WorldWideScience

Sample records for high-flux isotope reactor

  1. High Flux Isotope Reactor technical specifications

    International Nuclear Information System (INIS)

    1985-11-01

    This report gives technical specifications for the High Flux Isotope Reactor (HFIR) on the following: safety limits and limiting safety system settings; limiting conditions for operation; surveillance requirements; design features; and administrative controls

  2. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  3. High Flux Isotope Reactor power upgrade status

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Hale, R.E.; Cheverton, R.D.

    1997-01-01

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions

  4. Component and system simulation models for High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sozer, A.

    1989-08-01

    Component models for the High Flux Isotope Reactor (HFIR) have been developed. The models are HFIR core, heat exchangers, pressurizer pumps, circulation pumps, letdown valves, primary head tank, generic transport delay (pipes), system pressure, loop pressure-flow balance, and decay heat. The models were written in FORTRAN and can be run on different computers, including IBM PCs, as they do not use any specific simulation languages such as ACSL or CSMP. 14 refs., 13 figs

  5. Pressurizer pump reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    During a prolonged outage from November 1986 to May 1990, numerous changes were made at the High Flux Isotope Reactor (HFIR). Some of these changes involved the pressurizer pumps. An analysis was performed to calculate the impact of these changes on the pressurizer system availability. The analysis showed that the availability of the pressurizer system dropped from essentially 100% to approximately 96%. The primary reason for the decrease in availability comes because off-site power grid disturbances sometimes result in a reactor trip with the present pressurizer pump configuration. Changes are being made to the present pressurizer pump configuration to regain some of the lost availability

  6. Lessons learned form high-flux isotope reactor restart efforts

    International Nuclear Information System (INIS)

    Dahl, T.L.

    1989-01-01

    When the high-flux isotope reactor's (HFIR's) pressure vessel irradiation surveillance specimens were examined in December 1986, unexpected embrittlement was found. The resulting investigation disclosed widespread deficiencies in quality assurance and management practices. On March 24, 1987, the US Department of Energy (DOE) mandated a shutdown of all five Oak Ridge National Laboratory (ORNL) research reactors. Since the beginning of 1987, 18 different formal review groups have evaluated the management and operations of the HFIR. The root cause of the identified deficiencies in the HFIR program was defined as a lack of rigor in management practices and complacency built on twenty years of trouble-free operation. A number of lessons can be learned from the HFIR experience. Particular insight can be gained by comparing the HFIR organization prior to the shutdown with the organization that exists today. Key elements in such a comparison include staffing, funding, discipline, and formality in operations, maintenance, and management

  7. Emergency diesel generator reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    A program to apply some of the techniques of reliability engineering to the High Flux Isotope Reactor (HFIR) was started on August 8, 1992. Part of the program was to track the conditional probabilities of the emergency diesel generators responding to a valid demand. This was done to determine if the performance of the emergency diesel generators (which are more than 25 years old) has deteriorated. The conditional probabilities of the diesel generators were computed and trended for the period from May 1990 to December 1992. The calculations indicate that the performance of the emergency diesel generators has not deteriorated in recent years, i.e., the conditional probabilities of the emergency diesel generators have been fairly stable over the last few years. This information will be one factor than may be considered in the decision to replace the emergency diesel generators

  8. Fabrication of control rods for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.

    1998-01-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A

  9. Fabrication of control rods for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  10. Extraction of gadolinium from high flux isotope reactor control plates

    International Nuclear Information System (INIS)

    Kohring, M.W.

    1987-04-01

    Gadolinium-153 is an important radioisotope used in the diagnosis of various bone disorders. Recent medical and technical developments in the detection and cure of osteoporosis, a bone disease affecting an estimated 50 million people, have greatly increased the demand for this isotope. The Oak Ridge National Laboratory (ORNL) has produced 153 Gd since 1980 primarily through the irradiation of a natural europium-oxide powder followed by the chemical separation of the gadolinium fraction from the europium material. Due to the higher demand for 153 Gd, an alternative production method to supplement this process has been investigated. This process involves the extraction of gadolinium from the europium-bearing region of highly radioactive, spent control plates used at the High Flux Isotope Reactor (HFIR) with a subsequent re-irradiation of the extracted material for the production of the 153 Gd. Based on the results of experimental and calculational analyses, up to 25 grams of valuable gadolinium (≥60% enriched in 152 Gd) resides in the europium-bearing region of the HFIR control components of which 70% is recoverable. At a specific activity yield of 40 curies of 153 Gd for each gram of gadolinium re-irradiated, 700 one-curie sources can be produced from each control plate assayed

  11. High Flux Isotope Reactor system RELAP5 input model

    International Nuclear Information System (INIS)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model

  12. Neutron scattering at the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Cable, J.W. Chakoumakos, B.C.; Dai, P.

    1995-01-01

    The title facilities offer the brightest source of neutrons in the national user program. Neutron scattering experiments probe the structure and dynamics of materials in unique and complementary ways as compared to x-ray scattering methods and provide fundamental data on materials of interest to solid state physicists, chemists, biologists, polymer scientists, colloid scientists, mineralogists, and metallurgists. Instrumentation at the High- Flux Isotope Reactor includes triple-axis spectrometers for inelastic scattering experiments, a single-crystal four diffractometer for crystal structural studies, a high-resolution powder diffractometer for nuclear and magnetic structure studies, a wide-angle diffractometer for dynamic powder studies and measurements of diffuse scattering in crystals, a small-angle neutron scattering (SANS) instrument used primarily to study structure-function relationships in polymers and biological macromolecules, a neutron reflectometer for studies of surface and thin-film structures, and residual stress instrumentation for determining macro- and micro-stresses in structural metals and ceramics. Research highlights of these areas will illustrate the current state of neutron science to study the physical properties of materials

  13. High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Pudelek, R. E.; Gilbert, W. C.

    2002-02-26

    This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste

  14. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  15. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  16. High flux isotope reactor cold source preconceptual design study report

    International Nuclear Information System (INIS)

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E.

    1995-12-01

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH 2 moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project

  17. Dissolution flowsheet for high flux isotope reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Foster, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  18. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas, allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  19. Operating manual for the High Flux Isotope Reactor. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    1965-06-01

    This report contains a comprehensive description of the High Flux Isotope Reactor facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procedures are presented in another report.

  20. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    International Nuclear Information System (INIS)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report

  1. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report.

  2. Development of High Flux Isotope Reactor (HFIR) subcriticality monitoring methods

    International Nuclear Information System (INIS)

    Rothrock, R.B.

    1991-01-01

    Use of subcritical source multiplication measurements during refueling has been investigated as a possible replacement for out-of-reactor subcriticality measurements formerly made on fresh HFIR fuel elements at the ORNL Critical Experiment Facility. These measurements have been used in the past for preparation of estimated critical rod positions, and as a partial verification, prior to reactor startup, that the requirements for operational shutdown margin would be met. Results of subcritical count rate data collection during recent HFIR refuelings and supporting calculations are described illustrating the intended measurement method and its expected uncertainty. These results are compared to historical uses of the out-of-reactor core measurements and their accuracy requirements, and a planned in-reactor test is described which will establish the sensitivity of the method and calibrate it for future routine use during HFIR refueling. 2 refs., 1 fig., 2 tabs

  3. High Flux Isotope Reactor quarterly report, July--September 1975

    International Nuclear Information System (INIS)

    McCord, R.V.; Corbett, B.L.

    1975-01-01

    The replacement of the permanent beryllium reflector was completed this quarter. The reactor was shut down for 87 days for this maintenance operation. Erosion of the sealing surface at the stainless steel adaptor flange on the HB-1 beam tube facility was confirmed. A soft metallic O-ring was used to effect a seal when this facility was reassembled. A comprehensive inspection of the normally inaccessible parts of the reactor pressure vessel was made. No abnormalities were found

  4. Temperature and void reactivity coefficient calculations for the high flux isotope reactor safety analysis report

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Williams, L.R.

    1994-07-01

    This report provides documentation of a series of calculations performed in 1991 in order to provide input for the High Flux Isotope Reactor Safety Analysis Report. In particular, temperature and void reactivity coefficients were calculated for beginning-of-life, end-of-life, and xenon equilibrium (29 h) conditions. Much of the data used to prepare the computer models for these calculations was derived from the original HFIR nuclear design study

  5. Seismic, high wind, tornado, and probabilistic risk assessment of the high flux isotope reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Hashimoto, P.S.; Dizon, J.O.; Hashimoto, P.S.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR). Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed

  6. Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Stover, R.L.; Hashimoto, P.S.; Dizon, J.O.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs

  7. External event Probabilistic Risk Assessment for the High Flux Isotope Reactor (HFIR)

    International Nuclear Information System (INIS)

    Flanagan, G.F.; Johnson, D.H.; Buttemer, D.; Perla, H.F.; Chien, S.H.

    1989-01-01

    The High Flux Isotope Reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988 a level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 x 10 -4 . In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 50% of the internal event initiated contribution and is dominated by seismic events

  8. Status of High Flux Isotope Reactor (HFIR) post-restart safety analysis and documentation upgrades

    International Nuclear Information System (INIS)

    Cook, D.H.; Radcliff, T.D.; Rothrock, R.B.; Schreiber, R.E.

    1990-01-01

    The High Flux Isotope Reactor (HFIR), an experimental reactor located at the Oak Ridge National Laboratory (ORNL) and operated for the US Department of Energy by Martin Marietta Energy Systems, was shut down in November, 1986 after the discovery of unexpected neutron embrittlement of the reactor vessel. The reactor was restarted in April, 1989, following an extensive review by DOE and ORNL of the HFIR design, safety, operation, maintenance and management, and the implementation of several upgrades to HFIR safety-related hardware, analyses, documents and procedures. This included establishing new operating conditions to provide added margin against pressure vessel failure, as well as the addition, or upgrading, of specific safety-related hardware. This paper summarizes the status of some of the follow-on (post-restart) activities which are currently in progress, and which will result in a comprehensive set of safety analyses and documentation for the HFIR, comparable with current practice in commercial nuclear power plants. 8 refs

  9. Eddy-current inspection of high flux isotope reactor nuclear control rods

    International Nuclear Information System (INIS)

    Smith, J.H.; Chitwood, L.D.

    1981-07-01

    Inner control rods for the High Flux Isotope Reactor were nondestructively inspected for defects by eddy-current techniques. During these examinations aluminum cladding thickness and oxide thickness on the cladding were also measured. Special application techniques were required because of the high-radiation levels (approx. 10 5 R/h at 30 cm) present and the relatively large temperature gradients that occurred on the surface of the control rods. The techniques used to perform the eddy-current inspections and the methods used to reduce the associated data are described

  10. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  11. Final report of the HFIR [High Flux Isotope Reactor] irradiation facilities improvement project

    International Nuclear Information System (INIS)

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987

  12. Dynamic response of the high flux isotope reactor structure caused by nearby heavy load drop

    International Nuclear Information System (INIS)

    Chang, Shih-Jung.

    1995-01-01

    A heavy load of 50,000 lb is assumed to drop from 10 ft above the bottom of the High Flux Isotope Reactor (HFIR) pool at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying the ABAQUS computer code The results show that both the BM vessel structure and its supporting legs are subjected to elastic disturbances only and, therefore, will not be damaged. The bottom slab of the pool, however, will be damaged to about half of the slab thickness. The velocity response spectrum at the concrete floor next to the HFIR vessel as a result of the vibration caused by the impact is obtained. It is concluded, that the damage caused by heavy load drop at the loading station is controlled by the slab damage and the nearby HFIR vessel and the supporting legs will not be damaged

  13. Management of safety and risk at the HFIR [High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Glovier, H.A.

    1990-01-01

    This paper discusses the management of safety and risk at the High-Flux Isotope Reactor (HFIR), a category A research reactor at Oak Ridge National Laboratory (ORNL). The HFIR went critical in 1966 and operated at its designed 100 MW for 20 yr until it was shut down on November 14, 1986. It operated at a >90% availability and without significant event during this period. The result was a complacent management program lacking rigor. This complacency came to an end with the Chernobyl accident, which led to the appointment of an internal committee to assess the safety of ORNL reactor operations. This committee found that HFIR pressure vessel material specimens removed several years earlier had not been analyzed. This issue led to a general review of management practices that were found lacking in quality assurance, safety documentation, training process, and emergency planning, among others. Management accountability was lacking, as shown by design basis and safety analyses that were not up to data and by the fact that reactor operators whose requalification examinations had not been graded were allowed to continue operating the reactor over a long period of time. Between shutdown in 1986 and restart in April 1989, significant management changes and initiatives were made in the area of risk and safety management of ORNL reactors. These are presented briefly in this paper

  14. Design and use of the ORNL HFIR [High Flux Isotope Reactor] pneumatic tube irradiation systems

    International Nuclear Information System (INIS)

    Dyer, F.F.; Emery, J.F.; Robinson, L.; Teasley, N.A.

    1987-01-01

    A second pneumatic tube that was recently installed in the High Flux Isotope Reactor for neutron activation analysis is described. Although not yet tested, the system is expected to have a thermal neutron flux of about 1.5 x 10 14 cm -2 s -1 . A delayed neutron counter is an integral part of the pneumatic tube, and all of the hardware is present to enable automated use of the counter. The system is operated with a Gould programmable controller that is programmed with an IBM personal computer. Automation of any mode of operation, including the delayed neutron counter, will only require a nominal amount of software development. Except for the lack of a hot cell, the irradiation facility has all of the advantageous features of an older pneumatic tube that has been in operation for 17 years. The design of the system and some applications and methods of operation are described

  15. Calculations for HFIR [High Flux Isotope Reactor] fuel plate non- bonding and fuel segregation uncertainty factors

    International Nuclear Information System (INIS)

    Kirkpatrick, J.R.

    1990-10-01

    The effects of non-bonds and of fuel segregation on the package factors of the heat flux in the High Flux Isotope Reactor (HFIR) are examined. The effects of the two defects are examined both separately and together. It is concluded that the peaking factors that are used in the present HFIR thermal analysis code are conservative and thus no changes in the peaking factors are necessary to continue to ensure that HFIR is safe. A study was made of the effect of the non-bond spot diameter on the peaking factor. The conclusion is that the spot can have diameter more than three times the maximum value allowed by the specifications before the peaking factor is greater than the maximum value specified in the present HFIR thermal analysis code. 6 refs., 7 figs., 8 tabs

  16. Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Ott, Larry J.; Ellis, Ronald James; McDuffee, Joel Lee; Spellman, Donald J.; Bevard, Bruce Balkcom

    2009-01-01

    The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

  17. Evaluation of HFIR [High Flux Isotope Reactor] pressure-vessel integrity considering radiation embrittlement

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Merkle, J.G.; Nanstad, R.K.

    1988-04-01

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of ∼10 4 less), that is, a rate effect

  18. The method of life extension for the High Flux Isotope Reactor vessel

    International Nuclear Information System (INIS)

    Chang, Shib-Jung.

    1995-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A hydrostatic pressure test (hydrotest) is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the reactor life from the safe hydrostatic pressure. The life extension calculation provides the following information on the remaining life of the reactor as a function of the nil ductility temperature increase: the probability of vessel fracture due to hydrotest vs vessel life at several hydrotest pressures; the hydrotest time interval vs the uncertainty of the nil ductility temperature increase rate; and the hydrotest pressure vs the uncertainty of the nil ductility temperature increase rate. It is understood that the use of a complete range of uncertainties of the nil ductility temperature increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 degree F

  19. Lessons Learned in the Update of a Safety Limit for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Cook, David Howard

    2009-01-01

    A recent unreviewed safety question (USQ) regarding a portion of the High Flux Isotope Reactor (HFIR) transient decay heat removal analysis focused on applicability of a heat transfer correlation at the low flow end of reactor operations. During resolution of this issue, review of the correlations used to establish the safety limit (SL) on reactor flux-to-flow ratio revealed the need to change the magnitude of the SL at the low flow end of reactor operations and the need to update the hot spot fuel damage criteria to incorporate current knowledge involving parallel channel flow stability. Because of the original safety design strategy for the reactor, resolution of the issues for the flux-to-flow ratio involved reevaluation of all key process variable SLs and limiting control settings (LCSs) using the current version of the heat transfer analysis code for the reactor. Goals of the work involved updating and upgrading the SL analysis where necessary, while preserving the safety design strategy for the reactor. Changes made include revisions to the safety design criteria at low flows to address the USQ, update of the process- and analysis input-variable uncertainty considerations, and upgrade of the safety design criteria at high flow. The challenges faced during update/upgrade of this SL and LCS are typical of the problems found in the integration of safety into the design process for a complex facility. In particular, the problems addressed in the area of instrument uncertainties provide valuable lessons learned for establishment and configuration control of SLs for large facilities

  20. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  1. Total quality management for addressing suspect parts at the Oak Ridge High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Hendrix, K.A.; Tulay, M.P.

    1993-01-01

    Martin Marietta Energy System (MMES) Research Reactors Division (RRD), operator of the High Flux Isotope Reactor (HFIR) recently embarked on an aggressive Program to address the issue of suspect Parts and to enhance their procurement process. Through the application of TQM process improvement, RRD has already achieved improved efficiency in specifying, procuring, and accepting replacement items for its largest research reactor. These process improvements have significantly decreased the risk of installing suspect parts in the HFIR safety systems. To date, a systematic plan has been implemented, which includes the following elements: Process assessment and procedure review; Procedural enhancements; On-site training and technology transfer; Enhanced receiving inspections; Performance supplier evaluations and source verifications integrated processes for utilizing commercial grade products in nuclear safety-related applications. This paper will describe the above elements, how a partnership between MMES and Gilbert/Commonwealth facilitated the execution of the plan, and how process enhancements were applied. We will also present measures for improved efficiency and productivity, that MMES intends to continually address with Quality Action Teams

  2. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  3. Production of Thorium-229 at the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Boll, Rose Ann; Garland, Marc A.; Mirzadeh, Saed

    2008-01-01

    The investigation of targeted cancer therapy using -emitters has developed considerably in recent years and clinical trials have generated promising results. In particular, the initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the -emitter 213Bi in killing cancer cells. Pre-clinical studies have also shown the potential application of both 213Bi and its 225Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. Bismuth-213 is obtained from a radionuclide generator system from decay of the 10-d 225Ac parent, a member of the 7340-y 229Th chain. Currently, 233U is the only viable source for high purity 229Th; however, due to increasing difficulties associated with 233U safeguards, processing additional 233U is presently unfeasible. The recent decision to downblend and dispose of enriched 233U further diminished the prospects for extracting 229Th from 233U stock. Nevertheless, the anticipated growth in demand for 225Ac may soon exceed the levels of 229Th (∼40 g or ∼8 Ci; ∼80 times the current ORNL 229Th stock) present in the aged 233U stockpile. The alternative routes for the production of 229Th, 225Ra and 225Ac include both reactor and accelerator approaches. Here, we describe production of 229Th via neutron transmutation of 226Ra targets in the ORNL High Flux Isotope Reactor (HFIR).

  4. Job/task analysis for I ampersand C [Instrumentation and Controls] instrument technicians at the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Duke, L.L.

    1989-09-01

    To comply with Department of Energy Order 5480.XX (Draft), a job/task analysis was initiated by the Maintenance Management Department at Oak Ridge National Laboratory (ORNL). The analysis was applicable to instrument technicians working at the ORNL High Flux Isotope Reactor (HFIR). This document presents the procedures and results of that analysis. 2 refs., 2 figs

  5. Probabilistic fracture mechanics analysis for the life extension estimate of the high flux isotope reactor vessel

    International Nuclear Information System (INIS)

    Chang, S.J.

    1997-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A new method of fracture probability calculation is presented in this paper. The fracture probability as a result of the hydrostatic pressure test (hydrotest) is used to determine the life of the vessel. The hydrotest is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the safe reactor operation time from the time of the satisfactory hydrostatic test. The life extension calculation provides the following information on the remaining life of the reactor as a function of the NDT increase: (1) the life of the vessel is determined by the probability of vessel fracture as a result of hydrotest at several hydrotest pressures and vessel embrittlement conditions, (2) the hydrotest time interval vs the NDT increase rate, and (3) the hydrotest pressure vs the NDT increase rate. It is understood that the use of a complete range of uncertainties of the NDT increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 degrees F

  6. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR [High Flux Isotope Reactor] Reactor

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs

  7. Probability of fracture and life extension estimate of the high-flux isotope reactor vessel

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in ductile-brittle transition temperature (DBTT) for fracture, often denoted by RT NDT for carbon steel. This transition temperature can be calibrated by the drop-weight test and, sometimes, by the Charpy impact test. The life extension for the high-flux isotope reactor (HFIR) vessel is calculated by using the method of fracture mechanics that is incorporated with the effect of the DBTT change. The failure probability of the HFIR vessel is limited as the life of the vessel by the reactor core melt probability of 10 -4 . The operating safety of the reactor is ensured by periodic hydrostatic pressure test (hydrotest). The hydrotest is performed in order to determine a safe vessel static pressure. The fracture probability as a result of the hydrostatic pressure test is calculated and is used to determine the life of the vessel. Failure to perform hydrotest imposes the limit on the life of the vessel. The conventional method of fracture probability calculations such as that used by the NRC-sponsored PRAISE CODE and the FAVOR CODE developed in this Laboratory are based on the Monte Carlo simulation. Heavy computations are required. An alternative method of fracture probability calculation by direct probability integration is developed in this paper. The present approach offers simple and expedient ways to obtain numerical results without losing any generality. In this paper, numerical results on (1) the probability of vessel fracture, (2) the hydrotest time interval, and (3) the hydrotest pressure as a result of the DBTT increase are obtained

  8. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. To address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).

  9. On RELAP5-simulated High Flux Isotope Reactor reactivity transients: Code change and application

    International Nuclear Information System (INIS)

    Freels, J.D.

    1993-01-01

    This paper presents a new and innovative application for the RELAP5 code (hereafter referred to as ''the code''). The code has been used to simulate several transients associated with the (presently) draft version of the High-Flux Isotope Reactor (HFIR) updated safety analysis report (SAR). This paper investigates those thermal-hydraulic transients induced by nuclear reactivity changes. A major goal of the work was to use an existing RELAP5 HFIR model for consistency with other thermal-hydraulic transient analyses of the SAR. To achieve this goal, it was necessary to incorporate a new self-contained point kinetics solver into the code because of a deficiency in the point-kinetics reactivity model of the Mod 2.5 version of the code. The model was benchmarked against previously analyzed (known) transients. Given this new code, four event categories defined by the HFIR probabilistic risk assessment (PRA) were analyzed: (in ascending order of severity) a cold-loop pump start; run-away shim-regulating control cylinder and safety plate withdrawal; control cylinder ejection; and generation of an optimum void in the target region. All transients are discussed. Results of the bounding incredible event transient, the target region optimum void, are shown. Future plans for RELAP5 HFIR applications and recommendations for code improvements are also discussed

  10. Scientific upgrades at the high flux isotope reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Selby, D.L.; Garrett, D.L.; Lucas, A.T.; Reeves, M.E.

    2001-01-01

    The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the high flux isotope reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: 1) larger beam tubes, 2) a new monochromator drum for the HB-1 beam line, 3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, 4) new instruments for the HB-2 beamline, 5) a new monochromator drum for the HB-3 beam line, 6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, 7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, 8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, 9) a number of new instruments for the cold beams including two new SANS instruments, and 10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule. (orig.)

  11. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Adam R [ORNL

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  12. The High Flux Isotope Reactor (HFIR) cold source project at ORNL

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Chang, S.J.; Freels, J.D. . E-mail-yb2@ornl.gov

    1998-01-01

    Following the decision to cancel the Advanced Neutron Source (ANS) Project at Oak Ridge National Laboratory (ORNL), it was determined that a hydrogen cold source should be retrofitted into an existing beam tube of the High Flux Isotope Reactor (HFIR) at ORNL. The preliminary design of this system has been completed and an 'approval in principle' of the design has been obtained from the internal ORNL safety review committees and the U.S. Department of Energy (DOE) safety review committee. The cold source concept is basically a closed loop forced flow supercritical hydrogen system. The supercritical approach was chosen because of its enhanced stability in the proposed high heat flux regions. Neutron and gamma physics of the moderator have been analyzed using the 3D Monte Carlo code MCNP 1 A D structural analysis model of the moderator vessel, vacuum tube, and beam tube was completed to evaluate stress loadings and to examine the impact of hydrogen detonations in the beam tube. A detailed ATHENA 2 system model of the hydrogen system has been developed to simulate loop performance under normal and off-normal transient conditions. Semi-prototypic hydrogen loop tests of the system have been performed at the Arnold Engineering Design Center (AEDC) located in Tullahoma, Tennessee to verify the design and benchmark the analytical system model. A 3.5 kW refrigerator system has been ordered and is expected to be delivered to ORNL by the end of this calendar year. Our present schedule shows the assembling of the cold source loop on site during the fall of 1999 for final testing before insertion of the moderator plug assembly into the reactor beam tube during the end of the year 2000. (author)

  13. Determination of the theoretical feasibility for the transmutation of europium isotopes from high flux isotope reactor control cylinders

    International Nuclear Information System (INIS)

    Elam, K.R.; Reich, W.J.

    1995-09-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is a 100 MWth light-water research reactor designed and built in the 1960s primarily for the production of transuranic isotopes. The HFIR is equipped with two concentric cylindrical blade assemblies, known as control cylinders, that are used to control reactor power. These control cylinders, which become highly radioactive from neutron exposure, are periodically replaced as part of the normal operation of the reactor. The highly radioactive region of the control cylinders is composed of europium oxide in an aluminum matrix. The spent HFIR control cylinders have historically been emplaced in the ORNL Waste Area Grouping (WAG) 6. The control cylinders pose a potential radiological hazard due to the long lived radiotoxic europium isotopes 152 Eu, 154 Eu, and 155 Eu. In a 1991 health evaluation of WAG 6 (ERD 1991) it was shown that these cylinders were a major component of the total radioactivity in WAG 6 and posed a potential exposure hazard to the public in some of the postulated assessment scenarios. These health evaluations, though preliminary and conservative in nature, illustrate the incentive to investigate methods for permanent destruction of the europium radionuclides. When the cost of removing the control cylinders from WAG 6, performing chemical separations and irradiating the material in HFIR are factored in, the option of leaving the control cylinders in place for decay must be considered. Other options, such as construction of an engineered barrier around the disposal silos to reduce the chance of migration, should also be analyzed

  14. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  15. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Bryant, Rebecca; Kszos, Lynn A.

    2011-01-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  16. Application of expert systems to heat exchanger control at the 100-megawatt high-flux isotope reactor

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Clark, F.H.; Mullens, J.A.; Otaduy, P.J.; Wehe, D.K.

    1985-01-01

    The High-Flux Isotope Reactor (HFIR) is a 100-MW pressurized water reactor at the Oak Ridge National Laboratory. It is used to produce isotopes and as a source of high neutron flux for research. Three heat exchangers are used to remove heat from the reactor to the cooling towers. A fourth heat exchanger is available as a spare in case one of the operating heat exchangers malfunctions. It is desirable to maintain the reactor at full power while replacing the failed heat exchanger with the spare. The existing procedures used by the operators form the initial knowledge base for design of an expert system to perform the switchover. To verify performance of the expert system, a dynamic simulation of the system was developed in the MACLISP programming language. 2 refs., 3 figs

  17. Thermal Safety Analyses for the Production of Plutonium-238 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, Christopher J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hobbs, Randy W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    There has been a considerable effort over the previous few years to demonstrate and optimize the production of plutonium-238 (238Pu) at the High Flux Isotope Reactor (HFIR). This effort has involved resources from multiple divisions and facilities at the Oak Ridge National Laboratory (ORNL) to demonstrate the fabrication, irradiation, and chemical processing of targets containing neptunium-237 (237Np) dioxide (NpO2)/aluminum (Al) cermet pellets. A critical preliminary step to irradiation at the HFIR is to demonstrate the safety of the target under irradiation via documented experiment safety analyses. The steady-state thermal safety analyses of the target are simulated in a finite element model with the COMSOL Multiphysics code that determines, among other crucial parameters, the limiting maximum temperature in the target. Safety analysis efforts for this model discussed in the present report include: (1) initial modeling of single and reduced-length pellet capsules in order to generate an experimental knowledge base that incorporate initial non-linear contact heat transfer and fission gas equations, (2) modeling efforts for prototypical designs of partially loaded and fully loaded targets using limited available knowledge of fabrication and irradiation characteristics, and (3) the most recent and comprehensive modeling effort of a fully coupled thermo-mechanical approach over the entire fully loaded target domain incorporating burn-up dependent irradiation behavior and measured target and pellet properties, hereafter referred to as the production model. These models are used to conservatively determine several important steady-state parameters including target stresses and temperatures, the limiting condition of which is the maximum temperature with respect to the melting point. The single pellet model results provide a basis for the safety of the irradiations, followed by parametric analyses in the initial prototypical designs

  18. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  19. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  20. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Christian M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  1. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  2. Report of the ANS Project Feasibility Workshop for a High Flux Isotope Reactor-Center for Neutron Research Facility

    International Nuclear Information System (INIS)

    Peretz, F.J.; Booth, R.S.

    1995-07-01

    The Advanced Neutron Source (ANS) Conceptual Design Report (CDR) and its subsequent updates provided definitive design, cost, and schedule estimates for the entire ANS Project. A recent update to this estimate of the total project cost for this facility was $2.9 billion, as specified in the FY 1996 Congressional data sheet, reflecting a line-item start in FY 1995. In December 1994, ANS management decided to prepare a significantly lower-cost option for a research facility based on ANS which could be considered during FY 1997 budget deliberations if DOE or Congressional planners wished. A cost reduction for ANS of about $1 billion was desired for this new option. It was decided that such a cost reduction could be achieved only by a significant reduction in the ANS research scope and by maximum, cost-effective use of existing High Flux Isotope Reactor (HFIR) and ORNL facilities to minimize the need for new buildings. However, two central missions of the ANS -- neutron scattering research and isotope production-were to be retained. The title selected for this new option was High Flux Isotope Reactor-Center for Neutron Research (HFIR-CNR) because of the project's maximum use of existing HFIR facilities and retention of selected, central ANS missions. Assuming this shared-facility requirement would necessitate construction work near HFIR, it was specified that HFIR-CNR construction should not disrupt normal operation of HFIR. Additional objectives of the study were that it be highly credible and that any material that might be needed for US Department of Energy (DOE) and Congressional deliberations be produced quickly using minimum project resources. This requirement made it necessary to rely heavily on the ANS design, cost, and schedule baselines. A workshop methodology was selected because assessment of each cost and/or scope-reduction idea required nearly continuous communication among project personnel to ensure that all ramifications of propsed changes

  3. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, Trent; Guida, Tracey

    2010-01-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  4. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  5. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    International Nuclear Information System (INIS)

    Renfro, David G.; Cook, David Howard; Freels, James D.; Griffin, Frederick P.; Ilas, Germina; Sease, John D.; Chandler, David

    2012-01-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  6. Short-lived radionuclides produced on the ORNL 86-inch cyclotron and High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Lamb, E.

    1985-01-01

    The production of short-lived radionuclides at ORNL includes the preparation of target materials, irradiation on the 86-in. cyclotron and in the High Flux Isotope Reactor (HFIR), and chemical processing to recover and purify the product radionuclides. In some cases the target materials are highly enriched stable isotopes separated on the ORNL calutrons. High-purity 123 I has been produced on the 86-in. cyclotron by irradiating an enriched target of 123 Te in a proton beam. Research on calutron separations has led to a 123 Te product with lower concentrations of 124 Te and 126 Te and, consequently to lower concentrations of the unwanted radionuclides, 124 I and 126 I, in the 123 I product. The 86-in. cyclotron accelerates a beam of protons only but is unique in providing the highest available beam current of 1500 μA at 21 MeV. This beam current produces relatively large quantities of radionuclides such as 123 I and 67 Ga

  7. Chronology of the beryllium replacement shutdown at the High Flux Isotope Reactor (HFIR), 1983

    International Nuclear Information System (INIS)

    Kohring, M.W.

    1984-04-01

    In addition to the permanent beryllium reflector, several other components were replaced. The outer shroud and lower tracks were replaced. The new control rod access plugs and the upper tracks were installed. Replacement of collimator tubes for HB-1 and -2 are tentatively slated for the next permanent beryllium changeout. Inspection of the reactor vessel, the vessel-to-nozzle welds, core support structure, and vessel internal cladding showed them to be in acceptable condition. The highest, accumulative radiation doses received by Reactor Operations personnel during the shutdown, in mrem, were 665, 606, and 560; the highest for P and E personnel were 520, 505, and 475

  8. Impact induced response spectrum for the safety evaluation of the high flux isotope reactor

    International Nuclear Information System (INIS)

    Chang, S.J.

    1997-01-01

    The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism. An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor

  9. Production of transplutonium elements in the high flux isotope reactor (HFIR)

    International Nuclear Information System (INIS)

    Bigelow, J.E.; Corbett, B.L.; King, L.J.; McGuire, S.C.; Sims, T.M.

    1980-01-01

    The techniques described have been demonstrated to be adequate to predict the contents of transplutonium element production targets which have been irradiated in the HFIR. The deviations, at least for isotopes of mass 253 or less, are generally within the usual analytical uncertainties, or else are for isiotopes which are of little overall import to the program. Work is especially needed to get a better picture of the production of 250 Cm, 254 Es, 255 Es, and ultimately 257 Fm, since researchers are frequently stating their interest in obtaining larger quantities of these rare and difficult-to-produce nuclides

  10. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    International Nuclear Information System (INIS)

    Knight, R.W.; Morin, R.A.

    1999-01-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U 3 O 8 powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated

  11. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  12. Analysis and modeling of flow blockage-induced steam explosion events in the High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Lestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.; Kirkpatrick, J.

    1993-01-01

    This paper provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor during flow blockage events. The overall workscope included modeling and analysis of core melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several miliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. Therefore, it is judged that the HFIR vessel and top head structure will be able to withstand loads generated from thermally driven steam explosions initiated by any credible flow blockage event. A substantial margin to safety was demonstrated

  13. Preliminary considerations of an intense slow positron facility based on a 78Kr loop in the high flux isotopes reactor

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Donohue, D.L.; Peretz, F.J.; Montgomery, B.H.; Hayter, J.B.

    1990-01-01

    Suggestions have been made to the National Steering Committee for the Advanced Neutron Source (ANS) by Mills that provisions be made to install a high intensity slow positron facility, based on a 78 Kr loop, that would be available to the general community of scientists interested in this field. The flux of thermal neutrons calculated for the ANS is E + 15 sec -1 m -2 , which Mills has estimated will produce 5 mm beam of slow positrons having a current of about 1 E + 12 sec -1 . The intensity of such a beam will be a least 3 orders of magnitude greater than those presently available. The construction of the ANS is not anticipated to be complete until the year 2000. In order to properly plan the design of the ANS, strong considerations are being given to a proof-of-principle experiment, using the presently available High Flux Isotopes Reactor, to test the 78 Kr loop technique. The positron current from the HFIR facility is expected to be about 1 E + 10 sec -1 , which is 2 orders of magnitude greater than any other available. If the experiment succeeds, a very valuable facility will be established, and important formation will be generated on how the ANS should be designed. 3 refs., 1 fig

  14. Analysis and modeling of flow-blockage-induced steam explosion events in the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.

    1994-01-01

    This article provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor (HFIR) during flow blockage events. The overall work scope included modeling and analysis of core-melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and, finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several milliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. 19 refs., 11 figs

  15. Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Ellis, Ronald James [ORNL; Gehin, Jess C [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL

    2007-11-01

    This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology

  16. Modernization of the High Flux Isotope Reactor (HFIR) to Provide a Cold Neutron Source and Experimentation Facility

    International Nuclear Information System (INIS)

    Rothrock, Benjamin G.; Farrar, Mike B.

    2009-01-01

    In June 1961, construction was started on the High Flux Isotope Reactor (HFIR) facility inside the Oak Ridge National Laboratory (ORNL), at the recommendation of the U.S. Atomic Energy Commission (AEC) Division of Research. Construction was completed in early 1965 with criticality achieved on August 25, 19651. From the first full power operating cycle beginning in September 1966, the HFIR has achieved an outstanding record of service to the scientific community. In early 1995, the ORNL deputy director formed a group to examine the need for upgrades to the HFIR following the cancellation of the Advanced Neutron Source Project by DOE. This group indicated that there was an immediate need for the installation of a cold neutron source facility in the HFIR to produce cold neutrons for neutron scattering research uses. Cold neutrons have long wavelengths in the range of 4-12 angstroms. Cold neutrons are ideal for research applications with long length-scale molecular structures such as polymers, nanophase materials, and biological samples. These materials require large scale examination (and therefore require a longer wavelength neutron). These materials represent particular areas of science are at the forefront of current research initiatives that have a potentially significant impact on the materials we use in our everyday lives and our knowledge of biology and medicine. This paper discusses the installation of a cold neutron source at HFIR with respect to the project as a modernization of the facility. The paper focuses on why the project was required, the scope of the cold source project with specific emphasis on the design, and project management information.

  17. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-01-01

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the

  18. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are

  19. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Office of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low and high

  20. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Alexander, C.W.; Hobbs, R.L.

    1998-01-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed

  1. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  2. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  3. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, R.T. III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N.

    2006-01-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U 3 O 8 mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties

  4. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designs allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.

  5. Selection of support structure materials for irradiation experiments in the HFIR [High Flux Isotope Reactor] at temperatures up to 500 degrees C

    International Nuclear Information System (INIS)

    Farrell, K.; Longest, A.W.

    1990-01-01

    The key factor in the design of capsules for irradiation of test specimens in the High Flux Isotope Reactor at preselected temperatures up to 500 degree C utilizing nuclear heating is a narrow gas-filled gap which surrounds the specimens and controls the transfer of heat from the specimens through the wall of a containment tube to the reactor cooling water. Maintenance of this gap to close tolerances is dependent on the characteristics of the materials used to support the specimens and isolate them from the water. These support structure materials must have low nuclear heating rates, high thermal conductivities, and good dimensional stabilities under irradiation. These conditions are satisfied by certain aluminum alloys. One of these alloys, a powder metallurgy product containing a fine dispersion of aluminum oxide, is no longer manufactured. A new alloys of this type, with the trade name DISPAL, is determined to be a suitable substitute. 23 refs., 13 figs., 3 tabs

  6. High Flux Materials Testing Reactor (HFR), Petten

    International Nuclear Information System (INIS)

    1975-09-01

    After conversion to burnable poison fuel elements, the High Flux Materials Testing Reactor (HFR) Petten (Netherlands), operated through 1974 for 280 days at 45 MW. Equipment for irradiation experiments has been replaced and extended. The average annual occupation by experiments was 55% as compared to 38% in 1973. Work continued on thirty irradiation projects and ten development activities

  7. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline.

    Science.gov (United States)

    Dhiman, I; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X; Jiang, C Y; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3 He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe 3 Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3 He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  8. Design and Thermal Analysis for Irradiation of Pyrolytic Carbon/Silicon Carbide Diffusion Couples in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept consisting of a spherical fuel kernel made of uranium oxide and uranium carbide, surrounded by a porous carbonaceous buffer layer and successive layers of dense inner pyrolytic carbon (IPyC), silicon carbide (SiC) deposited by chemical vapor , and dense outer pyrolytic carbon (OPyC). This fuel concept is being considered for advanced reactor applications such as high temperature gas-cooled reactors (HTGRs) and molten salt reactors (MSRs), as well as for accident-tolerant fuel for light water reactors (LWRs). Development and implementation of TRISO fuel for these reactor concepts support the US Department of Energy (DOE) Office of Nuclear Energy mission to promote safe, reliable nuclear energy that is sustainable and environmentally friendly. During operation, the SiC layer serves as the primary barrier to metallic fission products and actinides not retained in the kernel. It has been observed that certain fission products are released from TRISO fuel during operation, notably, Ag, Eu, and Sr [1]. Release of these radioisotopes causes safety and maintenance concerns.

  9. Investigation of the delay in pressure vessel embrittlement specimen analysis for the Oak Ridge National Laboratory High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Rothrock, J.D.; Hoffman, E.E.; Manthey, G.C.; Sheffey, D.W.

    1987-01-01

    Analysis of the investigative data pertaining to this incident reveals the following conditions as key findings and probable causes: (1) The contractor failed to properly implement the surveillance program for monitoring reactor pressure vessel embrittlement. (2) Contractor and DOE organizations provided less than adequate oversight and independent overview, especially by not requiring operating organizations to provide documented evidence to substantiate claims that there was ''no problem'' with respect to embrittlement. (3) Although the temperature limitation for reactor pressurization identified in the Technical Specifications was never violated, the basis of this safety limitation was violated. (4) The basis for concluding that there would be no embrittlement of the pressure vessel steel over the expected life of the reactor is questionable. (5) The contractor and DOE failed to make the surveillance program visible by incorporating it in the Technical Specifications. (6) The Accident Analysis/Final Safety Analysis Report was never adequately reviewed and updated subsequent to its initial issuance. (7) Surveillance specimen analysis was incomplete and never transmitted to reactor operating personnel in a usable format prior to November 1986. (8) There was extensive delays (many years) in the testing, analysis, and reporting of surveillance program results

  10. Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993

    International Nuclear Information System (INIS)

    1994-03-01

    On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci 192 Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape

  11. HFBR handbook, 1992: High flux beam reactor

    International Nuclear Information System (INIS)

    Axe, J.D.; Greenberg, R.

    1992-10-01

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance

  12. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Bodey, Isaac T.; Curtis, Franklin G.; Arimilli, Rao V.; Ekici, Kivanc; Freels, James D.

    2015-01-01

    The findings presented in this report are results of a five year effort led by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor) and have

  13. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curtis, Franklin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Arimilli, Rao V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-01

    The findings presented in this report are results of a five year effort led by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor) and have

  14. Instrumentation for the advanced high-flux reactor workshop: proceedings

    International Nuclear Information System (INIS)

    Moon, R.M.

    1984-01-01

    The purpose of the Workshop on Instrumentation for the Advanced High-Flux Reactor, held on May 30, 1984, at the Oak Ridge National Laborattory, was two-fold: to announce to the scientific community that ORNL has begun a serious effort to design and construct the world's best research reactor, and to solicit help from the scientific community in planning the experimental facilities for this reactor. There were 93 participants at the workshop. We are grateful to the visiting scientists for their enthusiasm and interest in the reactor project. Our goal is to produce a reactor with a peak thermal flux in a large D 2 O reflector of 5 x 10 15 n/cm 2 s. This would allow the installation of unsurpassed facilities for neutron beam research. At the same time, the design will provide facilities for isotope production and materials irradiation which are significantly improved over those now available at ORNL. This workshop focussed on neutron beam facilities; the input from the isotope and materials irradiation communities will be solicited separately. The reactor project enjoys the full support of ORNL management; the present activities are financed by a grant of $663,000 from the Director's R and D Fund. However, we realize that the success of the project, both in realization and in use of the reactor, depends on the support and imagination of a broad segment of the scientific community. This is more a national project than an ORNL project. The reactor would be operated as a national user facility, open to any research proposal with high scientific merit. It is therefore important that we maintain a continuing dialogue with outside scientists who will be the eventual users of the reactor and the neutron beam facilities. The workshop was the first step in establishing this dialogue; we anticipate further workshops as the project continues

  15. 1984 Operation of the high flux reactor

    International Nuclear Information System (INIS)

    1985-01-01

    The programme resources in 1984 were largely devoted to the replacement of the old reactor vessel and its peripheral equipment. The original vessel had been in operation for more than 20 years and doubts had arisen about the condition of the aluminium tank after so long an exposure to neutrons. The operation, which had never been attempted before on a reactor of that size and complexity was planned and prepared over a number of years to take advantage of the occasion to provide a much improved vessel, incorporating the latest design features. The plant was shut down at the end of November 1983 and the 14 months operation began with a short cooling-off period for decay of short lived radioactivity followed by removal of the old tank and its dissection into pieces convenient for consolidation and storage as radioactive waste. After decontamination of the shielding pool, the new vessel and neutron beam tubes were installed and the reactor was recommissioned. Routine 45 MW operation was resumed on 14 February 1985 and has been uneventful since then

  16. High flux reactor evolutions and improvements

    International Nuclear Information System (INIS)

    Guyon, H.

    2005-01-01

    Following the changes over the years in experimental and safety requirements at the ILL a great deal of work has been carried out on the installations: - In 1985, a new cold source was installed, allowing the production of ultra-cold neutrons via a vertical channel. - From 1991 to 1995 the reactor block was replaced, allowing us to perform reactivity calculations and determine other neutronic values. - In 2003, a new hot source was installed with three beam tubes viewing it; the new system is now operating very efficiently. - This year a major beam tube is to be replaced with a new zircaloy tube. - And finally, from 2003 to 2006, the facility is being upgraded significantly to withstand newly-defined safe-shutdown earthquakes. In parallel, developments are on-going on the efficiency of the instruments and the neutron guides under the Millennium Programme. These will result in overall gains in data collection of over a factor of 10. As the ILL's international convention has been extended to the end of 2013 the Institute is therefore now well-set to maintain its position as a centre of excellence in the scientific use of slow neutrons for the twenty years to come. (author)

  17. 1982 Annual status report: operation of the high flux reactor

    International Nuclear Information System (INIS)

    1983-01-01

    The high flux materials testing reactor has been operated in 1982 within a few percent of the pre-set schedule, attaining 73% overall availability. Its utilization reached another record figure in 20 years: 81% without, 92% with, the low enrichment test elements irradiated during the year

  18. Annual report 1989 operation of the high flux reactor

    International Nuclear Information System (INIS)

    Ahlf, J.; Gevers, A.

    1989-01-01

    In 1989 the operation of the High Flux Reactor Petten was carried out as planned. The availability was more than 100% of scheduled operating time. The average occupation of the reactor by experimental devices was 72% of the practical occupation limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons and for radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  19. Annual report 1990. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    Ahlf, J.; Gevers, A.

    1990-01-01

    In 1990 the operation of the High Flux Reactor was carried out as planned. The availability was 96% of scheduled operating time. The average utilization of the reactor was 71% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  20. Annual Report 1991. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    Ahlf, J.; Gevers, A.

    1992-01-01

    In 1991 the operation of the High Flux Reactor was carried out as planned. The availability was more than 100% of scheduled operating time. The average utilization of the reactor was 69% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. Development activities addressed upgrading of irradiation devices, neutron capture therapy, neutron radiography and neutron transmutation doping of silicon. General activities in support of running irradiation programmes progressed in the normal way

  1. Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

    International Nuclear Information System (INIS)

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.

    1995-04-01

    This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed

  2. Annual progress report 1988, operation of the high flux reactor

    International Nuclear Information System (INIS)

    1989-01-01

    In 1988 the High Flux Reactor Petten was routinely operated without any unforeseen event. The availability was 99% of scheduled operation. Utilization of the irradiation positions amounted to 80% of the practical occupation limit. The exploitation pattern comprised nuclear energy deployment, fundamental research with neutrons, and radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  3. Use of sup(233)U for high flux reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Liem, P.H.

    1991-01-01

    The feasibility design study on the graphite moderated gas cooled reactor as a high flux reactor has been performed. The core of the reactor is equipped with two graphite reflectors, i.e., the inner reflector and the outer reflector. The highest value of the thermal neutron flux and moderately high thermal neutron flux are expected to be achieved in the inner reflector region and in the outer reflector region respectively. This reactor has many merits comparing to the conventional high flux reactors. It has the inherent safety features associated with the modular high temperature reactors. Since the core is composed with pebble bed, the on-power refueling can be performed and the experiment time can be chosen as long as necessary. Since the thermal-to-fast flux ratio is large, the background neutron level is low and material damage induced by fast neutrons are small. The calculation was performed using a four groups diffusion approximation in a one-dimensional spherical geometry and a two-dimensional cylindrical geometry. By choosing the optimal values of the core-reflector geometrical parameters and moderator-to-fuel atomic density, high thermal neutron flux can be obtained. Because of the thermal neutron flux can be obtained. Because of the thermal design constraint, however, this design will produce a relatively large core volume (about 10 7 cc) and consequently a higher reactor power (100 MWth). Preliminary calculational results show that with an average power density of only 10 W/cc, maximum thermal neutron flux of 10 15 cm -2 s -1 can be achieved in the inner reflector. The eta value of 233 U is larger than 235 U. By introducing 233 U as the fissile material for this reactor, the thermal neutron flux level can be increased by about 15%. (author). 3 refs., 2 figs., 4 tabs

  4. The High Flux Beam Reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1994-01-01

    Brookhaven National Laboratory's High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want 'more'. In the mid-50's the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments

  5. Surveillance programme and upgrading of the High Flux Reactor Petten

    International Nuclear Information System (INIS)

    Bieth, Michel

    1995-01-01

    The High Flux Reactor (HFR) at Petten (The Netherlands), a 45 MW light water cooled and moderated research reactor in operation during more than 30 years, has been kept up to date by replacing ageing components. In 1984, the HFR was shut down for replacement of the aluminium. reactor vessel which had been irradiated during more than 20 years. The demonstration that the new vessel contains no critical defect requires knowledge of the material properties of the aluminium alloy Al 5154 with and without neutron irradiation and of the likely defect presence through the periodic in-service inspections. An irradiation damage surveillance programme has been started in 1985 for the new vessel material to provide information on fracture mechanics properties. After the vessel replacement, the existing process of continuous upgrading and replacement of ageing components was accelerated. A stepwise upgrade of the control room is presently under realization. (author)

  6. Surveillance programme and upgrading of the High Flux Reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Bieth, Michel [Commission of the European Communities, Joint Research Centre, Institute for Advanced Materials, High Flux Reactor Unit, Petten (Netherlands)

    1995-07-01

    The High Flux Reactor (HFR) at Petten (The Netherlands), a 45 MW light water cooled and moderated research reactor in operation during more than 30 years, has been kept up to date by replacing ageing components. In 1984, the HFR was shut down for replacement of the aluminium. reactor vessel which had been irradiated during more than 20 years. The demonstration that the new vessel contains no critical defect requires knowledge of the material properties of the aluminium alloy Al 5154 with and without neutron irradiation and of the likely defect presence through the periodic in-service inspections. An irradiation damage surveillance programme has been started in 1985 for the new vessel material to provide information on fracture mechanics properties. After the vessel replacement, the existing process of continuous upgrading and replacement of ageing components was accelerated. A stepwise upgrade of the control room is presently under realization. (author)

  7. Fuel management at the Petten high flux reactor

    International Nuclear Information System (INIS)

    Thijssen, P.J.M.

    1999-01-01

    Several years ago the shipment of spent fuel of the High Flux Reactor (HFR) at Petten has come to a standstill resulting in an ever growing stock of fuel elements that are labelled 'fully burnt up'. Examination of those elements showed that a reasonably number of them have a relatively high 235 U mass left. A reactor physics analysis showed that the use of such elements in the peripheral core zone allows the loading of four instead of five fresh fuel elements in many cycle cores. For the assessment of safety and performance parameters of HFR cores a new calculational tool is being developed. It is based on AEA Technology's Reactor physics code suite Winfrith Improved Multigroup Scheme (WIMS). NRG produced pre- and post-processing facilities to feed input data into WIMS's 2D transport code CACTUS and to extract relevant parameters from the output. The processing facilities can be used for many different types of application. (author)

  8. Decommissioning of the High Flux Beam Reactor at Brookhaven Lab

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-05-27

    The High Flux Beam Reactor at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on October 31, 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shutdown in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor’s spent fuel pool. The reactor remained shutdown for almost three years for safety and environmental reviews. In November 1999 the United States Department of Energy decided to permanently shutdown the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR cleanup conducted during 1999-2009 will be described in the paper.

  9. Upgrading and modernization of the high flux reactor Petten

    International Nuclear Information System (INIS)

    Ahlf, J.

    1992-01-01

    The High Flux Reactor (HFR) at Petten, The Netherlands, owned by the European Communities and operated by the Netherlands Energy Research Foundation, is a water-cooled and moderated, multipurpose research reactor of the closed-tank in-pool type, operated at 45 MW. Performance upgrading comprised two power increases from 20 MW via 30 MW to 45 MW, providing more and higher rated irradiation positions in the tank. With the replacement of the original reactor vessel the experimental capabilities of the reactor were improved. Better pool side facilities and the introduction of a large cross-section, double, beam tube were implemented. Additional major installation upgrading activities consisted of the replacement of the primary and the pool heat exchangers, replacement of the beryllium reflector elements, extension of the overpower protection systems and upgrading of the nuclear instrumentation as well as the guaranteed power supply. Control room upgrading is in progress. A full new safety analysis, as well as the introduction of a comprehensive Quality Assurance system, are summarized under software upgrading. Continuous modernization and upgrading also takes place of equipment for fuel and structural materials irradiations for fission reactors and future fusion machines. In parallel, all supporting services, as well as the management structure for large irradiation programmes, have been developed. Presently the reactor is operating at about 275 full power days per year with an average utilization of the irradiation positions of 70 to 80%. (orig.)

  10. Operation of the High Flux Reactor. Annual report 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This year was characterized by the end of a major rebuilding of the installation during which the reactor vessel and its peripheral components were replaced by new and redesigned equipment. Both operational safety and experimental use were largely improved by the replacement. The reactor went back to routine operation on February 14, 1985, and has been operating without problem since then. All performance parameters were met. Other upgrading actions started during the year concerned new heat exchangers and improvements to the reactor building complex. The experimental load of the High Flux Reactor reached a satisfactory level with an average of 57%. New developments aimed at future safety related irradiation tests and at novel applications of neutrons from the horizontal beam tubes. A unique remote encapsulation hot cell facility became available adding new possibilities for fast breeder fuel testing and for intermediate specimen examination. The HFR Programme hosted an international meeting on development and use of reduced enrichment fuel for research reactors. All aspects of core physics, manufacture technology, and licensing of novel, proliferation-free, research reactor fuel were debated

  11. High Flux Isotope Reactor technical specifications

    International Nuclear Information System (INIS)

    1977-03-01

    Included are sections covering safety limits and limiting safety system settings, limiting conditions for operation, surveillance requirements, design features, and administrative controls. An appendix deals with accidents and anticipated transients

  12. The High Flux Reactor Petten, present status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Ahlf, J [Institute for Advanced Materials, Joint Research Centre, Petten (Netherlands)

    1990-05-01

    The High Flux Reactor (HFR) in Petten, The Netherlands, is a light water cooled and moderated multipurpose research reactor of the closed-tank in pool type. It is operated with highly enriched Uranium fuel at a power of 45 MW. The reactor is owned by the European Communities and operated under contract by the Dutch ECN. The HFR programme is funded by The Netherlands and Germany, a smaller share comes from the specific programmes of the Joint Research Centre (JRC) and from third party contract work. Since its first criticality in 1961 the reactor has been continuously upgraded by implementing developments in fuel element technology and increasing the power from 20 MW to the present 45 MV. In 1984 the reactor vessel was replaced by a new one with an improved accessibility for experiments. In the following years also other ageing equipment has been replaced (primary heat exchangers, pool heat exchanger, beryllium reflector elements, nuclear and process instrumentation, uninterruptable power supply). Control room upgrading is under preparation. A new safety analysis is near to completion and will form the basis for a renewed license. The reactor is used for nuclear energy related research (structural materials and fuel irradiations for LWR's, HTR's and FBR's, fusion materials irradiations). The beam tubes are used for nuclear physics as well as solid state and materials sciences. Radioisotope production at large scale, processing of gemstones and silicon with neutrons, neutron radiography and activation analysis are actively pursued. A clinical facility for boron neutron capture therapy is being designed at one of the large cross section beam tubes. It is foreseen to operate the reactor at least for a further decade. The exploitation pattern may undergo some changes depending on the requirements of the supporting countries and the JRC programmes. (author)

  13. The High Flux Reactor Petten, present status and prospects

    International Nuclear Information System (INIS)

    Ahlf, J.

    1990-01-01

    The High Flux Reactor (HFR) in Petten, The Netherlands, is a light water cooled and moderated multipurpose research reactor of the closed-tank in pool type. It is operated with highly enriched Uranium fuel at a power of 45 MW. The reactor is owned by the European Communities and operated under contract by the Dutch ECN. The HFR programme is funded by The Netherlands and Germany, a smaller share comes from the specific programmes of the Joint Research Centre (JRC) and from third party contract work. Since its first criticality in 1961 the reactor has been continuously upgraded by implementing developments in fuel element technology and increasing the power from 20 MW to the present 45 MV. In 1984 the reactor vessel was replaced by a new one with an improved accessibility for experiments. In the following years also other ageing equipment has been replaced (primary heat exchangers, pool heat exchanger, beryllium reflector elements, nuclear and process instrumentation, uninterruptable power supply). Control room upgrading is under preparation. A new safety analysis is near to completion and will form the basis for a renewed license. The reactor is used for nuclear energy related research (structural materials and fuel irradiations for LWR's, HTR's and FBR's, fusion materials irradiations). The beam tubes are used for nuclear physics as well as solid state and materials sciences. Radioisotope production at large scale, processing of gemstones and silicon with neutrons, neutron radiography and activation analysis are actively pursued. A clinical facility for boron neutron capture therapy is being designed at one of the large cross section beam tubes. It is foreseen to operate the reactor at least for a further decade. The exploitation pattern may undergo some changes depending on the requirements of the supporting countries and the JRC programmes. (author)

  14. Seismic upgrading of the Brookhaven High Flux Beam Research Reactor

    International Nuclear Information System (INIS)

    Subudhi, M.

    1985-01-01

    In recent years the High Flux Beam Research (HFBR) reactor facility at Brookhaven National Laboratory (BNL) was upgraded from 40 to 50 MW power level. The reactor plant was built in the early sixties to the seismic design requirements of the period, using the static load approach. While the plant power level was upgraded, the seismic design was also improved according to current design criteria. This included the development of new floor response spectra for the facility and an overall seismic analysis of those systems important to the safe shutdown of the reactor. Items included in the reanalysis are the containment building with its internal structure, the piping systems, tanks, equipment, and heat exchangers. This paper describes the procedure utilized in developing the floor response spectra for the existing facility. Also included in the paper are the findings and recommendations, based on the seismic analysis, regarding the seismic adequacy of structural and mechanical systems vital to achieving the safe shutdown of the reactor. 11 references, 4 figures, 1 table

  15. Status in 1998 of the high flux reactor fuel cycle

    International Nuclear Information System (INIS)

    Guidez, J.; Gevers, A.; Wijtsma, F.J.; Thijssen, P.M.J.

    1998-01-01

    The High Flux Reactor located at Petten (The Netherlands), is owned by the European Commission and is operated under contract by ECN (Netherlands Energy Research Foundation). This plant is in operation since 1962 using HEU enriched at 90%. Conversion studies were conducted several years ago with the hypothesis of a global conversion of the entire core. The results of these studies have shown a costly operation with a dramatic decrease of the thermal flux which is necessary for the medical use of the plant (Molybdene 99 production). Some tests with low enriched elements were also conducted with several companies, several geometrical configurations and several enrichments. They are described in this paper. Explanations are also given on future possibilities for new fuel testing. (author)

  16. High flux-fluence measurements in fast reactors

    International Nuclear Information System (INIS)

    Lippincott, E.P.; Ulseth, J.A.

    1977-01-01

    Characterization of irradiation environments for fuels and materials tests in fast reactors requires determination of the neutron flux integrated over times as long as several years. An accurate integration requires, therefore, passive dosimetry monitors with long half-life or stable products which can be conveniently measured. In addition, burn-up, burn-in, and burn-out effects must be considered in high flux situations and use of minimum quantities of dosimeter materials is often desirable. These conditions force the use of dosimeter and dosimeter container designs, measured products, and techniques that are different from those that are used in critical facilities and other well-characterized benchmark fields. Recent measurements in EBR-II indicate that high-accuracy results can be attained and that tie-backs to benchmark field technique calibrations can be accomplished

  17. Rebuilding the Brookhaven high flux beam reactor: A feasibility study

    International Nuclear Information System (INIS)

    Brynda, W.J.; Passell, L.; Rorer, D.C.

    1995-01-01

    After nearly thirty years of operation, Brookhaven's High Flux Beam Reactor (HFBR) is still one of the world's premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR's value as a national scientific resource, members of the Laboratory's scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor's research capabilities

  18. Safety and quality management at the high flux reactor Petten

    International Nuclear Information System (INIS)

    Zurita, A.; Ahlf, J.

    1995-01-01

    The High Flux Reactor (HFR) is one high power multi-purpose materials testing research reactor of the tank-in-pool type, cooled and moderated by light-water. It is operated at 45 MW at a prescribed schedule of 11 cycles per year, each comprising 25 operation days and three shut-down days. Since the licence for the operation of HFR was granted in 1962, a total of 14 amendments to the original licence have been made following different modifications in the installations. In the meantime, international nuclear standards were developed, especially in the framework of the NUSS programme of the IAEA, which were adopted by the Dutch Licensing Authorities. In order to implement the new standards, the situation at the HFR was comprehensively reviewed in the course of an audit performed by the Dutch Licensing Authorities in 1988. This also resulted in formulating the task of setting-up an 'HFR - Integral Quality Assurance Handbook' (HFR-IQAD) involving both organizations JRCIAM and ECN, which had the unique framework and basic guideline to assure the safe and efficient operation and exploitation of the HFR and to promote safety and quality in all aspects of HFR related activities. The assurance of safe and efficient operation and exploitation of the HFR is condensed together under the concepts of safety and quality of services and is achieved through the safety and quality management. (orig.)

  19. Seismic strengthening of the ILL High Flux Reactor building

    International Nuclear Information System (INIS)

    Germane, Lionel; Plewinski, Francois; Thiry, Jean-Michel

    2006-01-01

    The Institut Max von Laue - Paul Langevin is an international research organisation and world leader in neutron science and technology. Since 1971 it has been operating the ILL HFR (High-Flux Reactor), the most intense continuous neutron source in the world. The ILL is governed by an international cooperation agreement between France, Germany and the United Kingdom; the fourth ten-year extension to the agreement was signed at the end of 2002, thus ensuring that the Institute will continue to operate until at least the end of 2013. In 2002 the facility underwent a general safety review, including an assessment of the impact of a safe shutdown earthquake. A broader programme for upgrading the installations and improving safety levels is now under way. As this has been treated in another paper, we will focus here on the seismic study carried out on the reactor building. The paper has the following contents: 1. Context; 1.1. Presentation of the ILL; 1.2. Description of the installations; 1.3. Safety objectives in the event of an earthquake; 1.4. Safety functions to be guaranteed in the event of an earthquake; 1.5. Safety functions required of the building; 2. Description of the building; 3. Organisation of the project; 3.1. Background; 3.2. Organisation; 4. General Methodology of the studies; 5. Progress of the studies; 5.1. Definition of the strengthening measures; 5.2. Validation of the strengthening option; 6. Seismic strengthening of the building; 6.1. Description of the strengthening measures; 6.2. Implementation of the strengthening measures; 6.2.1. Pilot operation; 6.2.2. Main operation; 7. Conclusion. To summarize, the presence of specialists in the ILL team, and the fact that the initial studies were performed by the project team itself, improved our general understanding of the issues and facilitated dialogue and exchange between all those involved (operators, technicians, outside experts, technical contractors and the French safety authorities). Everyone was

  20. Production of high-specific activity radionuclides using SM high-flux reactor

    International Nuclear Information System (INIS)

    Karelin, Ye.A.; Toporov, Yu.G.; Filimonov, V.T.; Vakhetov, F.Z.; Tarasov, V.A.; Kuznetsov, R.A.; Lebedev, V.M.; Andreev, O.I.; Melnik, M.I.; Gavrilov, V.D.

    1997-01-01

    The development of High Specific Activity (HSA) radionuclides production technologies is one of the directions of RIAR activity, and the high flux research reactor SM, having neutron flux density up to 2.10 15 cm -2 s 1 in a wide range of neutron spectra hardness, plays the principal role in this development. The use of a high-flux reactor for radionuclide production provides the following advantages: production of radionuclides with extremely high specific activity, decreasing of impurities content in irradiated targets (both radioactive and non-radioactive), cost-effective use of expensive isotopically enriched target materials. The production technologies of P-33, Gd-153, W-188, Ni-63, Fe-55,59, Sn-113,117m,119m, Sr- 89, applied in industry, nuclear medicine, research, etc, were developed by RIAR during the last 5-10 years. The research work included the development of calculation procedures for radionuclide reactor accumulation forecast, experimental determination of neutron cross-sections, the development of irradiated materials reprocessing procedures, isolation and purification of radionuclides. The principal results are reviewed in the paper. (authors)

  1. Transmutation of technetium into stable ruthenium in high flux conceptual research reactor

    International Nuclear Information System (INIS)

    Amrani, N.; Boucenna, A.

    2007-01-01

    The effectiveness of transmutation for the long lived fission product technetium-99 in high flux research reactor, considering its large capture cross section in thermal and epithermal region is evaluated. The calculation of Ruthenium concentration evolution under irradiation was performed using Chain Solver 2.20 code. The approximation used for the transmutation calculation is the assumption that the influence of change in irradiated materials structures on the reactor operator mode characteristics is insignificant. The results on Technetium transmutation in high flux research reactor suggested an effective use of this kind of research reactors. The evaluation brings a new concept of multi-recycle Technetium transmutation using HFR T RAN (High Flux Research Reactor for Transmutation)

  2. Very high flux steady state reactor and accelerator based sources

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Simos, N.; Shapiro, S.; Hastings, J.

    2004-01-01

    With the number of steady state neutron sources in the US declining (including the demise of the Bnl HFBR) the remaining intense sources are now in Europe (i.e. reactors - ILL and FMR, accelerator - PSI). The intensity of the undisturbed thermal flux for sources currently in operation ranges from 10 14 n/cm 2 *s to 10 15 n/cm 2 *s. The proposed Advanced Neutron Source (ANS) was to be a high power reactor (about 350 MW) with a projected undisturbed thermal flux of 7*10 15 n/cm 2 *s but never materialized. The objective of the current study is to explore the requirements and implications of two source concepts with an undisturbed flux of 10 16 n/cm 2 *s. The first is a reactor based concept operating at high power density (10 MW/l - 15 MW/l) and a total power of 100 MW - 250 MW, depending on fissile enrichment. The second is an accelerator based concept relying on a 1 GeV - 1.5 GeV proton Linac with a total beam power of 40 MW and a liquid lead-bismuth eutectic target. In the reactor source study, the effects of fissile material enrichment, coolant temperature and pressure drop, and estimates of pressure vessel stress levels will be investigated. The fuel form for the reactor will be different from all other operating source reactors in that it is proposed to use an infiltrated graphitic structure, which has been developed for nuclear thermal propulsion reactor applications. In the accelerator based source the generation of spallation products and their activation levels, and the material damage sustained by the beam window will be investigated. (authors)

  3. Reactor vessel dismantling at the high flux materials testing reactor Petten

    International Nuclear Information System (INIS)

    Tas, A.; Teunissen, G.

    1986-01-01

    The project of replacing the reactor vessel of the high flux materials testing reactor (HFR) originated in 1974 when results of several research programs confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report describes the dismantling philosophy and organisation, the design of special underwater equipment, the dismantling of the reactor vessel and thermal column, and the conditioning and shielding activities resulting in a working area for the installation of the new vessel with no access limitations due to radiation. Finally an overview of the segmentation, waste disposal and radiation exposure is given. The total dismantling, segmentation and conditioning activities resulted in a total collective radiation dose of 300 mSv. (orig.) [de

  4. Testing of research reactor fuel in the high flux reactor (Petten)

    International Nuclear Information System (INIS)

    Guidez, J.; Markgraf, J.W.; Sordon, G.; Wijtsma, F.J.; Thijssen, P.J.M.; Hendriks, J.A.

    1999-01-01

    The two types of fuel most frequently used by the main research reactors are metallic: highly enriched uranium (>90%) and silicide low enriched uranium ( 3 . However, a need exists for research on new reactor fuel. This would permit some plants to convert without losses in flux or in cycle length and would allow new reactor projects to achieve higher possibilities especially in fluxes. In these cases research is made either on silicide with higher density, or on other types of fuel (UMo, etc.). In all cases when new fuel is proposed, there is a need, for safety reasons, to test it, especially regarding the mechanical evolution due to burn-up (swelling, etc.). Initially, such tests are often made with separate plates, but lately, using entire elements. Destructive examinations are often necessary. For this type of test, the High Flux Reactor, located in Petten (The Netherlands) has many specific advantages: a large core, providing a variety of interesting positions with high fluence rate; a downward coolant flow simplifies the engineering of the device; there exists easy access with all handling possibilities to the hot-cells; the high number of operating days (>280 days/year), together with the high flux, gives a possibility to reach quickly the high burn-up needs; an experienced engineering department capable of translating specific requirements to tailor-made experimental devices; a well equipped hot-cell laboratory on site to perform all necessary measurements (swelling, γ-scanning, profilometry) and all destructive examinations. In conclusion, the HFR reactor readily permits experimental research on specific fuels used for research reactors with all the necessary facilities on the Petten site. (author)

  5. 1980 Annual status report: operation of the high flux reactor

    International Nuclear Information System (INIS)

    1981-01-01

    HFR Petten has been operated in 1980 in fulfilment of the 1980/83 JRC Programme Decision. Both reactor operation and utilization data have been met within a few percent of the goals set out in the annual working schedule, in support of a large variety of research programmes. Major improvements to experimental facilities have been introduced during the year and future modernization has been prepared

  6. A conceptual high flux reactor design with scope for use in ADS ...

    Indian Academy of Sciences (India)

    By design the flux level in the seed fuel has been kept lower than in the high flux trap zones so that the burning rate of the seed is reduced. Another important objective of the design is to maximize the time interval of refueling. As against a typical refueling interval of a few weeks in such high flux reactor cores, it is desired to ...

  7. Radiation dosimetry at the BNL High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.

    1998-02-01

    The HFBR is a heavy water, D 2 O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of 235 U. The core is 53 cm high and 48 cm in diameter and has an active volume of 97 liters. The HFBR, which was designed to operate at forty mega-watts, 40 NW, was upgraded to operate at 60 NW. Since 1991, it has operated at 30 MW. In a normal 30 MW operating cycle the HFBR operates 24 hours a day for thirty days, with a six to fourteen day shutdown period for refueling and maintenance work. While most reactors attempts to minimize the escape of neutrons from the core, the HFBR's D 2 O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9. The HFBR neutron dosimetry effort described here compares measured and calculated energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles

  8. Consequences of corrosion of the high flux reactor channels

    International Nuclear Information System (INIS)

    1987-01-01

    The effects of corrosion can increase the probability of the channel losing its seal. In case of a slow leak, the phenomena happening can be considered as quasi-static. The closing of the safety valve takes place even before the leak water reaches the level of the exit window. In case of a fast leak in the case of helium filled channels, the dynamic effects are limited to the front part of the plug. As for the back part of the plug and the housing/safety valve unit, the consequences of a fast leak can be assimilated to those of a slow leak. This paper evaluates the results of an incident such as this for the reactor and the surrounding experimental zones

  9. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Hightower, J.R.

    1987-05-01

    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of /sup 55/Fe, /sup 59/Ni, /sup 60/Co, and /sup 63/Ni from stainless steel and cobalt alloy components, as well as of /sup 10/Be, /sup 41/Ca, and /sup 55/Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10/sup -4/ Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10/sup -5/ Ci/year due primarily to /sup 41/Ca. 50 refs., 13 figs., 8 tabs.

  10. The operating experience and incident analysis for High Flux Engineering Test Reactor

    International Nuclear Information System (INIS)

    Zhao Guang

    1999-01-01

    The paper describes the incidents analysis for High Flux Engineering test reactor (HFETR) and introduces operating experience. Some suggestion have been made to reduce the incidents of HFETR. It is necessary to adopt new improvements which enhance the safety and reliability of operation. (author)

  11. High flux testing reactor Petten. Replacement of the reactor vessel and connected components. Overall report

    International Nuclear Information System (INIS)

    Chrysochoides, N.G.; Cundy, M.R.; Von der Hardt, P.; Husmann, K.; Swanenburg de Veye, R.J.; Tas, A.

    1985-01-01

    The project of replacing the HFR originated in 1974 when results of several research programmes confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report contains the detailed chronology of events concerning preparation and execution of the replacement. After a 14 months' outage the reactor resumed routine operation on 14th February, 1985. At the end of several years of planning and preparation the reconstruction proceded in the following steps: unloading of the old core, decay of short-lived radioactivity in December 1983, removal of the old tank and of its peripheral equipment in January-February 1984, segmentation and waste disposal of the removed components in March-April, decontamination of the pools, bottom penetration overhauling in May-June, installation of the new tank and other new components in July-September, testing and commissioning, including minor modifications in October-December, and, trials runs and start-up preparation in January-February 1985. The new HFR Petten features increased and improved experimental facilities. Among others the obsolete thermal columns was replaced by two high flux beam tubes. Moreover the new plant has been designed for future increases of reactor power and neutron fluxes. For the next three to four years the reactor has to cope with a large irradiation programme, claiming its capacity to nearly 100%

  12. The feature of high flux engineering test reactor and its role in nuclear power development

    International Nuclear Information System (INIS)

    Lu Guangquan

    1987-01-01

    The High Flux Engineering Test Reactor (HFETR) designed and built by Chinese own efforts reached to its initial criticality on Dec. 27, 1979, and then achieved high power operation on Dec. 16, 1980. Until Nov. 11. 1986, the reactor had been operated for thirteen cycles. The paper presents briefly main feature of HFETR and its utilization during past years. The paper also deals with its role in nuclear power development. Finally, author gives his opinion on comprehensive utilization of HFETR. (author)

  13. Calculation of the transmutation rates of Tc-99, I-129 and Cs-135 in the High Flux Reactor, in the Phenix Reactor and in a light water reactor

    International Nuclear Information System (INIS)

    Bultman, J.

    1992-04-01

    Transmutation of long-lived fission products is of interest for the reduction of the possible dose to the population resulting from long-term leakage of nuclear waste from waste disposals. Three isotopes are of special interest: Tc-99, I-129 and Cs-135. Therefore, experiments on transmutation of these isotopes in nuclear reactors are planned. In the present study, the possible transmutation rates and mass reductions are determined for experiments in High Flux Reactor (HFR) located in Petten (Netherlands) and in Phenix (France). Also, rates were determined for a standard Light Water Reactor (LWR). The transmutation rates of the 3 fission products will be much higher in HFR than in Phenix reactor, as both total flux and effective cross sections are higher. For thick targets the effective half lives are approximately 3, 2 and 7 years for Tc-99, I-129 and Cs-135 irradiation respectively in HFR and 22, 16 and 40 years for Tc-99, I-129 and Cs-135 irradiation in Phenix reactor. The transmutation rates in LWR are low. Only the relatively large power of LWR guarantees a large total mass reduction. Especially transmutation of Cs-135 will be very difficult in Phenix and LWR, clearly shown by the very long effective half lives of 40 and 100 years, respectively. (author). 7 refs.; 5 figs.; 7 tabs

  14. Department of Energy's High Flux Isotope Reactor (HFIR), October 20--24, 1980: A special report prepared for the Nuclear Facilities Personnel Qualification and Training Committee: An independent on-site safety review

    International Nuclear Information System (INIS)

    1981-02-01

    The intent of this on-site safety review was to make a broad management assessment of HFIR operations, rather than conduct a detailed in-depth audit. The result of the review should only be considered as having identified trends or indications. The Team's observations and recommendations are based upon licensed reactor facility practices used to meet industry standards. For the most part, these standards form the basis for many of the comments in this report. The Team believes that a uniform minimum standard of performance should be achieved in the operation of DOE reactors. In order to assure that this is accomplished, clear standards are necessary. Consistent with the provisions of past AEC and ERDA policy, the Team has used the standards of the commercial nuclear power industry. It is recognized that this approach is conservative in that the HFIR reactor has a significantly greater degree of inherent safety (low temperature, low pressure, low power) than a licensed reactor

  15. Production of Sn-117m in the BR2 high-flux reactor.

    Science.gov (United States)

    Ponsard, B; Srivastava, S C; Mausner, L F; Russ Knapp, F F; Garland, M A; Mirzadeh, S

    2009-01-01

    The BR2 reactor is a 100MW(th) high-flux 'materials testing reactor', which produces a wide range of radioisotopes for various applications in nuclear medicine and industry. Tin-117m ((117m)Sn), a promising radionuclide for therapeutic applications, and its production have been validated in the BR2 reactor. In contrast to therapeutic beta emitters, (117m)Sn decays via isomeric transition with the emission of monoenergetic conversion electrons which are effective for metastatic bone pain palliation and radiosynovectomy with lesser damage to the bone marrow and the healthy tissues. Furthermore, the emitted gamma photons are ideal for imaging and dosimetry.

  16. Decommissioning of the High Flux Beam Reactor at Brookhaven National Laboratory.

    Science.gov (United States)

    Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E

    2012-08-01

    The High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory was a heavy-water cooled and moderated reactor that achieved criticality on 31 October 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost 3 y for safety and environmental reviews. In November 1999, the United States Department of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR's cleanup performed during 1999-2009, to allow the BNL facilities to be re-accessed by the public, will be described in the paper.

  17. The proposed use of low enriched uranium fuel in the High Flux Australian Reactor (HIFAR)

    International Nuclear Information System (INIS)

    Vittorio, D.; Durance, G.

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) operates the High Flux Australian Reactor (HIFAR). HIFAR commenced operation in the late 1950's with fuel elements containing uranium enriched to 93%. From that time the level of enrichment has gradually decreased to the current level of 60%. It is now proposed to further reduce the enrichment of HIFAR fuel to <20% by utilising LEU fuel assemblies manufactured by RISO National Laboratory, that were originally intended for use in the DR-3 reactor. Minor modifications have been made to the assemblies to adapt them for use in HIFAR. A detailed design review has been performed and initial safety analysis and reactor physics calculations are to be submitted to ARPANSA as part of a four-stage approval process. (author)

  18. Seismic hazard studies for the high flux beam reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Costantino, C.J.; Heymsfield, E.; Park, Y.J.; Hofmayer, C.H.

    1991-01-01

    This paper presents the results of a calculation to determine the site specific seismic hazard appropriate for the deep soil site at Brookhaven National Laboratory (BNL) which is to be used in the risk assessment studies being conducted for the High Flux Beam Reactor (HFBR). The calculations use as input the seismic hazard defined for the bedrock outcrop by a study conducted at Lawrence Livermore National Laboratory (LLNL). Variability in site soil properties were included in the calculations to obtain the seismic hazard at the ground surface and compare these results with those using the generic amplification factors from the LLNL study

  19. Experimental studies on mitigation of LOCA for a high flux research reactor

    International Nuclear Information System (INIS)

    Saxena, A.K.

    2006-01-01

    Experimental studies on the rewetting behaviour of hot vertical annular channels were performed to study the mitigation of consequences of loss of coolant accident (LOCA) for a high flux research reactor. Studies were carried out to study the rewetting behaviour with hot inner tube, for bottom flooding and top flow rewetting conditions. The tube was made of stainless steel. Experiments were conducted for water flow rates in the annulus upto 7 litres per minute (l pm) (11.7 x 10 -5 m 3 s -1 ). The initial surface temperature of the inner tube was varied from 200 to 500 degC. (author)

  20. Maintenance management at the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Farrar, M.B.

    1982-02-01

    Maintenance procedures are described for mechanical and electrical equipment; nuclear and process instrumentation; operational maintenance; equipment and systems inspections; and HFIR quality assurance

  1. Risk analysis of environmental hazards at the High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Boccio, J.L.; Ho, V.S.; Johnson, D.H.

    1994-01-01

    In the late 1980s, a Level 1 internal event probabilistic risk assessment (PRA) was performed for the High-Flux Beam Reactor (HFBR), a US Department of Energy research reactor located at Brookhaven National Laboratory. Prior to the completion of that study, a level 1 PRA for external events was initiated, including environmental hazards such as fire, internal flooding, etc. Although this paper provides a brief summary of the risks from environmental hazards, emphasis will be placed on the methodology employed in utilizing industrial event databases for event frequency determination for the HFBR complex. Since the equipment in the HFBR is different from that of, say, a commercial nuclear power plant, the current approach is to categorize the industrial events according to the hazard initiators instead of categorizing by initiator location. But first a general overview of the analysis

  2. Radiation Dosimetry of the Pressure Vessel Internals of the High Flux Beam Reactor

    Science.gov (United States)

    Holden, Norman E.; Reciniello, Richard N.; Hu, Jih-Perng; Rorer, David C.

    2003-06-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. The measurements were made using Red Perspex™ polymethyl methacrylate high-level film dosimeters, a Radcal "peanut" ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rates, the Monte Carlo MCNP code and geometric progressive MicroShield code were used to model the gamma-ray transport and dose buildup.

  3. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR

    International Nuclear Information System (INIS)

    HOLDEN, N.E.; RECINIELLO, R.N.; HU, J.P.; RORER, D.C.

    2002-01-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex(trademark) polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup

  4. New temperature monitoring devices for high-temperature irradiation experiments in the high flux reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, M.; Futterer, M. A.; Lapetite, J. M. [European Commission Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Fourrez, S. [THERMOCOAX SAS, BP 26, Planquivon, 61438 Flers Cedex (France); Morice, R. [Laboratoire National de Metrologie et d' Essais, 1 rue Gaston Boissier, 75724 Paris (France)

    2009-07-01

    Within the European High Temperature Reactor Technology Network (HTR-TN) and related projects a number of HTR fuel irradiations are planned in the High Flux Reactor Petten (HFR), The Netherlands, with the objective to explore the potential of recently produced fuel for even higher temperature and burn-up. Irradiating fuel under defined conditions to extremely high burn-ups will provide a better understanding of fission product release and failure mechanisms if particle failure occurs. After an overview of the irradiation rigs used in the HFR, this paper sums up data collected from previous irradiation tests in terms of thermocouple data. Some research and development work for further improvement of thermocouples and other on-line instrumentation will be outlined. (authors)

  5. Core management, operational limits and conditions and safety aspects of the Australian High Flux Reactor (HIFAR)

    International Nuclear Information System (INIS)

    Town, S.L.

    1997-01-01

    HIFAR is a DIDO class reactor which commenced routine operation at approximately 10 MW in 1960. It is principally used for production of medical radio-isotopes, scientific research using neutron scattering facilities and irradiation of silicon ingots for the electronics industry. A detailed description of the core, including fuel types, is presented. Details are given of the current fuel management program HIFUEL and the experimental measurements associated with reactor physics analysis of HIFAR are discussed. (author)

  6. Presentation of the High-Flux Reactor of the Institut Laue-Langevin

    International Nuclear Information System (INIS)

    Guyon, H.

    2006-01-01

    Full text of publication follows: The High-Flux Reactor (HFR) of the Institut Laue-Langevin is the world's most intense source of neutrons for fundamental research. Thanks to its extremely compact core, which is made up of a single fuel element, the HFR is capable of producing a neutron flux of up to 1.5.10 15 n.cm -2 .s -1 with a moderate power output of 58 MW. Its heavy water reflector thermalizes these neutrons, giving them a wave length of the order of one angstrom. They then become an excellent tool for exploring the atomic structure of matter. In order to provide a full neutron spectrum, the reactor is also equipped with a hot source (a block of graphite heated to 2000 deg. C) and two cold sources (a volume of liquid deuterium at 25 K). All the reactor's components can be replaced and adapted in order to keep pace with both changing scientific needs and changing safety requirements. For example, in 1992 the reactor block was replaced, a second cold source was installed in 1985, and the beam tubes are replaced at regularly intervals and are also occasionally modified. In the same way, the reactor's civil engineering structures are currently being reinforced in order to comply with the reassessment of the reference earthquake spectra. Finally, the Institut Laue-Langevin's reactor is equipped with three solid containment barriers: - the fuel cladding: during the 35 years the reactor has been in operation, a cladding failure has never been detected; - the leak-tight primary cooling system: this is partly submerged in a pool which provides radiological shielding; - the double-wall containment: an overpressure of air is maintained between the inner reinforced concrete wall and the outer metal wall. The High-Flux Reactor is therefore all set to provide the scientific community with top quality service for the next 20 years to come, on a site which: - is home to the brightest synchrotron in the world (ESRF); - benefits from the microbiology expertise of the EMBL

  7. Presentation of the High-Flux Reactor of the Institut Laue-Langevin

    Energy Technology Data Exchange (ETDEWEB)

    Guyon, H. [Institut Laue-Langevin, Grenoble (France)

    2006-07-01

    Full text of publication follows: The High-Flux Reactor (HFR) of the Institut Laue-Langevin is the world's most intense source of neutrons for fundamental research. Thanks to its extremely compact core, which is made up of a single fuel element, the HFR is capable of producing a neutron flux of up to 1.5.10{sup 15} n.cm{sup -2}.s{sup -1} with a moderate power output of 58 MW. Its heavy water reflector thermalizes these neutrons, giving them a wave length of the order of one angstrom. They then become an excellent tool for exploring the atomic structure of matter. In order to provide a full neutron spectrum, the reactor is also equipped with a hot source (a block of graphite heated to 2000 deg. C) and two cold sources (a volume of liquid deuterium at 25 K). All the reactor's components can be replaced and adapted in order to keep pace with both changing scientific needs and changing safety requirements. For example, in 1992 the reactor block was replaced, a second cold source was installed in 1985, and the beam tubes are replaced at regularly intervals and are also occasionally modified. In the same way, the reactor's civil engineering structures are currently being reinforced in order to comply with the reassessment of the reference earthquake spectra. Finally, the Institut Laue-Langevin's reactor is equipped with three solid containment barriers: - the fuel cladding: during the 35 years the reactor has been in operation, a cladding failure has never been detected; - the leak-tight primary cooling system: this is partly submerged in a pool which provides radiological shielding; - the double-wall containment: an overpressure of air is maintained between the inner reinforced concrete wall and the outer metal wall. The High-Flux Reactor is therefore all set to provide the scientific community with top quality service for the next 20 years to come, on a site which: - is home to the brightest synchrotron in the world (ESRF); - benefits from the

  8. A neutronic feasibility study for LEU conversion of the High Flux Beam Reactor (HFBR)

    International Nuclear Information System (INIS)

    Pond, R.B.; Hanan, N.A.; Matos, J.E.

    1997-01-01

    A neutronic feasibility study for converting the High Flux Beam Reactor at Brookhaven National Laboratory from HEU to LEU fuel was performed at Argonne National Laboratory. The purpose of this study is to determine what LEU fuel density would be needed to provide fuel lifetime and neutron flux performance similar to the current HEU fuel. The results indicate that it is not possible to convert the HFBR to LEU fuel with the current reactor core configuration. To use LEU fuel, either the core needs to be reconfigured to increase the neutron thermalization or a new LEU reactor design needs to be considered. This paper presents results of reactor calculations for a reference 28-assembly HEU-fuel core configuration and for an alternative 18-assembly LEU-fuel core configuration with increased neutron thermalization. Neutronic studies show that similar in-core and ex-core neutron fluxes, and fuel cycle length can be achieved using high-density LEU fuel with about 6.1 gU/cm 3 in an altered reactor core configuration. However, hydraulic and safety analyses of the altered HFBR core configuration needs to be performed in order to establish the feasibility of this concept. (author)

  9. Irradiation experiments and materials testing capabilities in High Flux Reactor in Petten

    International Nuclear Information System (INIS)

    Luzginova, N.; Blagoeva, D.; Hegeman, H.; Van der Laan, J.

    2011-01-01

    The text of publication follows: The High Flux Reactor (HFR) in Petten is a powerful multi-purpose research and materials testing reactor operating for about 280 Full Power Days per year. In combination with hot cells facilities, HFR provides irradiation and post-irradiation examination services requested by nuclear energy research and development programs, as well as by industry and research organizations. Using a variety of the custom developed irradiation devices and a large experience in executing irradiation experiments, the HFR is suitable for fuel, materials and components testing for different reactor types. Irradiation experiments carried out at the HFR are mainly focused on the understanding of the irradiation effects on materials; and providing databases for irradiation behavior of materials to feed into safety cases. The irradiation experiments and materials testing at the HFR include the following issues. First, materials irradiation to support the nuclear plant life extensions, for instance, characterization of the reactor pressure vessel stainless steel claddings to insure structural integrity of the vessel, as well as irradiation of the weld material coupons to neutron fluence levels that are representative for Light Water Reactors (LWR) internals applications. Secondly, development and qualification of the structural materials for next generation nuclear fission reactors as well as thermo-nuclear fusion machines. The main areas of interest are in both conventional stainless steel and advanced reduced activation steels and special alloys such as Ni-base alloys. For instance safety-relevant aspects of High Temperature Reactors (HTR) such as the integrity of fuel and structural materials with increasing neutron fluence at typical HTR operating conditions has been recently assessed. Thirdly, support of the fuel safety through several fuel irradiation experiments including testing of pre-irradiated LWR fuel rods containing UO 2 or MOX fuel. Fourthly

  10. HTR fuel research in the HTR-TN network on the high flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; Conrad, R.; Sevini, P.; Burghartz, M. [HFR Unit, Institute for Advanced Materials, European Commission, Joint Research Centre, Petten (Netherlands); Languille, A. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Guillermier, P. [FRAMATOME ANP, 69 - Lyon (France); Bakker, K. [Nuclear Research and Consultancy Group, Petten (Netherlands); Nabielek, H. [Forschungszentrum Juelich (Germany)

    2001-07-01

    Foremost, this paper explains the economic and strategic reasons for the comeback of the HTR reactor as one of the most promising reactors in the future. To study all the points related to HTR technology, a European network called HTR-TN was created in April 2000, with actually twenty European companies involved. This paper explains the organisation of the network and the related task-groups. In the field of fuel, one of these task-groups works on the fuel cycle and another works on the fuel itself in order to validate by testing HTR fuel possibilities. To this aim, an experimental loop is under construction in the HFR reactor to test full-size pebble type fuel elements and another under study to test compact fuel possibilities. These loops are based on all the experience accumulated by the High Flux Reactor in the years 70-90, when a lot of test were performed for fuel and material for the HTR technology and the facility design uses all the existing HFR knowledge. In conclusion, a host of research work, co-ordinated in the frame of a European network HTR-TN has begun. and should allow in the near future a substantial progress in the knowledge of this very promising fuel. (author)

  11. HTR fuel research in the HTR-TN network on the high flux reactor

    International Nuclear Information System (INIS)

    Guidez, J.; Conrad, R.; Sevini, P.; Burghartz, M.; Languille, A.; Guillermier, P.; Bakker, K.; Nabielek, H.

    2001-01-01

    Foremost, this paper explains the economic and strategic reasons for the comeback of the HTR reactor as one of the most promising reactors in the future. To study all the points related to HTR technology, a European network called HTR-TN was created in April 2000, with actually twenty European companies involved. This paper explains the organisation of the network and the related task-groups. In the field of fuel, one of these task-groups works on the fuel cycle and another works on the fuel itself in order to validate by testing HTR fuel possibilities. To this aim, an experimental loop is under construction in the HFR reactor to test full-size pebble type fuel elements and another under study to test compact fuel possibilities. These loops are based on all the experience accumulated by the High Flux Reactor in the years 70-90, when a lot of test were performed for fuel and material for the HTR technology and the facility design uses all the existing HFR knowledge. In conclusion, a host of research work, co-ordinated in the frame of a European network HTR-TN has begun. and should allow in the near future a substantial progress in the knowledge of this very promising fuel. (author)

  12. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  13. Transport of spent nuclear fuel from the High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Holland, Michael; Carelli, Joseph; Shelton, Thomas

    1997-01-01

    The shipment of more than 1000 elements of spent nuclear fuel (SNF) from the Department of Energy's Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR) to the Department's Savannah River Site (SRS) for long term interim storage required overcoming several significant obstacles. The project management team was comprised of DOE, BNL and NAC International personnel. This achievement involved coordinating the efforts of numerous government and contractor organizations such as the U.S. Coast Guard, the U.S. Nuclear Regulatory Commission, state and local governments, marine and motor carriers, and carrier inspectors. Unique experience was gained during development and execution of the project in the following areas: dry transfer of SNF to shipping casks; inter-modal transfers; logistics; cask licensing by the Nuclear Regulatory Commission (NRC); compliance with environmental regulations; transportation plan development, and stakeholder outreach and coordination

  14. Why does the need of HEU for high flux research reactors remain?

    International Nuclear Information System (INIS)

    Glaeser, W.

    1991-01-01

    It has shown that high performance high flux reactors need an ongoing supply of highly enriched uranium. The new fuel materials in their highly enriched version offer prospective for advanced and better neutron sources vital for the future of neutron research. This is another very attractive result of the RERTR programme. One-sided restriction would only provide marginal or no values for research. If we adopt the sometimes expressed views that high enriched RERTR developed fuel should only be made available when unique benefits to mankind could be obtained, then certainly basic research at the forefront belongs to this category. HEU would only pose theoretical difficulties, if it would remain under proper safeguards and obviously this is the way to be pursued. (orig.)

  15. Alize 3 - first critical experiment for the franco-german high flux reactor - calculations

    International Nuclear Information System (INIS)

    Scharmer, K.

    1969-01-01

    The results of experiments in the light water cooled D 2 O reflected critical assembly ALIZE III have been compared to calculations. A diffusion model was used with 3 fast and epithermal groups and two overlapping thermal groups, which leads to good agreement of calculated and measured power maps, even in the case of strong variations of the neutron spectrum in the core. The difference of calculated and measured k eff was smaller than 0.5 per cent δk/k. Calculations of void and structure material coefficients of the reactivity of 'black' rods in the reflector, of spectrum variations (Cd-ratio, Pu-U-ratio) and to the delayed photoneutron fraction in the D 2 O reflector were made. Measurements of the influence of beam tubes on reactivity and flux distribution in the reflector were interpreted with regard to an optimum beam tube arrangement for the Franco- German High Flux Reactor. (author) [fr

  16. KüFA safety testing of HTR fuel pebbles irradiated in the High Flux Reactor in Petten

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, O., E-mail: oliver.seeger@rwth-aachen.de [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Laurie, M., E-mail: mathias.laurie@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Abjani, A. El; Ejton, J.; Boudaud, D.; Freis, D.; Carbol, P.; Rondinella, V.V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Fütterer, M. [European Commission, Joint Research Centre (JRC), Institute for Energy and Transport (IET), Nuclear Reactor Integrity Assessment and Knowledge Management Unit, PO Box 2, 1755 ZG Petten (Netherlands); Allelein, H.-J. [Lehrstuhl für Reaktorsicherheit und -technik an der RWTH Aachen, Kackertstraße 9, 52072 Aachen (Germany)

    2016-09-15

    The Cold Finger Apparatus (KühlFinger-Apparatur—KüFA) in operation at JRC-ITU is designed to experimentally scrutinize the effects of Depressurization LOss of Forced Circulation (D-LOFC) accident scenarios on irradiated High Temperature Reactor (HTR) fuel pebbles. Up to 1600 °C, the reference maximum temperature for these accidents, high-quality German HTR fuel pebbles have already demonstrated a small fission product release. This paper discusses and compares the releases obtained from KüFA-testing the pebbles HFR-K5/3 and HFR-EU1/3, which were both irradiated in the High Flux Reactor (HFR) in Petten. We present the time-dependent fractional release of the volatile fission product {sup 137}Cs as well as the fission gas {sup 85}Kr for both pebbles. For HFR-EU1/3 the isotopes {sup 134}Cs and {sup 154}Eu as well as the shorter-lived {sup 110m}Ag have also been measured. A detailed description of the experimental setup and its accuracy is given. The data for the recently tested pebbles is discussed in the context of previous results.

  17. Radiological characterization of the pressure vessel internals of the BNL High Flux Beam Reactor.

    Science.gov (United States)

    Holden, Norman E; Reciniello, Richard N; Hu, Jih-Perng

    2004-08-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, measurements and calculations of the decay gamma-ray dose-rate were performed in the reactor pressure vessel and on vessel internal structures such as the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. Measurements of gamma-ray dose rates were made using Red Perspex polymethyl methacrylate high-dose film, a Radcal "peanut" ion chamber, and Eberline's RO-7 high-range ion chamber. As a comparison, the Monte Carlo MCNP code and MicroShield code were used to model the gamma-ray transport and dose buildup. The gamma-ray dose rate at 8 cm above the center of the Transition Plate was measured to be 160 Gy h (using an RO-7) and 88 Gy h at 8 cm above and about 5 cm lateral to the Transition Plate (using Red Perspex film). This compares with a calculated dose rate of 172 Gy h using Micro-Shield. The gamma-ray dose rate was 16.2 Gy h measured at 76 cm from the reactor core (using the "peanut" ion chamber) and 16.3 Gy h at 87 cm from the core (using Red Perspex film). The similarity of dose rates measured with different instruments indicates that using different methods and instruments is acceptable if the measurement (and calculation) parameters are well defined. Different measurement techniques may be necessary due to constraints such as size restrictions.

  18. A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 1

    International Nuclear Information System (INIS)

    1998-01-01

    The Department of Industry, Science and Tourism selected PLG, an EQE International Company, to systematically and independently evaluate the safety of the High Flux Australian Reactor (HIFAR), located at Lucas Heights, New South Wales. PLG performed a comprehensive probabilistic safety assessment (PSA) to quantify the risks posed by operation of HIFAR . The PSA identified possible accident scenarios, estimated their likelihood of occurrence, and assigned each scenario to a consequence category; i.e., end state. The accident scenarios developed included the possible release of radioactive material from irradiated nuclear fuel and of tritium releases from reactor coolant. The study team developed a recommended set of safety criteria against which the results of the PSA may be judged. HIFAR was found to exceed one of the two primary safety objectives and two of the five secondary safety objectives. Reactor coolant leaks, earthquakes, and coolant pump trips were the accident initiators that contributed most to scenarios that could result in fuel overheating. Scenarios initiated by earthquakes were the reason the frequency criterion for the one primary safety objective was exceeded. Overall, the plant safety status has been shown to be generally good with no evidence of major safety-related problems from its operation. One design deficiency associated with the emergency core cooling system was identified that should be corrected as soon as possible. Additionally, several analytical issues have been identified that should be investigated further. The results from these additional investigations should be used to determine whether additional plant and procedural changes are required, or if further evaluations of postulated severe accidents are warranted. Supporting information can be found in Appendix A for the seismic analysis and in the Appendix B for selected other external events

  19. A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Department of Industry, Science and Tourism selected PLG, an EQE International Company, to systematically and independently evaluate the safety of the High Flux Australian Reactor (HIFAR), located at Lucas Heights, New South Wales. PLG performed a comprehensive probabilistic safety assessment (PSA) to quantify the risks posed by operation of HIFAR . The PSA identified possible accident scenarios, estimated their likelihood of occurrence, and assigned each scenario to a consequence category; i.e., end state. The accident scenarios developed included the possible release of radioactive material from irradiated nuclear fuel and of tritium releases from reactor coolant. The study team developed a recommended set of safety criteria against which the results of the PSA may be judged. HIFAR was found to exceed one of the two primary safety objectives and two of the five secondary safety objectives. Reactor coolant leaks, earthquakes, and coolant pump trips were the accident initiators that contributed most to scenarios that could result in fuel overheating. Scenarios initiated by earthquakes were the reason the frequency criterion for the one primary safety objective was exceeded. Overall, the plant safety status has been shown to be generally good with no evidence of major safety-related problems from its operation. One design deficiency associated with the emergency core cooling system was identified that should be corrected as soon as possible. Additionally, several analytical issues have been identified that should be investigated further. The results from these additional investigations should be used to determine whether additional plant and procedural changes are required, or if further evaluations of postulated severe accidents are warranted. Supporting information can be found in Appendix A for the seismic analysis and in the Appendix B for selected other external events refs., 139 tabs., 85 figs. Prepared for Department of Industry, Science and Tourism

  20. Dosimetry issues for an ultra-high flux beam and multipurpose research reactor design

    International Nuclear Information System (INIS)

    West, C.D.

    1993-01-01

    The Advanced Neutron Source is a new user facility for all fields of neutron research, including neutron beam experiments, materials analysis, materials testing, and isotope production. The complement and layout of the experimental facilities have been determined sufficiently, at a conceptual design level, to make reliable cost and schedule estimates. The source of neutrons will be a heavy water reactor, constructed largely of aluminum, with an available thermal neutron flux 5--10 times higher than existing research reactors. Among the dosimetry issues to be faced are damage prediction and surveillance for component life attainment; measurement of fluence and spectra in regions where both change substantially over a distance of a few centimeters; and characterization and measurement of the radiation field in the research areas around the neutron beam experiments

  1. The neutron small-angle camera D11 at the high-flux reactor, Grenoble

    International Nuclear Information System (INIS)

    Ibel, K.

    1976-01-01

    The neutron small-angle scattering system at the high-flux reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small-angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The full length of the collimator before the fixed sample position can be reduced by movable neutron guides; the second flight path of 40 m full length contains detector sites in various positions. Thus a large range of momentum transfers can be used with the same relative resolution. Scattering angles between 5 x 10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered at different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. (Auth.)

  2. Irradiation of structural materials in contact with lead bismuth eutectic in the high flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Magielsen, A.J., E-mail: magielsen@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Jong, M.; Bakker, T.; Luzginova, N.V.; Mutnuru, R.K.; Ketema, D.J.; Fedorov, A.V. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands)

    2011-08-31

    In the framework of the materials domain DEMETRA in the European Transmutation research and development project EUROTRANS, irradiation experiment IBIS has been performed in the High Flux Reactor in Petten. The objective was to investigate the synergystic effects of irradiation and lead bismuth eutectic exposure on the mechanical properties of structural materials and welds. In this experiment ferritic martensitic 9 Cr steel, austenitic 316L stainless steel and their welds have been irradiated for 250 Full Power Days up to a dose level of 2 dpa. Irradiation temperatures have been kept constant at 300 deg. C and 500 deg. C. During the post-irradiation test phase, tensile tests performed on the specimens irradiated at 300 deg. C have shown that the irradiation hardening of ferritic martensitic 9 Cr steel at 1.3 dpa is 254 MPa, which is in line with the irradiation hardening obtained for ferritic martensitic Eurofer97 steel investigated in the fusion program. This result indicates that no LBE interaction at this irradiation temperature is present. A visual inspection is performed on the specimens irradiated in contact with LBE at 500 deg. C and have shown blackening on the surface of the specimens and remains of LBE that makes a special cleaning procedure necessary before post-irradiation mechanical testing.

  3. Tensile and impact testing of an HFBR [High Flux Beam Reactor] control rod follower

    International Nuclear Information System (INIS)

    Czajkowski, C.J.; Schuster, M.H.; Roberts, T.C.; Milian, L.W.

    1989-08-01

    The Materials Technology Group of the Department of Nuclear Energy (DNE) at Brookhaven National Laboratory (BNL) undertook a program to machine and test specimens from a control rod follower from the High Flux Beam Reactor (HFBR). Tensile and Charpy impact specimens were machined and tested from non-irradiated aluminum alloys in addition to irradiated 6061-T6 from the HFBR. The tensile test results on irradiated material showed a two-fold increase in tensile strength to a maximum of 100.6 ksi. The impact resistance of the irradiated material showed a six-fold decrease in values (3 in-lb average) compared to similar non-irradiated material. Fracture toughness (K I ) specimens were tested on an unirradiated compositionally and dimensionally similar (to HFBR follower) 6061 T-6 material with K max values of 24.8 ± 1.0 Ksi√in (average) being obtained. The report concludes that the specimens produced during the program yielded reproducible and believable results and that proper quality assurance was provided throughout the program. 9 figs., 6 tabs

  4. Elaboration of mini plates with U-Mo for irradiation in a high flux reactor

    International Nuclear Information System (INIS)

    Pasqualini, Enrique E.

    2005-01-01

    Full text: International new efforts for the reconversion of HEU in research, testing and radioisotopes production reactors, have greatly incremented U-Mo fuels qualification activities. These qualifications require the resolution of undesired interaction at high fluxes between UMo particles and the aluminum matrix in the case of dispersed fuels and the development of U-Mo monolithic fuels. These efforts are being manifested in the planning and execution of additional series of irradiation tests of mini plates and full size plates. Recently, CNEA has elaborated mini plates with different proposals for the irradiation at the ATR reactor (250 MWTH, maximum thermal neutron flux 10 15 n.cm -2 .seg -1 ) at Idaho National Laboratory, USA. Uranium 7% (w/w) molybdenum (U-7Mo) particles were coated with silicon. Chemical vapour deposition (CVD) of silane and high temperature diffusion of silicon were used. Hydrided, milled and dehydrated (HMD) particles heat treated at 1000 C degrees during four hours and centrifugal atomized powder were coated and the results compared. Mini plates were elaborated with both kinds of particles. Mini plates were also elaborated with U-7Mo and silicon particles dispersed in the aluminium matrix. Monolithic mini plates were also developed by co lamination of U-7Mo with a Zircaloy-4 cladding. The different steps of this process are detailed and the method is shown to be versatile, can be easily scaled up and is performed with small modifications of usual equipment in fuel plants. The irradiation experiment is called RERTR-7A, includes a total of 32 mini plates and it is planed to finalize by mid 2006. (author) [es

  5. Application of the successive linear programming technique to the optimum design of a high flux reactor using LEU fuel

    International Nuclear Information System (INIS)

    Mo, S.C.

    1991-01-01

    The successive linear programming technique is applied to obtain the optimum thermal flux in the reflector region of a high flux reactor using LEU fuel. The design variables are the reactor power, core radius and coolant channel thickness. The constraints are the cycle length, average heat flux and peak/average power density ratio. The characteristics of the optimum solutions with various constraints are discussed

  6. Analytical evaluation of neutron diffusion equation for the geometry of very intense continuous high flux pulsed reactor

    International Nuclear Information System (INIS)

    Narain, Rajendra

    1995-01-01

    Using the concept of Very Intense Continuous High Flux Pulsed Reactor to obtain a rotating high flux pulse in an annular core an analytical treatment for the quasi-static solution with a moving reflector is presented. Under quasi-static situation, time averaged values for important parameters like multiplication factor, flux, leakage do not change with time. As a result the instantaneous solution can be considered to be separable in time and space after correcting for the coordinates for the motion of the pulser. The space behaviour of the pulser is considered as exp(-αx 2 ). Movement of delayed neutron precursors is also taken into account. (author). 4 refs

  7. Irradiation effects in fused quartz 'Suprasil' as a detector of fission fragments under high flux of reactor neutrons

    International Nuclear Information System (INIS)

    Moraes, O.M.G. de.

    1984-01-01

    A systematic study about the registration characteristics of synthetic fused quartz 'Suprasil I' use as a detector of fission fragments under high flux of reactor neutrons and the effects of irradiation on it was performed. Fission fragments of 252 Cf, gamma radiation doses of of 60 Co up to 150 MGy, and integrated neutrons fluxes up to 10 20 n/cm 2 were used. A model to explain the effects on track registration and development characteristics of 'Suprasil I' irradiated on reactors were proposed, based on the obtained results for efficiency an for annealing. (C.G.C.) [pt

  8. High flux Particle Bed Reactor systems for rapid transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Maise, G.; Steinberg, M.; Todosow, M.

    1993-01-01

    An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based actinide burner concept also possesses a number of safety and economic benefits relative to other reactor based transmutation approaches including a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high in temperatures while retaining virtually all fission products. In addition the reactor also posesses a number of ''engineered safety features,'' which, along with the use of high temperature capable materials further enhance its safety characteristics

  9. The high flux reactor Petten, A multi-purpose research and test facility for the future of nuclear energy

    International Nuclear Information System (INIS)

    Bergmans, H.; Duijves, K.; Conrad, R.; Markgraf, J.F.W.; May, R.; Moss, R.L.; Sordon, G.; Tartaglia, G.P.

    1996-01-01

    The High Flux Reactor (HFR) at Petten, is owned by the European Commission (EC) and managed by the Institute for Advanced Materials (IAM) of the Joint Research Centre (JRC) of the EC. Its operation has been entrusted since 1962 to the Netherlands Energy Research Foundation (ECN). The HFR is one of the most powerful multi-purpose research and test reactors in the world. Together with the ECN hot cells at Petten, it has provided since three decades an integral and full complement of irradiation and examination services as required by current and future research and development for nuclear energy, industry and research organizations. Since 1963, the HFR has recognized record of consistent, reliable and high availability of more than 250 days of operation per year. The HFR has 20 in-core and 12 poolside irradiation positions, plus 12 beam tubes. With a variety of dedicated irradiation devices, and with its long-standing experience in executing small and large irradiation projects, the HFR is particularly suited for fuel, materials and components testing for all reactor lines, including thermonuclear fusion reactors. In addition, processing with neutrons and gamma rays, neutron-based research and inspection services are employed by industry and research, such as activation analysis, boron neutron capture therapy, neutron radiography and neutron diffraction. Moreover, in recent years, HFRs' mission has been broadened within the area of radioisotopes production, where, within a few years, the HFR has attained the European leadership in production volume

  10. Welding of a neutron high-flux reactor made of aluminum

    International Nuclear Information System (INIS)

    Zinser, P.; Schupp, N.

    1996-01-01

    The HFR300 of the Institute ''Max von Laue - Paul Langevin (ILL)'' at Grenoble was found to be damaged by a number of serious defects which could not be made good by repair work, so that a new reactor had to be installed. Some of the welding tasks performed so far in this installation are explained. (orig./MM) [de

  11. High flux materials testing reactor HFR Petten. Characteristics of facilities and standard irradiation devices

    International Nuclear Information System (INIS)

    Roettger, H.; Hardt, P. von der; Tas, A.; Voorbraak, W.P.

    1981-01-01

    For the materials testing reactor HFR some characteristic information is presented. Besides the nuclear data for the experiment positions short descriptions are given of the most important standard facilities for material irradiation and radionuclide production. One paragraph deals with the experimental set-ups for solid state and nuclear structure investigations. The information in this report refers to a core type, which is operational since March 1977. The numerical data compiled have been up-dated to January 1981

  12. High-flux first-wall design for a small reversed-field pinch reactor

    International Nuclear Information System (INIS)

    Cort, G.E.; Graham, A.L.; Christensen, K.E.

    1982-01-01

    To achieve the goal of a commercially economical fusion power reactor, small physical size and high power density should be combined with simplicity (minimized use of high-technology systems). The Reversed-Field Pinch (RFP) is a magnetic confinement device that promises to meet these requirements with power densities comparable to those in existing fission power plants. To establish feasibility of such an RFP reactor, a practical design for a first wall capable of withstanding high levels of cyclic neutron wall loadings is needed. Associated with the neutron flux in the proposed RFP reactor is a time-averaged heat flux of 4.5 MW/m 2 with a conservatively estimated transient peak approximately twice the average value. We present the design for a modular first wall made from a high-strength copper alloy that will meet these requirements of cyclic thermal loading. The heat removal from the wall is by subcooled water flowing in straight tubes at high linear velocities. We combined a thermal analysis with a structural fatigue analysis to design the heat transfer module to last 10 6 cycles or one year at 80% duty for a 26-s power cycle. This fatigue life is compatible with a radiation damage life of 14 MW/yr/m 2

  13. Prediction of Flow and Temperature Distributions in a High Flux Research Reactor Using the Porous Media Approach

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2017-01-01

    Full Text Available High thermal neutron fluxes are needed in some research reactors and for irradiation tests of materials. A High Flux Research Reactor (HFRR with an inverse flux trap-converter target structure is being developed by the Reactor Engineering Analysis Lab (REAL at Tsinghua University. This paper studies the safety of the HFRR core by full core flow and temperature calculations using the porous media approach. The thermal nonequilibrium model is used in the porous media energy equation to calculate coolant and fuel assembly temperatures separately. The calculation results show that the coolant temperature keeps increasing along the flow direction, while the fuel temperature increases first and decreases afterwards. As long as the inlet coolant mass flow rate is greater than 450 kg/s, the peak cladding temperatures in the fuel assemblies are lower than the local saturation temperatures and no boiling exists. The flow distribution in the core is homogeneous with a small flow rate variation less than 5% for different assemblies. A large recirculation zone is observed in the outlet region. Moreover, the porous media model is compared with the exact model and found to be much more efficient than a detailed simulation of all the core components.

  14. On-Line Fission Gas Release Monitoring System in the High Flux Reactor Petten

    International Nuclear Information System (INIS)

    Laurie, M.; Fuetterer, M. A.; Appelman, K.H.; Lapetite, J.-M.; Marmier, A.; Knol, S.; Best, J.

    2013-06-01

    For HTR fuel irradiation tests in the HFR Petten a specific installation was designed and installed dubbed the 'Sweep Loop Facility' (SLF). The SLF is tasked with three functions, namely temperature control by gas mixture technique, surveillance of safety parameters (temperature, pressure, radioactivity etc.) and analysis of fission gas release for three individual capsules in two separate experimental rigs. The SLF enables continuous and independent surveillance of all gas circuits. The release of volatile fission products (FP) from the in-pile experiments is monitored by continuous gas purging. The fractional release of these FP, defined as the ratio between release rate of a gaseous fission isotope (measured) to its instantaneous birth rate (calculated), is a licensing-relevant test for HTR fuel. The developed gamma spectrometry station allows for higher measurement frequencies, thus enabling follow-up of rapid and massive release transients. The designed stand-alone system was tested and fully used through the final irradiation period of the HFR-EU1 experiment which was terminated on 18 February 2010. Its robustness allowed the set up to be used as extra safety instrumentation. This paper describes the gas activity measurement technique based on HPGe gamma spectrometry and illustrates how qualitative and quantitative analysis of volatile FP can be performed on-line. (authors)

  15. Reactor production of 252Cf and transcurium isotopes

    International Nuclear Information System (INIS)

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, 252 Cf, 253 Es, and 255 Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of 254g Es from 252 Cf will be discussed. 14 refs., 5 tabs

  16. Neutronics Conversion Analyses of the Laue-Langevin Institute (ILL) High Flux Reactor (RHF)

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Calzavara, Y. [Inst. Laue-Langevin (ILL), Grenoble (France)

    2014-09-30

    The following report describes the neutronics results obtained with the MCNP model of the RHF U7Mo LEU reference design that has been established in 2010 during the feasibility analysis. This work constitutes a complete and detailed neutronics analysis of that LEU design using models that have been significantly improved since 2010 and the release of the feasibility report. When possible, the credibility of the neutronics model is tested by comparing the HEU model results with experimental data or other codes calculations results. The results obtained with the LEU model are systematically compared to the HEU model. The changes applied to the neutronics model lead to better comparisons with experimental data or improved the calculation efficiency but do not challenge the conclusion of the feasibility analysis. If the U7Mo fuel is commercially available, not cost prohibitive, a back-end solution is established and if it is possible to manufacture the proposed element, neutronics analyses show that the performance of the reactor would not be challenged by the conversion to LEU fuel.

  17. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  18. Publication of the second amendment to the German-French Convention on the construction and operation of a very high flux reactor and to its complementary agreement

    International Nuclear Information System (INIS)

    1982-01-01

    Full text in German, English, and French of the amendment to the London Convention of December 9, 1981 between the Federal Republic of Germany, France, Great Britain and Northern Ireland concerning the operating cost and the use of the high flux reactor in Grenoble at the Max-von-Laue Institute. (HP) [de

  19. ILL High Flux Reactor in the event of an earthquake: Safety targets, technical approaches and work carried out

    International Nuclear Information System (INIS)

    Plewinski, Francois; Coiscault, Thomas

    2006-01-01

    The Institut Max von Laue - Paul Langevin is a pan-European research organisation and the world leader in neutron science and technology. Since 1971 it has been operating the ILL High-Flux Reactor (HFR), the most intense continuous neutron source in the world. The ILL is governed by an intergovernmental Convention between France, Germany and the United Kingdom, which was signed in 1967; since then several other countries have joined the ILL as Scientific Member countries: Italy, Spain, Switzerland, Russia, Austria, the Czech Republic and Sweden. The fourth ten-year extension to the agreement was signed at the end of 2002, thus ensuring that the Institute will continue to operate until at least the end of 2013. Thanks to the reliability of the HFR since its very first years of operation, scientific output at the ILL has developed in a spectacular fashion, allowing the Institute to become the world's foremost neutron facility in terms of scientific publications. The Millennium Programme, a 20 MEURO development plan, was set up in 2000 with the aim of launching an accelerated but sustainable programme of instrument renewal which will maintain the ILL's leading position. Over the next 10 years, a further 100 MEURO of investment is foreseen for the Millennium Programme. By way of comparison, the annual ILL general budget is around 75 MEURO. In 2002 the facility underwent a general safety review, including an assessment of the impact of a safe shutdown earthquake. The Refit Programme for upgrading the installations and improving safety levels is now under way, in order to allow the ILL to operate for at least another 20 years. The contents of the paper is as follows: 1. Context; 2. HFR operations and scientific experiments; 3. HFR operations - Safety; 3.1. Operation at nominal power; 3.2. Automatic reactor shutdown - Transition to natural convection; 4. Seismic scenario; 4.1. Target equivalent doses for local populations; 4.2. Relevant source terms; 4.3. Radiological

  20. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    Harpeneau, Evan M. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  1. Isotopic alloying to tailor helium production rates in mixed spectrum reactors

    International Nuclear Information System (INIS)

    Mansur, L.K.; Rowcliffe, A.F.; Grossbeck, M.L.; Stoller, R.E.

    1985-01-01

    The purposes of this work are to increase the understanding of mechanisms by which helium affects microstructure and properties, to aid in the development of materials for fusion reactors, and to obtain data from fission reactors in regimes of direct interest for fusion reactor applications. Isotopic alloying is examined as a means of manipulating the ratio of helium transmutations to atom displacements in mixed spectrum reactors. The application explored is based on artificially altering the relative abundances of the stable isotopes of nickel to systematically vary the fraction of 58 Ni in nickel bearing alloys. The method of calculating helium production rates is described. Results of example calculations for proposed experiments in the High Flux Isotope Reactor are discussed

  2. Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)

    International Nuclear Information System (INIS)

    Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B.; Griess, J.C.

    1994-01-01

    The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume

  3. Meeting notes of the High Flux Isotope Reactor (HFIR) futures group

    Energy Technology Data Exchange (ETDEWEB)

    Houser, M.M. [comp.

    1995-08-01

    This report is a compilation of the notes from the ten meetings. The group charter is: (1) to identify and characterize the range of possibilities and necessities for keeping the HFIR operating for at least the next 15 years; (2) to identify and characterize the range of possibilities for enhancing the scientific and technical utility of the HFIR; (3) to evaluate the benefits or impacts of these possibilities on the various scientific fields that use the HFIR or its products; (4) to evaluate the benefits or impacts on the operation and maintenance of the HFIR facility and the regulatory requirements; (5) to estimate the costs, including operating costs, and the schedules, including downtime, for these various possibilities; and one possible impact of proposed changes may be to stimulate increased pressure for a reduced enrichment fuel for HFIR.

  4. The High Flux Isotope Reactor (HFIR) cold source project at ORNL

    International Nuclear Information System (INIS)

    Selby, D.

    1998-01-01

    The scope of this project includes the development, design, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube hole in the pressure vessel. All aspects of the cold source design will be based on demonstrated technology adapted to the HFIR design and operating conditions

  5. Meeting notes of the High Flux Isotope Reactor (HFIR) futures group

    International Nuclear Information System (INIS)

    Houser, M.M.

    1995-08-01

    This report is a compilation of the notes from the ten meetings. The group charter is: (1) to identify and characterize the range of possibilities and necessities for keeping the HFIR operating for at least the next 15 years; (2) to identify and characterize the range of possibilities for enhancing the scientific and technical utility of the HFIR; (3) to evaluate the benefits or impacts of these possibilities on the various scientific fields that use the HFIR or its products; (4) to evaluate the benefits or impacts on the operation and maintenance of the HFIR facility and the regulatory requirements; (5) to estimate the costs, including operating costs, and the schedules, including downtime, for these various possibilities; and one possible impact of proposed changes may be to stimulate increased pressure for a reduced enrichment fuel for HFIR

  6. Operating manual for the High Flux Isotope Reactor: operating procedures, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-11-01

    Information is presented concerning the research facilities; cooling systems; contaiment heating, ventilating, and air conditioning; emergency procedures; waste systems; on-site utilites; records and data accumulation; auxiliary equipment; and technical specifications requirement.

  7. Type A verification report for the high flux beam reactor stack and grounds, Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    Harpenau, Evan M.

    2012-01-01

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA). The HFBR Stack and Grounds surveys began in June 2011 and were completed in September 2011. Survey activities by BSA included gamma walkover scans and sampling of the as-left soils in accordance with the BSA Work Procedure (BNL 2010a). The Field Sampling Plan - Stack and Remaining HFBR Outside Areas (FSP) stated that gamma walk-over surveys would be conducted with a bare sodium iodide (NaI) detector, and a collimated detector would be used to check areas with elevated count rates to locate the source of the high readings (BNL 2010b). BSA used the Mult- Agency Radiation Survey and Site Investigation Manual (MARSSIM) principles for determining the classifications of each survey unit. Therefore, SUs 6 and 7 were identified as Class 1 and SU 8 was deemed Class 2 (BNL 2010b). Gamma walkover surveys of SUs 6, 7, and 8 were completed using a 2 1/2 2 NaI detector coupled to a data-logger with a global positioning system (GPS). The 100% scan surveys conducted prior to the final status survey (FSS) sampling identified two general soil areas and two isolated soil locations with elevated radioactivity. The general areas of elevated activity

  8. Department of Energy's High Flux Beam Reactor (HFBR), September 15--19, 1980: An independent on-site safety review

    International Nuclear Information System (INIS)

    1981-02-01

    The intent of this on-site safety review was to make a broad management assessment of HFBR operations, rather than conduct a detailed in-depth audit. The result of the review should only be considered as having identified trends or indications. The Team's observations and recommendations for the most part are based upon licensed reactor facility practices used to meet industry standards. These standards form the basis for many of the comments in this report. The Team believes that a uniform minimum standard of performance should be achieved in the operation of DOE reactors. In order to assure that this is accomplished, clear standards are necessary. Consistent with the past AEC and ERDA policy, the team has used the standards of the commercial nuclear power industry. It is recognized that this approach is conservative in that the HFBR reactor has a significantly greater degree of inherent safety (low pressure, temperature, power, etc.) than a licensed reactor

  9. Main technical options of the Jules Horowitz reactor project to achieve high flux performances and high safety level

    International Nuclear Information System (INIS)

    Ballagny, A.; Bergamaschi, Y.; Bouilloux, Y.; Bravo, X.; Guigon, B.; Rommens, M.; Tremodeux, P.

    2003-01-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it and will offer a quite larger experimental field. It has the ambition to provide the necessary nuclear data and to maintain a fission research capability in Europe after 2010. The Jules Horowitz Reactor will represent a significant step in terms of performances and experimental capabilities. This paper will present the main design option resulting from the preliminary studies. The choice of the specific power around 600 kW/I for the reference core configuration is a key decision to ensure the required flux level. Consequently many choices have to be made regarding the materials used in the core and the fuel element design. These involve many specific qualifications including codes validation. The main safety options are based on: - A safety approach based upon the defence-in-depth principle. - A strategy of generic approaches to assess experimental risks in the facility. - Internal events analysis taking into account risks linked to reactor and experiments (e.g., radioactive source-term). - Systematic consideration of external hazards (e.g., earthquake, airplane crash) and internal hazards. - Design of containment to manage and mitigate a severe reactor accident (consideration of 'BORAX' accident, according to french safety practice for MTRs, beyond design basis reactivity insertion accident, involving core melting and core destruction phenomena). (authors)

  10. Main technical options of the Jules Horowitz Reactor project to achieve high flux performances and high safety level

    International Nuclear Information System (INIS)

    Ballagny, A.; Bergamaschi, Y.; Bouilloux, Y.; Bravo, X.; Guigon, B.; Rommens, M.; Tremodeux, P.

    2003-01-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it and will offer a quite larger experimental field. It has the ambition to provide the necessary nuclear data and to maintain a fission research capability in Europe after 2010. The Jules Horowitz Reactor will represent a significant step in terms of performances and experimental capabilities. This paper will present the main design option resulting from the preliminary studies. The choice of the specific power around 600 KW/l for the reference core configuration is a key decision to ensure the required flux level. Consequently many choices have to be made regarding the materials used in the core and the fuel element design. These involve many specific qualifications including codes validation. The main safety options are based on: 1) A safety approach based upon the defence-in-depth principle. 2) A strategy of generic approaches to assess experimental risks in the facility. 3) Internal events analysis taking into account risks linked to reactor and experiments (eg., radioactive source-term). 4) Systematic consideration of external hazards (eg., earthquake, airplane crash) and internal hazards. 5) Design of containment to manage and mitigate a severe reactor accident (consideration of 'BORAX' accident, according to french safety practice for MTRs, beyond design basis reactivity insertion accident, involving core melting and core destruction phenomena). (author)

  11. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  12. Reactor calculations in aid of isotope production at SAFARI-1

    International Nuclear Information System (INIS)

    Ball, G.

    2003-01-01

    Varying levels of reactor physics support is given to the isotope production industry. As the pressures on both the safety limits and economical production of reactor produced isotopes mount, reactor physics calculational support is playing an ever increasing role. Detailed modelling of the reactor, irradiation rigs and target material enables isotope production in reactors to be maximised with respect to yields and quality. NECSA's methodology in this field is described and some examples are given. (author)

  13. Dosimetry work and calculations in connection with the irradiation of large devices in the high flux materials testing reactor BR2

    International Nuclear Information System (INIS)

    De Raedt, C.; Leenders, L.; Tourwe, H.; Farrar, H. IV.

    1982-01-01

    For about fifteen years the high flux reactor BR2 has been involved in the testing of fast reactor fuel pins. In order to simulate the fast reactor neutron environment most devices are irradiated under cadmium screen, cutting off the thermal flux component. Extensive neutronic calculations are performed to help the optimization of the fuel bundle design. The actual experiments are preceded by irradiations of their mock-ups in BR02, the zero power model of BR2. The mock-up irradiations, supported by supplementary calculations, are performed for the determination of the main neutronic characteristics of the irradiation proper in BR2 and for the determination of the corresponding operation data. At the end of the BR2 irradiation, the experimental results, such as burn-ups, neutron fluences, helium production in the fuel pin claddings, etc. are correlated by neutronic calculations in order to examine the consistency of the post-irradiation results and to validate the routine calculation procedure and cross-section data employed. A comparison is made in this paper between neutronic calculation results and some post-irradiation data for MOL 7D, a cadmium screened sodium cooled loop containing a nineteen fuel pin bundle

  14. LWR fuel rod testing facilities in high flux reactor (HFT) Petten for investigation of power cycling and ramping behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Markgraf, J; Perry, D; Oudaert, J [Commission of the European Communities, Joint Reserach Centre, Petten Establishment, Petten (Netherlands)

    1983-06-01

    LWR fuel rod irradiation experiments are being performed in HFR's Pool Side Facility (PSF) by means of pressurized boiling water capsules (BWFC). For more than 6 years the major application of these devices has been in performing irradiation programs to investigate the power ramp behaviour of PWR and BWR rods which have been pre-irradiated in power reactors. Irradiation devices with various types of monitoring instrumentation are available, e.g. for fuel rod length, fuel stack length, fuel rod internal pressure and fuel rod central temperature measurements. The application scope covers PWR and BWR fuel rods, with burn-up levels up to 45 MWd/kg(U), max. linear heat generation rates up to 700 W/cm and simulation of constant power change rates between 0.05 and 1000 W/cm.min. The paper describes the different designs of LWR fuel rod testing facilities and associated non-destructive testing devices in use at the HFR Petten. It also addresses the new test capabilities that will become available after exchange of the HFR vessel in 1983. Furthermore it shows some typical results. (author)

  15. The reactor and the production of isotopes

    International Nuclear Information System (INIS)

    Hevesy, G. de

    1962-01-01

    The construction of the cyclotron immensely advanced the availability of radioactive tracers, a few of which even today can be produced only with the aid of this device. But even this great advance was overshadowed by the fabulous production of isotopes by the reactors. Isotopes of almost any element and of almost unlimited activity became available. It now became possible to apply H 3 - discovered already in the 'thirties by Rutherford and Oliphant - and C 14 , and these were used in thousands of investigations

  16. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  17. Radiological protection considerations during the treatment of glioblastoma patients by boron neutron capture therapy at the high flux reactor in Petten, The Netherlands

    International Nuclear Information System (INIS)

    Moss, R.L.; Rassow, J.; Finke, E.; Sauerwein, W.; Stecher-Rasmussen, F.

    2001-01-01

    A clinical trial of Boron Neutron Capture Therapy (BNCT) for glioblastoma patients has been in progress at the High Flux Reactor (HFR) at Petten since October 1997. The JRC (as licence holder of the HFR) must ensure that radiological protection measures are provided. The BNCT trial is a truly European trial, whereby the treatment takes place at a facility in the Netherlands under the responsibility of clinicians from Germany and patients are treated from several European countries. Consequently, radiological protection measures satisfy both German and Dutch laws. To respect both laws, a BNCT radioprotection committee was formed under the chairmanship of an independent radioprotection expert, with members representing all disciplines in the trial. A special nuance of BNCT is that the radiation is provided by a mixed neutron/gamma beam. The radiation dose to the patient is thus a complex mix due to neutrons, gammas and neutron capture in boron, nitrogen and hydrogen, which, amongst others, need to be correctly calculated in non-commercial and validated treatment planning codes. Furthermore, due to neutron activation, measurements on the patient are taken regularly after treatment. Further investigations along these lines include dose determination using TLDs and boron distribution measurements using on-line gamma ray spectroscopy. (author)

  18. RELAP5/MOD2. 5 analysis of the HFBR (High Flux Beam Reactor) for a loss of power and coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

    1990-05-01

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs.

  19. RELAP5/MOD2.5 analysis of the HFBR [High Flux Beam Reactor] for a loss of power and coolant accident

    International Nuclear Information System (INIS)

    Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

    1990-05-01

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs

  20. Determination of Unknown Neutron Cross Sections for the Production of Medical Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Stephen E. Binney

    2004-04-09

    Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory.

  1. Evaluation and Compilation of Neutron Activation Cross Sections for Medical Isotope Production

    International Nuclear Information System (INIS)

    Binney, Stephen E.

    2004-01-01

    Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory

  2. Fuel-Coolant-Interaction modeling and analysis work for the High Flux Isotope Reactor Safety Analysis Report

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Chang, S.J.; Freels, J.; Gat, U.; Lepard, B.L.; Gwaltney, R.C.; Luttrell, C.; Kirkpatrick, J.

    1993-07-01

    A brief historical background and a description of short- and long-term task plan development for effective closure of this important safety issue for the HFIR are given. Short-term aspects deal with Fuel-Coolant-Interaction (FCI) issues experimentation, modeling, and analysis for the flow-blockage-induced steam explosion events in direct support of the SAR. Long-term aspects deal with addressing FCI issues resulting from other accidents in conjunction with issues dealing with aluminum ignition, which can result in an order of magnitude increase in overall energetics. Problem formulation, modeling, and computer code simulation for the various phases of steam explosions are described. The evaluation of core melt initiation propagation, and melt superheat are described. Core melt initiation and propagation have been studied using simple conservative models as well as from modeling and analysis using RELAP5. Core debris coolability, heatup, and melting/freezing aspects have been studied by use of the two-dimensional melting/freezing analysis code 2DKO, which was also benchmarked with MELCOR code predictions. Descriptions are provided for the HM, BH, FCIMOD, and CTH computer codes that have been implemented for studying steam explosion energetics from the standpoint of evaluating bounding loads by thermodynamic models or best-estimate loads from one- and two-dimensional simulations of steam explosion energetics. Vessel failure modeling and analysis was conducted using the principles of probabilistic fracture mechanics in conjunction with ADINA code calculations. Top head bolts failure modeling has also been conducted where the failure criterion was based upon stresses in the bolts exceeding the material yield stress for a given time duration. Missile transport modeling and analysis was conducted by setting up a one-dimensional mathematical model that accounts for viscous dissipation, virtual mass effects, and material inertia

  3. Charpy impact test results of ferritic alloys from the HFIR[High Flux Isotope Reactor]-MFE-RB2 test

    International Nuclear Information System (INIS)

    Hu, W.L.; Gelles, D.S.

    1987-03-01

    Miniature Charpy specimens of HT-9 in base metal, weld metal and heat affected zone (HAZ) metal conditions, and 9Cr-1Mo in base metal and weld metal conditions have been tested following irradiation in HFIR-MFE-RB2 at 55 0 C to ≅10 dpa. All specimen conditions have degraded properties (both DBTT and USE) in comparison with specimens irradiated to lower dose. 9Cr-Mo degraded more than HT-9 and weld metal performed worse than base metal which performed worse than HAZ material. Property degradation was approximately linear as a function of dose, indicating that degradation response had not saturated by 10 dpa

  4. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Weaver, P.C.

    2010-01-01

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 5 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the concrete duct from Trench 5 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 5 was appropriate based on recent verification results from Trenches 2, 3, and 4, and the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch pipe from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 5. Based on the pre-excavation sample results of the soil overburden the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that resolved each ORISE comment adequately (BNL 2010a). ORISE referred to the revised HFBR Underground Utilities FSP FSS data to conduct the Type A verification

  5. Isotopic exchange reactions. Kinetics and efficiency of the reactors using them in isotopic separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1979-11-01

    In the first part, some definitions and the thermodynamic and kinetic isotopic effect concepts are recalled. In the second part the kinetic laws are established, in homogeneous and heterogeneous medium (one component being on occasions present in both phases), without and with isotopic effects. Emphasis is put on application to separation of isotopes, the separation factor α being close to 1, one isotope being in large excess with respect to the other one. Isotopic transfer is then given by: J = Ka (x - y/α) where x and y are the (isotopic) mole fractions in both phases, Ka may be either the rate of exchange or a transfer coefficient which can be considered as the 'same in both ways' if α-1 is small compared to the relative error on the measure of Ka. The third part is devoted to isotopic exchange reactors. Relationships between their efficiency and kinetics are established in some simple cases: plug cocurrent flow reactors, perfectly mixed reactors, countercurrent reactors without axial mixing. We treat only cases where α and the up flow to down flow ratio is close to 1 so that Murphee efficiency approximately overall efficiency (discrete stage contactors). HTU (phase 1) approximately HTU (phase 2) approximately HETP (columns). In a fourth part, an expression of the isotopic separative power of reactors is proposed and discussed [fr

  6. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Harpenau, E.M.

    2010-01-01

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 1 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the 42-inch duct and 14-inch line in Trench 1 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 1 was appropriate based on recent verification results from Trenches 2, 3, 4, and 5, and the minimal potential for residual radioactivity in the area. The removal of underground utilities has been performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch duct from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 1. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the gamma spectroscopy results for 14 FSS soil samples, four core samples, and one duplicate sample collected from Trench 1. Sample results for the radionuclides of concern were below the established cleanup goals. However, in sample PH-3

  7. LETTER REPORT - INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Weaver, P.C.

    2010-01-01

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the Brookhaven National Laboratory (BNL) on August 17 through August 23, 2010 to perform visual inspections and conduct independent measurement and sampling of the 'Outside Areas' at the High Flux Beam Reactor (HFBR) decommissioning project. During this visit, ORISE was also able to evaluate Fan House, Building 704 survey units (SUs) 4 and 5, which are part of the Underground Utilities portion of the HFBR decommissioning project. ORISE performed limited alpha plus beta scans of the remaining Fan House foundation lower walls and remaining pedestals while collecting static measurements. Scans were performed using gas proportional detectors coupled to ratemeter-scalers with audible output and encompassed an area of approximately 1 square meter around the static measurement location. Alpha plus beta scans ranged from 120 to 460 cpm. Twenty smears for gross alpha and beta activity and tritium were collected at judgmentally selected locations on the walls and pedestals of the Fan House foundation. Attention was given to joints, cracks, and penetrations when determining each sample location. Removable concentrations ranged from -0.43 to 1.73 dpm/100 cm2 for alpha and -3.64 to 7.80 dpm/100 cm2 for beta. Tritium results for smears ranged from -1.9 to 9.0 pCi/g. On the concrete pad, 100% of accessible area was scanned using a large area alpha plus beta gas proportional detector coupled to a ratemeter-scaler. Gross scan count rates ranged from 800 to 1500 cpm using the large area detector. Three concrete samples were collected from the pad primarily for tritium analysis. Tritium concentrations in concrete samples ranged from 53.3 to 127.5 pCi/g. Gamma spectroscopy results of radionuclide concentrations in concrete samples ranged from 0.02 to 0.11 pCi/g for Cs-137 and 0.19 to 0.22 pCi/g for Ra-226. High density scans for gamma radiation levels were performed in accessible areas in each SU, Fan House

  8. A proposed standard on medical isotope production in fission reactors

    International Nuclear Information System (INIS)

    Schenter, R. E.; Brown, G. J.; Holden, C. S.

    2006-01-01

    Authors Robert E. Sehenter, Garry Brown and Charles S. Holden argue that a Standard for 'Medical Isotope Production' is needed. Medical isotopes are becoming major components of application for the diagnosis and treatment of all the major diseases including all forms of cancer, heart disease, arthritis, Alzheimer's, among others. Current nuclear data to perform calculations is incomplete, dated or imprecise or otherwise flawed for many isotopes that could have significant applications in medicine. Improved data files will assist computational analyses to design means and methods for improved isotope production techniques in the fission reactor systems. Initial focus of the Standard is expected to be on neutron cross section and branching data for both fast and thermal reactor systems. Evaluated and reviewed tables giving thermal capture cross sections and resonance integrals for the major target and product medical isotopes would be the expected 'first start' for the 'Standard Working Group'. (authors)

  9. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  10. Test report: Preliminary tests for the High Flux Reactor: Experimental determination of flow redistribution conditions at pressures between 4 and 5 kg/cm2 abs in a rectangular channel 2 mm thick and 60 cm long

    International Nuclear Information System (INIS)

    Schleisiek, K.; Dumaine, J.C.

    1989-01-01

    In the context of safety research for the OSIRIS reactor, tests have been performed on the Super BOB cell with a view to determining experimentally the internal characteristics (or ''S'' curves) of a channel with a rectangular heating cross-section 2 x 38 mm and 600 mm long. During these tests the maximum pressure at the channel exit was brought to 3 kg/cm 2 abs. The pressurization level in the High Flux Reactor will be higher. That is why tests have been carried out at maximum pressure of 5 kg/cm 2 abs allowable on the ''super BOB'' loop without modifying it. The first objective of this test series was to determine the ''S'' curves and the exchange coefficients experimentally. This document discusses the test conditions and test results

  11. The effective management of medical isotope production in research reactors

    International Nuclear Information System (INIS)

    Drummond, D.T.

    1993-01-01

    During the 50-yr history of the use of radioisotopes for medical applications, research reactors have played a pivotal role in the production of many if not most of the key products. The marriage between research reactors and production operations is subject to significant challenges on two fronts. The medical applications of the radioisotope products impose some unique constraints and requirements on the production process. In addition, the mandates and priorities of a research reactor are not always congruent with the demands of a production environment. This paper briefly reviews the historical development of medical isotope production, identifies the unique challenges facing this endeavor, and discusses the management of the relationship between the isotope producer and the research reactor operator. Finally, the key elements of a successful relationship are identified

  12. The PALLAS research and isotope reactor project status

    International Nuclear Information System (INIS)

    Van Der Schaaf, B.; De Jong, P.

    2010-01-01

    In the European Union the first generation research reactors is nearing their end of life condition. Several committees recommend a comprehensive set of reactors in the EU, amongst them the replacement for the HFR research and isotope reactor in Petten: PALLAS. The business case for PALLAS supports a future for a research and isotope reactor in Petten as a perfect fit for the future EU set of test reactors. The tender for PALLAS started in 2007, following the EU rules for tendering complex objects with the competitive dialogue. This procedure involved an extensive consultation phase between individual tendering companies and NRG, resulting in definitive specifications in summer 2008. The evaluation of offers, including conceptual designs, took place in summer 2009. At present NRG is still active in the acquisition of the funding for the project. The licensing path has been started in autumn 2009 with a initiation note on the environmental impact assessment, EIA. The public hearings held in the lead to the advice from the national EIA committee for the approach of the assessment. The PALLAS project team in Petten will guide the design and build processes. It is also responsible for the licensing of the building and operation of PALLAS. The team also manages the design and construction for the infrastructure, such as cooling devices, including remnant heat utilization, and utility provisions. A particular responsibility for the team is the design and construction of experimental and isotope capsules, based on launch customer requirements. (author)

  13. A comparative and predictive study of the annual fuel cycle costs for HEU and LEU fuels in the High Flux Reactor, Petten, 1985-1993

    Energy Technology Data Exchange (ETDEWEB)

    Moss, R L; May, P

    1985-07-01

    The internationally agreed constraint on availability of supply of HEU fuels to Research and Test Reactors has necessitated that a cost analysis be carried out to determine the financial effect of converting the core of the HFR from HEU to LEU fuels. A computer program, written at Petten and based on information extracted from studies in Europe and the USA, identifies the major cost variables to be manufacturing, uranium, reprocessing and transport costs. Comparison between HEU and LEU cores have been carried out and includes the effects of inflation and exchange rate fluctuations. Conversion of the HFR core to LEU fuels is shown to be financially disadvantageous. (author)

  14. A comparative and predictive study of the annual fuel cycle costs for HEU and LEU fuels in the High Flux Reactor, Petten, 1985-1993

    International Nuclear Information System (INIS)

    Moss, R.L.; May, P.

    1985-01-01

    The internationally agreed constraint on availability of supply of HEU fuels to Research and Test Reactors has necessitated that a cost analysis be carried out to determine the financial effect of converting the core of the HFR from HEU to LEU fuels. A computer program, written at Petten and based on information extracted from studies in Europe and the USA, identifies the major cost variables to be manufacturing, uranium, reprocessing and transport costs. Comparison between HEU and LEU cores have been carried out and includes the effects of inflation and exchange rate fluctuations. Conversion of the HFR core to LEU fuels is shown to be financially disadvantageous. (author)

  15. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    International Nuclear Information System (INIS)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J.P.

    2011-01-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 x 10 21 m -2 s -1 , ion fluence: 4 x 10 25 m -2 ) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  16. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Science.gov (United States)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  17. Fuel slugs considered for use in the high flux reactor EL3; Elements combustibles envisages pour la pile a haut flux EL 3

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J A; Caillat, R; Gauthron, M; Montagne, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    EL3 was designed essentially for the study, under irradiation conditions, of materials used in the construction of atomic reactors. The study schedule allocates considerable time and effort to new types of fuel slugs. The present report described the various types of slug being tested or scheduled for tests. After laboratory study, each slug is tested in an experimental cell in the pile. The best are retained and used to charge the reactor (the present charge is purely provisional to permit first criticality and power rise tests)ren. [French] La pile EL3 est essentiellement destinee a l'etude sous irradiation des materiaux utilises dans la construction des reacteurs atomiques. Dans ce programme, une tres large part est reservee a l'etude de nouveaux elements combustibles. Le present rapport decrit les differentes solutions de cartouches dont l'essai est envisage ou en cours. Apres etude en laboratoire, chacune de ces solutions est testee dans une cellule experimentale en pile. Les meilleures seront retenues pour constituer le chargement normal de la pile (le chargement actuel etant essentiellement une solution provisoire qui a permis la divergence de la pile et les premiers essais de montee en puissance). (auteur)

  18. [Project for] a high-flux extracted neutron beam reactor [for physicists]; Un [projet de] reacteur a haut flux et faisceaux sortis [pour physiciens

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    French requirements in neutron beams of different energies extracted from a reactor are briefly described. The well-known importance of cold neutrons (above 4 Angstrom) is emphasized. The main characteristics of a reactor suitable for physicists are outlined: They are: 1 - A flux of about 7. 10{sup 14} thermal neutrons in the heavy water of the reflector, 2 - Maximum flexibility obtained by: - physical separation of the core and the reflector, - independence of the different experiments, - possibility of modifying physical experiments up to - and including - the nature of the used reflector, without any appreciable interruption in the operation of the reactor, - reduction of fixed shields to a minimum; ample use of liquid shields (water) and fluid shields (sands). 3 - Technological continuity as far as possible with French research reactors (Siloe, Pegase, Osiris) already existing or under construction. 4 - Safety of operation arising from simplicity of conception. 5 - Minimised construction costs. Lowering of the operating costs is looked for indirectly in the simplification of the solutions and the reduction of operating staff, rather than directly by reducing the consumption of fuel elements and energy. The recommended solution can be described as a closed-core non-pressurized swimming-pool reactor, highly under-moderated by the cooling light water. Surrounding the reactor are a number of 'beam tubes-loops' each consisting of: - a part of the reflector (heavy water in the example described), - a part of neutron extraction beam tube, - the circuits required for their cooling, - the inlet systems of suitable fluids to the beam tube nose (liquid hydrogen in the example described), - the necessary outlets for measurement and control system. The whole 'beam tubes loops' is immersed in the water of the metallic self-supporting swimming-pool. The shielding outside the swimming-pool is composed for the most part by heavy sand in which is the rest of the beam extraction

  19. A Level 1+ Probabilistic Safety Assessment of the high flux Australian reactor. Vol. 2. Appendix C: System analysis models and results

    International Nuclear Information System (INIS)

    1998-01-01

    This section contains the results of the quantitative system/top event analysis. Section C. 1 gives the basic event coding scheme. Section C.2 shows the master frequency file (MFF), which contains the split fraction names, the top events they belong to, the mean values of the uncertainty distribution that is generated by the Monte Carlo quantification in the System Analysis module of RISKMAN, and a brief description of each split fraction. The MFF is organized by the systems modeled, and within each system, the top events associated with the system. Section C.3 contains the fault trees developed for the system/top event models and the RISKMAN reports for each of the system/top event models. The reports are organized under the following system headings: Compressed/Service Air Supply (AIR); Containment Isolation System (CIS); Heavy Water Cooling System (D20); Emergency Core Cooling System (ECCS; Electric Power System (EPS); Light Water Cooling system (H20); Helium Gas System (HE); Mains Water System (MW); Miscellaneous Top Events (MISC); Operator Actions (OPER) Reactor Protection System (RPS); Space Conditioner System (SCS); Condition/Status Switch (SWITCH); RCB Ventilation System (VENT); No. 1 Storage Block Cooling System (SB)

  20. A Level 1+ Probabilistic Safety Assessment of the high flux Australian reactor. Vol. 2. Appendix C: System analysis models and results

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This section contains the results of the quantitative system/top event analysis. Section C. 1 gives the basic event coding scheme. Section C.2 shows the master frequency file (MFF), which contains the split fraction names, the top events they belong to, the mean values of the uncertainty distribution that is generated by the Monte Carlo quantification in the System Analysis module of RISKMAN, and a brief description of each split fraction. The MFF is organized by the systems modeled, and within each system, the top events associated with the system. Section C.3 contains the fault trees developed for the system/top event models and the RISKMAN reports for each of the system/top event models. The reports are organized under the following system headings: Compressed/Service Air Supply (AIR); Containment Isolation System (CIS); Heavy Water Cooling System (D20); Emergency Core Cooling System (ECCS); Electric Power System (EPS); Light Water Cooling system (H20); Helium Gas System (HE); Mains Water System (MW); Miscellaneous Top Events (MISC); Operator Actions (OPER) Reactor Protection System (RPS); Space Conditioner System (SCS); Condition/Status Switch (SWITCH); RCB Ventilation System (VENT); No. 1 Storage Block Cooling System (SB)

  1. Proceedings of the Oak Ridge National Laboratory/Brookhaven National Laboratory workshop on neutron scattering instrumentation at high-flux reactors

    International Nuclear Information System (INIS)

    McBee, M.R.; Axe, J.D.; Hayter, J.B.

    1990-07-01

    For the first three decades following World War II, the US, which pioneered the field of neutron scattering research, enjoyed uncontested leadership in the field. By the mid-1970's, other countries, most notably through the West European consortium at Institut Laue-Langevin (ILL) in Grenoble, France, had begun funding neutron scattering on a scale unmatched in this country. By the early 1980's, observers charged with defining US scientific priorities began to stress the need for upgrading and expansion of US research reactor facilities. The conceptual design of the ANS facility is now well under way, and line-item funding for more advanced design is being sought for FY 1992. This should lead to a construction request in FY 1994 and start-up in FY 1999, assuming an optimal funding profile. While it may be too early to finalize designs for instruments whose construction is nearly a decade removed, it is imperative that we begin to develop the necessary concepts to ensure state-of-the-art instrumentation for the ANS. It is in this context that this Instrumentation Workshop was planned. The workshop touched upon many ideas that must be considered for the ANS, and as anticipated, several of the discussions and findings were relevant to the planning of the HFBR Upgrade. In addition, this report recognizes numerous opportunities for further breakthroughs on neutron instrumentation in areas such as improved detection schemes (including better tailored scintillation materials and image plates, and increased speed in both detection and data handling), in-beam monitors, transmission white beam polarizers, multilayers and supermirrors, and more. Each individual report has been cataloged separately

  2. Hydrogen isotopes transport parameters in fusion reactor materials

    International Nuclear Information System (INIS)

    Serra, E.; Ogorodnikova, O.V.

    1998-01-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned. (orig.)

  3. Isotopes accumulation in the thermal column of TRIGA reactor

    International Nuclear Information System (INIS)

    Iorgulis, C.; Diaconu, D.; Gugiu, D.; Csaba, R.

    2013-01-01

    The correlation of impurity observed in the virgin graphite and radionuclide content and activities measured in the irradiated graphite needs to know the irradiated history. This is a challenging process if impurity content and irradiation conditions are not accurately known. This is the case of the irradiated graphite in the thermal column of Institute for Nuclear Research Pitesti (INR)14 MW TRIGA reactor. To overcome incomplete impurity content and the unknown position in the column of the measured irradiated graphite available for characterisation and comparison, a set of preliminary simulations were performed. Following Eu 152 /Eu 154 ration they allowed the estimation of an impurity content and irradiation conditions leading to measured activities. Based on these data the radio-isotope accumulation in different positions in the thermal column was predicted. Modelling performed by INR used advanced prediction packages (e.g. WIMS, MCNP ORIGEN-S from Scale 5) to assess the isotopic content of MTR graphite types with irradiation history specific for a TRIGA research reactor. Some certain calculations points from the column were selected in order to model the burnup and isotopes productions using ORIGEN from SCALE code system. (authors)

  4. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Matthew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigni, Marco T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  5. Evolution of the hafnium isotopic composition in the RBMK reactor

    International Nuclear Information System (INIS)

    Jurkevicius, A.; Remeikis, V.

    2002-01-01

    The isotopic composition of hafnium in the radial neutron flux sensor of the RBMK-1500 reactor, the rates of the neutron absorption on Hf isotopes and the neutron spectrum in the sensor were numerically modeled. The sequence SAS2 (Shielding Analysis Sequence) program from the package SCALE 4.4A and the HELIOS code system were used for calculations. It has been obtained that the overall neutron absorption rates in hafnium for the sensors located in the 2.4 % and 2.6 % enrichment uranium-erbium nuclear fuel assemblies are by 16 % and 19 % lower than in the 2.0 % enrichment uranium nuclear fuel assemblies. The overall neutron absorption rate in hafnium decreases 2.70-2.75 times due to the sensor burnup to 5800 MW d. The sensitivity of the Hf sensors to the thermal neutron flux increases twice due to the nuclear fuel assembly burnup to 3000 MW d. The corrective factors ξ d (I) at the different integral current I of the sensors and ξ td (E) at the different burnup E of the nuclear fuel assemblies were calculated. The obtained dependence ξ d (I) calculated numerically was compared to the experimental one determined by comparing signals of the fresh sensor and the sensor with the integral current I and by processing repeated calibration results of Hf sensors in RBMK-1500 reactors. The relative relationship coefficients K T (T FA ) were found for all RBMK-1500 nuclear fuel types. (author)

  6. Isotopic nuclear reactor with on-line separation

    International Nuclear Information System (INIS)

    Liviu, Popa-Simil

    2007-01-01

    In the new reactor-waste cycle design the nuclear reactor gets features of the living beings - resembling the plants/vegetation -. The separation of waste starts inside the fuel by using the fission reaction to separate the fission products from the fuel. The fuel, which is preferred to be highly isotopic enriched, is fabricated in beads smaller than the fission product range, immersed in a gentle flowing liquid drain. If this liquid is Lead Bismuth (LBE) the fission products will be lighter, while in Sodium-Potassium (NaK) will be heavier, except for gases. This drain liquid will collect both the fission products and the collision damage, drawing them slow to give time to short lives disintegration chains to take place inside the shielded nuclear reactor area outside the reactor core in a separation unit. While the drain liquid with the fission products is outside the reactor core few choices are available: - To solidify the drain liquid freezing all elements inside and transport the metal in cryogenic conditions to a remote separation unit, or to apply a separation partitioning process online stabilizing and packing the fission products only, or a combination of these two. The radioactivity of this drain liquid is smaller than that of the actual used fuel because it represents the accumulation of a very short period (about 1 month or less) and had enough time to cool down all the short lives. The separation unit on-line with the nuclear reactor is composed of a density separation unit, followed by a phase interface concentration unit which moves out of the LBE the fission products as lighter impurities, and an electrochemical separation unit for the fission products. Further, chemical separation, stabilization processes are applied and the fission products are delivered partitioned on groups of chemical compatible products. Finally the specific waste is about 1 Kg/Gw*day, to which the stabilization products have to be added which increases this mass by 10 times

  7. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 D/F WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Weaver, P.C.

    2010-01-01

    Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 2; the D/F Waste Line removal at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed the final status survey (FSS) of the D/F Waste Line that provided the conduit for pumping waste from Building 750 to Building 801. Sample results have been submitted as required to demonstrate that the cleanup goals of 15 mrem/yr above background to a resident in 50 years have been met. Four rounds of sampling, from pre-excavation to final status survey (FSS), were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the US Departmental of Energy (DOE) to perform independent verifications of decontamination and decomissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task at the HFBR. ORISE together with DOE determined that a Type A verification of the D/F Waste Line was appropriate based on its method of construction and upon the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages in the process to decommission the HFBR facility and support structures. Phase 2 of this project included the grouting and removal of 1100 feet of 2-inch pipe and 640 feet of 4-inch pipe that served as the D/F Waste Line. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that addressed each ORISE comment adequately (BNL 2010a). ORISE referred to the revised Phase 2 D/F Waste Line removal FSP FSS data to conduct the Type A verification and determine whether the intent odf

  8. Alize 3 - first critical experiment for the franco-german high flux reactor - calculations; Alize 3 - premiere experience critique pour le reacteur a haut flux franco-allemand. Calculs

    Energy Technology Data Exchange (ETDEWEB)

    Scharmer, K [Commissariat a l' Energie Atomique, Dir. des Piles Atomiques, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The results of experiments in the light water cooled D{sub 2}O reflected critical assembly ALIZE III have been compared to calculations. A diffusion model was used with 3 fast and epithermal groups and two overlapping thermal groups, which leads to good agreement of calculated and measured power maps, even in the case of strong variations of the neutron spectrum in the core. The difference of calculated and measured k{sub eff} was smaller than 0.5 per cent {delta}k/k. Calculations of void and structure material coefficients of the reactivity of 'black' rods in the reflector, of spectrum variations (Cd-ratio, Pu-U-ratio) and to the delayed photoneutron fraction in the D{sub 2}O reflector were made. Measurements of the influence of beam tubes on reactivity and flux distribution in the reflector were interpreted with regard to an optimum beam tube arrangement for the Franco- German High Flux Reactor. (author) [French] Les resultats des experiences faites dans la maquette critique ALIZE III, refrigeree a l'eau legere et reflechie par l'eau lourde, ont ete compares aux calculs. On a utilise un modele de la theorie de diffusion a trois groupes rapides et epithermiques et deux groupes thermiques qui se recouvrent. Ce modele a permis de calculer la distribution de puissance dans le coeur en bon accord avec les mesures, meme dans le cas d'une forte variation du spectre des neutrons dans le coeur. L'erreur entre k{sub eff} calcule et mesure etait inferieure a 0,5 pour cent {delta}k/k. Le coefficient de vide et des materiaux de structure, la reactivite des barres 'noires', les variations du spectre (rapport Cd, rapport Pu/U) et la fraction des photo-neutrons retardes sont egalement calcules. Les mesures de reactivite et de perturbation de flux dans le reflecteur, dues aux canaux, ont ete interpretees du point de vue d'un arrangement optimum des canaux pour le Reacteur a Haut Flux Franco-Allemand. (auteur)

  9. A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors

    International Nuclear Information System (INIS)

    Gesh, Christopher J.

    2004-01-01

    The Graphite Isotope Ratio Method (GIRM) is a technique used to estimate the total plutonium production in a graphite-moderated reactor. The cumulative plutonium production in that reactor can be accurately determined by measuring neutron irradiation induced isotopic ratio changes in certain impurity elements within the graphite moderator. The method does not require detailed knowledge of a reactor's operating history, although that knowledge can decrease the uncertainty of the production estimate. The basic premise of the Graphite Isotope Ratio Method is that the fluence in non-fuel core components is directly related to the cumulative plutonium production in the nuclear fuel

  10. Heat transfer calculations for the High Flux Isotope Reactor (HFIR). Technical specifications: bases for safety limits and limiting safety system settings

    International Nuclear Information System (INIS)

    Sims, T.M.; Swanks, J.H.

    1977-09-01

    Heat transfer analyses, in support of the preparation of the HFIR technical specifications, were made to establish the bases for the safety limits and limiting safety system settings applicable to the HFIR. The results of these analyses, along with the detailed bases, are presented

  11. Reactor, radioactive isotopes and nuclear energy: their avatars in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Roche, M

    1981-03-01

    The decision to bring a fair sized (3MW) research reactor to Venezuela, made in 1954 by a single, ambitious and prestige seeking individual working with a dictatorial government, is a clear case of cargo cult, an implicit desire to import industralized countries' science and technology by purchasing key in hand their expensive machine. The reactor has never ceased to experience difficulties since then, not so much of a physical or mechanical, but rather of a human nature and due to the almost grotesque distance between the machine's potentialities and the quantity and quality of personnel available. Demand and motivation have been scarce, because fossil and hydro energy have been so far plentiful. Military motivation was in theory absent. Perspectives have apparently improved, not that a scientific community has been trained and an infrastructure exists. Radioactive isotopes have been widely used in Venezuela, beginning in 1953, for medical practice and biological research. At present about 2.5 million bolivars worth of radioisotopes are imported annually, mostly from the US and to a lesser extent, from UK. Steps are being taken to train nuclear engineers, since most studies thus far indicate the last few years of the century as the time when nuclear energy will begin to enter the picture, and since a period of at least ten years is needed between the decision to build an atomic power plant and the time it goes into operation. Choice of technique has not been made, but an active, although still small, uranium prospecting program has been initiated. It seems as if, by the end of the century, either nuclear energy will have to supplement other sources, or standard of living of Venezuelans - at least that relative minority who can afford to live well - will drop. 2 figures, 2 tables.

  12. Problems in producing nuclear reactor for medical isotopes and the Global Crisis of molybdenum supply

    International Nuclear Information System (INIS)

    Zubiarrain, A.

    2011-01-01

    Nuclear medicine uses drugs that incorporate a radioactive isotope radiopharmaceuticals. Every year are performed, worldwide, 35 million nuclear medicine procedures, of which 80% are done with radiopharmaceuticals containing the isotope, molybdenum-99, produced in nuclear reactors. In recent years, there have been several supply crisis of molybdenum-99, which have hampered diagnostic procedure with technitium-99m. (Author)

  13. Canadian Neutron Source (CNS): a research reactor solution for medical isotopes and neutrons for science

    International Nuclear Information System (INIS)

    Chapman, D.

    2009-01-01

    This presentation describes a dual purpose research facility at the University of Saskatchewan for Canada for the production of medical isotopes and neutrons for scientific research. The proposed research reactor is intended to supply most of Canada's medical isotope requirements and provide a neutron source for Canada's research community. Scientific research would include materials research, biomedical research and imaging.

  14. Markets for reactor-produced non-fission radioisotopes

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1995-01-01

    Current market segments for reactor produced radioisotopes are developed and reported from a review of current literature. Specific radioisotopes studied in is report are the primarily selected from those with major medical or industrial markets, or those expected to have strongly emerging markets. Relative market sizes are indicated. Special emphasis is given to those radioisotopes that are best matched to production in high flux reactors such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. A general bibliography of medical and industrial radioisotope applications, trends, and historical notes is included

  15. Three new nondestructive evaluation tools based on high flux neutron sources

    International Nuclear Information System (INIS)

    Hubbard, C.R.; Raine, D.; Peascoe, R.; Wright, M.

    1997-01-01

    Nondestructive evaluation methods and systems based on specific attributes of neutron interactions with materials are being developed. The special attributes of neutrons are low attenuation in most engineering materials, strong interaction with low Z elements, and epithermal neutron absorption resonances. The three methods under development at ORNL include neutron based tomography and radiography; through thickness, nondestructive texture mapping; and internal, noninvasive temperature measurement. All three techniques require high flux sources such as the High Flux Isotope Reactor, a steady state source, or the Oak Ridge Electron Linear Accelerator, a pulsed neutron source. Neutrons are quite penetrating in most engineering materials and thus can be useful to detect internal flaws and features. Hydrogen atoms, such as in a hydrocarbon fuel, lubricant, or a metal hydride, are relatively opaque to neutron transmission and thus neutron based tomography/radiography is ideal to image their presence. Texture, the nonrandom orientation of crystalline grains within materials, can be mapped nondestructively using neutron diffraction methods. Epithermal neutron resonance absorption is being studied as a noncontacting temperature sensor. This paper highlights the underlying physics of the methods, progress in development, and the potential benefits for science and industry of the three facilities

  16. High flux transmutation of fission products and actinides

    International Nuclear Information System (INIS)

    Gerasimov, A.; Kiselev, G.; Myrtsymova, L.

    2001-01-01

    Long-lived fission products and minor actinides accumulated in spent nuclear fuel of power reactors comprise the major part of high level radwaste. Their incineration is important from the point of view of radwaste management. Transmutation of these nuclides by means of neutron irradiation can be performed either in conventional nuclear reactors, or in specialized transmutation reactors, or in ADS facilities with subcritical reactor and neutron source with application of proton accelerator. Different types of transmutation nuclear facilities can be used in order to insure optimal incineration conditions for radwaste. The choice of facility type for optimal transmutation should be based on the fundamental data in the physics of nuclide transformations. Transmutation of minor actinides leads to the increase of radiotoxicity during irradiation. It takes significant time compared to the lifetime of reactor facility to achieve equilibrium without effective transmutation. High flux nuclear facilities allow to minimize these draw-backs of conventional facilities with both thermal and fast neutron spectrum. They provide fast approach to equilibrium and low level of equilibrium mass and radiotoxicity of transmuted actinides. High flux facilities are advantageous also for transmutation of long-lived fission products as they provide short incineration time

  17. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Masashi, E-mail: Masashi.Shimada@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Calderoni, P. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Oda, T. [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo 113-8656 (Japan); Oya, Y. [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Sokolov, M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhang, K. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Cao, G. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Kolasinski, R. [Hydrogen and Metallurgical Science Department, Sandia National Laboratories, Livermore, CA 94551 (United States); Sharpe, J.P. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 x 10{sup 21} m{sup -2} s{sup -1}, ion fluence: 4 x 10{sup 25} m{sup -2}) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  18. Decision no. 2011-DC-0216 of the French nuclear safety authority from May 5, 2011, ordering the Laue Langevin Institute to proceed to a complementary safety evaluation of its basic nuclear facility (high flux reactor - INB no. 67) in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the Laue Langevin Institute, operator of the high flux research reactor (RHF) of Grenoble (France). (J.S.)

  19. Research reactor core conversion programmes, Department of Research and Isotopes, International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1985-01-01

    In order to put the problem of core conversion into perspective, statistical information on research reactors on a global scale is presented (from IAEA Research reactor Data Base). This paper describes the research reactor core conversion program of the Department of Research and Isotopes. Technical committee Meetings were held on the subject of research reactor core conversion since 1978, and results of these meetings are published in TECDOC-233, TECDOC-324, TECDOC-304. Additional publications are being prepared, several missions of experts have visited countries to discuss and help to plan core conversion programs; training courses and seminars were organised; IAEA has supported attendance of participants from developing countries to RERTR Meetings

  20. Considerations in the design of a high power medical isotope production reactor

    International Nuclear Information System (INIS)

    Ball, Russell M.; Nordyke, William H.; Brown, Roy

    2002-01-01

    For the low enriched aqueous homogeneous reactor to be economic in the production of medical isotopes, such as Mo-99 and Sr-89, the power level should be of the order of 100 kWth. This is double the earlier designs and this paper discusses the design changes which must be considered to meet this goal. The topics considered are: 1. Heat removal from the reactor solution; 2. Recombination of radiolytic gases; 3. Adequate radiation shielding; 4. Stability of reactor power with fluctuating reactivity; 5. Adequate cooling of the reflector; 6. Independent shutdown mechanisms; 7. Required volume of the reactor; 8. Economic implementation. (author)

  1. Optimization of neutron flux distribution in Isotope Production Reactor

    International Nuclear Information System (INIS)

    Valladares, G.L.

    1988-01-01

    In order to optimize the thermal neutrons flux distribution in a Radioisotope Production and Research Reactor, the influence of two reactor parameters was studied, namely the Vmod / Vcomb ratio and the core volume. The reactor core is built with uranium oxide pellets (UO 2 ) mounted in rod clusters, with an enrichment level of ∼3 %, similar to LIGHT WATER POWER REATOR (LWR) fuel elements. (author) [pt

  2. Monitoring the fast neutrons in a high flux: The case for 242Pu fission chambers

    International Nuclear Information System (INIS)

    Filliatre, P.; Jammes, C.; Oriol, L.; Geslot, B.; Vermeeren, L.

    2009-01-01

    Fission chambers are widely used for on-line monitoring of neutron fluxes in irradiation reactors. A selective measurement of a component of interest of the neutron flux is possible in principle thanks to a careful choice of the deposit material. However, measuring the fast component is challenging when the flux is high (up to 10 15 n/cm 2 /s) with a significant thermal component. The main problem is that the isotopic content of a material selected for its good response to fast neutrons evolves with irradiation, so that the material is more and more sensitive to thermal neutrons. Within the framework of the FNDS (Fast Neutron Detector System) project, we design tools that simulate the evolution of the isotopic composition and fission rate for several deposits under any given flux. In the case of a high flux with a significant thermal component, 242 Pu is shown after a comprehensive study of all possibilities to be the best choice for measuring the fast component, as long as its purity is sufficient. If an estimate of the thermal flux is independently available, one can correct the signal for that component. This suggests a system of two detectors, one of which being used for such a correction. It is of very high interest when the detectors must be operated up to a high neutron fluence. (authors)

  3. Monitoring the fast neutrons in a high flux: The case for {sup 242}Pu fission chambers

    Energy Technology Data Exchange (ETDEWEB)

    Filliatre, P.; Jammes, C.; Oriol, L.; Geslot, B. [Commissariat a l' Energie Atomique, DEN/SPEX/LDCI, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2009-07-01

    Fission chambers are widely used for on-line monitoring of neutron fluxes in irradiation reactors. A selective measurement of a component of interest of the neutron flux is possible in principle thanks to a careful choice of the deposit material. However, measuring the fast component is challenging when the flux is high (up to 10{sup 15} n/cm{sup 2}/s) with a significant thermal component. The main problem is that the isotopic content of a material selected for its good response to fast neutrons evolves with irradiation, so that the material is more and more sensitive to thermal neutrons. Within the framework of the FNDS (Fast Neutron Detector System) project, we design tools that simulate the evolution of the isotopic composition and fission rate for several deposits under any given flux. In the case of a high flux with a significant thermal component, {sup 242}Pu is shown after a comprehensive study of all possibilities to be the best choice for measuring the fast component, as long as its purity is sufficient. If an estimate of the thermal flux is independently available, one can correct the signal for that component. This suggests a system of two detectors, one of which being used for such a correction. It is of very high interest when the detectors must be operated up to a high neutron fluence. (authors)

  4. Characteristics of isotope-selective chemical reactor with gas-separating device

    International Nuclear Information System (INIS)

    Gorshunov, N.M.; Kalitin, S.A.; Laguntsov, N.I.; Neshchimenko, Yu.P.; Sulaberidze, G.A.

    1988-01-01

    A study was made on characteristics of separating stage, composed of isotope-selective chemical (or photochemical) reactor and membrane separating cascade (MSC), designated for separation of isotope-enriched products from lean reagents. MSC represents the counterflow cascade for separation of two-component mixtures. Calculations show that for the process of carton isotope separation the electric power expences for MSC operation are equal to 20 kWxh/g of CO 2 final product at 13 C isotope content in it equal to 75%. Application of the membrane gas-separating cascade at rather small electric power expenses enables to perform cascading of isotope separation in the course of nonequilibrium chemical reactions

  5. Neutron-antineutron transition search at HFIR reactor

    International Nuclear Information System (INIS)

    Kamyshkov, Yuri A.

    1997-01-01

    A new experiment to search for neutron-antineutron transitions was recently proposed for High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). In this paper the physics motivation of a new search, the scheme and the discovery potential of the proposed HFIR-based experiment are discussed

  6. Neutron-antineutron transition search at HFIR Reactor

    International Nuclear Information System (INIS)

    Kamyshkov, Y.A.

    1997-01-01

    A new experiment to search for neutron-antineutron transitions was recently proposed for High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). In this paper the physics motivation of a new search, the scheme and the discovery potential of the proposed HFIR-based experiment are discussed

  7. Control Rods in high-Flux Swimming-Pool Reactors; Les Barres de Controle dans les Piles Piscines a Haut Flux; Reguliruyushchie sterzhni dlya reaktorov bassejnovogo tipa s vysokoj plotnost'yu nejtronnogo potoka; Las Barras de Control en los Reactores Tipo Piscina de Flujo Elevado

    Energy Technology Data Exchange (ETDEWEB)

    Ageroni, P.; Blum, P.; Denielou, G.; Denis, P.; Meunier, C. [Centre d' Etudes Nucleaires de Grenoble (France)

    1964-06-15

    Control-rod problems in open swimming-pool high-flux and high specific power research reactors are examined in the light of the calibrations and experiments made during the construction of the SILOE reactor. Control-rod operating experience for this reactor at 13 MW is also described. 2. The following are considered in turn: (a) Reactivity balances and reactivity values for the different types of rod tested (cadmium, B4C , rare earths and combinations of these different elements). (b) Flux peaks set up in the core by the presence of the control rods, their incidence on the specific power, the fast fluxes that can be obtained and means of increasing them. (c ) The technological problems involved in constructing the rods. (d) In-pile cooling, vibration, deformation and scram-time problems. 3. In conclusion, current studies on control rods in open swimming-pool reactors operating in the 10 - 30 1W range are briefly summarized. (author) [French] 1. Les problemes poses par les barres de controle dans les reacteurs de recherche de type piscine ouverte a haute puissance specifique et haut flux sont examines a la lumiere des calculs et des experiences effectues pendant la construction du reacteur SILOE. Les resultats de l'experience de fonctionnement a 13 MW de ce reacteur sont egalement presentes en ce qui concerne les barres de controle. 2. On examine successivement: a) les bilans de reactivite et les valeurs en reactivite des differents types de barres qui ont ete essayes (Cadmium, B 4C , terres rares et combinaisons de ces differents elements). b) Les pics de flux crees dans le coeur par la presence de barres de controle, leur incidence sur la puissance specifique, et les flux rapides que l'on peut obtenir ainsi que les moyens correspondants d'accroitre ces flux. c) Les problemes technologiques poses par la construction des barres. d) Les problemes de refrigeration, de vibration, de deformation, de temps de chute en pile. 3. En conclusion on decrit sommairement les

  8. Development of a simplified methodology for the isotopic determination of fuel spent in Light Water Reactors

    International Nuclear Information System (INIS)

    Hernandez N, H.; Francois L, J.L.

    2005-01-01

    The present work presents a simplified methodology to quantify the isotopic content of the spent fuel of light water reactors; their application is it specific to the Laguna Verde Nucleo electric Central by means of a balance cycle of 18 months. The methodology is divided in two parts: the first one consists on the development of a model of a simplified cell, for the isotopic quantification of the irradiated fuel. With this model the burnt one is simulated 48,000 MWD/TU of the fuel in the core of the reactor, taking like base one fuel assemble type 10x10 and using a two-dimensional simulator for a fuel cell of a light water reactor (CPM-3). The second part of the methodology is based on the creation from an isotopic decay model through an algorithm in C++ (decay) to evaluate the amount, by decay of the radionuclides, after having been irradiated the fuel until the time in which the reprocessing is made. Finally the method used for the quantification of the kilograms of uranium and obtained plutonium of a normalized quantity (1000 kg) of fuel irradiated in a reactor is presented. These results will allow later on to make analysis of the final disposition of the irradiated fuel. (Author)

  9. Importance of resonance parameters of fertile nuclei and of 239Pu isotope for fast power reactors

    International Nuclear Information System (INIS)

    Barre, J.Y.; Khairallah, A.

    1975-01-01

    The importance of resonance parameters of fertile nuclei and of 239 Pu isotope for fast power reactors will be restricted, in this presentation, to mixed oxide-uranium-plutonium fuelled sodium-cooled and uranium-oxide-sodium reflected fast reactors. The power range lies between 200 and 2000 MWe. Among the topics of this specialist meeting, the isotopes to be considered are, primarly 239 Pu then 238 U and 240 Pu. Resonance parameters are mainly used in fast power reactor calculations through the well-known concept of self shielding factors. After a short description of the determination and the use of these self-shielding factors, their sensitivities to resonance parameters are characterized from some specific examples: those sensitivities are small. Then, the main design parameters sensitive to the amplitude of self-shielding factors are considered: critical enrichment, global breeding gain. The relative importance of isotope, reaction rate and energy range are mentionned. In a third part, the Doppler effect, sensitive to the temperature variation of self-shielding factors, is considered in the same way. Finally, it is concluded that the present knowledge of resonance parameters for 238 U, 239 Pu and 240 Pu is sufficient for fast power reactors from a designer point of view [fr

  10. Reactor, radioactive isotopes and nuclear energy: their avatars in Venezuela

    International Nuclear Information System (INIS)

    Roche, M.

    1981-01-01

    A brief history of nuclear affairs in Venezuela, since the decision to bring a research reactor (3MW) to Venezuela (1954) to current situation, is presented. Since the establishment of the National Council for Nuclear Affairs (CONAN) and then of the National Council for the Development of Nuclear Industry (CONADIN), steps are being taken to train nuclear engineers, since most studies thus far indicate the last few years of the Century as the time when nuclear energy will have to supplement other sources

  11. Heavy water isotopic rectification in the ''ORPHEE'' reactor. SACLAY studies Centre

    International Nuclear Information System (INIS)

    Lejeune, P.; Breant, P.

    1993-01-01

    ORPHEE reactor supplies neutron beams, which are got back in a heavy water reflector. The neutron beams intensity depends on the reflector quality which is determined by the isotopic content of the heavy water. The deuterium submitted to core irradiation changes in radioactive tritium which must be eliminated largely for reasons of safety. The column must keep the heavy water isotopic content of the reflector to a value higher than 99.8% by eliminating light water by fractional distillation or rectification. This column is also used for the tritium elimination of heavy water. 13 figs

  12. Experimental spectrum of reactor antineutrinos and spectra of main fissile isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sinev, V. V., E-mail: vsinev@pcbai10.inr.ruhep.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-05-15

    Within the period between the years 1988 and 1990, the spectrum of positrons from the inverse-beta-decay reaction on a proton was measured at the Rovno atomic power plant in the course of experiments conducted there. The measured spectrum has the vastest statistics in relation to other neutrino experiments at nuclear reactors and the lowest threshold for positron detection. An experimental reactor-antineutrino spectrum was obtained on the basis of this positron spectrum and was recommended as a reference spectrum. The spectra of individual fissile isotopes were singled out from the measured antineutrino spectrum. These spectra can be used to analyze neutrino experiments performed at nuclear reactors for various compositions of the fuel in the reactor core.

  13. The development of a small inherently safe homogeneous reactor for the production of medical isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, G.E.; Bonin, H.W., E-mail: george.carlin@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada)

    2013-07-01

    The use of radioisotopes for various procedures in the health care industry has become one of the most important practices in medicine. New interest has been found in the use of liquid fueled nuclear reactors to produce these isotopes due to the ease of fuel processing and ability to efficiently use LEU as the fuel source. A version of this reactor is being developed at the Royal Military College of Canada to act as a successor to the SLOWPOKE-2 platform. The thermal hydraulic and transient characteristics of a 20 kWt version are being studied to verify inherent safety abilities. (author)

  14. Application of mass-predictions to isotope-abundances in breeder-reactor cores

    CERN Document Server

    Kirchner, G

    1981-01-01

    The decay-heat and isotope composition of breeder reactor-cores is calculated at normal shut-down, and a core disintegration event. Using the ORIGEN-code, the influence of the most neutron-rich fission-yield nuclei is studied. Their abundances depend on the assumption about the nuclear data (mass and half-lives). The total decay-heat is not changed from any technical viewpoint. (15 refs).

  15. Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor.

    Science.gov (United States)

    Harris, Eliza; Joss, Adriano; Emmenegger, Lukas; Kipf, Marco; Wolf, Benjamin; Mohn, Joachim; Wunderlin, Pascal

    2015-10-15

    Nitrous oxide (N2O) production pathways in a single stage, continuously fed partial nitritation-anammox reactor were investigated using online isotopic analysis of offgas N2O with quantum cascade laser absorption spectroscopy (QCLAS). N2O emissions increased when reactor operating conditions were not optimal, for example, high dissolved oxygen concentration. SP measurements indicated that the increase in N2O was due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor. The results of this study confirm that process control via online N2O monitoring is an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. Under normal operating conditions, the N2O isotopic site preference (SP) was much higher than expected - up to 40‰ - which could not be explained within the current understanding of N2O production pathways. Various targeted experiments were conducted to investigate the characteristics of N2O formation in the reactor. The high SP measurements during both normal operating and experimental conditions could potentially be explained by a number of hypotheses: i) unexpectedly strong heterotrophic N2O reduction, ii) unknown inorganic or anammox-associated N2O production pathway, iii) previous underestimation of SP fractionation during N2O production from NH2OH, or strong variations in SP from this pathway depending on reactor conditions. The second hypothesis - an unknown or incompletely characterised production pathway - was most consistent with results, however the other possibilities cannot be discounted. Further experiments are needed to distinguish between these hypotheses and fully resolve N2O production pathways in PN-anammox systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Neutronic and thermal-hydraulic studies of aqueous homogeneous reactor for medical isotopes production

    International Nuclear Information System (INIS)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez; Universidade Federal de Pernambuco

    2017-01-01

    The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly "9"9Mo. Compare to multipurpose research reactors, an AHR dedicated for "9"9Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)

  17. Neutronic and thermal-hydraulic studies of aqueous homogeneous reactor for medical isotopes production

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Lira, Carlos A. Brayner de Oliveira; Garcia, Lorena P. Rodríguez, E-mail: milianperez89@gmail.com, E-mail: dmilian@instec.cu, E-mail: lorenapilar1109@gmail.com, E-mail: cabol@ufpe.br [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana (Cuba); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2017-11-01

    The use of Aqueous Homogenous Reactors (AHR) is one of the most promissory alternatives to produce medical isotopes, mainly {sup 99}Mo. Compare to multipurpose research reactors, an AHR dedicated for {sup 99}Mo production has advantages because of their low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing, and purification characteristics. This article presents the current state of research in our working group on this topic. Are presented and discussed the group validation efforts with benchmarking exercises that include neutronic and thermal-hydraulic results of two solution reactors, the SUPO and ARGUS reactors. Neutronic and thermal-hydraulic results of 75 kWth AHR based on the ARGUS reactor LEU configuration are presented. The neutronic studies included the determination of parameters such as reflector thickness, critical height, medical isotopes production and others. Thermal-hydraulics studies were focused on demonstrating that sufficient cooling capacity exists to prevent fuel overheating. In addition, the effects of some calculation parameters on the computational modeling of temperature, velocity and gas volume fraction during steady-state operation of an AHR are discussed. The neutronic and thermal-hydraulics studies have been performed with the MCNPX version 2.6e computational code and the version 14 of ANSYS CFX respectively. Our group studies and the results obtained contribute to demonstrate the feasibility of using AHR for the production of medical isotopes, however additional studies are still necessary to confirm these results and contribute to development and demonstration of their technical, safety, and economic viability. (author)

  18. Mixing rules for and effects of other hydrogen isotopes and of isotopic swamping on tritium recovery and loss to biosphere from fusion reactors

    International Nuclear Information System (INIS)

    Pendergrass, J.H.

    1978-01-01

    Efficient recovery of bred and unburnt tritium from fusion reactors, and control of its migration within reactors and of its escape into the biosphere are essential for self-sufficient fuel cycles and for public, plant personnel, and environmental protection. Tritium in fusion reactors will be mixed with unburnt deuterium and protium introduced by (n,p) reactions and diffusion into coolant loops from steam cycles. Rational design for tritium recovery and escape prevention must acknowledge this fact. Consequences of isotopic admixture are explored, mixing rules for projected fusion reactor dilute-solution conditions are developed, and a rule of thumb regarding their effects on tritium recovery methods is formulated

  19. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    Auterinen, I.; Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material Fluental TM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  20. Release of hydrogen isotopes from carbon based fusion reactor materials

    International Nuclear Information System (INIS)

    Vainonen-Ahlgren, E.

    2000-01-01

    The purpose of this study is to understand the annealing behavior of hydrogen isotopes in carbon based materials. Also, the density of the material and structural changes after thermal treatment and ion irradiation are examined. The study of hydrogen diffusion in diamondlike carbon films revealed an activation energy of 2.0 eV, while the deuterium diffusion, due to better measuring sensitivity, is found to be concentration dependent with the effective diffusion coefficient becoming smaller with decreasing deuterium concentration. To explain the experimentally observed profiles, a model according to which atomic deuterium diffuses and deuterium in clusters is immobile is developed. The concentration of immobile D was assumed to be an analytical function of the total D concentration. To describe the annealing behavior of D incorporated in diamondlike carbon films during the deposition process, a model taking into account diffusion of free D and thermal detrapping and trapping of D was developed. The difference in the analysis explains the disagreement of activation energy (1.5 ± 0.2 eV) with the value of 2,9± 0.1 eV obtained for D implanted samples earlier. The same model was applied to describe the experimental profiles in Si doped diamondlike carbon films. Si affects the retention of D in diamondlike carbon films. The amount of D depends on Si content in the co-deposited but not implanted samples. Besides, Si incorporation into carbon coating decreases to some extent the graphitization of the films and leads to formation of a structure which is stable under thermal treatment and ion irradiation. Hydrogen migration in the hydrogen and methane co-deposited films was also studied. In samples produced in methane atmosphere and annealed at different temperatures, the hydrogen concentration level decreases in the bulk, with more pronounced release at the surface region. In the case of coatings deposited by a methane ion beam, the H level also decreases with increasing

  1. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  2. The procedure and results of calculations of the equilibrium isotopic composition of a demonstration subcritical molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nevinitsa, V. A., E-mail: Neviniza-VA@nrcki.ru; Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N. [National Research Centre Kurchatov Institute (Russian Federation); Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu., E-mail: yuri.titarenko@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

    2015-12-15

    A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing {sup 233}U from {sup 232}Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.

  3. Data book of the isotopic composition of spent fuel in light water reactors

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1994-03-01

    In the framework of the activity of the working group on Evaluation of Nuclide Generation and Depletion in the Japanese Nuclear Data Committee, we summarized the assay data of the isotopic composition of LWR spent fuels in order to verify the accuracy of the burnup calculation codes. The report contains the data collected from the 13 light water reactors (LWRs) including the 9 LWRs (5 PWRs and 4 BWRs) in Europe and USA, the 4 LWRs (2 PWRs and 2 BWRs) in Japan. The collected data were sorted into the irradiation history of the fuel samples, the composition of the fuel assemblies, the sampling position and the isotopic composition of the fuel samples. (author)

  4. Fuel requirements for isotope production and reasearch reactors: Possible alternative ways of meeting non-proliferation objectives

    International Nuclear Information System (INIS)

    There is a continuing need for access to medium-to-high flux research reactors of intermediate power level (5-50 MW) for the production of industrial and medical radioisotopes, for the provision of neutron beams and for materials research. The construction of further reactors of this type is likely. To obtain the required flux levels in adequate volumes and at the lowest capital cost, past practice has been to design a small-core reactor around a fuel element concept using fully enriched uranium, that is, uranium enriched to 80% U-235 or greater. In recent years, however, it has been recognised that the use of fully enriched uranium in research reactors could give rise to significant risks of nuclear weapons proliferation. Accordingly, there would be advantage if research reactors could be operated on low enriched fuel, that is, enrichment levels of 20% or less. It is the purpose of this paper to explore the implications for proliferation of the enrichment level of research reactor fuel and to draw attention to possible options for reducing proliferation concerns which warrant further study. It does not, however, consider research reactors using very low enriched or natural uranium fuel. The paper is offered to stimulate discussion of the issues and the views expressed do not necessarily represent any formal Australian position

  5. Use of LEU in the aqueous homogeneous medical isotope production reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R.M. [Babock & Wilcox, Lynchburg, VA (United States)

    1997-08-01

    The Medical Isotope Production Reactor (MIPR) is an aqueous solution of uranyl nitrate in water, contained in an aluminum cylinder immersed in a large pool of water which can provide both shielding and a medium for heat exchange. The control rods are inserted at the top through re-entrant thimbles. Provision is made to remove radiolytic gases and recombine emitted hydrogen and oxygen. Small quantities of the solution can be continuously extracted and replaced after passing through selective ion exchange columns, which are used to extract the desired products (fission products), e.g. molybdenum-99. This reactor type is known for its large negative temperature coefficient, the small amount of fuel required for criticality, and the ease of control. Calculation using TWODANT show that a 20% U-235 enriched system, water reflected can be critical with 73 liters of solution.

  6. Use of LEU in the aqueous homogeneous medical isotope production reactor

    International Nuclear Information System (INIS)

    Ball, R.M.

    1997-01-01

    The Medical Isotope Production Reactor (MIPR) is an aqueous solution of uranyl nitrate in water, contained in an aluminum cylinder immersed in a large pool of water which can provide both shielding and a medium for heat exchange. The control rods are inserted at the top through re-entrant thimbles. Provision is made to remove radiolytic gases and recombine emitted hydrogen and oxygen. Small quantities of the solution can be continuously extracted and replaced after passing through selective ion exchange columns, which are used to extract the desired products (fission products), e.g. molybdenum-99. This reactor type is known for its large negative temperature coefficient, the small amount of fuel required for criticality, and the ease of control. Calculation using TWODANT show that a 20% U-235 enriched system, water reflected can be critical with 73 liters of solution

  7. Balancing the risks: the NRU reactor and the isotope crisis in Canada

    International Nuclear Information System (INIS)

    Morrison, B.; Meneley, D.

    2008-01-01

    The extended shutdown of the NRU reactor at Chalk River at the end of 2007 caused a critical shortage of medical radioisotopes in Canada and the world, led to a unique meeting of Canada's Parliament to pass emergency legislation, and cost the President of the Canadian Nuclear Safety Commission her job. This paper, based on the public record, reviews these events from the perspective of the balance of risk between the safety of the NRU reactor and the impact of a shortage of isotopes. This leads to important questions about the mandate, independence and flexibility of the nuclear regulator, relations between the regulator, the government, and the licensee, and the government's overall management of risks. We argue that the government approaches individual risks in isolation and needs a mechanism to deal with multiple risks. (author)

  8. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

    International Nuclear Information System (INIS)

    Nagy, B.; Rigali, M.J.; Davis, D.W.; Parnell, J.

    1991-01-01

    Some of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the re-solidified, graphitic bituminous organics at Oklo thus enhanced radionuclide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lanthanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pre-treated nuclear waste warrants further investigation. (author)

  9. Estimated long lived isotope activities in ET-RR-1 reactor structural materials for decommissioning study

    International Nuclear Information System (INIS)

    Ashoub, N.; Saleh, H.

    1995-01-01

    The first Egyptian research reactor, ET-RR-1 is tank type with light water as a moderator, coolant and reflector. Its nominal power is 2MWt and the average thermal neutron flux is 10 13 n/cm 2 sec -1 . Its criticality was on the fall of 1961. The reactor went through several modifications and updating and is still utilized for experimental research. A plan for decommissioning of ET-RR-1 reactor should include estimation of radioactivity in structural materials. The inventory will help in assessing the radiological consequences of decommissioning. This paper presents a conservative calculation to estimate the activity of the long lived isotopes which can be produced by neutron activation. The materials which are presented in significant quantities in the reactor structural materials are aluminum, cast iron, graphite, ordinary and iron shot concrete. The radioactivity of each component is dependent not only upon the major elements, but also on the concentration of the trace elements. The main radioactive inventory are expected to be from 60 Co and 55 Fe which are presented in aluminium as trace elements and in large quantities in other construction materials. (author)

  10. Determination of Light Water Reactor Fuel Burnup with the Isotope Ratio Method

    International Nuclear Information System (INIS)

    Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

    2007-01-01

    For the current project to demonstrate that isotope ratio measurements can be extended to zirconium alloys used in LWR fuel assemblies we report new analyses on irradiated samples obtained from a reactor. Zirconium alloys are used for structural elements of fuel assemblies and for the fuel element cladding. This report covers new measurements done on irradiated and unirradiated zirconium alloys, Unirradiated zircaloy samples serve as reference samples and indicate starting values or natural values for the Ti isotope ratio measured. New measurements of irradiated samples include results for 3 samples provided by AREVA. New results indicate: 1. Titanium isotope ratios were measured again in unirradiated samples to obtain reference or starting values at the same time irradiated samples were analyzed. In particular, 49Ti/48Ti ratios were indistinguishably close to values determined several months earlier and to expected natural values. 2. 49Ti/48Ti ratios were measured in 3 irradiated samples thus far, and demonstrate marked departures from natural or initial ratios, well beyond analytical uncertainty, and the ratios vary with reported fluence values. The irradiated samples appear to have significant surface contamination or radiation damage which required more time for SIMS analyses. 3. Other activated impurity elements still limit the sample size for SIMS analysis of irradiated samples. The sub-samples chosen for SIMS analysis, although smaller than optimal, were still analyzed successfully without violating the conditions of the applicable Radiological Work Permit

  11. The new high flux neutron source FRM-2 in Munich

    International Nuclear Information System (INIS)

    Roegler, H.J.; Wierheim, G.

    2002-01-01

    Quite some years ago in 1974 to be exact, the first consideration on a new neutron source started at the technical university of Munich (Germany). 27 years later the new high flux neutron source (FRM-2) was read for hot operation, now delayed by a refused approval for its third partial license by the federal government of Germany despite a wide support from the scientific community. FRM-2 is a tank-type research reactor cooled by water, moderated by heavy water and whose thermal power was limited to 20 MW maximum. The extreme compact core together with the applied inverse flux principle led to a neutron flux design value of 8.10 18 n/m 2 .s at the reflector peak. 10 beam tubes will allow an optimized use of the high neutron flux. A hot neutron source with graphite at about 2200 Celsius degrees and a cold neutron source with liquid D 2 at about 25 K will provide shifted energy spectra. The utilization of FRM-2 is many-fold: neutronography and tomography, medical irradiation, radio-nuclide production, doping of pure silicon, neutron activation analysis. (A.C.)

  12. Upgrade of the compact neutron spectrometer for high flux environments

    Science.gov (United States)

    Osipenko, M.; Bellucci, A.; Ceriale, V.; Corsini, D.; Gariano, G.; Gatti, F.; Girolami, M.; Minutoli, S.; Panza, F.; Pillon, M.; Ripani, M.; Trucchi, D. M.

    2018-03-01

    In this paper new version of the 6Li-based neutron spectrometer for high flux environments is described. The new spectrometer was built with commercial single crystal Chemical Vapour Deposition diamonds of electronic grade. These crystals feature better charge collection as well as higher radiation hardness. New metal contacts approaching ohmic conditions were deposited on the diamonds suppressing build-up of space charge observed in the previous prototypes. New passive preamplification of the signal at detector side was implemented to improve its resolution. This preamplification is based on the RF transformer not sensitive to high neutron flux. The compact mechanical design allowed to reduce detector size to a tube of 1 cm diameter and 13 cm long. The spectrometer was tested in the thermal column of TRIGA reactor and at the DD neutron generator. The test results indicate an energy resolution of 300 keV (FWHM), reduced to 72 keV (RMS) excluding energy loss, and coincidence timing resolution of 160 ps (FWHM). The measured data are in agreement with Geant4 simulations except for larger energy loss tail presumably related to imperfections of metal contacts and glue expansion.

  13. Contributions of each isotope in structural material on radiation damage in a hybrid reactor

    International Nuclear Information System (INIS)

    Günay, Mehtap

    2016-01-01

    In this study, the fluids were used in the liquid first-wall, blanket and shield zones of the designed hybrid reactor system. In this study, salt-heavy metal mixtures consisting of 93–85% Li_2_0Sn_8_0 + 5% SFG-PuO_2 and 2-10% UO_2, 93–85% Li_2_0Sn_8_0 + 5% SFG-PuO_2 and 2-10% NpO_2, and 93–85% Li_2_0Sn_8_0 + 5% SFG-PuO_2 and 2-10% UCO were used as fluids. In this study, the effect on the radiation damage of spent fuel-grade (SFG)-PuO_2, UO_2, NpO_2 and UCO contents was investigated in the structural material of a designed fusion–fission hybrid reactor system. In the designed hybrid reactor system were investigated the effect on the radiation damage of the selected fluid according to each isotopes of structural material in the structural material for 30 full power years (FPYs). Three-dimensional analyses were performed using the most recent MCNPX-2.7.0 Monte Carlo radiation transport code and the ENDF/B-VII.0 nuclear data library

  14. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    International Nuclear Information System (INIS)

    Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Ha, Yeong Keong; Song, Kyu Seok

    2015-01-01

    The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235 U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233 U, 242 Pu, 150 Nd, and 133 Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code

  15. Modelling of infrared multiphoton absorption and dissociation for design of reactors for isotope separation by lasers

    International Nuclear Information System (INIS)

    Takeuchi, Kazuo; Nakane, Ryohei; Inoue, Cihiro

    1981-01-01

    A series of experiments were performed on infrared laser beam absorption (multiphoton absorption) and subsequent dissociation (multiphoton dissociation) of CF 3 Cl to propose models for the design of reactors for isotope separation by lasers. A parallel beam geometry was utilized in batch irradiation experiments to make direct compilation of lumped-parameter data possible. Multiphoton absorption is found to be expressed by a power-law extension of the law of Lambert and by an addition of a new term for buffer gas effect to the law of Beer. For reaction analysis, a method to evaluate the effect of incomplete mixing on apparent reaction rates is first presented. Secondly, multiphoton dissociation of Cf 3 Cl is found to occur in pseudo-first order fashion and the specific reaction rates for different beam fluence are shown to be correlated to the absorbed energy. (author)

  16. Study of isotopic exchange reactors (1961); Etude des reacteurs d'echange isotopique (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Grandcollot, P; Dirian, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    A study is made of the general case of the theory of first-order isotopic chemical exchange between a gaseous and a liquid phase in a reactor, starting from fundamental reaction kinetics data, and without making any limiting hypothesis concerning the value of the separation factor. The cases of counter-current reactors and of co-current reactors are considered successively. The general deuterium conservation equation requires the definition of the quotient of the reactor; the performances of this reactor are characterised by its overall efficiency. The idea of the ratio is introduced because it represents a convenient intermediary in the calculations. The search for an additive value for reactors in series leads logically to the defining of an exchange capacity, and a total efficiency, or number of theoretical reactors. This method of expressing the performances of a reactor is more general than the efficiency due to Murphee which only has a physical significance in the particular case of homogeneous liquid reactors. The relationships between these various quantities are established, and the representation due to Mc Cabe and Thiele is generalized. The reactor performances are linked to the first - order reaction kinetics by the transfer number. The relationships are given for a certain number of concrete cases. Finally the application of these calculations is given, together with the approximations necessary in the case where, because of the presence of several components in each phase, the exchange reaction no longer obeys a single kinetic law. (authors) [French] On examine dans le cas general la theorie d'un reacteur quelconque pour l'echange chimique isotopique du premier ordre entre une phase gazeuse et une phase liquide, a partir des donnees fondamentales sur la cinetique de la reaction, sans faire aucune hypothese limitative sur le cas des reacteurs a contre ourant, puis celui des reacteurs a co-courant. L'equation generale de conservation du deuterium

  17. Computer analyses for the design, operation and safety of new isotope production reactors: A technology status review

    International Nuclear Information System (INIS)

    Wulff, W.

    1990-01-01

    A review is presented on the currently available technologies for nuclear reactor analyses by computer. The important distinction is made between traditional computer calculation and advanced computer simulation. Simulation needs are defined to support the design, operation, maintenance and safety of isotope production reactors. Existing methods of computer analyses are categorized in accordance with the type of computer involved in their execution: micro, mini, mainframe and supercomputers. Both general and special-purpose computers are discussed. Major computer codes are described, with regard for their use in analyzing isotope production reactors. It has been determined in this review that conventional systems codes (TRAC, RELAP5, RETRAN, etc.) cannot meet four essential conditions for viable reactor simulation: simulation fidelity, on-line interactive operation with convenient graphics, high simulation speed, and at low cost. These conditions can be met by special-purpose computers (such as the AD100 of ADI), which are specifically designed for high-speed simulation of complex systems. The greatest shortcoming of existing systems codes (TRAC, RELAP5) is their mismatch between very high computational efforts and low simulation fidelity. The drift flux formulation (HIPA) is the viable alternative to the complicated two-fluid model. No existing computer code has the capability of accommodating all important processes in the core geometry of isotope production reactors. Experiments are needed (heat transfer measurements) to provide necessary correlations. It is important for the nuclear community, both in government, industry and universities, to begin to take advantage of modern simulation technologies and equipment. 41 refs

  18. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T [ORNL

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  19. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    Science.gov (United States)

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H 13 CO 3 - and H 12 CO 3 - as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H 13 CO 3 - , demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the 13 C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor (HFIR) using RELAP5 and TEMPEST: Part 2, Interpretation and validation of results

    International Nuclear Information System (INIS)

    Ruggles, A.E.; Morris, D.G.

    1989-01-01

    The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are used to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab

  1. Experimental observation and investigation of reactor Cs-137 isotope deactivation in biological cells

    International Nuclear Information System (INIS)

    Vysotskii, V.I.; Tashyrev, A.B.; Kornilova, A.A.

    2007-01-01

    Complete text of publication follows. The problem of natural accelerated deactivation of radioactive waste (including deactivation in environmental) is studied. In the work the process of direct controlled deactivation of water mixture of selected different longlived radioactive isotopes in growing microbiological cultures has been studied. The process was connected with transmutation of long-lived active nuclei to non-radioactive isotopes during growth and metabolism of special microbiological MCT ('microbial catalyst-transmutator'). The MCT is the special granules that include: concentrated biomass of metabolically active microorganisms, sources of carbon and energy, phosphorus, nitrogen, etc., and gluing substances that keep all components in the form of granules stable in water solutions for a long period of time at any external conditions. The base of the MCT is microbe syntrophin associations of thousands different microorganism kinds that are in the state of complete symbiosis. These microorganisms appertain to different physiological groups that represent practically the whole variety of the microbe metabolism and relevantly all kinds of microbe accumulation mechanisms. The state of complete symbiosis of the syntrophin associations results on the possibility of maximal adaptation of the microorganisms' association to any external conditions change. The mechanism of nuclear transmutation in growing biological system is described in details in the book. The research has been carried out on the basis of the same distilled water that contained different long-lived reactor isotopes (e.g., Eu 154 , Eu 155 , Cs 137 , Am 241 ). In our experiments 8 identical closed glass flasks with 10 ml of the same active water in each were used. The 'microbial catalyst-transmutator' was placed in 7 glass flasks. In six different flasks different pure K, Ca, Mg, Na, Fe and P salts as single admixture were added to the active water. These chemical elements are vitally necessary

  2. Safety assessment of Department of Energy nuclear reactors

    International Nuclear Information System (INIS)

    1981-03-01

    One of the first tasks of the NFPQT Committee was to determine which DOE reactors would be assessed. The Committee determined that in view of the limited time available to conduct the assessment, 13 DOE reactors were of such size (physical, power or fission product inventory) to warrant review. This determination was approved by the Under Secretary. A decision was also made in the cases of three weapons material production reactors, C, K and P, to concentrate on the K reactor only, since all three are of the same basic design, have the same operating features, are all at the same site, and are all operated by the same contractor. The assessment was accomplished in the following ways: reviewing the results of assessments conducted by the DOE organizations with reactor safety responsibilities, which were undertaken in compliance with the request of the various program directors; reviewing selected documents that were requested by the Committee and assembled at DOE Headquarters; interviewing DOE Headquarters and Field Office personnel; and conducting on-site reviews of four reactors located at four different sites. The four reactors for on-site reviews were: Advanced Test Reactor (ATR); K Production Reactor; High Flux Beam Reactor (HFBR); and High Flux Isotope Reactor (HFIR). Specific findings and recommendations from the assessment are presented

  3. Evaluation of selected ex-reactor accidents related to the tritium and medical isotope production mission at the FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Himes, D.A.

    1997-11-17

    The Fast Flux Test Facility (FFTF) has been proposed as a production facility for tritium and medical isotopes. A range of postulated accidents related to ex-reactor irradiated fuel and target handling were identified and evaluated using new source terms for the higher fuel enrichment and for the tritium and medical isotope targets. In addition, two in-containment sodium spill accidents were re-evaluated to estimate effects of increased fuel enrichment and the presence of the Rapid Retrieval System. Radiological and toxicological consequences of the analyzed accidents were found to be well within applicable risk guidelines.

  4. Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis.

    Science.gov (United States)

    Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann

    2017-05-01

    In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.

  5. Problems in producing nuclear reactor for medical isotopes and the Global Crisis of molybdenum supply; Problemas en la produccion en reactores nucleares de isotopos con fines medicos y la crisis mundial de suministro de molibdeno ({sup 9}9Mo)

    Energy Technology Data Exchange (ETDEWEB)

    Zubiarrain, A.

    2011-07-01

    Nuclear medicine uses drugs that incorporate a radioactive isotope radiopharmaceuticals. Every year are performed, worldwide, 35 million nuclear medicine procedures, of which 80% are done with radiopharmaceuticals containing the isotope, molybdenum-99, produced in nuclear reactors. In recent years, there have been several supply crisis of molybdenum-99, which have hampered diagnostic procedure with technitium-99m. (Author)

  6. High-flux solar concentration with imaging designs

    Energy Technology Data Exchange (ETDEWEB)

    Feuermann, D. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Gordon, J.M. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Ben-Gurion University of the Negev (Israel). Dept. of Mechanical Engineering; Ries, H. [Ries and Partners, Munich (Germany)

    1999-02-01

    Most large solar concentrators designed for high flux concentration at high collection efficiency are based on imaging primary mirrors and nonimaging secondary concentrators. In this paper, we offer an alternative purely imaging two-stage solar concentrator that can attain high flux concentration at high collection efficiency. Possible practical virtues include: (1) an inherent large gap between absorber and secondary mirror; (2) a restricted angular range on the absorber; and (3) an upward-facing receiver where collected energy can be extracted via the (shaded) apex of the parabola. We use efficiency-concentration plots to characterize the solar concentrators considered, and to evaluate the potential improvements with secondary concentrators. (author)

  7. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    International Nuclear Information System (INIS)

    Rosenthal, Murray Wilford

    2009-01-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  8. Almost twenty years' search of transuranium isotopes in effluents discharged to air from nuclear power plants with VVER reactors.

    Science.gov (United States)

    Hölgye, Z; Filgas, R

    2006-04-01

    Airborne effluents of 5 stacks (stacks 1-5) of three nuclear power plants, with 9 pressurized water reactors VVER of 4,520 MWe total power, were searched for transuranium isotopes in different time periods. The search started in 1985. The subject of this work is a presentation of discharge data for the period of 1998-2003 and a final evaluation. It was found that 238Pu, 239,240Pu, 241Am, 242Cm, and 244Cm can be present in airborne effluents. Transuranium isotope contents in most of the quarterly effluent samples from stacks 2, 4 and 5 were not measurable. Transuranium isotopes were present in the effluents from stack l during all 9 years of the study and from stack 3 since the 3rd quarter of 1996 as a result of a defect in the fuel cladding. A relatively high increase of transuranium isotopes in effluents from stack 3 occurred in the 3rd quarter of 1999, and a smaller increase occurred in the 3rd quarter of 2003. In each instance 242Cm prevailed in the transuranium isotope mixtures. 238Pu/239,240Pu, 241Am/239,240Pu, 242Cm/239,240Pu, and 244Cm/239,240Pu ratios in fuel for different burn-up were calculated, and comparison of these ratios in fuel and effluents was performed.

  9. Overview of results of the first phase of validation activities for the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Karlsruhe (Germany); Chen Yuming; Dolensky, Bernhard; Freund, Jana; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Validation of computational fluid dynamics (CFD) modeling approach for application in the IFMIF High Flux Test Module. Black-Right-Pointing-Pointer Fabrication of prototypes of the irradiation capsules of the IFMIF High Flux Test Module. - Abstract: The international fusion materials irradiation facility (IFMIF) is projected to create an experimentally validated database of material properties relevant for fusion reactor designs. The IFMIF High Flux Test Module is the dedicated experiment to irradiate alloys in the temperature range 250-550 Degree-Sign C and up to 50 displacements per atom per irradiation cycle. The High Flux Test Module is developed to maximize the specimen payload in the restricted irradiation volume, and to minimize the temperature spread within each specimen bundle. Low pressure helium mini-channel cooling is used to offer a high integration density. Due to the demanding thermo-hydraulic and mechanical conditions, the engineering design process (involving numerical neutronic, thermo-hydraulic and mechanical analyses) is supported by extensive experimental validation activities. This paper reports on the prototype manufacturing, thermo-hydraulic modeling experiments and component tests, as well as on mechanical testing. For the testing of the 1:1 prototype of the High Flux Test Module, a dedicated test facility, the Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) has been taken into service.

  10. Overview of results of the first phase of validation activities for the IFMIF High Flux Test Module

    International Nuclear Information System (INIS)

    Arbeiter, Frederik; Chen Yuming; Dolensky, Bernhard; Freund, Jana; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg

    2012-01-01

    Highlights: ► Validation of computational fluid dynamics (CFD) modeling approach for application in the IFMIF High Flux Test Module. ► Fabrication of prototypes of the irradiation capsules of the IFMIF High Flux Test Module. - Abstract: The international fusion materials irradiation facility (IFMIF) is projected to create an experimentally validated database of material properties relevant for fusion reactor designs. The IFMIF High Flux Test Module is the dedicated experiment to irradiate alloys in the temperature range 250–550 °C and up to 50 displacements per atom per irradiation cycle. The High Flux Test Module is developed to maximize the specimen payload in the restricted irradiation volume, and to minimize the temperature spread within each specimen bundle. Low pressure helium mini-channel cooling is used to offer a high integration density. Due to the demanding thermo-hydraulic and mechanical conditions, the engineering design process (involving numerical neutronic, thermo-hydraulic and mechanical analyses) is supported by extensive experimental validation activities. This paper reports on the prototype manufacturing, thermo-hydraulic modeling experiments and component tests, as well as on mechanical testing. For the testing of the 1:1 prototype of the High Flux Test Module, a dedicated test facility, the Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) has been taken into service.

  11. CESAR5.3: Isotopic depletion for Research and Testing Reactor decommissioning

    Science.gov (United States)

    Ritter, Guillaume; Eschbach, Romain; Girieud, Richard; Soulard, Maxime

    2018-05-01

    CESAR stands in French for "simplified depletion applied to reprocessing". The current version is now number 5.3 as it started 30 years ago from a long lasting cooperation with ORANO, co-owner of the code with CEA. This computer code can characterize several types of nuclear fuel assemblies, from the most regular PWR power plants to the most unexpected gas cooled and graphite moderated old timer research facility. Each type of fuel can also include numerous ranges of compositions like UOX, MOX, LEU or HEU. Such versatility comes from a broad catalog of cross section libraries, each corresponding to a specific reactor and fuel matrix design. CESAR goes beyond fuel characterization and can also provide an evaluation of structural materials activation. The cross-sections libraries are generated using the most refined assembly or core level transport code calculation schemes (CEA APOLLO2 or ERANOS), based on the European JEFF3.1.1 nuclear data base. Each new CESAR self shielded cross section library benefits all most recent CEA recommendations as for deterministic physics options. Resulting cross sections are organized as a function of burn up and initial fuel enrichment which allows to condensate this costly process into a series of Legendre polynomials. The final outcome is a fast, accurate and compact CESAR cross section library. Each library is fully validated, against a stochastic transport code (CEA TRIPOLI 4) if needed and against a reference depletion code (CEA DARWIN). Using CESAR does not require any of the neutron physics expertise implemented into cross section libraries generation. It is based on top quality nuclear data (JEFF3.1.1 for ˜400 isotopes) and includes up to date Bateman equation solving algorithms. However, defining a CESAR computation case can be very straightforward. Most results are only 3 steps away from any beginner's ambition: Initial composition, in core depletion and pool decay scenario. On top of a simple utilization architecture

  12. Investigation of the effects of radiolytic-gas bubbles on the long-term operation of solution reactors for medical-isotope production

    Science.gov (United States)

    Souto Mantecon, Francisco Javier

    One of the most common and important medical radioisotopes is 99Mo, which is currently produced using the target irradiation technology in heterogeneous nuclear reactors. The medical isotope 99Mo can also be produced from uranium fission using aqueous homogeneous solution reactors. In solution reactors, 99Mo is generated directly in the fuel solution, resulting in potential advantages when compared with the target irradiation process in heterogeneous reactors, such as lower reactor power, less waste heat, and reduction by a factor of about 100 in the generation of spent fuel. The commercial production of medical isotopes in solution reactors requires steady-state operation at about 200 kW. At this power regime, the formation of radiolytic-gas bubbles creates a void volume in the fuel solution that introduces a negative coefficient of reactivity, resulting in power reduction and instabilities that may impede reactor operation for medical-isotope production. A model has been developed considering that reactivity effects are due to the increase in the fuel-solution temperature and the formation of radiolytic-gas bubbles. The model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA), and the SILENE uranyl nitrate solution reactor, commissioned at the Commissariat a l'Energie Atomique, in Valduc, France. The model shows the feasibility of solution reactors for the commercial production of medical isotopes and reveals some of the important parameters to consider in their design, including the fuel-solution type, 235U enrichment, uranium concentration, reactor vessel geometry, and neutron reflectors surrounding the reactor vessel. The work presented herein indicates that steady-state operation at 200 kW can be achieved with a solution reactor consisting of 120 L of uranyl nitrate solution enriched up to 20% with 235U and a uranium concentration of 145 kg/m3 in a graphite

  13. Digital, remote control system for a 2-MW research reactor

    International Nuclear Information System (INIS)

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs

  14. System for unattended surveillance of nuclear reactor behavior

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.

    1977-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis is presented. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, updating, and dimensionality reduction capabilities. System design emphasizes control of the false-alarm rate. Its abilities to learn normal patterns and to recognize deviations from these patterns were evaluated by experiments at the ORNL High-Flux Isotope Reactor. Power perturbations of less than 0.1% of the mean value in selected frequency ranges were readily detected by the pattern recognition system

  15. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments using equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.

  16. Characterisation of Redlen high-flux CdZnTe

    Science.gov (United States)

    Thomas, B.; Veale, M. C.; Wilson, M. D.; Seller, P.; Schneider, A.; Iniewski, K.

    2017-12-01

    CdZnTe is a promising material for the current generation of free electron laser light sources and future laser-driven γ-ray sources which require detectors capable of high flux imaging at X-ray and γ-ray energies (> 10 keV) . However, at high fluxes CdZnTe has been shown to polarise due to hole trapping, leading to poor performance. Novel Redlen CdZnTe material with improved hole transport properties has been designed for high flux applications. Small pixel CdZnTe detectors were fabricated by Redlen Technologies and flip-chip bonded to PIXIE ASICs. An XIA Digital Gamma Finder PIXIE-16 system was used to digitise each of the nine analogue signals with a timing resolution of 10 ns. Pulse shape analysis was used to extract the rise times and amplitude of signals. These were measured as a function of applied bias voltage and used to calculate the mobility (μ) and mobility-lifetime (μτ) of electrons and holes in the material for three identical detectors. The measured values of the transport properties of electrons in the high-flux-capable material was lower than previously reported for Redlen CdZnTe material (μeτe ~ 1 × 10-3 cm2V-1 and μe ~ 1000 cm2V-1s-1) while the hole transport properties were found to have improved (μhτh ~ 3 × 10-4 cm2V-1 and μh ~ 100 cm2V-1s-1).

  17. Methods and applications in high flux neutron imaging

    International Nuclear Information System (INIS)

    Ballhausen, H.

    2007-01-01

    This treatise develops new methods for high flux neutron radiography and high flux neutron tomography and describes some of their applications in actual experiments. Instead of single images, time series can be acquired with short exposure times due to the available high intensity. To best use the increased amount of information, new estimators are proposed, which extract accurate results from the recorded ensembles, even if the individual piece of data is very noisy and in addition severely affected by systematic errors such as an influence of gamma background radiation. The spatial resolution of neutron radiographies, usually limited by beam divergence and inherent resolution of the scintillator, can be significantly increased by scanning the sample with a pinhole-micro-collimator. This technique circumvents any limitations in present detector design and, due to the available high intensity, could be successfully tested. Imaging with scattered neutrons as opposed to conventional total attenuation based imaging determines separately the absorption and scattering cross sections within the sample. For the first time even coherent angle dependent scattering could be visualized space-resolved. New applications of high flux neutron imaging are presented, such as materials engineering experiments on innovative metal joints, time-resolved tomography on multilayer stacks of fuel cells under operation, and others. A new implementation of an algorithm for the algebraic reconstruction of tomography data executes even in case of missing information, such as limited angle tomography, and returns quantitative reconstructions. The setup of the world-leading high flux radiography and tomography facility at the Institut Laue-Langevin is presented. A comprehensive appendix covers the physical and technical foundations of neutron imaging. (orig.)

  18. SFCOMPO 2.0 - A relational database of spent fuel isotopic measurements, reactor operational histories, and design data

    Science.gov (United States)

    Michel-Sendis, Franco; Martinez-González, Jesus; Gauld, Ian

    2017-09-01

    SFCOMPO-2.0 is a database of experimental isotopic concentrations measured in destructive radiochemical analysis of spent nuclear fuel (SNF) samples. The database includes corresponding design description of the fuel rods and assemblies, relevant operating conditions and characteristics of the host reactors necessary for modelling and simulation. Aimed at establishing a thorough, reliable, and publicly available resource for code and data validation of safety-related applications, SFCOMPO-2.0 is developed and maintained by the OECD Nuclear Energy Agency (NEA). The SFCOMPO-2.0 database is a Java application which is downloadable from the NEA website.

  19. SFCOMPO 2.0 – A relational database of spent fuel isotopic measurements, reactor operational histories, and design data

    Directory of Open Access Journals (Sweden)

    Michel-Sendis Franco

    2017-01-01

    Full Text Available SFCOMPO-2.0 is a database of experimental isotopic concentrations measured in destructive radiochemical analysis of spent nuclear fuel (SNF samples. The database includes corresponding design description of the fuel rods and assemblies, relevant operating conditions and characteristics of the host reactors necessary for modelling and simulation. Aimed at establishing a thorough, reliable, and publicly available resource for code and data validation of safety-related applications, SFCOMPO-2.0 is developed and maintained by the OECD Nuclear Energy Agency (NEA. The SFCOMPO-2.0 database is a Java application which is downloadable from the NEA website.

  20. Review of inservice inspection and nondestructive examination practices at DOE Category A test and research reactors

    International Nuclear Information System (INIS)

    Anderson, M.T.; Aldrich, D.A.

    1990-09-01

    In-service inspection (ISI) programs are used at commercial nuclear power plants for monitoring the pressure boundary integrity of various systems and components to ensure their continued safe operation. The Department of Energy (DOE) operates several test and research reactors. This report represents an evaluation of the ISI and nondestructive examination (NDE) practices at five DOE Category A (> 20 MW thermal) reactors as compared, where applicable, to the current ISI activities of commercial nuclear power facilities. The purpose of an inservice inspection (ISI) program is to establish regular surveillance of safety-related components to ensure their safe and reliable operation. The integrity of materials comprising these components is generally monitored by means of periodic nondestructive examinations (NDE), which, if appropriately performed, provide methods for identifying degradation that could render components unable to perform their intended safety functions. The reactors evaluated during this review were the Experimental Breeder Reactor 2 and the Fast Flux Test Facility (liquid-metal cooled plants), the Advanced Test Reactor and the High Flux Isotopes Reactor (light-water cooled reactors), and the High Flux Beam Reactor (a heavy-water cooled facility). Although these facilities are extremely diverse in design and operation, they all have less stored energy, smaller inventories of radionuclides, and generally, more remote locations than commercial reactors. However, all DOE test and research facilities contain components similar to those of commercial reactors for which continued integrity is important to maintain plant safety. 10 refs., 6 tabs

  1. Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation

    Science.gov (United States)

    Libby, W. F.

    1958-08-04

    Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)

  2. The CEA research reactors

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    1993-01-01

    Two main research reactors, specifically designed, PEGASE reactor and Laue-Langevin high flux reactor, are presented. The PEGASE reactor was designed at the end of the 50s for the study of the gas cooled reactor fuel element behaviour under irradiation; the HFR reactor, was designed in the late 60s to serve as a high yield and high level neutron source. Historical backgrounds, core and fuel characteristics and design, flux characteristics, etc., are presented. 5 figs

  3. IFMIF High Flux Test Module-Recent progress in design and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Leichtle, D. [Association FZK-EURATOM, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)], E-mail: leichtle@irs.fzk.de; Arbeiter, F.; Dolensky, B.; Fischer, U.; Gordeev, S.; Heinzel, V.; Ihli, T.; Lang, K.-H. [Association FZK-EURATOM, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Moeslang, A. [Association FZK-EURATOM, Forschungszentrum Karlsruhe, Institut fuer Materialforschung, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Simakov, S.P.; Slobodchuk, V.; Stratmanns, E. [Association FZK-EURATOM, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2008-12-15

    The International Fusion Material Irradiation Facility (IFMIF) is an accelerator driven neutron source for irradiation tests of candidate fusion reactor materials. Within the High Flux Test Module (HFTM) a testing volume of 0.5 l filled by qualified small scale specimens will be irradiated at displacement rates of 20-50 dpa/fpy in structural materials. The Forschungszentrum Karlsruhe (FZK) has developed a HFTM design which closely follows the design premise of maximising the space available for irradiation specimens in the IFMIF high flux zone and in addition allows keeping the temperature nearly constant in the rigs containing the specimen. Complementary analyses on nuclear, thermo-hydraulics and mechanical performance of the HFTM were performed to optimize the design. The present paper highlights the main design characteristics as well as recent progress achieved in this area. The contribution also includes (i) recommendations for the use of container, rig and capsule materials, and (ii) a description of the fabrication routes for the entire HFTM including brazing and filling procedures which are currently under development at the Forschungszentrum Karlsruhe.

  4. Evaluation on transmutation performance of minor actinides with high-flux BWR

    International Nuclear Information System (INIS)

    Setiawan, M.B.; Kitamoto, A.; Taniguchi, A.

    2001-01-01

    The performance of high-flux BWR (HFBWR) for burning and/or transmutation (B/T) treatment of minor actinides (MA) and long-lived fission products (LLFP) was discussed herein for estimating an advanced waste disposal with partitioning and transmutation (P and T). The concept of high-flux B/T reactor was based on a current 33 GWt-BWR, to transmute the mass of long-lived transuranium (TRU) to short-lived fission products (SLFP). The nuclide selected for B/T treatment was MA (Np-237, Am-241, and Am-243) included in the discharged fuel of LWR. The performance of B/T treatment of MA was evaluated by a new function, i.e. [F/T ratio], defined by the ratio of the fission rate to the transmutation rate in the core, at an arbitrary burn-up, due to all MA nuclides. According to the results, HFBWR could burn and/or transmute MA nuclides with higher fission rate than BWR, but the fission rate did not increase proportionally to the flux increment, due to the higher rate of neutron adsorption. The higher B/T fraction of MA would result in the higher B/T capacity, and will reduce the units of HFBWR needed for the treatment of a constant mass of MA. In addition, HFBWR had a merit of higher mass transmutation compared to the reference BWR, under the same mass loading of MA

  5. IFMIF High Flux Test Module-Recent progress in design and manufacturing

    International Nuclear Information System (INIS)

    Leichtle, D.; Arbeiter, F.; Dolensky, B.; Fischer, U.; Gordeev, S.; Heinzel, V.; Ihli, T.; Lang, K.-H.; Moeslang, A.; Simakov, S.P.; Slobodchuk, V.; Stratmanns, E.

    2008-01-01

    The International Fusion Material Irradiation Facility (IFMIF) is an accelerator driven neutron source for irradiation tests of candidate fusion reactor materials. Within the High Flux Test Module (HFTM) a testing volume of 0.5 l filled by qualified small scale specimens will be irradiated at displacement rates of 20-50 dpa/fpy in structural materials. The Forschungszentrum Karlsruhe (FZK) has developed a HFTM design which closely follows the design premise of maximising the space available for irradiation specimens in the IFMIF high flux zone and in addition allows keeping the temperature nearly constant in the rigs containing the specimen. Complementary analyses on nuclear, thermo-hydraulics and mechanical performance of the HFTM were performed to optimize the design. The present paper highlights the main design characteristics as well as recent progress achieved in this area. The contribution also includes (i) recommendations for the use of container, rig and capsule materials, and (ii) a description of the fabrication routes for the entire HFTM including brazing and filling procedures which are currently under development at the Forschungszentrum Karlsruhe

  6. High-flux solar photon processes: Opportunities for applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  7. Actinide and Xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D.L.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  8. Actinide and xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D. L.; Sailor, W. C.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  9. Actinide and Xenon reactivity effects in ATW high flux systems

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, M. [Univ. of Virginia, Charlottesville, VA (United States); Olson, K.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-10-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides.

  10. Homogeneous SLOWPOKE reactor for the production of radio-isotope. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busatta, P.; Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)]. E-mail: paul.busatta@rmc.ca; bonin-h@rmc.ca

    2006-07-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  11. Homogeneous SLOWPOKE reactor for the production of radio-isotope. A feasibility study

    International Nuclear Information System (INIS)

    Busatta, P.; Bonin, H.W.

    2006-01-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  12. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  13. Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US

    Energy Technology Data Exchange (ETDEWEB)

    Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.; Holdaway, K. K.; Housley, G. K.; Rabin, B. H.

    2016-10-01

    The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, and other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.

  14. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L., E-mail: mabs500@gmail.com, E-mail: narain@ufpe.br, E-mail: jairbezerra@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociências. Departamento de Energia Nuclear

    2017-07-01

    Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

  15. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

    International Nuclear Information System (INIS)

    Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L.

    2017-01-01

    Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

  16. Databook of the isotopic composition of spent fuel in light water reactors

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1993-03-01

    In the framework of the activity of the nuclide production evaluation WG in the sigma committee, we summarized the measurement data of the isotopic composition of LWR spent fuels necessary to evaluate the accuracy of the burnup calculation codes. The collected data were arranged to be classified into the irradiation history of the fuel samples, the composition of the fuel assemblies, the sampling position and the isotopic composition of the fuel samples, in order to supply the information necessary to the benchmark calculation. This report describes the data collected from the 13 LWRs including the 9 LWRs (5 PWR and 4 BWR) in Europe and the USA, the 4 LWRs (2 PWR and 2 BWR) in Japan. Finally, the study on the burnup characteristics of the U, Pu isotopes is described. (author)

  17. The behaviour of radioactive isotopes in liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Watson, W.R.; Gwyther, J.R.

    1979-01-01

    A small scale, all AISI 316 stainless steel, pumped loop has been operated with 134 Cs, 137 Cs and 22 Na in the sodium. The loop has a distillation sampler, oxygen meter, two cold traps and a small subsidiary pumped loop initially containing the isotopes adsorbed on uranium oxide. The distribution of the isotopes within the loop has been determined over the temperature range 100 to 300 0 C with 1 to 2 ppm of oxygen in the sodium and a sodium velocity about half the Reynolds number required for the onset of turbulence in the vertical legs. (author)

  18. Homogeneous slowpoke reactor for the production of radio-isotope. A feasibility study

    International Nuclear Information System (INIS)

    Busatta, P.; Bonin, H.

    2005-01-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP 5 simulation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether the natural convection will still effectively cool the reactor using the modeling software FEMLAB. The MCNP 5 simulation code was validated by using a simulation with WIMS-AECL code. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  19. Homogeneous Slowpoke reactor for the production of radio-isotope: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busetta, P.; Bonin, H.W. [Royal Military College of Canada, Kingston, Ontario (Canada)

    2006-09-15

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP Monte Carlo reactor calculation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous react will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether natural convection can still effectively cool the reactor using the modeling software FEMLAB(r). It was found that it is needed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  20. Homogeneous slowpoke reactor for the production of radio-isotope. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Busatta, P.; Bonin, H. [Royal Military College of Canada, Kingston, Ontario (Canada)]. E-mail: paul.busatta@rmc.ca; bonin-h@rmc.ca

    2005-07-01

    The purpose of this research is to study the feasibility of replacing the actual heterogeneous fuel core of the present SLOWPOKE-2 by a reservoir containing a homogeneous fuel for the production of Mo-99. The study looked at three items: by using the MCNP 5 simulation code, develop a series of parameters required for an homogeneous fuel and evaluate the uranyl sulfate concentration of the aqueous solution fuel in order to keep a similar excess reactivity; verify if the homogeneous reactor will retain its inherent safety attributes; and with the new dimensions and geometry of the fuel core, observe whether the natural convection will still effectively cool the reactor using the modeling software FEMLAB. The MCNP 5 simulation code was validated by using a simulation with WIMS-AECL code. It was found that it is indeed feasible to modify the SLOWPOKE-2 reactor for a homogeneous reactor using a solution of uranyl sulfate and water. (author)

  1. Oak Ridge Isotope Products and Services - Current and Expected Supply and Demand

    International Nuclear Information System (INIS)

    Aaron, W.S.; Alexander, C.W.; Cline, R.L.; Collins, E.D.; Klein, J.A.; Knauer, J.B. Jr.; Mirzadeh, S.

    1999-01-01

    Oak Ridge National Laboratory (ORNL) has been a major center of isotope production research, development, and distribution for over 50 years. Currently, the major isotope production activities include (1) the production of transuranium element radioisotopes, including 252 Cf; (2) the production of medical and industrial radioisotopes; (3) maintenance and expansion of the capabilities for production of enriched stable isotopes; and, (4) preparation of a wide range of custom-order chemical and physical forms of isotope products, particularly in accelerator physics research. The recent supply of and demand for isotope products and services in these areas, research and development (R ampersand D), and the capabilities for future supply are described in more detail below. The keys to continuing the supply of these important products and services are the maintenance, improvement, and potential expansion of specialized facilities, including (1) the High Flux Isotope Reactor (HFIR), (2) the Radiochemical Engineering Development Center (REDC) and Radiochemical Development Laboratory (RDL) hot cell facilities, (3) the electromagnetic calutron mass separators and the plasma separation process equipment for isotope enrichment, and (4) the Isotope Research Materials Laboratory (IRML) equipment for preparation of specialized chemical and physical forms of isotope products. The status and plans for these ORNL isotope production facilities are also described below

  2. Isotope Mixes, Corresponding Nuclear Properties and Reactor Design Implications of Naturally Occurring Lead Sources

    Science.gov (United States)

    2013-06-01

    than LBE 14,3 W/(m*K)) (data at 500 °C) + Slag formation First tests do not show slag formation in Pb + Dust formation Strongly reduced + Corrosion...12] R. S. Cannon, Jr. and A. P. Pierce, “Lead Isotope Guides For Mississippi Valley Lead- Zinc Exploration,” U.S. department of the Interior

  3. Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.

    Science.gov (United States)

    Robel, Martin; Kristo, Michael J

    2008-11-01

    The problem of identifying the provenance of unknown nuclear material in the environment by multivariate statistical analysis of its uranium and/or plutonium isotopic composition is considered. Such material can be introduced into the environment as a result of nuclear accidents, inadvertent processing losses, illegal dumping of waste, or deliberate trafficking in nuclear materials. Various combinations of reactor type and fuel composition were analyzed using Principal Components Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) of the concentrations of nine U and Pu isotopes in fuel as a function of burnup. Real-world variation in the concentrations of (234)U and (236)U in the fresh (unirradiated) fuel was incorporated. The U and Pu were also analyzed separately, with results that suggest that, even after reprocessing or environmental fractionation, Pu isotopes can be used to determine both the source reactor type and the initial fuel composition with good discrimination.

  4. Performance characterization of the SERI High-Flux Solar Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, A.; Bingham, C. (Solar Energy Research Inst., Golden, CO (United States)); O' Gallagher, J.; Winston, R.; Sagie, D. (Univ. of Chicago, IL (United States))

    1991-12-01

    This paper describes a unique, new solar furnace at the Solar Energy Research Institute (SERI) that can generate a wide range of flux concentrations to support research in areas including materials processing, high-temperature detoxification and high-flux optics. The furnace is unique in that it uses a flat, tracking heliostat along with a long focal length-to-diameter (f/D) primary concentrator in an off-axis configuration. The experiments are located inside a building completely outside the beam between the heliostat and primary concentrator. The long f/D ratio of the primary concentrator was designed to take advantage of a nonimaging secondary concentrator to significantly increase the flux concentration capabilities of the system. Results are reported for both the single-stage and two-stage configurations. (orig.).

  5. ITER TASK T26/28 (1995): Solubility, diffusion and absorption of hydrogen isotopes in potential fusion reactor ceramics

    International Nuclear Information System (INIS)

    Thompson, D.A.; Macauley-Newcombe, R.G.

    1996-04-01

    Ceramic insulators are integral parts of numerous components essential for the heating control and diagnostic measurement of fusion plasmas. For safe and reliable reactor operations it is necessary to be able to predict the resultant tritium inventories and permeation fluxes through these materials. Some materials being considered are Al 2 O 3 (both as single crystal sapphire and polycrystalline alumina) and BeO. This report contains results of ion-implantation, thermal absorption (diffusion loading) and ion-beam analysis experiments performed in 1994 and 1995 for ITER task T26/28. The combination of implantation and thermal absorption capabilities enable us to load samples with hydrogen isotopes under differing conditions. 13 figs., 1 tab., 11 refs

  6. Recycling, inventory and permeation of hydrogen isotopes and helium in the first wall of a thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Gervasini, G.; Reiter, F.

    1989-01-01

    The work was divided into three parts. The first part, which is theoretical, examines the behaviour of hydrogen in metals. After an introduction on the presence of hydrogen isotopes in fusion reactors, the main phenomena connected with hydrogen-metal interaction are summarised: solubility, diffusivity and trapping in material defects. The metal temperature is highlighted as the main parameter in the description of the phenomena. The second part of the work, also theoretical, concerns the interaction between helium and metals. We have tried as much as possible to show analogies and differences in the comparisons of the behaviour of hydrogen. The main types of damage caused by helium in metallic structures, which are the most important consequence of helium-metal interaction, were summarised. The characteristics of helium were treated in greater depth than those of hydrogen, because the latter are very well known. Also, there is a vast literature on the hydrogen-metal interaction. In the third and last part of the work a model was identified which allows the simulation of the evolution of a system formed from a metal in which hydrogen and helium isotopes have been introduced. A system of algebraic-differential equations was used to study the temporal evolution of the concentrations, the recycling, the inventory and the permeation of tritium and helium considering that these atoms diffuse in the metallic lattice and remain trapped in the vacancies created inside the metal by the bombardment of the neutrons from the fusion reactions. For the numerical simulation a series of data intended to represent the situation inside a thermonuclear reactor as precisely as possible were used for the numerical simulation. Analysis of the system was preceded by the analytical resolution of the steady state equations so that they could be compared with the simulation results

  7. Project requirements for reconstruction of the RA reactor ventilation system, Task 2.8. Measurement of radioactive iodine and other isotopes contents in the gas system of the RA reactor, Annex of the task

    International Nuclear Information System (INIS)

    Vujisic, Lj. et al

    1981-01-01

    This report is a supplement to the task 2.8. When planning and constructing the ventilation system, it was found that it is necessary to perform additional experiments during RA reactor operation at 2 MW power level for a longer period. In addition to the helium system, the potential source of radioactive pollutants is the space below the upper water shielding of the reactor. All the experimental and fuel channels are ending in this space. During repair and fuel exchange radioactivity can be released in this space. For that reason this space is important when planing and designing the filtration system for incidental conditions or planned dehermetisation of the reactor. The third point where radioactive isotope identification was done, was the entrance into the chimney during steady state operation and planned dehermetisation of the reactor. The following samples were measured: gas system during reactor operation at 2 MW power; entrance into the chimney during last 48 hours of reactor operation at 2 MW power; sample on the platform under the upper water shield with the opened fuel channel after the reactor shutdown; and simultaneously with the latter, measurement at the entrance to the chimney. This annex contains the list of identified radioactive isotopes, volatile and gaseous as well as concentration of volatile 131 I on the adsorbents [sr

  8. Behavior of antimony isotopes in the primary coolant of WWER-1000-type nuclear reactors in NPP Kozloduy during operation and shutdown

    International Nuclear Information System (INIS)

    Dobrevski, Ivan D.; Zaharieva, Neli N.; Minkova, Katia F.; Gerchev, Nikolay B.

    2009-01-01

    This paper focuses on the behavior of the antimony isotopes 122 Sb and 124 Sb in the coolant of the WWER reactors in the nuclear power plant Kozloduy (Bulgaria) during operation and shutdown. It is concluded that the chemical properties of their actual precursor, the isotope 121 Sb, determine the behavior of 122 Sb and 124 Sb during operation, load fluctuations, and shutdown as well as during the reactor coolant purification process. It is supposed that differences between the reactor bulk and the core fuel cladding surface chemistry as well as the presence of sub-cooled nucleate boiling at the fuel cladding may create conditions under which a local oxidizing environment may come into existence. (orig.)

  9. Production capabilities in US nuclear reactors for medical radioisotopes

    International Nuclear Information System (INIS)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr.; Schenter, R.E.

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted

  10. Production capabilities in US nuclear reactors for medical radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. (Oak Ridge National Lab., TN (United States)); Schenter, R.E. (Westinghouse Hanford Co., Richland, WA (United States))

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  11. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2016-09-15

    A burn-up calculation of large systems by Monte-Carlo code (MCU) is complex process and it requires large computational costs. Previously prepared isotopic compositions are proposed to be used for the Monte-Carlo code calculations of different system states with burnt fuel. Isotopic compositions are calculated by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by the engineering codes (TVS-M, BIPR-7A and PERMAK-A). The multiplication factors and power distributions of FAs from a 3-D reactor core are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The separate conditions of the burnt core are observed. The results of MCU calculations were compared with those that were obtained by engineering codes.

  12. Hydrogen isotopes confinement in the over-dusted layers of fusion reactor candidate materials

    International Nuclear Information System (INIS)

    Klepikov, A.Kh.; Tazhibaeva, I.L.; Shestakov, V.P.; Lisitsyn, V.N.; Tuleushev, Yu.Zh.

    2001-01-01

    In the work the experiments on gas-emission determination from samples of sputtered beryllium, graphite, tungsten, jointly sputtered graphite and tungsten obtained by the magnetron sputtering method at the 'Argamak' facility (National Nuclear Center of the Republic of Kazakhstan), as well as the samples processed on the 'OSPA' plasma accelerator (TRINITI, Russia). The gas-release curves were obtained for indicated samples under different heating velocities within temperature range from 300 up to 1200 K. Gas-release parameters and hydrogen isotopes confinement in these layers were determined. Simulation of hydrogen isotopes gas-emission from samples sputtered layers on the base of obtained experiments with application of simulating programs and TMAP code was carried out

  13. Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure

    Energy Technology Data Exchange (ETDEWEB)

    Grigorev, Petr, E-mail: grigorievpit@gmail.com [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnologies, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg (Russian Federation); Matveev, Dmitry [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Trilateral Euregio Cluster, 52425, Jülich (Germany); Bakaeva, Anastasiia [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Department of Applied Physics, Ghent University (Belgium); Terentyev, Dmitry [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnologies, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg (Russian Federation); Van Oost, Guido [Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Noterdaeme, Jean-Marie [Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2016-12-01

    Tungsten is a primary candidate for plasma facing materials for future fusion devices. An important safety concern in the design of plasma facing components is the retention of hydrogen isotopes. Available experimental data is vast and scattered, and a consistent physical model of retention of hydrogen isotopes in tungsten is still missing. In this work we propose a model of non-equilibrium hydrogen isotopes trapping under fusion relevant plasma exposure conditions. The model is coupled to a diffusion-trapping simulation tool and is used to interpret recent experiments involving high plasma flux exposures. From the computational analysis performed, it is concluded that high flux high temperature exposures (T = 1000 K, flux = 10{sup 24} D/m{sup 2}/s and fluence of 10{sup 26} D/m{sup 2}) result in generation of sub-surface damage and bulk diffusion, so that the retention is driven by both sub-surface plasma-induced defects (bubbles) and trapping at natural defects. On the basis of the non-equilibrium trapping model we have estimated the amount of H stored in the sub-surface region to be ∼10{sup −5} at{sup −1}, while the bulk retention is about 4 × 10{sup −7} at{sup −1}, calculated by assuming the sub-surface layer thickness of about 10 μm and adjusting the trap concentration to comply with the experimental results for the integral retention.

  14. New concepts for the recovery and isotopic separation of tritium in fusion reactors

    International Nuclear Information System (INIS)

    Dombra, A.H.; Holtslander, W.J.; Miller, A.I.; Canadian Fusion Fuels Technology Project, Toronto, Ontario)

    1986-01-01

    New concepts for the recovery of tritium from light water coolant of LiPb blankets, and high-pressure helium coolant of Li-ceramic blankets are introduced. Application of these concepts to fusion reactors is illustrated with conceptual system designs for the anticipated NET blanket requirements. (author)

  15. Characterization of high flux magnetized helium plasma in SCU-PSI linear device

    Science.gov (United States)

    Xiaochun, MA; Xiaogang, CAO; Lei, HAN; Zhiyan, ZHANG; Jianjun, WEI; Fujun, GOU

    2018-02-01

    A high-flux linear plasma device in Sichuan University plasma-surface interaction (SCU-PSI) based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors. In this paper, the helium plasma has been characterized by a double-pin Langmuir probe. The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T. The core density and ion flux of helium plasma have a strong dependence on the applied current, magnetic field strength and gas flow rate. It could reach an electron density of 1.2 × 1019 m-3 and helium ion flux of 3.2 × 1022 m-2 s-1, with a gas flow rate of 4 standard liter per minute, magnetic field strength of 0.2 T and input power of 11 kW. With the addition of -80 V applied to the target to increase the helium ion energy and the exposure time of 2 h, the flat top temperature reached about 530 °C. The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy. These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.

  16. Thermoluminescent dosemeters (TLD) exposed to high fluxes of gamma radiation, thermal neutrons and protons

    International Nuclear Information System (INIS)

    Gambarini, G.; Martini, M.; Meinardi, F.; Raffaglio, C.; Salvadori, P.; Scacco, A.; Sichirollo, A.E.

    1996-01-01

    Thermoluminescent dosemeters (TLD), widely experimented and utilized in personal dosimetry, have some advantageous characteristics which induce one to employ them also in radiotherapy. The new radiotherapy techniques are aimed at selectively depositing a high dose in cancerous tissues. This goal is reached by utilising both conventional and other more recently proposed radiation, such as thermal neutrons and heavy charged particles. In these inhomogeneous radiation fields a reliable mapping of the spatial distribution of absorbed dose is desirable, and the utilized dosemeters have to give such a possibility without notably perturbing the radiation field with the materials of the dosemeters themselves. TLDs, for their small dimension and their tissue equivalence for most radiation, give good support in the mapping of radiation fields. After exposure to the high fluxes of therapeutic beams, some commercial TL dosemeters have shown a loss of reliability. An investigation has therefore be performed, both on commercial and on laboratory made phosphors, in order to investigate their behaviour in such radiation fields. In particular the thermal neutron and gamma ray mixed field of the thermal column of a nuclear reactor, of interest for Boron Neutron Capture Therapy (B.N.C.T.) and a proton beam, of interest for proton therapy, were considered. Here some results obtained with new TL phosphors exposed in such radiation fields are presented, after a short description of some radiation damage effect on commercial LiF TLDs exposed in the (n th ,γ) field of the thermal column of a reactor. (author)

  17. Surveillance of a nuclear reactor by use of a pattern recognition methodology

    International Nuclear Information System (INIS)

    Dubuisson, B.; Lavison, P.

    1980-01-01

    A multivariate nonparametric pattern recognition system is described for the surveillance of a high-flux isotope reactor. Two nonparametric methods are worked out: one using the Bayes rule with the Rosenblatt-Parzen estimator for the probability law, and one using the k-nearest neighbor rule. Performances are evaluated by comparing the probability of misclassification between the two chosen classes: the first corresponds to a nonaction of the reactor operator on its power and the second to an action of the pilot. Processing is performed on the power signal of the reactor which is an observation corrupted by noise. The system has been tested on several experiences and implemented to work in real time on the reactor. The aim is to conceive a computer-aided decision system for the reactor's pilot. 17 refs

  18. Fuel elements of research reactors in China

    International Nuclear Information System (INIS)

    Zhou Yongmao; Chen Dianshan; Tan Jiaqiu

    1987-01-01

    This paper describes the current status of design, fabrication of fuel elements for research reactors in China, emphasis is placed on the technology of fuel elements for the High Flux Engineering Test Reactor (HFETR). (author)

  19. Analytical performance of refractometry in quantitative estimation of isotopic concentration of heavy water in nuclear reactor

    International Nuclear Information System (INIS)

    Dhole, K.; Ghosh, S.; Datta, A.; Tripathy, M.K.; Bose, H.; Roy, M.; Tyagi, A.K.

    2011-01-01

    The method of refractometry has been investigated for the quantitative estimation of isotopic concentration of D 2 O (heavy water) in a simulated water sample. Viability of Refractometry as an excellent analytical technique for rapid and non-invasive determination of D 2 O concentration in water samples has been demonstrated. Temperature of the samples was precisely controlled to eliminate effect of temperature fluctuation on refractive index measurement. Calibration performance by this technique exhibited reasonable analytical response over a wide range (1-100%) of D 2 O concentration. (author)

  20. Medical isotope production: A new research initiative for the Annular Core Research Reactor

    International Nuclear Information System (INIS)

    Coats, R.L.; Parma, E.J.

    1993-01-01

    An investigation has been performed to evaluate the capabilities of the Annular Core Research Reactor and its supporting Hot Cell Facility for the production of 99 Mo and its separation from the fission product stream. Various target irradiation locations for a variety of core configurations were investigated, including the central cavity, fuel and reflector locations, and special target configurations outside the active fuel region. Monte Carlo techniques, in particular MCNP using ENDF B-V cross sections, were employed for the evaluation. The results indicate that the reactor, as currently configured, and with its supporting Hot Cell Facility, would be capable in meeting the current US demand if called upon. Modest modifications, such as increasing the capacity of the external heat exchangers, would permit significantly higher continuous power operation and even greater 99 Mo production ensuring adequate capacity for future years

  1. The different facilities of the reactor Phenix for radio isotope production and fission product burner

    International Nuclear Information System (INIS)

    Coulon, P.; Clerc, R.; Tommasi, J.

    1993-01-01

    During the last few years different tests have been made to optimize the blanket of the reactor. Year after year the breeding ratio has lost a part of interest regarding the production and availability of plutonium in the world. A characteristic of a fast reactor is to have important neutron leaks from the core. The spectrum of those neutrons is intermediate, the idea was to find a moderator compatible with sodium and stable in temperature. After different tests we kept as a moderator the calcium hydride and as a samply support, a cluster which is separated from the carrier. At the end we present the model used for thermalized calculations. The scheme is then applied to a heavy nuclide transmutation example (Np237 Pu238) and to fission product transmutation (Tc99). (authors). 9 figs

  2. Dialyzer Reuse and Outcomes of High Flux Dialysis.

    Science.gov (United States)

    Argyropoulos, Christos; Roumelioti, Maria-Eleni; Sattar, Abdus; Kellum, John A; Weissfeld, Lisa; Unruh, Mark L

    2015-01-01

    The bulk of randomized trial evidence for the expanding use of High Flux (HF) hemodialysis worldwide comes from two randomized controlled trials, one of which (HEMODIALYSIS, HEMO) allowed, while the other (Membrane Outcomes Permeability, MPO) excluded, the reuse of membranes. It is not known whether dialyzer reuse has a differential impact on outcomes with HF vs low flyx (LF) dialyzers. Proportional Hazards Models and Joint Models for longitudinal measures and survival outcomes were used in HEMO to analyze the relationship between β2-microglobulin (β2M) concentration, flux, and reuse. Meta-analysis and regression techniques were used to synthesize the evidence for HF dialysis from HEMO and MPO. In HEMO, minimally reused (membranes (p for interaction between reuse and flux benefit with more extensively reused dialyzers. Meta-regression of HEMO and MPO estimated an adjusted HR of 0.63 (95% CI: 0.51-0.78) for non-reused HF dialyzers compared with non-reused LF membranes. This secondary analysis and synthesis of two large hemodialysis trials supports the widespread use of HF dialyzers in clinical hemodialysis over the last decade. A mechanistic understanding of the effects of HF dialysis and the reuse process on dialyzers may suggest novel biomarkers for uremic toxicity and may accelerate membrane technology innovations that will improve patient outcomes.

  3. Status report of Indonesian research reactor

    International Nuclear Information System (INIS)

    Arbie, B.; Supadi, S.

    1992-01-01

    A general description of three Indonesian research reactor, its irradiation facilities and its future prospect are described. Since 1965 Triga Mark II 250 KW Bandung, has been in operation and in 1972 the design powers were increased to 1000 KW. Using core grid form Triga 250 KW BATAN has designed and constructed Kartini Reactor in Yogyakarta which started its operation in 1979. Both of this Triga type reactors have served a wide spectrum of utilization such as training manpower in nuclear engineering, radiochemistry, isotope production and beam research in solid state physics. Each of this reactor have strong cooperation with Bandung Institute of Technology at Bandung and Gajah Mada University at Yogyakarta which has a faculty of Nuclear Engineering. Since 1976 the idea to have high flux reactor has been foreseen appropriate to Indonesian intention to prepare infrastructure for nuclear industry for both energy and non-energy related activities. The idea come to realization with the first criticality of RSG-GAS (Multipurpose Reactor G.A. Siwabessy) in July 1987 at PUSPIPTEK Serpong area. It is expected that by early 1992 the reactor will reached its full power of 30 MW and by end 1992 its expected that irradiation facilities will be utilized in the future for nuclear scientific and engineering work. (author)

  4. Sensitivity of reactor integral parameters to #betta##betta# parameter of resolved resonances of fertile isotopes and to the α values, in thermal and epithermal spectra

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    A sensitivity analysis of reactor integral parameter to more 10% variation in the resolved resonance parameters #betta##betta# of the fertile isotope and the variations of more 10% in the α values (#betta# sub(#betta#)/#betta# sub(f)) of fissile isotopes of PWR fuel elements, is done. The analysis is made with thermal and epithermal spectra, those last generated in a fuel cell with low V sub(M)/V sub(F). The HAMMER system, the interface programs HELP and LITHE and the HAMMER computer codes, were used as a base for this study. (E.G.) [pt

  5. Performance of refractometry in quantitative estimation of isotopic concentration of heavy water in nuclear reactor

    International Nuclear Information System (INIS)

    Dhole, K.; Roy, M.; Ghosh, S.; Datta, A.; Tripathy, M.K.; Bose, H.

    2013-01-01

    Highlights: ► Rapid analysis of heavy water samples, with precise temperature control. ► Entire composition range covered. ► Both variations in mole and wt.% of D 2 O in the heavy water sample studied. ► Standard error of calibration and prediction were estimated. - Abstract: The method of refractometry has been investigated for the quantitative estimation of isotopic concentration of heavy water (D 2 O) in a simulated water sample. Feasibility of refractometry as an excellent analytical technique for rapid and non-invasive determination of D 2 O concentration in water samples has been amply demonstrated. Temperature of the samples has been precisely controlled to eliminate the effect of temperature fluctuation on refractive index measurement. The method is found to exhibit a reasonable analytical response to its calibration performance over the purity range of 0–100% D 2 O. An accuracy of below ±1% in the measurement of isotopic purity of heavy water for the entire range could be achieved

  6. Development of a simplified methodology for the isotopic determination of fuel spent in Light Water Reactors; Desarrollo de una metodologia simplificada para la determinacion isotopica del combustible gastado en reactores de agua ligera

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez N, H.; Francois L, J.L. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: hermilo@lairn.fi-b.unam.mx

    2005-07-01

    The present work presents a simplified methodology to quantify the isotopic content of the spent fuel of light water reactors; their application is it specific to the Laguna Verde Nucleo electric Central by means of a balance cycle of 18 months. The methodology is divided in two parts: the first one consists on the development of a model of a simplified cell, for the isotopic quantification of the irradiated fuel. With this model the burnt one is simulated 48,000 MWD/TU of the fuel in the core of the reactor, taking like base one fuel assemble type 10x10 and using a two-dimensional simulator for a fuel cell of a light water reactor (CPM-3). The second part of the methodology is based on the creation from an isotopic decay model through an algorithm in C++ (decay) to evaluate the amount, by decay of the radionuclides, after having been irradiated the fuel until the time in which the reprocessing is made. Finally the method used for the quantification of the kilograms of uranium and obtained plutonium of a normalized quantity (1000 kg) of fuel irradiated in a reactor is presented. These results will allow later on to make analysis of the final disposition of the irradiated fuel. (Author)

  7. Nondestructive determination of burnup and fissile isotope balance in spent fuel assemblies of water cooled reactors

    International Nuclear Information System (INIS)

    Pinel, J.

    1983-03-01

    Two non-destructive methods for measuring fuel assemblies in storage pools have been developed: a gamma fuel scanning method, using the 134 Cs - 137 Cs and 144 Ce gamma rays, and the measurement of the neutron flux emitted by the fuel assembly. For interpreting the measurement, we have used calculated correlations to establish a connection between the measured phenomena and the parameters to be determined. A measurement campaign involving 58 assemblies from the C.N.A. reactor was conducted in the reprocessing plant of LA HAGUE. The results obtained show that the objectives can be achevied within an industrial environment [fr

  8. The influence of xenon poisoning in high-flux reactors on the choice of control rod speeds (1961); Influence de l'empoisonnement xenon dans les piles a haut flux sur le choix de la vitesse des barres de controle (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Furet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    - The general laws are restated concerning the changes in xenon and iodine concentrations in thermal neutron reactors, assuming an uniform neutron flux distribution in the core. It is shown how the evolution in the xenon poisoning influences the selection of the control rod speed, at start-up. Certain simple methods of calculation are developed making it possible to resolve the problem of the choice of this speed in the case where the xenon poisoning is taken into account. (author) [French] - On rappelle les lois generales relatives aux evolutions de concentration xenon et iode dans les piles atomiques a neutrons thermiques lorsqu'on suppose une repartition uniforme du flux de neutrons dans le coeur. On montre comment l'evolution de l'empoisonnement xenon influe sur le choix de la vitesse des barres de controle en periode de demarrage. On developpe certaines methodes de calculs simples permettant de resoudre le probleme du choix de la vitesse des barres de controle, dans le cas ou l'on tient compte de l'empoisonnement xenon. (auteur)

  9. IFMIF high flux test module - recent progress in design and manufacturing

    International Nuclear Information System (INIS)

    Leichtle, D.; Arbeiter, F.; Dolensky, B.

    2007-01-01

    The International Fusion Material Irradiation Facility (IFMIF) is an accelerator driven neutron source for irradiation tests of candidate fusion reactor materials. Two 40 MeV deuterium beams with 125 mA each strike a liquid lithium jet target, producing a high intensity neutron flux up to 55 MeV, which penetrates the adjacent test modules. Within the High Flux Test Module (HFTM) a testing volume of 0.5 litres filled by qualified small scale specimens will be irradiated at displacement rates of 20-50 dpa/fpy in structural materials. The HFTM will also provide helium and hydrogen production to dpa ratios that reflect within the uncertainties the values expected in a DEMO fusion reactor The Forschungszentrum Karlsruhe (FZK) has developed a HFTM design which closely follows the design premise of maximising the space available for irradiation specimens in the IFMIF high flux zone and in addition allows keeping the temperature nearly constant in the rigs containing the specimen. Within the entire specimen stack the temperature deviation will be below about 15 K. The main design principles applied are (i) filling the gaps between the specimens with liquid metal, (ii) winding three separately controlled heater sections on the inner capsules and (iii) dividing the test rigs in a hot inner and a cold outer zone, which a separated by a gap filled with stagnant helium that serves as a thermal insulator. Channels between the outer covers (the cold parts) are cooled by helium gas at moderate pressure (3 bars at inlet) and temperature (50 C). 12 identical rigs holding the specimen capsules which are heated by segmented helically wound electrical heaters ensure a flexible loading scheme during IFMIF operation. Complementary analyses on nuclear, thermo-hydraulics and mechanical performance of the HFTM were performed to optimize the design. The present paper highlights the main design characteristics as well as recent progress achieved in this area. This includes the stiffening of

  10. Determination of uranium concentration and burn-up of irradiated reactor fuel in contaminated areas in Belarus using uranium isotopic ratios in soil samples

    International Nuclear Information System (INIS)

    Mironov, V.P.; Matusevich, J.L.; Kudrjashov, V.P.; Ananich, P.I.; Zhuravkov, V.V.; Boulyga, S.F.; Becker, J.S.

    2005-01-01

    An analytical method is described for the estimation of uranium concentrations, of 235 U/ 238 U and 236 U/ 238 U isotope ratios and burn-up of irradiated reactor uranium in contaminated soil samples by inductively coupled plasma mass spectrometry. Experimental results obtained at 12 sampling sites situated on northern and western radioactive fallout tails 4 to 53 km distant from Chernobyl nuclear power plant (NPP) are presented. Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 2.1 x 10 -9 g/g to 2.0 x 10 -6 g/g depending mainly on the distance from Chernobyl NPP. A slight variation of the degree of burn-up of spent reactor uranium was revealed by analyzing 235 U/ 238 U and 236 U/ 238 U isotope ratios and the average value amounted to 9.4±0.3 MWd/(kg U). (orig.)

  11. Multivariate statistical pattern recognition system for reactor noise analysis

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system

  12. Multivariate statistical pattern recognition system for reactor noise analysis

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1975-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system. 19 references

  13. The Texts of the Instruments connected with the Agency's Assistance to Argentina in Establishing a Research and Isotope Production Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-11-04

    The texts of the Title Transfer Agreement between the Agency and the Governments of Argentina and the United States of America, and of the Project Agreement between the Agency and the Government of Argentina, in connection with the Agency's assistance to that Government in establishing a research and isotope production reactor project, are reproduced in this document for the information of all Members. These Agreements entered into force on 2 December 1964.

  14. The Texts of the Instruments connected with the Agency's Assistance to Argentina in Establishing a Research and Isotope Production Reactor Project

    International Nuclear Information System (INIS)

    1965-01-01

    The texts of the Title Transfer Agreement between the Agency and the Governments of Argentina and the United States of America, and of the Project Agreement between the Agency and the Government of Argentina, in connection with the Agency's assistance to that Government in establishing a research and isotope production reactor project, are reproduced in this document for the information of all Members. These Agreements entered into force on 2 December 1964

  15. Investigation of alleged releases of the High Flux Reactor (HFR) in Petten, Netherlands. Measured data from the Nuclear Research and consultancy Group (NRG) in the period September 2001; Onderzoek naar vermeende lozingen HFR Petten. Meetgegevens van NRG in de periode september 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-15

    During the open house at the Nuclear Research and consultancy Group (NRG) on May 28th 2006 NRG publicly presented the measuring values of the Central Radiological Monitoring System (CRM). On detailed inquiry of a visitor strongly increased brief peak values appeared on 19 and 26 September 2001. This resulted in questions from many parties (Meldpunt Nucleaire Veiligheid Noord-Holland (Registration office Nuclear Safety North Holland), Provinciale States North Holland, Greenpeace Netherlands and Vereniging Pettemerduinen Kernreactorvrij (Association against Nuclear reactor in the dunes of Petten)) about a possible radiological emission. The press reported a radioactive gas cloud. The Department of Nuclear Safety, Security and Safeguards of the Netherlands Ministry of Housing, Spatial Planning and the Environment has examined the circumstances. The following research questions were examined: (1) How is the CRM system composed? (2) Has there been a radiological emission? (3) How can the peak values be explained? (4) What conclusions can be drawn from the National Measuring network for Radiology of the RIVM? [mk]. [Dutch] Tijdens een open dag bij Nuclear Research and consultancy Group (NRG) op 28 mei 2006 werden door NRG publiekelijk meetwaarden gepresenteerd van het Centraal Radiologisch Monitoring Systeem (CRM). Bij gedetailleerde navraag van een bezoeker manifesteerden zich op twee dagen, 19 en 26 september 2001, sterk verhoogde kort durende piekwaarden. Dit heeft ertoe geleid dat van diverse zijden (Meldpunt Nucleaire Veiligheid Noord-Holland, Provinciale Staten Noord-Holland, Greenpeace Nederland en Vereniging Pettemerduinen Kernreactorvrij!) de KFD vragen bereikten of er sprake zou kunnen zijn van een radiologische emissie. In de publiciteit werd gewag gemaakt van een 'radioactieve gaswolk'. De KFD van de VROM-Inspectie heeft de toedracht hiervan onderzocht. Hierbij zijn de volgende onderzoeksvragen gesteld: (1) Hoe zit het CRM-systeem in elkaar?; (2) Is

  16. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  17. ''Sleeping reactor'' irradiations: Shutdown reactor determination of short-lived activation products

    International Nuclear Information System (INIS)

    Jerde, E.A.; Glasgow, D.C.

    1998-01-01

    At the High-Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory, the principal irradiation system has a thermal neutron flux (φ) of ∼ 4 x 10 14 n/cm 2 · s, permitting the detection of elements via irradiation of 60 s or less. Irradiations of 6 or 7 s are acceptable for detection of elements with half-lives of as little as 30 min. However, important elements such as Al, Mg, Ti, and V have half-lives of only a few minutes. At HFIR, these can be determined with irradiation times of ∼ 6 s, but the requirement of immediate counting leads to increased exposure to the high activity produced by irradiation in the high flux. In addition, pneumatic system timing uncertainties (about ± 0.5 s) make irradiations of 9 Be(γ,n) 8 Be, the gamma rays principally originating in the spent fuel. Upon reactor SCRAM, the flux drops to ∼ 1 x 10 10 n/cm 2 · s within 1 h. By the time the fuel elements are removed, the flux has dropped to ∼ 6 x 10 8 . Such fluxes are ideal for the determination of short-lived elements such as Al, Ti, Mg, and V. An important feature of the sleeping reactor is a flux that is not constant

  18. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  19. Experience and prospects for developing research reactors of different types

    International Nuclear Information System (INIS)

    Kuatbekov, R.P.; Tretyakov, I.T.; Romanov, N.V.; Lukasevich, I.B.

    2015-01-01

    NIKIET has a 60-year experience in the development of research reactors. Altogether, there have been more than 25 NIKIET-designed plants of different types built in Russia and 20 more in other countries, including pool-type water-cooled and water moderated research reactors, tank-type and pressure-tube research reactors, pressurized high-flux, heavy-water, pulsed and other research reactors. Most of the research reactors were designed as multipurpose plants for operation at research centers in a broad range of applications. Besides, unique research reactors were developed for specific application fields. Apart from the experience in the development of research reactor designs and the participation in the reactor construction, a unique amount of knowledge has been gained on the operation of research reactors. This makes it possible to use highly reliable technical solutions in the designs of new research reactors to ensure increased safety, greater economic efficiency and maintainability of the reactor systems. A multipurpose pool-type research reactor of a new generation is planned to be built at the Center for Nuclear Energy Science & Technology (CNEST) in the Socialist Republic of Vietnam to be used to support a spectrum of research activities, training of skilled personnel for Vietnam nuclear industry and efficient production of isotopes. It is exactly the applications a research reactor is designed for that defines the reactor type, design and capacity, and the selection of fuel and components subject to all requirements of industry regulations. The design of the new research reactor has a great potential in terms of upgrading and installation of extra experimental devices. (author)

  20. Dialyzer Reuse and Outcomes of High Flux Dialysis.

    Directory of Open Access Journals (Sweden)

    Christos Argyropoulos

    Full Text Available The bulk of randomized trial evidence for the expanding use of High Flux (HF hemodialysis worldwide comes from two randomized controlled trials, one of which (HEMODIALYSIS, HEMO allowed, while the other (Membrane Outcomes Permeability, MPO excluded, the reuse of membranes. It is not known whether dialyzer reuse has a differential impact on outcomes with HF vs low flyx (LF dialyzers.Proportional Hazards Models and Joint Models for longitudinal measures and survival outcomes were used in HEMO to analyze the relationship between β2-microglobulin (β2M concentration, flux, and reuse. Meta-analysis and regression techniques were used to synthesize the evidence for HF dialysis from HEMO and MPO.In HEMO, minimally reused (< 6 times HF dialyzers were associated with a hazard ratio (HR of 0.67 (95% confidence interval, 95%CI: 0.48-0.92, p = 0.015, 0.64 (95%CI: 0.44 - 0.95, p = 0.03, 0.61 (95%CI: 0.41 - 0.90, p = 0.012, 0.53 (95%CI: 0.28 - 1.02, p = 0.057 relative to minimally reused LF ones for all cause, cardiovascular, cardiac and infectious mortality respectively. These relationships reversed for extensively reused membranes (p for interaction between reuse and flux < 0.001, p = 0.005 for death from all cause and cardiovascular causes, while similar trends were noted for cardiac and infectious mortality (p of interaction between reuse and flux of 0.10 and 0.08 respectively. Reduction of β2M explained only 1/3 of the effect of minimally reused HF dialyzers on all cause mortality, while non-β2M related factors explained the apparent attenuation of the benefit with more extensively reused dialyzers. Meta-regression of HEMO and MPO estimated an adjusted HR of 0.63 (95% CI: 0.51-0.78 for non-reused HF dialyzers compared with non-reused LF membranes.This secondary analysis and synthesis of two large hemodialysis trials supports the widespread use of HF dialyzers in clinical hemodialysis over the last decade. A mechanistic understanding of the effects of

  1. Temperature Dependent Surface Modification of Tungsten Exposed to High-Flux Low-Energy Helium Ion Irradiation

    OpenAIRE

    Damico, Antony Q; Tripathi, Jitendra K; Novakowski, Theodore J; Miloshevsky, Gennady; Hassanein, Ahmed

    2016-01-01

    Nuclear fusion is a great potential energy source that can provide a relatively safe and clean limitless supply of energy using hydrogen isotopes as fuel material. ITER (international thermonuclear experimental reactor) is the world first fusion reactor currently being built in France. Tungsten (W) is a prime candidate material as plasma facing component (PFC) due to its excellent mechanical properties, high melting point, and low erosion rate. However, W undergoes a severe surface morphology...

  2. The Maple reactor project

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Labrie, J.-P.

    2003-01-01

    MDS Nordion supplies the majority of the world's reactor-produced medical isotopes. These isotopes are currently produced in the NRU reactor at AECL's Chalk River Laboratories (CRL). Medical isotopes and related technology are relied upon around the world to prevent, diagnose and treat disease. The NRU reactor, which has played a key role in supplying medical isotopes to date, has been in operation for over 40 years. Replacing this aging reactor has been a priority for MDS Nordion to assure the global nuclear medicine community that Canada will continue to be a dependable supplier of medical isotopes. MDS Nordion contracted AECL to construct two MAPLE reactors dedicated to the production of medical isotopes. The MDS Nordion Medical Isotope Reactor (MMIR) project started in September 1996. This paper describes the MAPLE reactors that AECL has built at its CRL site, and will operate for MDS Nordion. (author)

  3. Shielding calculations by using the analytic methods : Application to the radio-isotopes production in the CENM reactor

    International Nuclear Information System (INIS)

    Elmorabit, A.; Labrim, H.

    2010-01-01

    Full text: this work is part of developing an analytical method for solving the neutrons transport equation in improving the treatment of the anisotropy of neutron scattering through heterogeneous shielding. We also develop the tools necessary for the formation of multigroup libraries (cross section) with the best choice of the weighting function. Among the radioprotection problems of radioisotopes production experiments in the research reactor core is mainly the photons gamma generation produced by radiative capture: activation of samples and their capsules. So, in order to review the safety of operating personnel and the public is essential to quantify the neutrons flux and gamma photons produced. In this study a numerical methods is used in two different Fortran program to solve the neutron transport problem and to determine the neutron and photon flux. This program based on the Monte Carlo method: the neutron is born with a unit statistical weight, this corrected after each imposed scattering event during its whole history within the shield. The final neutron statistical weight is used in an appropriate estimator to determine the searched response. The generated gamma rays by neutron capture are calculated of different isotopes, and then the equivalent dose rate is evaluated in biological tissue for different neutron source energies. We have identified and studied the choice of the best weighting function to calculate a library of multigroup cross sections self protected by using the energy weighting function. A Fortran program is used as a mathematical tool to solve the neutron slowing down equation in infinite homogeneous medium for different dilutions. We determined the energetic flux distribution and the effective integrals. The results of both calculations are in a good agreement; the relative error is less than 0.5%.

  4. Status of Kijang Resarch Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jee. Y; Kwon, T. H.; Kim, Jun. Y.; Oh, G. B. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The High-flux Advanced Neutron Application Reactor (HANARO) is a multi-purpose reactor in Korea Atomic Energy Research Institute (KAERI) and is being utilized for neutron scattering experiments, material and fuel tests for nuclear power plants, radio-isotope (RI) productions, silicon doping, neutron activation analysis, and neutron radiography. In medical applications, the majority of RIs produced using HANARO are I-131 and Ir-192. Other RIs such as Mo-99 are coming from imports. The self-sufficiency of RI demand becomes an important issue for the public health service in Korea. In this regard the Kijang Research Reactor (KJRR) project was officially launched on the first of April 2012 in need to provide the self-sufficiency of RI demand including Mo-99, increase the neutron transportation doping (NTD) capacity and develop technologies related to the research reactor. When CP is granted, the first excavation is planned to start at the end of this year. In next year, pouring the first concrete and energizing 154kV will follow. In 2018, it is planned to complete utility building construction and reactor building construction.

  5. A new high resolution neutron powder diffractometer at the Brookhaven high flux beam reactor

    International Nuclear Information System (INIS)

    Passell, L.; Bar-Ziv, S.; Gardner, D.W.; Cox, D.E.; Axe, J.D.

    1991-01-01

    A high resolution neutron powder diffractometer under construction at the Brookhaven HFBR is expected to be completed by mid-1991. The new machine will have a Ge (511) monochromator with a take-off angle of 120 o (λ=1.89A) and 64 3 He counters in the detector bank. There will be interchangeable collimators before the monochromator allowing a choice of 5 or 11' horizontal divergence, and 10 cm-high, 5' collimators in front of the detectors. In the higher resolution mode, Δd/d is expected to be about 6x10 -4 at the resolution minimum. The diffractometer is generally similar to D2B at the Institut Laue-Langevin except for the monochromator. This will consist of a vertically focussing array of segments 3x1.27 cm in dimensions cut from stacks of 20 0.43 mm wafers that have been pressed and brazed together. Preliminary measurements indicate that a mosaic width of 0.1-0.15 o and a peak reflectivity of 25% can be achieved in this way. (author) 2 figs., 22 refs

  6. A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 3: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The third volume of the Probabilistic Safety Assessment contains supporting information for the PSA as follows: Appendix C (continued) with details of the system analysis and reports for the system/top event models; Appendix D with results of the specific engineering analyses of internal initiating events; Appendix E, containing supporting data for the human performance assessment,; Appendix F with details of the estimation of the frequency of leaks at HIFAR and Appendix G, containing event sequence model and quantification results

  7. Status of the conversion working plan in the High Flux Reactor (Petten, The Netherlands)

    International Nuclear Information System (INIS)

    Hendriks, J.A.; Thijssen, P.J.M.; Wijtsma, F.J.; Gevers, A.; Guidez, J.

    2000-01-01

    The conversion from HEU to LEU has often many disadvantages: flux penalties, increase of fuel consumption, cost and delay to obtain a new license etc. But to fulfill the non-proliferation programme, and to simplify the future fuel supply, the HFR renewed in 1998 studies on conversion possibilities. To minimize the conversion costs, these studies were made with a progressive conversion that avoids the need of one new core and permits to begin the conversion with a replacement of 5 elements at each cycle. Hence the conversion can be made in 7 cycles, without special elements and with a normal bum-up for each element. To avoid an increase of fuel consumption, an increase of the fuel cycle length from 24.7 to 28.3 days was also considered. This point allows reducing the number of annual cycles from 1 to 10 and enables in one cycle to have the possibility of four successive irradiations for Molybdenum production (7 days) in one irradiation position. A working plan for fuel licensing has been sent to the safety authorities and is presented in the paper. (author)

  8. Application of genetic algorithm in the fuel management optimization for the high flux engineering test reactor

    International Nuclear Information System (INIS)

    Shi Xueming; Wu Hongchun; Sun Shouhua; Liu Shuiqing

    2003-01-01

    The in-core fuel management optimization model based on the genetic algorithm has been established. An encode/decode technique based on the assemblies position is presented according to the characteristics of HFETR. Different reproduction strategies have been studied. The expert knowledge and the adaptive genetic algorithms are incorporated into the code to get the optimized loading patterns that can be used in HFETR

  9. Fractography evaluation of impact and tensile specimens from the HFBR [High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1989-10-01

    The Materials Technology Group of the Department of Nuclear Energy (DNE) at Brookhaven National Laboratory (BNL) has performed a fractographic examination of neutron irradiated and unirradiated tensile and Charpy ''V'' notch specimens. The evaluation was carried out using a scanning electron microscope (SEM) to evaluate the fracture mode. Photomicrographs were then evaluated to determine the extent of ductility present on the fracture surfaces of the unirradiated specimens. Ductility area measurements ranged from 4.6--9.5% on typical photomicrographs examined. 12 figs

  10. Status report of Indonesian research reactors

    International Nuclear Information System (INIS)

    Arbie, B.; Supadi, S.

    1995-01-01

    A general description of the three Indonesia research reactors, their irradiation facilities and future prospect are given. The 250 kW Triga Mark II in Bandung has been in operation since 1965 and in 1972 its designed power was increased to 1000 kW. The core grid from the previous 250 kW Triga Mark II was then used by Batan for designing and constructing the Kartini reactor in Yogyakarta. This reactor commenced its operation in 1979. Both Triga reactors have served a wide spectrum of utilization such as for manpower training in nuclear engineering, radiochemistry, isotope production, and beam research in solid state physics. The Triga reactor management in Bandung has a strong cooperation with the Bandung Institute of Technology and the one in Yogyakarta with the Gadjah Mada University which has a Nuclear Engineering Department at its Faculty of Engineering. In 1976 there emerged an idea to have a high flux reactor appropriate for Indonesia's intention to prepare an infrastructure for both nuclear energy and non-energy industry era. Such an idea was then realized with the achievement of the first criticality of the RSG-GAS reactor at the Serpong area. It is now expected that by early 1992 the reactor will reach its full 30 MW power level and by the end of 1992 the irradiation facilities be utilizable fully for future scientific and engineering work. As a part of the national LEU fuel development program a study has been underway since early 1989 to convert the RSG-GAS reactor core from using oxide fuel to using higher loading silicide fuel. (author)

  11. Design description and validation results for the IFMIF High Flux Test Module as outcome of the EVEDA phase

    Directory of Open Access Journals (Sweden)

    F. Arbeiter

    2016-12-01

    Full Text Available During the Engineering Validation and Engineering Design Activities (EVEDA phase (2007-2014 of the International Fusion Materials Irradiation Facility (IFMIF, an advanced engineering design of the High Flux Test Module (HFTM has been developed with the objective to facilitate the controlled irradiation of steel samples in the high flux area directly behind the IFMIF neutron source. The development process addressed included manufacturing techniques, CAD, neutronic, thermal-hydraulic and mechanical analyses complemented by a series of validation activities. Validation included manufacturing of 1:1 parts and mockups, test of prototypes in the FLEX and HELOKA-LP helium loops of KIT for verification of the thermal and mechanical properties, and irradiation of specimen filled capsule prototypes in the BR2 test reactor. The prototyping activities were backed by several R&D studies addressing focused issues like handling of liquid NaK (as filling medium and insertion of Small Specimen Test Technique (SSTT specimens into the irradiation capsules. This paper provides an up-todate design description of the HFTM irradiation device, and reports on the achieved performance criteria related to the requirements. Results of the validation activities are accounted for and the most important issues for further development are identified.

  12. Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing.

    Science.gov (United States)

    Aslett, Denise; Haas, Joseph; Hyman, Michael

    2011-09-01

    Biodegradation of the gasoline oxygenates methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE) can cause tertiary butyl alcohol (TBA) to accumulate in gasoline-impacted environments. One remediation option for TBA-contaminated groundwater involves oxygenated granulated activated carbon (GAC) reactors that have been self-inoculated by indigenous TBA-degrading microorganisms in ground water extracted from contaminated aquifers. Identification of these organisms is important for understanding the range of TBA-metabolizing organisms in nature and for determining whether self-inoculation of similar reactors is likely to occur at other sites. In this study (13)C-DNA-stable isotope probing (SIP) was used to identify TBA-utilizing organisms in samples of self-inoculated BioGAC reactors operated at sites in New York and California. Based on 16S rRNA nucleotide sequences, all TBA-utilizing organisms identified were members of the Burkholderiales order of the β-proteobacteria. Organisms similar to Cupriavidus and Methylibium were observed in both reactor samples while organisms similar to Polaromonas and Rhodoferax were unique to the reactor sample from New York. Organisms similar to Hydrogenophaga and Paucibacter strains were only detected in the reactor sample from California. We also analyzed our samples for the presence of several genes previously implicated in TBA oxidation by pure cultures of bacteria. Genes Mpe_B0532, B0541, B0555, and B0561 were all detected in (13)C-metagenomic DNA from both reactors and deduced amino acid sequences suggested these genes all encode highly conserved enzymes. One gene (Mpe_B0555) encodes a putative phthalate dioxygenase-like enzyme that may be particularly appropriate for determining the potential for TBA oxidation in contaminated environmental samples.

  13. The text of the instruments connected with the Agency's assistance to Argentina in establishing a research and isotope production reactor project

    International Nuclear Information System (INIS)

    1995-01-01

    The Agreement between the Republic of Argentina, the Federative Republic of Brazil, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials and the International Atomic Energy Agency for the Application of Safeguards came into force on 4 March 1994. As a result of the coming into force of the aforesaid Agreement for Argentina, the application of safeguards under the Project Agreement of 2 December 1964 between Argentina and the IAEA in connection with the Agency's assistance to Argentina in establishing a research and isotope production reactor project has been suspended

  14. Reactor noise analysis by statistical pattern recognition methods

    International Nuclear Information System (INIS)

    Howington, L.C.; Gonzalez, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis is presented. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, updating, and data compacting capabilities. System design emphasizes control of the false-alarm rate. Its abilities to learn normal patterns, to recognize deviations from these patterns, and to reduce the dimensionality of data with minimum error were evaluated by experiments at the Oak Ridge National Laboratory (ORNL) High-Flux Isotope Reactor. Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the pattern recognition system

  15. Study of short-lived fission products with the aid of an isotope separator connected to reactor R2-0

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    This report constitutes a final report on project 74-3289 together with a preliminary report for project 75-3332. These projects have been included in the budget years 1974/75 and 1975/76 as a contribution to the operating costs of reactor R2-0 at Studsvik. The reactor was used for experimental studies on short-lived fission products with OSIRIS isotope-separator equipment. The scientific programme is very broad. It comprises, in the first place, characterisation of fission products (a study of their excitation levels, measurement of decay properties such as half-life and emission of delayed neutrons, determination of neutron energy spectrum, determination of total decay energy, etc.). An important application of this field of research is the determination of decay heat in nuclear fuel. The programme thus comprises research of a fundamental character and applied research. (H.E.G.)

  16. Nitrous oxide production pathways in a partial nitritation-anammox reactor: Isotopic evidence for nitrous oxide production associated anaerobic ammonium oxidation?

    Science.gov (United States)

    Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.

    2014-12-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation production pathway, which is hypothesized to be mediated by anammox activity (Figure 1). A less likely explanation is that the SP of N2O was increased by partial N2O reduction by heterotrophic denitrification. Various experiments were conducted to further investigate N2O formation pathways in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall, process control via online N2O monitoring was confirmed to be an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. ReferencesWaechter H. et al. (2008) Optics Express, 16: 9239-9244. Wunderlin, P et al. (2013) Environmental Science & Technology 47: 1339-1348.

  17. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  18. Determination of uranium concentration and burn-up of irradiated reactor fuel in contaminated areas in Belarus using uranium isotopic ratios in soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, V.P.; Matusevich, J.L.; Kudrjashov, V.P.; Ananich, P.I.; Zhuravkov, V.V. [Inst. of Radiobiology, Minsk Univ. (Belarus); Boulyga, S.F. [Inst. of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Becker, J.S. [Central Div. of Analytical Chemistry, Research Centre Juelich, Juelich (Germany)

    2005-07-01

    An analytical method is described for the estimation of uranium concentrations, of {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios and burn-up of irradiated reactor uranium in contaminated soil samples by inductively coupled plasma mass spectrometry. Experimental results obtained at 12 sampling sites situated on northern and western radioactive fallout tails 4 to 53 km distant from Chernobyl nuclear power plant (NPP) are presented. Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 2.1 x 10{sup -9}g/g to 2.0 x 10{sup -6}g/g depending mainly on the distance from Chernobyl NPP. A slight variation of the degree of burn-up of spent reactor uranium was revealed by analyzing {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios and the average value amounted to 9.4{+-}0.3 MWd/(kg U). (orig.)

  19. Research reactors and materials testing

    International Nuclear Information System (INIS)

    Vidal, H.

    1986-01-01

    Research reactors can be classified in three main groups according to the moderator which is used. Their technical characteristics are given and the three most recent research and materials testing reactors are described: OSIRIS, ORPHEE and the high-flux reactor of Grenoble. The utilization of research reactors is reviewed in four fields of activity: training, fundamental or applied research and production (eg. radioisotopes) [fr

  20. Radiation effects on reactor pressure vessel supports

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1996-05-01

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue

  1. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    Yoder, G.L. Jr.; Dixon, J.R.; Elkassabgi, Y.; Felde, D.K.; Giles, G.E.; Harrington, R.M.; Morris, D.G.; Nelson, W.R.; Ruggles, A.E.; Siman-Tov, M.; Stovall, T.K.

    1994-05-01

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  2. Measurements with the high flux lead slowing-down spectrometer at LANL

    International Nuclear Information System (INIS)

    Danon, Y.; Romano, C.; Thompson, J.; Watson, T.; Haight, R.C.; Wender, S.A.; Vieira, D.J.; Bond, E.; Wilhelmy, J.B.; O'Donnell, J.M.; Michaudon, A.; Bredeweg, T.A.; Schurman, T.; Rochman, D.; Granier, T.; Ethvignot, T.; Taieb, J.; Becker, J.A.

    2007-01-01

    A Lead Slowing-Down Spectrometer (LSDS) was recently installed at LANL [D. Rochman, R.C. Haight, J.M. O'Donnell, A. Michaudon, S.A. Wender, D.J. Vieira, E.M. Bond, T.A. Bredeweg, A. Kronenberg, J.B. Wilhelmy, T. Ethvignot, T. Granier, M. Petit, Y. Danon, Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator, Nucl. Instr. and Meth. A 550 (2005) 397]. The LSDS is comprised of a cube of pure lead 1.2 m on the side, with a spallation pulsed neutron source in its center. The LSDS is driven by 800 MeV protons with a time-averaged current of up to 1 μA, pulse widths of 0.05-0.25 μs and a repetition rate of 20-40 Hz. Spallation neutrons are created by directing the proton beam into an air-cooled tungsten target in the center of the lead cube. The neutrons slow down by scattering interactions with the lead and thus enable measurements of neutron-induced reaction rates as a function of the slowing-down time, which correlates to neutron energy. The advantage of an LSDS as a neutron spectrometer is that the neutron flux is 3-4 orders of magnitude higher than a standard time-of-flight experiment at the equivalent flight path, 5.6 m. The effective energy range is 0.1 eV to 100 keV with a typical energy resolution of 30% from 1 eV to 10 keV. The average neutron flux between 1 and 10 keV is about 1.7 x 10 9 n/cm 2 /s/μA. This high flux makes the LSDS an important tool for neutron-induced cross section measurements of ultra-small samples (nanograms) or of samples with very low cross sections. The LSDS at LANL was initially built in order to measure the fission cross section of the short-lived metastable isotope of U-235, however it can also be used to measure (n, α) and (n, p) reactions. Fission cross section measurements were made with samples of 235 U, 236 U, 238 U and 239 Pu. The smallest sample measured was 10 ng of 239 Pu. Measurement of (n, α) cross section with 760 ng of Li-6 was also demonstrated. Possible future cross section

  3. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  4. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  5. Nuclear data needs for the analysis of generation and burn-up of actinide isotopes in nuclear reactors

    International Nuclear Information System (INIS)

    Kuesters, H.

    1980-04-01

    A reliable prediction of the in-pile and out-of-pile physics characteristics of nuclear fuel is one of the objectives of present-day reactor physics. The paper describes the main production paths of important actinides for light water and fast breeder reactors. The accuracy of recent nuclear data is examined by comparisons of theoretical predictions with the results from post-irradiation analysis of nuclear fuel from power reactors, and partly with results obtained in zero-power facilities. A world-wide comparison of nuclear data to be used in large fast power reactor burn-up and long term considerations is presented. The needs for further improvement of nuclear data are discussed. (orig.) [de

  6. Development and validation status of the IFMIF High Flux Test Module

    International Nuclear Information System (INIS)

    Arbeiter, Frederik; Abou-Sena, Ali; Chen Yuming; Dolensky, Bernhard; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg

    2011-01-01

    The development of the IFMIF (International Fusion Material Irradiation Facility) High Flux Test Module in the EVEDA (Engineering Validation and Engineering Design Activities) phase up to 2013 includes conceptual design, engineering analyses, as well as design and engineering validation by building of prototypes and their testing. The High Flux Test Module is the device to facilitate the irradiation of SSTT samples of RAFM steels at temperatures 250-550 deg. C and up to an accumulated irradiation damage of 150 dpa. The requirements, the current design and the performance of the module are discussed, and the development process is outlined.

  7. Development and validation status of the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology (KIT-INR), Karlsruhe (Germany); Abou-Sena, Ali; Chen Yuming; Dolensky, Bernhard; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology (KIT-INR), Karlsruhe (Germany)

    2011-10-15

    The development of the IFMIF (International Fusion Material Irradiation Facility) High Flux Test Module in the EVEDA (Engineering Validation and Engineering Design Activities) phase up to 2013 includes conceptual design, engineering analyses, as well as design and engineering validation by building of prototypes and their testing. The High Flux Test Module is the device to facilitate the irradiation of SSTT samples of RAFM steels at temperatures 250-550 deg. C and up to an accumulated irradiation damage of 150 dpa. The requirements, the current design and the performance of the module are discussed, and the development process is outlined.

  8. Design of a high-flux test assembly for the Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Opperman, E.K.; Vogel, M.A.

    1982-01-01

    The Fusion Material Test Facility (FMIT) will provide a high flux fusion-like neutron environment in which a variety of structural and non-structural materials irradiations can be conducted. The FMIT experiments, called test assemblies, that are subjected to the highest neutron flux magnitudes and associated heating rates will require forced convection liquid metal cooling systems to remove the neutron deposited power and maintain test specimens at uniform temperatures. A brief description of the FMIT facility and experimental areas is given with emphasis on the design, capabilities and handling of the high flux test assembly

  9. Impact of radiation embrittlement on integrity of pressure vessel supports for two PWR [pressurized-water-reactor] plants

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

    1988-01-01

    Recent pressure-vessel surveillance data from the High Flux Isotope Reactor (HFIR) indicate an embrittlement fluence-rate effect that is applicable to the evaluation of the integrity of light-water reactor (LWR) pressure vessel supports. A preliminary evaluation using the HFIR data indicated increases in the nil ductility transition temperature at 32 effective full-power years (EFPY) of 100 to 130/degree/C for pressurized-water-reactor (PWR) vessel supports located in the cavity at midheight of the core. This result indicated a potential problem with regard to life expectancy. However, an accurate assessment required a detailed, specific-plant, fracture-mechanics analysis. After a survey and cursory evaluation of all LWR plants, two PWR plants that appeared to have a potential problem were selected. Results of the analyses indicate minimum critical flaw sizes small enough to be of concern before 32 EFPY. 24 refs., 16 figs., 7 tabs

  10. Development of radiation resistant structural materials utilizing fission research reactors in Japan (Role of research reactors)

    International Nuclear Information System (INIS)

    Shikama, T.; Tanigawa, H.; Nozawa, T.; Muroga, T.; Aoyama, T.; Kawamura, H.; Ishihara, M.; Ito, C.; Kaneda, S.; Mimura, S.

    2009-01-01

    Structural materials for next-generation nuclear power systems should have a good radiation resistance, where the expected accumulation dose will largely exceed 10 dpa. Among several candidate materials, materials of five categories, 1. Austenitic steels, including high nickel alloys, 2. Low activation ferritic martensitic steels, 3. ODS steels (austenitic and ferritic), 4. Vanadium based alloys, 5. Silicon carbide composites (SiC/SiCf). All have been most extensively studied in Japan, in collaboration among industries, national institutes such as Japan Atomic Energy Agency (JAEA), National Institute for Fusion Science (NIFS) and National Institute for Materials Science (NIMS), and universities. The high nickel base alloys were studied for their low swelling behaviors mainly by the NIMS and the austenitic steels are studied for their reliable engineering data base and their reliable performance in irradiation environments mainly by the JAEA, mainly for their application in the near-term projects such as the ITER and the Sodium Cooled Fast Reactors. The most extensive studies are now concentrated on the Low Activation Ferritic Marsensitic steels and ODS steels, for their application in a demonstration fusion reactor and prototype sodium cooled fast reactors. Fundamental studies on radiation effects are carried out, mainly utilizing Japan Materials Testing Rector (JMTR) with its flexible irradiation ability, up to a few dpa. For higher dpa irradiation, a fast test reactor, JOYO is utilized up to several 10s dpa. Some international collaborations such as Japan/USA and Japan/France are effective to utilize reactors abroad, such as High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory, and sodium cooled high flux fast reactors in France. Silicon carbide based composites are extensively studied by university groups led by Kyoto University and the JAEA. For their performance in heavy irradiation environments, the Japan/USA collaboration plays an important role

  11. Development of high flux thermal neutron generator for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vainionpaa, Jaakko H., E-mail: hannes@adelphitech.com [Adelphi Technology, 2003 E Bayshore Rd, Redwood City, CA 94063 (United States); Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K. [Adelphi Technology, 2003 E Bayshore Rd, Redwood City, CA 94063 (United States); Jones, Glenn [G& J Jones Enterprice, 7486 Brighton Ct, Dublin, CA 94568 (United States); Pantell, Richard H. [Department of Electrical Engineering, Stanford University, Stanford, CA (United States)

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3–5 · 10{sup 7} n/cm{sup 2}/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 10{sup 10} n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  12. Research and materials irradiation reactors

    International Nuclear Information System (INIS)

    Ballagny, A.; Guigon, B.

    2004-01-01

    Devoted to the fundamental and applied research on materials irradiation, research reactors are nuclear installations where high neutrons flux are maintained. After a general presentation of the research reactors in the world and more specifically in France, this document presents the heavy water cooled reactors and the water cooled reactors. The third part explains the technical characteristics, thermal power, neutron flux, operating and details the Osiris, the RHF (high flux reactor), the Orphee and the Jules Horowitz reactors. The last part deals with the possible utilizations. (A.L.B.)

  13. Modeling the reduction of gross lithium erosion observed under high-flux deuterium bombardment

    NARCIS (Netherlands)

    Abrams, T.; Jaworski, M. A.; Kaita, R.; Nichols, J. H.; Stotler, D. P.; De Temmerman, G.; van den Berg, M. A.; van der Meiden, H. J.; Morgan, T. W.

    2015-01-01

    Abstract Both thin (<1 μm) and thick (∼500 μm) lithium films under high-flux deuterium and neon plasma bombardment were studied in the linear plasma device Magnum-PSI at ion fluxes >1024 m−2 s−1 and surface temperatures <700 °C.

  14. Fast nanostructured carbon microparticle synthesis by one-step high-flux plasma processing

    NARCIS (Netherlands)

    Aussems, D. U. B.; Bystrov, K.; Dogan, I.; Arnas, C.; Cabié, M.; Neisius, T.; Rasinski, M.; Zoethout, E.; Lipman, P.; van de Sanden, M. C. M.; Morgan, T. W.

    2017-01-01

    This study demonstrates a fast one-step synthesis method for nanostructured carbon microparticles on graphite samples using high-flux plasma exposure. These structures are considered as potential candidates for energy applications such as Li-ion batteries and supercapacitors. The samples were

  15. Fast nanostructured carbon microparticle synthesis by one-step high-flux plasma processing

    NARCIS (Netherlands)

    Aussems, D.U.B.; Bystrov, K.E.; Doǧan, I.; Arnas, C.; Cabié, M.; Neisius, T.; Rasinski, M.; Lipman, P.J.L.; van de Sanden, M.C.M.; Morgan, T.W.

    This study demonstrates a fast one-step synthesis method for nanostructured carbon microparticles on graphite samples using high-flux plasma exposure. These structures are considered as potential candidates for energy applications such as Li-ion batteries and supercapacitors. The samples were

  16. Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma

    NARCIS (Netherlands)

    Xu, H.Y.; De Temmerman, G.C.; Luo, G.-N.; Jia, Y.Z.; Yuan, Y.; Fu, B.Q.; Godfrey, A.; Liu, W.

    2015-01-01

    PLASMA-SURFACE INTERACTIONS 21 — Proceedings of the 21st International Conference on Plasma-Surface Interactions in Controlled Fusion Devices Kanazawa, Japan May 26-30, 2014 Surface topography of polycrystalline tungsten (W) have been examined after exposure to a low-energy (38 eV/D), high-flux

  17. Pallas: the new nuclear reactor in the Netherlands

    International Nuclear Information System (INIS)

    De Jong, P.G.T.; Van Der Schaaf, B.; Schrijver, J.M.

    2010-01-01

    In the European Union, the first generation research reactors are approaching necessary operational retirement. Maintenance costs are increasing and continuity of operations is compromised by the aging of materials and components. The High Flux Reactor (HFR) in Petten, The Netherlands, is one such reactor. Nuclear Research and Consultancy Group (NRG), the current licence holder and operator of the HFR, therefore plans to build a new research reactor called PALLAS. This will be a state-of-the-art reactor equipped to meet the growing world demand for both nuclear knowledge and services and the production of essential medical isotopes. It will have the capacity to be the world's biggest producer of such isotopes. The tender process for PALLAS began in 2007 and will continue through 2010- 2011, following the EU rules for competitive tendering of complex, one-off design and construction projects. NRG is currently still actively pursuing the acquisition of the funding for the project. In the exploitation of PALLAS there will be both public and private interests. Public interests have to do with research for sustainable energy and with guaranteed availability of medical isotopes for the treatment of patients. Private interests are focused on commercial irradiations and the production of isotopes. Currently it is expected that the design phase will have to be almost fully public funded NRG welcomes the cabinet-council's recent support for the building of a new reactor and is fortunate in having fast growing public acceptance and support for it too. The licensing process began in autumn 2009 with a, so called, Notification of Intent to conduct an Environmental Impact Assessment (EIA) for PALLAS. Public hearings have been held to inform the national EIA committee's approach to consideration of the Impact Assessment. The PALLAS project team in Petten will guide the design and construction processes, is responsible for the licensing and commissioning and will manage the design

  18. Isotope research materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Preparation of research isotope materials is described. Topics covered include: separation of tritium from aqueous effluents by bipolar electrolysis; stable isotope targets and research materials; radioisotope targets and research materials; preparation of an 241 Am metallurgical specimen; reactor dosimeters; ceramic and cermet development; fission-fragment-generating targets of 235 UO 2 ; and wire dosimeters for Westinghouse--Bettis

  19. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation

    Science.gov (United States)

    Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan

    2018-05-01

    Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.

  20. Fluid-Structure Interaction for Coolant Flow in Research-type Nuclear Reactors

    International Nuclear Information System (INIS)

    Curtis, Franklin G.; Ekici, Kivanc; Freels, James D.

    2011-01-01

    The High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), is scheduled to undergo a conversion of the fuel used and this proposed change requires an extensive analysis of the flow through the reactor core. The core consists of 540 very thin and long fuel plates through which the coolant (water) flows at a very high rate. Therefore, the design and the flow conditions make the plates prone to dynamic and static deflections, which may result in flow blockage and structural failure which in turn may cause core damage. To investigate the coolant flow between fuel plates and associated structural deflections, the Fluid-Structure Interaction (FSI) module in COMSOL will be used. Flow induced flutter and static deflections will be examined. To verify the FSI module, a test case of a cylinder in crossflow, with vortex induced vibrations was performed and validated.

  1. Review on transactinium isotope build-up and decay in reactor fuel and related sensitivities to cross section changes and results and main conclusions of the IAEA-Advisory Group Meeting on Transactinium Nuclear Data, held at Karlsruhe, November 1975

    International Nuclear Information System (INIS)

    Kuesters, H.; Lalovic, M.

    1976-04-01

    In this report a review is given on the actinium isotope build-up and decay in LWRs, LMFBRs and HTRs. The dependence of the corresponding physical aspects on reactor type, fuel cycle strategy, calculational methods and cross section uncertainties is discussed. Results from postirradiation analyses and from integral experiments in fast zero power assemblies are compared with theoretical predictions. Some sensitivity studies about the influence of actinium nuclear data uncertainties on the isotopic concentration, decay heat, and the radiation out-put in fuel and waste are presented. In a second part, the main results of the IAEA-Advisory Group Meeting on Transactinium Nuclear Data are summarized and discussed. (orig.) [de

  2. Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.Y., E-mail: donaxu@163.com [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621907 (China); De Temmerman, G. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Ass. EURATOM-FOM, Trilateral Euregio Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); ITER Organization, Route de Vinon-sur-Verdon CS 90046-13067, St Paul Lez Durance Cedex (France); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Jia, Y.Z.; Yuan, Y.; Fu, B.Q.; Godfrey, A. [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-08-15

    Surface topography of polycrystalline tungsten (W) have been examined after exposure to a low-energy (38 eV/D), high-flux (∼1.1–1.5 × 10{sup 24} m{sup −2} s{sup −1}) deuterium plasma in the Pilot-PSI linear plasma device. The methods used were scanning electron microscopy (SEM), transmission electron microscopy (TEM), positron annihilation Doppler broadening (PADB) and grazing incident X-ray diffraction (GI-XRD). After exposure to high flux D plasma, blisters and nanostructures are formed on the W surface. Generation of defects was evidenced by PADB, while high stress and mixture of phases were detected in depth of 50 nm by GI-XRD. TEM observation revealed fluctuations and disordered microstructure on the outmost surface layer. Based on these results, surface reconstruction is considered as a possible mechanism for the formation of defects and nanostructures.

  3. A demonstration of the 'isotope wind tunnel principle' in JET and its use in predicting reactor performance

    International Nuclear Information System (INIS)

    Cordey, J.; Alper, B.; Budny, R.

    2000-01-01

    ELMy H-mode pulses have been obtained with different hydrogenic isotopes (H and D) but having the same profiles of the dimensionless parameters ρ*, β*, ν* and q, to test whether the confinement scale invariance principle is valid in a tokamak. The fact that the confinement times, the ELM and sawtooth frequencies in the two pulses all scale as expected suggests that the invariance principle is satisfied through the plasma radial extent, in spite of the differing physical processes taking place in the plasma centre, core and edge regions. An application of this 'isotope windtunnel technique' to predicting D-T performance of next step devices is discussed. In tokamak discharges, such as the steady state ELMy H-mode, the physical processes change dramatically as one moves out in minor radius. In the central region the temperature gradient is controlled by MHD modes (sawteeth), whilst outside in what is known as the core confinement region the transport is thought to be due to small scale Larmor radius (r i ) size turbulence, such as that caused by the ion temperature gradient instability. Finally in the edge region the transport is almost neoclassical with intermittent MHD events (ELMs) controlling the steepness of the gradients in this region. From theoretical analysis, in particular the confinement scale invariance principle, it should be possible to describe the transport properties in all three regions in terms of the profiles of the basic dimensionless plasma physics parameters ρ*(∝(MT) 1/2 /aB), β(∝ nT/B 2 ), ν* (∝ na/T 2 ) and q (∝Bκ/Rj). The thermal diffusivity should have the form χ ∝ Ba 2 /M F(ρ*, β, ν*, q, ...) where the form of the function F will be different in each of the three regions. One method of checking whether the invariance principle is correct is to complete wind tunnel or identity experiments on different tokamaks. This involves setting up discharges on different tokamaks with the same profiles of ρ*, β, ν* and q and

  4. Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma

    NARCIS (Netherlands)

    Xu, H.Y.; De Temmerman, G.; Luo, G. N.; Jia, Y. Z.; Yuan, Y.; Fu, B. Q.; Godfrey, A.; Liu, W.

    2015-01-01

    Surface topography of polycrystalline tungsten (W) have been examined after exposure to a low-energy (38 eV/D), high-flux (∼1.1–1.5 × 1024 m−2 s−1) deuterium plasma in the Pilot-PSI linear plasma device. The methods used were scanning electron microscopy

  5. A high-flux low-energy hydrogen ion beam using an end-Hall ion source

    NARCIS (Netherlands)

    Veldhoven, J. van; Sligte, E. te; Janssen, J.P.B.

    2016-01-01

    Most ion sources that produce high-flux hydrogen ion beams perform best in the high energy range (keV). Alternatively, some plasma sources produce very-lowenergy ions (<< 10 eV). However, in an intermediate energy range of 10-200 eV, no hydrogen ion sources were found that produce high-flux beams.

  6. Isotopic marking and tracers

    International Nuclear Information System (INIS)

    Morel, F.

    1997-01-01

    The use of radioactive isotopes as tracers in biology has been developed thanks to the economic generation of the required isotopes in accelerators and nuclear reactors, and to the multiple applications of tracers in the life domain; the most usual isotopes employed in biology are carbon, hydrogen, phosphorus and sulfur isotopes, because these elements are present in most of organic molecules. Most of the life science knowledge appears to be dependent to the extensive use of nuclear tools and radioactive tracers; the example of the utilization of radioactive phosphorus marked ATP to study the multiple reactions with proteins, nucleic acids, etc., is given

  7. Helium production in mixed spectrum reactor-irradiated pure elements

    International Nuclear Information System (INIS)

    Kneff, D.W.; Oliver, B.M.; Skowronski, R.P.

    1986-01-01

    The objectives of this work are to apply helium accumulation neutron dosimetry to the measurement of neutron fluences and energy spectra in mixed-spectrum fission reactors utilized for fusion materials testing, and to measure helium generation rates of materials in these irradiation environments. Helium generation measurements have been made for several Fe, Cu Ti, Nb, Cr, and Pt samples irradiated in the mixed-spectrum High Flux Isotope Reactor (HFIR) and Oak Ridge Research Reactor (ORR) at the Oak Ridge National Laboratory. The results have been used to integrally test the ENDF/B-V Gas Production File, by comparing the measurements with helium generation predictions made by Argonne National Laboratory using ENDF/B-V cross sections and adjusted reactor spectra. The comparisons indicate consistency between the helium measurements and ENDF/B-V for iron, but cross section discrepancies exist for helium production by fast neutrons in Cu, Ti, Nb, and Cr (the latter for ORR). The Fe, Cu, and Ti work updates and extends previous measurements

  8. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  9. Optimization study and neutronic and thermal-hydraulic design calculations of a 75 KWTH aqueous homogeneous reactor for medical isotopes production

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Garcia, Lorena P. Rodriguez; Llanes, Jesus Salomon; Hernandez, Carlos R. Garcia, E-mail: dperez@instec.cu, E-mail: dmilian@instec.cu, E-mail: lorenapilar@instec.cu, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Lira, Carlos A. Brayner de Oliveira, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Rodriguez, Manuel Cadavid, E-mail: mcadavid2001@yahoo.com [Tecnologia Nuclear Medica Spa, TNM (Chile)

    2015-07-01

    {sup 99m}Tc is the most common radioisotope used in nuclear medicine. It is a very useful radioisotope, which is used in about 30-40 million procedures worldwide every year. Medical diagnostic imaging techniques using {sup 99m}Tc represent approximately 80% of all nuclear medicine procedures. Although {sup 99m}Tc can be produced directly on a cyclotron or other type of particle accelerator, currently is almost exclusively produced from the beta-decay of its 66-h parent {sup 99}Mo. {sup 99}Mo production system in an Aqueous Homogeneous Reactor (AHR) is potentially advantageous because of its low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing and purification characteristics. In this paper, an AHR conceptual design using Low Enriched Uranium (LEU) is studied and optimized for the production of {sup 99}Mo. Aspects related with the neutronic behavior such as optimal reflector thickness, critical height, medical isotopes production and the reactivity feedback introduced in the solution by the volumetric expansion of the fuel solution due to thermal expansion of the fuel solution and the void volume generated by radiolytic gas bubbles were evaluated. Thermal-hydraulics studies were carried out in order to show that sufficient cooling capacity exists to prevent fuel overheating. The neutronic and thermal-hydraulics calculations have been performed with the MCNPX computational code and the version 14 of ANSYS CFX respectively. The neutronic calculations demonstrated that the reactor is able to produce 370 six-day curies of {sup 99}Mo in 5 days operation cycles and the CFD simulation demonstrated that the heat removal systems provide sufficient cooling capacity to prevent fuel overheating, the maximum temperature reached by the fuel (89.29 deg C) was smaller to the allowable temperature limit (90 deg C). (author)

  10. Wireless sensors for predictive maintenance of rotating equipment in research reactors

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    In 2008-2009, the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) tested the potential of predictive or condition-based maintenance techniques to reduce maintenance costs, minimize the risk of catastrophic failures, and maximize system availability by attaching wireless-based sensors to selected rotating equipment at HFIR. Rotating equipment is an ideal 'test case' for the viability of integrated, online predictive maintenance strategies because motors, bearings, and shafts are ubiquitous in nuclear power plants and because the maintenance methods typically performed on rotating equipment today (such as portable or handheld vibration data collection equipment) are highly labor-intensive. The HFIR project achieved all five of its objectives: (1) to identify rotating machinery of the types used in research reactors and determine their operational characteristics, degradation mechanisms, and failure modes, (2) to establish a predictive maintenance program for rotating equipment in research reactors, (3) to identify wireless sensors that are suitable for predictive maintenance of rotating machinery and test them in a laboratory setting, (4) to establish the requirements and procedures to be followed when implementing wireless sensors for predictive maintenance in research reactors, and (5) to develop a conceptual design for a predictive maintenance system for research reactors based on wireless sensors. The project demonstrated that wireless sensors offer an effective method for monitoring key process conditions continuously and remotely, thereby enhancing the safety, reliability, and efficiency of the aging research reactor fleet.

  11. β-decay half-lives of neutron-rich isotopes of Fe, Co, Ni involved in the beginning of the r-process

    International Nuclear Information System (INIS)

    Czajkowski, S.; Bernas, M.; Brissot, R.

    1992-01-01

    The very neutron-rich Fe- to Ni-isotopes are of interest since they are located at the very beginning of the astrophysical r-process path. The β-decay half-lives of several isotopes, identified in thermal fission of 235 U or 239 Pu, have been measured at the ILL high-flux reactor using the Lohengrin spectrometer. Half-lives have been determined from time-correlations analysis between the fragment implantation and the detection of the subsequent β-particles in the same detector. With the fragment separator FRS , at GSI, the projectile fragments of 86 Kr have been separated. The β-decay half-life of 65 Fe has been measured. Received: (from VMMAIL[FRSAC11 for XIN[IAEA1 via NJE)

  12. Preliminary Analysis of High-Flux RSG-GAS to Transmute Am-241 of PWR’s Spent Fuel in Asian Region

    Science.gov (United States)

    Budi Setiawan, M.; Kuntjoro, S.

    2018-02-01

    A preliminary study of minor actinides (MA) transmutation in the high flux profile RSG-GAS research reactor was performed, aiming at an optimal transmutation loading for present nuclear energy development. The MA selected in the analysis includes Am-241 discharged from pressurized water reactors (PWRs) in Asian region. Until recently, studies have been undertaken in various methods to reduce radiotoxicity from actinides in high-level waste. From the cell calculation using computer code SRAC2006, it is obtained that the target Am-241 which has a cross section of the thermal energy absorption in the region (group 8) is relatively large; it will be easily burned in the RSG-GAS reactor. Minor actinides of Am-241 which can be inserted in the fuel (B/T fuel) is 2.5 kg which is equivalent to Am-241 resulted from the partition of spent fuel from 2 units power reactors PWR with power 1000MW(th) operated for one year.

  13. ITER task T26/28 (1994): preliminary results on the solubility, diffusion and permeability of hydrogen isotopes in potentional fusion reactor ceramics

    International Nuclear Information System (INIS)

    Thompson, D.; Macauley-Newcombe, R.

    1995-02-01

    Ceramic insulators are integral parts of numerous components essential for the heating, control and diagnostic measurement of fusion plasmas. For safe and reliable reactor operations it is important to be able to predict the resultant tritium inventories and permeation fluxes. Currently there is little or no published data on tritium behaviour in AlN. This report contains the preliminary results of work begun in 1994 on ITER task T26/28. The ceramics studied in 1994 were AlN and Al 2 O 3 . Section 2.1 reports on the measurements of permeation through an AlN film on a vanadium substrate, with supplementary Rutherford backscattering measurements of the surface composition, before and after permeation. Section 2.2 deals with ion-beam analysis of hydrogen and deuterium in sapphire and alumina, before and after room temperature implantation of deuterium, with careful attention to the effects of the analysis ions upon the data; section 2.3 looks at the data in 2.2 from the perspective of ion-beam-induced desorption; and in section 2.4 a thermal desorption measurement is reported for comparison. The numbers derived include effective diffusivities and, in the case of AlN, an estimated solubility, for hydrogen isotopes. 16 refs., 1 tab., 12 figs

  14. Utilization of radioanalytical methods for the determination of isotopes of U, Pu and Am in activated charcoal from IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Bianca; Marumo, Julio T., E-mail: bgeraldo@ipen.br, E-mail: jtmarumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Taddei, Maria Helena T., E-mail: mhtaddei@cnen.gov.br [Laboratorio de Pocos de Caldas (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil)

    2013-07-01

    Activated charcoal is a radioactive waste arising from the water purification system of the nuclear research reactor. The management of this waste includes its characterization in order to identify and quantify the existing radionuclides, including those known as 'difficult-to-measure radionuclides' (RDM). The analysis of these RDM usually involves complex radiochemical costly and time consuming procedures for the purification and separation of them. The objective of this work was to define a methodology of sequential analysis of isotopes of U, Pu and Am, present in activated charcoal, evaluating chemical recovery, analysis time, quantity of radioactive waste generated and cost. Ion exchange and the chromatographic extraction methodologies were compared. Both methods showed high chemical recoveries, ranged from 74 and 100% for U, 76 and 100% for Pu and 87 and 100% for Am, demonstrating that these methods provide accurate and reliable results. However, chromatographic extraction method is more suitable for the determination of the radionuclides because it generates the smaller volume of waste and is more cost-effectively. (author)

  15. Utilization of radioanalytical methods for the determination of isotopes of U, Pu and Am in activated charcoal from IEA-R1 reactor

    International Nuclear Information System (INIS)

    Geraldo, Bianca; Marumo, Julio T.; Taddei, Maria Helena T.

    2013-01-01

    Activated charcoal is a radioactive waste arising from the water purification system of the nuclear research reactor. The management of this waste includes its characterization in order to identify and quantify the existing radionuclides, including those known as 'difficult-to-measure radionuclides' (RDM). The analysis of these RDM usually involves complex radiochemical costly and time consuming procedures for the purification and separation of them. The objective of this work was to define a methodology of sequential analysis of isotopes of U, Pu and Am, present in activated charcoal, evaluating chemical recovery, analysis time, quantity of radioactive waste generated and cost. Ion exchange and the chromatographic extraction methodologies were compared. Both methods showed high chemical recoveries, ranged from 74 and 100% for U, 76 and 100% for Pu and 87 and 100% for Am, demonstrating that these methods provide accurate and reliable results. However, chromatographic extraction method is more suitable for the determination of the radionuclides because it generates the smaller volume of waste and is more cost-effectively. (author)

  16. Excited-state lifetimes in neutron-rich Ce isotopes from EXILL and FATIMA

    Energy Technology Data Exchange (ETDEWEB)

    Koseoglou, P.; Pietralla, N.; Stoyanka, I.; Kroell, T. [IKP, TU-Darmstadt, Darmstadt (Germany); Werner, V. [IKP, TU-Darmstadt, Darmstadt (Germany); Yale University (United States); Bernards, C.; Cooper, N. [Yale University (United States); Blanc, A.; Jentschel, M.; Koester, U.; Mutti, P.; Soldner, T.; Urban, W. [ILL Grenoble (France); Bruce, A.M.; Roberts, O.J. [University of Brighton (United Kingdom); Cakirli, R.B. [MPIK Heidelberg (Germany); France, G. de [GANIL Caen (France); Humby, P.; Patel, Z.; Podolyak, Zs.; Regan, P.H.; Wilson, E. [University of Surrey (United Kingdom); Jolie, J.; Regis, J.-M.; Saed-Samii, N.; Wilmsen, D. [KP, University of Cologne (Germany); Paziy, V. [Universidad Complutense (Spain); Simpson, G.S. [PSC Grenoble (France); Ur, C.A. [INFN Legnaro (Italy)

    2016-07-01

    {sup 235}U and {sup 241}Pu fission fragments were measured by a mixed spectrometer consisting of high-resolution Ge and fast LaBr{sub 3}(Ce)-scintillator detectors at the high-flux reactor of the ILL. Prompt γ-ray cascades from the nuclei of interest are selected via Ge-Ge-LaBr{sub 3}-LaBr{sub 3} coincidences. The good energy resolution of the Ge allow precise gates to be set, selecting the cascade, hence, the nucleus of interest. The excellent timing performance of the LaBr{sub 3} detectors in combination with the General Centroid Difference method allows the measurement of lifetimes in the ps range in preparation for the FATIMA experiment at FAIR. The first results on neutron-rich Ce isotopes are presented.

  17. Isotope distributions in primary heat transport and containment systems during a severe accident in CANDU type reactor

    International Nuclear Information System (INIS)

    Constantin, M.

    2005-01-01

    The paper is intended to analyse the distribution of the fission products (FPs) in CANDU Primary Heat Transport (PHT) and CANDU Containment Systems by using the ASTEC code. The complexity of the data required by ASTEC and the complexity both of CANDU PHT and Containment System were strong motivation to begin with a simplified model. The data related to the nodes' definitions, temperatures and pressure conditions were chosen as possible as real data from CANDU loss of coolant accident sequence (CATHENA code results). The source term of FPs introduced into the PHT was estimated by ORIGEN code. The FPs distribution in the nodes of the circuit and the FPs mass transfer per isotope and chemical species were obtained by using SOPHAEROS module. The distributions within the containment are obtained by the CPA module (thermalhydraulic calculations in the containment and FPs aerosol transport). The results consist of mass distributions in the nodes of the circuit and the transferred mass to the containment through the break for different species (FPs and chemical species) and mass distributions in the different parts of the containment and different hosts. (authors)

  18. Analysis of traces at ORNL's new high-flux neutron activation laboratory

    International Nuclear Information System (INIS)

    Ricci, E.; Handley, T.H.; Dyer, F.F.

    1974-01-01

    The investigations are outlined, which are carried out in order to develop (preferably instrumental) methods for multielement analysis of various trace elements. For this reason a new High-Flux NAA Laboratory was constructed at ORNL's. A general review is given on the Laboratory, further some methods and applications are shown. In the field of comparator activation analysis comparative data are given on mercury determinations in various matrices, and on arsenic determination in grasshoppers. This later method was used to trace the transport of arsenic containing pesticides. Some data are given on absolute activation analysis of Na, Ci, Mn, Br, and Au, too. (K.A.)

  19. Realization of compact, passively-cooled, high-flux photovoltaic prototypes

    Science.gov (United States)

    Feuermann, Daniel; Gordon, Jeffrey M.; Horne, Steve; Conley, Gary; Winston, Roland

    2005-08-01

    The materialization of a recent conceptual advance in high-flux photovoltaic concentrators into first-generation prototypes is reported. Our design strategy includes a tailored imaging dual-mirror (aplanatic) system, with a tapered glass rod that enhances concentration and accommodates larger optical errors. Designs were severely constrained by the need for ultra-compact (minimal aspect ratio) modules, simple passive heat rejection, liberal optical tolerances, incorporating off-the-shelf commercial solar cells, and pragmatic considerations of affordable fabrication technologies. Each unit has a geometric concentration of 625 and irradiates a single square 100 mm2 triple-junction high-efficiency solar cell at a net flux concentration of 500.

  20. Electronic Instability at High Flux-Flow Velocities in High-Tc Superconducting Films

    DEFF Research Database (Denmark)

    Doettinger, S. G.; Huebener, R. P.; Gerdemann, R.

    1994-01-01

    At high flux-flow velocities in type-II superconductors the nonequilibrium distribution of the quasiparticles leads to an electronic instability and an aburpt switching into a state with higher electric resistivity, as predicted by Larkin and Ovchinnikow (LO). We report the first obervation...... of this effect in a high-temperature superconductor, namely in epitaxial c-axis oriented films of YBa(2)Cu3O(7)-(delta). Using the LO therory, we have extracted from out results the inelastic quasiparticle scattering rare tau(in)(-1), which strongly decreases with decreasing temperature below T-c...

  1. Engineering and erection of a 300kW high-flux solar simulator

    Science.gov (United States)

    Wieghardt, Kai; Laaber, Dmitrij; Hilger, Patrick; Dohmen, Volkmar; Funken, Karl-Heinz; Hoffschmidt, Bernhard

    2017-06-01

    German Aerospace Center (DLR) is currently constructing a new high-flux solar simulator synlight which shall be commissioned in late 2016. The new facility will provide three separately operated experimental spaces with expected radiant powers of about 300kW / 240kW / 240kW respectively. synlight was presented to the public for the first time at SolarPACES 2015 [1]. Its engineering and erection is running according to plan. The current presentation reports about the engineering and the ongoing erection of the novel facility, and gives an outlook on its new level of possibilities for solar testing and qualification.

  2. Separation and implantation of the rare isotope {sup 163}Ho

    Energy Technology Data Exchange (ETDEWEB)

    Kieck, Tom; Chrysalidis, Katerina; Dorrer, Holger; Kormannshaus, Stefan; Schmidt, Sebastian; Schneider, Fabian; Wendt, Klaus [JGU Mainz (Germany); Duellmann, Christoph [JGU Mainz (Germany); GSI Darmstadt (Germany); Gamer, Lisa; Gastaldo, Loredana [Universitaet Heidelberg (Germany); Collaboration: ECHo-Collaboration

    2016-07-01

    The ECHo collaboration aims at measuring the electron neutrino mass by recording the spectrum following electron capture of {sup 163}Ho. To reach a sub-eV sensitivity, a large number of individual microcalorimeters is needed, into which the isotope must be implanted in a well-controlled manner. The necessary amount of {sup 163}Ho is produced by neutron irradiation of enriched {sup 162}Er in the ILL high flux reactor. This introduces significant contaminations of other radioisotopes, which have to be quantitatively removed both, by chemical and mass spectrometric separation. The application of resonance ionization at the RISIKO mass separator guarantees the required isotope selectivity for purification and suitable energy for ion implantation. The efficiency and stability of the laser ion source was improved by Finite-Element Analysis of the thermal processes. For optimum implantation into the detector pixels (170 x 170 μm{sup 2}) with minimum losses a small ion beam spot at the implantation site is needed. For this purpose, post focusing ion optics were installed. Simulations were performed in order to optimize the homogeneous distribution of the implanted ions. The necessity to alternate implantation phases with deposition of a thin metallic layer for {sup 163}Ho activities larger than 10 Bq is being discussed.

  3. Dating of the Francevillian sedimentary series and mineralogic and isotopic (Sm, Nd, Rb, Sr, K, Ar, U, O and C) characterization of the gangue of the reactors 10 and 13. Preliminary report

    International Nuclear Information System (INIS)

    Gautier-Lafaye, F.; Stille, P.; Bros, R.; Taieb, R.

    1993-01-01

    This paper summarizes the various ages reported for the diagenetic events in the Francevillian sedimentary series (Precambrian era) and the fission reactors of Oklo. Obviously, differences exist between the ages obtained on the silicate minerals and the ages obtained on the Uranium ores and on the reactors. Clay minerals which crystallized during the fission reactions yield younger ages than the reactors themselves. Similarly, the diagenetic clays (1870 Ma) show younger ages than the Uranium ores (2000 Ma). This is in contrast to mineralogical and field evidence indicating that Uranium mineralization occurred during diagenesis of the Francevillian sediments. These antithetical results give rise to several questions. Does the age obtained on the diagenetic clays date a late thermal event or does the age of the Uranium mineralization reflect a multistage U-Pb history. This work tries to bring answers with the help of new isotopic analysis and studies mineralogy of the gangue of reactors and isotopic compositions in Uranium ores. 8 refs., 4 figs

  4. 2012 review of French research reactors

    International Nuclear Information System (INIS)

    Estrade, Jerome

    2013-01-01

    Proposed by the French Reactor Operators' Club (CER), the meeting and discussion forum for operators of French research reactors, this report first gives a brief presentation of these reactors and of their scope of application, and a summary of highlights in 2012 for each of them. Then, it proposes more detailed presentations and reviews of characteristics, activities, highlights, objectives and results for the different types of reactors: neutron beam reactors (Orphee, High flux reactor-Laue-Langevin Institute or HFR-ILL), technological irradiation reactors (Osiris and Phenix), training reactors (Isis and Azur), reactors for safety research purposes (Cabri and Phebus), reactors for neutronic studies (Caliban, Prospero, Eole, Minerve and Masurca), and new research reactors (the RES facility and the Jules Horowitz reactor or JHR)

  5. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  6. Embrittlement of the Shippingport reactor shield tank

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1989-01-01

    Surveillance specimens from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory showed an unexpectedly high degree of embrittlement relative to the data obtained on similar materials in Materials Testing Reactors (MTRs). The results suggest a possible negative flux effect and raise the issue of embrittlement of the pressure vessel support structures of commercial light water reactors. To help resolve this issues, a program was initiated to characterize the irradiation embrittlement of the neutron shield tank (NST) from the decommissioned Shippingport reactor. The Shippingport NST operated at 55 degree C (130 degree F) and was fabricated from A212 Grade B steel, similar to the vessel material in HFIR. The inner wall of the NST was exposed to a total maximum fluence of ∼ 6 x 10 17 n/cm 2 (E > 1 MeV) over a life of 9.25 effective full power years. This corresponds to a fast flux of 2.1 x 10 9 n/cm 2 x s and is comparable to the conditions for the HFIR surveillance specimens. The results indicate that irradiation increases the 15 ft x lb Charpy transition temperature (CTT) by ∼25 degree C (45 degree F) and decreases the upper shelf energy. The shift in CTT is not as severe as that observed in the HFIR surveillance specimens and is consistent with that expected from the MTR data base. However, the actual value of CTT is high, and the toughness at service temperature is low, even when compared with the HFIR data. The increase in yield stress is ∼50 MPa, which is comparable to the HFIR data. The results also indicate a lower impact strength and higher transition temperature for the TL orientation than that for the LT orientation. Some effects of the location across the thickness of the wall are also observed for the LT specimens; CTT is slightly greater for the specimens from the inner region of the wall

  7. The development of maple technology for materials testing, isotope production, and neutron-beam applications

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Gillespie, G.E.; Lee, A.G.; Bishop, W.E.

    1996-01-01

    AECL has been developing MAPLE technology to meet Canadian and international requirements for high-performance research reactors. MAPLE refers to a family of open-tank-in-pool reactors that employ compact H 2 O-cooled cores within D 2 O vessels to efficiently furnish neutrons to various types of irradiation facilities. The initial focus was on a 10-MW t Canadian facility for radioisotope production, the HANARO multipurpose-reactor project, and an associated R and D program. Recently, AECL began to develop the concept for a new Canadian Irradiation Research Facility (IRF) which will support the continued evolution of CANDU (CANadian Deuterium Uranium) technology and generate neutrons for basic and applied materials science. Additionally, AECL is currently developing a standardized MAPLE research-centre design with integrated neutron-application facilities; various reactor-core options have been optimized for different combinations of utilization: a 19-site core for neutron-beam applications and ancillary isotope production, a 31-site core for multipurpose materials testing and neutron-beam applications, and twin 18-site cores for high-flux neutron-beam applications. (author)

  8. Temperature-dependent surface modification of Ta due to high-flux, low-energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Novakowski, T.J.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    This work examines the response of Tantalum (Ta) as a potential candidate for plasma-facing components (PFCs) in future nuclear fusion reactors. Tantalum samples were exposed to high-flux, low-energy He + ion irradiation at different temperatures in the range of 823–1223 K. The samples were irradiated at normal incidence with 100 eV He + ions at constant flux of 1.2 × 10 21 ions m −2  s −1 to a total fluence of 4.3 × 10 24 ions m −2 . An additional Ta sample was also irradiated at 1023 K using a higher ion fluence of 1.7 × 10 25 ions m −2 (at the same flux of 1.2 × 10 21 ions m −2  s −1 ), to confirm the possibility of fuzz formation at higher fluence. This higher fluence was chosen to roughly correspond to the lower fluence threshold of fuzz formation in Tungsten (W). Surface morphology was characterized with a combination of field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). These results demonstrate that the main mode of surface damage is pinholes with an average size of ∼70 nm 2 for all temperatures. However, significantly larger pinholes are observed at elevated temperatures (1123 and 1223 K) resulting from the agglomeration of smaller pinholes. Ex situ X-ray photoelectron spectroscopy (XPS) provides information about the oxidation characteristics of irradiated surfaces, showing minimal exfoliation of the irradiated Ta surface. Additionally, optical reflectivity measurements are performed to further characterize radiation damage on Ta samples, showing gradual reductions in the optical reflectivity as a function of temperature.

  9. Association of Beta-2 Microglobulin with Inflammation and Dislipidemia in High-Flux Membrane Hemodialysis Patients

    Science.gov (United States)

    Topçiu–Shufta, Valdete; Miftari, Ramë; Haxhibeqiri, Valdete; Haxhibeqiri, Shpend

    2016-01-01

    Background: Higher than expected cardiovascular mortality in hemodialysis patients, has been attributed to dyslipidemia as well as inflammation. Beta2-Microglobulin (β2M) is an independent predictor of outcome for hemodialysis patients and a representative substance of middle molecules. Results: In 40 patients in high-flux membrane hemodialysis, we found negative correlation of β2M with high density lipoprotein (r=-0.73, p<0.001) and albumin (r= -0.53, p<0.001) and positive correlation with triglycerides (r=0.69, p<0.001), parathyroid hormone (r=0.58, p < 0.05) and phosphorus (r= 0.53, p<0.001). There was no correlation of β2M with C- reactive protein (CRP) and interleukin-6 (IL-6). During the follow-up period of three years, 6 out of 40 patients have died from cardiovascular events. Conclusion: In high-flux membrane hemodialysis patients, we observed a significant relationship of β2M with dyslipidemia and mineral bone disorders, but there was no correlation with inflammation. PMID:27994294

  10. Association of Beta-2 Microglobulin with Inflammation and Dislipidemia in High-Flux Membrane Hemodialysis Patients.

    Science.gov (United States)

    Topçiu-Shufta, Valdete; Miftari, Ramë; Haxhibeqiri, Valdete; Haxhibeqiri, Shpend

    2016-10-01

    Higher than expected cardiovascular mortality in hemodialysis patients, has been attributed to dyslipidemia as well as inflammation. Beta2-Microglobulin (β2M) is an independent predictor of outcome for hemodialysis patients and a representative substance of middle molecules. In 40 patients in high-flux membrane hemodialysis, we found negative correlation of β2M with high density lipoprotein (r=-0.73, p<0.001) and albumin (r= -0.53, p<0.001) and positive correlation with triglycerides (r=0.69, p<0.001), parathyroid hormone (r=0.58, p < 0.05) and phosphorus (r= 0.53, p<0.001). There was no correlation of β2M with C- reactive protein (CRP) and interleukin-6 (IL-6). During the follow-up period of three years, 6 out of 40 patients have died from cardiovascular events. In high-flux membrane hemodialysis patients, we observed a significant relationship of β2M with dyslipidemia and mineral bone disorders, but there was no correlation with inflammation.

  11. PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Masood, Z.

    2016-01-01

    The PUSPATI TRIGA Reactor is the only research reactor in Malaysia. This 1 MW TRIGA Mk II reactor first reached criticality on 28 June 1982 and is located at the Malaysian Nuclear Agency premise in Bangi, Malaysia. This reactor has been mainly utilised for research, training and education and isotope production. Over the years several systems have been refurbished or modernised to overcome ageing and obsolescence problems. Major achievements and milestones will also be elaborated in this paper. (author)

  12. Fabrication development for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Pace, B.W.; Copeland, G.L.

    1995-08-01

    This report presents the fuel fabrication development for the Advanced Neutron Source (ANS) reactor. The fuel element is similar to that successfully fabricated and used in the High Flux Isotope Reactor (HFIR) for many years, but there are two significant differences that require some development. The fuel compound is U 3 Si 2 rather than U 3 O 8 , and the fuel is graded in the axial as well as the radial direction. Both of these changes can be accomplished with a straightforward extension of the HFIR technology. The ANS also requires some improvements in inspection technology and somewhat more stringent acceptance criteria. Early indications were that the fuel fabrication and inspection technology would produce a reactor core meeting the requirements of the ANS for the low volume fraction loadings needed for the highly enriched uranium design (up to 1.7 Mg U/m 3 ). Near the end of the development work, higher volume fractions were fabricated that would be required for a lower- enrichment uranium core. Again, results look encouraging for loadings up to ∼3.5 Mg U/m 3 ; however, much less evaluation was done for the higher loadings

  13. Needs and Requirements for Future Research Reactors (ORNL Perspectives)

    International Nuclear Information System (INIS)

    Ilas, Germina; Bryan, Chris; Gehin, Jess C.

    2016-01-01

    The High Flux Isotope Reactor (HFIR) is a vital national and international resource for neutron science research, production of radioisotopes, and materials irradiation. While HFIR is expected to continue operation for the foreseeable future, interest is growing in understanding future research reactors features, needs, and requirements. To clarify, discuss, and compile these needs from the perspective of Oak Ridge National Laboratory (ORNL) research and development (R&D) missions, a workshop, titled ''Needs and Requirements for Future Research Reactors'', was held at ORNL on May 12, 2015. The workshop engaged ORNL staff that is directly involved in research using HFIR to collect valuable input on the reactor's current and future missions. The workshop provided an interactive forum for a fruitful exchange of opinions, and included a mix of short presentations and open discussions. ORNL staff members made 15 technical presentations based on their experience and areas of expertise, and discussed those capabilities of the HFIR and future research reactors that are essential for their current and future R&D needs. The workshop was attended by approximately 60 participants from three ORNL directorates. The agenda is included in Appendix A. This document summarizes the feedback provided by workshop contributors and participants. It also includes information and insights addressing key points that originated from the dialogue started at the workshop. A general overview is provided on the design features and capabilities of high performance research reactors currently in use or under construction worldwide. Recent and ongoing design efforts in the US and internationally are briefly summarized, followed by conclusions and recommendations.

  14. Numerical investigations of the fuel cycle for a 10 GW(TH)-OTTO-pebble-bed reactor with regard to high conversion ratio under special consideration of U-236 disconnexion through isotope-separation

    International Nuclear Information System (INIS)

    Werner, H.

    1976-12-01

    A conversion ratio of near 1.0 can be achieved in a pebble-bed reactor using the OTTO (once through then out) loading scheme, having an economic burn-up of the fuel, an economic power density and a moderation ratio, which is considered realistically for the future. The flexibility of the reactor concept and of the fuel element design allows to recycle the fuel during full-power operation. In the present report first the criteria are shown, which are necessary to reach a high conversion ratio. Further it is presented that the conversion ratio increases considerably by closing the fuel cycle in consequence of the building-up of U-233. In this way the fuel inventory and the fuel consumption can considerably be diminished. It is demonstrated that the building-up and the accumulation of U-236 effects an important deterioration of the neutron economy. By taking the reprocessed uranium through an isotope separation (for example: ultra-gas-centrifugation) and by separation of U-236 from the other uranium isotopes it is possible to reduce the fuel consumption considerably. The expenditure and the cost which are necessary for the isotope separation are presented. (orig.) [de

  15. Carbon chemical erosion in high flux and low temperature hydrogen plasma

    NARCIS (Netherlands)

    Westerhout, J.

    2010-01-01

    How long will the wall of a fusion reactor last: hours (i.e. much too short) or years? This question is investigated for the conditions foreseen in the fusion reactor ITER, the world’s joint experiment in the development of nuclear fusion as a clean, safe and inexhaustible energy source. In ITER,

  16. Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators

    Science.gov (United States)

    Friedman, Robert P.; Gordon, Jeffrey M.; Ries, Harald

    1995-08-01

    Using the recently-invented tailored edge-ray concentrator (TERC) approach for the design of compact two-stage high-flux solar collectors--a focusing primary reflector and a nonimaging TERC secondary reflector--we present: 1) a new primary reflector shape based on the TERC approach and a secondary TERC tailored to its particular flux map, such that more compact concentrators emerge at flux concentration levels in excess of 90% of the thermodynamic limit; and 2) calculations and raytrace simulations result which demonstrate the V-cone approximations to a wide variety of TERCs attain the concentration of the TERC to within a few percent, and hence represent practical secondary concentrators that may be superior to corresponding compound parabolic concentrator or trumpet secondaries.

  17. High flux and high resolution VUV beam line for synchrotron radiation

    International Nuclear Information System (INIS)

    Wilcke, H.; Boehmer, W.; Schwentner, N.

    1982-04-01

    A beam line has been optimized for high flux and high resolution in the wavelength range from 30 nm to 300 nm. Sample chambers for luminescence spectroscopy on gaseous, liquid and solid samples and for photoelectron spectroscopy have been integrated. The synchrotron radiation from the storage ring DORIS (at DESY, Hamburg) emitted into 50 mrad in horizontal and into 2.2 mrad in vertical direction is focused by a cylindrical and a plane elliptical mirror into the entrance slit of a 2m normal incidence monochromator. The light flux from the exit slit is focused by a rotational elliptic mirror onto the sample yielding a size of the light spot of 4 x 0.15 mm 2 . The light flux at the sample reaches 7 x 10 12 photons nm -1 s -1 at 8 eV photon energy for a current of 100 mA in DORIS. A resolution of 0.007 nm has been obtained. (orig.)

  18. The applied research program of the High Flux Neutron Generator at the National Nuclear Center, Havana

    International Nuclear Information System (INIS)

    Perez, G.; Martin, G.; Ceballos, C.; Padron, I.; Shtejer, K.; Perez, N.; Guibert, R.; Ledo, L.M.; Cruz Inclan, Carlos

    2001-01-01

    The Havana High Flux Neutron Generator facility is an intense neutron source based on a 20 mA duoplasmatron ion source and a 250 kV high voltage power supply. It has been installed in the Neutron Generator Laboratory at the Center of Applied Technologies and Nuclear Research in 1997. This paper deal outlined the future applied program to be carried out in this facility in the next years. The Applied Research Program consists on install two nuclear analytic techniques: the PELAN technique which uses the neutron generator in the pulse mode and the Low Energy PIXE technique which uses the same facility as a low energy proton accelerator for PIXE analysis. (author)

  19. Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D., E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Bakaeva, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium); Pardoen, T.; Favache, A. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2 L5.02.02, 1348 Louvain-la-Neuve (Belgium); Zhurkin, E.E. [Department of Experimental Nuclear Physics K-89, Faculty of Physics and Mechanics, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation)

    2016-08-01

    Surface hardness of tungsten after high flux deuterium plasma exposure has been characterized by nanoindentation. The effect of plasma exposure was rationalized on the basis of available theoretical models. Resistance to plastic penetration is enhanced within the 100 nm sub-surface region, attributed to the pinning of geometrically necessary dislocations on nanometric deuterium cavities – signature of plasma-induced defects and deuterium retention. Sub-surface extension of thereby registered plasma-induced damage is in excellent agreement with the results of alternative measurements. The study demonstrates suitability of nano-indentation to probe the impact of deposition of plasma-induced defects in tungsten on near surface plasticity under ITER-relevant plasma exposure conditions.

  20. IAEA issues recommendations regarding temporary restart of Dutch reactor

    International Nuclear Information System (INIS)

    2009-01-01

    Full text: An IAEA-led international team of nuclear reactor safety experts completed a safety review mission on 18 February at the High Flux Reactor (HFR) at Petten, in the Netherlands. The mission was conducted at the request of the Government of the Netherlands to review a set of previous evaluations made by the Dutch regulatory authority regarding the reactor's safety. The IAEA mission made a series of recommendations to enhance the safety of the year-long temporary restart. The recommendations included: - Performance of the monitoring system for leaks should be rigorously checked during the interim year of operation; - Temporary operation of the HFR cannot be extended beyond 1 March 2010; and - In case of any detected leakage from the coolant pipes, the reactor should be shut down immediately and repaired before restarting. The international team was composed of one IAEA staff member and five external experts from Argentina, Canada, France, India and South Africa. The IAEA's main conclusions and recommendations were presented in The Hague to the Ministry of Housing, Spatial Planning and the Environment and several other ministries. The team also provided a summary of its findings to the Netherlands Regulatory Authority. The team's final report will be submitted within two weeks. The HFR at Petten is one of five research reactors in the world that produces radioactive medical isotopes, used an estimated 40 million times annually for cancer treatment and the diagnosis of heart attacks. Prolonged outages at any of these five reactors have a far-reaching impact on medical treatments and diagnoses for patients around the globe. Since August 2008, the HFR reactor has been in shut-down status due to corrosion of pipes in its primary cooling circuit. The Nuclear Research and Consultancy Group (NRG), the operating organization for Petten, proposed a one-year restart of the HFR reactor, which was approved by the Dutch regulatory body. The reactor then resumed operation

  1. Intramolecular carbon and nitrogen isotope analysis by quantitative dry fragmentation of the phenylurea herbicide isoproturon in a combined injector/capillary reactor prior to GC separation.

    Science.gov (United States)

    Penning, Holger; Elsner, Martin

    2007-11-01

    Potentially, compound-specific isotope analysis may provide unique information on source and fate of pesticides in natural systems. Yet for isotope analysis, LC-based methods that are based on the use of organic solvents often cannot be used and GC-based analysis is frequently not possible due to thermolability of the analyte. A typical example of a compound with such properties is isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea), belonging to the worldwide extensively used phenylurea herbicides. To make isoproturon accessible to carbon and nitrogen isotope analysis, we developed a GC-based method during which isoproturon was quantitatively fragmented to dimethylamine and 4-isopropylphenylisocyanate. Fragmentation occurred only partially in the injector but was mainly achieved on a heated capillary column. The fragments were then chromatographically separated and individually measured by isotope ratio mass spectrometry. The reliability of the method was tested in hydrolysis experiments with three isotopically different batches of isoproturon. For all three products, the same isotope fractionation factors were observed during conversion and the difference in isotope composition between the batches was preserved. This study demonstrates that fragmentation of phenylurea herbicides does not only make them accessible to isotope analysis but even enables determination of intramolecular isotope fractionation.

  2. CER. Research reactors in France

    International Nuclear Information System (INIS)

    Estrade, Jerome

    2012-01-01

    Networking and the establishment of coalitions between research reactors are important to guarantee a high technical quality of the facility, to assure well educated and trained personnel, to harmonize the codes of standards and the know-ledge of the personnel as well as to enhance research reactor utilization. In addition to the European co-operation, country-specific working groups have been established for many years, such as the French research reactor Club d'Exploitants des Reacteurs (CER). It is the association of French research reactors representing all types of research reactors from zero power up to high flux reactors. CER was founded in 1990 and today a number of 14 research reactors meet twice a year for an exchange of experience. (orig.)

  3. Some uses and limitations of Fuzzy Logic in artificial intelligence reasoning for reactor control

    International Nuclear Information System (INIS)

    Guth, M.A.S.

    1989-01-01

    This paper describes some potential uses for Fuzzy Logic as well as its limitations based on experience designing a small prototype expert system that can be used in a computer laboratory to study a government research reactor. The expert system designed in this study diagnoses problems in the interface between the heat exchanger and the core. Engineers who had first-hand experience with the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory suggested logical relations incorporated in the knowledge base. The expert system has a production rule backward-chaining-based architecture, and the knowledge base incorporates four kinds of information. First, the structural relationship between causes and consequences are given by nuclear engineering experts. Second, numerical values for the initiating events can be taken from observed performance of the HFIR during normal conditions. Third, the causes of particular events are ordinally ranked by their expected chance of occuring based on a combination of knowledge about the reactor design and actual experiences with the reactor in operation. Fourth, Bellman-Zadeh Fuzzy Logic is introduced to maintain truth values for expert system parameter values that can be true with some degree of certainty. (orig.)

  4. Gas core reactors for actinide transmutation and breeder applications. Annual report

    International Nuclear Information System (INIS)

    Clement, J.D.; Rust, J.H.

    1978-01-01

    This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions

  5. High-flux/high-temperature solar thermal conversion: technology development and advanced applications

    Directory of Open Access Journals (Sweden)

    Romero Manuel

    2016-01-01

    Full Text Available Solar Thermal Power Plants have generated in the last 10 years a dynamic market for renewable energy industry and a pro-active networking within R&D community worldwide. By end 2015, there are about 5 GW installed in the world, most of them still concentrated in only two countries, Spain and the US, though a rapid process of globalization is taking place in the last few years and now ambitious market deployment is starting in countries like South Africa, Chile, Saudi Arabia, India, United Arab Emirates or Morocco. Prices for electricity produced by today's plants fill the range from 12 to 16 c€/kWh and they are capital intensive with investments above 4000 €/kW, depending on the number of hours of thermal storage. The urgent need to speed up the learning curve, by moving forward to LCOE below 10 c€/kWh and the promotion of sun-to-fuel applications, is driving the R&D programmes. Both, industry and R&D community are accelerating the transformation by approaching high-flux/high-temperature technologies and promoting the integration with high-efficiency conversion systems.

  6. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  7. A continuously self regenerating high-flux neutron-generator facility

    Science.gov (United States)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  8. Total Reflection X-ray Fluorescence Analysis (TXRF) using the high flux SAXS camera

    CERN Document Server

    Wobrauschek, P; Pepponi, G; Bergmann, A; Glatter, O

    2002-01-01

    Combining the high photon flux from a rotating anode X-ray tube with an X-ray optical component to focus and monochromatize the X-ray beam is the most promising instrumentation for best detection limits in the modern XRF laboratory. This is realized by using the design of a high flux SAXS camera in combination with a 4 kW high brilliant rotating Cu anode X-ray tube with a graded elliptically bent multilayer and including a new designed module for excitation in total reflection geometry within the beam path. The system can be evacuated thus reducing absorption and scattering of air and removing the argon peak in the spectra. Another novelty is the use of a Peltier cooled drift detector with an energy resolution of 148 eV at 5.9 keV and 5 mm sup 2 area. For Co detection limits of about 300 fg determined by a single element standard have been achieved. Testing a real sample NIST 1643d led to detection limits in the range of 300 ng/l for the medium Z.

  9. Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures

    Science.gov (United States)

    Bakaeva, A.; Terentyev, D.; De Temmerman, G.; Lambrinou, K.; Morgan, T. W.; Dubinko, A.; Grigorev, P.; Verbeken, K.; Noterdaeme, J. M.

    2016-10-01

    The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼1024 m-2 s-1, energy ∼50 eV and fluence up to 5 × 1025 D/m2) was studied experimentally in a wide temperature range (460-1000 K) relevant for application in ITER. The desorption spectra in both reference and plastically-deformed samples were deconvoluted into three contributions associated with the detrapping from dislocations, deuterium-vacancy clusters and pores. As the exposure temperature increases, the positions of the release peaks in the plastically-deformed material remain in the same temperature range but the peak amplitudes are altered as compared to the reference material. The desorption peak attributed to the release from pores (i.e. cavities and bubbles) was suppressed in the plastically deformed samples for the low-temperature exposures, but became dominant for exposures above 700 K. The observed strong modulation of the deuterium storage in "shallow" and "deep" traps, as well as the reduction of the integral retention above 700 K, suggest that the dislocation network changes its role from "trapping sites" to "diffusion channels" above a certain temperature. The major experimental observations of the present work are in line with recent computational assessment based on atomistic and mean field theory calculations available in literature.

  10. Magnetic losses at high flux densities in nonoriented Fe-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Appino, C.; Fiorillo, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), Torino (Italy); Ragusa, C. [Dipartimento di Ingegneria Elettrica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)], E-mail: carlo.ragusa@polito.it; Xie, B. [Dipartimento di Ingegneria Elettrica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2008-10-15

    We present and discuss power loss measurements performed in Fe-(3.5 wt%)Si nonoriented laminations up to very high flux densities. The results are obtained on disk samples using a 1D/2D single-sheet tester, where the fieldmetric and the thermometric methods are applied upon overlapping polarization ranges. The power loss in the highest polarization regimes (e.g. J{sub p}>1.8 T) is measured, in particular, by the rate of rise of temperature method, both under controlled and uncontrolled flux density waveform, the latter case emulating the conditions met in practical unsophisticated experiments. Lack of control at such extreme J{sub p} levels is conducive to strong flux distortion, but the correspondingly measured loss figure can eventually be converted to the one pertaining to sinusoidal induction at the same J{sub p} values. This is demonstrated as a specific application of the statistical theory of magnetic losses, where the usual formulation for the energy losses in magnetic sheets under distorted induction is exploited in reverse fashion.

  11. Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures

    Energy Technology Data Exchange (ETDEWEB)

    Bakaeva, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium); Terentyev, D., E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); De Temmerman, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067, St Paul Lez Durance Cedex (France); Lambrinou, K. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); Morgan, T.W. [FOM Institute DIFFER, De Zaale 20, 5612 AJ, Eindhoven (Netherlands); Dubinko, A.; Grigorev, P. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium); Verbeken, K. [Department of Materials Science and Engineerin, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium); Noterdaeme, J.M. [Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium)

    2016-10-15

    The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼10{sup 24} m{sup −2} s{sup −1}, energy ∼50 eV and fluence up to 5 × 10{sup 25} D/m{sup 2}) was studied experimentally in a wide temperature range (460–1000 K) relevant for application in ITER. The desorption spectra in both reference and plastically-deformed samples were deconvoluted into three contributions associated with the detrapping from dislocations, deuterium-vacancy clusters and pores. As the exposure temperature increases, the positions of the release peaks in the plastically-deformed material remain in the same temperature range but the peak amplitudes are altered as compared to the reference material. The desorption peak attributed to the release from pores (i.e. cavities and bubbles) was suppressed in the plastically deformed samples for the low-temperature exposures, but became dominant for exposures above 700 K. The observed strong modulation of the deuterium storage in “shallow” and “deep” traps, as well as the reduction of the integral retention above 700 K, suggest that the dislocation network changes its role from “trapping sites” to “diffusion channels” above a certain temperature. The major experimental observations of the present work are in line with recent computational assessment based on atomistic and mean field theory calculations available in literature.

  12. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  13. Change of chemical bond and wettability of polylacticacid implanted with high-flux carbon ion

    International Nuclear Information System (INIS)

    Zhang Jizhong; Kang Jiachen; Zhang Xiaoji; Zhou Hongyu

    2008-01-01

    Polylacticacid (PLA) was submitted to high-flux carbon ion implantation with energy of 40 keV. It was investigated to the effect of ion fluence (1 x 10 12 -1 x 10 15 ions/cm 2 ) on the properties of the polymer. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), wettability, and roughness were employed to study change of structure and properties of the as-implanted PLA samples. Six carbon bonds, that is, C, C-H, C-O-C, C-O, O-C-O, and >C=O, were observed on surfaces of the as-implanted PLA samples. The intensities of various chemical bonds changed with increasing ion fluence. AFM images displayed that there was irradiation damage and that it was related closely with ion fluence. At fluence as high as 1 x 10 15 ions/cm 2 surface-restructuring phenomenum took place on the surface of the PLA. Wettability was also affected by the variation on the fluence. With increasing ion fluence, the water contact angle of the as-implanted PLA samples changed gradually reaching a maximum of 76.5 deg. with 1 x 10 13 ions/cm 2 . The experimental results revealed that carbon ion fluence strongly affected surface chemical bond, morphology, wettability, and roughness of the PLA samples

  14. Reactor BR2

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2000-07-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported.

  15. Reactor BR2

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. Various aspects concerning the operation of the BR2 Reactor, the utilisation of the CALLISTO loop and the irradiation programme, the BR2 R and D programme and the production of isotopes and of NTD-silicon are discussed. Progress and achievements in 1999 are reported

  16. Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 248Cm samples for transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Gourgiotis, A.; Isnard, H.; Aubert, M.; Dupont, E.; AlMahamid, I.; Cassette, P.; Panebianco, S.; Letourneau, A.; Chartier, F.; Tian, G.; Rao, L.; Lukens, W.

    2011-02-01

    The French Atomic Energy Commission has carried out several experiments including the mini-INCA (INcineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in {sup 248}Cm ({approx}97 %) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides formations ranged from 0.3% to 1.3%. This uncertainties range is quite acceptable for the nuclear data to be used in transmutation studies.

  17. Advanced neutron source reactor probabilistic flow blockage assessment

    International Nuclear Information System (INIS)

    Ramsey, C.T.

    1995-08-01

    The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool

  18. Effects of High-Flux versus Low-Flux Membranes on Pulmonary Function Tests in Hemodialysis Patients.

    Science.gov (United States)

    Momeni, Ali; Rouhi, Hamid; Kiani, Glareh; Amiri, Masoud

    2013-01-01

    Several studies have been carried out to evaluate the effects of dialysis on pulmonary function tests (PFT). Dialysis procedure may reduce lung volumes and capacities or cause hypoxia; however, to the best of our knowledge, there is no previous study evaluating the effects of membrane type (high flux vs. low flux) on PFT in these patients. The aim of this study was the evaluation of this relationship. In this cross-sectional study, 43 hemodialysis patients without pulmonary disease were enrolled. In these patients dialysis was conducted by low-and high-flux membranes and before and after the procedure, spirometry was done and the results were evaluated by t-test and chi square test. The mean age of patients was 56.34 years. Twenty-three of them were female (53.5%). Type of membrane (high flux vs. low flux) had no effect on spirometry results of patients despite the significant decrease in the body weight during the dialysis session. High flux membrane had no advantage over low flux membrane in terms of improvement in spirometry findings; thus, we could not offer these expensive membranes for this purpose.

  19. Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity : contradicting the flux-selectivity paradigm

    NARCIS (Netherlands)

    Peters, T.A.; Poeth, C.H.S.; Benes, N.E.; Buijs, H.C.W.M.; Vercauteren, F.F.; Keurentjes, J.T.F.

    2006-01-01

    Thin, high-flux and highly selective cross-linked poly(vinyl)alcohol waterselective layers have been prepared on top of hollow fibre ceramic supports. The supports consist of an alpha-Al2O3 hollow fibre substrate and an intermediate gamma-Al2O3 layer, which provides a sufficiently smooth surface for

  20. Basic research using the 250 kW research reactor of the Jozef Stefan Institute

    International Nuclear Information System (INIS)

    Dimic, V.

    1984-01-01

    The 250 kW TRIGA Mark II reactor is a light water reactor with solid fuel elements in which the zirconium hydride moderator is homogeneously distributed between enriched uranium. The reactor therefore has a large prompt negative temperature coefficient of reactivity; the fuel also has a very high retention of radioactive fission products. The experimental facilities include a rotary specimen rack, a central in-core radiation thimble, a pneumatic transfer system and pulsing capability. Other experimental facilities include two radial and two tangential beam tubes, a graphite thermal column and a graphite thermalizing column. At the steady state power of 250 kW the peak flux is 1x10 13 n/cm 2 in the central test position. In addition, pulsing to about 2000 MW is usually provided giving peak fluxes of about 2x10 16 n/cm 2 sec. All TRIGA reactors produce a core-average thermal neutron flux of about 10 7 n.v. per watt. Only with very large accelerators can such high fluxes be achieved. The types of research could be summarized as follows: thermal neutron scattering, neutron radiography, neutron and nuclear physics, activation analysis, radiochemistry, biology and medicine, and teaching and training. Typical applied research with a 250 kW reactor has been conducted in medicine, in biology, archaeology, metallurgy and materials science, engineering and criminology. It is well known that research reactors have been used routinely to produce isotopes for industry and medicine. We can conclude that the 250 kW TRIGA reactor is a useful and wide ranging source of radiation for basic and applied research. The operation cost for this instrument is relatively low. (author)

  1. The BR2 materials testing reactor. Past, ongoing and under-study upgradings

    Energy Technology Data Exchange (ETDEWEB)

    Baugnet, J M; Roedt, Ch de; Gubel, P; Koonen, E [Centre d' Etude de I' Energie Nucleaire, Studiecentrum voor Kernenergie, C.E.N./S.C.K., Mol (Belgium)

    1990-05-01

    The BR2 reactor (Mol, Belgium) is a high-flux materials testing reactor. The fuel is 93% {sup 235}U enriched uranium. The nominal power ranges from 60 to 100 MW. The main features of the design are the following: 1) maximum neutron flux, thermal: 1.2 x 10{sup 15} n/cm{sup 2} s; fast (E > 0.1 MeV) : 8.4 x 10{sup 14} n /cm{sup 2} s; 2) great flexibility of utilization: the core configuration and operation mode can be adapted to the experimental loading; 3) neutron spectrum tailoring; 4) availability of five 200 mm diameter channels besides the standard channels (84 mm diameter); 5) access to the top and bottom covers of the reactor authorizing the irradiation of loops. The reactor is used to study the behaviour of fuel elements and structural materials intended for future nuclear power stations of several types (fission and fusion). Irradiations are carried out in connection with performance tests up to very high burn-up or neutron fluence as well as for safety experiments, power cycling experiments, and generally speaking, tests under off-normal conditions. Irradiations for nuclear transmutation (production of high specific activity radio-isotopes and transplutonium elements), neutron-radiography, use of beam tubes for physics studies, and gamma irradiations are also carried out. The BR2 is used in support of Belgian programs, at the request of utilities, industry and universities and in the framework of international agreements. The paper reviews the past and ongoing upgrading and enhancement of reactor capabilities as well as those under study or consideration, namely with regard to: reactor equipment, fuel elements, irradiation facilities, reactor operation conditions and long-term strategy. (author)

  2. Erosion of pyrolytic graphite and Ti-doped graphite due to high flux irradiation

    International Nuclear Information System (INIS)

    Ohtsuka, Yusuke; Ohashi, Junpei; Ueda, Yoshio; Isobe, Michiro; Nishikawa, Masahiro

    1997-01-01

    The erosion of pyrolytic graphite and titanium doped graphite RG-Ti above 1,780 K was investigated by 5 keV Ar beam irradiation with the flux from 4x10 19 to 1x10 21 m -2 ·s -1 . The total erosion yields were significantly reduced with the flux. This reduction would be attributed to the reduction of RES (radiation enhanced sublimation) yield, which was observed in the case of isotropic graphite with the flux dependence of RES yield of φ -0.26 (φ: flux) obtained in our previous work. The yield of pyrolytic graphite was roughly 30% higher than that of isotropic graphite below the flux of 10 20 m -2 ·s -1 whereas each yield approached to very close value at the highest flux of 1x10 21 m -2 ·s -1 . This result indicated that the effect of graphite structure on the RES yield, which was apparent in the low flux region, would disappear in the high flux region probably due to the disordering of crystal structure. In the case of irradiation to RG-Ti at 1,780 K, the surface undulations evolved with a mean height of about 3 μm at 1.2x10 20 m -2 ·s -1 , while at higher flux of 8.0x10 20 m -2 ·s -1 they were unrecognizable. These phenomena can be explained by the reduction of RES of graphite parts excluding TiC grains. (author)

  3. High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research

    Science.gov (United States)

    Waltz, Cory; HFNG Collaboration

    2015-04-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.

  4. High-Flux Hemodialysis and High-Volume Hemodiafiltration Improve Serum Calcification Propensity.

    Directory of Open Access Journals (Sweden)

    Marijke Dekker

    Full Text Available Calciprotein particles (CPPs may play an important role in the calcification process. The calcification propensity of serum (T50 is highly predictive of all-cause mortality in chronic kidney disease patients. Whether T50 is therapeutically improvable, by high-flux hemodialysis (HD or hemodiafiltration (HDF, has not been studied yet.We designed a cross-sectional single center study, and included stable prevalent in-center dialysis patients on HD or HDF. Patients were divided into two groups based on dialysis modality, were on a thrice-weekly schedule, had a dialysis vintage of > 3 months and vascular access providing a blood flow rate > 300 ml/min. Calcification propensity of serum was measured by the time of transformation from primary to secondary CPP (T50 test, by time-resolved nephelometry.We included 64 patients, mean convective volume was 21.7L (SD 3.3L. In the pooled analysis, T50 levels increased in both the HD and HDF group with pre- and post-dialysis (mean (SD of 244(64 - 301(57 and 253(55 - 304(61 min respectively (P = 0.43(HD vs. HDF. The mean increase in T50 was 26.29% for HD and 21.97% for HDF patients (P = 0.61 (HD vs. HDF. The delta values (Δ of calcium, phosphate and serum albumin were equal in both groups. Baseline T50 was negatively correlated with phosphate, and positively correlated with serum magnesium and fetuin-A. The ΔT50 was mostly influenced by Δ phosphate (r = -0.342; P = 0.002 HD and r = -0.396; P<0.001 HDF in both groups.HD and HDF patients present with same baseline T50 calcification propensity values pre-dialysis. Calcification propensity is significantly improved during both HD and HDF sessions without significant differences between both modalities.

  5. Soluble transferrin receptor as a marker of erythropoiesis in patients undergoing high-flux hemodialysis

    Directory of Open Access Journals (Sweden)

    Pei Yin

    2017-11-01

    Full Text Available Anemia is a common complication in chronic kidney disease (CKD patients receiving hemodialysis. The effect of high-flux dialysis (HFD on anemia remains unclear. This prospective study aimed to evaluate the effect of HFD on anemia, and the potential of soluble transferrin receptor (sTfR as a marker of iron status and erythropoiesis in CKD patients on hemodialysis. Forty patients, who switched from conventional low-flux dialysis to HFD for 12 months, were enrolled in this study. The levels of sTfR, hemoglobin (Hb, iron, and nutritional markers, as well as the dose of recombinant human erythropoietin (rhEPO and use of chalybeate were determined at 0, 2, 6, and 12 months after starting HFD. HFD significantly increased the hemoglobin level and reduced sTfR level in CKD patients (p < 0.05. In addition, significant decreasing linear trends were observed for rhEPO dosage and chalybeate use (p < 0.05. The level of sTfR was positively correlated with the percentage of reticulocytes (RET%, rhEPO dose, and chalybeate use, while it was negatively correlated with Hb levels and total iron-binding capacity results (all p < 0.05. A univariate generalized estimating equation (GEE model showed that the Hb level, RET%, rhEPO dose, and chalybeate use were the variables associated with sTfR levels. A multivariate GEE model showed that the time points when hemodialysis was performed were the variables associated significantly with sTfR levels. Overall, our findings suggest that HFD can effectively improve renal anemia in hemodialysis patients, and sTfR could be used as a marker of erythropoiesis in HFD patients.

  6. Impact of high-flux haemodialysis on the probability of target attainment for oral amoxicillin/clavulanic acid combination therapy.

    Science.gov (United States)

    Hui, Katrina; Patel, Kashyap; Kong, David C M; Kirkpatrick, Carl M J

    2017-07-01

    Clearance of small molecules such as amoxicillin and clavulanic acid is expected to increase during high-flux haemodialysis, which may result in lower concentrations and thus reduced efficacy. To date, clearance of amoxicillin/clavulanic acid (AMC) during high-flux haemodialysis remains largely unexplored. Using published pharmacokinetic parameters, a two-compartment model with first-order input was simulated to investigate the impact of high-flux haemodialysis on the probability of target attainment (PTA) of orally administered AMC combination therapy. The following pharmacokinetic/pharmacodynamic targets were used to calculate the PTA. For amoxicillin, the time that the free concentration remains above the minimum inhibitory concentration (MIC) of ≥50% of the dosing period (≥50%ƒT >MIC ) was used. For clavulanic acid, the time that the free concentration was >0.1 mg/L of ≥45% of the dosing period (≥45%ƒT >0.1 mg/L ) was used. Dialysis clearance reported in low-flux haemodialysis for both compounds was doubled to represent the likely clearance during high-flux haemodialysis. Monte Carlo simulations were performed to produce concentration-time profiles over 10 days in 1000 virtual patients. Seven different regimens commonly seen in clinical practice were explored. When AMC was dosed twice daily, the PTA was mostly ≥90% for both compounds regardless of when haemodialysis commenced. When administered once daily, the PTA was 20-30% for clavulanic acid and ≥90% for amoxicillin. The simulations suggest that once-daily orally administered AMC in patients receiving high-flux haemodialysis may result in insufficient concentrations of clavulanic acid to effectively treat infections, especially on days when haemodialysis occurs. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  7. Research reactor utilization in chemistry programmes

    International Nuclear Information System (INIS)

    Bautista, E.

    1983-01-01

    The establishment and roles of the Philippines Atomic Energy Commission in promoting and regulating the use of atomic energy are explained. The research reactor, PRR-1 is being converted to TRIGA to meet the increasing demands of high-flux. The activities of PAEC in chemistry research programs utilizing reactor are discussed in detail. The current and future plans of Research and Development programs are also included. (A.J.)

  8. Needs and Requirements for Future Research Reactors (ORNL Perspectives)

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryan, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehin, Jess C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-10

    The High Flux Isotope Reactor (HFIR) is a vital national and international resource for neutron science research, production of radioisotopes, and materials irradiation. While HFIR is expected to continue operation for the foreseeable future, interest is growing in understanding future research reactors features, needs, and requirements. To clarify, discuss, and compile these needs from the perspective of Oak Ridge National Laboratory (ORNL) research and development (R&D) missions, a workshop, titled “Needs and Requirements for Future Research Reactors”, was held at ORNL on May 12, 2015. The workshop engaged ORNL staff that is directly involved in research using HFIR to collect valuable input on the reactor’s current and future missions. The workshop provided an interactive forum for a fruitful exchange of opinions, and included a mix of short presentations and open discussions. ORNL staff members made 15 technical presentations based on their experience and areas of expertise, and discussed those capabilities of the HFIR and future research reactors that are essential for their current and future R&D needs. The workshop was attended by approximately 60 participants from three ORNL directorates. The agenda is included in Appendix A. This document summarizes the feedback provided by workshop contributors and participants. It also includes information and insights addressing key points that originated from the dialogue started at the workshop. A general overview is provided on the design features and capabilities of high performance research reactors currently in use or under construction worldwide. Recent and ongoing design efforts in the US and internationally are briefly summarized, followed by conclusions and recommendations.

  9. Power auxiliaries and research reactors. Section 3 of Symposium on the peaceful uses of atomic energy in Australia, 1958, held in Sydney, in June 1958

    Energy Technology Data Exchange (ETDEWEB)

    None

    1958-10-15

    The problems of disposing of the large amounts of highly-radioactive waste resulting from a large-scale nuclear power program are reviewed. The Canadian research reactor NRX is discussed. The DIDO reactor is briefly described and operating experience for the first year at high flux is summarized. The core of the High Flux Australian Research Reactor (HIFAR) is described, and some reactivity balance data are given (T.R.H.)

  10. Measurement of beta decay periods for Fe-Ni neutrons rich isotopes

    International Nuclear Information System (INIS)

    Czajkowski, S.

    1992-01-01

    Thermal fission of 239 Pu was used to produce 68,69 Co and 68 Fe isotopes, the lightest ones ever observed in thermal fission, at the ILL high-flux reactor, in Grenoble. Separated with the Lohengrin recoil spectrometer, then identified by means of a Δ E-E ionization chamber, fragments were implanted in a set of Si-detectors, where β-particles were detected too. The fission yields were determined, and the beta-decay half-lives were extracted from delayed coincidence analysis between ion implantation and the subsequent beta detection: They were found to be 0.27±0.05s, 0.18±0.10s, and 0.10±0.06s respectively for 69 Co, 68 Co, and 68 Fe. This method was adapted to a new experimental configuration: 65 Fe isotopes were produced from 86 Kr projectile fragmentation at 500 MeV/u on a Be target. Selected ions were separated with the fragment separator FRS at GSI (Darmstadt), tuned in the monoenergetic mode. Fragments were identified by ΔE-ToF, slowed down, and then implanted in two rows of PIN-diodes that provided an additional range selection. The half-life were determined from the analysis of the decay chain Fe-Co-Ni: it was found 0.4±0.2s. Production rates obtained with the two methods are compared at the end of this work

  11. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    High-flux neutron sources are continuing to be of interest both in Canada and internationally to support materials testing for advanced power reactors, new developments in extracted-neutron-beam applications, and commercial production of selected radioisotopes. The advanced MAPLE reactor concept has been developed to meet these needs. The advanced MAPLE reactor is a new tank-type D 2 O reactor that uses rodded low-enrichment uranium fuel in a compact annular core to generate peak thermal-neutron fluxes of 1 x 10 19 n·s -1 in a central irradiation rig with a thermal power output of 50 MW. Capital and incremental development costs are minimized by using MAPLE reactor technology to the greatest extent practicable

  12. CFD simulation of CO_2 sorption on K_2CO_3 solid sorbent in novel high flux circulating-turbulent fluidized bed riser: Parametric statistical experimental design study

    International Nuclear Information System (INIS)

    Thummakul, Theeranan; Gidaspow, Dimitri; Piumsomboon, Pornpote; Chalermsinsuwan, Benjapon

    2017-01-01

    Highlights: • Circulating-turbulent fluidization was proved to be advantage on CO_2 sorption. • The novel regime was proven to capture CO_2 higher than the conventional regimes. • Uniform solid particle distribution was observed in the novel fluidization regime. • The system continuity had more effect in the system than the process system mixing. • Parametric experimental design analysis was studied to evaluate significant factor. - Abstract: In this study a high flux circulating-turbulent fluidized bed (CTFB) riser was confirmed to be advantageous for carbon dioxide (CO_2) sorption on a potassium carbonate solid sorbent. The effect of various parameters on the CO_2 removal level was evaluated using a statistical experimental design. The most appropriate fluidization regime was found to occur between the turbulent and fast fluidization regimes, which was shown to capture CO_2 more efficiently than conventional fluidization regimes. The highest CO_2 sorption level was 93.4% under optimized CTFB operating conditions. The important parameters for CO_2 capture were the inlet gas velocity and the interactions between the CO_2 concentration and the inlet gas velocity and water vapor concentration. The CTFB regime had a high and uniform solid particle distribution in both the axial and radial system directions and could transport the solid sorbent to the regeneration reactor. In addition, the process system continuity had a stronger effect on the CO_2 removal level in the system than the process system mixing.

  13. Development of a general learning algorithm with applications in nuclear reactor systems

    International Nuclear Information System (INIS)

    Brittain, C.R.; Otaduy, P.J.; Perez, R.B.

    1989-12-01

    The objective of this study was development of a generalized learning algorithm that can learn to predict a particular feature of a process by observation of a set of representative input examples. The algorithm uses pattern matching and statistical analysis techniques to find a functional relationship between descriptive attributes of the input examples and the feature to be predicted. The algorithm was tested by applying it to a set of examples consisting of performance descriptions for 277 fuel cycles of Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR). The program learned to predict the critical rod position for the HFIR from core configuration data prior to reactor startup. The functional relationship bases its predictions on initial core reactivity, the number of certain targets placed in the center of the reactor, and the total exposure of the control plates. Twelve characteristic fuel cycle clusters were identified. Nine fuel cycles were diagnosed as having noisy data, and one could not be predicted by the functional relationship. 13 refs., 6 figs

  14. Dissolution of Material and Test reactor Fuel in an H-Canyon Dissolver

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-26

    In an amended record of decision for the management of spent nuclear fuel (SNF) at the Savannah River Site, the US Department of Energy has authorized the dissolution and recovery of U from 1000 bundles of Al-clad SNF. The SNF is fuel from domestic and foreign research reactors and is typically referred to as Material Test Reactor (MTR) fuel. Bundles of MTR fuel containing assemblies fabricated from U-Al alloys (or other U compounds) are currently dissolved using a Hg-catalyzed HNO3 flowsheet. Since the development of the existing flowsheet, improved experimental methods have been developed to more accurately characterize the offgas composition and generation rate during laboratory dissolutions. Recently, these new techniques were successfully used to develop a flowsheet for the dissolution of High Flux Isotope Reactor (HFIR) fuel. Using the data from the HFIR dissolution flowsheet development and necessary laboratory experiments, the Savannah River National Laboratory (SRNL) was requested to define flowsheet conditions for the dissolution of MTR fuels. With improved offgas characterization techniques, SRNL will be able define the number of bundles of fuel which can be charged to an H-Canyon dissolver with much less conservatism.

  15. Development of a general learning algorithm with applications in nuclear reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Brittain, C.R.; Otaduy, P.J.; Perez, R.B.

    1989-12-01

    The objective of this study was development of a generalized learning algorithm that can learn to predict a particular feature of a process by observation of a set of representative input examples. The algorithm uses pattern matching and statistical analysis techniques to find a functional relationship between descriptive attributes of the input examples and the feature to be predicted. The algorithm was tested by applying it to a set of examples consisting of performance descriptions for 277 fuel cycles of Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR). The program learned to predict the critical rod position for the HFIR from core configuration data prior to reactor startup. The functional relationship bases its predictions on initial core reactivity, the number of certain targets placed in the center of the reactor, and the total exposure of the control plates. Twelve characteristic fuel cycle clusters were identified. Nine fuel cycles were diagnosed as having noisy data, and one could not be predicted by the functional relationship. 13 refs., 6 figs.

  16. Multi purpose research reactor

    International Nuclear Information System (INIS)

    Raina, V.K.; Sasidharan, K.; Sengupta, Samiran; Singh, Tej

    2006-01-01

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor

  17. The primary results for the mixed carbon material used for high flux steady-state tokamak operation in China

    International Nuclear Information System (INIS)

    Guo, Q.G.; Li, J.G.; Zhai, G.T.; Liu, L.; Song, J.R.; Zhang, L.F.; He, Y.X.; Chen, J.L.

    2001-01-01

    Several types of carbon mixed materials have been developed in China to be used for high flux steady-state tokamak operation. Performance evaluation of these materials is necessary to determine their applicability as PFCs for high flux steady state. This paper describes the primary results of carbon mixed materials and the effects of dopants on properties are primarily discussed. Test results reveal that bulk boronized graphite has excellent physical and mechanical properties while their thermal conductivity is no more than 73 W/m K due to the formation of a uniform boron-carbon solid solution. In case of multi-element doped graphite, titanium dopant or a decreased boron content is favorable to enhance thermal conductivity. A kind of doped graphite has been developed with thermal conductivity as high as 278 W/m K by optimizing the compositions. Correlations among compositions, microstructure and properties of such doped graphite are discussed

  18. Methods and applications in high flux neutron imaging; Methoden und Anwendungen fuer bildgebende Verfahren mit hohen Neutronenfluessen

    Energy Technology Data Exchange (ETDEWEB)

    Ballhausen, H.

    2007-02-07

    This treatise develops new methods for high flux neutron radiography and high flux neutron tomography and describes some of their applications in actual experiments. Instead of single images, time series can be acquired with short exposure times due to the available high intensity. To best use the increased amount of information, new estimators are proposed, which extract accurate results from the recorded ensembles, even if the individual piece of data is very noisy and in addition severely affected by systematic errors such as an influence of gamma background radiation. The spatial resolution of neutron radiographies, usually limited by beam divergence and inherent resolution of the scintillator, can be significantly increased by scanning the sample with a pinhole-micro-collimator. This technique circumvents any limitations in present detector design and, due to the available high intensity, could be successfully tested. Imaging with scattered neutrons as opposed to conventional total attenuation based imaging determines separately the absorption and scattering cross sections within the sample. For the first time even coherent angle dependent scattering could be visualized space-resolved. New applications of high flux neutron imaging are presented, such as materials engineering experiments on innovative metal joints, time-resolved tomography on multilayer stacks of fuel cells under operation, and others. A new implementation of an algorithm for the algebraic reconstruction of tomography data executes even in case of missing information, such as limited angle tomography, and returns quantitative reconstructions. The setup of the world-leading high flux radiography and tomography facility at the Institut Laue-Langevin is presented. A comprehensive appendix covers the physical and technical foundations of neutron imaging. (orig.)

  19. Effects of High-Flux versus Low-Flux Membranes on Pulmonary Function Tests in Hemodialysis Patients

    OpenAIRE

    Momeni, Ali; Rouhi, Hamid; Kiani, Glareh; Amiri, Masoud

    2013-01-01

    Background Several studies have been carried out to evaluate the effects of dialysis on pulmonary function tests (PFT). Dialysis procedure may reduce lung volumes and capacities or cause hypoxia; however, to the best of our knowledge, there is no previous study evaluating the effects of membrane type (high flux vs. low flux) on PFT in these patients. The aim of this study was the evaluation of this relationship. Materials and Methods In this cross-sectional study, 43 hemodialysis patients wit...

  20. The Effect of High-Flux Hemodialysis on Hemoglobin Concentrations in Patients with CKD: Results of the MINOXIS Study

    Science.gov (United States)

    Schneider, Andreas; Drechsler, Christiane; Krane, Vera; Krieter, Detlef H.; Scharnagl, Hubert; Schneider, Markus P.; Wanner, Christoph

    2012-01-01

    Summary Background and objectives Hemodialysis treatment induces markers of inflammation and oxidative stress, which could affect hemoglobin levels and the response to erythropoietin use. This study sought to determine whether high-flux dialysis would help improve markers of renal anemia, inflammation, and oxidative stress compared with low-flux dialysis. Design, settings, participants, & measurements In a prospective, controlled study, 221 patients undergoing maintenance hemodialysis and receiving darbepoetin-alfa treatment (mean age, 66 years; 55% male) from 19 centers were screened in a 20-week run-in period of low-flux hemodialysis with a synthetic dialysis membrane. Thereafter, 166 patients were enrolled and randomly assigned to receive a synthetic high-flux membrane or to continue on low-flux dialysis for 52 weeks. Data on myeloperoxidase, oxidized LDL, high-sensitivity C-reactive protein, and the Malnutrition Inflammation Score were collected at baseline and after 52 weeks; routine laboratory data, such as hemoglobin, ferritin, and albumin, and the use of darbepoetin-alfa, were also measured in the run-in period. Results After 52 weeks, the low-flux and the high-flux groups did not differ with respect to hemoglobin (mean ± SD, 11.7±0.9 g/dl versus 11.7±1.1 g/dl; P=0.62) or use of darbepoetin-alfa (mean dosage ± SD, 29.8±24.8 μg/wk versus 26.0±31.1 μg/wk; P=0.85). Markers of inflammation, oxidative stress, or nutritional status also did not differ between groups. Conclusion Over 1 year, high-flux dialysis had no superior effects on hemoglobin levels or markers of inflammation, oxidative stress, and nutritional status. These data do not support the hypothesis that enhanced convective toxin removal would improve patient outcome. PMID:22096040

  1. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions

    International Nuclear Information System (INIS)

    Liu, Lu; Liu, Dongping; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Bi, Zhenhua; Benstetter, Günther; Li, Shouzhe

    2016-01-01

    A large-power inductively coupled plasma source was designed to perform the continuous helium ions (He + ) irradiations of polycrystalline tungsten (W) under International Thermonuclear Experimental Reactor (ITER) relevant conditions. He + irradiations were performed at He + fluxes of 2.3 × 10 21 –1.6 × 10 22 /m 2  s and He + energies of 12–220 eV. Surface damages and microstructures of irradiated W were observed by scanning electron microscopy. This study showed the growth of nano-fuzzes with their lengths of 1.3–2.0 μm at He + energies of >70 eV or He + fluxes of >1.3 × 10 22 /m 2  s. Nanometer-sized defects or columnar microstructures were formed in W surface layer due to low-energy He + irradiations at an elevated temperature (>1300 K). The diffusion and coalescence of He atoms in W surface layers led to the growth and structures of nano-fuzzes. This study indicated that a reduction of He + energy below 12–30 eV may greatly decrease the surface damage of tungsten diverter in the fusion reactor.

  2. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    During the past several years, Atomic Energy of Canada Limited (AECL) has been developing the new MAPLE multipurpose reactor concept, which is capable of generating peak thermal neutron fluxes of up to 3 x 10 18 n/m 2 s in its heavy water reflector at a nominal thermal power level of 15MW. An assessment of the MAPLE-D 2 O reactor has shown that it could also be used as a high-flux neutron source. it could be developed to be used for several applications if a 12-site annular core is used. Thermal fluxes several times greater than in existing facilities would be available (author)

  3. Fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1993-01-01

    This paper includes some statements and remarks concerning the uranium silicide fuels for which there is significant fabrication in AECL, irradiation and defect performance experience; description of two Canadian high flux research reactors which use high enrichment uranium (HEU) and the fuels currently used in these reactors; limited fabrication work done on Al-U alloys to uranium contents as high as 40 wt%. The latter concerns work aimed at AECL fast neutron program. This experience in general terms is applied to the NRX and NRU designs of fuel

  4. Cost-effectiveness analysis of online hemodiafiltration versus high-flux hemodialysis

    Directory of Open Access Journals (Sweden)

    Ramponi F

    2016-09-01

    Full Text Available Francesco Ramponi,1,2 Claudio Ronco,1,3 Giacomo Mason,1 Enrico Rettore,4 Daniele Marcelli,5,6 Francesca Martino,1,3 Mauro Neri,1,7 Alejandro Martin-Malo,8 Bernard Canaud,5,9 Francesco Locatelli10 1International Renal Research Institute (IRRIV, San Bortolo Hospital, Vicenza, 2Department of Economics and Management, University of Padova, Padova, 3Department of Nephrology, San Bortolo Hospital, Vicenza, 4Department of Sociology and Social Research, University of Trento, FBK-IRVAPP & IZA, Trento, Italy; 5Europe, Middle East, Africa and Latin America Medical Board, Fresenius Medical Care,, Bad Homburg, Germany; 6Danube University, Krems, Austria; 7Department of Management and Engineering, University of Padova, Vicenza, Italy; 8Nephrology Unit, Reina Sofia University Hospital, Córdoba, Spain; 9School of Medicine, Montpellier University, Montpellier, France; 10Department of Nephrology, Manzoni Hospital, Lecco, Italy Background: Clinical studies suggest that hemodiafiltration (HDF may lead to better clinical outcomes than high-flux hemodialysis (HF-HD, but concerns have been raised about the cost-effectiveness of HDF versus HF-HD. Aim of this study was to investigate whether clinical benefits, in terms of longer survival and better health-related quality of life, are worth the possibly higher costs of HDF compared to HF-HD.Methods: The analysis comprised a simulation based on the combined results of previous published studies, with the following steps: 1 estimation of the survival function of HF-HD patients from a clinical trial and of HDF patients using the risk reduction estimated in a meta-analysis; 2 simulation of the survival of the same sample of patients as if allocated to HF-HD or HDF using three-state Markov models; and 3 application of state-specific health-related quality of life coefficients and differential costs derived from the literature. Several Monte Carlo simulations were performed, including simulations for patients with different

  5. Spectral resolution and high-flux capability tradeoffs in CdTe detectors for clinical CT.

    Science.gov (United States)

    Hsieh, Scott S; Rajbhandary, Paurakh L; Pelc, Norbert J

    2018-04-01

    than the ideal photon counting detector. The optimal pixel size depends on a number of factors such as x-ray technique and object size. At high technique (140 kVp/500 mA), the ratio of variance for a 450 micron pixel compared to a 250 micron pixel size is 2126%, 200%, 97%, and 78% when imaging 10, 15, 20, and 25 cm of water, respectively. If 300 mg/cm 2 of iodine is also added to the object, the variance ratio is 117%, 91%, 74%, and 72%, respectively. Nonspectral tasks, such as equivalent monoenergetic imaging, are less sensitive to spectral distortion. The detector pixel size is an important design consideration in CdTe detectors. Smaller pixels allow for improved capabilities at high flux but increase charge sharing, which in turn compromises spectral performance. The optimal pixel size will depend on the specific task and on the charge shaping time. © 2018 American Association of Physicists in Medicine.

  6. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.

    Science.gov (United States)

    Bouša, Daniel; Friess, Karel; Pilnáček, Kryštof; Vopička, Ondřej; Lanč, Marek; Fónod, Kristián; Pumera, Martin; Sedmidubský, David; Luxa, Jan; Sofer, Zdeněk

    2017-08-22

    The preparation and gas-separation performance of self-standing, high-flux, graphene oxide (GO) membranes is reported. Defect-free, 15-20 μm thick, mechanically stable, unsupported GO membranes exhibited outstanding gas-separation performance towards H 2 /CO 2 that far exceeded the corresponding 2008 Robeson upper bound. Remarkable separation efficiency of GO membranes for H 2 and bulky C 3 or C 4 hydrocarbons was achieved with high flux and good selectivity at the same time. On the contrary, N 2 and CH 4 molecules, with larger kinetic diameter and simultaneously lower molecular weight, relative to that of CO 2 , remained far from the corresponding H 2 /N 2 or H 2 /CH 4 upper bounds. Pore size distribution analysis revealed that the most abundant pores in GO material were those with an effective pore diameter of 4 nm; therefore, gas transport is not exclusively governed by size sieving and/or Knudsen diffusion, but in the case of CO 2 was supplemented by specific interactions through 1) hydrogen bonding with carboxyl or hydroxyl functional groups and 2) the quadrupole moment. The self-standing GO membranes presented herein demonstrate a promising route towards the large-scale fabrication of high-flux, hydrogen-selective gas membranes intended for the separation of H 2 /CO 2 or H 2 /alkanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of high flux hemodialysis on plasma toxin molecule contents and body’s microinflammatory state in patients with uremia

    Directory of Open Access Journals (Sweden)

    Zheng-Nan We

    2016-03-01

    Full Text Available Objective: To analyze the effect of high flux hemodialysis on plasma toxin molecule contents and body’s microinflammatory state in patients with uremia. Methods: A total of 96 cases of patients with uremia receiving inpatient dialysis in our hospital from June 2011 to March 2015 were selected as research subjects and randomly divided into observation group and control group, each group with 48 cases. Control group received low flux hemodialysis (LF-HD, observation group received high flux hemodialysis (HF-HD, and then levels of plasma renal function-related toxins, oxidative stress-related toxins, leptin, intact parathyroid hormone and asymmetric dimethylarginine as well as levels of microinflammatory state-related factors of two groups were compared. Results: Plasma BUN, Scr, UA and β2-MG levels of observation group after dialysis were significantly lower than those of control group; plasma MDA and Cor levels of observation group after dialysis were lower than those of control group, and levels of GSH and SOD were higher than those of control group; plasma Leptin, iPTH and ADMA levels of observation group after 1 time and 5 times of dialysis were significantly lower than those of control group; plasma hs-CRP, IL-6, TNF-α and ASAA levels of observation group after dialysis were significantly lower than those of control group. Conclusion: High flux hemodialysis for patients with uremia can effectively eliminate related toxins in the body and reduce systemic microinflammatory state, and it has active clinical significance.

  8. Feasibility neutronic conceptual design for the core configuration of a 75 kWth Aqueous Homogeneous Reactor for 99Mo production

    International Nuclear Information System (INIS)

    Milian, D.; Milian, D. E.; Rodriguez, L. P.; Salomon, J.; Cadavid, N.

    2015-01-01

    99m Tc is a very useful radioisotope, which is used in nearly 80% of all nuclear medicine procedures. 99m Tc is produced from 99 Mo decay. Since 2007 the medical community has been plagued by 99 Mo shortages due to aging reactors, such as the National Research Universal reactor in Canada and the High Flux Reactor in Petten, The Netherlands. At present, most of the world's supply of 99 Mo for medical isotope production involves the neutron fission of 235 U in multipurpose research reactors. 99 Mo mostly results from the fission reaction of 235 U targets with a fission yield about 6.1%. After irradiation in the reactor, the target is digested in acid or alkaline solutions and 99 Mo is recovered through a series of extraction (separation) and purification steps. 99 Mo production system in an Aqueous Homogeneous Reactor (AHR) offers a better method, because all of the 99 Mo can be extracted from the fuel solution. Over 30 AHRs has been built and operated around the world with 149 years of combined experience. In this paper, an AHR conceptual design using LEU (Low Enriched Uranium) is optimized to meet the South American demand for 99 Mo for the coming years. Aspect related with the neutronic behavior such as optimal reflector thickness, critical height, medical isotope production and others are evaluated. The neutronic calculations have been performed with the well-known MCNPX computational code. A benchmarking experiments performed at the Russian Research Center 'Kurchatov Institute' in order to validate that the developed models of AHRs with MCNPX code and the available library in XSDIR, ENDF/B VI.2, are adequate for studies of aqueous fuel solutions. (Author)

  9. Installation for the study of heat transfer with high flux density

    International Nuclear Information System (INIS)

    Robin, M.; Schwab, B.

    1957-01-01

    As a result of their very low vapor pressure, metals with a low fusion point (sodium, sodium-potassium alloys, etc.) can be used at high temperature, as heating fluids, in installations whose internal pressure is close to atmospheric pressure. Owing to the very high convection coefficients which can be reached with these fluids and to the large temperature differences utilizable, it is possible to produce through the exchange surfaces considerable heat flux densities, of the order of those which exist through the canning of fuel elements in nuclear reactors. The installation described allowed a flux density of more than 200 W/cm 2 to be obtained, the heating fluid being a Na-K alloy (containing 56 per cent by weight of potassium) brought to a temperature around 550 deg. C. (author) [fr

  10. Isotopic clusters

    International Nuclear Information System (INIS)

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  11. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    In Canada the need for advanced neutron sources has long been recognized. During the past several years Atomic Energy of Canada Limited (AECL) has been developing the new MAPLE multipurpose reactor concept. To date, the MAPLE program has focused on the development of a modest-cost multipurpose medium-flux neutron source to meet contemporary requirements for applied and basic research using neutron beams, for small-scale materials testing and analysis and for radioisotope production. The basic MAPLE concept incorporates a compact light-water cooled and moderated core within a heavy water primary reflector to generate strong neutron flux levels in a variety of irradiation facilities. In view of renewed Canadian interest in a high-flux neutron source, the MAPLE group has begun to explore advanced concepts based on AECL's experience with heavy water reactors. The overall objective is to define a high-flux facility that will support materials testing for advanced power reactors, new developments in extracted neutron-beam applications, and/or production of radioisotopes. The design target is to attain performance levels of HFR-Grenoble, HFBR, HFIR in a new heavy water-cooled, -moderated,-reflected reactor based on rodded LEU fuel. Physics, shielding, and thermohydraulic studies have been performed for the MAPLE heavy water reactor. 14 refs., 4 figs., 1 tab

  12. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  13. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  14. Calculated activities of some isotopes in the RA reactor highly enriched fuel significant for possible environmental contamination - Operational report; Radni izvestaj - Proracun aktivnosti nekih izotopa u visokoobogacenom uranskom gorivu reaktora RA, znacajnih sa gledista moguce kontaminacije okoline

    Energy Technology Data Exchange (ETDEWEB)

    Bulovic, V; Martinc, R; Cupac, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1976-12-15

    This report contains calculation basis and obtained results of activities for three groups of isotopes in the RA reactor 80% enriched fuel element. The following isotopes are included: 1) {sup 85m}Kr, {sup 87}Kr, {sup 88}Kr, {sup 131}J, {sup 132}J, {sup 133}J, {sup 134}J, {sup 135}J, {sup 133}Xe, {sup 138}Xe i {sup 138}Cs, 2) {sup 89}Sr, {sup 90}Sr, {sup 91}Sr, {sup 92}Sr, {sup 95}Zr, {sup 97}Zr, {sup 103}Ru, {sup 105}Ru, {sup 106}Ru, {sup 129m}Te, {sup 134}Cs, {sup 137}Cs, {sup 140}Ba, {sup 144}Ce, kao i 3) {sup 238}Pu, {sup 239}Pu i {sup 240}Pu. It was estimated that the fuel is exposed to mean neutron flux. The periodicity of reactor operation is taken into account. Calculation results are given dependent on the time of exposure. These results are to be used as source data for Ra reactor safety analyses. [Serbo-Croat] Izlozene su osnove i prikazani su rezultati izvedenog proracuna aktivnosti tri grupe izotopa u gorivnom elementu reaktora RA sa 80% obogacenim uranom - 235. Obuhvaceni su: 1) {sup 85m}Kr, {sup 87}Kr, {sup 88}Kr, {sup 131}J, {sup 132}J, {sup 133}J, {sup 134}J, {sup 135}J, {sup 133}Xe, {sup 138}Xe i {sup 138}Cs, zatim, 2) {sup 89}Sr, {sup 90}Sr, {sup 91}Sr, {sup 92}Sr, {sup 95}Zr, {sup 97}Zr, {sup 103}Ru, {sup 105}Ru, {sup 106}Ru, {sup 129m}Te, {sup 134}Cs, {sup 137}Cs, {sup 140}Ba, {sup 144}Ce, kao i 3) {sup 238}Pu, {sup 239}Pu i {sup 240}Pu. Pretpostavljeno je da se gorivo ozracuje na srednjem fluksu neutrona, a periodicnost rada reaktora je uvazavana. Rezultati proracuna, dati u numerickom obliku, sistematizovani su kao funkcija toka vremena ozracivanja goriva. Ovi rezultati bice korisceni kao izvorni podaci kod izrade sigurnosnih analiza za reaktor RA (author)

  15. Method of eliminating gaseous hydrogen isotopes

    International Nuclear Information System (INIS)

    Nagakura, Masaaki; Imaizumi, Hideki; Suemori, Nobuo; Aizawa, Takashi; Naito, Taisei.

    1983-01-01

    Purpose: To prevent external diffusion of gaseous hydrogen isotopes such as tritium or the like upon occurrence of tritium leakage accident in a thermonuclear reactor by recovering to eliminate the isotopes rapidly and with safety. Method: Gases at the region of a reactor container where hydrogen isotopes might leak are sucked by a recycing pump, dehumidified in a dehumidifier and then recycled from a preheater through a catalytic oxidation reactor to a water absorption tower. In this structure, the dehumidifier is disposed at the upstream of the catalytic oxidation reactor to reduce the water content of the gases to be processed, whereby the eliminating efficiency for the gases to be processed can be maintained well even when the oxidation reactor is operated at a low temperature condition near the ambient temperature. This method is based on the fact that the oxidating reactivity of the catalyst can be improved significantly by eliminating the water content in the gases to be processed. (Yoshino, Y.)

  16. Accurate isotope ratio mass spectrometry. Some problems and possibilities

    International Nuclear Information System (INIS)

    Bievre, P. de

    1978-01-01

    The review includes reference to 190 papers, mainly published during the last 10 years. It covers the following: important factors in accurate isotope ratio measurements (precision and accuracy of isotope ratio measurements -exemplified by determinations of 235 U/ 238 U and of other elements including 239 Pu/ 240 Pu; isotope fractionation -exemplified by curves for Rb, U); applications (atomic weights); the Oklo natural nuclear reactor (discovered by UF 6 mass spectrometry at Pierrelatte); nuclear and other constants; isotope ratio measurements in nuclear geology and isotope cosmology - accurate age determination; isotope ratio measurements on very small samples - archaeometry; isotope dilution; miscellaneous applications; and future prospects. (U.K.)

  17. Correlations between power and test reactor data bases

    International Nuclear Information System (INIS)

    Guthrie, G.L.; Simonen, E.P.

    1989-02-01

    Differences between power reactor and test reactor data bases have been evaluated. Charpy shift data has been assembled from specimens irradiated in both high-flux test reactors and low-flux power reactors. Preliminary tests for the existence of a bias between test and power reactor data bases indicate a possible bias between the weld data bases. The bias is nonconservative for power predictive purposes, using test reactor data. The lesser shift for test reactor data compared to power reactor data is interpreted primarily in terms of greater point defect recombination for test reactor fluxes compared to power reactor fluxes. The possibility of greater thermal aging effects during lower damage rates is also discussed. 15 refs., 5 figs., 2 tabs

  18. Operational characteristics of the high flux plasma generator Magnum-PSI

    Energy Technology Data Exchange (ETDEWEB)

    Eck, H.J.N. van, E-mail: h.j.n.vaneck@differ.nl [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Abrams, T. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Berg, M.A. van den; Brons, S.; Eden, G.G. van [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Meiden, H.J. van der; Morgan, T.W.; Pol, M.J. van de; Scholten, J.; Smeets, P.H.M.; De Temmerman, G.; Vries, P.C. de; Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-10-15

    Highlights: •We have described the design and capabilities of the plasma experiment Magnum-PSI. •The plasma conditions are well suited for PSI studies in support of ITER. •Quasi steady state heat fluxes over 10 MW m{sup −2} have been achieved. •Transient heat and particle loads can be generated to simulate ELM instabilities. •Lithium coating can be applied to the surfaces of samples under vacuum. -- Abstract: In Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It aims at conditions that enable fundamental studies of plasma–surface interactions in the regime relevant for fusion reactors such as ITER: 10{sup 23}–10{sup 25} m{sup −2} s{sup −1} hydrogen plasma flux densities at 1–5 eV. To study the effects of transient heat loads on a plasma-facing surface, a high power pulsed magnetized arc discharge has been developed. Additionally, the target surface can be transiently heated with a pulsed laser system during plasma exposure. In this contribution, the current status, capabilities and performance of Magnum-PSI are presented.

  19. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  20. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G