but not in adipose tissue, a low carbohydrate diet does not increase hepatic 11beta-HSD1 in obese rats as occurs in humans.

  1. Antiatherosclerotic and Cardioprotective Potential of Acacia senegal Seeds in Diet-Induced Atherosclerosis in Rabbits

    Directory of Open Access Journals (Sweden)

    Heera Ram

    2014-01-01

    Full Text Available Acacia senegal L. (Fabaceae seeds are essential ingredient of “Pachkutta,” a specific Rajasthani traditional food. The present study explored antiatherosclerotic and cardioprotective potential of Acacia senegal seed extract, if any, in hypercholesterolemic diet-induced atherosclerosis in rabbits. Atherosclerosis in rabbits was induced by feeding normal diet supplemented with oral administration of cholesterol (500 mg/kg body weight/day mixed with coconut oil for 15 days. Circulating total cholesterol (TC, HDL-cholesterol (HDL-C, LDL-cholesterol (LDL-C, triglycerides, and VLDL-cholesterol (VLDL-C levels; atherogenic index (AI; cardiac lipid peroxidation (LPO; planimetric studies of aortal wall; and histopathological studies of heart, aorta, kidney, and liver were performed. Apart from reduced atherosclerotic plaques in aorta (6.34±0.72 and increased lumen volume (51.65±3.66, administration with ethanolic extract of Acacia senegal seeds (500 mg/kg/day, p.o. for 45 days to atherosclerotic rabbits significantly lowered serum TC, LDL-C, triglyceride, and VLDL-C levels and atherogenic index as compared to control. Atherogenic diet-induced cardiac LPO and histopathological abnormalities in aorta wall, heart, kidney, and liver were reverted to normalcy by Acacia senegal seed extract administration. The findings of the present study reveal that Acacia senegal seed extract ameliorated diet-induced atherosclerosis and could be considered as lead in the development of novel therapeutics.

  2. Low sodium diet and pregnancy-induced hypertension: a multi-centre randomised controlled trial

    NARCIS (Netherlands)

    Knuist, M.; Bonsel, G. J.; Zondervan, H. A.; Treffers, P. E.

    1998-01-01

    To examine the effectiveness of the standard policy in the Netherlands to prescribe a sodium restricted diet to prevent or to treat mild pregnancy-induced hypertension. Multi-centre randomised controlled trial between April 1992 and April 1994. Seven practices of independent midwives and one

  3. Exercise protects against high-fat diet-induced hypothalamic inflammation

    NARCIS (Netherlands)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D.; Woods, Stephen C.; Hofmann, Susanna M.

    2012-01-01

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing

  4. Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; Braunstein, Thomas Hartig

    2015-01-01

    BACKGROUND: Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. METHODS...

  5. Continuous administration of an elemental diet induces insulin resistance in neonatal pigs

    Science.gov (United States)

    We previously showed that total parenteral nutrition (TPN) compared to intermittent enteral feeding of a milk-based formula induces insulin resistance and hepatic steatosis in neonatal pigs. We hypothesized that intravenous (IV) feeding rather than the nature of the diet (elemental vs polymeric) or ...

  6. Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity.

    Science.gov (United States)

    Kazak, Lawrence; Chouchani, Edward T; Lu, Gina Z; Jedrychowski, Mark P; Bare, Curtis J; Mina, Amir I; Kumari, Manju; Zhang, Song; Vuckovic, Ivan; Laznik-Bogoslavski, Dina; Dzeja, Petras; Banks, Alexander S; Rosen, Evan D; Spiegelman, Bruce M

    2017-10-03

    Diet-induced thermogenesis is an important homeostatic mechanism that limits weight gain in response to caloric excess and contributes to the relative stability of body weight in most individuals. We previously demonstrated that creatine enhances energy expenditure through stimulation of mitochondrial ATP turnover, but the physiological role and importance of creatine energetics in adipose tissue have not been explored. Here, we have inactivated the first and rate-limiting enzyme of creatine biosynthesis, glycine amidinotransferase (GATM), selectively in fat (Adipo-Gatm KO). Adipo-Gatm KO mice are prone to diet-induced obesity due to the suppression of elevated energy expenditure that occurs in response to high-calorie feeding. This is paralleled by a blunted capacity for β3-adrenergic activation of metabolic rate, which is rescued by dietary creatine supplementation. These results provide strong in vivo genetic support for a role of GATM and creatine metabolism in energy expenditure, diet-induced thermogenesis, and defense against diet-induced obesity. Published by Elsevier Inc.

  7. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity

    Science.gov (United States)

    The etiology of type 2 diabetes often involves diet-induced obesity (DIO), which is associated with elevated plasma fatty acids and lipoprotein associated triglycerides. Since aberrant hepatic fatty acid uptake may contribute to this, we investigated whether increased expression of a fatty acid tran...

  8. Diet-induced increases in chemerin are attenuated by exercise and mediate the effect of diet on insulin and HOMA-IR.

    Science.gov (United States)

    Lloyd, Jesse W; Zerfass, Kristy M; Heckstall, Ebony M; Evans, Kristin A

    2015-10-01

    Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p HOMA-IR; 846.5 ± 1723.3%, p HOMA-IR. Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin.

  9. A free-choice high-fat high-sugar diet induces glucose intolerance and insulin unresponsiveness to a glucose load not explained by obesity

    NARCIS (Netherlands)

    La Fleur, S. E.; Luijendijk, M. C. M.; van Rozen, A. J.; Kalsbeek, A.; Adan, R. A. H.

    2011-01-01

    Objectives: In diet-induced obesity, it is not clear whether impaired glucose metabolism is caused directly by the diet, or indirectly via obesity. This study examined the effects of different free-choice, high-caloric, obesity-inducing diets on glucose metabolism. In these free-choice diets,

  10. Moringa oleifera-based diet protects against nickel-induced hepatotoxicity in rats

    Science.gov (United States)

    Stephen Adeyemi, Oluyomi; Sokolayemji Aroge, Cincin; Adewumi Akanji, Musbau

    2017-01-01

    Multiple health-promoting effects have been attributed to the consumption of Moringa oleifera leaves, as part of diet without adequate scientific credence. This study evaluated the effect of M. oleifera-based diets on nickel (Ni) - induced hepatotoxicity in rats. Male rats assigned into six groups were given oral administration of 20 mg/kg body weight nickel sulfate in normal saline and either fed normal diet orM. oleifera-based diets for 21 days. All animals were sacrificed under anesthesia 24 hours after the last treatment. Ni exposure elevated the rat plasma activities of alanine transaminase, aspartate transaminase and alkaline phosphatase significantly. Ni exposure also raised the levels of triglyceride, total cholesterol and low-density lipoprotein cholesterol while depleting the high-density lipoprotein cholesterol concentration. Further, Ni exposure raised rat plasma malondialdehyde but depleted reduced glutathione concentrations. The histopathological presentations revealed inflammation and cellular degeneration caused by Ni exposure. We show evidence thatM. oleifera-based diets protected against Ni-induced hepatotoxicity by improving the rat liver function indices, lipid profile as well as restoring cellular architecture and integrity. Study lends credence to the health-promoting value ofM. oleifera as well as underscores its potential to attenuate hepatic injury. PMID:28808207

  11. Evaluation of the effect of soybean diet on interferon-α-induced depression in male mice

    Directory of Open Access Journals (Sweden)

    Yazdan Azimi Fashi

    2017-08-01

    Full Text Available Objective: Interferon-α (IFN therapy can cause depressive symptom which may lead to drug discontinuation. By interfering with tryptophan pathway, the available level of tryptophan required for serotonin synthesis decreases which could be related to depression. The aim of this study was to evaluate whether soybean diet could improve IFN-induced depression. Materials and Methods: Male mice weighing 28±3 g were used in the forced swimming test (FST as an animal model of depression; also, locomotor activity was recorded. IFN 16×105 IU/kg was injected subcutaneously for 6 days. Animals were fed with regular diet or soybean diet at 3 concentrations throughout the experiment. Fluoxetine was the reference drug. To check whether the tryptophan content in the soy bean diet was effective, a group of animals was injected with a single dose of tryptophan on the test day. Results: IFN-α increased the immobility time in the FST (192 sec ± 5.4, that denotes depression in mice. Soybean diets caused less immobility that was more profound with 50% soybean (26.4 sec ± 6. This diet overcame the depression caused by IFN in the FST (54 sec±18. This result was parallel with that of tryptophan injected to animals (38 sec±17. All the animals showed normal locomotor activity. Conclusion: For the first time, we showed that soybean diet could counteract with depression caused by IFN-α. Since tryptophan therapy had similar effects, possibly the tryptophan content of soybean had induced the serotonin synthesis. Thus, not only less harmful kynurenine was produced but also more serotonin was available in the brain to overcome depression. However, this interpretation needs further evaluations.

  12. Effects of grape pomace antioxidant extract on oxidative stress and inflammation in diet induced obese mice.

    Science.gov (United States)

    Hogan, Shelly; Canning, Corene; Sun, Shi; Sun, Xiuxiu; Zhou, Kequan

    2010-11-10

    Norton grape is one of the most important wine grapes in Southern and Midwestern states and generates massive pomace byproducts. The objective of this study is to characterize the antioxidant compounds and activity in Norton grape pomace extract (GPE) and further assess the potential health promoting properties of Norton GPE using an animal disease model. The total phenolic content and anthocyanins in Norton GPE were 475.4 mg of gallic acid equiv/g and 156.9 mg of cyanidin 3-glucoside equiv/g, respectively. Catechin and epicatechin in GPE were 28.6 and 24.5 mg/g, respectively. Other major antioxidants in GPE included quercetin (1.6 mg/g), trans-resveratrol (60 μg/g), gallic acid (867.2 μg/g), coutaric acid (511.8 μg/g), p-hydroxybenzoic acid (408.3 μg/g), and protocatechuic acid (371.5 μg/g). The antioxidant activity of GPE was evaluated by oxygen radical absorbance capacity (ORAC) and was 4133 μmol of Trolox equiv/g. Male diet-induced obese (DIO) mice were randomly divided to three treatment groups (n = 12): a normal diet (ND group), a high fat diet (HF group), and the high fat diet supplemented with GPE (HFGPE group). After 12-week treatment, mice in the high fat diet groups gained 29% more weight than the ND group. The GPE supplementation (estimated 250 mg/kg bw/d) lowered plasma C-reactive protein levels by 15.5% in the high fat diet fed mice (P < 0.05), suggesting a potential anti-inflammatory effect by dietary GPE. However, dietary GPE did not improve oxidative stress in DIO mice as determined by plasma ORAC, glutathione peroxidase, and liver lipid peroxidation. The results showed that GPE contained significant antioxidants and dietary GPE exerted an anti-inflammatory effect in diet induced obesity.

  13. Milk diets influence doxorubicin-induced intestinal toxicity in piglets

    DEFF Research Database (Denmark)

    Shen, R. L.; Pontoppidan, P. E.; Rathe, M.

    2016-01-01

    Chemotherapy-induced gastrointestinal (GI) toxicity is a common adverse effect of cancer treatment. We used preweaned piglets as models to test our hypothesis that the immunomodulatory and GI trophic effects of bovine colostrum would reduce the severity of GI complications associated with doxorub......Chemotherapy-induced gastrointestinal (GI) toxicity is a common adverse effect of cancer treatment. We used preweaned piglets as models to test our hypothesis that the immunomodulatory and GI trophic effects of bovine colostrum would reduce the severity of GI complications associated...... to assess markers of small intestinal function and inflammation. All DOX-treated animals developed diarrhea, growth deficits, and leukopenia. However, the intestines of DOX-Colos pigs had lower intestinal permeability, longer intestinal villi with higher activities of brush border enzymes, and lower tissue...

  14. Exercise training prevents diastolic dysfunction induced by metabolic syndrome in rats

    Directory of Open Access Journals (Sweden)

    Cristiano Mostarda

    2012-07-01

    Full Text Available OBJECTIVE: High fructose consumption contributes to the incidence of metabolic syndrome and, consequently, to cardiovascular outcomes. We investigated whether exercise training prevents high fructose diet-induced metabolic and cardiac morphofunctional alterations. METHODS: Wistar rats receiving fructose overload (F in drinking water (100 g/l were concomitantly trained on a treadmill (FT for 10 weeks or kept sedentary. These rats were compared with a control group (C. Obesity was evaluated by the Lee index, and glycemia and insulin tolerance tests constituted the metabolic evaluation. Blood pressure was measured directly (Windaq, 2 kHz, and echocardiography was performed to determine left ventricular morphology and function. Statistical significance was determined by one-way ANOVA, with significance set at p<0.05. RESULTS: Fructose overload induced a metabolic syndrome state, as confirmed by insulin resistance (F: 3.6 ± 0.2 vs. C: 4.5 ± 0.2 mg/dl/min, hypertension (mean blood pressure, F: 118 ± 3 vs. C: 104 ± 4 mmHg and obesity (F: 0.31±0.001 vs. C: 0.29 ± 0.001 g/mm. Interestingly, fructose overload rats also exhibited diastolic dysfunction. Exercise training performed during the period of high fructose intake eliminated all of these derangements. The improvements in metabolic parameters were correlated with the maintenance of diastolic function. CONCLUSION: The role of exercise training in the prevention of metabolic and hemodynamic parameter alterations is of great importance in decreasing the cardiac morbidity and mortality related to metabolic syndrome.

  15. Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice.

    OpenAIRE

    Lengacher Sylvain; Nehiri-Sitayeb Touria; Steiner Nadia; Carneiro Lionel; Favrod Céline; Preitner Frédéric; Thorens Bernard; Stehle Jean-Christophe; Dix Laure; Pralong François; Magistretti Pierre J; Pellerin Luc

    2013-01-01

    The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1(+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1(+/-) mice displayed resistance to development of diet-induced obesity ...

  16. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet.

    Science.gov (United States)

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  17. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoqing Ma

    2018-01-01

    Full Text Available Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD, high fat diet (HFD, and HFD administered with vildagliptin (50 mg/Kg (V-HFD. After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27% and liver triglycerides (314.75% compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  18. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism.

    Science.gov (United States)

    Peterson, Jonathan M; Seldin, Marcus M; Wei, Zhikui; Aja, Susan; Wong, G William

    2013-08-01

    CTRP3 is a secreted plasma protein of the C1q family that helps regulate hepatic gluconeogenesis and is downregulated in a diet-induced obese state. However, the role of CTRP3 in regulating lipid metabolism has not been established. Here, we used a transgenic mouse model to address the potential function of CTRP3 in ameliorating high-fat diet-induced metabolic stress. Both transgenic and wild-type mice fed a high-fat diet showed similar body weight gain, food intake, and energy expenditure. Despite similar adiposity to wild-type mice upon diet-induced obesity (DIO), CTRP3 transgenic mice were strikingly resistant to the development of hepatic steatosis, had reduced serum TNF-α levels, and demonstrated a modest improvement in systemic insulin sensitivity. Additionally, reduced hepatic triglyceride levels were due to decreased expression of enzymes (GPAT, AGPAT, and DGAT) involved in triglyceride synthesis. Importantly, short-term daily administration of recombinant CTRP3 to DIO mice for 5 days was sufficient to improve the fatty liver phenotype, evident as reduced hepatic triglyceride content and expression of triglyceride synthesis genes. Consistent with a direct effect on liver cells, recombinant CTRP3 treatment reduced fatty acid synthesis and neutral lipid accumulation in cultured rat H4IIE hepatocytes. Together, these results establish a novel role for CTRP3 hormone in regulating hepatic lipid metabolism and highlight its protective function and therapeutic potential in attenuating hepatic steatosis.

  19. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats.

    Science.gov (United States)

    Steele, Catherine C; Pirkle, Jesseca R A; Kirkpatrick, Kimberly

    2017-01-01

    Impulsive choice is a common charactertistic among individuals with gambling problems, obesity, and substance abuse issues. Impulsive choice has been classified as a trans-disease process, and understanding the etiology of trait impulsivity could help to understand how diseases and disorders related to impulsive choice are manifested. The Western diet is a possible catalyst of impulsive choice as individuals who are obese and who eat diets high in fat and sugar are typically more impulsive. However, such correlational evidence is unable to discern the direction and causal nature of the relationship. The present study sought to determine how diet may directly contribute to impulsive choice. After 8 weeks of dietary exposure (high-fat, high-sugar, chow), the rats were tested on an impulsive choice task, which presented choices between a smaller-sooner reward (SS) and a larger-later reward (LL). Then, the rats were transferred to a chow diet and retested on the impulsive choice task. The high-sugar and high-fat groups made significantly more impulsive choices than the chow group. Both groups became more self-controlled when they were off the diet, but there were some residual effects of the diet on choice behavior. These results suggest that diet, specifically one high in processed fat or sugar, induces impulsive choice. This diet-induced impulsivity could be a precursor to other disorders that are characterized by impulsivity, such as diet-induced obesity, and could offer potential understanding of the trans-disease nature of impulsive choice.

  20. Effects of vitamin D on insulin resistance and myosteatosis in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Elisa Benetti

    Full Text Available Epidemiological studies pointed out to a strong association between vitamin D deficiency and type 2 diabetes prevalence. However, the role of vitamin D supplementation in the skeletal muscle, a tissue that play a crucial role in the maintenance of glucose homeostasis, has been scarcely investigated so far. On this basis, this study aimed to evaluate the effect of vitamin D supplementation in a murine model of diet-induced insulin resistance with particular attention to the effects evoked on the skeletal muscle. Male C57BL/6J mice (n = 40 were fed with a control or a High Fat-High Sugar (HFHS diet for 4 months. Subsets of animals were treated for 2 months with vitamin D (7 μg·kg-1, i.p. three times/week. HFHS diet induced body weight increase, hyperglycemia and impaired glucose tolerance. HFHS animals showed an impaired insulin signaling and a marked fat accumulation in the skeletal muscle. Vitamin D reduced body weight and improved systemic glucose tolerance. In addition, vitamin D restored the impaired muscle insulin signaling and reverted myosteatosis evoked by the diet. These effects were associated to decreased activation of NF-κB and lower levels of TNF-alpha. Consistently, a significantly decreased activation of the SCAP/SREBP lipogenic pathway and lower levels of CML protein adducts and RAGE expression were observed in skeletal muscle of animals treated with vitamin D. Collectively, these data indicate that vitamin D-induced selective inhibition of signaling pathways (including NF-κB, SCAP/SREBP and CML/RAGE cascades within the skeletal muscle significantly contributed to the beneficial effects of vitamin D supplementation against diet-induced metabolic derangements.

  1. Diet-induced obesity and low testosterone increase neuroinflammation and impair neural function.

    Science.gov (United States)

    Jayaraman, Anusha; Lent-Schochet, Daniella; Pike, Christian J

    2014-09-16

    Low testosterone and obesity are independent risk factors for dysfunction of the nervous system including neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we investigate the independent and cooperative interactions of testosterone and diet-induced obesity on metabolic, inflammatory, and neural health indices in the central and peripheral nervous systems. Male C57B6/J mice were maintained on normal or high-fat diet under varying testosterone conditions for a four-month treatment period, after which metabolic indices were measured and RNA isolated from cerebral cortex and sciatic nerve. Cortices were used to generate mixed glial cultures, upon which embryonic cerebrocortical neurons were co-cultured for assessment of neuron survival and neurite outgrowth. Peripheral nerve damage was determined using paw-withdrawal assay, myelin sheath protein expression levels, and Na+,K+-ATPase activity levels. Our results demonstrate that detrimental effects on both metabolic (blood glucose, insulin sensitivity) and proinflammatory (cytokine expression) responses caused by diet-induced obesity are exacerbated by testosterone depletion. Mixed glial cultures generated from obese mice retain elevated cytokine expression, although low testosterone effects do not persist ex vivo. Primary neurons co-cultured with glial cultures generated from high-fat fed animals exhibit reduced survival and poorer neurite outgrowth. In addition, low testosterone and diet-induced obesity combine to increase inflammation and evidence of nerve damage in the peripheral nervous system. Testosterone and diet-induced obesity independently and cooperatively regulate neuroinflammation in central and peripheral nervous systems, which may contribute to observed impairments in neural health. Together, our findings suggest that low testosterone and obesity are interactive regulators of neuroinflammation that, in combination with adipose-derived inflammatory pathways and other factors

  2. Diminished metabolic responses to centrally-administered apelin-13 in diet-induced obese rats fed a high-fat diet.

    Science.gov (United States)

    Clarke, K J; Whitaker, K W; Reyes, T M

    2009-02-01

    The central administration of apelin, a recently identified adipokine, has been shown to affect food and water intake. The present study investigated whether body weight could affect an animal's response to apelin. The effects of centrally-administered apelin-13 on food and water intake, activity and metabolic rate were investigated in adult male diet-induced obese (DIO) rats fed either a high fat (32%) or control diet. Rats were administered i.c.v. apelin-13, 15-30 min prior to lights out, and food and water intake, activity and metabolic rate were assessed. Intracerebroventricular administration of apelin-13 decreased food and water intake and respiratory exchange ratio in DIO rats on the control diet, but had no effect in DIO rats on the high-fat diet. In an effort to identify potential central mechanisms explaining the observed physiological responses, the mRNA level of the apelin receptor, APJ, was examined in the hypothalamus. A high-fat diet induced an up-regulation of the expression of the receptor. Apelin induced a down-regulation of the receptor, but only in the DIO animals on the high-fat diet. In conclusion, we have demonstrated a diminished central nervous system response to apelin that is coincident with obesity.

  3. Hydrolyzed Casein Reduces Diet-Induced Obesity in Male C57BL/6J Mice

    DEFF Research Database (Denmark)

    Lillefosse, Haldis H.; Tastesen, Hanne Sørup; Du, Zhen-Yu

    2013-01-01

    used a factorial ANOVA design to investigate the effects of protein form (intact vs. hydrolyzed casein) and protein level (16 vs. 32 energy percent protein) on body mass gain and adiposity in obesity-prone male C57BL/6J mice fed Western diets with 35 energy percent fat. Mice fed the hydrolyzed casein......The digestion rate of dietary protein is a regulating factor for postprandial metabolism both in humans and animal models. However, few data exist about the habitual consumption of proteins with different digestion rates with regard to the development of body mass and diet-induced obesity. Here, we...... diets had higher spontaneous locomotor activity than mice fed intact casein. During the light phase, mice fed hydrolyzed casein tended (P = 0.08) to have a lower respiratory exchange ratio, indicating lower utilization of carbohydrates as energy substrate relative to those fed intact casein. In further...

  4. The effect of milk proteins on appetite regulation and diet induced thermogenesis

    DEFF Research Database (Denmark)

    Lorenzen, Janne; Frederiksen, Rikke; Hoppe, Camilla

    2012-01-01

    BACKGROUND/OBJECTIVES: There is increasing evidence to support that a high-protein diet may promote weight loss and prevent weight (re)gain better than a low-protein diet, and that the effect is due to higher diet-induced thermogenesis (DIT) and increased satiety. However, data on the effect...... of different types of protein are limited. In the present study we compare the effect of whey, casein and milk on DIT and satiety. SUBJECTS/METHODS: Seventeen slightly overweight (29 ± 4 kg/m(2)) male subjects completed the study. The study had a randomized, crossover design, where the effect on 4 h...... for baseline values. There was no significant difference in effect on EE, protein oxidation or carbohydrate oxidation. CONCLUSIONS: Milk reduced subsequent EI more than isocaloric drinks containing only whey or casein. A small but significant increase in lipid oxidation was seen after casein compared with whey....

  5. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy

    Science.gov (United States)

    Kristiansen, Maria Nicoline Baandrup; Veidal, Sanne Skovgård; Rigbolt, Kristoffer Tobias Gustav; Tølbøl, Kirstine Sloth; Roth, Jonathan David; Jelsing, Jacob; Vrang, Niels; Feigh, Michael

    2016-01-01

    AIM: To characterize development of diet-induced nonalcoholic steatohepatitis (NASH) by performing liver biopsy in wild-type and genetically obese mice. METHODS: Male wild-type C57BL/6J (C57) mice (DIO-NASH) and male Lepob/Lepob (ob/ob) mice (ob/ob-NASH) were maintained on a diet high in trans-fat (40%), fructose (22%) and cholesterol (2%) for 26 and 12 wk, respectively. A normal chow diet served as control in C57 mice (lean chow) and ob/ob mice (ob/ob chow). After the diet-induction period, mice were liver biopsied and a blinded histological assessment of steatosis and fibrosis was conducted. Mice were then stratified into groups counterbalanced for steatosis score and fibrosis stage and continued on diet and to receive daily PO dosing of vehicle for 8 wk. Global gene expression in liver tissue was assessed by RNA sequencing and bioinformatics. Metabolic parameters, plasma liver enzymes and lipids (total cholesterol, triglycerides) as well as hepatic lipids and collagen content were measured by biochemical analysis. Non-alcoholic fatty liver disease activity score (NAS) (steatosis/inflammation/ballooning degeneration) and fibrosis were scored. Steatosis and fibrosis were also quantified using percent fractional area. RESULTS: Diet-induction for 26 and 12 wk in DIO-NASH and ob/ob-NASH mice, respectively, elicited progressive metabolic perturbations characterized by increased adiposity, total cholesterol and elevated plasma liver enzymes. The diet also induced clear histological features of NASH including hepatosteatosis and fibrosis. Overall, the metabolic NASH phenotype was more pronounced in ob/ob-NASH vs DIO-NASH mice. During the eight week repeated vehicle dosing period, the metabolic phenotype was sustained in DIO-NASH and ob/ob-NASH mice in conjunction with hepatomegaly and increased hepatic lipids and collagen accumulation. Histopathological scoring demonstrated significantly increased NAS of DIO-NASH mice (0 vs 4.7 ± 0.4, P NASH mice (2.4 ± 0.3 vs 6.3

  6. No differential effect of beverages sweetened with fructose, high-fructose corn syrup, or glucose on systemic or adipose tissue inflammation in normal-weight to obese adults: a randomized controlled trial1

    Science.gov (United States)

    Cromer, Gail; Breymeyer, Kara L; Roth, Christian L; Weigle, David S

    2016-01-01

    Background: Sugar-sweetened beverage (SSB) consumption and low-grade chronic inflammation are both independently associated with type 2 diabetes and cardiovascular disease. Fructose, a major component of SSBs, may acutely trigger inflammation, which may be one link between SSB consumption and cardiometabolic disease. Objective: We sought to determine whether beverages sweetened with fructose, high-fructose corn syrup (HFCS), and glucose differentially influence systemic inflammation [fasting plasma C-reactive protein and interleukin-6 (IL-6) as primary endpoints] acutely and before major changes in body weight. Secondary endpoints included adipose tissue inflammation, intestinal permeability, and plasma fetuin-A as potential mechanistic links between fructose intake and low-grade inflammation. Design: We conducted a randomized, controlled, double-blind, crossover design dietary intervention (the Diet and Systemic Inflammation Study) in 24 normal-weight to obese adults without fructose malabsorption. Participants drank 4 servings/d of fructose-, glucose-, or HFCS-sweetened beverages accounting for 25% of estimated calorie requirements while consuming a standardized diet ad libitum for three 8-d periods. Results: Subjects consumed 116% of their estimated calorie requirement while drinking the beverages with no difference in total energy intake or body weight between groups as reported previously. Fasting plasma concentrations of C-reactive protein and IL-6 did not differ significantly at the end of the 3 diet periods. We did not detect a consistent differential effect of the diets on measures of adipose tissue inflammation except for adiponectin gene expression in adipose tissue (P = 0.005), which was lowest after the glucose phase. We also did not detect consistent evidence of a differential impact of these sugars on measures of intestinal permeability (lactulose:mannitol test, plasma zonulin, and plasma lipopolysaccharide-binding protein). Conclusion: Excessive

  7. No differential effect of beverages sweetened with fructose, high-fructose corn syrup, or glucose on systemic or adipose tissue inflammation in normal-weight to obese adults: a randomized controlled trial.

    Science.gov (United States)

    Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Weigle, David S; Kratz, Mario

    2016-08-01

    Sugar-sweetened beverage (SSB) consumption and low-grade chronic inflammation are both independently associated with type 2 diabetes and cardiovascular disease. Fructose, a major component of SSBs, may acutely trigger inflammation, which may be one link between SSB consumption and cardiometabolic disease. We sought to determine whether beverages sweetened with fructose, high-fructose corn syrup (HFCS), and glucose differentially influence systemic inflammation [fasting plasma C-reactive protein and interleukin-6 (IL-6) as primary endpoints] acutely and before major changes in body weight. Secondary endpoints included adipose tissue inflammation, intestinal permeability, and plasma fetuin-A as potential mechanistic links between fructose intake and low-grade inflammation. We conducted a randomized, controlled, double-blind, crossover design dietary intervention (the Diet and Systemic Inflammation Study) in 24 normal-weight to obese adults without fructose malabsorption. Participants drank 4 servings/d of fructose-, glucose-, or HFCS-sweetened beverages accounting for 25% of estimated calorie requirements while consuming a standardized diet ad libitum for three 8-d periods. Subjects consumed 116% of their estimated calorie requirement while drinking the beverages with no difference in total energy intake or body weight between groups as reported previously. Fasting plasma concentrations of C-reactive protein and IL-6 did not differ significantly at the end of the 3 diet periods. We did not detect a consistent differential effect of the diets on measures of adipose tissue inflammation except for adiponectin gene expression in adipose tissue (P = 0.005), which was lowest after the glucose phase. We also did not detect consistent evidence of a differential impact of these sugars on measures of intestinal permeability (lactulose:mannitol test, plasma zonulin, and plasma lipopolysaccharide-binding protein). Excessive amounts of fructose, HFCS, and glucose from SSBs

  8. Consumption of a High-Fat Diet Induces Central Insulin Resistance Independent of Adiposity

    Science.gov (United States)

    Clegg, Deborah J.; Gotoh, Koro; Kemp, Christopher; Wortman, Matthew D.; Benoit, Stephen C.; Brown, Lynda M.; D’Alessio, David; Tso, Patrick; Seeley, Randy J.; Woods, Stephen C.

    2011-01-01

    Plasma insulin enters the CNS where it interacts with insulin receptors in areas that are related to energy homeostasis and elicits a decrease of food intake and body weight. Here, we demonstrate that consumption of a high-fat (HF) diet impairs the central actions of insulin. Male Long-Evans rats were given chronic (70-day) or acute (3-day) ad libitum access to HF, low-fat (LF), or chow diets. Insulin administered into the 3rd-cerebral ventricle (i3vt) decreased food intake and body weight of LF and chow rats but had no effect on HF rats in either the chronic or the acute experiment. Rats chronically pair-fed the HF diet to match the caloric intake of LF rats, and with body weights and adiposity levels comparable to those of LF rats, were also unresponsive to i3vt insulin when returned to ad lib food whereas rats pair-fed the LF diet had reduced food intake and body weight when administered i3vt insulin. Insulin’s inability to reduce food intake in the presence of the high-fat diet was associated with a reduced ability of insulin to activate its signaling cascade, as measured by pAKT. Finally, i3vt administration of insulin increased hypothalamic expression of POMC mRNA in the LF-but not the HF-fed rats. We conclude that consumption of a HF diet leads to central insulin resistance following short exposure to the diet, and as demonstrated by reductions in insulin signaling and insulin-induced hypothalamic expression of POMC mRNA. PMID:21241723

  9. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.

    Science.gov (United States)

    Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2017-01-01

    The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.

  10. Deregulation of arginase induces bone complications in high-fat/high-sucrose diet diabetic mouse model.

    Science.gov (United States)

    Bhatta, Anil; Sangani, Rajnikumar; Kolhe, Ravindra; Toque, Haroldo A; Cain, Michael; Wong, Abby; Howie, Nicole; Shinde, Rahul; Elsalanty, Mohammed; Yao, Lin; Chutkan, Norman; Hunter, Monty; Caldwell, Ruth B; Isales, Carlos; Caldwell, R William; Fulzele, Sadanand

    2016-02-15

    A balanced diet is crucial for healthy development and prevention of musculoskeletal related diseases. Diets high in fat content are known to cause obesity, diabetes and a number of other disease states. Our group and others have previously reported that activity of the urea cycle enzyme arginase is involved in diabetes-induced dysregulation of vascular function due to decreases in nitric oxide formation. We hypothesized that diabetes may also elevate arginase activity in bone and bone marrow, which could lead to bone-related complications. To test this we determined the effects of diabetes on expression and activity of arginase, in bone and bone marrow stromal cells (BMSCs). We demonstrated that arginase 1 is abundantly present in the bone and BMSCs. We also demonstrated that arginase activity and expression in bone and bone marrow is up-regulated in models of diabetes induced by HFHS diet and streptozotocin (STZ). HFHS diet down-regulated expression of healthy bone metabolism markers (BMP2, COL-1, ALP, and RUNX2) and reduced bone mineral density, bone volume and trabecular thickness. However, treatment with an arginase inhibitor (ABH) prevented these bone-related complications of diabetes. In-vitro study of BMSCs showed that high glucose treatment increased arginase activity and decreased nitric oxide production. These effects were reversed by treatment with an arginase inhibitor (ABH). Our study provides evidence that deregulation of l-arginine metabolism plays a vital role in HFHS diet-induced diabetic complications and that these complications can be prevented by treatment with arginase inhibitors. The modulation of l-arginine metabolism in disease could offer a novel therapeutic approach for osteoporosis and other musculoskeletal related diseases. Published by Elsevier Ireland Ltd.

  11. Functional Deficits Precede Structural Lesions in Mice With High-Fat Diet-Induced Diabetic Retinopathy.

    Science.gov (United States)

    Rajagopal, Rithwick; Bligard, Gregory W; Zhang, Sheng; Yin, Li; Lukasiewicz, Peter; Semenkovich, Clay F

    2016-04-01

    Obesity predisposes to human type 2 diabetes, the most common cause of diabetic retinopathy. To determine if high-fat diet-induced diabetes in mice can model retinal disease, we weaned mice to chow or a high-fat diet and tested the hypothesis that diet-induced metabolic disease promotes retinopathy. Compared with controls, mice fed a diet providing 42% of energy as fat developed obesity-related glucose intolerance by 6 months. There was no evidence of microvascular disease until 12 months, when trypsin digests and dye leakage assays showed high fat-fed mice had greater atrophic capillaries, pericyte ghosts, and permeability than controls. However, electroretinographic dysfunction began at 6 months in high fat-fed mice, manifested by increased latencies and reduced amplitudes of oscillatory potentials compared with controls. These electroretinographic abnormalities were correlated with glucose intolerance. Unexpectedly, retinas from high fat-fed mice manifested striking induction of stress kinase and neural inflammasome activation at 3 months, before the development of systemic glucose intolerance, electroretinographic defects, or microvascular disease. These results suggest that retinal disease in the diabetic milieu may progress through inflammatory and neuroretinal stages long before the development of vascular lesions representing the classic hallmark of diabetic retinopathy, establishing a model for assessing novel interventions to treat eye disease. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  13. The Obesogenic Potency of Various High-Caloric Diet Compositions in Male Rats, and Their Effects on Expression of Liver and Kidney Proteins Involved in Drug Elimination.

    Science.gov (United States)

    Abdussalam, Ali; Elshenawy, Osama H; Bin Jardan, Yousef A; El-Kadi, Ayman O S; Brocks, Dion R

    2017-06-01

    Obesity is caused by a number of factors including heredity, lack of exercise, and poor diet. Diets rich in fats and carbohydrates are the common culprits leading to obesity. Here we studied the effects of these components on proteins involved in drug disposition. Male rats were given a normal diet (lean controls) or one rich in fats, carbohydrates (as high-fructose corn syrup equivalent) or in combination. After 14 weeks, plasma biochemistry, liver and kidney mRNA and protein for selected cytochrome P450 (CYP) and transporters were determined. Significant increases in body and perinephric fat weight were noted in each of the high-calorie diet-fed groups, with increases being higher in those given high-fat diets. Increases in the protein of CYP3A1/2 and CYP2C11 were seen in liver in high-fat-fed rats. No changes were seen for CYP1A1 at the level of mRNA or protein. For transporters, decreases in expressions of Oct1/2 and Mate1 were seen, with no change in Mdr1. The results showed similarity to earlier assessments of genetically prone rats and suggested that diet-induced obesity has the potential to lead to decreases in the clearance of drugs acting as substrates for CYP 3A, 2C11, and organic cation transport. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. β3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Darimont Christian

    2004-08-01

    Full Text Available Abstract Background Insulin resistance induced by a high fat diet has been associated with alterations in lipid content and composition in skeletal muscle and adipose tissue. Administration of β3-adrenoceptor (β3-AR agonists was recently reported to prevent insulin resistance induced by a high fat diet, such as the cafeteria diet. The objective of the present study was to determine whether a selective β3-AR agonist (ZD7114 could prevent alterations of the lipid profile of skeletal muscle and adipose tissue lipids induced by a cafeteria diet. Methods Male Sprague-Dawley rats fed a cafeteria diet were treated orally with either the β3-AR agonist ZD7114 (1 mg/kg per day or the vehicle for 60 days. Rats fed a chow diet were used as a reference group. In addition to the determination of body weight and insulin plasma level, lipid content and fatty acid composition in gastronemius and in epididymal adipose tissue were measured by gas-liquid chromatography, at the end of the study. Results In addition to higher body weights and plasma insulin concentrations, rats fed a cafeteria diet had greater triacylglycerol (TAG and diacylglycerol (DAG accumulation in skeletal muscle, contrary to animals fed a chow diet. As expected, ZD7114 treatment prevented the excessive weight gain and hyperinsulinemia induced by the cafeteria diet. Furthermore, in ZD7114 treated rats, intramyocellular DAG levels were lower and the proportion of polyunsaturated fatty acids, particularly arachidonic acid, in adipose tissue phospholipids was higher than in animals fed a cafeteria diet. Conclusions These results show that activation of the β3-AR was able to prevent lipid alterations in muscle and adipose tissue associated with insulin resistance induced by the cafeteria diet. These changes in intramyocellular DAG levels and adipose tissue PL composition may contribute to the improved insulin sensitivity associated with β3-AR activation.

  15. Metabolomic and Lipidomic Analysis of Serum Samples following Curcuma longa Extract Supplementation in High-Fructose and Saturated Fat Fed Rats.

    Science.gov (United States)

    Tranchida, Fabrice; Shintu, Laetitia; Rakotoniaina, Zo; Tchiakpe, Léopold; Deyris, Valérie; Hiol, Abel; Caldarelli, Stefano

    2015-01-01

    We explored, using nuclear magnetic resonance (NMR) metabolomics and fatty acids profiling, the effects of a common nutritional complement, Curcuma longa, at a nutritionally relevant dose with human use, administered in conjunction with an unbalanced diet. Indeed, traditional food supplements have been long used to counter metabolic impairments induced by unbalanced diets. Here, rats were fed either a standard diet, a high level of fructose and saturated fatty acid (HFS) diet, a diet common to western countries and that certainly contributes to the epidemic of insulin resistance (IR) syndrome, or a HFS diet with a Curcuma longa extract (1% of curcuminoids in the extract) for ten weeks. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) on the serum NMR profiles and fatty acid composition (determined by GC/MS) showed a clear discrimination between HFS groups and controls. This discrimination involved metabolites such as glucose, amino acids, pyruvate, creatine, phosphocholine/glycerophosphocholine, ketone bodies and glycoproteins as well as an increase of monounsaturated fatty acids (MUFAs) and a decrease of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Although the administration of Curcuma longa did not prevent the observed increase of glucose, triglycerides, cholesterol and insulin levels, discriminating metabolites were observed between groups fed HFS alone or with addition of a Curcuma longa extract, namely some MUFA and n-3 PUFA, glycoproteins, glutamine, and methanol, suggesting that curcuminoids may act respectively on the fatty acid metabolism, the hexosamine biosynthesis pathway and alcohol oxidation. Curcuma longa extract supplementation appears to be beneficial in these metabolic pathways in rats. This metabolomic approach highlights important serum metabolites that could help in understanding further the metabolic mechanisms leading to IR.

  16. Sex differences in diet and inhaled ozone (O3) induced metabolic impairment

    Science.gov (United States)

    APS 2015 abstract Sex differences in diet and inhaled ozone (O3) induced metabolic impairment U.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema1, P. Phillips1, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triang...

  17. Nutritional compensation to exercise- vs. diet-induced acute energy deficit in adolescents with obesity.

    Science.gov (United States)

    Thivel, David; Doucet, Eric; Julian, Valérie; Cardenoux, Charlotte; Boirie, Yves; Duclos, Martine

    2017-07-01

    To compare the energy and macronutrient intake responses to equivalent energy deficits induced by diet (food restriction) and exercise in adolescents with obesity. Fourteen 12-15years old obese adolescents completed three experimental conditions (08:00am to 07:30pm) in a randomized crossover design: i) control session (CON); ii) diet-induced 25% energy depletion (Def-EI), iii) and an exercise-induced 25% energy depletion (Def-EX). The sessions order was either CON/Def-EI/Def-EX or CON/Def-EX/Def-EI as the deficit corresponded to 25% of the energy ingested at lunch on the control day (CON) and was imposed either by exercise (Def-EX) or diet (Def-EI). Ad libitum EI and macronutrients preferences were assessed at dinner and appetite sensations assessed using visual analogue scales. Mean BMI was 36.6±5.0kg/m 2 (z-BMI: 2.40±0.29). The individually calibrated 25% energy deficit represented 254±92kcal. Ad libitum EI was significantly higher during both Def-EX (971±225kcal) and Def-EI (949±246kcal) compared with CON (742±297) (pexercise and the control session (EI Def-EX - EI CON) (r=-0,643 pexercise- or diet-induced energy deficits could lead to similar EI compensation in obese adolescents but this EI compensation might be influenced by the magnitude of the deficit. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Hypolipidemic activity of Piper betel in high fat diet induced hyperlipidemic rat

    OpenAIRE

    Thirunavukkarasu Thirumalai; Narayanaswamy Tamilselvan; Ernest David

    2014-01-01

    Objective: To evaluate the hypolipidemic effect of Piper betel (P. betel) in high fat diet induced hyperlipidemia rat. Methods: The methanol leaf extract was tested for hypolipidemic effect in the albino rats at the selected optimum dosage of 250 mg/kg body weight and administered orally. Adult male albino rats of six numbers in each group were undertaken study and evaluated. Results: In group II animals, the activity levels of serum total cholesterol (TC), triglycerides (TG), low densi...

  19. Dysregulation of the unfolded protein response in db/db mice with diet induced steatohepatitis

    OpenAIRE

    Rinella, Mary E.; Siddiqui, M. Shaddab; Gardikiotes, Konstantina; Gottstein, Jeanne; Elias, Marc; Green, Richard M.

    2011-01-01

    In humans with non-alcoholic fatty liver, diabetes is associated with more advanced disease. We have previously shown that diabetic db/db mice are highly susceptible to methionine choline deficient diet (MCD) induced hepatic injury. Since activation of the unfolded protein response (UPR) is an important adaptive cellular mechanism in diabetes, obesity and fatty liver, we hypothesized that dysregulation of the UPR may partially explain how diabetes could promote liver injury.

  20. Effect of Creosote Bush-Derived NDGA on Expression of Genes Involved in Lipid Metabolism in Liver of High-Fructose Fed Rats: Relevance to NDGA Amelioration of Hypertriglyceridemia and Hepatic Steatosis.

    Directory of Open Access Journals (Sweden)

    Haiyan Zhang

    Full Text Available Nordihydroguaiaretic acid (NDGA, the main metabolite of Creosote bush, has been shown to have profound effects on the core components of the metabolic syndrome (MetS, lowering blood glucose, free fatty acids (FFA and triglyceride (TG levels in several models of dyslipidemia, as well as improving body weight (obesity, insulin resistance, diabetes and hypertension, and ameliorating hepatic steatosis. In the present study, a high-fructose diet (HFrD fed rat model of hypertriglyceridemia was employed to further delineate the underlying mechanism by which NDGA exerts its anti-hypertriglyceridemic action. In the HFrD treatment group, NDGA administration by oral gavage decreased plasma levels of TG, glucose, FFA, and insulin, increased hepatic mitochondrial fatty acid oxidation and attenuated hepatic TG accumulation. qRT-PCR measurements indicated that NDGA treatment increased the mRNA expression of key fatty acid transport (L-FABP, CD36, and fatty acid oxidation (ACOX1, CPT-2, and PPARα transcription factor genes and decreased the gene expression of enzymes involved in lipogenesis (FASN, ACC1, SCD1, L-PK and ChREBP and SREBP-1c transcription factors. Western blot analysis indicated that NDGA administration upregulated hepatic insulin signaling (P-Akt, AMPK activity (P-AMPK, MLYCD, and PPARα protein levels, but decreased SCD1, ACC1 and ACC2 protein content and also inactivated ACC1 activity (increased P-ACC1. These findings suggest that NDGA ameliorates hypertriglyceridemia and hepatic steatosis primarily by interfering with lipogenesis and promoting increased channeling of fatty acids towards their oxidation.

  1. Diet- and genetically-induced obesity differentially affect the fecal microbiome and metabolome in Apc1638N mice

    Science.gov (United States)

    Obesity is a risk factor for colorectal cancer (CRC), and alterations in the colonic microbiome and metabolome may be mechanistically involved in this relationship. The relative contribution of diet and obesity per se are unclear. We compared the effect of diet- and genetically-induced obesity on th...

  2. Consumption of milk-protein combined with green tea modulates diet-induced thermogenesis.

    Science.gov (United States)

    Hursel, Rick; Westerterp-Plantenga, Margriet S

    2011-08-01

    Green tea and protein separately are able to increase diet-induced thermogenesis. Although their effects on long-term weight-maintenance were present separately, they were not additive. Therefore, the effect of milk-protein (MP) in combination with green tea on diet-induced thermogenesis (DIT) was examined in 18 subjects (aged 18-60 years; BMI: 23.0 ± 2.1 kg/m(2)). They participated in an experiment with a randomized, 6 arms, crossover design, where energy expenditure and respiratory quotient (RQ) were measured. Green tea (GT)vs. placebo (PL) capsules were either given in combination with water or with breakfasts containing milk protein in two different dosages: 15 g (15 MP) (energy% P/C/F: 15/47/38; 1.7 MJ/500 mL), and 3.5 g (3.5 MP) (energy% P/C/F: 41/59/0; 146.4 kJ/100 mL). After measuring resting energy expenditure (REE) for 30 min, diet-induced energy expenditure was measured for another 3.5 h after the intervention. There was an overall significant difference observed between conditions (p milk-protein inhibits the effect of green tea on DIT.

  3. Effect of Morinda citrifolia (Noni) Fruit Juice on High Fat Diet Induced Dyslipidemia in Rats.

    Science.gov (United States)

    Shoeb, Ahsan; Alwar, M C; Shenoy, Preethi J; Gokul, P

    2016-04-01

    The medicinal value of Morinda citrifolia L. (commonly known as Noni) has been explored in ancient folk remedies with a wide range of therapeutic utility, including antibacterial, antiviral, antifungal, antitumour, analgesic, hypotensive, anti-inflammatory and immune enhancing effects. The present study was designed to evaluate the effects of Noni fruit juice on serum lipid profile in high fat diet induced murine model of dyslipidemia. Hyperlipidemia was induced by feeding a cholesterol rich high fat diet for 45 days in wistar albino rats of either sex (n=8). Noni fruit juice administered at 50mg/kg/day and 100mg/kg/day, per oral, was compared with the standard drug Atorvastatin (10mg/kg/day, oral) fed for the latter 30 days. The blood samples were then sent for complete blood lipid profile, after 30 days of treatment. The data presented as mean ± SEM was analyzed using one-way ANOVA followed by Tukey's post-hoc test. The p juice treated group showed a significant decrease in the total cholesterol, triglycerides and very low density lipoprotein - Cholesterol at both the doses when compared to the disease control (pjuice at the 50mg/kg dose employed, failed to show a statistical significance when compared to atorvastatin. The present study provides evidence for the hypolipidemic activity of Noni fruit juice in high fat diet induced hyperlipidemia in rats.

  4. Lessons from Mouse Models of High-Fat Diet-Induced NAFLD

    Directory of Open Access Journals (Sweden)

    Yasuo Terauchi

    2013-10-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD encompasses a clinicopathologic spectrum of diseases ranging from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH, the more aggressive form of fatty liver disease that may progress to cirrhosis and cirrhosis-related complications, including hepatocellular carcinoma. The prevalence of NAFLD, including NASH, is also increasing in parallel with the growing epidemics of obesity and diabetes. However, the causal relationships between obesity and/or diabetes and NASH or liver tumorigenesis have not yet been clearly elucidated. Animal models of NAFLD/NASH provide crucial information, not only for elucidating the pathogenesis of NAFLD/NASH, but also for examining therapeutic effects of various agents. A high-fat diet is widely used to produce hepatic steatosis and NASH in experimental animals. Several studies, including our own, have shown that long-term high-fat diet loading, which can induce obesity and insulin resistance, can also induce NASH and liver tumorigenesis in C57BL/6J mice. In this article, we discuss the pathophysiology of and treatment strategies for NAFLD and subsequent NAFLD-related complications such as NASH and liver tumorigenesis, mainly based on lessons learned from mouse models of high-fat diet-induced NAFLD/NASH.

  5. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    Science.gov (United States)

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (Pinsulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  6. Long term highly saturated fat diet does not induce NASH in Wistar rats

    Directory of Open Access Journals (Sweden)

    Filippi Céline

    2007-02-01

    Full Text Available Abstract Background Understanding of nonalcoholic steatohepatitis (NASH is hampered by the lack of a suitable model. Our aim was to investigate whether long term high saturated-fat feeding would induce NASH in rats. Methods 21 day-old rats fed high fat diets for 14 weeks, with either coconut oil or butter, and were compared with rats feeding a standard diet or a methionine choline-deficient (MCD diet, a non physiological model of NASH. Results MCDD fed rats rapidly lost weight and showed NASH features. Rats fed coconut (86% of saturated fatty acid or butter (51% of saturated fatty acid had an increased caloric intake (+143% and +30%. At the end of the study period, total lipid ingestion in term of percentage of energy intake was higher in both coconut (45% and butter (42% groups than in the standard (7% diet group. No change in body mass was observed as compared with standard rats at the end of the experiment. However, high fat fed rats were fattier with enlarged white and brown adipose tissue (BAT depots, but they showed no liver steatosis and no difference in triglyceride content in hepatocytes, as compared with standard rats. Absence of hepatic lipid accumulation with high fat diets was not related to a higher lipid oxidation by isolated hepatocytes (unchanged ketogenesis and oxygen consumption or hepatic mitochondrial respiration but was rather associated with a rise in BAT uncoupling protein UCP1 (+25–28% vs standard. Conclusion Long term high saturated fat feeding led to increased "peripheral" fat storage and BAT thermogenesis but did not induce hepatic steatosis and NASH.

  7. Vitamin D3: A Role in Dopamine Circuit Regulation, Diet-Induced Obesity, and Drug Consumption.

    Science.gov (United States)

    Trinko, Joseph R; Land, Benjamin B; Solecki, Wojciech B; Wickham, Robert J; Tellez, Luis A; Maldonado-Aviles, Jaime; de Araujo, Ivan E; Addy, Nii A; DiLeone, Ralph J

    2016-01-01

    The influence of micronutrients on dopamine systems is not well defined. Using mice, we show a potential role for reduced dietary vitamin D3 (cholecalciferol) in promoting diet-induced obesity (DIO), food intake, and drug consumption while on a high fat diet. To complement these deficiency studies, treatments with exogenous fully active vitamin D3 (calcitriol, 10 µg/kg, i.p.) were performed. Nondeficient mice that were made leptin resistant with a high fat diet displayed reduced food intake and body weight after an acute treatment with exogenous calcitriol. Dopamine neurons in the midbrain and their target neurons in the striatum were found to express vitamin D3 receptor protein. Acute calcitriol treatment led to transcriptional changes of dopamine-related genes in these regions in naive mice, enhanced amphetamine-induced dopamine release in both naive mice and rats, and increased locomotor activity after acute amphetamine treatment (2.5 mg/kg, i.p.). Alternatively, mice that were chronically fed either the reduced D3 high fat or chow diets displayed less activity after acute amphetamine treatment compared with their respective controls. Finally, high fat deficient mice that were trained to orally consume liquid amphetamine (90 mg/L) displayed increased consumption, while nondeficient mice treated with calcitriol showed reduced consumption. Our findings suggest that reduced dietary D3 may be a contributing environmental factor enhancing DIO as well as drug intake while eating a high fat diet. Moreover, these data demonstrate that dopamine circuits are modulated by D3 signaling, and may serve as direct or indirect targets for exogenous calcitriol.

  8. Centrally administered urocortin 2 decreases gorging on high-fat diet in in both diet induced obesity-prone and -resistant rats

    Science.gov (United States)

    Cottone, Pietro; Sabino, Valentina; Nagy, Tim R.; Coscina, Donald V.; Levin, Barry E.; Zorrilla, Eric P.

    2013-01-01

    Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity. PMID:23478425

  9. The Development of Diet-Induced Obesity and Glucose Intolerance in C57Bl/6 Mice on a High-Fat Diet Consists of Distinct Phases

    Science.gov (United States)

    Williams, Lynda M.; Campbell, Fiona M.; Drew, Janice E.; Koch, Christiane; Hoggard, Nigel; Rees, William D.; Kamolrat, Torkamol; Thi Ngo, Ha; Steffensen, Inger-Lise; Gray, Stuart R.; Tups, Alexander

    2014-01-01

    High–fat (HF) diet-induced obesity and insulin insensitivity are associated with inflammation, particularly in white adipose tissue (WAT). However, insulin insensitivity is apparent within days of HF feeding when gains in adiposity and changes in markers of inflammation are relatively minor. To investigate further the effects of HF diet, C57Bl/6J mice were fed either a low (LF) or HF diet for 3 days to 16 weeks, or fed the HF-diet matched to the caloric intake of the LF diet (PF) for 3 days or 1 week, with the time course of glucose tolerance and inflammatory gene expression measured in liver, muscle and WAT. HF fed mice gained adiposity and liver lipid steadily over 16 weeks, but developed glucose intolerance, assessed by intraperitoneal glucose tolerance tests (IPGTT), in two phases. The first phase, after 3 days, resulted in a 50% increase in area under the curve (AUC) for HF and PF mice, which improved to 30% after 1 week and remained stable until 12 weeks. Between 12 and 16 weeks the difference in AUC increased to 60%, when gene markers of inflammation appeared in WAT and muscle but not in liver. Plasma proteomics were used to reveal an acute phase response at day 3. Data from PF mice reveals that glucose intolerance and the acute phase response are the result of the HF composition of the diet and increased caloric intake respectively. Thus, the initial increase in glucose intolerance due to a HF diet occurs concurrently with an acute phase response but these effects are caused by different properties of the diet. The second increase in glucose intolerance occurs between 12 - 16 weeks of HF diet and is correlated with WAT and muscle inflammation. Between these times glucose tolerance remains stable and markers of inflammation are undetectable. PMID:25170916

  10. Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice.

    Science.gov (United States)

    von Essen, Gabriella; Lindsund, Erik; Cannon, Barbara; Nedergaard, Jan

    2017-11-01

    The significance of diet-induced thermogenesis (DIT) for metabolic control is still debated. Although obesogenic diets recruit UCP1 and adrenergically inducible thermogenesis, and although the absence of UCP1 may promote the development of obesity, no actual UCP1-related thermogenesis identifiable as diet-induced thermogenesis has to date been unambiguously demonstrated. Examining mice living at thermoneutrality, we have identified a process of facultative (directly elicited by acute eating), adaptive (magnitude develops over weeks on an obesogenic diet), and fully UCP1-dependent thermogenesis. We found no evidence for UCP1-independent diet-induced thermogenesis. The thermogenesis was proportional to the total amount of UCP1 protein in brown adipose tissue and was not dependent on any contribution of UCP1 in brite/beige adipose tissue, since no UCP1 protein was found there under these conditions. Total UCP1 protein amount developed proportionally to total body fat content. The physiological messenger linking obesity level and acute eating to increased thermogenesis is not known. Thus UCP1-dependent diet-induced thermogenesis limits obesity development during exposure to obesogenic diets but does not prevent obesity as such. Copyright © 2017 the American Physiological Society.

  11. MCD diet-induced steatohepatitis is associated with alterations in asymmetric dimethylarginine (ADMA) and its transporters.

    Science.gov (United States)

    Di Pasqua, Laura G; Berardo, Clarissa; Rizzo, Vittoria; Richelmi, Plinio; Croce, Anna Cleta; Vairetti, Mariapia; Ferrigno, Andrea

    2016-08-01

    Using an experimental model of NASH induced by a methionine-choline-deficient (MCD) diet, we investigated whether changes occur in serum and tissue levels of asymmetric dimethylarginine (ADMA). Male Wistar rats underwent NASH induced by 8-week feeding with an MCD diet. Serum and hepatic biopsies at 2, 4 and 8 weeks were taken, and serum enzymes, ADMA and nitrate/nitrite (NOx), were evaluated. Hepatic biopsies were used for mRNA and protein expression analysis of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) and protein methyltransferases (PRMT-1), enzymes involved in ADMA metabolism and synthesis, respectively, and ADMA transporters (CAT-1, CAT-2A and CAT-2B). Lipid peroxides (TBARS), glutathione, ATP/ADP and DDAH activity were quantified. An increase in serum AST and ALT was detected in MCD animals. A time-dependent decrease in serum and tissue ADMA and increase in mRNA expression of DDAH-1 and PRMT-1 as well as higher rates of mRNA expression of CAT-1 and lower rates of CAT-2A and CAT-2B were found after 8-week MCD diet. An increase in serum NOx and no changes in protein expression in DDAH-1 and CAT-1 and higher content in CAT-2 and PRMT-1 were found at 8 weeks. Hepatic DDAH activity decreased with a concomitant increase in oxidative stress, as demonstrated by high TBARS levels and low glutathione content. In conclusion, a decrease in serum and tissue ADMA levels in the MCD rats was found associated with a reduction in DDAH activity due to the marked oxidative stress observed. Changes in ADMA levels and its transporters are innovative factors in the onset and progression of hepatic alterations correlated with MCD diet-induced NASH.

  12. Epigenetic dysregulation of the dopamine system in diet-induced obesity.

    Science.gov (United States)

    Vucetic, Zivjena; Carlin, Jesse Lea; Totoki, Kathy; Reyes, Teresa M

    2012-03-01

    Chronic intake of high-fat (HF) diet is known to alter brain neurotransmitter systems that participate in the central regulation of food intake. Dopamine (DA) system changes in response to HF diet have been observed in the hypothalamus, important in the homeostatic control of food intake, as well as within the central reward circuitry [ventral tegmental area (VTA), nucleus accumbens (NAc), and pre-frontal cortex (PFC)], critical for coding the rewarding properties of palatable food and important in hedonically driven feeding behavior. Using a mouse model of diet-induced obesity (DIO), significant alterations in the expression of DA-related genes were documented in adult animals, and the general pattern of gene expression changes was opposite within the hypothalamus versus the reward circuitry (increased vs. decreased, respectively). Differential DNA methylation was identified within the promoter regions of tyrosine hydroxylase (TH) and dopamine transporter (DAT), and the pattern of this response was consistent with the pattern of gene expression. Behaviors consistent with increased hypothalamic DA and decreased reward circuitry DA were observed. These data identify differential DNA methylation as an epigenetic mechanism linking the chronic intake of HF diet with altered DA-related gene expression, and this response varies by brain region and DNA sequence. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  13. Molecular fingerprint of high fat diet induced urinary bladder metabolic dysfunction in a rat model.

    Directory of Open Access Journals (Sweden)

    Andreas Oberbach

    Full Text Available AIMS/HYPOTHESIS: Diabetic voiding dysfunction has been reported in epidemiological dimension of individuals with diabetes mellitus. Animal models might provide new insights into the molecular mechanisms of this dysfunction to facilitate early diagnosis and to identify new drug targets for therapeutic interventions. METHODS: Thirty male Sprague-Dawley rats received either chow or high-fat diet for eleven weeks. Proteomic alterations were comparatively monitored in both groups to discover a molecular fingerprinting of the urinary bladder remodelling/dysfunction. Results were validated by ELISA, Western blotting and immunohistology. RESULTS: In the proteome analysis 383 proteins were identified and canonical pathway analysis revealed a significant up-regulation of acute phase reaction, hypoxia, glycolysis, β-oxidation, and proteins related to mitochondrial dysfunction in high-fat diet rats. In contrast, calcium signalling, cytoskeletal proteins, calpain, 14-3-3η and eNOS signalling were down-regulated in this group. Interestingly, we found increased ubiquitin proteasome activity in the high-fat diet group that might explain the significant down-regulation of eNOS, 14-3-3η and calpain. CONCLUSIONS/INTERPRETATION: Thus, high-fat diet is sufficient to induce significant remodelling of the urinary bladder and alterations of the molecular fingerprint. Our findings give new insights into obesity related bladder dysfunction and identified proteins that may indicate novel pathophysiological mechanisms and therefore constitute new drug targets.

  14. Popular edible seaweed, Gelidium amansii prevents against diet-induced obesity.

    Science.gov (United States)

    Kang, Min-Cheol; Kang, Nalae; Kim, Seo-Young; Lima, Inês S; Ko, Seok-Chun; Kim, Young-Tae; Kim, Young-Bum; Jeung, Hee-Do; Choi, Kwang-Sik; Jeon, You-Jin

    2016-04-01

    The popular edible seaweed, Gelidium amansii is broadly used as food worldwide. To determine whether G. amansii extract (GAE) has protective effects on obesity, mice fed a high-fat diet (HFD) treated with GAE (1 and 3 %) were studied. After 12 weeks of GAE treatment, body weight was greatly decreased in mice fed a high-fat diet. This effect could be due to decreased adipogenesis, as evidenced by the fact that GAE suppressed adipogenic gene expression in adipocytes. In addition, blood glucose and serum insulin levels were reduced by GAE treatment in mice fed a high-fat diet, suggesting improvement in glucose metabolism. GAE supplementation also led to a significant decrease in total cholesterol and triglyceride levels. These data are further confirmed by H&E staining. Our findings indicate that Gelidium amansii prevents against the development of diet-induced obesity, and further implicate that GAE supplementation could be the therapeutical option for treatment of metabolic disorder such as obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats.

    Science.gov (United States)

    Seoane-Collazo, Patricia; Martínez de Morentin, Pablo B; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel

    2014-05-01

    Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.

  16. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain.

    Science.gov (United States)

    Lauritzen, Knut H; Hasan-Olive, Md Mahdi; Regnell, Christine E; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-12-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABA A ) receptor subunits α 1 . However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    Science.gov (United States)

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-03

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (Plycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (Plycopene helps to protect HFD induced cognitive dysfunction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  18. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Science.gov (United States)

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  19. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-01-01

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD 10 dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-α, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 ± 14.0 nmol/min/g heart in ND versus 400.2 ± 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-α2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating the JAK/STAT3

  20. Influence of Different Diets on Development of DMH-Induced Aberrant Crypt Foci and Colon Tumor Incidence in Wistar Rats

    DEFF Research Database (Denmark)

    Kristiansen, E.; Thorup, I.; Meyer, Otto A.

    1995-01-01

    The present study was undertaken to investigate certain dietary factors known to affect the development of colon cancer for their ability to modulate aberrant crypt foci (ACI;). Male Wistar rats were initiated with oral noses of dimethylhydrazine dihydrochloride (DMH-2HCl, 20 mg/kg body wt) once...... a week for to or 20 weeks. Throughout the study the animals were fed I) semisynthetic casein-based control diet, 2) control diet with 20% lard, 3) control diet with 20% lard and 20% dietary fiber, or 4) control diet where most of the carbohydrate pool was substituted with sucrose and dextrin....... The composition of the different diets was designed to achieve equivalent intakes of essential nutrients. Animals were killed after 10, 20, and 31 weeks. The study showed a pronounced effect of dietary composition on the development of DMH-induced ACF. The diet high in sucrose and dextrin caused a statistically...

  1. Ketogenic diet prevents neuronal firing increase within the substantia nigra during pentylenetetrazole-induced seizure in rats.

    Science.gov (United States)

    Viggiano, Andrea; Stoddard, Madison; Pisano, Simone; Operto, Francesca Felicia; Iovane, Valentina; Monda, Marcellino; Coppola, Giangennaro

    2016-07-01

    The mechanism responsible for the anti-seizure effect of ketogenic diets is poorly understood. Because the substantia nigra pars reticulata (SNr) is a "gate" center for seizures, the aim of the present experiment was to evaluate if a ketogenic diet modifies the neuronal response of this nucleus when a seizure-inducing drug is administered in rats. Two groups of rats were given a standard diet (group 1) or a ketogenic diet (group 2) for four weeks, then the threshold for seizure induction and the firing rate of putative GABAergic neurons within the SNr were evaluated with progressive infusion of pentylenetetrazole under general anesthesia. The results demonstrated that the ketogenic diet abolished the correlation between the firing rate response of SNr-neurons and the seizure-threshold. This result suggests that the anti-seizure effect of ketogenic diets can be due to a decrease in reactivity of GABAergic SNr-neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yewei Ji

    2014-07-01

    Full Text Available Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD, not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO. Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

  3. A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats.

    Science.gov (United States)

    Batacan, R B; Fenning, A S; Dalbo, V J; Scanlan, A T; Duncan, M J; Moore, R J; Stanley, D

    2017-06-01

    Intestinal microbiota modulates the development of clinical conditions, including metabolic syndrome and obesity. Many of these conditions are influenced by nutritional and exercise behaviours. This study aimed to investigate the ability of exercise to re-shape the intestinal microbiota and the influence of the diet on the process. A rat model was used to examine the intestinal microbiota responses to four activity conditions, including: high-intensity interval training (HIIT), light-intensity training (LIT), sedentary and normal control, each containing two nutritional conditions: high-fat high-fructose diet (HF) and standard chow (SC) diet. No significant differences in microbiota were apparent between activity conditions in rats fed a HF diet but changes in the presence/absence of phylotypes were observed in the LIT and HIIT groups. In rats fed SC, significant differences in intestinal microbiota were evident between exercised and nonexercised rats. Both LIT and HIIT induced significant differences in intestinal microbiota in SC-fed rats compared to their respective SC-fed controls. Characterization of the exercise-induced bacterial phylotypes indicated an increase in bacteria likely capable of degrading resistant polysaccharides and an increase in short chain fatty acid producers. While a significant effect of exercise on microbiota composition occurred in SC-fed rats, the HF-fed rats microbiota showed little response. These data suggest that a HF diet prevented microbiota differentiation in response to exercise. The importance of diet-exercise interaction is extended to the level of intestinal bacteria and gut health. © 2017 The Society for Applied Microbiology.

  4. Pentoxifylline Attenuates Methionine- and Choline-Deficient-Diet-Induced Steatohepatitis by Suppressing TNF-α Expression and Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Min Kyung Chae

    2012-01-01

    Full Text Available Background. Pentoxifylline (PTX anti-TNF properties are known to exert hepatoprotective effects in various liver injury models. The aim of this study was to investigate whether PTX has beneficial roles in the development of methionine- and choline-deficient-(MCD- diet-induced NAFLD SD rats in vivo and TNF-α-induced Hep3B cells in vitro. Methods. SD Rats were classified according to diet (chow or MCD diet and treatment (normal saline or PTX injection over a period of 4 weeks: group I (chow + saline, n=4, group II (chow + PTX, group III (MCD + saline, and group IV (MCD + PTX. Hep3B cells were treated with 100 ng/ml TNF-α (24 h in the absence or presence of PTX (1 mM. Results. PTX attenuated MCD-diet-induced serum ALT levels and hepatic steatosis. In real-time PCR and western blotting analysis, PTX decreased MCD-diet-induced TNF-alpha mRNA expression and proapoptotic unfolded protein response by ER stress (GRP78, p-eIF2, ATF4, IRE1α, CHOP, and p-JNK activation in vivo. PTX (1 mM reduced TNF-α-induced activation of GRP78, p-eIF2, ATF4, IRE1α, and CHOP in vitro. Conclusion. PTX has beneficial roles in the development of MCD-diet-induced steatohepatitis through partial suppression of TNF-α and ER stress.

  5. Palmitate diet-induced loss of cardiac caveolin-3: a novel mechanism for lipid-induced contractile dysfunction.

    Directory of Open Access Journals (Sweden)

    Catherine J Knowles

    Full Text Available Obesity is associated with an increased risk of cardiomyopathy, and mechanisms linking the underlying risk and dietary factors are not well understood. We tested the hypothesis that dietary intake of saturated fat increases the levels of sphingolipids, namely ceramide and sphingomyelin in cardiac cell membranes that disrupt caveolae, specialized membrane micro-domains and important for cellular signaling. C57BL/6 mice were fed two high-fat diets: palmitate diet (21% total fat, 47% is palmitate, and MCT diet (21% medium-chain triglycerides, no palmitate. We established that high-palmitate feeding for 12 weeks leads to 40% and 50% increases in ceramide and sphingomyelin, respectively, in cellular membranes. Concomitant with sphingolipid accumulation, we observed a 40% reduction in systolic contractile performance. To explore the relationship of increased sphingolipids with caveolins, we analyzed caveolin protein levels and intracellular localization in isolated cardiomyocytes. In normal cardiomyocytes, caveolin-1 and caveolin-3 co-localize at the plasma membrane and the T-tubule system. However, mice maintained on palmitate lost 80% of caveolin-3, mainly from the T-tubule system. Mice maintained on MCT diet had a 90% reduction in caveolin-1. These data show that caveolin isoforms are sensitive to the lipid environment. These data are further supported by similar findings in human cardiac tissue samples from non-obese, obese, non-obese cardiomyopathic, and obese cardiomyopathic patients. To further elucidate the contractile dysfunction associated with the loss of caveolin-3, we determined the localization of the ryanodine receptor and found lower expression and loss of the striated appearance of this protein. We suggest that palmitate-induced loss of caveolin-3 results in cardiac contractile dysfunction via a defect in calcium-induced calcium release.

  6. Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion.

    Science.gov (United States)

    Haohao, Zhang; Guijun, Qin; Juan, Zheng; Wen, Kong; Lulu, Chen

    2015-03-01

    Although resveratrol (RES) is thought to be a key regulator of insulin sensitivity in rodents, the exact mechanism underlying this effect remains unclear. Therefore, we sought to investigate how RES affects skeletal muscle oxidative and antioxidant levels of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial populations in high-fat diet (HFD)-induced insulin resistance (IR) rats. Systemic and skeletal muscle insulin sensitivity together with expressions of several genes related to mitochondrial biogenesis and skeletal muscle SIRT1, SIRT3 protein levels were studied in rats fed a normal diet, a HFD, and a HFD with intervention of RES for 8 weeks. Oxidative stress levels and antioxidant enzyme activities were assessed in SS and IMF mitochondria. HFD fed rats exhibited obvious systemic and skeletal muscle IR as well as decreased SIRT1 and SIRT3 expressions, mitochondrial DNA (mtDNA), and mitochondrial biogenesis (p diet induced IR, increased SIRT1 and SIRT3 expressions, mtDNA, and mitochondrial biogenesis (p competence in HFD rats.

  7. Sweet potato (Ipomoea batatas) attenuates diet-induced aortic stiffening independent of changes in body composition.

    Science.gov (United States)

    Garner, Tyler; Ouyang, An; Berrones, Adam J; Campbell, Marilyn S; Du, Bing; Fleenor, Bradley S

    2017-08-01

    We hypothesized a sweet potato intervention would prevent high-fat (HF) diet-induced aortic stiffness, which would be associated with decreased arterial oxidative stress and increased mitochondrial uncoupling. Young (8-week old) C57BL/6J mice were randomly divided into 4 groups: low fat (LF; 10% fat), HF (60% fat), low-fat sweet potato (LFSP; 10% fat containing 260.3 μg/kcal sweet potato), or high-fat sweet potato diet (HFSP; 60% fat containing 260.3 μg/kcal sweet potato) for 16 weeks. Compared with LF and LFSP, HF- and HFSP-fed mice had increased body mass and percent fat mass with lower percent lean mass (all, P Sweet potato intervention did not influence body composition (all, P > 0.05). Arterial stiffness, assessed by aortic pulse wave velocity and ex vivo mechanical testing of the elastin region elastic modulus (EEM) was greater in HF compared with LF and HFSP animals (all, P sweet potato attenuates diet-induced aortic stiffness independent of body mass and composition, which is associated with a normalization of arterial oxidative stress possibly due to mitochondrial uncoupling.

  8. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice.

    Science.gov (United States)

    Wang, Zhi; Li, Liaoliao; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2015-08-01

    Obesity can cause pathological changes in organs. We determined the effects of chronic high fat diet (HFD) and intermittent fasting, a paradigm providing organ protection, on mouse heart. Seven-week old CD1 male mice were randomly assigned to control, HFD and intermittent fasting groups. Control mice had free access to regular diet (RD). RD was provided every other day to mice in the intermittent fasting group. Mice in HFD group had free access to HFD. Their left ventricles were harvested 11 months after they had been on these diet regimens. HFD increased cardiomyocyte cross-section area and fibrosis. HFD decreased active caspase 3, an apoptosis marker, and the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3) II/LC3I, an autophagy marker. HFD increased the phospho-glycogen synthase kinase-3β (GSK-3β) at Ser9, a sign of GSK-3β inhibition. Nuclear GATA binding protein 4 and yes-associated protein, two GSK-3β targeting transcription factors that can induce hypertrophy-related gene expression, were increased in HFD-fed mice. Mice on intermittent fasting did not have these changes except for the increased active caspase 3 and decreased ratio of LC3II/LC3I. These results suggest that chronic HFD induces myocardial hypertrophy and fibrosis, which may be mediated by GSK-3β inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity.

    Science.gov (United States)

    Li, G; Liu, J-Y; Zhang, H-X; Li, Q; Zhang, S-W

    2015-01-01

    It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by high-fat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity.

  10. Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis.

    Directory of Open Access Journals (Sweden)

    June-Chul Lee

    Full Text Available Consumption of a typical Western diet is a risk factor for several disorders. Metabolic syndrome is the most common disease associated with intake of excess fat. However, the incidence of inflammatory bowel disease is also greater in subjects consuming a Western diet, although the mechanism of this phenomenon is not clearly understood. We examined the morphological and functional changes of the intestine, the first site contacting dietary fat, in mice fed a high-fat diet (HFD inducing obesity. Paneth cell area and production of antimicrobial peptides by Paneth cells were decreased in HFD-fed mice. Goblet cell number and secretion of mucin by goblet cells were also decreased, while intestinal permeability was increased in HFD-fed mice. HFD-fed mice were more susceptible to experimental colitis, and exhibited severe colonic inflammation, accompanied by the expansion of selected pathobionts such as Atopobium sp. and Proteobacteria. Fecal microbiota transplantation transferred the susceptibility to DSS-colitis, and antibiotic treatment abrogated colitis progression. These data suggest that an experimental HFD-induced Paneth cell dysfunction and subsequent intestinal dysbiosis characterized by pathobiont expansion can be predisposing factors to the development of inflammatory bowel disease.

  11. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures.

    Science.gov (United States)

    Holm, Jacob Bak; Rønnevik, Alexander; Tastesen, Hanne Sørup; Fjære, Even; Fauske, Kristin Røen; Liisberg, Ulrike; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2016-05-01

    High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Activation of hindbrain neurons in response to gastrointestinal lipid is attenuated by high fat, high energy diets in mice prone to diet-induced obesity.

    Science.gov (United States)

    Donovan, Michael J; Paulino, Gabriel; Raybould, Helen E

    2009-01-12

    Food intake is controlled by peripheral signals from the gastrointestinal tract and adipocytes, which are integrated within the central nervous system. There is evidence that signals from the GI tract are modulated by long term changes in diet, possibly leading to hyperphagia and increased body weight. We tested the hypothesis that diet-induced obese-prone (DIO-P) and obese-resistant (DIO-R) mice strains differ in the long term adaptive response of the gut-brain pathway to a high fat diet. Immunochemical detection of Fos protein was used as a measure of neuronal activation in the nucleus of the solitary tract (NTS) in response to intragastric administration of lipid in DIO-P (C57Bl6) and DIO-R (129sv) mouse strains maintained on chow or high fat, high energy diets (45% or 60% kcal from fat). Intragastric lipid administration activated neurons in the NTS in both DIO-P and DIO-R mice; the number of activated neurons was significantly greater in DIO-P than in DIO-R mice (Pdiet, for 4 or 8 weeks, compared to chow fed controls (Pdiet (45% or 60%) had no effect on lipid-induced activation of NTS neurons. These results demonstrate that DIO-P and DIO-R mice strains differ in the adaptation of the pathway to long term ingestion of high fat diets, which may contribute to decrease satiation and increased food intake.

  13. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13 C-lactate/ 13 C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. Psidium guajava Linn. leaf extract affects hepatic glucose transporter-2 to attenuate early onset of insulin resistance consequent to high fructose intake: An experimental study

    Science.gov (United States)

    Mathur, R.; Dutta, Shagun; Velpandian, T.; Mathur, S.R.

    2015-01-01

    Background: Insulin resistance (IR) is amalgam of pathologies like altered glucos metabolism, dyslipidemia, impaired glucose tolerance, non-alcoholic fatty liver disease, and associated with type-II diabetes and cardiometabolic diseases. One of the reasons leading to its increased and early incidence is understood to be a high intake of processed fructose containing foods and beverages by individuals, especially, during critical developmental years. Objective: To investigate the preventive potential of aqueous extract of Psidium guajava leaves (PG) against metabolic pathologies, vis-à-vis, IR, dyslipidemia, hyperleptinemia and hypertension, due to excess fructose intake initiated during developmental years. Materials and Methods: Post-weaning (4 weeks old) male rats were provided fructose (15%) as drinking solution, ad libitum, for 8 weeks and assessed for food and water/fructose intake, body weight, fasting blood sugar, mean arterial pressure, lipid biochemistry, endocrinal (insulin, leptin), histopathological (fatty liver) and immunohistochemical (hepatic glucose transporter [GLUT2]) parameters. Parallel treatment groups were administered PG in doses of 250 and 500 mg/kg/d, po × 8 weeks and assessed for same parameters. Using extensive liquid chromatography-mass spectrometry protocols, PG was analyzed for the presence of phytoconstituents like Myrecetin, Luteolin, Kaempferol and Guavanoic acid and validated to contain Quercetin up to 9.9%w/w. Results: High fructose intake raised circulating levels of insulin and leptin and hepatic GLUT2 expression to promote IR, dyslipidemia, and hypertension that were favorably re-set with PG. Although PG is known for its beneficial role in diabetes mellitus, for the first time we report its potential in the management of lifelong pathologies arising from high fructose intake initiated during developmental years. PMID:25829790

  15. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway

    Science.gov (United States)

    Vernia, Santiago; Cavanagh-Kyros, Julie; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway. PMID:24186979

  16. Increased susceptibility to diet-induced obesity in histamine-deficient mice

    DEFF Research Database (Denmark)

    Jørgensen, Emilie A; Vogelsang, Thomas W; Knigge, Ulrich

    2006-01-01

    in the development of high-fat diet (HFD)-induced obesity. METHODS: Histamine-deficient histidine decarboxylase knock-out (HDC-KO) mice and C57BL/6J wild-type (WT) mice were given either a standard diet (STD) or HFD for 8 weeks. Body weight, 24-hour caloric intake, epididymal adipose tissue size, plasma leptin...... weeks, whereas a significant difference in body weight gain was first observed after 5 weeks in WT mice. After 8 weeks 24-hour caloric intake was significantly lower in HFD- than in STD-fed WT mice. In HDC-KO mice no difference in caloric intake was observed between HFD- and STD-fed mice. After 8 weeks...

  17. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure

    DEFF Research Database (Denmark)

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H

    2016-01-01

    Maintenance of body temperature in cold-exposed animals requires induction of thermogenesis and management of fuel. Here, we demonstrated that reducing ambient temperature attenuated diet-induced obesity (DIO), which was associated with increased iBAT thermogenesis and a plasma bile acid profile...... similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae......, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota...

  18. High fat diet aggravates arsenic induced oxidative stress in rat heart and liver.

    Science.gov (United States)

    Dutta, Mousumi; Ghosh, Debosree; Ghosh, Arnab Kumar; Bose, Gargi; Chattopadhyay, Aindrila; Rudra, Smita; Dey, Monalisa; Bandyopadhyay, Arkita; Pattari, Sanjib K; Mallick, Sanjaya; Bandyopadhyay, Debasish

    2014-04-01

    Arsenic is a well known global groundwater contaminant. Exposure of human body to arsenic causes various hazardous effects via oxidative stress. Nutrition is an important susceptible factor which can affect arsenic toxicity by several plausible mechanisms. Development of modern civilization led to alteration in the lifestyle as well as food habits of the people both in urban and rural areas which led to increased use of junk food containing high level of fat. The present study was aimed at investigating the effect of high fat diet on heart and liver tissues of rats when they were co-treated with arsenic. This study was established by elucidating heart weight to body weight ratio as well as analysis of the various functional markers, oxidative stress biomarkers and also the activity of the antioxidant enzymes. Histological analysis confirmed the biochemical investigations. From this study it can be concluded that high fat diet increased arsenic induced oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep.

    Science.gov (United States)

    Lan, Xianyong; Cretney, Evan C; Kropp, Jenna; Khateeb, Karam; Berg, Mary A; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E; Khatib, Hasan

    2013-01-01

    Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller's grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  20. Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep

    Directory of Open Access Journals (Sweden)

    Xianyong eLan

    2013-04-01

    Full Text Available Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from d 67 ± 3 of gestation until necropsy (d 130 ± 1, they were fed one of three diets of alfalfa haylage (HY; fiber, corn (CN; starch, or dried corn distiller’s grains (DG; fiber plus protein plus fat. A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methylatransferase (DNMTs genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  1. Phytosterols protect against diet-induced hypertriglyceridemia in Syrian golden hamsters

    Science.gov (United States)

    2014-01-01

    Background In addition to lowering LDL-C, emerging data suggests that phytosterols (PS) may reduce blood triglycerides (TG), however, the underlying mechanisms are not known. Methods We examined the TG-lowering mechanisms of dietary PS in Syrian golden hamsters randomly assigned to a high fat (HF) diet or the HF diet supplemented with PS (2%) for 6 weeks (n = 12/group). An additional subset of animals (n = 12) was provided the HF diet supplemented with ezetimibe (EZ, 0.002%) as a positive control as it is a cholesterol-lowering agent with known TG-lowering properties. Results In confirmation of diet formulation and compound delivery, both the PS and EZ treatments lowered (p < 0.05) intestinal cholesterol absorption (24 and 31%, respectively), blood non-HDL cholesterol (61 and 66%, respectively), and hepatic cholesterol (45 and 55%, respectively) compared with the HF-fed animals. Blood TG concentrations were lower (p < 0.05) in the PS (49%) and EZ (68%)-treated animals compared with the HF group. The TG-lowering response in the PS-supplemented group was associated with reduced (p < 0.05) intestinal SREBP1c mRNA (0.45 fold of HF), hepatic PPARα mRNA (0.73 fold of HF), hepatic FAS protein abundance (0.68 fold of HD), and de novo lipogenesis (44%) compared with the HF group. Similarly, lipogenesis was lower in the EZ-treated animals, albeit through a reduction in the hepatic protein abundance of ACC (0.47 fold of HF). Conclusions Study results suggest that dietary PS are protective against diet-induced hypertriglyceridemia, likely through multiple mechanisms that involve modulation of intestinal fatty acid metabolism and a reduction in hepatic lipogenesis. PMID:24393244

  2. Baccaurea angulata fruit juice ameliorates altered hematological and biochemical biomarkers in diet-induced hypercholesterolemic rabbits.

    Science.gov (United States)

    Ahmed, Idris Adewale; Mikail, Maryam Abimbola; Ibrahim, Muhammad

    2017-06-01

    Hypercholesterolemia is an important risk factor linked to the alteration of blood hematology and clinical chemistry associated with the development and progression of atherosclerosis. Previous studies have demonstrated the safety and potential health benefits of Baccaurea angulata (BA) fruit. We hypothesized that the oral administration of BA fruit juice could ameliorate the alteration in the hematological and biochemical biomarkers of diet-induced hypercholesterolemic rabbits. The aim of this study was to investigate the effects of different doses of BA juice on the hematological and biochemical biomarkers in normo- and hypercholesterolemic rabbits. Thirty-five healthy adult New Zealand White rabbits were assigned to seven different groups for 90days of diet intervention. Four atherogenic groups were fed a 1% cholesterol diet and 0, 0.5, 1.0, and 1.5mL of BA juice per kg of rabbit daily. The other three normal groups were fed a commercial rabbit pellet diet and 0, 0.5, and 1.0mL of BA juice per kg of rabbit daily. Baseline and final blood samples after 90days of repeated administration BA juice were analyzed for hematological parameters while serum, aortic and hepatic lysates were analyzed for lipid profiles and other biochemical biomarkers. The alteration of the hemopoietic system, physiological changes in serum and tissues lipid profiles and other biochemicals resulting from the consumption of a high-cholesterol diet were significantly (Pjuice. Improvements of the biomarkers in rabbits were dose-dependent, markedly enhanced at the highest dose of juice (1.5mL/kg/day). The results suggest potential health benefits of the antioxidant-rich BA fruit juice against hypercholesterolemia-associated hematological and biochemical alterations in the rabbit. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Behavioral changes induced by cocaine in mice are modified by a hyperlipidic diet or recombinant leptin

    Directory of Open Access Journals (Sweden)

    E. Erhardt

    2006-12-01

    Full Text Available The objective of the present study was to determine if the acute behavioral effects of cocaine acutely administered intraperitoneally (ip at doses of 5, 10 and 20 mg/kg on white male CF1 mice, 90 days of age, would be influenced by leptin acutely administered ip (at doses of 5, 10 and 20 µg/kg or by endogenous leptin production enhanced by a high-fat diet. The acute behavioral effects of cocaine were evaluated in open-field, elevated plus-maze and forced swimming tests. Results were compared between a group of 80 mice consuming a balanced diet and a high-fat diet, and a group of 80 mice fed a commercially available rodent chow formula (Ralston Purina but receiving recombinant leptin (rLeptin or saline ip. Both the high-fat-fed and rLeptin-treated mice showed decreased locomotion in the open-field test, spent more time in the open arms of the elevated plus-maze and showed less immobility time in the forced swimming test (F(1,68 = 7.834, P = 0.007. There was an interaction between diets and cocaine/saline treatments in locomotion (F(3,34 = 3.751, P = 0.020 and exploration (F(3,34 = 3.581, P = 0.024. These results suggest that anxiolytic effects and increased general activity were induced by leptin in cocaine-treated mice and that low leptin levels are associated with behavioral depression. Chronic changes in diet composition producing high leptin levels or rLeptin treatment may result in an altered response to cocaine in ethologic tests that measure degrees of anxiety and depression, which could be attributed to an antagonistic effect of leptin.

  4. Prior exercise training blunts short-term high-fat diet-induced weight gain.

    Science.gov (United States)

    Snook, Laelie A; MacPherson, Rebecca E K; Monaco, Cynthia M F; Frendo-Cumbo, Scott; Castellani, Laura; Peppler, Willem T; Anderson, Zachary G; Buzelle, Samyra L; LeBlanc, Paul J; Holloway, Graham P; Wright, David C

    2016-08-01

    High-fat diets rapidly cause weight gain and glucose intolerance. We sought to determine whether these changes could be mitigated with prior exercise training. Male C57BL/6J mice were exercise-trained by treadmill running (1 h/day, 5 days/wk) for 4 wk. Twenty-four hours after the final bout of exercise, mice were provided with a high-fat diet (HFD; 60% kcal from lard) for 4 days, with no further exercise. In mice fed the HFD prior to exercise training, the results were blunted weight gain, reduced fat mass, and a slight attenuation in glucose intolerance that was mirrored by greater insulin-induced Akt phosphorylation in skeletal muscle compared with sedentary mice fed the HFD. When ad libitum-fed sedentary mice were compared with sedentary high-fat fed mice that were calorie restricted (-30%) to match the weight gain of the previously trained high-fat fed mice, the same attenuated impairments in glucose tolerance were found. Blunted weight gain was associated with a greater capacity to increase energy expenditure in trained compared with sedentary mice when challenged with a HFD. Although mitochondrial enzymes in white adipose tissue and UCP-1 protein content in brown adipose tissue were increased in previously exercised compared with sedentary mice fed a HFD, ex vivo mitochondrial respiration was not increased in either tissue. Our data suggest that prior exercise training attenuates high-fat diet-induced weight gain and glucose intolerance and is associated with a greater ability to increase energy expenditure in response to a high-fat diet. Copyright © 2016 the American Physiological Society.

  5. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    International Nuclear Information System (INIS)

    Yasuda-Yamahara, Mako; Kume, Shinji; Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi; Koya, Daisuke; Haneda, Masakzu; Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi

    2015-01-01

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding

  6. Diet-induced obesity causes ghrelin resistance in reward processing tasks.

    Science.gov (United States)

    Lockie, Sarah H; Dinan, Tara; Lawrence, Andrew J; Spencer, Sarah J; Andrews, Zane B

    2015-12-01

    Diet-induced obesity (DIO) causes ghrelin resistance in hypothalamic Agouti-related peptide (AgRP) neurons. However, ghrelin promotes feeding through actions at both the hypothalamus and mesolimbic dopamine reward pathways. Therefore, we hypothesized that DIO would also establish ghrelin resistance in the ventral tegmental area (VTA), a major site of dopaminergic cell bodies important in reward processing. We observed reduced sucrose and saccharin consumption in Ghrelin KO vs Ghrelin WT mice. Moreover, DIO reduced saccharin consumption relative to chow-fed controls. These data suggest that the deletion of ghrelin and high fat diet both cause anhedonia. To assess if these are causally related, we tested whether DIO caused ghrelin resistance in a classic model of drug reward, conditioned place preference (CPP). Chow or high fat diet (HFD) mice were conditioned with ghrelin (1mg/kg in 10ml/kg ip) in the presence or absence of food in the conditioning chamber. We observed a CPP to ghrelin in chow-fed mice but not in HFD-fed mice. HFD-fed mice still showed a CPP for cocaine (20mg/kg), indicating that they maintained the ability to develop conditioned behaviour. The absence of food availability during ghrelin conditioning sessions induced a conditioned place aversion, an effect that was still present in both chow and HFD mice. Bilateral intra-VTA ghrelin injection (0.33μg/μl in 0.5μl) robustly increased feeding in both chow-fed and high fat diet (HFD)-fed mice; however, this was correlated with body weight only in the chow-fed mice. Our results suggest that DIO causes ghrelin resistance albeit not directly in the VTA. We suggest there is impaired ghrelin sensitivity in upstream pathways regulating reward pathways, highlighting a functional role for ghrelin linking appropriate metabolic sensing with reward processing. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda-Yamahara, Mako [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Kume, Shinji, E-mail: skume@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Koya, Daisuke [Department of Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Haneda, Masakzu [Division of Metabolism and Biosystemic Science, Asahikawa Medical University, Asahikawa, Hokkaido (Japan); Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan)

    2015-09-18

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding.

  8. Diet-induced obesity associated with steatosis, oxidative stress, and inflammation in liver.

    Science.gov (United States)

    Peng, Yanhua; Rideout, Drew; Rakita, Steven; Lee, James; Murr, Michel

    2012-01-01

    Obesity induces steatosis and increases oxidative stress, as well as chronic inflammation in the liver. The balance between lipogenesis and lipolysis is disrupted in obese animals. At a cellular level, the changes in metabolic sensors and energy regulators are poorly understood. We hypothesized that diet-induced steatosis increases oxidative stress, inflammation, and changes the metabolic regulators to promote energy storage in mice. The setting was a university-affiliated basic science research laboratory. Four-week-old C57BL mice were fed a high-fat diet (n = 8) or regular chow (n = 8) for 7 weeks. The liver sections were stained for fat content and immunofluorescence. Liver homogenates were used for protein analysis by immunoblotting and mRNA analysis by reverse transcriptase-polymerase chain reaction. The gels were quantified using densitometry P ≤ .05 was considered significant. The high-fat diet upregulated protein kinase-C atypical isoforms ζ and λ and decreased glucose tolerance and the interaction of insulin receptor substrate 2 with phosphoinositide kinase-3. The high-fat diet increased the transcriptional factors liver X receptor (4321 ± 98 versus 2981 ± 80) and carbohydrate response element-binding protein (5132 ± 135 versus 3076 ± 91), the lipogenesis genes fatty acid binding protein 5, stearoyl-co-enzyme A desaturase-1, and acetyl-co-enzyme A carboxylase protein, and fatty acid synthesis. The high-fat diet decreased 5'-adenosine monophosphate-activated protein kinase (2561 ± 78 versus 1765 ± 65), glucokinase-3β (2.214 ± 34 versus 3356 ± 86), and SIRT1 (2015 ± 76 versus 3567 ± 104) and increased tumor necrosis factor-α (3415 ± 112 versus 2042 ± 65), nuclear factor kappa B (5123 ± 201 versus 2562 ± 103), cyclooxygenase-2 (4230 ± 113 versus 2473 ± 98), nicotinamide-adenine dinucleotide phosphate oxidase (3501 ± 106 versus 1600 ± 69) and reactive oxygen species production (all P high-fat diet impairs glucose tolerance and hepatic

  9. Predictors of Diet-Induced Weight Loss in Overweight Adults with Type 2 Diabetes.

    Directory of Open Access Journals (Sweden)

    Kirsten A Berk

    Full Text Available A very low calorie diet improves the metabolic regulation of obesity related type 2 diabetes, but not for all patients, which leads to frustration in patients and professionals alike. The aim of this study was to develop a prediction model of diet-induced weight loss in type 2 diabetes.192 patients with type 2 diabetes and BMI>27 kg/m2 from the outpatient diabetes clinic of the Erasmus Medical Center underwent an 8-week very low calorie diet. Baseline demographic, psychological and physiological parameters were measured and the C-index was calculated of the model with the largest explained variance of relative weight loss using backward linear regression analysis. The model was internally validated using bootstrapping techniques.Weight loss after the diet was 7.8±4.6 kg (95%CI 7.2-8.5; p<0.001 and was independently associated with the baseline variables fasting glucose (B = -0.33 (95%CI -0.49, -0.18, p = 0.001, anxiety (HADS; B = -0.22 (95%CI -0.34, -0.11, p = 0.001, numb feeling in extremities (B = 1.86 (95%CI 0.85, 2.87, p = 0.002, insulin dose (B = 0.01 (95%CI 0.00, 0.02, p = 0.014 and waist-to-hip ratio (B = 6.79 (95%CI 2.10, 11.78, p = 0.003. This model explained 25% of the variance in weight loss. The C-index of this model to predict successful (≥5% weight loss was 0.74 (95%CI 0.67-0.82, with a sensitivity of 0.93 (95% CI 0.89-0.97 and specificity of 0.29 (95% CI 0.16-0.42. When only the obese T2D patients (BMI≥30 kg/m2; n = 181 were considered, age also contributed to the model (B = 0.06 (95%CI 0.02, 0.11, p = 0.008, whereas waist-to-hip ratio did not.Diet-induced weight loss in overweight adults with T2D was predicted by five baseline parameters, which were predominantly diabetes related. However, failure seems difficult to predict. We propose to test this prediction model in future prospective diet intervention studies in patients with type 2 diabetes.

  10. Junk food diet-induced obesity increases D2 receptor autoinhibition in the ventral tegmental area and reduces ethanol drinking.

    Science.gov (United States)

    Cook, Jason B; Hendrickson, Linzy M; Garwood, Grant M; Toungate, Kelsey M; Nania, Christina V; Morikawa, Hitoshi

    2017-01-01

    Similar to drugs of abuse, the hedonic value of food is mediated, at least in part, by the mesostriatal dopamine (DA) system. Prolonged intake of either high calorie diets or drugs of abuse both lead to a blunting of the DA system. Most studies have focused on DAergic alterations in the striatum, but little is known about the effects of high calorie diets on ventral tegmental area (VTA) DA neurons. Since high calorie diets produce addictive-like DAergic adaptations, it is possible these diets may increase addiction susceptibility. However, high calorie diets consistently reduce psychostimulant intake and conditioned place preference in rodents. In contrast, high calorie diets can increase or decrease ethanol drinking, but it is not known how a junk food diet (cafeteria diet) affects ethanol drinking. In the current study, we administered a cafeteria diet consisting of bacon, potato chips, cheesecake, cookies, breakfast cereals, marshmallows, and chocolate candies to male Wistar rats for 3-4 weeks, producing an obese phenotype. Prior cafeteria diet feeding reduced homecage ethanol drinking over 2 weeks of testing, and transiently reduced sucrose and chow intake. Importantly, cafeteria diet had no effect on ethanol metabolism rate or blood ethanol concentrations following 2g/kg ethanol administration. In midbrain slices, we showed that cafeteria diet feeding enhances DA D2 receptor (D2R) autoinhibition in VTA DA neurons. These results show that junk food diet-induced obesity reduces ethanol drinking, and suggest that increased D2R autoinhibition in the VTA may contribute to deficits in DAergic signaling and reward hypofunction observed with obesity.

  11. SOCS-1 deficiency does not prevent diet-induced insulin resistance

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Macotela, Yazmin; Boucher, Jérémie

    2008-01-01

    Obesity is associated with inflammation and increased expression of suppressor of cytokine signaling (SOCS) proteins, which inhibit cytokine and insulin signaling. Thus, reducing SOCS expression could prevent the development of obesity-induced insulin resistance. Using SOCS-1 knockout mice, we...... investigated the contribution of SOCS-1 in the development of insulin resistance induced by a high-fat diet (HFD). SOCS-1 knockout mice on HFD gained 70% more weight, displayed a 2.3-fold increase in epididymal fat pads mass and increased hepatic lipid content. This was accompanied by increased mRNA expression...... of leptin and the macrophage marker CD68 in white adipose tissue and of SREBP1c and FAS in liver. HFD also induced hyperglycemia in SOCS-1 deficient mice with impairment of glucose and insulin tolerance tests. Thus, despite the role of SOCS proteins in obesity-related insulin resistance, SOCS-1 deficiency...

  12. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    Science.gov (United States)

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Behavioral characterization of a model of differential susceptibility to obesity induced by standard and personalized cafeteria diet feeding.

    Science.gov (United States)

    Gac, L; Kanaly, V; Ramirez, V; Teske, J A; Pinto, M P; Perez-Leighton, C E

    2015-12-01

    Despite the increase in obesity prevalence over the last decades, humans show large inter-individual variability for susceptibility to diet-induced obesity. Understanding the biological basis of this susceptibility could identify new therapeutic alternatives against obesity. We characterized behavioral changes associated with propensity to obesity induced by cafeteria (CAF) diet consumption in mice. We show that Balb/c mice fed a CAF diet display a large inter-individual variability in susceptibility to diet-induced obesity, such that based on changes in adiposity we can classify mice as obesity prone (OP) or obesity resistant (OR). Both OP and OR were hyperphagic relative to control-fed mice but caloric intake was similar between OP and OR mice. In contrast, OR had a larger increase in locomotor activity following CAF diet compared to OP mice. Obesity resistant and prone mice showed similar intake of sweet snacks, but OR ate more savory snacks than OP mice. Two bottle sucrose preference tests showed that OP decreased their sucrose preference compared to OR mice after CAF diet feeding. Finally, to test the robustness of the OR phenotype in response to further increases in caloric intake, we fed OR mice with a personalized CAF (CAF-P) diet based on individual snack preferences. When fed a CAF-P diet, OR increased their calorie intake compared to OP mice fed the standard CAF diet, but did not reach adiposity levels observed in OP mice. Together, our data show the contribution of hedonic intake, individual snack preference and physical activity to individual susceptibility to obesity in Balb/c mice fed a standard and personalized cafeteria-style diet. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Hepatoprotective Effect and Synergism of Bisdemethoycurcumin against MCD Diet-Induced Nonalcoholic Fatty Liver Disease in Mice.

    Science.gov (United States)

    Kim, Sung-Bae; Kang, Ok-Hwa; Lee, Young-Seob; Han, Sin-Hee; Ahn, Young-Sup; Cha, Seon-Woo; Seo, Yun-Soo; Kong, Ryong; Kwon, Dong-Yeul

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, has become one of the most common causes of chronic liver disease over the last decade in developed countries. NAFLD includes a spectrum of pathological hepatic changes, such as steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Bisdemethoxycurcumin (BDMC) is polyphenolic compounds with a diarylheptanoid skeleton, curcumin close analogues, which is derived from the Curcumae Longae Rhizoma. While the rich bioavailability research of curcumin, BDMC is the poor studies. We investigated whether BDMC has the hepatoprotective effect and combinatory preventive effect with silymarin on methionine choline deficient (MCD)-diet-induced NAFLD in C57BL/6J mice. C57BL/6J mice were divided into five groups of normal (normal diet without any treatment), MCD diet (MCD diet only), MCD + silymarin (SIL) 100 mg/kg group, MCD + BDMC 100 mg/kg group, MCD + SIL 50 mg/kg + BDMC 50 mg/kg group. Body weight, liver weight, liver function tests, histological changes were assessed and quantitative real-time polymerase chain reaction and Western blot analyses were conducted after 4 weeks. Mice lost body weight on the MCD-diet, but BDMC did not lose less than the MCD-diet group. Liver weights decreased from BDMC, but they increased significantly in the MCD-diet groups. All liver function test values decreased from the MCD-diet, whereas those from the BDMC increased significantly. The MCD- diet induced severe hepatic fatty accumulation, but the fatty change was reduced in the BDMC. The BDMC showed an inhibitory effect on liver lipogenesis by reducing associated gene expression caused by the MCD-diet. In all experiments, the combinations of BDMC with SIL had a synergistic effect against MCD-diet models. In conclusion, our findings indicate that BDMC has a potential suppressive effect on NAFLD. Therefore, our data suggest that BDMC may act as a novel and potent therapeutic agent against NAFLD.

  15. Hepatoprotective Effect and Synergism of Bisdemethoycurcumin against MCD Diet-Induced Nonalcoholic Fatty Liver Disease in Mice.

    Directory of Open Access Journals (Sweden)

    Sung-Bae Kim

    Full Text Available Nonalcoholic fatty liver disease (NAFLD, the hepatic manifestation of the metabolic syndrome, has become one of the most common causes of chronic liver disease over the last decade in developed countries. NAFLD includes a spectrum of pathological hepatic changes, such as steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Bisdemethoxycurcumin (BDMC is polyphenolic compounds with a diarylheptanoid skeleton, curcumin close analogues, which is derived from the Curcumae Longae Rhizoma. While the rich bioavailability research of curcumin, BDMC is the poor studies. We investigated whether BDMC has the hepatoprotective effect and combinatory preventive effect with silymarin on methionine choline deficient (MCD-diet-induced NAFLD in C57BL/6J mice. C57BL/6J mice were divided into five groups of normal (normal diet without any treatment, MCD diet (MCD diet only, MCD + silymarin (SIL 100 mg/kg group, MCD + BDMC 100 mg/kg group, MCD + SIL 50 mg/kg + BDMC 50 mg/kg group. Body weight, liver weight, liver function tests, histological changes were assessed and quantitative real-time polymerase chain reaction and Western blot analyses were conducted after 4 weeks. Mice lost body weight on the MCD-diet, but BDMC did not lose less than the MCD-diet group. Liver weights decreased from BDMC, but they increased significantly in the MCD-diet groups. All liver function test values decreased from the MCD-diet, whereas those from the BDMC increased significantly. The MCD- diet induced severe hepatic fatty accumulation, but the fatty change was reduced in the BDMC. The BDMC showed an inhibitory effect on liver lipogenesis by reducing associated gene expression caused by the MCD-diet. In all experiments, the combinations of BDMC with SIL had a synergistic effect against MCD-diet models. In conclusion, our findings indicate that BDMC has a potential suppressive effect on NAFLD. Therefore, our data suggest that BDMC may act as a novel and potent therapeutic agent

  16. Positive interaction between prebiotics and thiazolidinedione treatment on adiposity in diet-induced obese mice.

    Science.gov (United States)

    Alligier, Maud; Dewulf, Evelyne M; Salazar, Nuria; Mairal, Aline; Neyrinck, Audrey M; Cani, Patrice D; Langin, Dominique; Delzenne, Nathalie M

    2014-07-01

    To investigate whether inulin-type fructan (ITF) prebiotics could counteract the thiazolidinedione (TZD, PPARγ activator) induced-fat mass gain, without affecting its beneficial effect on glucose homeostasis, in high-fat (HF) diet fed mice. Male C57bl6/J mice were fed a HF diet alone or supplemented with ITF prebiotics (0.2 g/day × mouse) or TZD (30 mg pioglitazone (PIO)/kg body weight × day) or both during 4 weeks. An insulin tolerance test was performed after 3 weeks of treatment. As expected, PIO improved glucose homeostasis and increased adiponectinaemia. Furthermore, it induced an over-expression of several PPARγ target genes in white adipose tissues. ITF prebiotics modulated the PIO-induced PPARγ activation in a tissue-dependent manner. The co-treatment with ITF prebiotics and PIO maintained the beneficial impact of TZD on glucose homeostasis and adiponectinaemia. Moreover, the combination of both treatments reduced fat mass accumulation, circulating lipids and hepatic triglyceride content, suggesting an overall improvement of metabolism. Finally, the co-treatment favored induction of white-to-brown fat conversion in subcutaneous adipose tissue, thereby leading to the development of brite adipocytes that could increase the oxidative capacity of the tissue. ITF prebiotics decrease adiposity and improve the metabolic response in HF fed mice treated with TZD. © 2014 The Obesity Society.

  17. Renoprotective effect of virgin coconut oil in heated palm oil diet-induced hypertensive rats.

    Science.gov (United States)

    Kamisah, Yusof; Ang, Shu-Min; Othman, Faizah; Nurul-Iman, Badlishah Sham; Qodriyah, Hj Mohd Saad

    2016-10-01

    Virgin coconut oil, rich in antioxidants, was shown to attenuate hypertension. This study aimed to investigate the effects of virgin coconut oil on blood pressure and related parameters in kidneys in rats fed with 5-times-heated palm oil (5HPO). Thirty-two male Sprague-Dawley rats were divided into 4 groups. Two groups were fed 5HPO (15%) diet and the second group was also given virgin coconut oil (1.42 mL/kg, oral) daily for 16 weeks. The other 2 groups were given basal diet without (control) and with virgin coconut oil. Systolic blood pressure was measured pre- and post-treatment. After 16 weeks, the rats were sacrificed and kidneys were harvested. Dietary 5HPO increased blood pressure, renal thiobarbituric acid reactive substance (TBARS), and nitric oxide contents, but decreased heme oxygenase activity. Virgin coconut oil prevented increase in 5HPO-induced blood pressure and renal nitric oxide content as well as the decrease in renal heme oxygenase activity. The virgin coconut oil also reduced the elevation of renal TBARS induced by the heated oil. However, neither dietary 5HPO nor virgin coconut oil affected renal histomorphometry. In conclusion, virgin coconut oil has a potential to reduce the development of hypertension and renal injury induced by dietary heated oil, possibly via its antioxidant protective effects on the kidneys.

  18. Silymarin ameliorates metabolic dysfunction associated with Diet-induced Obesity via activation of farnesyl X receptor

    Directory of Open Access Journals (Sweden)

    Ming Gu

    2016-09-01

    Full Text Available AbstractBACKGROUND AND PURPOSESilymarin, a standardized extract of the milk thistle seeds, has been widely used to treat chronic hepatitis, cirrhosis and other types of toxic liver damage. . Despite increasing studies on the action of silymarin and its major active constituent, silybin in their therapeutic properties against insulin resistance, diabetes and hyperlipidaemia in vitro and in vivo, the mechanism underlying silymarin action remains unclear. EXPERIMENTAL APPROACHC57BL/6 mice were fed high-fat diet (HFD for 3 months to induce obesity, insulin resistance, hyperlipidaemia and fatty liver. These mice were then continuously treated with HFD alone or mixed with silymarin at 40 mg/100 g for additional 6 weeks. Biochemical analysis was used to test the serum lipid and bile acid profiles. FXR and NF-κB transactivities were analysed in liver using a gene reporter assay based onquantitative RT-PCR.KEY RESULTSSilymarin treatment ameliorated insulin resistance, dyslipidaemia and inflammation, and reconstituted the bile acid pool in liver of diet-induced obesity. Associated with this, silybin and silymarin enhanced FXR transactivity. Consistently, in HepG2 cells, silybin inhibited NF-κB signalling, which was enhanced by FXR activation. CONCLUSIONS AND IMPLICATIONSOur results suggest that silybin is an effective component of silymarin for treating metabolic syndrome by stimulating FXR signalling. Key words: silymarin; silybin; metabolic syndrome; non-alcoholic fatty liver disease; farnesyl X receptorAbbreviationsALT, alanine aminotransferase; AST, aspartate transaminase; BA, bile acid; DIO, diet-induced obesity; CA, cholic acid; DMSO, dimethylsulfoxide; FXR, farnesyl X receptor; HDL-c, high density lipoprotein cholesterol; HF, high-fat; IPITT, intraperitoneal insulin tolerance test; LDL-c, low density lipoprotein cholesterol; NAFLD, non-alcoholic fatty liver disease; NF-κB, nuclear factor kappa B; NR, nuclear receptor; MS, metabolic syndrome

  19. Phloretin Prevents High-Fat Diet-Induced Obesity and Improves Metabolic Homeostasis.

    Science.gov (United States)

    Alsanea, Sary; Gao, Mingming; Liu, Dexi

    2017-05-01

    Reactive oxygen species generated as a by-product in metabolism play a central role in the development of obesity and obesity-related metabolic complications. The objective of the current study is to explore the possibility to block obesity and improve metabolic homeostasis via phloretin, a natural antioxidant product from apple tree leaves and Manchurian apricot. Both preventive and therapeutic activities of phloretin were assessed using a high-fat diet-induced obesity mouse model. Phloretin was injected intraperitoneally twice weekly into regular and obese mice fed a high-fat diet. The effects of phloretin treatment on body weight and composition, fat content in the liver, glucose and lipid metabolism, and insulin resistance were monitored and compared to the control animals. Phloretin treatment significantly blocks high-fat diet-induced weight gain but did not induce weight loss in obese animals. Phloretin improved glucose homeostasis and insulin sensitivity and alleviated hepatic lipid accumulation. RT-PCR analysis showed that phloretin treatment suppresses expression of macrophage markers (F4/80 and Cd68) and pro-inflammatory genes (Mcp-1 and Ccr2) and enhances adiponectin gene expression in white adipose tissue. In addition, phloretin treatment elevated the expression of fatty acid oxidation genes such as carnitine palmitoyltransferase 1a and 1b (Cpt1a and Cpt1b) and reduced expression of monocyte chemoattractant protein-1 (Mcp-1), de novo lipogenesis transcriptional factor peroxisome proliferator-activated receptor-γ 2 (Pparγ2), and its target monoacylglycerol O-acyltransferase (Mgat-1) genes. These results provide direct evidence to support a possible use of phloretin for mitigation of obesity and maintenance of metabolic homeostasis.

  20. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    Science.gov (United States)

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  1. Dietary intake of ain-93 standard diet induces Fatty liver with altered hepatic fatty acid profile in Wistar rats.

    Science.gov (United States)

    Farias Santos, Juliana; Suruagy Amaral, Monique; Lima Oliveira, Suzana; Porto Barbosa, Júnia; Rego Cabral, Cyro; Sofia Melo, Ingrid; Bezerra Bueno, Nassib; Duarte Freitas, Johnatan; Goulart Sant'ana, Antônio; Rocha Ataíde, Terezinha

    2015-05-01

    There are several standard diets for animals used in scientific research, usually conceived by scientific institutions. The AIN-93 diet is widely used, but there are some reports of fatty liver in Wistar rats fed this diet. We aimed to evaluate the hepatic repercussions of the AIN-93 diet intake in Wistar rats. Forty newly-weaned 21-day-old male Wistar rats were fed either the AIN-93 diet or a commercial diet for either 1 month or 4 months. Weight gain, serum biochemistry, hepatic histology, and hepatic fatty acid profile were analyzed. Hepatic steatosis was observed, especially in the group fed the AIN-93 diet. Serum blood glucose, absolute and relative liver weight and hepatic levels of oleic, palmitoleic, stearic, and palmitic fatty acids were related to the observed steatosis, while lipidogram and serum markers of liver function and injury were not. AIN-93 diet induced acute hepatic steatosis in Wistar rats, which may compromise its use as a standard diet for experimental studies with rodents. The hepatic fatty acid profile was associated with steatosis, with possible implications for disease prognosis. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Early atherosclerosis and vascular inflammation in mice with diet-induced type 2 diabetes

    DEFF Research Database (Denmark)

    Bartels, E D; Bang, C A; Nielsen, L B

    2009-01-01

    and the median lesion area was 8.0 times higher than in fat-fed wild-type mice (P = 0.001). Intracellular adhesion molecule-1 staining of the aortic endothelium was most pronounced in the fat-fed apoB transgenic mice. CONCLUSIONS: Our findings suggest that diet-induced type 2 diabetes causes early......BACKGROUND: Obesity and type 2 diabetes increase the risk of atherosclerosis. It is unknown to what extent this reflects direct effects on the arterial wall or secondary effects of hyperlipidaemia. MATERIALS AND METHODS: The effect of obesity and type 2 diabetes on the development...

  3. Consumption of Milk-Protein Combined with Green Tea Modulates Diet-Induced Thermogenesis

    Directory of Open Access Journals (Sweden)

    Margriet S. Westerterp-Plantenga

    2011-07-01

    Full Text Available Green tea and protein separately are able to increase diet-induced thermogenesis. Although their effects on long-term weight-maintenance were present separately, they were not additive. Therefore, the effect of milk-protein (MP in combination with green tea on diet-induced thermogenesis (DIT was examined in 18 subjects (aged 18–60 years; BMI: 23.0 ± 2.1 kg/m2. They participated in an experiment with a randomized, 6 arms, crossover design, where energy expenditure and respiratory quotient (RQ were measured. Green tea (GT vs. placebo (PL capsules were either given in combination with water or with breakfasts containing milk protein in two different dosages: 15 g (15 MP (energy% P/C/F: 15/47/38; 1.7 MJ/500 mL, and 3.5 g (3.5 MP (energy% P/C/F: 41/59/0; 146.4 kJ/100 mL. After measuring resting energy expenditure (REE for 30 min, diet-induced energy expenditure was measured for another 3.5 h after the intervention. There was an overall significant difference observed between conditions (p < 0.001. Post-hoc, areas under the curve (AUCs for diet-induced energy expenditure were significantly different (P ≤ 0.001 for GT + water (41.11 [91.72] kJ·3.5 h vs. PL + water (10.86 [28.13] kJ·3.5 h, GT + 3.5 MP (10.14 [54.59] kJ·3.5 h and PL + 3.5 MP (12.03 [34.09] kJ·3.5 h, but not between GT + 3.5 MP, PL + 3.5 MP and PL + water, indicating that MP inhibited DIT following GT. DIT after GT + 15 MP (167.69 [141.56] kJ·3.5 h and PL + 15 MP (168.99 [186.56] kJ·3.5 h was significantly increased vs. PL + water (P < 0.001, but these were not different from each other indicating that 15 g MP stimulated DIT, but inhibited the GT effect on DIT. No significant differences in RQ were seen between conditions for baseline and post-treatment. In conclusion, consumption of milk-protein inhibits the effect of green tea on DIT.

  4. Nutritional compensation to exercise- vs. diet-induced acute energy deficit in adolescents with obesity

    OpenAIRE

    Thivel , David; Doucet , Eric; Julian , Valérie; Cardenoux , Charlotte; Boirie , Yves; Duclos , Martine

    2017-01-01

    This article belongs to a special issueConference: 24th Annual Meeting of the Society-for-the-Study-of-Ingestive-Behavior (SSIB)Location: Porto, PORTUGALDate: JUL 12-16, 2016Sponsor(s):Soc Study Ingest BehavThe authors want to thank the adolescents who took part in the study as well as Miss Nais Petiot and Miss Audrey Marion for their help; BACKGROUND: To compare the energy and macronutrient intake responses to equivalent energy deficits induced by diet (food restriction) and exercise in adol...

  5. Glutathione depletion prevents diet-induced obesity and enhances insulin sensitivity.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; Bruemmer, Dennis

    2011-12-01

    Excessive accumulation of reactive oxygen species (ROS) in adipose tissue has been implicated in the development of insulin resistance and type 2 diabetes. However, emerging evidence suggests a physiologic role of ROS in cellular signaling and insulin sensitivity. In this study, we demonstrate that pharmacologic depletion of the antioxidant glutathione in mice prevents diet-induced obesity, increases energy expenditure and locomotor activity, and enhances insulin sensitivity. These observations support a beneficial role of ROS in glucose homeostasis and warrant further research to define the regulation of metabolism and energy balance by ROS.

  6. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

    Science.gov (United States)

    Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2014-01-01

    Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.

  7. Feeding a high-concentrate corn straw diet induced epigenetic alterations in the mammary tissue of dairy cows.

    Directory of Open Access Journals (Sweden)

    Guozhong Dong

    Full Text Available The objective of this study was to investigate the effects of feeding a high-concentrate corn straw (HCS diet (65% concentrate+35% corn straw on the epigenetic changes in the mammary tissue of dairy cows in comparison with a low-concentrate corn straw (LCS diet (46% concentrate+54% corn straw and with a low-concentrate mixed forage (LMF diet (46% concentrate+54% mixed forage.Multiparous mid-lactation Chinese Holstein cows were fed one of these three diets for 6 weeks, at which time blood samples and mammary tissue samples were collected. Mammary arterial and venous blood samples were analyzed for lipopolysaccharide (LPS concentrations while mammary tissue samples were assayed for histone H3 acetylation and the methylation of specific genes associated with fat and protein synthesis.Extraction of histones and quantification of histone H3 acetylation revealed that acetylation was significantly reduced in cows fed the HCS diet, as compared with cows fed the LCS diet. Cows fed the HCS diet had significantly higher LPS concentrations in the mammary arterial blood, as compared with cows fed the LCS diet. We found that the extent of histone H3 acetylation was negatively correlated with LPS concentrations. The methylation of the stearoyl-coenzyme A desaturase gene associated with milk fat synthesis was increased in cows fed the HCS diet. By contrast, methylation of the gene encoding the signal transducer and activator of transcription 5A was reduced in cows fed the HCS diet, suggesting that feeding a high-concentrate corn straw diet may alter the methylation of specific genes involved in fat and protein synthesis in the mammary tissue of dairy cows.Feeding the high-concentrate diet induced epigenetic changes in the mammary tissues of dairy cows, possibly through effecting the release of differing amounts of LPS into the mammary blood.

  8. Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility.

    Directory of Open Access Journals (Sweden)

    Shian-Huey Chiang

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.

  9. Preventive effects of chronic exogenous growth hormone levels on diet-induced hepatic steatosis in rats

    Directory of Open Access Journals (Sweden)

    Tian Ya-ping

    2010-07-01

    Full Text Available Abstract Background Non-alcoholic fatty liver disease (NAFLD, which is characterized by hepatic steatosis, can be reversed by early treatment. Several case reports have indicated that the administration of recombinant growth hormone (GH could improve fatty liver in GH-deficient patients. Here, we investigated whether chronic exogenous GH levels could improve hepatic steatosis induced by a high-fat diet in rats, and explored the underlying mechanisms. Results High-fat diet-fed rats developed abdominal obesity, fatty liver and insulin resistance. Chronic exogenous GH improved fatty liver, by reversing dyslipidaemia, fat accumulation and insulin resistance. Exogenous GH also reduced serum tumour necrosis factor-alpha (TNF-alpha levels, and ameliorated hepatic lipid peroxidation and oxidative stress. Hepatic fat deposition was also reduced by exogenous GH levels, as was the expression of adipocyte-derived adipokines (adiponectin, leptin and resistin, which might improve lipid metabolism and hepatic steatosis. Exogenous GH seems to improve fatty liver by reducing fat weight, improving insulin sensitivity and correcting oxidative stress, which may be achieved through phosphorylation or dephosphorylation of a group of signal transducers and activators of hepatic signal transduction pathways. Conclusions Chronic exogenous GH has positive effects on fatty liver and may be a potential clinical application in the prevention or reversal of fatty liver. However, chronic secretion of exogenous GH, even at a low level, may increase serum glucose and insulin levels in rats fed a standard diet, and thus increase the risk of insulin resistance.

  10. Exercise protects against high-fat diet-induced hypothalamic inflammation.

    Science.gov (United States)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D; Woods, Stephen C; Hofmann, Susanna M

    2012-06-25

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing local production of specific interleukins and cytokines, and these in turn may further promote systemic metabolic disease. Whether or how this microglial activation can be averted or reversed is unknown. Since running exercise improves systemic metabolic health and has been found to promote neuronal survival as well as the recovery of brain functions after injury, we hypothesized that regular treadmill running may blunt the effect of western diet on hypothalamic inflammation. Using low-density lipoprotein receptor deficient (l dlr-/-) mice to better reflect human lipid metabolism, we first confirmed that microglial activation in the hypothalamus is severely increased upon exposure to a high-fat, or "western", diet. Moderate, but regular, treadmill running exercise markedly decreased hypothalamic inflammation in these mice. Furthermore, the observed decline in microglial activation was associated with an improvement of glucose tolerance. Our findings support the hypothesis that hypothalamic inflammation can be reversed by exercise and suggest that interventions to avert or reverse neuronal damage may offer relevant potential in obesity treatment and prevention. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    Science.gov (United States)

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state.

  12. Teucrium polium reversed the MCD diet-induced liver injury in rats.

    Science.gov (United States)

    Amini, Rahim; Yazdanparast, Razieh; Aghazadeh, Safiyeh; Ghaffari, Seyed H

    2011-09-01

    In the present study, we evaluated the ability of Teucrium polium ethyl acetate fraction, with high antioxidant activity, in the treatment of nonalcoholic steatohepatitis (NASH) in rats and its possible effect on factors involved in pathogenesis of the disease. To induce NASH, a methionine and choline deficient (MCD) diet was given to N-Mary rats for 8 weeks. After NASH development, MCD-fed rats were divided into 2 groups: NASH group that received MCD diet and NASH + T group which was fed MCD diet plus ethyl acetate fraction of T. polium orally for 3 weeks. Histopathological evaluations revealed that treatment with the extract has abated the severity of NASH among the MCD-fed rats. In addition, the fraction reduced the elevated levels of hepatic tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) gene expression and also the elevated level of malondialdehyde (MDA). In addition, the extract increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and enhanced the level of hepatic glutathione (GSH). Moreover, the fraction treatments lowered caspase-3 level and the phosphorylated form of C-Jun N-terminal kinase (JNK) and augmented the phosphorylated level of extracellular regulated kinase1/2 (ERK1/2). These results indicate that the ethyl acetate fraction of T. poium effectively reversed NASH, mainly due to its strong antioxidant and anti-inflammatory properties.

  13. Choline-Deficient-Diet-Induced Fatty Liver Is a Metastasis-Resistant Microenvironment.

    Science.gov (United States)

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kosuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-07-01

    Fatty liver disease is increasing in the developed and developing world. Liver metastasis from malignant lymphoma in the fatty liver is poorly understood. In a previous report, we developed color-coded imaging of the tumor microenvironment (TME) of the murine EL4-RFP malignant lymphoma during metastasis, including the lung. In the present report, we investigated the potential and microenvironment of the fatty liver induced by a choline-deficient diet as a metastatic site in this mouse lymphoma model. C57BL/6-GFP transgenic mice were fed with a choline-deficient diet in order to establish a fatty liver model. EL4-RFP cells were injected in the spleen of normal mice and fatty-liver mice. Metastases in mice with fatty liver or normal liver were imaged with the Olympus SZX7 microscope and the Olympus FV1000 confocal microscope. Metastases of EL4-RFP were observed in the liver, ascites and bone marrow. Primary tumors were imaged in the spleen at the injection site. The fewest metastases were observed in the fatty liver. In addition, the fewest cancer-associated fibroblasts (CAFs) were observed in the fatty liver. The relative metastatic resistance of the fatty liver may be due to the reduced number of CAFs in the fatty livers. The mechanism of the effect of the choline-deficient diet is discussed. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease

    Directory of Open Access Journals (Sweden)

    Deanna L. Gibson

    2012-08-01

    Full Text Available The gastrointestinal (GI microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn’s disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed.

  15. Green tea extracts ameliorate high-fat diet-induced muscle atrophy in senescence-accelerated mouse prone-8 mice.

    Science.gov (United States)

    Onishi, Shintaro; Ishino, Mayu; Kitazawa, Hidefumi; Yoto, Ai; Shimba, Yuki; Mochizuki, Yusuke; Unno, Keiko; Meguro, Shinichi; Tokimitsu, Ichiro; Miura, Shinji

    2018-01-01

    Muscle atrophy (loss of skeletal muscle mass) causes progressive deterioration of skeletal function. Recently, excessive intake of fats was suggested to induce insulin resistance, followed by muscle atrophy. Green tea extracts (GTEs), which contain polyphenols such as epigallocatechin gallate, have beneficial effects on obesity, hyperglycemia, and insulin resistance, but their effects against muscle atrophy are still unclear. Here, we found that GTEs prevented high-fat (HF) diet-induced muscle weight loss in senescence-accelerated mouse prone-8 (SAMP8), a murine model of senescence. SAMP8 mice were fed a control diet, an HF diet, or HF with 0.5% GTEs (HFGT) diet for 4 months. The HF diet induced muscle weight loss with aging (measured as quadriceps muscle weight), whereas GTEs prevented this loss. In HF diet-fed mice, blood glucose and plasma insulin concentrations increased in comparison with the control group, and these mice had insulin resistance as determined by homeostasis model assessment of insulin resistance (HOMA-IR). In these mice, serum concentrations of leukocyte cell-derived chemotaxin 2 (LECT2), which is known to induce insulin resistance in skeletal muscle, were elevated, and insulin signaling in muscle, as determined by the phosphorylation levels of Akt and p70 S6 kinases, tended to be decreased. In HFGT diet-fed mice, these signs of insulin resistance and elevation of serum LECT2 were not observed. Although our study did not directly show the effect of serum LECT2 on muscle weight, insulin resistance examined using HOMA-IR indicated an intervention effect of serum LECT2 on muscle weight, as revealed by partial correlation analysis. Accordingly, GTEs might have beneficial effects on age-related and HF diet-induced muscle weight loss, which correlates with insulin resistance and is accompanied by a change in serum LECT2.

  16. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles

    DEFF Research Database (Denmark)

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne

    2009-01-01

    patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (Pobese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet,) 21.9+/-1.4 g (EPO, normal diet), 35.......3+/-3.3 g (control, high-fat diet) and 28.8+/-2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance......-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles....

  17. An extra virgin olive oil rich diet intervention ameliorates the nonalcoholic steatohepatitis induced by a high-fat "Western-type" diet in mice.

    Science.gov (United States)

    Jurado-Ruiz, Enrique; Varela, Lourdes M; Luque, Amparo; Berná, Genoveva; Cahuana, Gladys; Martinez-Force, Enrique; Gallego-Durán, Rocío; Soria, Bernat; de Roos, Baukje; Romero Gómez, Manuel; Martín, Franz

    2017-03-01

    We evaluated the protective effect of extra virgin olive oil (EVOO) in high-fat diets (HFDs) on the inflammatory response and liver damage in a nonalcoholic fatty liver disease (NAFLD) mouse model. C57BL/6J mice were fed a standard diet or a lard-based HFD (HFD-L) for 12 wk to develop NAFLD. HFD-fed mice were then divided into four groups and fed for 24 wk with the following: HFD-L, HFD-EVOO, HFD based on phenolics-rich EVOO, and reversion (standard diet). HFD-L-induced metabolic disorders were alleviated by replacement of lard with EVOO. EVOO diets improved plasma lipid profile and reduced body weight, plasma and epididymal fat INF-γ, IL-6 and leptin levels, and macrophage infiltration. Moreover, NAFLD activity scores were reduced. The liver lipid composition showed an increase in MUFAs, especially oleic acid, and a decrease in saturated fatty acids. Hepatic adiponutrin and Cd36 gene expression was upregulated in the EVOO groups. Liver ingenuity pathway analysis revealed in EVOO groups regulation of proteins involved in lipid metabolism, small molecule biochemistry, gastrointestinal disease, and liver regeneration. Dietary EVOO could repair HFD-induced hepatic damage, possibly via an anti-inflammatory effect in adipose tissue and modifications in the liver lipid composition and signaling pathways. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Protective Effects of Setarud (IMODTM on Development of Diet-Induced Hypercholesterolemia in Rabbits

    Directory of Open Access Journals (Sweden)

    MH Shahhosseiny

    2008-09-01

    Full Text Available Background: A new herbal drug setarud (IMODTM containing selenium, carotene, and flavonoids, was expected to have positive effects on lipid metabolism and liver functions, due to the nature of its primary components. This study was designed to determine effectiveness of the drug in reducing the risk of development of diet-induced hypercholesterolemia in laboratory animals. Methods: Two groups of male rabbits (n=10 per group as: intact and control groups on regular chow, were fed a high-cholesterol diet, and two experimental groups were maintained on the same diet and treated with different daily doses (0.02 g/kg and 0.04 g/kg of setarud (brand name IMOD®, Pars Roos, Iran. The treatment groups were then compared with the intact and control groups and with one another for the effects of the drug which was determined by changes in blood sugar, serum lipid levels, and liver function tests. Results: Results showed that drug had important benefits in alleviating the impact of high-cholesterol diet on serum lipids and liver function markers in drug-treated groups relative to hyperlipidemic controls (p < 0.001. A more favorable modification of total cholesterol and triglyceride levels and the atherogenic index was found in animals, which received 0.04 g/kg drug, as compared to the 0.02 g/kg dose group (p < 0.05. Assessment of serum total protein, albumin, transaminases, and bilirubin levels showed that no changes in liver function of control and drug-treated animals during the period of the study. Conclusion: From the results of this study it may concluded that setarud has dose-dependent positive effects on liver and lipid metabolism and may acts as an effective anti-hyperglycemic agent.

  19. Ghrelin did not change coronary angiogenesis in diet-induced obese mice.

    Science.gov (United States)

    Khazaei, M; Tahergorabi, Z

    2017-02-28

    Ghrelin is a 28 amino acids peptide that initially was recognized as an endogenous ligand for growth hormone secretagogue receptor (GHSR). Recently, a number of studies demonstrated that ghrelin is a cardiovascular hormone with a series cardiovascular effect. The main objective of this study was to investigate the effect of systemic ghrelin administration on angiogenesis in the heart and its correlation with serum leptin levels in normal and diet-induced obese mice. 24 male C57BL/6 mice were randomly divided into four groups: normal diet (ND) or control, ND+ghrelin, high-fat-diet (HFD) or obese and HFD+ghrelin (n=6/group). Obese and control groups received HFD or ND, respectively, for 14 weeks. Then, the ghrelin was injected subcutaneously 100µg/kg twice daily. After 10 days, the animals were sacrificed, blood samples were taken and the hearts were removed. The angiogenic response in the heart was assessed by immunohisochemical staining. HFD significantly increased angiogenesis in the heart expressed as the number of CD31 positive cells than standard diet. Ghrelin did not alter angiogenesis in the heart in both obese and control groups, however, it reduced serum nitric oxide (NO) and leptin levels in obese mice. There was a strong positive correlation between the number of CD31 positive cells and serum leptin concentration (r=0.74). Leptin as an angiogenic factor has a positive correlation with angiogenesis in the heart. Although systemic administration of ghrelin reduced serum leptin and NO levels in obese mice, however, it could not alter coronary angiogenesis.

  20. Berberine improves insulin resistance induced by high fat diet in rats

    International Nuclear Information System (INIS)

    Zhou Libin; Yang Ying; Shang Wenbin; Li Fengying; Tang Jinfeng; Wang Xiao; Liu Shangquan; Yuan Guoyue; Chen Mingdao

    2005-01-01

    Objective: To observe the effect of berberine on insulin resistance induced by high fat diet in rats. Methods: Normal male SD rats (8 weeks old) were divided into two groups taking either normal chow (NC, n=9) or high fat diet (HF, n=20). After fourteen weeks, HF rats were divided into two groups. Ten rats continued to take high fat diet. Another ten rats took additional berberine gavage (HF+B, 150mg/kg weight once a day). Six weeks later, oral glucose tolerance test and insulin tolerance test were performed for estimating insulin sensitivity. Results: The body weight, liver weight and epididyaml fat pads weight of HF group were significantly higher than those of HF+B group and NC group (all P<0.01). Fasting plasma glucose, insulin and plasma glucose, insulin 2h after taking glucose in HF+B rats were significantly lower than those in HF rats (all P<0.01). Plasma glucose and insulin levels at all time points in HF rats were significantly higher than those in NC rats. Homa-IR of HF group was markedly higher than that of HF+B group (P<0.01). The glucose-lowering effects after the administration of insuin (0.5u/kg intrapenitoneally) at all time points in HF+B rats were stronger than those in HF rats with 23% and 7% reduction at 15min respectively. Conclusion: Long term high fat diet resulted in insulin resistance. Berberine was able to reverse insulin resistance through promoting peripheral tissue up taking of glucose and decreasing insulin, which would be quite ideal for the intervention of IGT. (authors)

  1. Beraprost sodium, a prostacyclin analogue, reduces fructose-induced hepatocellular steatosis in mice and in vitro via the microRNA-200a and SIRT1 signaling pathway.

    Science.gov (United States)

    Zhang, Pengyuan; Xu, Lijuan; Guan, Hongyu; Liu, Liehua; Liu, Juan; Huang, Zhimin; Cao, Xiaopei; Liao, Zhihong; Xiao, Haipeng; Li, Yanbing

    2017-08-01

    To determine whether beraprost sodium, a prostacyclin analogue, could reduce hepatic lipid accumulation induced by fructose in mice and cultured human hepatocytes, and to investigate the expression of microRNAs and the sirtuin 1 (SIRT1) pathway. Male C57BL/6JNju mice were divided into three groups and fed one of the following diets: a normal diet, a high fructose diet, or a high fructose diet with beraprost sodium treatment. In addition, human-derived HepG2 cells were cultured and treated with fructose (25mmol/L) with or without beraprost sodium (10μmol/L) for 24h, and transfected with small interfering RNA (siRNA) against SIRT1, miR-200a mimic, or miR-200a inhibitor for 48h. The miRNA microarray analysis was performed on the HepG2 cells, and the expression profiles of miRNAs were analyzed using Gene Cluster 3.0 and verified using qPCR. Beraprost sodium treatment attenuated hepatic steatosis, induced the transcription of genes involved in lipid metabolism in C57BL/6 mice (Pfructose. These effects were blocked in HepG2 cells after transfection with siRNA against SIRT1. MiR-200a was highly expressed during fructose treatment and was down regulated by beraprost sodium (Pfructose and revealed the primary role of miR-200a in the regulation of hepatic SIRT1 by beraprost sodium. Our findings suggested that SIRT1 might be a therapeutic target of fructose-related metabolism disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Kefir prevented excess fat accumulation in diet-induced obese mice.

    Science.gov (United States)

    Choi, Jae-Woo; Kang, Hye Won; Lim, Won-Chul; Kim, Mi-Kyoung; Lee, In-Young; Cho, Hong-Yon

    2017-05-01

    Excessive body fat accumulation can result in obesity, which is a serious health concern. Kefir, a probiotic, has recently shown possible health benefits in fighting obesity. This study investigated the inhibitory effects of 0.1 and 0.2% kefir powder on fat accumulation in adipose and liver tissues of high-fat diet (HFD)-induced obese mice. Kefir reduced body weight and epididymal fat pad weight and decreased adipocyte diameters in HFD-induced obese mice. This was supported by decreased expression of genes related to adipogenesis and lipogenesis as well as reduced proinflammatory marker levels in epididymal fat. Along with reduced hepatic triacylglycerol concentrations and serum alanine transaminase and aspartate transaminase activities, genes related to lipogenesis and fatty acid oxidation were downregulated and upregulated, respectively, in liver tissue. Kefir also decreased serum triacylglycerol, total cholesterol, and low-density lipoprotein-cholesterol concentrations. Overall, kefir has the potential to prevent obesity.

  3. Dietary Protein in the Prevention of Diet-Induced Obesity and Co-Morbidities

    DEFF Research Database (Denmark)

    Tastesen, Hanne Sørup

    mice were fed obesity‐promoting diets with protein from different sources, in different forms and at different levels to evaluate the affect on development of obesity, glucose intolerance and dyslipidemia. Results: In the present study the dietary level of protein, 16 versus 32 percent energy from...... protein, was found to be negligible in development of obesity and co‐morbidities in mice. Seafood protein with high endogenous taurine and glycine contents was found to prevent diet‐induced adiposity and dyslipidemia, both in ad libitum and pair‐fed settings. The ability of seafood proteins to prevent...... that the source and form of protein has great impact on development and prevention of diet‐induced adiposity, dyslipidemia, hyperinsulinemia and impairment of glucose tolerance through modulations of voluntary locomotor activity, energy expenditure and energy substrate metabolism in mice...

  4. Gallic Acid Ameliorated Impaired Glucose and Lipid Homeostasis in High Fat Diet-Induced NAFLD Mice

    Science.gov (United States)

    Chao, Jung; Huo, Teh-Ia; Cheng, Hao-Yuan; Tsai, Jen-Chieh; Liao, Jiunn-Wang; Lee, Meng-Shiou; Qin, Xue-Mei; Hsieh, Ming-Tsuen; Pao, Li-Heng; Peng, Wen-Huang

    2014-01-01

    Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help

  5. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.

    Science.gov (United States)

    Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong

    2014-11-01

    Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS. © 2014 by the Society for the Study of Reproduction, Inc.

  6. The recovery of bladder epithelial hyperplasia caused by a melamine diet-induced bladder calculus in mice.

    Science.gov (United States)

    Sun, Ying; Jiang, Yi-Na; Xu, Chang-Fu; Du, Yun-Xia; Zhang, Jiao-Jiao; Yan, Yang; Gao, Xiao-Li

    2014-02-01

    Applying a model of bladder epithelial hyperplasia (BEH) caused by melamine-induced bladder calculus (BC), the recovery of BEH after melamine withdrawal was investigated. One experiment, comprising untreated, melamine and recovery groups, was conducted in Balb/c mice. Each group included 4 subgroups. Mice were fed normal-diet in untreated or a melamine-diet in other groups. The melamine-diet was then substituted with normal-diet in recovery group. Both of BC and BEH were observed after 14 and 56 days of melamine-diet. The BC is relatively uniform at the same melamine-diet durations. The BEH was diffuse with many mitotic figures, 4-7 rows of nuclei, and well-defined umbrella/intermediate cells. No marked differences in BEH degree were observed in the two different melamine-diet durations. On 4-42 days after melamine withdrawal, BC was not found, as the progressive regression with complete regression of BEH was observed, along with well-defined ageing/apoptotic cells in the superficial regions of BEH regression tissue. Conclusion, the melamine-induced BEH is relatively uniform, may be self-limiting in rows of nuclei, and can return to normal. Melamine withdrawal duration is critical for the BEH regression. Tissue of the BEH and its regression is ideal for exploring the renewal as well as growth biology of mammalian urothelium. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Myostatin expression, lymphocyte population, and potential cytokine production correlate with predisposition to high-fat diet induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    Jeri-Anne Lyons

    2010-09-01

    Full Text Available A strong relationship exists between increased inflammatory cytokines and muscle insulin resistance in obesity. This study focused on identifying a relationship between metabolic propensity and myostatin expression in muscle and spleen cells in response to high-fat diet intake. Using a comparative approach, we analyzed the effects of high-fat diet intake on myostatin and follistatin expression, spleen cell composition, and potential cytokine expression in high-fat diet induced obesity (HFDIO resistant (SWR/J and susceptible (C57BL/6 mice models. Results demonstrated overall increased myostatin expression in muscle following high-fat diet intake in HFDIO-susceptible mice, while myostatin expression levels decreased initially in muscle from high-fat diet fed resistant mice. In HFDIO-resistant mice, myostatin expression decreased in spleen, while myostatin increased in spleen tissue from HFDIO-susceptible mice. Proinflammatory cytokine (IL-17, IL-1β, and IFNγ potential increased in splenocytes from HFDIO-susceptible mice. In comparison, C57BL/6 mice fed a high-fat diet exhibited higher frequencies of CD4(+/CD44(hi and CD8(+/CD44(hi cells in the spleen compared to control fed mice. Together, these results suggest that susceptibility to high-fat diet induced obesity could be influenced by local myostatin activity in a tissue-specific manner and that splenocytes exhibit differential cytokine production in a strain-dependent manner. This study sets the stage for future investigations into the interactions between growth, inflammation, and metabolism.

  8. Citrus bergamia Risso & Poiteau juice protects against renal injury of diet-induced hypercholesterolemia in rats.

    Science.gov (United States)

    Trovato, Ada; Taviano, Maria F; Pergolizzi, Simona; Campolo, Loredana; De Pasquale, Rita; Miceli, Natalizia

    2010-04-01

    The present study was designed to evaluate the protective effect of treatment with Citrus bergamia juice (1 mL/day, for 30 days) against hypercholesterolemic diet-induced renal injury in rat.C. bergamia juice provoked a significant reduction in the plasma levels of cholesterol, triglycerides and LDL, and an increase in HDL levels, versus hyperlipidemic controls (p juice administration significantly decreased MDA levels elevations compared with hyperlipidemic controls (4.10 +/- 0.10 nmol/mg protein and 4.78 +/- 0.15 nmol/mg protein, respectively).Histological observations of the kidney supported the biochemical data and indicated a protective effect of C. bergamia juice on the development of renal damage in hypercholesterolemic rats.The antioxidant potential of C. bergamia juice was examined in two in vitro systems: in the DPPH test the juice showed a noticeable effect on scavenging free radicals (IC(50) = 25.01 +/- 0.70 +/-L); in the reducing power assay it showed a strong activity, too (1.44 +/- 0.01 ASE/mL).These findings suggest that C. bergamia juice has a protective role in hypercholesterolemic diet-induced renal damage, which may be attributed to its antioxidant properties. Copyright (c) 2009 John Wiley & Sons, Ltd.

  9. Effects of antioxidant vitamins along with atorvastatin and atorvastatin–niacin combination on diet-induced hypercholesterolemia in rats

    OpenAIRE

    Solanki, Yogendrasinh B; Bhatt, Rajendra V

    2010-01-01

    The present study investigated the effects of antioxidant vitamins along with atorvastatin and atorvastatinniacin combination on diet-induced hypercholesterolemia in rats. High cholesterol diet produced a significant increase in the serum total cholesterol, LDL-C, VLDL-C, TG, atherogenic index and decrease in HDL-C and HDL/LDL ratio. The lipid peroxidation and oxidative stress were significantly high in the hyperlipidemic control group. Atorvastatin improved atherogenic index but not the HDL/...

  10. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice.

    Directory of Open Access Journals (Sweden)

    Gladys Ferrere

    Full Text Available The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD. To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.

  11. Fat and carbohydrate content in the diet induces drastic changes in gene expression in young Göttingen minipigs

    DEFF Research Database (Denmark)

    Mentzel, Caroline M.Junker; Figueiredo Cardoso, Tainã; Haagensen, Annika Maria Juul

    2017-01-01

    In human health, there is interest in developing specific diets to reduce body weight. These studies are mainly focused on phenotypic changes induced in blood measurements, i.e., triglycerides, HDL, LDL, and insulin, and on physical changes, i.e., body weight and BMI. To evaluate the biological i....... The new knowledge gained in this study could potentially be of value for considering direct modulation of gene expression by nutrient content in the diet....

  12. Helminth antigens counteract a rapid high-fat diet-induced decrease in adipose tissue eosinophils.

    Science.gov (United States)

    van den Berg, Susan M; van Dam, Andrea D; Kusters, Pascal J H; Beckers, Linda; den Toom, Myrthe; van der Velden, Saskia; Van den Bossche, Jan; van Die, Irma; Boon, Mariëtte R; Rensen, Patrick C N; Lutgens, Esther; de Winther, Menno P J

    2017-10-01

    Brown adipose tissue (BAT) activation and white adipose tissue (WAT) beiging can increase energy expenditure and have the potential to reduce obesity and associated diseases. The immune system is a potential target in mediating brown and beige adipocyte activation. Type 2 and anti-inflammatory immune cells contribute to metabolic homeostasis within lean WAT, with a prominent role for eosinophils and interleukin (IL)-4-induced anti-inflammatory macrophages. We determined eosinophil numbers in epididymal WAT (EpAT), subcutaneous WAT (ScAT) and BAT after 1 day, 3 days or 1 week of high-fat diet (HFD) feeding in C57Bl/6 mice. One day of HFD resulted in a rapid drop in eosinophil numbers in EpAT and BAT, and after 3 days, in ScAT. In an attempt to restore this HFD-induced drop in adipose tissue eosinophils, we treated 1-week HFD-fed mice with helminth antigens from Schistosoma mansoni or Trichuris suis and evaluated whether the well-known protective metabolic effects of helminth antigens involves BAT activation or beiging. Indeed, antigens of both helminth species induced high numbers of eosinophils in EpAT, but failed to induce beiging. In ScAT, Schistosoma mansoni antigens induced mild eosinophilia, which was accompanied by slightly more beiging. No effects were observed in BAT. To study type 2 responses on brown adipocytes directly, T37i cells were stimulated with IL-4. This increased Ucp1 expression and strongly induced the production of eosinophil chemoattractant CCL11 (+26-fold), revealing that brown adipocytes themselves can attract eosinophils. Our findings indicate that helminth antigen-induced eosinophilia fails to induce profound beiging of white adipocytes. © 2017 Society for Endocrinology.

  13. Effects of yam dioscorin interventions on improvements of the metabolic syndrome in high-fat diet-induced obese rats

    OpenAIRE

    Shih, Shen-Liang; Lin, Yin-Shiou; Lin, Shyr-Yi; Hou, Wen-Chi

    2015-01-01

    Background The metabolic syndrome (MS) is termed a cluster of multiple metabolic risk criteria which is positively correlated with cardiovascular disease and type 2 diabetes mellitus (DM). Yam dioscorins have been reported to exhibit biological activities, however, little is known their preventive effects on the MS. Therefore, a high-fat (HF) diet was used to induce Wistar rat obesity and then yam dioscorin (50?mg/kg, dio50) was intervened daily concurrent HF diet (HF diet?+?dio50) for five w...

  14. Polyphenol Rich Extract of Garcinia pedunculata Fruit Attenuates the Hyperlipidemia induced by High Fat Diet

    Directory of Open Access Journals (Sweden)

    Rahul Sarma

    2016-08-01

    Full Text Available Fatty foods, the most common diet today are the crux of many metabolic disorders which need urgent attention. Garcinia pedunculata Roxb. (GP, Clusiaceae is a plant found available in Northeast (NE region of India, is considered to have versatile therapeutic properties. The people of this region has been using dried pulp of GP fruit for the treatment of different stomach related diseases traditionally. This study aimed at evaluating the potential therapeutic action of the polyphenol-rich methanolic extract (ME of the fruit in experimental induced obese rats. In vitro antioxidant and antidiabetic activity of GP extracts, i.e., fruit extract (GF and seed extract (GS were determined by using various methods viz., 1,1-diphenyl-2 picrylhydrazyl (DPPH, 2,2′-Azinobis (3-ethyl benzthiazoline-6-sulphonic acid (ABTS•+, nitroblue tetrazolium (NBT and α-glucosidase inhibition assay for detection of antihyperglycemic activity. In vivo antilipidemic and antiobesity activities were evaluated by administrating oral dose of GF for 60 days on a high-fat diet (HFD induced hyperlipidemia in the rat. GF showed higher antioxidant activity than GS by DPPH radical scavenging (IC50=4.01 µg/ml, ABTS•+ (IC50=0.82 µg/ml, NBT (IC50=0.07 µg/ml and also showed notable α-glucosidase inhibitory activity (IC50=19.26 µg/ml. Furthermore, GF treated rat revealed a reduction in the body weight (~60%, serum total cholesterol (33%, triglycerides (32%, low-density lipoprotein (38% and liver biomarker enzymes after 60 days HFD fed animals. Simultaneously, GF supplementation significantly protected the HFD induced changes in hematological parameters. Histological observations clearly differentiate the structural changes in liver of HFD and GF treated group. This novel dietary lipid adsorbing agent of GF exhibited prevention of hyperlipidemia induced by HFD in the rat.

  15. Change of digestive physiology in sea cucumber Apostichopus japonicus (Selenka) induced by corn kernels meal and soybean meal in diets

    Science.gov (United States)

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Hou, Yiran; Wen, Bin

    2016-08-01

    The present study was conducted to determine the change of digestive physiology in sea cucumber Apostichopus japonicus (Selenka) induced by corn kernels meal and soybean meal in diets. Four experimental diets were tested, in which Sargassum thunbergii was proportionally replaced by the mixture of corn kernels meal and soybean meal. The growth performance, body composition and intestinal digestive enzyme activities in A. japonicus fed these 4 diets were examined. Results showed that the sea cucumber exhibited the maximum growth rate when 20% of S. thunbergii in the diet was replaced by corn kernels meal and soybean meal, while 40% of S. thunbergii in the diet can be replaced by the mixture of corn kernels meal and soybean meal without adversely affecting growth performance of A. japonicus. The activities of intestinal trypsin and amylase in A. japonicus can be significantly altered by corn kernels meal and soybean meal in diets. Trypsin activity in the intestine of A. japonicus significantly increased in the treatment groups compared to the control, suggesting that the supplement of corn kernels meal and soybean meal in the diets might increase the intestinal trypsin activity of A. japonicus. However, amylase activity in the intestine of A. japonicus remarkably decreased with the increasing replacement level of S. thunbergii by the mixture of corn kernels meal and soybean meal, suggesting that supplement of corn kernels meal and soybean meal in the diets might decrease the intestinal amylase activity of A. japonicus.

  16. Intrauterine Growth Retardation Increases the Susceptibility of Pigs to High-Fat Diet-Induced Mitochondrial Dysfunction in Skeletal Muscle

    Science.gov (United States)

    Liu, Jingbo; Chen, Daiwen; Yao, Ying; Yu, Bing; Mao, Xiangbing; He, Jun; Huang, Zhiqing; Zheng, Ping

    2012-01-01

    It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. PMID:22523560

  17. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    Science.gov (United States)

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  18. The Effects of a Hypocaloric Diet on Diet-Induced Thermogenesis and Blood Hormone Response in Healthy Male Adults: A Pilot Study.

    Science.gov (United States)

    Ishii, Shunsuke; Osaki, Noriko; Shimotoyodome, Akira

    2016-01-01

    Calorie restriction is a common strategy for weight loss and management. Consumption of food and nutrients stimulates diet-induced thermogenesis (DIT), as well as pancreatic and gastrointestinal hormone secretion that may regulate energy metabolism. Yet, little is known about the impact of hypocaloric diets on energy metabolism-related parameters. In this study, we assessed the effects of hypocaloric diets on hormonal variance in relation to DIT in healthy adults. Ten healthy male adults were enrolled in a randomized crossover study comprising three meal trials. Each subject was given a meal of 200 (extremely hypocaloric), 400 (moderately hypocaloric), or 800 kcal (normocaloric). Postprandial blood variables and energy expenditure were measured for 4 h (after the 200- and 400-kcal meals) or 6 h (after the 800-kcal meal). DIT and postprandial changes in blood pancreatic peptide and ghrelin were significantly smaller after the extremely or moderately hypocaloric diet than after the normocaloric diet but were similar between the hypocaloric diets. Postprandial blood insulin, amylin, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide type-1 (GLP-1) increased in a calorie-dependent manner. Thermogenic efficiency (DIT per energy intake) was negatively correlated with the maximum blood level (Cmax) (p=0.01) and incremental area under the curve (p=0.01) of the blood GIP response. Calorie restriction thus leads to hormonal responses and lower DIT in healthy adults. Extreme calorie restriction, however, led to greater thermogenic efficiency compared with moderate calorie restriction. The postprandial GIP response may be a good predictor of postprandial thermogenic efficiency.

  19. High-protein diet selectively reduces fat mass and improves glucose tolerance in Western-type diet-induced obese rats

    Science.gov (United States)

    Stengel, Andreas; Goebel-Stengel, Miriam; Wang, Lixin; Hu, Eugenia; Karasawa, Hiroshi; Pisegna, Joseph R.

    2013-01-01

    Obesity is an increasing health problem. Because drug treatments are limited, diets remain popular. High-protein diets (HPD) reduce body weight (BW), although the mechanisms are unclear. We investigated physiological mechanisms altered by switching diet induced obesity (DIO) rats from Western-type diet (WTD) to HPD. Male rats were fed standard (SD) or WTD (45% calories from fat). After developing DIO (50% of rats), they were switched to SD (15% calories from protein) or HPD (52% calories from protein) for up to 4 weeks. Food intake (FI), BW, body composition, glucose tolerance, insulin sensitivity, and intestinal hormone plasma levels were monitored. Rats fed WTD showed an increased FI and had a 25% greater BW gain after 9 wk compared with SD (P Diet-induced obese rats switched from WTD to HPD reduced daily FI by 30% on day 1, which lasted to day 9 (−9%) and decreased BW during the 2-wk period compared with SD/SD (P < 0.05). During these 2 wk, WTD/HPD rats lost 72% more fat mass than WTD/SD (P < 0.05), whereas lean mass was unaltered. WTD/HPD rats had lower blood glucose than WTD/SD at 30 min postglucose gavage (P < 0.05). The increase of pancreatic polypeptide and peptide YY during the 2-h dark-phase feeding was higher in WTD/HPD compared with WTD/SD (P < 0.05). These data indicate that HPD reduces BW in WTD rats, which may be related to decreased FI and the selective reduction of fat mass accompanied by improved glucose tolerance, suggesting relevant benefits of HPD in the treatment of obesity. PMID:23883680

  20. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice.

    Science.gov (United States)

    Kübeck, Raphaela; Bonet-Ripoll, Catalina; Hoffmann, Christina; Walker, Alesia; Müller, Veronika Maria; Schüppel, Valentina Luise; Lagkouvardos, Ilias; Scholz, Birgit; Engel, Karl-Heinz; Daniel, Hannelore; Schmitt-Kopplin, Philippe; Haller, Dirk; Clavel, Thomas; Klingenspor, Martin

    2016-12-01

    Gut microbiota may promote positive energy balance; however, germfree mice can be either resistant or susceptible to diet-induced obesity (DIO) depending on the type of dietary intervention. We here sought to identify the dietary constituents that determine the susceptibility to body fat accretion in germfree (GF) mice. GF and specific pathogen free (SPF) male C57BL/6N mice were fed high-fat diets either based on lard or palm oil for 4 wks. Mice were metabolically characterized at the end of the feeding trial. FT-ICR-MS and UPLC-TOF-MS were used for cecal as well as hepatic metabolite profiling and cecal bile acids quantification, respectively. Hepatic gene expression was examined by qRT-PCR and cecal gut microbiota of SPF mice was analyzed by high-throughput 16S rRNA gene sequencing. GF mice, but not SPF mice, were completely DIO resistant when fed a cholesterol-rich lard-based high-fat diet, whereas on a cholesterol-free palm oil-based high-fat diet, DIO was independent of gut microbiota. In GF lard-fed mice, DIO resistance was conveyed by increased energy expenditure, preferential carbohydrate oxidation, and increased fecal fat and energy excretion. Cecal metabolite profiling revealed a shift in bile acid and steroid metabolites in these lean mice, with a significant rise in 17β-estradiol, which is known to stimulate energy expenditure and interfere with bile acid metabolism. Decreased cecal bile acid levels were associated with decreased hepatic expression of genes involved in bile acid synthesis. These metabolic adaptations were largely attenuated in GF mice fed the palm-oil based high-fat diet. We propose that an interaction of gut microbiota and cholesterol metabolism is essential for fat accretion in normal SPF mice fed cholesterol-rich lard as the main dietary fat source. This is supported by a positive correlation between bile acid levels and specific bacteria of the order Clostridiales (phylum Firmicutes ) as a characteristic feature of normal SPF mice

  1. Unhealthy diet and ultrafine carbon black particles induce senescence and disease associated phenotypic changes.

    Science.gov (United States)

    Büchner, Nicole; Ale-Agha, Niloofar; Jakob, Sascha; Sydlik, Ulrich; Kunze, Kerstin; Unfried, Klaus; Altschmied, Joachim; Haendeler, Judith

    2013-01-01

    Telomerase activity in endothelial and lung epithelial cells. As a consequence, ufCB increased senescence of endothelial cells. To investigate whether ufCB show also effects in vivo, we instilled ufCB in concentrations not inducing inflammation into mice. Indeed, eNOS expression was reduced in the abdominal aorta of animals treated with ufCB. Thus, a combination of fructose and LDL in the diet and ufCB, as a major constituent of air pollution, seem to accelerate respiratory and cardiovascular cellular changes, which may compromise "healthy aging" and can lead to cardiovascular and pulmonary diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The potential of a high protein-low carbohydrate diet to preserve intrahepatic triglyceride content in healthy humans.

    Science.gov (United States)

    Martens, Eveline A; Gatta-Cherifi, Blandine; Gonnissen, Hanne K; Westerterp-Plantenga, Margriet S

    2014-01-01

    Protein supplementation has been shown to reduce the increases in intrahepatic triglyceride (IHTG) content induced by acute hypercaloric high-fat and high-fructose diets in humans. To assess the effect of a 12-wk iso-energetic high protein-low carbohydrate (HPLC) diet compared with an iso-energetic high carbohydrate-low protein (HCLP) diet on IHTG content in healthy non-obese subjects, at a constant body weight. Seven men and nine women [mean ± SD age: 24 ± 5 y; BMI: 22.9 ± 2.1 kg/m2] were randomly allocated to a HPLC [30/35/35% of energy (En%) from protein/carbohydrate/fat] or a HCLP (5/60/35 En%) diet by stratification on sex, age and BMI. Dietary guidelines were prescribed based on individual daily energy requirements. IHTG content was measured by 1H-magnetic resonance spectroscopy before and after the dietary intervention. IHTG content changed in different directions with the HPLC (CH2H2O: 0.23 ± 0.17 to 0.20 ± 0.10; IHTG%: 0.25 ± 0.20% to 0.22 ± 0.11%) compared with the HCLP diet (CH2H2O: 0.34 ± 0.20 vs. 0.38 ± 0.21; IHTG%: 0.38 ± 0.22% vs. 0.43 ± 0.24%), which resulted in a lower IHTG content in the HPLC compared with the HCLP diet group after 12 weeks, which almost reached statistical significance (P = 0.055). A HPLC vs. a HCLP diet has the potential to preserve vs. enlarge IHTG content in healthy non-obese subjects at a constant body weight. Clinicaltrials.gov NCT01551238.

  3. The potential of a high protein-low carbohydrate diet to preserve intrahepatic triglyceride content in healthy humans.

    Directory of Open Access Journals (Sweden)

    Eveline A Martens

    Full Text Available Protein supplementation has been shown to reduce the increases in intrahepatic triglyceride (IHTG content induced by acute hypercaloric high-fat and high-fructose diets in humans.To assess the effect of a 12-wk iso-energetic high protein-low carbohydrate (HPLC diet compared with an iso-energetic high carbohydrate-low protein (HCLP diet on IHTG content in healthy non-obese subjects, at a constant body weight.Seven men and nine women [mean ± SD age: 24 ± 5 y; BMI: 22.9 ± 2.1 kg/m2] were randomly allocated to a HPLC [30/35/35% of energy (En% from protein/carbohydrate/fat] or a HCLP (5/60/35 En% diet by stratification on sex, age and BMI. Dietary guidelines were prescribed based on individual daily energy requirements. IHTG content was measured by 1H-magnetic resonance spectroscopy before and after the dietary intervention.IHTG content changed in different directions with the HPLC (CH2H2O: 0.23 ± 0.17 to 0.20 ± 0.10; IHTG%: 0.25 ± 0.20% to 0.22 ± 0.11% compared with the HCLP diet (CH2H2O: 0.34 ± 0.20 vs. 0.38 ± 0.21; IHTG%: 0.38 ± 0.22% vs. 0.43 ± 0.24%, which resulted in a lower IHTG content in the HPLC compared with the HCLP diet group after 12 weeks, which almost reached statistical significance (P = 0.055.A HPLC vs. a HCLP diet has the potential to preserve vs. enlarge IHTG content in healthy non-obese subjects at a constant body weight.Clinicaltrials.gov NCT01551238.

  4. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet

    International Nuclear Information System (INIS)

    Guo, Tai L.; Wang, Yunbiao; Xiong, Tao; Ling, Xiao; Zheng, Jianfeng

    2014-01-01

    Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100 mg/kg doses (i.p.): the first dose was administered at approximately 2 weeks following the initiation of daily GE (20 mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes. - Highlights: • Diets affected streptozotocin-induced diabetes in male B6C3F1 mice. • Genistein modulation of streptozotocin diabetes can be induced by diet.

  5. Genistein modulation of streptozotocin diabetes in male B6C3F1 mice can be induced by diet

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Tai L., E-mail: tlguo1@uga.edu [Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382 (United States); Wang, Yunbiao [Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7382 (United States); Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 (China); Xiong, Tao [College of Animal Science, Yangtze University, Jingzhou City, Hubei Province 434025 (China); Ling, Xiao [Institute for Food and Drug Control of Shandong Province, Jinan City, Shandong 250012 (China); Zheng, Jianfeng [Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613 (United States)

    2014-11-01

    Diet and phytoestrogens affect the development and progression of diabetes. The objective of the present study was to determine if oral exposure to phytoestrogen genistein (GE) by gavage changed blood glucose levels (BGL) through immunomodulation in streptozotocin (STZ)-induced diabetic male B6C3F1 mice fed with three different diets. These three diets were: NTP-2000 diet (NTP), soy- and alfalfa-free 5K96 diet (SOF) and high fat diet (HFD) with 60% of kcal from fat, primarily rendered fat of swine. The dosing regimen for STZ consisted of three 100 mg/kg doses (i.p.): the first dose was administered at approximately 2 weeks following the initiation of daily GE (20 mg/kg) gavage, and the second dose was on day 19 following the first dose, and the third dose was on day 57 following the first dose. In mice on the NTP diet, GE treatment decreased BGL with statistical significances observed on days 33 and 82 following the first STZ injection. In mice fed the HFD diet, GE treatment produced a significant decrease and a significant increase in BGL on days 15 and 89 following the first STZ injection, respectively. In mice fed the SOF diet, GE treatment had no significant effects on BGL. Although GE treatment affected phenotypic distributions of both splenocytes (T cells, B cells, natural killer cells and neutrophils) and thymocytes (CD4/CD8 and CD44/CD25), and their mitochondrial transmembrane potential and generation of reactive oxygen species, indicators of cell death (possibly apoptosis), GE modulation of neutrophils was more consistent with its diabetogenic or anti-diabetic potentials. The differential effects of GE on BGL in male B6C3F1 mice fed with three different diets with varied phytoestrogen contents suggest that the estrogenic properties of this compound may contribute to its modulation of diabetes. - Highlights: • Diets affected streptozotocin-induced diabetes in male B6C3F1 mice. • Genistein modulation of streptozotocin diabetes can be induced by diet.

  6. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity.

    Science.gov (United States)

    Rodríguez-Rodríguez, César; Torres, Nimbe; Gutiérrez-Uribe, Janet A; Noriega, Lilia G; Torre-Villalvazo, Iván; Leal-Díaz, Ana M; Antunes-Ricardo, Marilena; Márquez-Mota, Claudia; Ordaz, Guillermo; Chavez-Santoscoy, Rocío A; Serna-Saldivar, Sergio O; Tovar, Armando R

    2015-03-01

    A diet rich in polyphenols can ameliorate some metabolic alterations associated with obesity and type 2 diabetes. Opuntia ficus-indica (OFI) is a plant rich in isorhamnetin glycosides and is highly consumed in Mexico. The purpose of this research was to determine the metabolic effect of an OFI extract on a mouse model of diet-induced obesity and in isolated pancreatic islets. OFI extract was added to a high fat (HF) diet at a low (0.3%) or high (0.6%) dose and administered to C57BL/6 mice for 12 weeks. Mice fed the HF diet supplemented with the OFI extract gained less body weight and exhibited significantly lower circulating total cholesterol, LDL cholesterol and HDL cholesterol compared to those fed the HF diet alone. The HF-OFI diet fed mice presented lower glucose and insulin concentration than the HF diet fed mice. However, the HF-OFI diet fed mice tended to have higher insulin concentration than control mice. The OFI extract stimulated insulin secretion in vitro, associated with increased glucose transporter 2 (GLUT2) and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA content. Furthermore, the OFI extract improved glucose tolerance, and additionally increased energy expenditure. These metabolic improvements were associated with reduced adipocyte size, increased hepatic IRS1 tyr-608 and S6 K thr-389 phosphorylation. OFI isorhamnetin glycosides also diminished the hepatic lipid content associated with reduced mRNA expression of the endoplasmic reticulum stress markers and lipogenic enzymes and increased mRNA expression of genes related to fatty acid oxidation. Overall, the OFI extract prevented the development of metabolic abnormalities associated with diet-induced obesity.

  7. Calorie restriction and endurance exercise share potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance in mice

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    2010-07-01

    Full Text Available Abstract Background Calorie restriction (CR and endurance exercise are known to attenuate obesity and improve the metabolic syndrome. The aim of this study was to directly compare the effects of CR and endurance exercise in a mouse model of diet-induced obesity and insulin resistance. Methods Adult male C57BL/6N mice were randomly assigned and subjected to one of the six interventions for 8 weeks: low-fat diet (LC, 10% fat, low-fat diet with 30% calorie restriction (LR, high-fat diet (HC, 60% fat, high-fat diet with 30% calorie restriction (HR, high-fat diet with voluntary running exercise (HE, and high-fat diet with a combination of 30% calorie restriction and exercise (HRE. The impacts of the interventions were assessed by comprehensive metabolic analyses and pro-inflammatory cytokine gene expression. Results Endurance exercise significantly attenuated high-fat diet-induced obesity. CR dramatically prevented high-fat diet-induced metabolic abnormalities. A combination of CR and endurance exercise further reduced obesity and insulin resistance under the condition of high-fat diet. CR and endurance exercise each potently suppressed the expression of inflammatory cytokines in white adipose tissues with additive effects when combined, but the effects of diet and exercise interventions in the liver were moderate to minimal. Conclusions CR and endurance exercise share a potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance.

  8. Dietary sardine protein lowers insulin resistance, leptin and TNF-α and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome.

    Science.gov (United States)

    Madani, Zohra; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J; Ait Yahia, Dalila

    2012-02-01

    The present study aims at exploring the effects of sardine protein on insulin resistance, plasma lipid profile, as well as oxidative and inflammatory status in rats with fructose-induced metabolic syndrome. Rats were fed sardine protein (S) or casein (C) diets supplemented or not with high-fructose (HF) for 2 months. Rats fed the HF diets had greater body weight and adiposity and lower food intake as compared to control rats. Increased plasma glucose, insulin, HbA1C, triacylglycerols, free fatty acids and impaired glucose tolerance and insulin resistance was observed in HF-fed rats. Moreover, a decline in adipose tissues antioxidant status and a rise in lipid peroxidation and plasma TNF-α and fibrinogen were noted. Rats fed sardine protein diets exhibited lower food intake and fat mass than those fed casein diets. Sardine protein diets diminished plasma insulin and insulin resistance. Plasma triacylglycerol and free fatty acids were also lower, while those of α-tocopherol, taurine and calcium were enhanced as compared to casein diets. Moreover, S-HF diet significantly decreased plasma glucose and HbA1C. Sardine protein consumption lowered hydroperoxide levels in perirenal and brown adipose tissues. The S-HF diet, as compared to C-HF diet decreased epididymal hydroperoxides. Feeding sardine protein diets decreased brown adipose tissue carbonyls and increased glutathione peroxidase activity. Perirenal and epididymal superoxide dismutase and catalase activities and brown catalase activity were significantly greater in S-HF group than in C-HF group. Sardine protein diets also prevented hyperleptinemia and reduced inflammatory status in comparison with rats fed casein diets. Taken together, these results support the beneficial effect of sardine protein in fructose-induced metabolic syndrome on such variables as hyperglycemia, insulin resistance, hyperlipidemia and oxidative and inflammatory status, suggesting the possible use of sardine protein as a protective

  9. Depot-specific differences in angiogenic capacity of adipose tissue in differential susceptibility to diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Mun-Gyu Song

    2016-11-01

    Full Text Available Objective: Adipose tissue (AT expansion requires AT remodeling, which depends on AT angiogenesis. Modulation of AT angiogenesis could have therapeutic promise for the treatment of obesity. However, it is unclear how the capacity of angiogenesis in each adipose depot is affected by over-nutrition. Therefore, we investigated the angiogenic capacity (AC of subcutaneous and visceral fats in lean and obese mice. Methods: We compared the AC of epididymal fat (EF and inguinal fat (IF using an angiogenesis assay in diet-induced obese (DIO mice and diet-resistant (DR mice fed a high-fat diet (HFD. Furthermore, we compared the expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation using RT-qPCR in the EF and IF of lean mice fed a low-fat diet (LFD, DIO mice, and DR mice fed a HFD. Results: DIO mice showed a significant increase in the AC of EF only at 22 weeks of age compared to DR mice. The expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation were significantly higher in the EF of DIO mice than in those of LFD mice and DR mice, while expression levels of genes related to macrophages and their recruitment were higher in the IF of DIO mice than in those of LFD and DR mice. Expression of genes related to angiogenesis (including Hif1a, Vegfa, Fgf1, Kdr, and Pecam1, macrophage recruitment, and inflammation (including Emr1, Ccr2, Itgax, Ccl2, Tnf, and Il1b correlated more strongly with body weight in the EF of HFD-fed obese mice compared to that of IF. Conclusions: These results suggest depot-specific differences in AT angiogenesis and a potential role in the susceptibility to diet-induced obesity. Keywords: Angiogenesis, Inflammation, Adipose tissue, Diet-induced obese mice, Diet-resistant mice, High-fat diet

  10. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    Science.gov (United States)

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  11. Geraniin Protects High-Fat Diet-Induced Oxidative Stress in Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Alexis Panny Y. S. Chung

    2018-03-01

    Full Text Available Geraniin, a hydrolysable polyphenol derived from Nephelium lappaceum L. fruit rind, has been shown to possess significant antioxidant activity in vitro and recently been recognized for its therapeutic potential in metabolic syndrome. This study investigated its antioxidative strength and protective effects on organs in high-fat diet (HFD-induced rodents. Rats were fed HFD for 6 weeks to induce obesity, followed by 10 and 50 mg/kg of geraniin supplementation for 4 weeks to assess its protective potential. The control groups were maintained on standard rat chows and HFD for the same period. At the 10th week, oxidative status was assessed and the pancreas, liver, heart and aorta, kidney, and brain of the Sprague Dawley rats were harvested and subjected to pathological studies. HFD rats demonstrated changes in redox balance; increased protein carbonyl content, decreased levels of superoxide dismutase, glutathione peroxidase, and glutathione reductase with a reduction in the non-enzymatic antioxidant mechanisms and total antioxidant capacity, indicating a higher oxidative stress (OS index. In addition, HFD rats demonstrated significant diet-induced changes particularly in the pancreas. Four-week oral geraniin supplementation, restored the OS observed in the HFD rats. It was able to restore OS biomarkers, serum antioxidants, and the glutathione redox balance (reduced glutathione/oxidized glutathione ratio to levels comparable with that of the control group, particularly at dosage of 50 mg geraniin. Geraniin was not toxic to the HFD rats but exhibited protection against glucotoxicity and lipotoxicity particularly in the pancreas of the obese rodents. It is suggested that geraniin has the pharmaceutical potential to be developed as a supplement to primary drugs in the treatment of obesity and its pathophysiological sequels.

  12. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice.

    Science.gov (United States)

    Cao, Ke; Xu, Jie; Zou, Xuan; Li, Yuan; Chen, Cong; Zheng, Adi; Li, Hao; Li, Hua; Szeto, Ignatius Man-Yau; Shi, Yujie; Long, Jiangang; Liu, Jiankang; Feng, Zhihui

    2014-02-01

    A Mediterranean diet rich in olive oil has profound influence on health outcomes including metabolic syndrome. However, the active compound and detailed mechanisms still remain unclear. Hydroxytyrosol (HT), a major polyphenolic compound in virgin olive oil, has received increased attention for its antioxidative activity and regulation of mitochondrial function. Here, we investigated whether HT is the active compound in olive oil exerting a protective effect against metabolic syndrome. In this study, we show that HT could prevent high-fat-diet (HFD)-induced obesity, hyperglycemia, hyperlipidemia, and insulin resistance in C57BL/6J mice after 17 weeks supplementation. Within liver and skeletal muscle tissues, HT could decrease HFD-induced lipid deposits through inhibition of the SREBP-1c/FAS pathway, ameliorate HFD-induced oxidative stress by enhancing antioxidant enzyme activities, normalize expression of mitochondrial complex subunits and mitochondrial fission marker Drp1, and eventually inhibit apoptosis activation. Moreover, in muscle tissue, the levels of mitochondrial carbonyl protein were decreased and mitochondrial complex activities were significantly improved by HT supplementation. In db/db mice, HT significantly decreased fasting glucose, similar to metformin. Notably, HT decreased serum lipid, at which metformin failed. Also, HT was more effective at decreasing the oxidation levels of lipids and proteins in both liver and muscle tissue. Similar to the results in the HFD model, HT decreased muscle mitochondrial carbonyl protein levels and improved mitochondrial complex activities in db/db mice. Our study links the olive oil component HT to diabetes and metabolic disease through changes that are not limited to decreases in oxidative stress, suggesting a potential pharmaceutical or clinical use of HT in metabolic syndrome treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Exercise Ameliorates High Fat Diet Induced Cardiac Dysfunction by Increasing Interleukin 10

    Directory of Open Access Journals (Sweden)

    Varun eKesherwani

    2015-04-01

    Full Text Available Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α and attenuation of anti-inflammatory cytokine such as interleukin10 (IL-10 contributes to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, eight week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1hr/day for 5 days/week for eight weeks. The four treatment groups: normal diet (ND, HFD, HFD + exercise (HFD + Ex and ND + Ex were analyzed for mean body weight, blood glucose level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by echocardiography. Mean body weights were increased in HFD but comparatively less in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated by exercise in the HFD + Ex group. The percentage ejection fraction and fractional shortening were decreased in HFD but comparatively increased in HFD + Ex. There was no difference between ND and ND + Ex for the above parameters except an increase in IL-10 level following exercise. Based on these results, we conclude that exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10, and reducing TNF-α in mice.

  14. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.

    Directory of Open Access Journals (Sweden)

    Nicolas Deblon

    Full Text Available Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.

  15. Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice.

    Science.gov (United States)

    Geng, Shanshan; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Liang, Zhaofeng; Xie, Wei; Zhu, Jianyun; Huang, Cong; Zhu, Mingming; Wu, Rui; Zhong, Caiyun

    2016-04-01

    The aim of the present study was to investigate the in vivo effects of dietary medium-chain triglyceride (MCT) on inflammation and insulin resistance as well as the underlying potential molecular mechanisms in high fat diet-induced obese mice. Male C57BL/6J mice (n = 24) were fed one of the following three diets for a period of 12 weeks: (1) a modified AIN-76 diet with 5 % corn oil (normal diet); (2) a high-fat control diet (17 % w/w lard and 3 % w/w corn oil, HFC); (3) an isocaloric high-fat diet supplemented with MCT (17 % w/w MCT and 3 % w/w corn oil, HF-MCT). Glucose metabolism was evaluated by fasting blood glucose levels and intraperitoneal glucose tolerance test. Insulin sensitivity was evaluated by fasting serum insulin levels and the index of homeostasis model assessment-insulin resistance. The levels of serum interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α were measured by ELISA, and hepatic activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was determined using western blot analysis. Compared to HFC diet, consumption of HF-MCT did not induce body weight gain and white adipose tissue accumulation in mice. HFC-induced increases in serum fasting glucose and insulin levels as well as glucose intolerance were prevented by HF-MCT diet. Meanwhile, HF-MCT resulted in significantly lower serum IL-6 level and higher IL-10 level, and lower expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein in liver tissues when compared to HFC. In addition, HF-MCT attenuated HFC-triggered hepatic activation of NF-κB and p38 MAPK. Our study demonstrated that MCT was efficacious in suppressing body fat accumulation, insulin resistance, inflammatory response, and NF-κB and p38 MAPK activation in high fat diet-fed mice. These data suggest that MCT may exert beneficial effects against high fat diet-induced insulin resistance and inflammation.

  16. Effect of Herbal Acupuncture with Sang-hwang(Phellinus linteus on High Fat Diet-induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    2004-02-01

    Full Text Available Acupuncture has fairly good weight-reducing effect in treating simple obesity due to the neuroendocrine regulation. In this study, the anti-obesity effects of herbal acupuncture (HA with Sang-hwang (Phellinus linteus at Fuai (SP16 were investigated in the rat fed on high-fat (HF diet. Sang-hwang mushroom has been proven to have anti-carcinogenic effects and Sang-hwang extracts are highly effective in treatment and preventive treatment of AIDS, diabetes and high blood-pressure. To determine whether the Sang-hwang herbal acupuncture may have the anti-obesity effect, male Sprague-Dawley (4-wk-old rats were fed a HF diet for 5 wk, which produced significant weight gain compared to rats were fed a normal diet, and then herbal acupuncture were treated for 3 wk in HF diet group. The body weight, food consumption, food effeciency ratio (FER, body fat mass, plasma nitric oxide (NO were investigated in rats fed on normal diet, HF diet, and HF diet with HA (HF-diet-HA groups. NO has been proposed to be involved in the regulation of food intake. In addition, the expression of appetite peptides such as orexigenic peptide neuropeptide Y (NPY and the anorectic peptide cholecystokinin (CCK were observed in the hypothalamus. HF-HA group reduced body weight gain, FER, body fat contents and NO concentration compared to HF diet group. The expression of NPY was reduced in arcuate nucleus (ARC, and CCK was increased in the paraventricular nucleus (PVN after treatment of HA. In conclusion, Sang-hwang HA reduced adipocity, plasma NO and hypothalamic NPY, but increased CCK expression in the HF diet-induced obesity rat, therefore HA may have anti-obesity action through regulating body weight and appetite peptide of the central nervous system.

  17. Maternal obesogenic diet induces endometrial hyperplasia, an early hallmark of endometrial cancer, in a diethylstilbestrol mouse model.

    Science.gov (United States)

    Owuor, Theresa O; Reid, Michaela; Reschke, Lauren; Hagemann, Ian; Greco, Suellen; Modi, Zeel; Moley, Kelle H

    2018-01-01

    Thirty-eight percent of US adult women are obese, meaning that more children are now born of overweight and obese mothers, leading to an increase in predisposition to several adult onset diseases. To explore this phenomenon, we developed a maternal obesity animal model by feeding mice a diet composed of high fat/ high sugar (HF/HS) and assessed both maternal diet and offspring diet on the development of endometrial cancer (ECa). We show that maternal diet by itself did not lead to ECa initiation in wildtype offspring of the C57Bl/6J mouse strain. While offspring fed a HF/HS post-weaning diet resulted in poor metabolic health and decreased uterine weight (regardless of maternal diet), it did not lead to ECa. We also investigated the effects of the maternal obesogenic diet on ECa development in a Diethylstilbestrol (DES) carcinogenesis mouse model. All mice injected with DES had reproductive tract lesions including decreased number of glands, condensed and hyalinized endometrial stroma, and fibrosis and increased collagen deposition that in some mice extended into the myometrium resulting in extensive disruption and loss of the inner and outer muscular layers. Fifty percent of DES mice that were exposed to maternal HF/HS diet developed several features indicative of the initial stages of carcinogenesis including focal glandular and atypical endometrial hyperplasia versus 0% of their Chow counterparts. There was an increase in phospho-Akt expression in DES mice exposed to maternal HF/HS diet, a regulator of persistent proliferation in the endometrium, and no difference in total Akt, phospho-PTEN and total PTEN expression. In summary, maternal HF/HS diet exposure induces endometrial hyperplasia and other precancerous phenotypes in mice treated with DES. This study suggests that maternal obesity alone is not sufficient for the development of ECa, but has an additive effect in the presence of a secondary insult such as DES.

  18. Rare Sugar Syrup Containing d-Allulose but Not High-Fructose Corn Syrup Maintains Glucose Tolerance and Insulin Sensitivity Partly via Hepatic Glucokinase Translocation in Wistar Rats.

    Science.gov (United States)

    Shintani, Tomoya; Yamada, Takako; Hayashi, Noriko; Iida, Tetsuo; Nagata, Yasuo; Ozaki, Nobuaki; Toyoda, Yukiyasu

    2017-04-05

    Ingestion of high-fructose corn syrup (HFCS) is associated with the risk of both diabetes and obesity. Rare sugar syrup (RSS) has been developed by alkaline isomerization of HFCS and has anti-obesity and anti-diabetic effects. However, the influence of RSS on glucose metabolism has not been explored. We investigated whether long-term administration of RSS maintains glucose tolerance and whether the underlying mechanism involves hepatic glucokinase translocation. Wistar rats were administered water, RSS, or HFCS in drinking water for 10 weeks and then evaluated for glucose tolerance, insulin tolerance, liver glycogen content, and subcellular distribution of liver glucokinase. RSS significantly suppressed body weight gain and abdominal fat mass (p glucose tolerance test revealed significantly higher blood glucose levels in the HFCS group compared to the water group, whereas the RSS group had significantly lower blood glucose levels from 90 to 180 min (p water group (p glucose loading, the nuclear export of glucokinase was significantly increased in the RSS group compared to the water group. These results imply that RSS maintains glucose tolerance and insulin sensitivity, at least partly, by enhancing nuclear export of hepatic glucokinase.

  19. Effects of long-term consumption of high fructose corn syrup containing peach nectar on body weight gain in sprague dawley rats

    Directory of Open Access Journals (Sweden)

    Gulsah OZCAN SINIR

    Full Text Available Abstract High fructose corn syrup (HFCS is one of the most used sweeteners in the food industry. Health concerns regarding the consumption of HFCS-containing foods have developed in parallel with the increasing amount of people who become overweight. This study was conducted to investigate whether HFCS-containing peach nectar (pn-HFCS consumption has more detrimental effects on anthropometrical and biochemical parameters compared with sucrose-containing peach nectar (pn-sucrose. Fifty-day-old Sprague Dawley rats were divided into three groups and were fed (A pn-HFCS + ad libitum chow, (B pn-sucrose + ad libitum chow and (C only ad libitum chow for 7 months. The percentage change in body weight (PCBW, body mass index (BMI, and Lee index were calculated, and serum triglyceride, glucose, insulin and leptin concentrations were measured. The PCBW, BMI, Lee index, serum triglyceride, glucose, insulin and leptin concentrations were insignificant among the three groups. We can suggest that peach nectar consumption resulted in more energy intake than the control and since pn-HFCS group consumed more chow than the pn-sucrose group. The results show that long term daily HFCS or sucrose consumption in peach nectar is not associated with weight gain and does not stimulate metabolic changes in Sprague Dawley rats.

  20. A Novel Production Method for High-Fructose Glucose Syrup from Sucrose-Containing Biomass by a Newly Isolated Strain of Osmotolerant Meyerozyma guilliermondii.

    Science.gov (United States)

    Khattab, Sadat Mohammad Rezq; Kodaki, Tsutomu

    2016-04-28

    One osmotolerant strain from among 44 yeast isolates was selected based on its growth abilities in media containing high concentrations of sucrose. This selected strain, named SKENNY, was identified as Meyerozyma guilliermondii by sequencing the internal transcribed spacer regions and partial D1/D2 large-subunit domains of the 26S ribosomal RNA. SK-ENNY was utilized to produce high-fructose glucose syrup (HFGS) from sucrose-containing biomass. Conversion rates to HFGS from 310-610 g/l of pure sucrose and from 75-310 g/l of sugar beet molasses were 73.5-94.1% and 76.2-91.1%, respectively. In the syrups produced, fructose yields were 89.4-100% and 96.5-100% and glucose yields were 57.6-82.5% and 55.3-79.5% of the theoretical values for pure sucrose and molasses sugars, respectively. This is the first report of employing M. guilliermondii for production of HFGS from sucrose-containing biomass.

  1. Whole cell immobilization of refractory glucose isomerase using tris(hydroxymethyl)phosphine as crosslinker for preparation of high fructose corn syrup at elevated temperature.

    Science.gov (United States)

    Jia, Dong-Xu; Wang, Teng; Liu, Zi-Jian; Jin, Li-Qun; Li, Jia-Jia; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2018-04-04

    Glucose isomerase (GI) responsible for catalyzing the isomerization from d-glucose to d-fructose, was an important enzyme for producing high fructose corn syrup (HFCS). In a quest to prepare HFCS at elevated temperature and facilitate enzymatic recovery, an effective procedure for whole cell immobilization of refractory Thermus oshimai glucose isomerase (ToGI) onto Celite 545 using tris(hydroxymethyl)phosphine (THP) as crosslinker was established. The immobilized biocatalyst showed an activity of approximate 127.3 U/(g·immobilized product) via optimization in terms of cells loading, crosslinker concentration and crosslinking time. The pH optimum of the immobilized biocatalyst was displaced from pH 8.0 of native enzyme to neutral pH 7.0. Compared with conventional glutaraldehyde (GLU)-immobilized cells, it possessed the enhanced thermostability with 70.1% residual activity retaining after incubation at 90°C for 72 h. Moreover, the THP-immobilized biocatalyst exhibited superior operational stability, in which it retained 85.8% of initial activity after 15 batches of bioconversion at 85°C. This study paved a way for reducing catalysis cost for upscale preparation of HFCS with higher d-fructose concentration. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup.

    Science.gov (United States)

    Liu, Zhi-Qiang; Zheng, Wei; Huang, Jian-Feng; Jin, Li-Qun; Jia, Dong-Xu; Zhou, Hai-Yan; Xu, Jian-Miao; Liao, Cheng-Jun; Cheng, Xin-Ping; Mao, Bao-Xing; Zheng, Yu-Guo

    2015-08-01

    High fructose corn syrup (HFCS) is an alternative of liquid sweetener to sucrose that is isomerized by commercial glucose isomerase (GI). One-step production of 55 % HFCS by thermostable GI has been drawn more and more attentions. In this study, a new hyperthermophilic GI from Thermoanaerobacter ethanolicus CCSD1 (TEGI) was identified by genome mining, and then a 1317 bp fragment encoding the TEGI was synthesized and expressed in Escherichia coli BL21(DE3). To improve the activity of TEGI, two amino acid residues, Trp139 and Val186, around the active site and substrate-binding pocket based on the structural analysis and molecular docking were selected for site-directed mutagenesis. The specific activity of mutant TEGI-W139F/V186T was 2.3-fold and the value of k cat/K m was 1.86-fold as compared to the wild type TEGI, respectively. Thermostability of mutant TEGI-W139F/V186T at 90 °C for 24 h showed 1.21-fold extension than that of wild type TEGI. During the isomerization of glucose to fructose, the yield of fructose could maintain above 55.4 % by mutant TEGI-W139F/V186T as compared to 53.8 % by wild type TEGI at 90 °C. This study paved foundation for the production of 55 % HFCS using the thermostable TEGI.

  3. Utilization of High-Fructose Corn Syrup for Biomas