WorldWideScience

Sample records for high-flux injection wells

  1. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  2. Closure of shallow underground injection wells

    International Nuclear Information System (INIS)

    Veil, J.A.; Grunewald, B.

    1993-01-01

    Shallow injection wells have long been used for disposing liquid wastes. Some of these wells have received hazardous or radioactive wastes. According to US Environmental Protection Agency (EPA) regulations, Class IV wells are those injection wells through which hazardous or radioactive wastes are injected into or above an underground source of drinking water (USDW). These wells must be closed. Generally Class V wells are injection wells through which fluids that do not contain hazardous or radioactive wastes are injected into or above a USDW. Class V wells that are responsible for violations of drinking water regulations or that pose a threat to human health must also be closed. Although EPA regulations require closure of certain types of shallow injection wells, they do not provide specific details on the closure process. This paper describes the regulatory background, DOE requirements, and the steps in a shallow injection well closure process: Identification of wells needing closure; monitoring and disposal of accumulated substances; filling and sealing of wells; and remediation. In addition, the paper describes a major national EPA shallow injection well enforcement initiative, including closure plan guidance for wells used to dispose of wastes from service station operations

  3. Groundwater monitoring for deep-well injection

    International Nuclear Information System (INIS)

    Chia, Y.; Chiu, J.

    1994-01-01

    A groundwater monitoring system for detecting waste migration would not only enhance confidence in the long-term containment of injected waste, but would also provide early warnings of contamination for prompt responses to protect underground sources of drinking water (USDWs). Field experiences in Florida have demonstrated monitoring water quality and fluid pressure changes in overlying formations is useful in detecting the upward migration of injected waste. Analytical and numerical solutions indicate changes in these two monitoring parameters can vary on the basis of hydrogeologic characteristics, operation conditions, and the distances from the injection well to the monitoring wells and to the preferential hydrologic conduits. To detect waste migration through defects around the wellbore or the leaky containment interval, groundwater monitoring wells should be placed as close as possible to an injection well. In the vertical direction, a monitoring well completed in a permeable interbed within the containment interval is expected to have the highest potential for detecting upward migration. Another acceptable horizon for groundwater monitoring is the lower portion of the buffer brine aquifer immediately above the containment interval. Monitoring wells in USDWs may be needed when waste has been detected in deeper formations or when leakage out of well casings poses a concern. A monitoring well open to the injection interval is of little value in alleviating the concerns of long-term upward migration. Moreover, the installation of the well could create additional preferential pathways. Complications in groundwater monitoring may arise at existing injection sites, especially with prior releases. It is also important to recognize that monitoring in the vicinity of the wellbore may not be effective for detecting waste migration through unidentified unplugged wells or undetected transmissive fractures

  4. Post injection pressures in well treatments

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, G

    1967-06-05

    Behavior of wellhead pressure immediately after injection of liquids or slurries in well completion and workover treatments can often indicate the success of the operation. Since the rate of wellhead pressure build-down after injection is related to the permeability of the exposed formation to the treating fluid, interpretation of success or failure of the fluid to communicate with the reservoir is possible. Treatments designed to plug-up or clean-out formation flow channels can both be evaluated. Early appreciation can speed completion and workover operations. An explanation of the phenomena of increasing bottomhole treating pressure during fracture-type treatments, and the change in it throughout the life of a well, will result in better understanding of basic fracturing mechanics. On-the-job observations of decreasing rate of pressure build-down after increments of stage squeeze cementing will help the well-site engineer to vary the volume of increments of slurry and the duration of each stage.

  5. Boise geothermal injection well: Final environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

  6. Boise geothermal injection well: Final environmental assessment

    International Nuclear Information System (INIS)

    1997-01-01

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives

  7. Productivity and injectivity of horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Khalid

    2000-03-06

    One of the key issues addressed was pressure drop in long horizontal wells and its influence on well performance. Very little information is available in the literature on flow in pipes with influx through pipe walls. Virtually all of this work has been in small diameter pipes and with single-phase flow. In order to address this problem new experimental data on flow in horizontal and near horizontal wells have been obtained. Experiments were conducted at an industrial facility on typical 6 1/8 ID, 100 feet long horizontal well model. The new data along with available information in the literature have been used to develop new correlations and mechanistic models. Thus it is now possible to predict, within reasonable accuracy, the effect of influx through the well on pressure drop in the well.

  8. 40 CFR 146.5 - Classification of injection wells.

    Science.gov (United States)

    2010-07-01

    ... establishment septic tank. The UIC requirements do not apply to single family residential septic system wells, nor to non-residential septic system wells which are used solely for the disposal of sanitary waste... whether what is injected is a radioactive waste or not. (9) Septic system wells used to inject the waste...

  9. 40 CFR 147.3005 - Radioactive waste injection wells.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Radioactive waste injection wells. 147... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including high...

  10. Radiotracer investigations in oil production and water injection wells

    International Nuclear Information System (INIS)

    Eapen, A.C.; Jain, S.K.; Kirti

    1977-01-01

    Injection of gamma emitting radiotracers into oil wells followed by logging provides information on several aspects such as the identification of zones of seepage of water in the water injection wells and also the location of source of water entering oil producting wells. The experience gained in the application of bromine-82 and rubidium-86 as radiotracers in such studies at the Ankleshwar and Kalol oil fields in Gujarat and Nazira in Assam has been briefly reported. (author)

  11. The research and application of new screw-type well cover for injection well

    International Nuclear Information System (INIS)

    Yuan Yuan; Wang Haifeng; Gan Nan; Xu Ying

    2014-01-01

    Basing on the hydrogeological conditions and the working environment, a new screw-type of well cover for injection well had been designed which is suitable for high injection pressure. The well cover adopted stainless steel pipe and PVC pipe which can prevent the leakage of solution for long time because of sulfuric corrosion. The well cover was operated stably under l.5 MPa injection pressure during two-years trial. It was in low cost and had the advantages of good sealing and high reliability. The problem of lixiviant injection under high artesian water pressure was solved successfully. (authors)

  12. Deep-well injection of radioactive waste in Russia

    International Nuclear Information System (INIS)

    Hoek, J.

    1998-01-01

    In the Russian federation, deep borehole injection of liquid radioactive waste has been established practice since at least 1963. The liquid is injected into sandy or other formations with high porosity, which are isolated by water-tight layers. This technique has also been used elsewhere for toxic liquid waste and residues from mining operations. Deep-well injection of radioactive waste is not currently used in any of the European Commission (EC) countries. In this paper the results of a EC-funded study were presented. The study is entitled 'Measurements, modelling of migration and possible radiological consequences at deep well injection sites for liquid radioactive waste in Russia', COSU-CT94-0099-UK. The study was carried out jointly by AEA Technology, CAG and the Research Institute for Nuclear Reactors (NIIAR) at Dimitrovgrad. Many scientists have contributed to the results reported here. The aims of the study are: Provision of extensive information on the deep-well injection repositories and their use in the former Soviet Union; Provision of a methodology to assess safety aspects of deep-well injection of liquid radioactive waste in deep geological formations; This will allow evaluation of proposals to use deep-well injection techniques in other regions; Support for Russian regulatory bodies through evaluation of the suitability of the sites, including estimates of the maximum amount of waste that can be safely stored in them; and Provision of a methodology to assess the use of deep-well injection repositories as an alternative disposal technique for EC countries. 7 refs

  13. Evaluation of upward migration around a deep injection well

    International Nuclear Information System (INIS)

    Chia, Yeeping; Chiu, J.

    1994-01-01

    The long-term containment of injected wastes in the deep subsurface is expected to be achieved under suitable geologic and hydrologic conditions and by the use of competent engineering practices. Field experiences, however, indicate that waste containment may be affected by hydrologic conduits around the injection well. To assess the potential effects of these conduits, upward migration of injected waste is examined through the use of numerical models under various conditions. Test results indicate that without any preferential hydrologic conduits, most of the injected waste moves laterally in the injection interval, whereas only a small amount of waste migrates upward into the containment interval. When vertical fractures in the disturbed zone or defects in the cement seal around the wellbore exist, the contaminant can move rapidly upward along these conduits to an overlying aquifer, from which it migrates in the lateral direction. The contamination of the overlying aquifer that results from the upward migration of injected waste through these conduits cannot be impeded by a thick, low-permeability containment interval. However, when permeable interbeds exist within the containment interval, a significant portion of the waste migrating upward can be diverted laterally before reaching the overlying aquifer. The front of built-up pressure can reach the aquifer or permeable interbed immediately overlying the injection interval through the preferential hydrologic conduits shortly after the injection starts, but it cannot move farther upward because of pressure dissipation in the permeable formation. This study suggests that the injected waste has the potential to migrate upward into overlying formations through preferential migration conduits around the wellbore

  14. Steam injections wells: topics to consider in casing design of steam injection wells; Revestimento para pocos de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Antonio Carlos Farias [PETROBRAS, Recife, PE (Brazil). Gerencia de Perfuracao do Nordeste. Div. de Operacoes

    1994-07-01

    Steam injection is one of the processes used to increase production from very viscous oil reservoirs. A well is completed at a temperature of about 110 deg F and during steam injection that temperature varies around 600 deg F. Strain or breakdowns may occur to the casing, due to the critical conditions generated by the change of temperature. The usual casing design methods, do not take into account special environmental conditions, such as those which exist for steam injection. From the results of this study we come up to the conclusion that casing grade K-55, heavy weight with premium connections, without pre-stressing and adequately heated, is the best option for steam injection well completion for most of the fields in Brazil. (author)

  15. Targeted steam injection using horizontal wells with limited entry perforations

    Energy Technology Data Exchange (ETDEWEB)

    Boone, T. J.; Youck, D. G.; Sun, S. [Imperial Oil Resources, Calgary, AB (Canada)

    1998-12-31

    An experimental horizontal well using limited-entry perforations as a method for distributing steam to different zones was used to replace ten vertical injection wells. The well was located between rows of vertical wells in a reservoir that has been subjected to more than ten years of operation under cyclic steam stimulation. The limited-entry perforations enabled steam to be targeted at the cold regions of the reservoir. This paper presents an assessment of the well based on theoretical calculations, measured injection pressures and rates and 3-D seismic imaging. All the data collected during the experiment support the conclusion that effective steam distribution along the well has been achieved. It was also concluded that this technology has significant potential for SAGD applications as a mechanism for achieving improved steam distribution at a much reduced cost. 5 refs., 8 figs.

  16. Water quality considerations resulting in the impaired injectivity of water injection and disposal wells

    International Nuclear Information System (INIS)

    Bennion, D.B.; Thomas, F.B.; Imer, D.; Ma, T.

    2000-01-01

    An environmentally responsible way to improve hydrocarbon recovery is to maintain pressure by water injection. This is a desirable method because unwanted produced water from oil and gas wells can be re-injected into producing or disposal formations. The success of the operation, however, depends on injecting the necessary volume of water economically, below the fracture gradient pressure of the formation. Well placement, geometry and inherent formation quality and relative permeability characteristics are some of the many other factors which influence the success of any injection project. Poor injection or poor quality of disposal water can also compromise the injectivity for even high quality sandstone or carbonate formations. This would necessitate costly workovers and recompletions. This paper presented some leading edge diagnostic techniques and evaluation methods to determine the quality of injected water. The same techniques could be used to better understand the effect of potential contaminants such as suspended solids, corrosion products, skim/carryover oil and grease, scales, precipitates, emulsions, oil wet hydrocarbon agglomerates and many other conditions which cause injectivity degradation. 14 refs., 1 tab., 15 figs

  17. Removing well bore liquid blockage by gas injection

    International Nuclear Information System (INIS)

    Ahmed, Tarek

    2000-01-01

    Gas condensate reservoirs have long presented production problems when the pressure around the well bore drops below the dew point pressure. The formation of the condensate around the well bore can be thought of as an additional 'skin' that causes a reduction in the gas flow rates. Many processes have been used successfully to prevent or reduce the formation of liquids within the entire reservoir, such as pressure maintenance schemes and gas cycling processes. The pressure maintenance scheme is designed to keep the reservoir pressure at or above the dew point pressure while the gas cycling process is intended to reduce the liquid dropout by vaporization.Often times the pressure in the near-well bore region of the reservoir falls below the dew point pressure, while the pressure in the reservoir remains higher than the dew point pressure. As the near-well bore pressure drops below the dew point pressure, retrograde condensation occurs leading to the formation and then the mobilization of the condensate phase towards the producing wells. The liquid phase accumulates in the near Well bore region, forming a ring, which progressively reduces the gas deliverability. This study is designed to provide an insight into the mechanism of gas injection process in reducing gas-well productivity losses due to condensate blocking in the near well bore region. The study also evaluates the effectiveness of lean gas, N 2 , and CO 2 Huff 'n' Puff injection technique in removing the liquid dropout accumulation in and around the well bore. Results of the study show the importance of selecting the optimum injection volume and pressure. (author)

  18. Surveying and analyzing injection responses for patterns with horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Fedenczuk, L.; Hoffman, K.

    1998-12-31

    A novel method for visualizing injection responses in patterns that include horizontal and/or vertical wells is described. Understanding fluid communication between the horizontal well and the surrounding injectors is essential to estimating the effectiveness of the waterflood. Armed with the understanding of responses, injection patterns can be optimized, production rates can be increased and more efficient oil recovery can be achieved. In this study the time lags of correlations and a new parameter, the waterflood response type is introduced. The response type is based on the oil and total fluid responses. In addition spider diagrams are introduced to help visualizing the correlations, time lags and response types. Integration of the results with geology, petrophysics and completion techniques can help to find the cause and effect rules in waterflood fields. 6 refs., 10 figs.

  19. Class I Underground Injection Control Program: Study of the Risks Associated with Class I Underground Injection Wells

    Science.gov (United States)

    The document provides describes the current Class I UIC program, the history of Class I injection, and studies of human health risks associated with Class I injection wells, which were conducted for past regulatory efforts and policy documentation.

  20. Registration of Hanford Site Class V underground injection wells

    International Nuclear Information System (INIS)

    1988-05-01

    This document was requested by the Washington State Department of Ecology. Based on the State Underground Injection Control Program, as described in the Washington Administrative Code, French drains and reverse wells are being registered as Class V wells. Information on out-of-service French drains, out-of-service reverse wells, and out-of-service cribs that are deeper than their largest surface dimension is also provided. The data for this submittal were taken from the Waste Information Database System (WIDS) and the Hanford Environmental Compliance Record (HECR) database. The current definition used in WIDS for an ''inactive facility'' is one that either no longer receives waste or plans to in the future. The facilities listed in WIDS as inactive have all been listed as ''out-of-service.'' Information concerning the deactivation method for a facility is included when such information is available. The French drains registered in this submittal are based on the information available at the present time. Additional French drains may be registered on a periodic basis as the drains are identified

  1. HFBR handbook, 1992: High flux beam reactor

    International Nuclear Information System (INIS)

    Axe, J.D.; Greenberg, R.

    1992-10-01

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance

  2. Oil, Gas, and Injection Wells in Louisiana, Geographic NAD83, LDNR (2007) [oil_gas_wells_LDNR_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset containing the location of over 230,000 oil and gas and injection wells in the state of Louisiana. It was developed from the DNR Office of...

  3. High Flux Isotope Reactor technical specifications

    International Nuclear Information System (INIS)

    1985-11-01

    This report gives technical specifications for the High Flux Isotope Reactor (HFIR) on the following: safety limits and limiting safety system settings; limiting conditions for operation; surveillance requirements; design features; and administrative controls

  4. Deep-well injection of liquid radwaste in Russia - current status and operations

    International Nuclear Information System (INIS)

    Bradley, D.J.; Foley, M.G.; Rybal'chenko, A.I.

    1995-01-01

    This paper is submitted as part of a coordinated effort to present the topic of deep-well injection. The companion paper, open-quotes Deep-Well Injection of Liquid Radwaste in Russia - Background and Technical Basis,close quotes focuses on the original decision to inject liquid radwaste, the research behind that decision, and the design and construction of the injection facilities. The emphasis in this paper is on the current status and operation of the well facilities and the control systems used to minimize environmental impact

  5. Recommended management practices for operation and closure of shallow injection wells at DOE facilities

    International Nuclear Information System (INIS)

    1993-07-01

    The Safe Drinking Water Act established the Underground Injection Control (UIC) program to ensure that underground injection of wastes does not endanger an underground source of drinking water. Under UIC regulations, an injection well is a hole in the ground, deeper than it is wide, that receives wastes or other fluid substances. Types of injection wells range from deep cased wells to shallow sumps, drywells, and drainfields. The report describes the five classes of UIC wells and summarizes relevant regulations for each class of wells and for the UIC program. The main focus of the report is Class IV and V shallow injection wells. Class IV wells are prohibited and should be closed when they are identified. Class V wells are generally authorized by rule, but EPA or a delegated state may require a permit for a Class V well. This report provides recommendations on sound operating and closure practices for shallow injection wells. In addition the report contains copies of several relevant EPA documents that provide additional information on well operation and closure. Another appendix contains information on the UIC programs in 21 states in which there are DOE facilities discharging to injection wells. The appendix includes the name of the responsible regulatory agency and contact person, a summary of differences between the state's regulations and Federal regulations, and any closure guidelines for Class IV and V wells

  6. High Flux Materials Testing Reactor (HFR), Petten

    International Nuclear Information System (INIS)

    1975-09-01

    After conversion to burnable poison fuel elements, the High Flux Materials Testing Reactor (HFR) Petten (Netherlands), operated through 1974 for 280 days at 45 MW. Equipment for irradiation experiments has been replaced and extended. The average annual occupation by experiments was 55% as compared to 38% in 1973. Work continued on thirty irradiation projects and ten development activities

  7. Hydrologic monitoring of a waste-injection well near Milton, Florida, June 1975 - June 1977

    Science.gov (United States)

    Pascale, Charles A.; Martin, J.B.

    1978-01-01

    This report presents the hydraulic and chemical data collected from June 1, 1975, when injection began, to June 30, 1977 through a monitoring program at a deep-well waste-injection system at the American Cyanamid Company's plant near Milton, about 12 miles northwest of Pensacola. The injection system consists of a primary injection well, a standby injection well, and two deep monitor wells all completed open hole in the lower limestone of the Floridan aquifer and one shallow-monitor well completed in the upper limestone of the Floridan aquifer. Two of the monitor wells and the standby injection well are used to observe hydraulic and geochemical effects of waste injection in the injection zone at locations 8,180 feet northeast, 1,560 feet south, and 1,025 feet southwest of the primary injection well. The shallow-monitor well, used to observe any effects in the first permeable zone above the 200-foot-thick confining bed, is 28 feet north of the primary injection well. Since injection began in June 1975, 607 million gallons of treated industrial liquid waste with a pH of 4.6 to 6.3 and containing high concentrations of nitrate, organic nitrogen and carbon have been injected into a saline-water-filled limestone aquifer. Wellhead pressure at the injection well in June 1977 average 137 pounds per square inch and the hydraulic pressure gradient was 0.53 pound per square inch per foot of depth to the top of the injection zone. Water levels rose from 36 to 74 feet at the three wells used to monitor the injection zone during the 25-month period. The water level in the shallow-monitor well declined about 8 feet. No changes were detected in the chemical character of water from the shallow-monitor well and deep-monitor well-north. Increases in concentration of bicarbonate and dissolved organic carbon were detected in water from the deep-test monitor well in February 1976 and at the standby injection well in August 1976. In addition to increases in bicarbonate and dissolved

  8. Evaluation of injection-well risk management in the Williston basin

    International Nuclear Information System (INIS)

    Michie, T.W.; Koch, C.A.

    1991-01-01

    This paper reports on a study of subsurface water-injection operations in the Williston geologic basin which demonstrated the practicality of incorporating risk management procedures into the regulation of underground injection control (UIC) programs. A realistic model of a computerized data base was developed to assess the maximum quantifiable risk that water from injection wells would reach an underground source of drinking water (USDW). In the Williston basin, the upper-bound probability of injection water escaping the wellbore and reaching a USDW is seven chances in 1 million well-years where surface casings cover the drinking-water aquifers. Where surface casings do not cover the USDW's, the probability is six chances in 1,000 well-years

  9. High Flux Isotope Reactor power upgrade status

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Hale, R.E.; Cheverton, R.D.

    1997-01-01

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions

  10. Injection Process Control of the Well at the Hydrodynamic Research of Coalbed

    Science.gov (United States)

    Odnokopylov, I. G.; Galtseva, O. V.; Krasnov, I. Yu; Smirnov, A. O.; Karpov, M. S.; Surzhikova, O. A.; Kuznetsov, V. V.; Li, J.

    2017-04-01

    This scientific work is devoted to the study results of water injection process into the well at the hydrodynamic research by using the high pressure unregulated pump. The injection process should be accompanied by the retention of some hydraulic parameters at constant level during some time. Various variants for use of mechatronic nodes for automatization of water injection process are considered. Scheme for reducing the load on the pump and equipment in hydraulic system and also for improving the quality control system with high accuracy is shown. Simulation results of injection process into the well at the pressure and consumption fixation and recommendations for the use of the proposed schemes depending on the technological process are given.

  11. Application of geophysical methods to the study of pollution associated with abandoned and injection wells

    International Nuclear Information System (INIS)

    Frischknecht, F.C.

    1990-01-01

    This paper reports on contamination of ground-water supplies by brine and other pollutants which is a serious problem in some oil-producing and industrial areas. Abandoned petroleum and water wells and active injection wells are often major elements in the contamination process. The casings of abandoned wells develop leaks, and, if not properly plugged, such wells sometimes serve as conduits for pollutants to reach freshwater aquifiers. Pollutants from waste-disposal sites or accidental spills may migrate down abandoned wells. Brines or other wastes injected into deep horizons may migrate up abandoned wells and reach aquifers containing potable water. Injection wells sometimes develop leaks and, if not carefully monitored, can pollute large volumes of earth materials before the effect is noted in production wells or at the surface. As a first step in the mitigation of these problems, methods of locating abandoned wells and mapping brine contamination from injection wells have been studied by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (EPA)

  12. Fines stabilizing agent reduces production decline rates in steam injected wells

    Energy Technology Data Exchange (ETDEWEB)

    Castillo de Castillo, Milagros; Fernandez Andrades, Jarvi [PDVSA - Petroleos de Venezuela S.A., Caracas (Venezuela); Navarro Cornejo, Willian; Curtis, James [BJ Services do Brasil Ltda., RJ (Brazil)

    2004-07-01

    The Bachaquero Lago heavy oil field, located in Lake Maracaibo, Venezuela, with an area of 9800 ha, in which more than 1800 wells have been drilled. The Lagunillas formation in this field is a mature, clastic, unconsolidated sandstone of Miocene age with good permeability. Clays are present, in laminated form or dispersed within the productive sandstones. Heavy oil, less than 12 deg API, is produced by cyclic steam injection. Wells are completed with cased-hole gravel packs to prevent sand and fines production. Rapid production decline rates are typically observed after the steam injection cycles, due to fines migration and plugging of the reservoir and gravel pack. This paper describes the methodology used to treat the wells with a fines stabilizing agent during the steam injection cycles in order to successfully reduce the subsequent production decline rate. Results from a multi-well pilot project are presented and analyzed. (author)

  13. DEPLETED HYDROCARBON RESERVOIRS AND CO2 INJECTION WELLS –CO2 LEAKAGE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2017-03-01

    Full Text Available Migration risk assessment of the injected CO2 is one of the fi rst and indispensable steps in determining locations for the implementation of projects for carbon dioxide permanent disposal in depleted hydrocarbon reservoirs. Within the phase of potential storage characterization and assessment, it is necessary to conduct a quantitative risk assessment, based on dynamic reservoir models that predict the behaviour of the injected CO2, which requires good knowledge of the reservoir conditions. A preliminary risk assessment proposed in this paper can be used to identify risks of CO2 leakage from the injection zone and through wells by quantifying hazard probability (likelihood and severity, in order to establish a risk-mitigation plan and to engage prevention programs. Here, the proposed risk assessment for the injection well is based on a quantitative risk matrix. The proposed assessment for the injection zone is based on methodology used to determine a reservoir probability in exploration and development of oil and gas (Probability of Success, abbr. POS, and modifi ed by taking into account hazards that may lead to CO2 leakage through the cap rock in the atmosphere or groundwater. Such an assessment can eliminate locations that do not meet the basic criteria in regard to short-term and long-term safety and the integrity of the site

  14. Effect of the well of the well (WOW) system on in vitro culture for porcine embryos after intracytoplasmic sperm injection.

    Science.gov (United States)

    Taka, Mikiko; Iwayama, Hiroshi; Fukui, Yutaka

    2005-08-01

    For developmental competence of porcine embryos in vitro, it is important to improve the culture environment. The present study was performed to evaluate four different culture systems for in vitro matured porcine oocytes following intracytoplasmic sperm injection (ICSI); drop, well and two sizes of the well of the well (WOW) systems (500 and 1,000 microm in diameter). The cleavage rate on Day 2 and the mean cell number in blastocysts on Day 6 were not significantly different among the four treatments. However, the 1,000 microm WOW (24.6%) resulted in a significantly higher (PWOW, respectively). The present study indicates that the microenvironment created by the 1,000 microm diameter WOW improves blastocyst production of in vitro matured porcine oocytes after ICSI, and that the effectiveness of the WOW system is dependent on the size (diameter) of the WOW.

  15. Spin injection from Co2MnGa into an InGaAs quantum well

    DEFF Research Database (Denmark)

    Hickey, M. C.; Damsgaard, Christian Danvad; Holmes, S. N.

    2008-01-01

    We have demonstrated spin injection from a full Heusler alloy Co2MnGa thin film into a (100) InGaAs quantum well in a semiconductor light-emitting diode structure at a temperature of 5 K. The detection is performed in the oblique Hanle geometry, allowing quantification of the effective spin lifet...

  16. Deep-well injection of liquid radioactive waste in Russia. Present situation

    International Nuclear Information System (INIS)

    Rybalchenko, A.

    1998-01-01

    At present there are 3 facilities (polygons) for the deep-well injection of liquid radioactive waste in Russia, all of which were constructed in the mid60's. These facilities are operating successfully, and activities have started in preparation for decommissioning. Liquid radioactive waste is injected into deep porous horizons which act as 'collector-layers', isolated from the surface and from groundwaters by a relatively thick sequence of rock of low permeability. The collector-layers (also collector-horizons) contain salt waters or fresh waters of no practical application, lying beneath the main horizons containing potable waters. Construction of facilities for the deep-well injection of liquid radioactive waste was preceded by geological surveys and investigations which were able to substantiate the feasibility and safety of radioactive waste injection, and to obtain initial data for facility design. Operation of the facilities was accompanied by monitoring which confirmed that the main safety requirement was satisfied i.e. localisation of radioactive waste within specified boundaries of the geologic medium. The opinion of most specialists in the atomic power industry in Russia favours deep-well injection as a solution to the problem of liquid radioactive waste management; during the period of active operation of defence facilities (atomic power industry of the former U.S.S.R.), this disposal method prevented the impact of radioactive waste on man and the environment. The experience accumulated concerning the injection of liquid radioactive waste in Russia is of interest to scientists and engineers engaged in problems of protection and remediation of the environment in the vicinity of nuclear industry facilities; an example of the utilisation of the deep subsurface for solidified radioactive waste and the disposal of different types of nuclear materials. Information on the scientific principles and background for the development of facilities for the injection

  17. Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests

    Science.gov (United States)

    Lessoff, S.C.; Konikow, Leonard F.

    1997-01-01

    Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.

  18. Microbiological analyses of samples from the H-Area injection well test site

    International Nuclear Information System (INIS)

    Wilde, E.W.; Franck, M.M.

    1997-01-01

    Microbial populations in well water from monitoring wells at the test site were one to three orders of magnitude higher than well water from the Cretaceous aquifer (used as dilution water for the tests) or from a control well adjacent to the test site facility. Coupons samples placed in monitoring and control wells demonstrated progressive adhesion by microbes to materials used in well construction. Samples of material scraped from test well components during abandonment of the test site project revealed the presence of a variety of attached microbes including iron bacteria. Although the injection wells at the actual remediation facility for the F- and H-Area seepage basins remediation project are expected to be subjected to somewhat different conditions (e.g. considerably lower iron concentrations) than was the case at the test site, the potential for microbiologically mediated clogging and fouling within the process should be considered. A sampling program that includes microbiological testing is highly recommended

  19. An additive to well injection water for increasing the oil yield

    Energy Technology Data Exchange (ETDEWEB)

    Absov, M.T.; Abutalybov, M.G.; Aslanov, S.M.; Movruzov, E.N.; Musaev, R.A.; Tairov, N.D.

    1979-03-05

    This invention relates to oil production using flooding. The goal of this invention is to increase the oil yield of a producing formation. This is achieved by using a saponin solution as an additive to the water injected into the formation (with related organic substances which are complex organic nitrogen-free compounds from the glycoside group; these substances yield solution that foam easily with an agitation). The use of saponin facilitates good solubility in fresh, sea and formation (alkaline and hard) waters, as well as the absence of sediment formation during dissolution, low solid adsorption, and a significant decrease in the surface water tension on the oil-water boundary. The aqueous saponin solution makes it possible to decrease the production cost of oil, as well as to decrease the development time of the fields and the volume of water injected into the formation and to significantly increase the oil yield.

  20. The data analysis of the single well injection-withdraw tracer experiment using the MACRO II

    International Nuclear Information System (INIS)

    Shirakawa, Toshihiko; Kanazawa, Yasuo; Hatanaka, Koichiro

    2001-04-01

    On understanding the radionuclide transport in natural barrier in radioactive waste isolation research, the macroscopic dispersion in heterogeneous permeability field in the underground rock is regarded as an important process. Therefore, we have conducted lots of tracer experiments by the MACRO II facility with an artificially constructed heterogeneous permeability field. In order to study the scale dependence of dispersion coefficients in case of laboratory experiments, we placed the flow cell horizontally, and conducted injection-withdraw tracer experiment with a single well. We have conducted 15 cases experiments. These cases were prepared by changing a position of single well and the injection-withdraw time. At each position we have conducted 9 cases and 6 cases experiments. In this report, we evaluated the macroscopic dispersion coefficients by the fitting of analytical solution to breakthrough curve measured by the 15 cases pumping tracer experiment. Consequently, we could evaluate the dispersion coefficients for 12 cases of 15 cases. Then, we discussed the relation between a injection-withdraw flow rate and a property of heterogeneous media and dispersion coefficient. The conclusions obtained from the results of the evaluation are summarized as follows, It was found that the macroscopic dispersion coefficients tend to be increased with increase of the average radius of tracer front spread around a single well. We have conducted any experiments with s single well settled at two positions. In case of that there is low permeability around a single well, we found dispersion coefficients are large. In case of that there is high permeability around a single well, we found dispersion coefficients are small. In three cases that we could not evaluate because of incorrect accuracy of fitting, we have found it possible that there is some points that dispersion coefficients were strikingly small in tracer front. (author)

  1. Apparatus utilized for injecting fluids into earth formations penetrated by a well

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H

    1967-04-06

    An apparatus useful for injecting fluid into earth formations penetrated by a well consists of a tubular element which is inserted into the well. A number of axially spaced parts above the tubular element are capable of packing off chosen portions of the well casing. Flow passages in the tubular element cooperate with the packer-off, spaced parts, connecting the inside of the tubular element with the well casing. Check valves close each of the passages to fluid flow. Each check valve is sensitive to a predetermined pressure differential inside the tubular element and to the pressure on the packed-off portion of the well casing outside the tubular element, in order to control the passageway. (9 claims)

  2. Application of flexible slurries: an alternative for oil wells subject to cyclic steam injection

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P.; Paiva, Maria D.M.; Cunha, Marcelo C.S. [Halliburton Energy Services (HES), Duncan, OK (United States); Farias, Antonio Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Oil wells that receive cyclic steam injection are subject to high temperature variations during their life cycle. This causes volumetric expansion of the metallic casing which leads to cracks and channels in the formation of the cement. Studies show that volumetric expansion caused by temperature variation may cause wells to rise up to 20-in. at the surface. This paper presents alternative materials that improve the elastic properties of set cement slurries, focusing on maintaining sufficient resilience to maximize the life of the cement. We compare a set of fourteen formulations, some currently in use, selecting those with high flexibility. Analysis was based on the mechanical properties of the set slurries as well as tests according to standards from ABNT and from API Spec 10B. This work contributes new formulations for wells that under-go cyclic steam injection. These new formulations are presented as alternatives to current flexible slurry technology. We can obtain high-quality, more resilient slurries using materials that are more economical, have better cost-benefit, and are easily available in the market. (author)

  3. Spin injection in self-assembled quantum dots coupled with a diluted magnetic quantum well

    International Nuclear Information System (INIS)

    Murayama, A.; Asahina, T.; Souma, I.; Koyama, T.; Hyomi, K.; Nishibayashi, K.; Oka, Y.

    2007-01-01

    Spin injection is studied in self-assembled quantum dots (QDs) of CdSe coupled with a diluted magnetic semiconductor quantum well (DMS-QW) of Zn 1- x - y Cd x Mn y Se, by means of time-resolved circularly polarized photoluminescence (PL). Excitonic PL from the CdSe QDs shows σ - -circular polarization in magnetic fields, mainly due to negative g-values of individual dots, when the energy difference of excitons between the QDs and DMS-QW is large as 300 meV. However, when such energy difference is comparable with LO-phonon energy in the QD, we observe an additional PL peak with the long lifetime as 3.5 ns and σ + -polarization in magnetic fields. It can be attributed to a type-II transition between the down-spin electron injected from the DMS-QW into the QDs, via LO-phonon-assisted resonant tunneling, and the down-spin heavy hole in the DMS-QW. In addition, the electron spin-injection is also evidenced by σ + -polarized PL with the fast rise-time of 20 ps in the QDs

  4. Analytical modeling of injectivity decline in perforated wells; Modelagem analitica da perda de injetividade em pocos canhoneados

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Vanessa Limeira Azevedo; Santos, Adriano dos; Araujo, Juliana Aragao de [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2012-07-01

    During water injection, reductions of permeability (or formation damage) have been observed in many reservoirs, characterizing the injectivity decline. The permeability reduction exists due to the presence of solid and liquid particles in suspension, which are present in the water injected to be. Like this, during the development of projects for the oil production in the water management area, the phenomenon of injectivity decline must be studied, among other activities. This study includes the theoretical and practical modeling of the injectivity decline. The modeling includes different analytical models (empirical and semi-empirical) and laboratory tests, accordingly. Looking forward to this, a simulator based on the classic filtration theory of porous media was developed in order to prevent the injectivity decline within perforated wells. The formation damage caused during deep filtration and cake formation (after transition time) was included in the modeling of perforated wells; the effect of superposition of the diverse perforations was also considered. Besides that, the injectivity decline forecast was made based on well history data. The simulator allowed to forecast the injectivity decline during water injection showing a good adjustment of field history data, so it could be used to assist in the planning of injection wells stimulation. (author)

  5. Cross-flow analysis of injection wells in a multilayered reservoir

    Directory of Open Access Journals (Sweden)

    Mohammadreza Jalali

    2016-09-01

    Natural and forced cross-flow is modeled for some injection wells in an oil reservoir located at North Sea. The solution uses a transient implicit finite difference approach for multiple sand layers with different permeabilities separated by impermeable shale layers. Natural and forced cross-flow rates for each reservoir layer during shut-in are calculated and compared with different production logging tool (PLT measurements. It appears that forced cross-flow is usually more prolonged and subject to a higher flow rate when compared with natural cross-flow, and is thus worthy of more detailed analysis.

  6. High flux-fluence measurements in fast reactors

    International Nuclear Information System (INIS)

    Lippincott, E.P.; Ulseth, J.A.

    1977-01-01

    Characterization of irradiation environments for fuels and materials tests in fast reactors requires determination of the neutron flux integrated over times as long as several years. An accurate integration requires, therefore, passive dosimetry monitors with long half-life or stable products which can be conveniently measured. In addition, burn-up, burn-in, and burn-out effects must be considered in high flux situations and use of minimum quantities of dosimeter materials is often desirable. These conditions force the use of dosimeter and dosimeter container designs, measured products, and techniques that are different from those that are used in critical facilities and other well-characterized benchmark fields. Recent measurements in EBR-II indicate that high-accuracy results can be attained and that tie-backs to benchmark field technique calibrations can be accomplished

  7. Approximate and analytical solutions for solute transport from an injection well into a single fracture

    International Nuclear Information System (INIS)

    Chen, C.S.; Yates, S.R.

    1989-01-01

    In dealing with problems related to land-based nuclear waste management, a number of analytical and approximate solutions were developed to quantify radionuclide transport through fractures contained in the porous formation. It has been reported that by treating the radioactive decay constant as the appropriate first-order rate constant, these solutions can also be used to study injection problems of a similar nature subject to first-order chemical or biological reactions. The fracture is idealized by a pair of parallel, smooth plates separated by an aperture of constant thickness. Groundwater was assumed to be immobile in the underlying and overlying porous formations due to their low permeabilities. However, the injected radionuclides were able to move from the fracture into the porous matrix by molecular diffusion (the matrix diffusion) due to possible concentration gradients across the interface between the fracture and the porous matrix. Calculation of the transient solutions is not straightforward, and the paper documents a contained Fortran program, which computes the Stehfest inversion, the Airy functions, and gives the concentration distributions in the fracture as well as in the porous matrix for both transient and steady-state cases

  8. Laboratory evaluation and field application of a water swellable polymer for fracture shutoff in injection wells

    Energy Technology Data Exchange (ETDEWEB)

    Creel, Prentice [Kinder Morgan, Houston, TX (United States); Vasquez, Julio; Eoff, Larry [Halliburton, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper presents the laboratory evaluation and field application of a water swelling polymer (WSP) that can be bullheaded to shut off fractures in injection wells. The WSP is capable of absorbing 30 to 400 times its own weight in water. The material was evaluated for its effectiveness in providing controllable swelling rates, shutting off the flow of water in synthetic cores with simulated fractures, and providing long-term stability in H{sub 2}S and CO{sub 2} environments. In addition, this paper presents the field implementation of this technology along with successful case histories in west Texas. The water swellable material is mixed on the fly, entering fissures and fracture systems as they swell without invading the matrix of the rock. The rate of absorption can be controlled based on the specified particle size ranging from 600-mesh size up to 14 mm and the type of carrier fluid. This WSP presents an innovative technology for fracture, fissure, and highly eroded out permeability shutoff to improve the sweep efficiency of water and gas injection. In addition, the WSP is resistant to acid contamination and CO{sub 2} and H{sub 2}S environments. To date, more than 200 jobs have been performed with this technology. (author)

  9. Influence of heat exchange of reservoir with rocks on hot gas injection via a single well

    Science.gov (United States)

    Nikolaev, Vladimir E.; Ivanov, Gavril I.

    2017-11-01

    In the computational experiment the influence of heat exchange through top and bottom of the gas-bearing reservoir on the dynamics of temperature and pressure fields during hot gas injection via a single well is investigated. The experiment was carried out within the framework of modified mathematical model of non-isothermal real gas filtration, obtained from the energy and mass conservation laws and the Darcy law. The physical and caloric equations of state together with the Newton-Riemann law of heat exchange of gas reservoir with surrounding rocks, are used as closing relations. It is shown that the influence of the heat exchange with environment on temperature field of the gas-bearing reservoir is localized in a narrow zone near its top and bottom, though the size of this zone is increased with time.

  10. Electrically injected GaAsBi/GaAs single quantum well laser diodes

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    2017-11-01

    Full Text Available We present electrically injected GaAs/GaAsBi single quantum well laser diodes (LDs emitting at a record long wavelength of 1141 nm at room temperature grown by molecular beam epitaxy. The LDs have excellent device performances with internal quantum efficiency of 86%, internal loss of 10 cm-1 and transparency current density of 196 A/cm2. The LDs can operate under continuous-wave mode up to 273 K. The characteristic temperature are extracted to be 125 K in the temperature range of 77∼150 K, and reduced to 90 K in the range of 150∼273 K. The temperature coefficient of 0.3 nm/K is extracted in the temperature range of 77∼273 K.

  11. Single well injection withdrawal tests (SWIW) in fractured rock. Some aspects on interpretation

    International Nuclear Information System (INIS)

    Neretnieks, Ivars

    2007-08-01

    Single-Well-Injection-Withdrawal, SWIW, tests are used to try to extract information on fracture apertures, sorption and diffusion properties and dispersion information in individual fractures. It is done by injecting a given amount of traced water into an isolated fracture. After a waiting period water is withdrawn from the fracture and the tracer concentration is measured. The concentration time curve is fitted to a model and the parameter values quantifying the different interaction mechanisms are determined. A number of different mechanisms influence the recovery of the tracer. One or more of the following mechanisms are considered. They include: dispersion due to velocity differences, sorption on fracture surface and on infill, diffusion in rock fragments in the fracture, diffusion between 'streamlines', diffusion into rock matrix and other stagnant water volumes, sorption kinetics and slow drift of the plume caused by the natural gradient. Many of the interaction mechanisms can influence the recovery curve in a similar way. For example, diffusion into rock matrix water and into stagnant water in the fracture adjacent to the flowing channels cannot be distinguished if only one tracer is used. Tracers with different properties can in principle be used but they will encounter different parts of the fracture, the sorbing tracer will move out less from the injection point than a nonsorbing tracer will. Diffusion and sorption in small particles in the flowpath can influence the recovery curve in a similar way as rock matrix diffusion does. Dispersion caused by diffusion between 'streamlines', Taylor dispersion, can give very different results in channels of different shapes. Such dispersion effects can be difficult to distinguish from matrix diffusion effects. Dispersion coefficients obtained in a SWIW test may have little relation to dispersion of a tracer moving from A to B. This is partly due to the different mechanisms and partly due to different time scales

  12. Single well injection withdrawal tests (SWIW) in fractured rock. Some aspects on interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Neretnieks, Ivars [Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)

    2007-08-15

    Single-Well-Injection-Withdrawal, SWIW, tests are used to try to extract information on fracture apertures, sorption and diffusion properties and dispersion information in individual fractures. It is done by injecting a given amount of traced water into an isolated fracture. After a waiting period water is withdrawn from the fracture and the tracer concentration is measured. The concentration time curve is fitted to a model and the parameter values quantifying the different interaction mechanisms are determined. A number of different mechanisms influence the recovery of the tracer. One or more of the following mechanisms are considered. They include: dispersion due to velocity differences, sorption on fracture surface and on infill, diffusion in rock fragments in the fracture, diffusion between 'streamlines', diffusion into rock matrix and other stagnant water volumes, sorption kinetics and slow drift of the plume caused by the natural gradient. Many of the interaction mechanisms can influence the recovery curve in a similar way. For example, diffusion into rock matrix water and into stagnant water in the fracture adjacent to the flowing channels cannot be distinguished if only one tracer is used. Tracers with different properties can in principle be used but they will encounter different parts of the fracture, the sorbing tracer will move out less from the injection point than a nonsorbing tracer will. Diffusion and sorption in small particles in the flowpath can influence the recovery curve in a similar way as rock matrix diffusion does. Dispersion caused by diffusion between 'streamlines', Taylor dispersion, can give very different results in channels of different shapes. Such dispersion effects can be difficult to distinguish from matrix diffusion effects. Dispersion coefficients obtained in a SWIW test may have little relation to dispersion of a tracer moving from A to B. This is partly due to the different mechanisms and partly due to

  13. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas

    Science.gov (United States)

    Frohlich, Cliff

    2012-01-01

    Between November 2009 and September 2011, temporary seismographs deployed under the EarthScope USArray program were situated on a 70-km grid covering the Barnett Shale in Texas, recording data that allowed sensing and locating regional earthquakes with magnitudes 1.5 and larger. I analyzed these data and located 67 earthquakes, more than eight times as many as reported by the National Earthquake Information Center. All 24 of the most reliably located epicenters occurred in eight groups within 3.2 km of one or more injection wells. These included wells near Dallas–Fort Worth and Cleburne, Texas, where earthquakes near injection wells were reported by the media in 2008 and 2009, as well as wells in six other locations, including several where no earthquakes have been reported previously. This suggests injection-triggered earthquakes are more common than is generally recognized. All the wells nearest to the earthquake groups reported maximum monthly injection rates exceeding 150,000 barrels of water per month (24,000 m3/mo) since October 2006. However, while 9 of 27 such wells in Johnson County were near earthquakes, elsewhere no earthquakes occurred near wells with similar injection rates. A plausible hypothesis to explain these observations is that injection only triggers earthquakes if injected fluids reach and relieve friction on a suitably oriented, nearby fault that is experiencing regional tectonic stress. Testing this hypothesis would require identifying geographic regions where there is interpreted subsurface structure information available to determine whether there are faults near seismically active and seismically quiescent injection wells. PMID:22869701

  14. Corrosion Study of the Injection Equipments in Water in Al-Ahdeb Wells ‐Iraq

    Directory of Open Access Journals (Sweden)

    Hassan Abdulkadhim Alwan Alsaadi

    2015-01-01

    Full Text Available Water injection equipments such as pipelines, which are used in the second recovery of oil in the Al-Ahdeb wells, suffer from the corrosion in water during maintaining vacuum deoxygenated tower that used to decrease concentration of the dissolved oxygen gas in the water from 6.2-9.1 ppm to o.5 ppm. This study involved calculation the corrosion rates of the internal surfaces of the pipelines either during operation of the vacuum unit or when the tower out of operation. Finally, find the solution by one of the following suggestions. In the first suggestion removal of the dissolved O2 from water is achieved by increasing the dosage of the oxygen scavenger (sodium sulphite. The second suggestion involves removing the dissolved O2 from water by bubbling the oxygenated water with nitrogen gas. The study showed that the corrosion rates of various inside diameter pipelines are between 0.13 mm/yr and 1.5 mm/yr during operation of the vacuum tower and between 3.2 mm/yr and 18.5 mm/yr when the tower out of the operation. While the results showed that the corrosion rate of the pipelines when the tower out of operation reached to the acceptable value of 0.1 mm/y when the dissolved oxygen in the injected water removed by increasing the dosage of the sodium sulphite (Na2SO3 to 48-72 ppm. The results also explained that corrosion rates of the pipelines reached to 0.5 mm/y when the dissolved oxygen removed by bubbling the water with nitrogen gas.

  15. Resource Conservation and Recovery Act closure report: Area 2 Bitcutter and Postshot Containment Shops Injection Wells, Correction Action Unit 90

    International Nuclear Information System (INIS)

    1996-12-01

    This Closure Report provides documentation of the activities conducted during the Resource Conservation and Recovery Act (RCRA) closure of the Bitcutter and Postshot Containment Shops Injection Wells located in Area 2 of the Nevada Test Site (NTS), Oak Spring Quadrangle (USGS, 1986), Township 10 South, Range 53 East, Nye County, Nevada. This report discusses the Bitcutter Shop Inside Injection Well (CAU 90-A) closure-in-place and the Bitcutter Shop Outside Injection Well (CAU 90-B) and Postshot Containment Shop Injection Well (CAU 90-C) clean closures. This Closure Report provides background information about the unit, the results of the characterization activities and actions conducted to determine the closure design. It also provides a discussion of the drainage analysis, preliminary closure activities, final closure activities, waste management activities, and the Post-Closure Care requirements

  16. Compliance and use behaviour, an issue in injectable as well as oral contraceptive use? A study of injectable and oral contraceptive use in Johannesburg.

    Science.gov (United States)

    Beksinska, M E; Rees, V H; Nkonyane, T; McIntyre, J A

    1998-04-01

    This study examines the compliance, use behaviour and knowledge of method of women using injectable and oral contraceptives in two clinic sites in the Johannesburg area, South Africa. An interviewer administered questionnaire was used to collect information in the clients' home language. A total of 400 women were interviewed in the clinics. The mean age of clients was 26.2 years (range 13 to 43 years). Of the clients not wanting to get pregnant, 30.4 per cent of injectable users and 18.4 per cent of oral contraceptive (OC) users had stopped using their method temporarily before returning to the same method (called the nonuse segment) and had not used any other form of contraception during this time. Almost one third of injectable users (31.2 per cent) had been late for their next injection at least once. Although nearly all women using injectables had experienced some menstrual disturbances, over one third (38.5 per cent) had not been informed by the providers about the possibility of these changes. Many women gave the disruption of their menstrual cycle as the reason for the nonuse segment. The majority of OC users lacked information on how to use their method correctly. Nearly all women expressed an interest in obtaining more information on their current method and other available methods. This study shows that compliance is an issue in injectable as well as OC users.

  17. Upgrading and modernization of the high flux reactor Petten

    International Nuclear Information System (INIS)

    Ahlf, J.

    1992-01-01

    The High Flux Reactor (HFR) at Petten, The Netherlands, owned by the European Communities and operated by the Netherlands Energy Research Foundation, is a water-cooled and moderated, multipurpose research reactor of the closed-tank in-pool type, operated at 45 MW. Performance upgrading comprised two power increases from 20 MW via 30 MW to 45 MW, providing more and higher rated irradiation positions in the tank. With the replacement of the original reactor vessel the experimental capabilities of the reactor were improved. Better pool side facilities and the introduction of a large cross-section, double, beam tube were implemented. Additional major installation upgrading activities consisted of the replacement of the primary and the pool heat exchangers, replacement of the beryllium reflector elements, extension of the overpower protection systems and upgrading of the nuclear instrumentation as well as the guaranteed power supply. Control room upgrading is in progress. A full new safety analysis, as well as the introduction of a comprehensive Quality Assurance system, are summarized under software upgrading. Continuous modernization and upgrading also takes place of equipment for fuel and structural materials irradiations for fission reactors and future fusion machines. In parallel, all supporting services, as well as the management structure for large irradiation programmes, have been developed. Presently the reactor is operating at about 275 full power days per year with an average utilization of the irradiation positions of 70 to 80%. (orig.)

  18. Experimental Investigations into CO2 Interactions with Injection Well Infrastructure for CO2 Storage

    Science.gov (United States)

    Syed, Amer; Shi, Ji-Quan; Durucan, Sevket; Nash, Graham; Korre, Anna

    2013-04-01

    Wellbore integrity is an essential requirement to ensure the success of a CO2 Storage project as leakage of CO2 from the injection or any other abandoned well in the storage complex, could not only severely impede the efficiency of CO2 injection and storage but also may result in potential adverse impact on the surrounding environment. Early research has revealed that in case of improper well completions and/or significant changes in operating bottomhole pressure and temperature could lead to the creation of microannulus at cement-casing interface which may constitute a preferential pathway for potential CO2 leakage during and post injection period. As a part of a European Commission funded CO2CARE project, the current research investigates the sealing behaviour of such microannulus at the cement-casing interface under simulated subsurface reservoir pressure and temperature conditions and uses the findings to develop a methodology to assess the overall integrity of CO2 storage. A full scale wellbore experimental test set up was constructed for use under elevated pressure and temperature conditions as encountered in typical CO2 storage sites. The wellbore cell consists of an assembly of concentric elements of full scale casing (Diameter= 0.1524m), cement sheath and an outer casing. The stainless steel outer ring is intended to simulate the stiffness offered by the reservoir rock to the displacement applied at the wellbore. The Central Loading Mechanism (CLM) consists of four case hardened shoes that can impart radial load onto the well casing. The radial movement of the shoes is powered through the synchronised movement of four precision jacks controlled hydraulically which could impart radial pressures up to 15 MPa. The cell body is a gas tight enclosure that houses the wellbore and the central loading mechanism. The setup is enclosed in a laboratory oven which acts both as temperature and safety enclosure. Prior to a test, cement mix is set between the casing and

  19. Development and validation status of the IFMIF High Flux Test Module

    International Nuclear Information System (INIS)

    Arbeiter, Frederik; Abou-Sena, Ali; Chen Yuming; Dolensky, Bernhard; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg

    2011-01-01

    The development of the IFMIF (International Fusion Material Irradiation Facility) High Flux Test Module in the EVEDA (Engineering Validation and Engineering Design Activities) phase up to 2013 includes conceptual design, engineering analyses, as well as design and engineering validation by building of prototypes and their testing. The High Flux Test Module is the device to facilitate the irradiation of SSTT samples of RAFM steels at temperatures 250-550 deg. C and up to an accumulated irradiation damage of 150 dpa. The requirements, the current design and the performance of the module are discussed, and the development process is outlined.

  20. Development and validation status of the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology (KIT-INR), Karlsruhe (Germany); Abou-Sena, Ali; Chen Yuming; Dolensky, Bernhard; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology (KIT-INR), Karlsruhe (Germany)

    2011-10-15

    The development of the IFMIF (International Fusion Material Irradiation Facility) High Flux Test Module in the EVEDA (Engineering Validation and Engineering Design Activities) phase up to 2013 includes conceptual design, engineering analyses, as well as design and engineering validation by building of prototypes and their testing. The High Flux Test Module is the device to facilitate the irradiation of SSTT samples of RAFM steels at temperatures 250-550 deg. C and up to an accumulated irradiation damage of 150 dpa. The requirements, the current design and the performance of the module are discussed, and the development process is outlined.

  1. High flux reactor evolutions and improvements

    International Nuclear Information System (INIS)

    Guyon, H.

    2005-01-01

    Following the changes over the years in experimental and safety requirements at the ILL a great deal of work has been carried out on the installations: - In 1985, a new cold source was installed, allowing the production of ultra-cold neutrons via a vertical channel. - From 1991 to 1995 the reactor block was replaced, allowing us to perform reactivity calculations and determine other neutronic values. - In 2003, a new hot source was installed with three beam tubes viewing it; the new system is now operating very efficiently. - This year a major beam tube is to be replaced with a new zircaloy tube. - And finally, from 2003 to 2006, the facility is being upgraded significantly to withstand newly-defined safe-shutdown earthquakes. In parallel, developments are on-going on the efficiency of the instruments and the neutron guides under the Millennium Programme. These will result in overall gains in data collection of over a factor of 10. As the ILL's international convention has been extended to the end of 2013 the Institute is therefore now well-set to maintain its position as a centre of excellence in the scientific use of slow neutrons for the twenty years to come. (author)

  2. Decommissioning of the High Flux Beam Reactor at Brookhaven Lab

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-05-27

    The High Flux Beam Reactor at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on October 31, 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shutdown in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor’s spent fuel pool. The reactor remained shutdown for almost three years for safety and environmental reviews. In November 1999 the United States Department of Energy decided to permanently shutdown the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR cleanup conducted during 1999-2009 will be described in the paper.

  3. Upgrade of the compact neutron spectrometer for high flux environments

    Science.gov (United States)

    Osipenko, M.; Bellucci, A.; Ceriale, V.; Corsini, D.; Gariano, G.; Gatti, F.; Girolami, M.; Minutoli, S.; Panza, F.; Pillon, M.; Ripani, M.; Trucchi, D. M.

    2018-03-01

    In this paper new version of the 6Li-based neutron spectrometer for high flux environments is described. The new spectrometer was built with commercial single crystal Chemical Vapour Deposition diamonds of electronic grade. These crystals feature better charge collection as well as higher radiation hardness. New metal contacts approaching ohmic conditions were deposited on the diamonds suppressing build-up of space charge observed in the previous prototypes. New passive preamplification of the signal at detector side was implemented to improve its resolution. This preamplification is based on the RF transformer not sensitive to high neutron flux. The compact mechanical design allowed to reduce detector size to a tube of 1 cm diameter and 13 cm long. The spectrometer was tested in the thermal column of TRIGA reactor and at the DD neutron generator. The test results indicate an energy resolution of 300 keV (FWHM), reduced to 72 keV (RMS) excluding energy loss, and coincidence timing resolution of 160 ps (FWHM). The measured data are in agreement with Geant4 simulations except for larger energy loss tail presumably related to imperfections of metal contacts and glue expansion.

  4. High-flux solar concentration with imaging designs

    Energy Technology Data Exchange (ETDEWEB)

    Feuermann, D. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Gordon, J.M. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Ben-Gurion University of the Negev (Israel). Dept. of Mechanical Engineering; Ries, H. [Ries and Partners, Munich (Germany)

    1999-02-01

    Most large solar concentrators designed for high flux concentration at high collection efficiency are based on imaging primary mirrors and nonimaging secondary concentrators. In this paper, we offer an alternative purely imaging two-stage solar concentrator that can attain high flux concentration at high collection efficiency. Possible practical virtues include: (1) an inherent large gap between absorber and secondary mirror; (2) a restricted angular range on the absorber; and (3) an upward-facing receiver where collected energy can be extracted via the (shaded) apex of the parabola. We use efficiency-concentration plots to characterize the solar concentrators considered, and to evaluate the potential improvements with secondary concentrators. (author)

  5. The High Flux Reactor Petten, present status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Ahlf, J [Institute for Advanced Materials, Joint Research Centre, Petten (Netherlands)

    1990-05-01

    The High Flux Reactor (HFR) in Petten, The Netherlands, is a light water cooled and moderated multipurpose research reactor of the closed-tank in pool type. It is operated with highly enriched Uranium fuel at a power of 45 MW. The reactor is owned by the European Communities and operated under contract by the Dutch ECN. The HFR programme is funded by The Netherlands and Germany, a smaller share comes from the specific programmes of the Joint Research Centre (JRC) and from third party contract work. Since its first criticality in 1961 the reactor has been continuously upgraded by implementing developments in fuel element technology and increasing the power from 20 MW to the present 45 MV. In 1984 the reactor vessel was replaced by a new one with an improved accessibility for experiments. In the following years also other ageing equipment has been replaced (primary heat exchangers, pool heat exchanger, beryllium reflector elements, nuclear and process instrumentation, uninterruptable power supply). Control room upgrading is under preparation. A new safety analysis is near to completion and will form the basis for a renewed license. The reactor is used for nuclear energy related research (structural materials and fuel irradiations for LWR's, HTR's and FBR's, fusion materials irradiations). The beam tubes are used for nuclear physics as well as solid state and materials sciences. Radioisotope production at large scale, processing of gemstones and silicon with neutrons, neutron radiography and activation analysis are actively pursued. A clinical facility for boron neutron capture therapy is being designed at one of the large cross section beam tubes. It is foreseen to operate the reactor at least for a further decade. The exploitation pattern may undergo some changes depending on the requirements of the supporting countries and the JRC programmes. (author)

  6. The High Flux Reactor Petten, present status and prospects

    International Nuclear Information System (INIS)

    Ahlf, J.

    1990-01-01

    The High Flux Reactor (HFR) in Petten, The Netherlands, is a light water cooled and moderated multipurpose research reactor of the closed-tank in pool type. It is operated with highly enriched Uranium fuel at a power of 45 MW. The reactor is owned by the European Communities and operated under contract by the Dutch ECN. The HFR programme is funded by The Netherlands and Germany, a smaller share comes from the specific programmes of the Joint Research Centre (JRC) and from third party contract work. Since its first criticality in 1961 the reactor has been continuously upgraded by implementing developments in fuel element technology and increasing the power from 20 MW to the present 45 MV. In 1984 the reactor vessel was replaced by a new one with an improved accessibility for experiments. In the following years also other ageing equipment has been replaced (primary heat exchangers, pool heat exchanger, beryllium reflector elements, nuclear and process instrumentation, uninterruptable power supply). Control room upgrading is under preparation. A new safety analysis is near to completion and will form the basis for a renewed license. The reactor is used for nuclear energy related research (structural materials and fuel irradiations for LWR's, HTR's and FBR's, fusion materials irradiations). The beam tubes are used for nuclear physics as well as solid state and materials sciences. Radioisotope production at large scale, processing of gemstones and silicon with neutrons, neutron radiography and activation analysis are actively pursued. A clinical facility for boron neutron capture therapy is being designed at one of the large cross section beam tubes. It is foreseen to operate the reactor at least for a further decade. The exploitation pattern may undergo some changes depending on the requirements of the supporting countries and the JRC programmes. (author)

  7. 1982 Annual status report: operation of the high flux reactor

    International Nuclear Information System (INIS)

    1983-01-01

    The high flux materials testing reactor has been operated in 1982 within a few percent of the pre-set schedule, attaining 73% overall availability. Its utilization reached another record figure in 20 years: 81% without, 92% with, the low enrichment test elements irradiated during the year

  8. Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic aquifer

    NARCIS (Netherlands)

    Prommer, H.; Stuijfzand, P.J.

    2005-01-01

    Artificial recharge is a technique used increasingly to supplement drinking water supplies. To assess the potential water quality changes that occur during subsurface passage, a comprehensive deep-well injection experiment was carried out for a recharge scheme, where pretreated, aerobic surface

  9. A two-fluid model for vertical flow applied to CO2 injection wells

    DEFF Research Database (Denmark)

    Linga, Gaute; Lund, Halvor

    2016-01-01

    Flow of CO2 in wells is associated with substantial variations in thermophysical properties downhole, due to the coupled transient processes involved: complex flow patterns, density changes, phase transitions, and heat transfer to and from surroundings. Large temperature variations can lead...... the well, including tubing, packer fluid, casing, cement or drilling mud, and rock formation. This enables prediction of the temperature in the well fluid and in each layer of the well. The model is applied to sudden shut-in and blowout cases of a CO2 injection well, where we employ the highly accurate...

  10. A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells.

    Science.gov (United States)

    Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M

    2015-08-04

    Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale.

  11. 40 CFR 144.89 - How do I close my Class V injection well?

    Science.gov (United States)

    2010-07-01

    ... well? 144.89 Section 144.89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... cesspool or motor vehicle waste disposal well, you must plug or otherwise close the well in a manner that..., sludge, liquids, or other materials removed from or adjacent to your well in accordance with all...

  12. Characterisation of Redlen high-flux CdZnTe

    Science.gov (United States)

    Thomas, B.; Veale, M. C.; Wilson, M. D.; Seller, P.; Schneider, A.; Iniewski, K.

    2017-12-01

    CdZnTe is a promising material for the current generation of free electron laser light sources and future laser-driven γ-ray sources which require detectors capable of high flux imaging at X-ray and γ-ray energies (> 10 keV) . However, at high fluxes CdZnTe has been shown to polarise due to hole trapping, leading to poor performance. Novel Redlen CdZnTe material with improved hole transport properties has been designed for high flux applications. Small pixel CdZnTe detectors were fabricated by Redlen Technologies and flip-chip bonded to PIXIE ASICs. An XIA Digital Gamma Finder PIXIE-16 system was used to digitise each of the nine analogue signals with a timing resolution of 10 ns. Pulse shape analysis was used to extract the rise times and amplitude of signals. These were measured as a function of applied bias voltage and used to calculate the mobility (μ) and mobility-lifetime (μτ) of electrons and holes in the material for three identical detectors. The measured values of the transport properties of electrons in the high-flux-capable material was lower than previously reported for Redlen CdZnTe material (μeτe ~ 1 × 10-3 cm2V-1 and μe ~ 1000 cm2V-1s-1) while the hole transport properties were found to have improved (μhτh ~ 3 × 10-4 cm2V-1 and μh ~ 100 cm2V-1s-1).

  13. Annual progress report 1988, operation of the high flux reactor

    International Nuclear Information System (INIS)

    1989-01-01

    In 1988 the High Flux Reactor Petten was routinely operated without any unforeseen event. The availability was 99% of scheduled operation. Utilization of the irradiation positions amounted to 80% of the practical occupation limit. The exploitation pattern comprised nuclear energy deployment, fundamental research with neutrons, and radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  14. Methods and applications in high flux neutron imaging

    International Nuclear Information System (INIS)

    Ballhausen, H.

    2007-01-01

    This treatise develops new methods for high flux neutron radiography and high flux neutron tomography and describes some of their applications in actual experiments. Instead of single images, time series can be acquired with short exposure times due to the available high intensity. To best use the increased amount of information, new estimators are proposed, which extract accurate results from the recorded ensembles, even if the individual piece of data is very noisy and in addition severely affected by systematic errors such as an influence of gamma background radiation. The spatial resolution of neutron radiographies, usually limited by beam divergence and inherent resolution of the scintillator, can be significantly increased by scanning the sample with a pinhole-micro-collimator. This technique circumvents any limitations in present detector design and, due to the available high intensity, could be successfully tested. Imaging with scattered neutrons as opposed to conventional total attenuation based imaging determines separately the absorption and scattering cross sections within the sample. For the first time even coherent angle dependent scattering could be visualized space-resolved. New applications of high flux neutron imaging are presented, such as materials engineering experiments on innovative metal joints, time-resolved tomography on multilayer stacks of fuel cells under operation, and others. A new implementation of an algorithm for the algebraic reconstruction of tomography data executes even in case of missing information, such as limited angle tomography, and returns quantitative reconstructions. The setup of the world-leading high flux radiography and tomography facility at the Institut Laue-Langevin is presented. A comprehensive appendix covers the physical and technical foundations of neutron imaging. (orig.)

  15. Component and system simulation models for High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sozer, A.

    1989-08-01

    Component models for the High Flux Isotope Reactor (HFIR) have been developed. The models are HFIR core, heat exchangers, pressurizer pumps, circulation pumps, letdown valves, primary head tank, generic transport delay (pipes), system pressure, loop pressure-flow balance, and decay heat. The models were written in FORTRAN and can be run on different computers, including IBM PCs, as they do not use any specific simulation languages such as ACSL or CSMP. 14 refs., 13 figs

  16. A gas production system from methane hydrate layers by hot water injection and BHP control with radial horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, T.; Ono, S.; Iwamoto, A.; Sugai, Y.; Sasaki, K. [Kyushu Univ., Fukuoka, Fukuoka (Japan)

    2010-07-01

    Reservoir characterization of methane hydrate (MH) bearing turbidite channel in the eastern Nankai Trough, in Japan has been performed to develop a gas production strategy. This paper proposed a gas production system from methane hydrate (MH) sediment layers by combining the hot water injection method and bottom hole pressure control at the production well using radial horizontal wells. Numerical simulations of the cylindrical homogeneous MH layer model were performed in order to evaluate gas production characteristics by the depressurization method with bottom hole pressure control. In addition, the effects of numerical block modeling and averaging physical properties of MH layers were presented. According to numerical simulations, combining the existing production system with hot water injection and bottom hole pressure control results in an outward expansion of the hot water chamber from the center of the MH layer with continuous gas production. 10 refs., 15 figs.

  17. Ultra high-temperature solids-free insulating packer fluid for oil and gas production, steam injection and geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Ezell, R.G.; Harrison, D.J. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Halliburton Energy Services, Calgary, AB (Canada)

    2008-10-15

    Uncontrolled heat transfer from production/injection tubing during thermal oil recovery via steam injection can be detrimental to the integrity of the casing and to the quality of the steam that is injected into the reservoir. An aqueous-based insulating packer fluid (IPF) was introduced to improve the steam injection process by controlling the total heat loss from the produced fluids to the surrounding wellbore, internal annuli and formation. The IPF was developed for elevated temperature environments through extensive investigation across multidisciplinary technology. The innovative system delivers performance beyond conventional systems of comparable thermal conductivity. Its density range and conductivity measurements were presented in this paper. High-temperature static aging tests showed superior gel integrity without any phase separation after exposure to temperatures higher than 260 degrees C. The new fluids are hydrate inhibitive, non-corrosive and pass oil and grease testing. They are considered to be environmentally sound by Gulf of Mexico standards. It was concluded that the new ultra high-performance insulating packer fluid (HTIPF) reduced the heat loss significantly by both conduction and convection. Heat transfer within the aqueous-based HTIPF was 97 per cent less than that of pure water. It was concluded that the HTIPF can be substituted for conventional packer fluids without compromising any well control issues. 21 refs., 1 tab., 4 figs.

  18. Monitoring a pilot CO2 injection experiment in a shallow aquifer using 3D cross-well electrical resistance tomography

    Science.gov (United States)

    Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.

    2014-12-01

    Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.

  19. 40 CFR 144.80 - What is a Class V injection well?

    Science.gov (United States)

    2010-07-01

    ... of radioactive waste disposal sites to dispose of hazardous waste or radioactive waste into a... hazardous waste management facilities, or by owners or operators of radioactive waste disposal sites to... one quarter mile of the well bore, an underground source of drinking water; (3) Radioactive waste...

  20. Harding - a field case study: Sand control strategy for ultra-high productivity and injectivity wells

    Energy Technology Data Exchange (ETDEWEB)

    McKay, G.; Bennett, C.; Price-Smith, C.; Dowell, S.; McLellan, W. [British Petroleum (United Kingdom)

    1998-12-31

    The strategy adopted and the factors considered in the development of the sandface completion design for Phase One of the Harding Field in the unconsolidated Balder Massive Sand in the U.K. Sector of the North Sea is described. The field development utilizes a TPG 500 Jack-up Drilling and Production Unit in conjunction with a concrete gravity base tank (GBT). The first phase of the development involved drilling and completing horizontal wells sand-free, ultra-high production (over 30,000 BOPD/well, with PI in excess of 1,000 bbl/day/psi). The experiences showed that pre-packed screens can be successfully utilized to provide lasting sand control with high rate of production in clean homogenous sandstones, and that testing for fluid compatibility, formation damage, screen plugging, corrosion and erosion potential are essential pre-requisites in determining the optimal solution in any well with sand production potential.The experiences gained in Phase One have contributed to design enhancements for Phase Two of the project which include extended reach horizontal wells to neighbouring satellite pools. 3 refs., 1 tab., 8 figs.

  1. Desalination of brackish groundwater and concentrate disposal by deep well injection

    NARCIS (Netherlands)

    Wolthek, N.; Raat, K.; Ruijter, J.A.; Kemperman, Antonius J.B.; Oosterhof, A.

    2013-01-01

    In the province of Friesland (in the Northern part of The Netherlands), problems have arisen with the abstraction of fresh groundwater due to salinization of wells by upcoming of brackish water. A solution to this problem is to intercept (abstract) the upcoming brackish water, desalinate it with a

  2. The dependence of potential well formation on the magnetic field strength and electron injection current in a polywell device

    International Nuclear Information System (INIS)

    Cornish, S.; Gummersall, D.; Carr, M.; Khachan, J.

    2014-01-01

    A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory

  3. Annual report 1989 operation of the high flux reactor

    International Nuclear Information System (INIS)

    Ahlf, J.; Gevers, A.

    1989-01-01

    In 1989 the operation of the High Flux Reactor Petten was carried out as planned. The availability was more than 100% of scheduled operating time. The average occupation of the reactor by experimental devices was 72% of the practical occupation limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons and for radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  4. Annual report 1990. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    Ahlf, J.; Gevers, A.

    1990-01-01

    In 1990 the operation of the High Flux Reactor was carried out as planned. The availability was 96% of scheduled operating time. The average utilization of the reactor was 71% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  5. Annual Report 1991. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    Ahlf, J.; Gevers, A.

    1992-01-01

    In 1991 the operation of the High Flux Reactor was carried out as planned. The availability was more than 100% of scheduled operating time. The average utilization of the reactor was 69% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. Development activities addressed upgrading of irradiation devices, neutron capture therapy, neutron radiography and neutron transmutation doping of silicon. General activities in support of running irradiation programmes progressed in the normal way

  6. Pressurizer pump reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    During a prolonged outage from November 1986 to May 1990, numerous changes were made at the High Flux Isotope Reactor (HFIR). Some of these changes involved the pressurizer pumps. An analysis was performed to calculate the impact of these changes on the pressurizer system availability. The analysis showed that the availability of the pressurizer system dropped from essentially 100% to approximately 96%. The primary reason for the decrease in availability comes because off-site power grid disturbances sometimes result in a reactor trip with the present pressurizer pump configuration. Changes are being made to the present pressurizer pump configuration to regain some of the lost availability

  7. High-flux solar photon processes: Opportunities for applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  8. Actinide and Xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D.L.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  9. Actinide and xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D. L.; Sailor, W. C.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  10. Actinide and Xenon reactivity effects in ATW high flux systems

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, M. [Univ. of Virginia, Charlottesville, VA (United States); Olson, K.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-10-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides.

  11. Idaho Chemical Processing Plant (ICPP) injection well: Operations history and hydrochemical inventory of the waste stream

    International Nuclear Information System (INIS)

    Fromm, J.; McCurry, M.; Hackett, W.; Welhan, J.

    1994-01-01

    Department of Energy (DOE), United States Geological Survey (USGS), and Idaho Chemical Processing Plant (ICPP) documents were searched for information regarding service disposal operations, and the chemical characteristics and volumes of the service waste emplaced in, and above, the Eastern Snake River Plain aquifer (ESRP) from 1953-1992. A summary database has been developed which synthesizes available, but dispersed, information. This assembled data records spatial, volumetric and chemical input patterns which will help establish the initial contaminant water characteristics required in computer modeling, aid in interpreting the monitoring well network hydrochemical information, and contribute to a better understanding of contaminant transport in the aquifer near the ICPP. Gaps and uncertainties in the input record are also identified with respect to time and type. 39 refs., 5 figs., 5 tabs

  12. Overview of results of the first phase of validation activities for the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Karlsruhe (Germany); Chen Yuming; Dolensky, Bernhard; Freund, Jana; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Validation of computational fluid dynamics (CFD) modeling approach for application in the IFMIF High Flux Test Module. Black-Right-Pointing-Pointer Fabrication of prototypes of the irradiation capsules of the IFMIF High Flux Test Module. - Abstract: The international fusion materials irradiation facility (IFMIF) is projected to create an experimentally validated database of material properties relevant for fusion reactor designs. The IFMIF High Flux Test Module is the dedicated experiment to irradiate alloys in the temperature range 250-550 Degree-Sign C and up to 50 displacements per atom per irradiation cycle. The High Flux Test Module is developed to maximize the specimen payload in the restricted irradiation volume, and to minimize the temperature spread within each specimen bundle. Low pressure helium mini-channel cooling is used to offer a high integration density. Due to the demanding thermo-hydraulic and mechanical conditions, the engineering design process (involving numerical neutronic, thermo-hydraulic and mechanical analyses) is supported by extensive experimental validation activities. This paper reports on the prototype manufacturing, thermo-hydraulic modeling experiments and component tests, as well as on mechanical testing. For the testing of the 1:1 prototype of the High Flux Test Module, a dedicated test facility, the Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) has been taken into service.

  13. Overview of results of the first phase of validation activities for the IFMIF High Flux Test Module

    International Nuclear Information System (INIS)

    Arbeiter, Frederik; Chen Yuming; Dolensky, Bernhard; Freund, Jana; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg

    2012-01-01

    Highlights: ► Validation of computational fluid dynamics (CFD) modeling approach for application in the IFMIF High Flux Test Module. ► Fabrication of prototypes of the irradiation capsules of the IFMIF High Flux Test Module. - Abstract: The international fusion materials irradiation facility (IFMIF) is projected to create an experimentally validated database of material properties relevant for fusion reactor designs. The IFMIF High Flux Test Module is the dedicated experiment to irradiate alloys in the temperature range 250–550 °C and up to 50 displacements per atom per irradiation cycle. The High Flux Test Module is developed to maximize the specimen payload in the restricted irradiation volume, and to minimize the temperature spread within each specimen bundle. Low pressure helium mini-channel cooling is used to offer a high integration density. Due to the demanding thermo-hydraulic and mechanical conditions, the engineering design process (involving numerical neutronic, thermo-hydraulic and mechanical analyses) is supported by extensive experimental validation activities. This paper reports on the prototype manufacturing, thermo-hydraulic modeling experiments and component tests, as well as on mechanical testing. For the testing of the 1:1 prototype of the High Flux Test Module, a dedicated test facility, the Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) has been taken into service.

  14. The High Flux Beam Reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1994-01-01

    Brookhaven National Laboratory's High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want 'more'. In the mid-50's the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments

  15. High flux transmutation of fission products and actinides

    International Nuclear Information System (INIS)

    Gerasimov, A.; Kiselev, G.; Myrtsymova, L.

    2001-01-01

    Long-lived fission products and minor actinides accumulated in spent nuclear fuel of power reactors comprise the major part of high level radwaste. Their incineration is important from the point of view of radwaste management. Transmutation of these nuclides by means of neutron irradiation can be performed either in conventional nuclear reactors, or in specialized transmutation reactors, or in ADS facilities with subcritical reactor and neutron source with application of proton accelerator. Different types of transmutation nuclear facilities can be used in order to insure optimal incineration conditions for radwaste. The choice of facility type for optimal transmutation should be based on the fundamental data in the physics of nuclide transformations. Transmutation of minor actinides leads to the increase of radiotoxicity during irradiation. It takes significant time compared to the lifetime of reactor facility to achieve equilibrium without effective transmutation. High flux nuclear facilities allow to minimize these draw-backs of conventional facilities with both thermal and fast neutron spectrum. They provide fast approach to equilibrium and low level of equilibrium mass and radiotoxicity of transmuted actinides. High flux facilities are advantageous also for transmutation of long-lived fission products as they provide short incineration time

  16. Pump-probe spectroscopy of spin-injection dynamics in double quantum wells of diluted magnetic semiconductor

    International Nuclear Information System (INIS)

    Nishibayashi, K.; Aoshima, I.; Souma, I.; Murayama, A.; Oka, Y.

    2006-01-01

    Dynamics of spin injection has been investigated in a double quantum well (DQW) composed of a diluted magnetic semiconductor by the pump-probe transient absorption spectroscopy in magnetic field. The DQW consists of a non-magnetic well (NMW) of CdTe and a magnetic well (MW) of Cd 0.92 Mn 0.08 Te. The MW shows a transient absorption saturation in the exciton band for more than 200 ps after the optical pumping, while the exciton photoluminescence does not arise from the MW. In the NMW, the circular polarization degree of the transient absorption saturation shows an increase with increasing time. The results are interpreted by the individual tunneling of spin-polarized electrons and holes from the MW to the NMW with different tunneling times. Depolarization processes of the carrier spins in the MW and the NMW are also discussed

  17. Single-well injection-withdrawal tests (SWIW). Investigation of evaluation aspects under heterogeneous crystalline bedrock conditions

    International Nuclear Information System (INIS)

    Nordqvist, Rune; Gustafsson, Erik

    2004-08-01

    Single-well injection-withdrawal (SWIW) tracer tests have been identified by SKB as an investigation method for solute transport properties in the forthcoming site investigations. A previous report presents a literature study as well as scoping calculations for SWIW tests in homogeneous crystalline bedrock environments. The present report comprises further scoping calculations under assumptions of heterogeneous bedrock conditions. Simple but plausible homogeneous evaluation models are tested on simulated SWIW tests in hypothetical heterogeneous two-dimensional fractures. The results from this study indicate that heterogeneity may cause effects of flow irreversibility when background hydraulic gradients are significant and the tested section is located in a dominating flow path. This implies that such conditions make it more difficult to interpret results from SWIW tests of longer duration with sorbing and/or diffusing tracers. Sorption and diffusion processes may be best studied when SWIW tests are conducted in borehole sections with low natural flow rates

  18. Electronic structure properties of the In(Ga)As/GaAs quantum dot–quantum well tunnel-injection system

    International Nuclear Information System (INIS)

    Sęk, Grzegorz; Andrzejewski, Janusz; Ryczko, Krzysztof; Poloczek, Przemysław; Misiewicz, Jan; Semenova, Elizaveta S; Lemaitre, Aristide; Patriarche, Gilles; Ramdane, Aberrahim

    2009-01-01

    We report on the electronic properties of GaAs-substrate-based structures designed as a tunnel-injection system composed of self-assembled InAs quantum dots and an In 0.3 Ga 0.7 As quantum well separated by a GaAs barrier. We have performed photoluminescence and photoreflectance measurements which have allowed the determination of the optical transitions in the QW–QD tunnel structure and its respective references with just quantum dots or a quantum well. The effective mass calculations of the band structure dependence on the tunnelling barrier thickness have shown that in spite of an expected significant tunnelling between both parts of the system, its strong asymmetry and the strain distribution cause that the quantum-mechanical-coupling-induced energy shift of the optical transitions is almost negligible for the lowest energy states and weakly sensitive to the width of the barrier, which finds confirmation in the existing experimental data

  19. Emergency diesel generator reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    A program to apply some of the techniques of reliability engineering to the High Flux Isotope Reactor (HFIR) was started on August 8, 1992. Part of the program was to track the conditional probabilities of the emergency diesel generators responding to a valid demand. This was done to determine if the performance of the emergency diesel generators (which are more than 25 years old) has deteriorated. The conditional probabilities of the diesel generators were computed and trended for the period from May 1990 to December 1992. The calculations indicate that the performance of the emergency diesel generators has not deteriorated in recent years, i.e., the conditional probabilities of the emergency diesel generators have been fairly stable over the last few years. This information will be one factor than may be considered in the decision to replace the emergency diesel generators

  20. Status in 1998 of the high flux reactor fuel cycle

    International Nuclear Information System (INIS)

    Guidez, J.; Gevers, A.; Wijtsma, F.J.; Thijssen, P.M.J.

    1998-01-01

    The High Flux Reactor located at Petten (The Netherlands), is owned by the European Commission and is operated under contract by ECN (Netherlands Energy Research Foundation). This plant is in operation since 1962 using HEU enriched at 90%. Conversion studies were conducted several years ago with the hypothesis of a global conversion of the entire core. The results of these studies have shown a costly operation with a dramatic decrease of the thermal flux which is necessary for the medical use of the plant (Molybdene 99 production). Some tests with low enriched elements were also conducted with several companies, several geometrical configurations and several enrichments. They are described in this paper. Explanations are also given on future possibilities for new fuel testing. (author)

  1. Performance characterization of the SERI High-Flux Solar Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, A.; Bingham, C. (Solar Energy Research Inst., Golden, CO (United States)); O' Gallagher, J.; Winston, R.; Sagie, D. (Univ. of Chicago, IL (United States))

    1991-12-01

    This paper describes a unique, new solar furnace at the Solar Energy Research Institute (SERI) that can generate a wide range of flux concentrations to support research in areas including materials processing, high-temperature detoxification and high-flux optics. The furnace is unique in that it uses a flat, tracking heliostat along with a long focal length-to-diameter (f/D) primary concentrator in an off-axis configuration. The experiments are located inside a building completely outside the beam between the heliostat and primary concentrator. The long f/D ratio of the primary concentrator was designed to take advantage of a nonimaging secondary concentrator to significantly increase the flux concentration capabilities of the system. Results are reported for both the single-stage and two-stage configurations. (orig.).

  2. Lessons learned form high-flux isotope reactor restart efforts

    International Nuclear Information System (INIS)

    Dahl, T.L.

    1989-01-01

    When the high-flux isotope reactor's (HFIR's) pressure vessel irradiation surveillance specimens were examined in December 1986, unexpected embrittlement was found. The resulting investigation disclosed widespread deficiencies in quality assurance and management practices. On March 24, 1987, the US Department of Energy (DOE) mandated a shutdown of all five Oak Ridge National Laboratory (ORNL) research reactors. Since the beginning of 1987, 18 different formal review groups have evaluated the management and operations of the HFIR. The root cause of the identified deficiencies in the HFIR program was defined as a lack of rigor in management practices and complacency built on twenty years of trouble-free operation. A number of lessons can be learned from the HFIR experience. Particular insight can be gained by comparing the HFIR organization prior to the shutdown with the organization that exists today. Key elements in such a comparison include staffing, funding, discipline, and formality in operations, maintenance, and management

  3. Surveillance programme and upgrading of the High Flux Reactor Petten

    International Nuclear Information System (INIS)

    Bieth, Michel

    1995-01-01

    The High Flux Reactor (HFR) at Petten (The Netherlands), a 45 MW light water cooled and moderated research reactor in operation during more than 30 years, has been kept up to date by replacing ageing components. In 1984, the HFR was shut down for replacement of the aluminium. reactor vessel which had been irradiated during more than 20 years. The demonstration that the new vessel contains no critical defect requires knowledge of the material properties of the aluminium alloy Al 5154 with and without neutron irradiation and of the likely defect presence through the periodic in-service inspections. An irradiation damage surveillance programme has been started in 1985 for the new vessel material to provide information on fracture mechanics properties. After the vessel replacement, the existing process of continuous upgrading and replacement of ageing components was accelerated. A stepwise upgrade of the control room is presently under realization. (author)

  4. Surveillance programme and upgrading of the High Flux Reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Bieth, Michel [Commission of the European Communities, Joint Research Centre, Institute for Advanced Materials, High Flux Reactor Unit, Petten (Netherlands)

    1995-07-01

    The High Flux Reactor (HFR) at Petten (The Netherlands), a 45 MW light water cooled and moderated research reactor in operation during more than 30 years, has been kept up to date by replacing ageing components. In 1984, the HFR was shut down for replacement of the aluminium. reactor vessel which had been irradiated during more than 20 years. The demonstration that the new vessel contains no critical defect requires knowledge of the material properties of the aluminium alloy Al 5154 with and without neutron irradiation and of the likely defect presence through the periodic in-service inspections. An irradiation damage surveillance programme has been started in 1985 for the new vessel material to provide information on fracture mechanics properties. After the vessel replacement, the existing process of continuous upgrading and replacement of ageing components was accelerated. A stepwise upgrade of the control room is presently under realization. (author)

  5. Fuel management at the Petten high flux reactor

    International Nuclear Information System (INIS)

    Thijssen, P.J.M.

    1999-01-01

    Several years ago the shipment of spent fuel of the High Flux Reactor (HFR) at Petten has come to a standstill resulting in an ever growing stock of fuel elements that are labelled 'fully burnt up'. Examination of those elements showed that a reasonably number of them have a relatively high 235 U mass left. A reactor physics analysis showed that the use of such elements in the peripheral core zone allows the loading of four instead of five fresh fuel elements in many cycle cores. For the assessment of safety and performance parameters of HFR cores a new calculational tool is being developed. It is based on AEA Technology's Reactor physics code suite Winfrith Improved Multigroup Scheme (WIMS). NRG produced pre- and post-processing facilities to feed input data into WIMS's 2D transport code CACTUS and to extract relevant parameters from the output. The processing facilities can be used for many different types of application. (author)

  6. Use of sup(233)U for high flux reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Liem, P.H.

    1991-01-01

    The feasibility design study on the graphite moderated gas cooled reactor as a high flux reactor has been performed. The core of the reactor is equipped with two graphite reflectors, i.e., the inner reflector and the outer reflector. The highest value of the thermal neutron flux and moderately high thermal neutron flux are expected to be achieved in the inner reflector region and in the outer reflector region respectively. This reactor has many merits comparing to the conventional high flux reactors. It has the inherent safety features associated with the modular high temperature reactors. Since the core is composed with pebble bed, the on-power refueling can be performed and the experiment time can be chosen as long as necessary. Since the thermal-to-fast flux ratio is large, the background neutron level is low and material damage induced by fast neutrons are small. The calculation was performed using a four groups diffusion approximation in a one-dimensional spherical geometry and a two-dimensional cylindrical geometry. By choosing the optimal values of the core-reflector geometrical parameters and moderator-to-fuel atomic density, high thermal neutron flux can be obtained. Because of the thermal neutron flux can be obtained. Because of the thermal design constraint, however, this design will produce a relatively large core volume (about 10 7 cc) and consequently a higher reactor power (100 MWth). Preliminary calculational results show that with an average power density of only 10 W/cc, maximum thermal neutron flux of 10 15 cm -2 s -1 can be achieved in the inner reflector. The eta value of 233 U is larger than 235 U. By introducing 233 U as the fissile material for this reactor, the thermal neutron flux level can be increased by about 15%. (author). 3 refs., 2 figs., 4 tabs

  7. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

    2010-10-01

    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  8. Neural Network approach to assess the thermal affected zone around the injection well in a groundwater heat pump system

    Science.gov (United States)

    Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio

    2014-05-01

    The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple

  9. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    Science.gov (United States)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  10. Fabrication of control rods for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.

    1998-01-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A

  11. The new high flux neutron source FRM-2 in Munich

    International Nuclear Information System (INIS)

    Roegler, H.J.; Wierheim, G.

    2002-01-01

    Quite some years ago in 1974 to be exact, the first consideration on a new neutron source started at the technical university of Munich (Germany). 27 years later the new high flux neutron source (FRM-2) was read for hot operation, now delayed by a refused approval for its third partial license by the federal government of Germany despite a wide support from the scientific community. FRM-2 is a tank-type research reactor cooled by water, moderated by heavy water and whose thermal power was limited to 20 MW maximum. The extreme compact core together with the applied inverse flux principle led to a neutron flux design value of 8.10 18 n/m 2 .s at the reflector peak. 10 beam tubes will allow an optimized use of the high neutron flux. A hot neutron source with graphite at about 2200 Celsius degrees and a cold neutron source with liquid D 2 at about 25 K will provide shifted energy spectra. The utilization of FRM-2 is many-fold: neutronography and tomography, medical irradiation, radio-nuclide production, doping of pure silicon, neutron activation analysis. (A.C.)

  12. Rebuilding the Brookhaven high flux beam reactor: A feasibility study

    International Nuclear Information System (INIS)

    Brynda, W.J.; Passell, L.; Rorer, D.C.

    1995-01-01

    After nearly thirty years of operation, Brookhaven's High Flux Beam Reactor (HFBR) is still one of the world's premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR's value as a national scientific resource, members of the Laboratory's scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor's research capabilities

  13. High Flux Isotope Reactor system RELAP5 input model

    International Nuclear Information System (INIS)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model

  14. Operation of the High Flux Reactor. Annual report 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This year was characterized by the end of a major rebuilding of the installation during which the reactor vessel and its peripheral components were replaced by new and redesigned equipment. Both operational safety and experimental use were largely improved by the replacement. The reactor went back to routine operation on February 14, 1985, and has been operating without problem since then. All performance parameters were met. Other upgrading actions started during the year concerned new heat exchangers and improvements to the reactor building complex. The experimental load of the High Flux Reactor reached a satisfactory level with an average of 57%. New developments aimed at future safety related irradiation tests and at novel applications of neutrons from the horizontal beam tubes. A unique remote encapsulation hot cell facility became available adding new possibilities for fast breeder fuel testing and for intermediate specimen examination. The HFR Programme hosted an international meeting on development and use of reduced enrichment fuel for research reactors. All aspects of core physics, manufacture technology, and licensing of novel, proliferation-free, research reactor fuel were debated

  15. Neutron scattering at the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Cable, J.W. Chakoumakos, B.C.; Dai, P.

    1995-01-01

    The title facilities offer the brightest source of neutrons in the national user program. Neutron scattering experiments probe the structure and dynamics of materials in unique and complementary ways as compared to x-ray scattering methods and provide fundamental data on materials of interest to solid state physicists, chemists, biologists, polymer scientists, colloid scientists, mineralogists, and metallurgists. Instrumentation at the High- Flux Isotope Reactor includes triple-axis spectrometers for inelastic scattering experiments, a single-crystal four diffractometer for crystal structural studies, a high-resolution powder diffractometer for nuclear and magnetic structure studies, a wide-angle diffractometer for dynamic powder studies and measurements of diffuse scattering in crystals, a small-angle neutron scattering (SANS) instrument used primarily to study structure-function relationships in polymers and biological macromolecules, a neutron reflectometer for studies of surface and thin-film structures, and residual stress instrumentation for determining macro- and micro-stresses in structural metals and ceramics. Research highlights of these areas will illustrate the current state of neutron science to study the physical properties of materials

  16. Safety and quality management at the high flux reactor Petten

    International Nuclear Information System (INIS)

    Zurita, A.; Ahlf, J.

    1995-01-01

    The High Flux Reactor (HFR) is one high power multi-purpose materials testing research reactor of the tank-in-pool type, cooled and moderated by light-water. It is operated at 45 MW at a prescribed schedule of 11 cycles per year, each comprising 25 operation days and three shut-down days. Since the licence for the operation of HFR was granted in 1962, a total of 14 amendments to the original licence have been made following different modifications in the installations. In the meantime, international nuclear standards were developed, especially in the framework of the NUSS programme of the IAEA, which were adopted by the Dutch Licensing Authorities. In order to implement the new standards, the situation at the HFR was comprehensively reviewed in the course of an audit performed by the Dutch Licensing Authorities in 1988. This also resulted in formulating the task of setting-up an 'HFR - Integral Quality Assurance Handbook' (HFR-IQAD) involving both organizations JRCIAM and ECN, which had the unique framework and basic guideline to assure the safe and efficient operation and exploitation of the HFR and to promote safety and quality in all aspects of HFR related activities. The assurance of safe and efficient operation and exploitation of the HFR is condensed together under the concepts of safety and quality of services and is achieved through the safety and quality management. (orig.)

  17. Dialyzer Reuse and Outcomes of High Flux Dialysis.

    Science.gov (United States)

    Argyropoulos, Christos; Roumelioti, Maria-Eleni; Sattar, Abdus; Kellum, John A; Weissfeld, Lisa; Unruh, Mark L

    2015-01-01

    The bulk of randomized trial evidence for the expanding use of High Flux (HF) hemodialysis worldwide comes from two randomized controlled trials, one of which (HEMODIALYSIS, HEMO) allowed, while the other (Membrane Outcomes Permeability, MPO) excluded, the reuse of membranes. It is not known whether dialyzer reuse has a differential impact on outcomes with HF vs low flyx (LF) dialyzers. Proportional Hazards Models and Joint Models for longitudinal measures and survival outcomes were used in HEMO to analyze the relationship between β2-microglobulin (β2M) concentration, flux, and reuse. Meta-analysis and regression techniques were used to synthesize the evidence for HF dialysis from HEMO and MPO. In HEMO, minimally reused (membranes (p for interaction between reuse and flux benefit with more extensively reused dialyzers. Meta-regression of HEMO and MPO estimated an adjusted HR of 0.63 (95% CI: 0.51-0.78) for non-reused HF dialyzers compared with non-reused LF membranes. This secondary analysis and synthesis of two large hemodialysis trials supports the widespread use of HF dialyzers in clinical hemodialysis over the last decade. A mechanistic understanding of the effects of HF dialysis and the reuse process on dialyzers may suggest novel biomarkers for uremic toxicity and may accelerate membrane technology innovations that will improve patient outcomes.

  18. Seismic upgrading of the Brookhaven High Flux Beam Research Reactor

    International Nuclear Information System (INIS)

    Subudhi, M.

    1985-01-01

    In recent years the High Flux Beam Research (HFBR) reactor facility at Brookhaven National Laboratory (BNL) was upgraded from 40 to 50 MW power level. The reactor plant was built in the early sixties to the seismic design requirements of the period, using the static load approach. While the plant power level was upgraded, the seismic design was also improved according to current design criteria. This included the development of new floor response spectra for the facility and an overall seismic analysis of those systems important to the safe shutdown of the reactor. Items included in the reanalysis are the containment building with its internal structure, the piping systems, tanks, equipment, and heat exchangers. This paper describes the procedure utilized in developing the floor response spectra for the existing facility. Also included in the paper are the findings and recommendations, based on the seismic analysis, regarding the seismic adequacy of structural and mechanical systems vital to achieving the safe shutdown of the reactor. 11 references, 4 figures, 1 table

  19. Extraction of gadolinium from high flux isotope reactor control plates

    International Nuclear Information System (INIS)

    Kohring, M.W.

    1987-04-01

    Gadolinium-153 is an important radioisotope used in the diagnosis of various bone disorders. Recent medical and technical developments in the detection and cure of osteoporosis, a bone disease affecting an estimated 50 million people, have greatly increased the demand for this isotope. The Oak Ridge National Laboratory (ORNL) has produced 153 Gd since 1980 primarily through the irradiation of a natural europium-oxide powder followed by the chemical separation of the gadolinium fraction from the europium material. Due to the higher demand for 153 Gd, an alternative production method to supplement this process has been investigated. This process involves the extraction of gadolinium from the europium-bearing region of highly radioactive, spent control plates used at the High Flux Isotope Reactor (HFIR) with a subsequent re-irradiation of the extracted material for the production of the 153 Gd. Based on the results of experimental and calculational analyses, up to 25 grams of valuable gadolinium (≥60% enriched in 152 Gd) resides in the europium-bearing region of the HFIR control components of which 70% is recoverable. At a specific activity yield of 40 curies of 153 Gd for each gram of gadolinium re-irradiated, 700 one-curie sources can be produced from each control plate assayed

  20. Fabrication of control rods for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  1. Comparison of the therapeutic effect between a transforminal along with a caudal epidural injection, as well as two-level transforaminal epidural injections ina radiculopathy patient

    International Nuclear Information System (INIS)

    Hwang, Jung Han; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keun Won; Kim, Young Joong; Seo, Jae Young; Lim, Seong Joo; Kang, Byeong Seong

    2017-01-01

    The aim of this study was to evaluate the therapeutic effect of a transforaminal epidural steroid injection (TFESI) along with a caudal epidural steroid injection (ESI), compared to two-level TFESIs in a multi-level radiculopathy patient. A total of 895 lumbar ESIs were performed in 492 patients with multi-level radiculopathy from January 2012 to January 2015. Before injections were performed, the initial Numeric Rating Scale (NRS) score was assessed in all patients, categorized into no pain (excellent), mild (good, NRS: 1-3), moderate (fair, NRS: 4-6), and severe pain (poor, NRS: 7-10). Therapeutic effects were examined for two groups: one-level TFESI along with caudal and ESI two-level TFESIs. Patient outcomes were assessed by NRS in a serial follow-up at one, three, and six months. One TFESI along with caudal ESI was performed in 274 patients and two TFESIs for 218. For the former group with one TFESI along with caudal ESI, excellent results were shown: 219 (79.9%) patients after one month, 200 (72.9%) after three, and 193 (70.4%) after six months. In the patient group with two TFESIs (n = 218) the outcomes were also very good: 152 (69.7%) after one month, 131 (60.0%) after three months, and 123 (56.4%) patients after six months. The therapeutic effect of one TFESI along with caudal ESI was better than two TFESIs in for one, threes, and six months (p < 0.01). Transforaminal epidural steroid with caudal epidural injection is a more effective tool for lumbosacral radiculopathy than two level transforaminal injections in multi-level radiculopathy patients

  2. Comparison of the therapeutic effect between a transforminal along with a caudal epidural injection, as well as two-level transforaminal epidural injections ina radiculopathy patient

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jung Han; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keun Won; Kim, Young Joong; Seo, Jae Young; Lim, Seong Joo [Dept. of Diagnostic Radiology, Konyang University Hospital, Deajeon (Korea, Republic of); Kang, Byeong Seong [Dept. of Radiology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan (Korea, Republic of)

    2017-01-15

    The aim of this study was to evaluate the therapeutic effect of a transforaminal epidural steroid injection (TFESI) along with a caudal epidural steroid injection (ESI), compared to two-level TFESIs in a multi-level radiculopathy patient. A total of 895 lumbar ESIs were performed in 492 patients with multi-level radiculopathy from January 2012 to January 2015. Before injections were performed, the initial Numeric Rating Scale (NRS) score was assessed in all patients, categorized into no pain (excellent), mild (good, NRS: 1-3), moderate (fair, NRS: 4-6), and severe pain (poor, NRS: 7-10). Therapeutic effects were examined for two groups: one-level TFESI along with caudal and ESI two-level TFESIs. Patient outcomes were assessed by NRS in a serial follow-up at one, three, and six months. One TFESI along with caudal ESI was performed in 274 patients and two TFESIs for 218. For the former group with one TFESI along with caudal ESI, excellent results were shown: 219 (79.9%) patients after one month, 200 (72.9%) after three, and 193 (70.4%) after six months. In the patient group with two TFESIs (n = 218) the outcomes were also very good: 152 (69.7%) after one month, 131 (60.0%) after three months, and 123 (56.4%) patients after six months. The therapeutic effect of one TFESI along with caudal ESI was better than two TFESIs in for one, threes, and six months (p < 0.01). Transforaminal epidural steroid with caudal epidural injection is a more effective tool for lumbosacral radiculopathy than two level transforaminal injections in multi-level radiculopathy patients.

  3. Spin injection between epitaxial Co2.4Mn1.6Ga and an InGaAs quantum well

    DEFF Research Database (Denmark)

    Hickey, M.C.; Damsgaard, Christian Danvad; Farrer, I

    2005-01-01

    Electrical spin injection in a narrow [100] In0.2Ga0.8As quantum well in a GaAs p-i-n optical device is reported. The quantum well is located 300 nm from an AlGaAs Schottky barrier and this system is used to compare the efficiencies and temperature dependences of spin injection from Fe and the He...

  4. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mehnke, Frank, E-mail: mehnke@physik.tu-berlin.de; Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, Michael [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-08-04

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm{sup 2}.

  5. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    International Nuclear Information System (INIS)

    Mehnke, Frank; Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2014-01-01

    The design and Mg-doping profile of AlN/Al 0.7 Ga 0.3 N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm 2

  6. Comparison of Microbial Community Compositions of Injection and Production Well Samples in a Long-Term Water-Flooded Petroleum Reservoir

    Science.gov (United States)

    Ren, Hong-Yan; Zhang, Xiao-Jun; Song, Zhi-yong; Rupert, Wieger; Gao, Guang-Jun; Guo, Sheng-xue; Zhao, Li-Ping

    2011-01-01

    Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial communities of production wells are affected by microorganisms introduced with injected water has previously not been adequately studied. Using denaturing gradient gel electrophoresis (DGGE) approach and 16S rRNA gene clone library analysis, the comparison of microbial communities is carried out between one injection water and two production waters collected from a working block of the water-flooded Gudao petroleum reservoir located in the Yellow River Delta. DGGE fingerprints showed that the similarities of the bacterial communities between the injection water and production waters were lower than between the two production waters. It was also observed that the archaeal composition among these three samples showed no significant difference. Analysis of the 16S rRNA gene clone libraries showed that the dominant groups within the injection water were Betaproteobacteria, Gammaproteobacteria and Methanomicrobia, while the dominant groups in the production waters were Gammaproteobacteria and Methanobacteria. Only 2 out of 54 bacterial operational taxonomic units (OTUs) and 5 out of 17 archaeal OTUs in the injection water were detected in the production waters, indicating that most of the microorganisms introduced by the injection water may not survive to be detected in the production waters. Additionally, there were 55.6% and 82.6% unique OTUs in the two production waters respectively, suggesting that each production well has its specific microbial composition, despite both wells being flooded with the same injection water. PMID:21858049

  7. IFMIF High Flux Test Module-Recent progress in design and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Leichtle, D. [Association FZK-EURATOM, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)], E-mail: leichtle@irs.fzk.de; Arbeiter, F.; Dolensky, B.; Fischer, U.; Gordeev, S.; Heinzel, V.; Ihli, T.; Lang, K.-H. [Association FZK-EURATOM, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Moeslang, A. [Association FZK-EURATOM, Forschungszentrum Karlsruhe, Institut fuer Materialforschung, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Simakov, S.P.; Slobodchuk, V.; Stratmanns, E. [Association FZK-EURATOM, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2008-12-15

    The International Fusion Material Irradiation Facility (IFMIF) is an accelerator driven neutron source for irradiation tests of candidate fusion reactor materials. Within the High Flux Test Module (HFTM) a testing volume of 0.5 l filled by qualified small scale specimens will be irradiated at displacement rates of 20-50 dpa/fpy in structural materials. The Forschungszentrum Karlsruhe (FZK) has developed a HFTM design which closely follows the design premise of maximising the space available for irradiation specimens in the IFMIF high flux zone and in addition allows keeping the temperature nearly constant in the rigs containing the specimen. Complementary analyses on nuclear, thermo-hydraulics and mechanical performance of the HFTM were performed to optimize the design. The present paper highlights the main design characteristics as well as recent progress achieved in this area. The contribution also includes (i) recommendations for the use of container, rig and capsule materials, and (ii) a description of the fabrication routes for the entire HFTM including brazing and filling procedures which are currently under development at the Forschungszentrum Karlsruhe.

  8. IFMIF High Flux Test Module-Recent progress in design and manufacturing

    International Nuclear Information System (INIS)

    Leichtle, D.; Arbeiter, F.; Dolensky, B.; Fischer, U.; Gordeev, S.; Heinzel, V.; Ihli, T.; Lang, K.-H.; Moeslang, A.; Simakov, S.P.; Slobodchuk, V.; Stratmanns, E.

    2008-01-01

    The International Fusion Material Irradiation Facility (IFMIF) is an accelerator driven neutron source for irradiation tests of candidate fusion reactor materials. Within the High Flux Test Module (HFTM) a testing volume of 0.5 l filled by qualified small scale specimens will be irradiated at displacement rates of 20-50 dpa/fpy in structural materials. The Forschungszentrum Karlsruhe (FZK) has developed a HFTM design which closely follows the design premise of maximising the space available for irradiation specimens in the IFMIF high flux zone and in addition allows keeping the temperature nearly constant in the rigs containing the specimen. Complementary analyses on nuclear, thermo-hydraulics and mechanical performance of the HFTM were performed to optimize the design. The present paper highlights the main design characteristics as well as recent progress achieved in this area. The contribution also includes (i) recommendations for the use of container, rig and capsule materials, and (ii) a description of the fabrication routes for the entire HFTM including brazing and filling procedures which are currently under development at the Forschungszentrum Karlsruhe

  9. Association of Beta-2 Microglobulin with Inflammation and Dislipidemia in High-Flux Membrane Hemodialysis Patients

    Science.gov (United States)

    Topçiu–Shufta, Valdete; Miftari, Ramë; Haxhibeqiri, Valdete; Haxhibeqiri, Shpend

    2016-01-01

    Background: Higher than expected cardiovascular mortality in hemodialysis patients, has been attributed to dyslipidemia as well as inflammation. Beta2-Microglobulin (β2M) is an independent predictor of outcome for hemodialysis patients and a representative substance of middle molecules. Results: In 40 patients in high-flux membrane hemodialysis, we found negative correlation of β2M with high density lipoprotein (r=-0.73, p<0.001) and albumin (r= -0.53, p<0.001) and positive correlation with triglycerides (r=0.69, p<0.001), parathyroid hormone (r=0.58, p < 0.05) and phosphorus (r= 0.53, p<0.001). There was no correlation of β2M with C- reactive protein (CRP) and interleukin-6 (IL-6). During the follow-up period of three years, 6 out of 40 patients have died from cardiovascular events. Conclusion: In high-flux membrane hemodialysis patients, we observed a significant relationship of β2M with dyslipidemia and mineral bone disorders, but there was no correlation with inflammation. PMID:27994294

  10. Association of Beta-2 Microglobulin with Inflammation and Dislipidemia in High-Flux Membrane Hemodialysis Patients.

    Science.gov (United States)

    Topçiu-Shufta, Valdete; Miftari, Ramë; Haxhibeqiri, Valdete; Haxhibeqiri, Shpend

    2016-10-01

    Higher than expected cardiovascular mortality in hemodialysis patients, has been attributed to dyslipidemia as well as inflammation. Beta2-Microglobulin (β2M) is an independent predictor of outcome for hemodialysis patients and a representative substance of middle molecules. In 40 patients in high-flux membrane hemodialysis, we found negative correlation of β2M with high density lipoprotein (r=-0.73, p<0.001) and albumin (r= -0.53, p<0.001) and positive correlation with triglycerides (r=0.69, p<0.001), parathyroid hormone (r=0.58, p < 0.05) and phosphorus (r= 0.53, p<0.001). There was no correlation of β2M with C- reactive protein (CRP) and interleukin-6 (IL-6). During the follow-up period of three years, 6 out of 40 patients have died from cardiovascular events. In high-flux membrane hemodialysis patients, we observed a significant relationship of β2M with dyslipidemia and mineral bone disorders, but there was no correlation with inflammation.

  11. Instrumentation for the advanced high-flux reactor workshop: proceedings

    International Nuclear Information System (INIS)

    Moon, R.M.

    1984-01-01

    The purpose of the Workshop on Instrumentation for the Advanced High-Flux Reactor, held on May 30, 1984, at the Oak Ridge National Laborattory, was two-fold: to announce to the scientific community that ORNL has begun a serious effort to design and construct the world's best research reactor, and to solicit help from the scientific community in planning the experimental facilities for this reactor. There were 93 participants at the workshop. We are grateful to the visiting scientists for their enthusiasm and interest in the reactor project. Our goal is to produce a reactor with a peak thermal flux in a large D 2 O reflector of 5 x 10 15 n/cm 2 s. This would allow the installation of unsurpassed facilities for neutron beam research. At the same time, the design will provide facilities for isotope production and materials irradiation which are significantly improved over those now available at ORNL. This workshop focussed on neutron beam facilities; the input from the isotope and materials irradiation communities will be solicited separately. The reactor project enjoys the full support of ORNL management; the present activities are financed by a grant of $663,000 from the Director's R and D Fund. However, we realize that the success of the project, both in realization and in use of the reactor, depends on the support and imagination of a broad segment of the scientific community. This is more a national project than an ORNL project. The reactor would be operated as a national user facility, open to any research proposal with high scientific merit. It is therefore important that we maintain a continuing dialogue with outside scientists who will be the eventual users of the reactor and the neutron beam facilities. The workshop was the first step in establishing this dialogue; we anticipate further workshops as the project continues

  12. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  13. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  14. High flux isotope reactor cold source preconceptual design study report

    International Nuclear Information System (INIS)

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E.

    1995-12-01

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH 2 moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project

  15. Spin injection from epitaxial Heusler alloy thin films into InGaAs/GaAs quantum wells

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad

    2006-01-01

    -stoichiometric crystals and crystals with site swapping defects. Significant decrease in the spin polarization has been predicted for disorder defects involving especially Co on Mn or Ga sites. From an estimate based on the calculated defect formation energies it is found that Mn on Co-sites are likely to exist...... no anisotropy is seen for near stoichiometry thin films on an ordinary GaAs surface. Typically thin films grown on GaAs show lower saturation magnetization than expected from bulk properties. The electrical characterizations have revealed resistivities around ρ = 350μΩcm at 300 K. Generally, the near...... to typically 0.02-0.1 Ωmm2 for Fe and Co contacts but two orders of magnitude higher for the Co2MnGa contacts. Point contact Andreev reflection measurements on an off-stoichiometric thin film (Co2.4Mn1.6Ga) show a spin polarization of P ≈ 50 %. Furthermore spin injection into a InGaAs/GaAs quantum well have...

  16. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Alfred Wickline

    2008-01-01

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: 06-23-02, U-6a/Russet Testing Area 09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546

  17. High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Pudelek, R. E.; Gilbert, W. C.

    2002-02-26

    This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste

  18. Dialyzer Reuse and Outcomes of High Flux Dialysis.

    Directory of Open Access Journals (Sweden)

    Christos Argyropoulos

    Full Text Available The bulk of randomized trial evidence for the expanding use of High Flux (HF hemodialysis worldwide comes from two randomized controlled trials, one of which (HEMODIALYSIS, HEMO allowed, while the other (Membrane Outcomes Permeability, MPO excluded, the reuse of membranes. It is not known whether dialyzer reuse has a differential impact on outcomes with HF vs low flyx (LF dialyzers.Proportional Hazards Models and Joint Models for longitudinal measures and survival outcomes were used in HEMO to analyze the relationship between β2-microglobulin (β2M concentration, flux, and reuse. Meta-analysis and regression techniques were used to synthesize the evidence for HF dialysis from HEMO and MPO.In HEMO, minimally reused (< 6 times HF dialyzers were associated with a hazard ratio (HR of 0.67 (95% confidence interval, 95%CI: 0.48-0.92, p = 0.015, 0.64 (95%CI: 0.44 - 0.95, p = 0.03, 0.61 (95%CI: 0.41 - 0.90, p = 0.012, 0.53 (95%CI: 0.28 - 1.02, p = 0.057 relative to minimally reused LF ones for all cause, cardiovascular, cardiac and infectious mortality respectively. These relationships reversed for extensively reused membranes (p for interaction between reuse and flux < 0.001, p = 0.005 for death from all cause and cardiovascular causes, while similar trends were noted for cardiac and infectious mortality (p of interaction between reuse and flux of 0.10 and 0.08 respectively. Reduction of β2M explained only 1/3 of the effect of minimally reused HF dialyzers on all cause mortality, while non-β2M related factors explained the apparent attenuation of the benefit with more extensively reused dialyzers. Meta-regression of HEMO and MPO estimated an adjusted HR of 0.63 (95% CI: 0.51-0.78 for non-reused HF dialyzers compared with non-reused LF membranes.This secondary analysis and synthesis of two large hemodialysis trials supports the widespread use of HF dialyzers in clinical hemodialysis over the last decade. A mechanistic understanding of the effects of

  19. Dissolution flowsheet for high flux isotope reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Foster, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  20. Seismic strengthening of the ILL High Flux Reactor building

    International Nuclear Information System (INIS)

    Germane, Lionel; Plewinski, Francois; Thiry, Jean-Michel

    2006-01-01

    The Institut Max von Laue - Paul Langevin is an international research organisation and world leader in neutron science and technology. Since 1971 it has been operating the ILL HFR (High-Flux Reactor), the most intense continuous neutron source in the world. The ILL is governed by an international cooperation agreement between France, Germany and the United Kingdom; the fourth ten-year extension to the agreement was signed at the end of 2002, thus ensuring that the Institute will continue to operate until at least the end of 2013. In 2002 the facility underwent a general safety review, including an assessment of the impact of a safe shutdown earthquake. A broader programme for upgrading the installations and improving safety levels is now under way. As this has been treated in another paper, we will focus here on the seismic study carried out on the reactor building. The paper has the following contents: 1. Context; 1.1. Presentation of the ILL; 1.2. Description of the installations; 1.3. Safety objectives in the event of an earthquake; 1.4. Safety functions to be guaranteed in the event of an earthquake; 1.5. Safety functions required of the building; 2. Description of the building; 3. Organisation of the project; 3.1. Background; 3.2. Organisation; 4. General Methodology of the studies; 5. Progress of the studies; 5.1. Definition of the strengthening measures; 5.2. Validation of the strengthening option; 6. Seismic strengthening of the building; 6.1. Description of the strengthening measures; 6.2. Implementation of the strengthening measures; 6.2.1. Pilot operation; 6.2.2. Main operation; 7. Conclusion. To summarize, the presence of specialists in the ILL team, and the fact that the initial studies were performed by the project team itself, improved our general understanding of the issues and facilitated dialogue and exchange between all those involved (operators, technicians, outside experts, technical contractors and the French safety authorities). Everyone was

  1. Status of High Flux Isotope Reactor (HFIR) post-restart safety analysis and documentation upgrades

    International Nuclear Information System (INIS)

    Cook, D.H.; Radcliff, T.D.; Rothrock, R.B.; Schreiber, R.E.

    1990-01-01

    The High Flux Isotope Reactor (HFIR), an experimental reactor located at the Oak Ridge National Laboratory (ORNL) and operated for the US Department of Energy by Martin Marietta Energy Systems, was shut down in November, 1986 after the discovery of unexpected neutron embrittlement of the reactor vessel. The reactor was restarted in April, 1989, following an extensive review by DOE and ORNL of the HFIR design, safety, operation, maintenance and management, and the implementation of several upgrades to HFIR safety-related hardware, analyses, documents and procedures. This included establishing new operating conditions to provide added margin against pressure vessel failure, as well as the addition, or upgrading, of specific safety-related hardware. This paper summarizes the status of some of the follow-on (post-restart) activities which are currently in progress, and which will result in a comprehensive set of safety analyses and documentation for the HFIR, comparable with current practice in commercial nuclear power plants. 8 refs

  2. Simulation of the distribution of radionuclides in the reservoir bed for deep-well injection disposal of acid liquid radioactive waste

    International Nuclear Information System (INIS)

    Noskov, M.D.; Istomin, A.D.; Kesler, A.G.; Zubkov, A.A.; Zakharova, E.V.; Egorov, G.F.

    2007-01-01

    A mathematical model was developed for describing the changes in the state of the reservoir bed for dee-well injection disposal of acid liquid radioactive waste. The model considers the multicomponent filtration of the solution in the heterogeneous bed, sorption-desorption of radionuclides, taking into account the dependence of the distribution coefficient on the temperature and pH, as well as radioactive decay, interaction of acids with minerals, radiation-chemical and thermochemical decomposition of the acids, and dynamics of the temperature field, taking into account the convective heat transfer, thermal conductivity, and radiogenic heat release. The results of the simulation of the migration of radionuclides were reported, as well as of the distribution of the acids and the dynamics of the temperature field in the vicinity of the injection well of the site for deep-well injection disposal of the waste from Siberian Chemical Combine. A man-caused barrier is formed in the vicinity of the injection well, hindering the spread of radionuclides in the reservoir bed [ru

  3. Single well field injection test of humate to enhance attenuation of uranium and other radionuclides in an acidic plume

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2014-09-30

    This report documents the impact of the injected humate on targeted contaminants over a period of 4 months and suggests it is a viable attenuation-based remedy for uranium, potentially for I-129, but not for Sr-90. Future activities will focus on issues pertinent to scaling the technology to full deployment.

  4. Testing of research reactor fuel in the high flux reactor (Petten)

    International Nuclear Information System (INIS)

    Guidez, J.; Markgraf, J.W.; Sordon, G.; Wijtsma, F.J.; Thijssen, P.J.M.; Hendriks, J.A.

    1999-01-01

    The two types of fuel most frequently used by the main research reactors are metallic: highly enriched uranium (>90%) and silicide low enriched uranium ( 3 . However, a need exists for research on new reactor fuel. This would permit some plants to convert without losses in flux or in cycle length and would allow new reactor projects to achieve higher possibilities especially in fluxes. In these cases research is made either on silicide with higher density, or on other types of fuel (UMo, etc.). In all cases when new fuel is proposed, there is a need, for safety reasons, to test it, especially regarding the mechanical evolution due to burn-up (swelling, etc.). Initially, such tests are often made with separate plates, but lately, using entire elements. Destructive examinations are often necessary. For this type of test, the High Flux Reactor, located in Petten (The Netherlands) has many specific advantages: a large core, providing a variety of interesting positions with high fluence rate; a downward coolant flow simplifies the engineering of the device; there exists easy access with all handling possibilities to the hot-cells; the high number of operating days (>280 days/year), together with the high flux, gives a possibility to reach quickly the high burn-up needs; an experienced engineering department capable of translating specific requirements to tailor-made experimental devices; a well equipped hot-cell laboratory on site to perform all necessary measurements (swelling, γ-scanning, profilometry) and all destructive examinations. In conclusion, the HFR reactor readily permits experimental research on specific fuels used for research reactors with all the necessary facilities on the Petten site. (author)

  5. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas, allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  6. Effect of high flux hemodialysis on plasma toxin molecule contents and body’s microinflammatory state in patients with uremia

    Directory of Open Access Journals (Sweden)

    Zheng-Nan We

    2016-03-01

    Full Text Available Objective: To analyze the effect of high flux hemodialysis on plasma toxin molecule contents and body’s microinflammatory state in patients with uremia. Methods: A total of 96 cases of patients with uremia receiving inpatient dialysis in our hospital from June 2011 to March 2015 were selected as research subjects and randomly divided into observation group and control group, each group with 48 cases. Control group received low flux hemodialysis (LF-HD, observation group received high flux hemodialysis (HF-HD, and then levels of plasma renal function-related toxins, oxidative stress-related toxins, leptin, intact parathyroid hormone and asymmetric dimethylarginine as well as levels of microinflammatory state-related factors of two groups were compared. Results: Plasma BUN, Scr, UA and β2-MG levels of observation group after dialysis were significantly lower than those of control group; plasma MDA and Cor levels of observation group after dialysis were lower than those of control group, and levels of GSH and SOD were higher than those of control group; plasma Leptin, iPTH and ADMA levels of observation group after 1 time and 5 times of dialysis were significantly lower than those of control group; plasma hs-CRP, IL-6, TNF-α and ASAA levels of observation group after dialysis were significantly lower than those of control group. Conclusion: High flux hemodialysis for patients with uremia can effectively eliminate related toxins in the body and reduce systemic microinflammatory state, and it has active clinical significance.

  7. Revised Earthquake Catalog and Relocated Hypocenters Near Fluid Injection Wells and the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico

    Science.gov (United States)

    Edel, S.; Bilek, S. L.; Garcia, K.

    2014-12-01

    Induced seismicity is a class of crustal earthquakes resulting from human activities such as surface and underground mining, impoundment of reservoirs, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground cavities. Within the Permian basin in southeastern New Mexico lies an active area of oil and gas production, as well as the Waste Isolation Pilot Plant (WIPP), a geologic nuclear waste repository located just east of Carlsbad, NM. Small magnitude earthquakes have been recognized in the area for many years, recorded by a network of short period vertical component seismometers operated by New Mexico Tech. However, for robust comparisons between the seismicity patterns and the injection well locations and rates, improved locations and a more complete catalog over time are necessary. We present results of earthquake relocations for this area by using data from the 3-component broadband EarthScope Flexible Array SIEDCAR experiment that operated in the area between 2008-2011. Relocated event locations tighten into a small cluster of ~38 km2, approximately 10 km from the nearest injection wells. The majority of events occurred at 10-12 km depth, given depth residuals of 1.7-3.6 km. We also present a newly developed more complete catalog of events from this area by using a waveform cross-correlation algorithm and the relocated events as templates. This allows us to detect smaller magnitude events that were previously undetected with the short period network data. The updated earthquake catalog is compared with geologic maps and cross sections to identify possible fault locations. The catalog is also compared with available well data on fluid injection and production. Our preliminary results suggest no obvious connection between seismic moment release, fluid injection, or production given the available monthly industry data. We do see evidence in the geologic and well data of previously unidentified faults in the area.

  8. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern

  9. Growth and optical characteristics of InAs quantum dot structures with tunnel injection quantum wells for 1.55 μ m high-speed lasers

    Science.gov (United States)

    Bauer, Sven; Sichkovskyi, Vitalii; Reithmaier, Johann Peter

    2018-06-01

    InP based lattice matched tunnel injection structures consisting of a InGaAs quantum well, InAlGaAs barrier and InAs quantum dots designed to emit at 1.55 μ m were grown by molecular beam epitaxy and investigated by photoluminescence spectroscopy and atomic force microscopy. The strong influence of quantum well and barrier thicknesses on the samples emission properties at low and room temperatures was investigated. The phenomenon of a decreased photoluminescence linewidth of tunnel injection structures compared to a reference InAs quantum dots sample could be explained by the selection of the emitting dots through the tunneling process. Morphological investigations have not revealed any effect of the injector well on the dot formation and their size distribution. The optimum TI structure design could be defined.

  10. A conceptual high flux reactor design with scope for use in ADS ...

    Indian Academy of Sciences (India)

    By design the flux level in the seed fuel has been kept lower than in the high flux trap zones so that the burning rate of the seed is reduced. Another important objective of the design is to maximize the time interval of refueling. As against a typical refueling interval of a few weeks in such high flux reactor cores, it is desired to ...

  11. Productivity and injectivity of horizontal wells. Annual report for the period, March 10, 1994--March 9, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Fayers, F.J.

    1995-07-01

    Contents of this annual report include the following: (1) detailed well model for reservoir simulation--task 1; (2) comparative aspects of coning behavior in vertical and horizontal wells--task 1; (3) skin factor calculations for vertical, deviated, and horizontal wells--task 2; (4) a dissipation-based coarse grid system and its application to the scaleup of two phase problems--tasks 2 and 4; (5) analyses of experiments at Marathon Oil Company--task 3; (6) development of mechanistic model for multiphase flow in horizontal wells--task 3; and (7) sensitivity studies of wellbore friction and inflow for a horizontal well--task 8.

  12. Using Oil and Gas Well Log Records to Understand Possible Connections Between Wastewater Injection Zones and Usable Groundwater Aquifers in California

    Science.gov (United States)

    Shimabukuro, D.; Haugen, E. A.; Battistella, C.; Treguboff, E. W.; Kale, J. M.

    2015-12-01

    Although the disposal of produced water in wastewater injection wells has been occurring in California for decades, it is not clear whether injected fluids may be migrating into usable groundwater aquifers. One problem is the poor characterization of federally-protected (oil and gas well records collected by the California Division of Oil, Gas, and Geothermal Resources (DOGGR). These scanned records contain two useful sources of information. First, geophysical well logs, such those measuring resistivity and porosity, can be used to determine aquifer salinity. This allows a three-dimensional understanding of the distribution of protected groundwater. Second, driller's logs contain lithological descriptions at depth. These lithologies can be used to construct a three-dimensional texture model, which can then be used in a groundwater flow model. A large number of undergraduate researchers at CSU Sacramento and CSU Long Beach have been collecting information on well records in the Ventura Basin and the Southern San Joaquin Valley. Each well record is examined with basic metadata entered into an online database in an effort to identify appropriate geophysical well logs and driller's logs. High-quality driller's logs are coded and used to create three-dimensional framework models for each well field. The geophysical logs are digitized and will be used to determine aquifer salinity. In addition, we are using information from the DOGGR well records to investigate wellbore integrity, waste disposal and waterflood injection volumes, and the possibility of induced seismicity. This project is part of the broader effort of the California State Water Resources Control Board to implement Senate Bill 4.

  13. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  14. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    Science.gov (United States)

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. IFMIF high flux test module - recent progress in design and manufacturing

    International Nuclear Information System (INIS)

    Leichtle, D.; Arbeiter, F.; Dolensky, B.

    2007-01-01

    The International Fusion Material Irradiation Facility (IFMIF) is an accelerator driven neutron source for irradiation tests of candidate fusion reactor materials. Two 40 MeV deuterium beams with 125 mA each strike a liquid lithium jet target, producing a high intensity neutron flux up to 55 MeV, which penetrates the adjacent test modules. Within the High Flux Test Module (HFTM) a testing volume of 0.5 litres filled by qualified small scale specimens will be irradiated at displacement rates of 20-50 dpa/fpy in structural materials. The HFTM will also provide helium and hydrogen production to dpa ratios that reflect within the uncertainties the values expected in a DEMO fusion reactor The Forschungszentrum Karlsruhe (FZK) has developed a HFTM design which closely follows the design premise of maximising the space available for irradiation specimens in the IFMIF high flux zone and in addition allows keeping the temperature nearly constant in the rigs containing the specimen. Within the entire specimen stack the temperature deviation will be below about 15 K. The main design principles applied are (i) filling the gaps between the specimens with liquid metal, (ii) winding three separately controlled heater sections on the inner capsules and (iii) dividing the test rigs in a hot inner and a cold outer zone, which a separated by a gap filled with stagnant helium that serves as a thermal insulator. Channels between the outer covers (the cold parts) are cooled by helium gas at moderate pressure (3 bars at inlet) and temperature (50 C). 12 identical rigs holding the specimen capsules which are heated by segmented helically wound electrical heaters ensure a flexible loading scheme during IFMIF operation. Complementary analyses on nuclear, thermo-hydraulics and mechanical performance of the HFTM were performed to optimize the design. The present paper highlights the main design characteristics as well as recent progress achieved in this area. This includes the stiffening of

  16. A continuously self regenerating high-flux neutron-generator facility

    Science.gov (United States)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  17. Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures

    Science.gov (United States)

    Bakaeva, A.; Terentyev, D.; De Temmerman, G.; Lambrinou, K.; Morgan, T. W.; Dubinko, A.; Grigorev, P.; Verbeken, K.; Noterdaeme, J. M.

    2016-10-01

    The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼1024 m-2 s-1, energy ∼50 eV and fluence up to 5 × 1025 D/m2) was studied experimentally in a wide temperature range (460-1000 K) relevant for application in ITER. The desorption spectra in both reference and plastically-deformed samples were deconvoluted into three contributions associated with the detrapping from dislocations, deuterium-vacancy clusters and pores. As the exposure temperature increases, the positions of the release peaks in the plastically-deformed material remain in the same temperature range but the peak amplitudes are altered as compared to the reference material. The desorption peak attributed to the release from pores (i.e. cavities and bubbles) was suppressed in the plastically deformed samples for the low-temperature exposures, but became dominant for exposures above 700 K. The observed strong modulation of the deuterium storage in "shallow" and "deep" traps, as well as the reduction of the integral retention above 700 K, suggest that the dislocation network changes its role from "trapping sites" to "diffusion channels" above a certain temperature. The major experimental observations of the present work are in line with recent computational assessment based on atomistic and mean field theory calculations available in literature.

  18. Characterization of high flux magnetized helium plasma in SCU-PSI linear device

    Science.gov (United States)

    Xiaochun, MA; Xiaogang, CAO; Lei, HAN; Zhiyan, ZHANG; Jianjun, WEI; Fujun, GOU

    2018-02-01

    A high-flux linear plasma device in Sichuan University plasma-surface interaction (SCU-PSI) based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors. In this paper, the helium plasma has been characterized by a double-pin Langmuir probe. The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T. The core density and ion flux of helium plasma have a strong dependence on the applied current, magnetic field strength and gas flow rate. It could reach an electron density of 1.2 × 1019 m-3 and helium ion flux of 3.2 × 1022 m-2 s-1, with a gas flow rate of 4 standard liter per minute, magnetic field strength of 0.2 T and input power of 11 kW. With the addition of -80 V applied to the target to increase the helium ion energy and the exposure time of 2 h, the flat top temperature reached about 530 °C. The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy. These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.

  19. Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures

    Energy Technology Data Exchange (ETDEWEB)

    Bakaeva, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium); Terentyev, D., E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); De Temmerman, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067, St Paul Lez Durance Cedex (France); Lambrinou, K. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); Morgan, T.W. [FOM Institute DIFFER, De Zaale 20, 5612 AJ, Eindhoven (Netherlands); Dubinko, A.; Grigorev, P. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400, Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium); Verbeken, K. [Department of Materials Science and Engineerin, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium); Noterdaeme, J.M. [Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000, Ghent (Belgium)

    2016-10-15

    The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼10{sup 24} m{sup −2} s{sup −1}, energy ∼50 eV and fluence up to 5 × 10{sup 25} D/m{sup 2}) was studied experimentally in a wide temperature range (460–1000 K) relevant for application in ITER. The desorption spectra in both reference and plastically-deformed samples were deconvoluted into three contributions associated with the detrapping from dislocations, deuterium-vacancy clusters and pores. As the exposure temperature increases, the positions of the release peaks in the plastically-deformed material remain in the same temperature range but the peak amplitudes are altered as compared to the reference material. The desorption peak attributed to the release from pores (i.e. cavities and bubbles) was suppressed in the plastically deformed samples for the low-temperature exposures, but became dominant for exposures above 700 K. The observed strong modulation of the deuterium storage in “shallow” and “deep” traps, as well as the reduction of the integral retention above 700 K, suggest that the dislocation network changes its role from “trapping sites” to “diffusion channels” above a certain temperature. The major experimental observations of the present work are in line with recent computational assessment based on atomistic and mean field theory calculations available in literature.

  20. Decommissioning of the High Flux Beam Reactor at Brookhaven National Laboratory.

    Science.gov (United States)

    Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E

    2012-08-01

    The High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory was a heavy-water cooled and moderated reactor that achieved criticality on 31 October 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost 3 y for safety and environmental reviews. In November 1999, the United States Department of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR's cleanup performed during 1999-2009, to allow the BNL facilities to be re-accessed by the public, will be described in the paper.

  1. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    Robert Boehlecke

    2004-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various

  2. Ultrafast spin injection from Cd1-x Mn x Te magnetic barriers into a CdTe quantum well studied by pump-probe spectroscopy

    International Nuclear Information System (INIS)

    Aoshima, I.; Nishibayashi, K.; Souma, I.; Murayama, A.; Oka, Y.

    2006-01-01

    Spin injection from diluted magnetic semiconductor (DMS) barriers of Cd 1- x Mn x Te into a quantum well (QW) of CdTe is studied, by means of pump-probe absorption spectroscopy in magnetic fields. Fast decay characteristics of circularly polarized differential absorbances of spin-polarized excitons in the DMS barrier show the exciton injection time of 6 ps from the barriers into the QW. In accordance with the fast relaxation of the spin-polarized excitons from the barrier, we observe the rise of circular polarization degree for the differential absorption of the CdTe QW in magnetic fields, evidently indicating the spin injection. In addition, the circular polarization degree up to 0.3 is developed in the well immediately after pumping, originating from the fast relaxation of a heavy hole (hh) spin less than 0.2 ps, due to the giant Zeeman effect caused by the penetration of the hh wave function into the DMS barriers

  3. Irradiation experiments and materials testing capabilities in High Flux Reactor in Petten

    International Nuclear Information System (INIS)

    Luzginova, N.; Blagoeva, D.; Hegeman, H.; Van der Laan, J.

    2011-01-01

    The text of publication follows: The High Flux Reactor (HFR) in Petten is a powerful multi-purpose research and materials testing reactor operating for about 280 Full Power Days per year. In combination with hot cells facilities, HFR provides irradiation and post-irradiation examination services requested by nuclear energy research and development programs, as well as by industry and research organizations. Using a variety of the custom developed irradiation devices and a large experience in executing irradiation experiments, the HFR is suitable for fuel, materials and components testing for different reactor types. Irradiation experiments carried out at the HFR are mainly focused on the understanding of the irradiation effects on materials; and providing databases for irradiation behavior of materials to feed into safety cases. The irradiation experiments and materials testing at the HFR include the following issues. First, materials irradiation to support the nuclear plant life extensions, for instance, characterization of the reactor pressure vessel stainless steel claddings to insure structural integrity of the vessel, as well as irradiation of the weld material coupons to neutron fluence levels that are representative for Light Water Reactors (LWR) internals applications. Secondly, development and qualification of the structural materials for next generation nuclear fission reactors as well as thermo-nuclear fusion machines. The main areas of interest are in both conventional stainless steel and advanced reduced activation steels and special alloys such as Ni-base alloys. For instance safety-relevant aspects of High Temperature Reactors (HTR) such as the integrity of fuel and structural materials with increasing neutron fluence at typical HTR operating conditions has been recently assessed. Thirdly, support of the fuel safety through several fuel irradiation experiments including testing of pre-irradiated LWR fuel rods containing UO 2 or MOX fuel. Fourthly

  4. Transmutation of technetium into stable ruthenium in high flux conceptual research reactor

    International Nuclear Information System (INIS)

    Amrani, N.; Boucenna, A.

    2007-01-01

    The effectiveness of transmutation for the long lived fission product technetium-99 in high flux research reactor, considering its large capture cross section in thermal and epithermal region is evaluated. The calculation of Ruthenium concentration evolution under irradiation was performed using Chain Solver 2.20 code. The approximation used for the transmutation calculation is the assumption that the influence of change in irradiated materials structures on the reactor operator mode characteristics is insignificant. The results on Technetium transmutation in high flux research reactor suggested an effective use of this kind of research reactors. The evaluation brings a new concept of multi-recycle Technetium transmutation using HFR T RAN (High Flux Research Reactor for Transmutation)

  5. Clinical outcomes with olanzapine long-acting injection: impact of the 3-hour observation period on patient satisfaction and well-being

    Directory of Open Access Journals (Sweden)

    Anand E

    2016-10-01

    Full Text Available Ernie Anand,1 Lovisa Berggren,2 John Landry,3 Ágoston Tóth,4 Holland C Detke5 1Neuroscience Medical Affairs, Eli Lilly & Company Ltd, Windlesham, UK; 2Global Statistical Sciences, Lilly Deutschland GmbH, Bad Homburg, Germany; 3Global Statistical Sciences, Eli Lilly Canada Inc., Toronto, ON, Canada; 4Neuroscience, Lilly Hungary, Budapest, Hungary; 5Psychiatry and Pain Disorders, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA Background: The objective of the present analysis is to determine the impact of the 3-hour observation period for olanzapine long-acting injection (LAI on patient satisfaction and well-being by comparing data collected before and after its implementation. Methods: This is a post hoc analysis of patients treated with olanzapine LAI in 1 a 6-month fixed-dose randomized controlled trial and/or 2 a 6-year open-label safety study. This analysis was limited to patients with schizophrenia who were treated with olanzapine LAI consistent with the approved indication and dosing recommendations of the European Union Summary of Product Characteristics (N=966. Of the 966 patients, the analysis further focused only on those patients who received both 1 at least one injection before the implementation of the 3-hour observation period and 2 at least one injection after implementation of the 3-hour observation period (N=487. Patient satisfaction was assessed with the three-item Patient Satisfaction with Medication Questionnaire-Modified. Responses were averaged across all postbaseline visits occurring before (ie, without the implementation of the 3-hour observation period and across all postbaseline visits occurring after (ie, with the implementation of the 3-hour observation period. In addition, the rate of postinjection delirium/sedation syndrome events was calculated. Results: There was no meaningful change after implementation of the 3-hour observation period in satisfaction (before: mean [SD] =4.0 [1.02] and

  6. Design of a high-flux test assembly for the Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Opperman, E.K.; Vogel, M.A.

    1982-01-01

    The Fusion Material Test Facility (FMIT) will provide a high flux fusion-like neutron environment in which a variety of structural and non-structural materials irradiations can be conducted. The FMIT experiments, called test assemblies, that are subjected to the highest neutron flux magnitudes and associated heating rates will require forced convection liquid metal cooling systems to remove the neutron deposited power and maintain test specimens at uniform temperatures. A brief description of the FMIT facility and experimental areas is given with emphasis on the design, capabilities and handling of the high flux test assembly

  7. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    Science.gov (United States)

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  8. Washout of water-soluble vitamins and of homocysteine during haemodialysis: effect of high-flux and low-flux dialyser membranes.

    Science.gov (United States)

    Heinz, Judith; Domröse, Ute; Westphal, Sabine; Luley, Claus; Neumann, Klaus H; Dierkes, Jutta

    2008-10-01

    Vitamin deficiencies are common in patients with end-stage renal disease (ESRD) owing to dietary restrictions, drug-nutrient interactions, changes in metabolism, and vitamin losses during dialysis. The present study investigated the levels of serum and red blood cell (RBC) folate, plasma pyridoxal-5'-phosphate (PLP), serum cobalamin, blood thiamine, blood riboflavin, and plasma homocysteine (tHcy) before and after haemodialysis treatment. Vitamin and tHcy blood concentrations were measured in 30 patients with ESRD before and after dialysis session either with low-flux (n = 15) or high-flux (n = 15) dialysers. After the dialysis procedure, significantly lower concentrations of serum folate (37%), plasma PLP (35%), blood thiamine (6%) and blood riboflavin (7%) were observed. No significant changes were found for serum cobalamin or for RBC folate. There were no differences in the washout of water-soluble vitamins between treatments with low-flux and high-flux membranes. Furthermore, a 41% lower concentration in tHcy was observed. The percentage decrease in tHcy was significantly greater in the patients treated with high-flux dialysers (48% vs 37%; P vitamins measured (r =-0.867, P water-soluble vitamins after dialysis, independently of the dialyser membrane. The monitoring of the vitamin status is essential in patients treated with high-flux dialysers as well as in patients treated with low-flux dialysers.

  9. Radiological characterization of the pressure vessel internals of the BNL High Flux Beam Reactor.

    Science.gov (United States)

    Holden, Norman E; Reciniello, Richard N; Hu, Jih-Perng

    2004-08-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, measurements and calculations of the decay gamma-ray dose-rate were performed in the reactor pressure vessel and on vessel internal structures such as the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. Measurements of gamma-ray dose rates were made using Red Perspex polymethyl methacrylate high-dose film, a Radcal "peanut" ion chamber, and Eberline's RO-7 high-range ion chamber. As a comparison, the Monte Carlo MCNP code and MicroShield code were used to model the gamma-ray transport and dose buildup. The gamma-ray dose rate at 8 cm above the center of the Transition Plate was measured to be 160 Gy h (using an RO-7) and 88 Gy h at 8 cm above and about 5 cm lateral to the Transition Plate (using Red Perspex film). This compares with a calculated dose rate of 172 Gy h using Micro-Shield. The gamma-ray dose rate was 16.2 Gy h measured at 76 cm from the reactor core (using the "peanut" ion chamber) and 16.3 Gy h at 87 cm from the core (using Red Perspex film). The similarity of dose rates measured with different instruments indicates that using different methods and instruments is acceptable if the measurement (and calculation) parameters are well defined. Different measurement techniques may be necessary due to constraints such as size restrictions.

  10. High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research

    Science.gov (United States)

    Waltz, Cory; HFNG Collaboration

    2015-04-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.

  11. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Adam R [ORNL

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  12. Soluble transferrin receptor as a marker of erythropoiesis in patients undergoing high-flux hemodialysis

    Directory of Open Access Journals (Sweden)

    Pei Yin

    2017-11-01

    Full Text Available Anemia is a common complication in chronic kidney disease (CKD patients receiving hemodialysis. The effect of high-flux dialysis (HFD on anemia remains unclear. This prospective study aimed to evaluate the effect of HFD on anemia, and the potential of soluble transferrin receptor (sTfR as a marker of iron status and erythropoiesis in CKD patients on hemodialysis. Forty patients, who switched from conventional low-flux dialysis to HFD for 12 months, were enrolled in this study. The levels of sTfR, hemoglobin (Hb, iron, and nutritional markers, as well as the dose of recombinant human erythropoietin (rhEPO and use of chalybeate were determined at 0, 2, 6, and 12 months after starting HFD. HFD significantly increased the hemoglobin level and reduced sTfR level in CKD patients (p < 0.05. In addition, significant decreasing linear trends were observed for rhEPO dosage and chalybeate use (p < 0.05. The level of sTfR was positively correlated with the percentage of reticulocytes (RET%, rhEPO dose, and chalybeate use, while it was negatively correlated with Hb levels and total iron-binding capacity results (all p < 0.05. A univariate generalized estimating equation (GEE model showed that the Hb level, RET%, rhEPO dose, and chalybeate use were the variables associated with sTfR levels. A multivariate GEE model showed that the time points when hemodialysis was performed were the variables associated significantly with sTfR levels. Overall, our findings suggest that HFD can effectively improve renal anemia in hemodialysis patients, and sTfR could be used as a marker of erythropoiesis in HFD patients.

  13. Operating manual for the High Flux Isotope Reactor. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    1965-06-01

    This report contains a comprehensive description of the High Flux Isotope Reactor facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procedures are presented in another report.

  14. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    International Nuclear Information System (INIS)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report

  15. Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

    International Nuclear Information System (INIS)

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.

    1995-04-01

    This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed

  16. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report.

  17. Modeling the reduction of gross lithium erosion observed under high-flux deuterium bombardment

    NARCIS (Netherlands)

    Abrams, T.; Jaworski, M. A.; Kaita, R.; Nichols, J. H.; Stotler, D. P.; De Temmerman, G.; van den Berg, M. A.; van der Meiden, H. J.; Morgan, T. W.

    2015-01-01

    Abstract Both thin (<1 μm) and thick (∼500 μm) lithium films under high-flux deuterium and neon plasma bombardment were studied in the linear plasma device Magnum-PSI at ion fluxes >1024 m−2 s−1 and surface temperatures <700 °C.

  18. Fast nanostructured carbon microparticle synthesis by one-step high-flux plasma processing

    NARCIS (Netherlands)

    Aussems, D. U. B.; Bystrov, K.; Dogan, I.; Arnas, C.; Cabié, M.; Neisius, T.; Rasinski, M.; Zoethout, E.; Lipman, P.; van de Sanden, M. C. M.; Morgan, T. W.

    2017-01-01

    This study demonstrates a fast one-step synthesis method for nanostructured carbon microparticles on graphite samples using high-flux plasma exposure. These structures are considered as potential candidates for energy applications such as Li-ion batteries and supercapacitors. The samples were

  19. Fast nanostructured carbon microparticle synthesis by one-step high-flux plasma processing

    NARCIS (Netherlands)

    Aussems, D.U.B.; Bystrov, K.E.; Doǧan, I.; Arnas, C.; Cabié, M.; Neisius, T.; Rasinski, M.; Lipman, P.J.L.; van de Sanden, M.C.M.; Morgan, T.W.

    This study demonstrates a fast one-step synthesis method for nanostructured carbon microparticles on graphite samples using high-flux plasma exposure. These structures are considered as potential candidates for energy applications such as Li-ion batteries and supercapacitors. The samples were

  20. The operating experience and incident analysis for High Flux Engineering Test Reactor

    International Nuclear Information System (INIS)

    Zhao Guang

    1999-01-01

    The paper describes the incidents analysis for High Flux Engineering test reactor (HFETR) and introduces operating experience. Some suggestion have been made to reduce the incidents of HFETR. It is necessary to adopt new improvements which enhance the safety and reliability of operation. (author)

  1. Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma

    NARCIS (Netherlands)

    Xu, H.Y.; De Temmerman, G.C.; Luo, G.-N.; Jia, Y.Z.; Yuan, Y.; Fu, B.Q.; Godfrey, A.; Liu, W.

    2015-01-01

    PLASMA-SURFACE INTERACTIONS 21 — Proceedings of the 21st International Conference on Plasma-Surface Interactions in Controlled Fusion Devices Kanazawa, Japan May 26-30, 2014 Surface topography of polycrystalline tungsten (W) have been examined after exposure to a low-energy (38 eV/D), high-flux

  2. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0 with ROTC 1

    International Nuclear Information System (INIS)

    Boehlecke, Robert

    2004-01-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various locations and

  3. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0 with ROTC 1

    Energy Technology Data Exchange (ETDEWEB)

    Boehlecke, Robert

    2004-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various

  4. Growth of strained InGaAs/GaAs quantum wells and index guided injection lasers over nonplanar substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Arent, D.J.; Galeuchet, Y.D.; Nilsson, S.; Meier, H.P.

    1990-01-01

    Strained InGaAs/GaAs quantum wells were grown on nonplanar substrates by molecular beam epitaxy and studied by scanning electron microscopy and low temperature spatially and spectrally resolved cathodoluminescence spectroscopy. For (100) ridges and grooves formed with (311)A sidewalls, almost complete removal of In from the strained quantum wells on the (311)A facet is observed. Corresponding increases of In content in the quantum wells grown on the (100) facets indicate that most if not all of the In is displaced from the (311)A facet via interplanar adatom migration. Ga adatom migration is also observed under our growth conditions such that quantum wells grown nominally near the critical layer thickness on structures less than ≅2.5 μm wide are no longer pseudomorphically strained, as detected by luminescence linewidth analysis. We present the first results of strained InGaAs/GaAs index guided injection lasers grown by single-step molecular beam epitaxy over nonplanar substrates and show that differences greater than 50 meV in the effective band gap of a 70 A quantum well can be achieved between the gain region and the nonabsorbing waveguide without relaxing the strain. Room temperature threshold currents as low as 6 mA for 4 μmx750 μm uncoated devices lasing continuously at a wavelength of 1.01 μm have been achieved

  5. Safe injection procedures, injection practices, and needlestick ...

    African Journals Online (AJOL)

    Results: Safe injection procedures regarding final waste disposal were sufficiently adopted, while measures regarding disposable injection equipment, waste containers, hand hygiene, as well as injection practices were inadequately carried out. Lack of job aid posters that promote safe injection and safe disposal of ...

  6. A Multitracer Approach to Detecting Wastewater Plumes from Municipal Injection Wells in Nearshore Marine Waters at Kihei and Lahaina, Maui, Hawaii

    Science.gov (United States)

    Hunt, Charles D.; Rosa, Sarah N.

    2009-01-01

    Municipal wastewater plumes discharging from aquifer to ocean were detected by nearshore wading surveys at Kihei and Lahaina, on the island of Maui in Hawaii. Developed in cooperation with the Hawaii State Department of Health, the survey methodology included instrument trolling to detect submarine groundwater discharge, followed by analysis of water and macroalgae for a suite of chemical and isotopic constituents that constitute a 'multitracer' approach. Surveys were conducted May 6-28, 2008, during fair-weather conditions and included: (1) wading and kayak trolling with a multiparameter water-quality sonde, (2) marine water-column sampling, and (3) collection of benthic algae samples. Instrument trolling helped guide the water sampling strategy by providing dense, continuous transects of water properties on which groundwater discharge zones could be identified. Water and algae samples for costly chemical and isotopic laboratory analyses were last to be collected but were highly diagnostic of wastewater presence and nutrient origin because of low detection levels and confirmation across multiple tracers. Laboratory results confirmed the presence of wastewater constituents in marine water-column samples at both locales and showed evidence of modifying processes such as denitrification and mixing of effluent with surrounding groundwater and seawater. Carbamazepine was the most diagnostic pharmaceutical, detected in several marine water-column samples and effluent at both Kihei and Lahaina. Heavy nitrogen-isotope compositions in water and algae were highly diagnostic of effluent, particularly where enriched to even heavier values than effluent source compositions by denitrification. Algae provided an added advantage of time-integrating their nitrogen source during growth. The measured Kihei plume coincided almost exactly with prior model predictions, but the Lahaina plume was detected well south of the expected direct path from injection wells to shore and may be

  7. Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.Y., E-mail: donaxu@163.com [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621907 (China); De Temmerman, G. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Ass. EURATOM-FOM, Trilateral Euregio Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); ITER Organization, Route de Vinon-sur-Verdon CS 90046-13067, St Paul Lez Durance Cedex (France); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Jia, Y.Z.; Yuan, Y.; Fu, B.Q.; Godfrey, A. [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-08-15

    Surface topography of polycrystalline tungsten (W) have been examined after exposure to a low-energy (38 eV/D), high-flux (∼1.1–1.5 × 10{sup 24} m{sup −2} s{sup −1}) deuterium plasma in the Pilot-PSI linear plasma device. The methods used were scanning electron microscopy (SEM), transmission electron microscopy (TEM), positron annihilation Doppler broadening (PADB) and grazing incident X-ray diffraction (GI-XRD). After exposure to high flux D plasma, blisters and nanostructures are formed on the W surface. Generation of defects was evidenced by PADB, while high stress and mixture of phases were detected in depth of 50 nm by GI-XRD. TEM observation revealed fluctuations and disordered microstructure on the outmost surface layer. Based on these results, surface reconstruction is considered as a possible mechanism for the formation of defects and nanostructures.

  8. The feature of high flux engineering test reactor and its role in nuclear power development

    International Nuclear Information System (INIS)

    Lu Guangquan

    1987-01-01

    The High Flux Engineering Test Reactor (HFETR) designed and built by Chinese own efforts reached to its initial criticality on Dec. 27, 1979, and then achieved high power operation on Dec. 16, 1980. Until Nov. 11. 1986, the reactor had been operated for thirteen cycles. The paper presents briefly main feature of HFETR and its utilization during past years. The paper also deals with its role in nuclear power development. Finally, author gives his opinion on comprehensive utilization of HFETR. (author)

  9. Temperature and void reactivity coefficient calculations for the high flux isotope reactor safety analysis report

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Williams, L.R.

    1994-07-01

    This report provides documentation of a series of calculations performed in 1991 in order to provide input for the High Flux Isotope Reactor Safety Analysis Report. In particular, temperature and void reactivity coefficients were calculated for beginning-of-life, end-of-life, and xenon equilibrium (29 h) conditions. Much of the data used to prepare the computer models for these calculations was derived from the original HFIR nuclear design study

  10. Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma

    NARCIS (Netherlands)

    Xu, H.Y.; De Temmerman, G.; Luo, G. N.; Jia, Y. Z.; Yuan, Y.; Fu, B. Q.; Godfrey, A.; Liu, W.

    2015-01-01

    Surface topography of polycrystalline tungsten (W) have been examined after exposure to a low-energy (38 eV/D), high-flux (∼1.1–1.5 × 1024 m−2 s−1) deuterium plasma in the Pilot-PSI linear plasma device. The methods used were scanning electron microscopy

  11. Seismic, high wind, tornado, and probabilistic risk assessment of the high flux isotope reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Hashimoto, P.S.; Dizon, J.O.; Hashimoto, P.S.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR). Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed

  12. Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Stover, R.L.; Hashimoto, P.S.; Dizon, J.O.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs

  13. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  14. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Bryant, Rebecca; Kszos, Lynn A.

    2011-01-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  15. A high-flux low-energy hydrogen ion beam using an end-Hall ion source

    NARCIS (Netherlands)

    Veldhoven, J. van; Sligte, E. te; Janssen, J.P.B.

    2016-01-01

    Most ion sources that produce high-flux hydrogen ion beams perform best in the high energy range (keV). Alternatively, some plasma sources produce very-lowenergy ions (<< 10 eV). However, in an intermediate energy range of 10-200 eV, no hydrogen ion sources were found that produce high-flux beams.

  16. A review of current practices and the future for deep well injection in the upper Miocene Stevens sand, Kern County, California

    International Nuclear Information System (INIS)

    Kiser, S.C.; Chenot, D.W.

    1991-01-01

    Waste-water disposal is a major concern of the petroleum business, especially because of complications associated with many produced-water surface-impoundment percolation facilities. In the San Joaquin Valley, California, the current environmental regulations protecting the potentially usable groundwaters are stringent. the Stevens has significant potential as a disposal zone that may offer considerable capacity when the project is designed using proper geologic and engineering studies. The Stevens sands are well known for their oil-producing capabilities, however, not much has been published regarding its suitability as a zone for deep well injection. Conditions that make the Stevens potentially suitable include (1) adequate confinement providing geologic separation from the groundwater sources in the basin, (2) storage capacity, and (3) large areal extent. Because the search for acceptable disposal options is becoming critical, the current class II disposal options is becoming critical, the current class II disposal activities in the Stevens sands were reviewed and the areas offering the greatest future potential were identified. The authors then discuss class II disposal projects in Stevens sands in the West Bellevue and Midway Sunset oil fields and estimate the ultimate basin-wide disposal capacity of the Stevens

  17. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Ikeda, Masao, E-mail: mikeda2013@sinano.ac.cn; Liu, Jianping; Zhang, Shuming [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Zhou, Kun; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Institute of Semiconductors (CAS), Beijing 100083 (China); Liu, Zongshun [Institute of Semiconductors (CAS), Beijing 100083 (China)

    2015-07-21

    Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another, however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.

  18. Sub-surface microstructure of single and polycrystalline tungsten after high flux plasma exposure studied by TEM

    Energy Technology Data Exchange (ETDEWEB)

    Dubinko, A., E-mail: adubinko@sckcen.be [Institute for Nuclear Material Sciences, SCK-CEN, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, 9000 Ghent (Belgium); Terentyev, D. [Institute for Nuclear Material Sciences, SCK-CEN, 2400 Mol (Belgium); Bakaeva, A. [Institute for Nuclear Material Sciences, SCK-CEN, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, 9000 Ghent (Belgium); Hernández-Mayoral, M. [Division of Materials, CIEMAT, 28040 Madrid (Spain); De Temmerman, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul-lez-Durance Cedex (France); Buzi, L. [Forschungszentrum Julich, Inst. Energie & Klimaforsch Plasmaphys, D-52425 Julich (Germany); Noterdaeme, J.-M. [Department of Applied Physics, Ghent University, 9000 Ghent (Belgium); Unterberg, B. [Forschungszentrum Julich, Inst. Energie & Klimaforsch Plasmaphys, D-52425 Julich (Germany)

    2017-01-30

    Highlights: • Plasma exposure induces dislocation-dominated microstructure as indicated by TEM. • Plasma exposure increases surface dislocation density by an order of magnitude in the polycrystalline tungsten. • Intensive dislocation-grain boundary interaction observed in polycrystalline tungsten. • Dislocation loops are observed in both polycrystalline and single crystal tungsten. - Abstract: We have performed high flux plasma exposure of tungsten and subsequent microstructural characterization using transmission electron microscopy (TEM) techniques. The aim was to reveal the nanometric features in the sub-surface region as well as to compare the microstructural evolution in tungsten single crystal and ITER-relevant specification. In both types of samples, TEM examination revealed the formation of a dense dislocation network and dislocation tangles. The estimated dislocation density in the sub-surface region was of the order of 10{sup 14} m{sup −2} and it gradually decreased with a depth position of the examined sample. Besides individual dislocation lines, networks and tangles, the interstitial dislocation loops have been observed in all examined samples only after the exposure. Contrary to that, examination of the pristine single crystal W and backside of the plasma-exposed samples did not reveal the presence of dislocation loops and tangles. This clearly proves that high flux plasma exposure induces severe plastic deformation in the sub-surface region irrespective of the presence of initial dislocations and sub-grains, and the formation of dislocation tangles, networks and interstitial loops is a co-product of thermal stress and intensive plasma particles uptake.

  19. Seismic hazard studies for the high flux beam reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Costantino, C.J.; Heymsfield, E.; Park, Y.J.; Hofmayer, C.H.

    1991-01-01

    This paper presents the results of a calculation to determine the site specific seismic hazard appropriate for the deep soil site at Brookhaven National Laboratory (BNL) which is to be used in the risk assessment studies being conducted for the High Flux Beam Reactor (HFBR). The calculations use as input the seismic hazard defined for the bedrock outcrop by a study conducted at Lawrence Livermore National Laboratory (LLNL). Variability in site soil properties were included in the calculations to obtain the seismic hazard at the ground surface and compare these results with those using the generic amplification factors from the LLNL study

  20. Production of Sn-117m in the BR2 high-flux reactor.

    Science.gov (United States)

    Ponsard, B; Srivastava, S C; Mausner, L F; Russ Knapp, F F; Garland, M A; Mirzadeh, S

    2009-01-01

    The BR2 reactor is a 100MW(th) high-flux 'materials testing reactor', which produces a wide range of radioisotopes for various applications in nuclear medicine and industry. Tin-117m ((117m)Sn), a promising radionuclide for therapeutic applications, and its production have been validated in the BR2 reactor. In contrast to therapeutic beta emitters, (117m)Sn decays via isomeric transition with the emission of monoenergetic conversion electrons which are effective for metastatic bone pain palliation and radiosynovectomy with lesser damage to the bone marrow and the healthy tissues. Furthermore, the emitted gamma photons are ideal for imaging and dosimetry.

  1. Analysis of traces at ORNL's new high-flux neutron activation laboratory

    International Nuclear Information System (INIS)

    Ricci, E.; Handley, T.H.; Dyer, F.F.

    1974-01-01

    The investigations are outlined, which are carried out in order to develop (preferably instrumental) methods for multielement analysis of various trace elements. For this reason a new High-Flux NAA Laboratory was constructed at ORNL's. A general review is given on the Laboratory, further some methods and applications are shown. In the field of comparator activation analysis comparative data are given on mercury determinations in various matrices, and on arsenic determination in grasshoppers. This later method was used to trace the transport of arsenic containing pesticides. Some data are given on absolute activation analysis of Na, Ci, Mn, Br, and Au, too. (K.A.)

  2. Eddy-current inspection of high flux isotope reactor nuclear control rods

    International Nuclear Information System (INIS)

    Smith, J.H.; Chitwood, L.D.

    1981-07-01

    Inner control rods for the High Flux Isotope Reactor were nondestructively inspected for defects by eddy-current techniques. During these examinations aluminum cladding thickness and oxide thickness on the cladding were also measured. Special application techniques were required because of the high-radiation levels (approx. 10 5 R/h at 30 cm) present and the relatively large temperature gradients that occurred on the surface of the control rods. The techniques used to perform the eddy-current inspections and the methods used to reduce the associated data are described

  3. Realization of compact, passively-cooled, high-flux photovoltaic prototypes

    Science.gov (United States)

    Feuermann, Daniel; Gordon, Jeffrey M.; Horne, Steve; Conley, Gary; Winston, Roland

    2005-08-01

    The materialization of a recent conceptual advance in high-flux photovoltaic concentrators into first-generation prototypes is reported. Our design strategy includes a tailored imaging dual-mirror (aplanatic) system, with a tapered glass rod that enhances concentration and accommodates larger optical errors. Designs were severely constrained by the need for ultra-compact (minimal aspect ratio) modules, simple passive heat rejection, liberal optical tolerances, incorporating off-the-shelf commercial solar cells, and pragmatic considerations of affordable fabrication technologies. Each unit has a geometric concentration of 625 and irradiates a single square 100 mm2 triple-junction high-efficiency solar cell at a net flux concentration of 500.

  4. Electronic Instability at High Flux-Flow Velocities in High-Tc Superconducting Films

    DEFF Research Database (Denmark)

    Doettinger, S. G.; Huebener, R. P.; Gerdemann, R.

    1994-01-01

    At high flux-flow velocities in type-II superconductors the nonequilibrium distribution of the quasiparticles leads to an electronic instability and an aburpt switching into a state with higher electric resistivity, as predicted by Larkin and Ovchinnikow (LO). We report the first obervation...... of this effect in a high-temperature superconductor, namely in epitaxial c-axis oriented films of YBa(2)Cu3O(7)-(delta). Using the LO therory, we have extracted from out results the inelastic quasiparticle scattering rare tau(in)(-1), which strongly decreases with decreasing temperature below T-c...

  5. Experimental studies on mitigation of LOCA for a high flux research reactor

    International Nuclear Information System (INIS)

    Saxena, A.K.

    2006-01-01

    Experimental studies on the rewetting behaviour of hot vertical annular channels were performed to study the mitigation of consequences of loss of coolant accident (LOCA) for a high flux research reactor. Studies were carried out to study the rewetting behaviour with hot inner tube, for bottom flooding and top flow rewetting conditions. The tube was made of stainless steel. Experiments were conducted for water flow rates in the annulus upto 7 litres per minute (l pm) (11.7 x 10 -5 m 3 s -1 ). The initial surface temperature of the inner tube was varied from 200 to 500 degC. (author)

  6. Engineering and erection of a 300kW high-flux solar simulator

    Science.gov (United States)

    Wieghardt, Kai; Laaber, Dmitrij; Hilger, Patrick; Dohmen, Volkmar; Funken, Karl-Heinz; Hoffschmidt, Bernhard

    2017-06-01

    German Aerospace Center (DLR) is currently constructing a new high-flux solar simulator synlight which shall be commissioned in late 2016. The new facility will provide three separately operated experimental spaces with expected radiant powers of about 300kW / 240kW / 240kW respectively. synlight was presented to the public for the first time at SolarPACES 2015 [1]. Its engineering and erection is running according to plan. The current presentation reports about the engineering and the ongoing erection of the novel facility, and gives an outlook on its new level of possibilities for solar testing and qualification.

  7. Influence of microbial processes on the operation of a cold store in a shallow aquifer: impact on well injectivity and filter lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Lerm, Stephanie; Alawi, Mashal; Wuerdemann, Hilke [Helmholtz-Zentrum Potsdam, GFZ - Deutsches GeoForschungsZentrum, Internationales Geothermiezentrum, Potsdam (Germany); Miethling-Graff, Rona [Wald und Fischerei Institut fuer Biodiversitaet, Johann Heinrich von Thuenen Institut, Bundesforschungsinstitut fuer Laendliche Raeume, Braunschweig (Germany); Wolfgramm, Markus; Rauppach, Kerstin [Geothermie Neubrandenburg GmbH (GTN), Neubrandenburg (Germany); Seibt, Andrea [BWG Geochemische Beratung GbR, Neubrandenburg (Germany)

    2011-06-15

    In this study, the operation of a cold store, located in 30-60 m depth in the North German Basin, was investigated by direct counting of bacteria and genetic fingerprinting analysis. Quantification of microbes accounted for 1 to 10.10{sup 5} cells per ml fluid with minor differences in the microbial community composition between well and process fluids. The detected microorganisms belong to versatile phyla Proteobacteria and Flavobacteria. In addition to routine plant operation, a phase of plant malfunction caused by filter clogging was monitored. Increased abundance of sulfur-oxidizing bacteria indicated a change in the supply of electron acceptors, however, no changes in the availability of electron acceptors like nitrate or oxygen were detected. Sulfur- and iron-oxidizing bacteria played essential roles for the filter lifetimes at the topside facility and the injectivity of the wells due to the formation of biofilms and induced mineral precipitations. In particular, sulfur-oxidizing Thiothrix generated filamentous biofilms were involved in the filter clogging. (orig.) [German] Im Rahmen dieser Studie wurde der Betrieb eines in 30-60 m Tiefe gelegenen Kaeltespeichers des Norddeutschen Beckens durch Bestimmung der Bakterien-Zellzahlen und genetischer Fingerprinting-Analysen untersucht. Eine Zellzahlbestimmung ergab 1 bis 10.10{sup 5} Zellen pro ml Fluid, wobei geringe Unterschiede in der mikrobiellen Zusammensetzung zwischen Brunnenproben und Prozessfluiden nachgewiesen wurden. Die identifizierten Mikroorganismen wurden den Phyla Proteobacteria und Flavobacteria zugeordnet. Neben routinemaessigem Anlagenbetrieb wurde eine Phase mit technischen Stoerungen durch zugesetzte Filter dokumentiert. Die Zunahme an Schwefel-oxidierenden Bakterien zeigte eine erhoehte Verfuegbarkeit von Elektronenakzeptoren an, obwohl keine Aenderungen in der Verfuegbarkeit von Elektronenakzeptoren, wie Nitrat oder Sauerstoff, nachgewiesen werden konnte. Schwefel- und Eisen

  8. Analysis of the influence of well spacing on the injection rate behaviour for water injection under fracturing conditions; Analise da influencia do espacamento de pocos na determinacao da vazao de injecao para o processo de injecao com pressao cima da pressao de fratura

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Mazo, Eduin Orlando [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Estudo do Petroleo. Lab. de Simulacao de Fluxo em Meios Porosos (UNISIM); Costa, Odair Jose; Schiozer, Denis Jose [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2008-07-01

    Water injection under fracturing conditions is a proved manner of overcoming injectivity loss in reservoirs affected by formation damage. Nevertheless, as shown by Munoz Mazo et al. (2006), there is the possibility of the generated and propagated fractures intercept the producer wells making that the injected water shall be re-circulated into the reservoir instead of its main function which is to drive the oil contained in the reservoir pore space. The objective of this work is to determine the influence of well spacing on the determination of the water injection rate under fracturing conditions, aiming to study its effects on the production performance and the sweep efficiency. To accomplish the work, an analytical model for representing the absolute permeability reduction near the wellbore and a model which reproduces the fracture propagation in a coupled manner are used. In this way the model sensitivity to several well spacing and the injection rate effects are analyzed using the Net Present Value and the sweep efficiency is evaluated as a function of the Recovery Factor. The results show that the water injection under fracturing conditions is an effective way of overcoming the injectivity loss problem and evidence its sensitivity to different spacing between the injector and the producer wells. (author)

  9. Evaluation on transmutation performance of minor actinides with high-flux BWR

    International Nuclear Information System (INIS)

    Setiawan, M.B.; Kitamoto, A.; Taniguchi, A.

    2001-01-01

    The performance of high-flux BWR (HFBWR) for burning and/or transmutation (B/T) treatment of minor actinides (MA) and long-lived fission products (LLFP) was discussed herein for estimating an advanced waste disposal with partitioning and transmutation (P and T). The concept of high-flux B/T reactor was based on a current 33 GWt-BWR, to transmute the mass of long-lived transuranium (TRU) to short-lived fission products (SLFP). The nuclide selected for B/T treatment was MA (Np-237, Am-241, and Am-243) included in the discharged fuel of LWR. The performance of B/T treatment of MA was evaluated by a new function, i.e. [F/T ratio], defined by the ratio of the fission rate to the transmutation rate in the core, at an arbitrary burn-up, due to all MA nuclides. According to the results, HFBWR could burn and/or transmute MA nuclides with higher fission rate than BWR, but the fission rate did not increase proportionally to the flux increment, due to the higher rate of neutron adsorption. The higher B/T fraction of MA would result in the higher B/T capacity, and will reduce the units of HFBWR needed for the treatment of a constant mass of MA. In addition, HFBWR had a merit of higher mass transmutation compared to the reference BWR, under the same mass loading of MA

  10. Production of high-specific activity radionuclides using SM high-flux reactor

    International Nuclear Information System (INIS)

    Karelin, Ye.A.; Toporov, Yu.G.; Filimonov, V.T.; Vakhetov, F.Z.; Tarasov, V.A.; Kuznetsov, R.A.; Lebedev, V.M.; Andreev, O.I.; Melnik, M.I.; Gavrilov, V.D.

    1997-01-01

    The development of High Specific Activity (HSA) radionuclides production technologies is one of the directions of RIAR activity, and the high flux research reactor SM, having neutron flux density up to 2.10 15 cm -2 s 1 in a wide range of neutron spectra hardness, plays the principal role in this development. The use of a high-flux reactor for radionuclide production provides the following advantages: production of radionuclides with extremely high specific activity, decreasing of impurities content in irradiated targets (both radioactive and non-radioactive), cost-effective use of expensive isotopically enriched target materials. The production technologies of P-33, Gd-153, W-188, Ni-63, Fe-55,59, Sn-113,117m,119m, Sr- 89, applied in industry, nuclear medicine, research, etc, were developed by RIAR during the last 5-10 years. The research work included the development of calculation procedures for radionuclide reactor accumulation forecast, experimental determination of neutron cross-sections, the development of irradiated materials reprocessing procedures, isolation and purification of radionuclides. The principal results are reviewed in the paper. (authors)

  11. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  12. Final report of the HFIR [High Flux Isotope Reactor] irradiation facilities improvement project

    International Nuclear Information System (INIS)

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987

  13. Three new nondestructive evaluation tools based on high flux neutron sources

    International Nuclear Information System (INIS)

    Hubbard, C.R.; Raine, D.; Peascoe, R.; Wright, M.

    1997-01-01

    Nondestructive evaluation methods and systems based on specific attributes of neutron interactions with materials are being developed. The special attributes of neutrons are low attenuation in most engineering materials, strong interaction with low Z elements, and epithermal neutron absorption resonances. The three methods under development at ORNL include neutron based tomography and radiography; through thickness, nondestructive texture mapping; and internal, noninvasive temperature measurement. All three techniques require high flux sources such as the High Flux Isotope Reactor, a steady state source, or the Oak Ridge Electron Linear Accelerator, a pulsed neutron source. Neutrons are quite penetrating in most engineering materials and thus can be useful to detect internal flaws and features. Hydrogen atoms, such as in a hydrocarbon fuel, lubricant, or a metal hydride, are relatively opaque to neutron transmission and thus neutron based tomography/radiography is ideal to image their presence. Texture, the nonrandom orientation of crystalline grains within materials, can be mapped nondestructively using neutron diffraction methods. Epithermal neutron resonance absorption is being studied as a noncontacting temperature sensor. This paper highlights the underlying physics of the methods, progress in development, and the potential benefits for science and industry of the three facilities

  14. Annual Report RCRA Post-Closure Monitoring and Inspections for Corrective Action Unit 91: Area 3 U-3fi Injection Well, Nevada Test Site, Nevada, for the Period October 2001 - October 2002

    International Nuclear Information System (INIS)

    Richardson, G.

    2003-01-01

    This annual monitoring and inspection report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Injection Well during the October 2001 to October 2002 period. The U-3fi Injection Well is located in Area 3 of the Nevada Test Site (NTS), Nye County, Nevada. Inspections of the Area 3 U-3fi Injection Well are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste disposal unit closure. The objective of the neutron logging is to monitor the soil moisture conditions along the 128-meter (m) (420-feet [ft]) ER3-3 monitoring well and detect changes that may be indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft)

  15. A well-tolerated grass pollen-specific allergy vaccine containing a novel adjuvant, monophosphoryl lipid A, reduces allergic symptoms after only four preseasonal injections.

    Science.gov (United States)

    Drachenberg, K J; Wheeler, A W; Stuebner, P; Horak, F

    2001-06-01

    We present data showing that a Th1-inducing adjuvant can reduce the number of injections required for allergy vaccination. Allergy vaccination is the only treatment for type 1 hypersensitivity that can alter the underlying disease process. A switch of specific T-cell activity from Th2 >Th1 to Th1 >Th2 is believed to be an important change seen after long-term vaccination therapy. An immunologic adjuvant that enhances such a switch could be used to reduce the number of injections required. This would improve compliance with the treatment and provide pharmacoeconomic advantages. Such an adjuvant is 3-deacylated monophosphoryl lipid A (MPL adjuvant, Corixa). A multicentre, placebo-controlled, randomized, double-blind clinical study was performed with a new standardized allergy vaccine comprising a tyrosine-adsorbed glutaraldehyde-modified grass pollen extract containing MPL adjuvant. Four subcutaneous injections of the active product were given preseasonally to 81 grass pollen-sensitive subjects, and 60 received placebo injections (tyrosine alone). Diary cards were used to record symptoms and medication taken during approximately 30 days of the grass pollen season. There was a statistical advantage in favour of the active treatment for nasal (P = 0.016) and ocular (P = 0.003) symptoms and combined symptom and medication scores (P=0.013). Titrated skin prick testing revealed a significant reduction of skin sensitivity in the active group compared to placebo (P = 0.04). Grass-pollen-specific IgG antibody was raised by active treatment (P vaccine, incorporating a Th1-inducing adjuvant, MPL, was efficacious and after only four preseasonal injections produced antibody changes normally associated with long injection schedules. This may encourage wider application of allergy vaccination. The vaccine is now available in a number of countries as Pollinex Quattro.

  16. KüFA safety testing of HTR fuel pebbles irradiated in the High Flux Reactor in Petten

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, O., E-mail: oliver.seeger@rwth-aachen.de [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Laurie, M., E-mail: mathias.laurie@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Abjani, A. El; Ejton, J.; Boudaud, D.; Freis, D.; Carbol, P.; Rondinella, V.V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Fütterer, M. [European Commission, Joint Research Centre (JRC), Institute for Energy and Transport (IET), Nuclear Reactor Integrity Assessment and Knowledge Management Unit, PO Box 2, 1755 ZG Petten (Netherlands); Allelein, H.-J. [Lehrstuhl für Reaktorsicherheit und -technik an der RWTH Aachen, Kackertstraße 9, 52072 Aachen (Germany)

    2016-09-15

    The Cold Finger Apparatus (KühlFinger-Apparatur—KüFA) in operation at JRC-ITU is designed to experimentally scrutinize the effects of Depressurization LOss of Forced Circulation (D-LOFC) accident scenarios on irradiated High Temperature Reactor (HTR) fuel pebbles. Up to 1600 °C, the reference maximum temperature for these accidents, high-quality German HTR fuel pebbles have already demonstrated a small fission product release. This paper discusses and compares the releases obtained from KüFA-testing the pebbles HFR-K5/3 and HFR-EU1/3, which were both irradiated in the High Flux Reactor (HFR) in Petten. We present the time-dependent fractional release of the volatile fission product {sup 137}Cs as well as the fission gas {sup 85}Kr for both pebbles. For HFR-EU1/3 the isotopes {sup 134}Cs and {sup 154}Eu as well as the shorter-lived {sup 110m}Ag have also been measured. A detailed description of the experimental setup and its accuracy is given. The data for the recently tested pebbles is discussed in the context of previous results.

  17. Dynamic response of the high flux isotope reactor structure caused by nearby heavy load drop

    International Nuclear Information System (INIS)

    Chang, Shih-Jung.

    1995-01-01

    A heavy load of 50,000 lb is assumed to drop from 10 ft above the bottom of the High Flux Isotope Reactor (HFIR) pool at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying the ABAQUS computer code The results show that both the BM vessel structure and its supporting legs are subjected to elastic disturbances only and, therefore, will not be damaged. The bottom slab of the pool, however, will be damaged to about half of the slab thickness. The velocity response spectrum at the concrete floor next to the HFIR vessel as a result of the vibration caused by the impact is obtained. It is concluded, that the damage caused by heavy load drop at the loading station is controlled by the slab damage and the nearby HFIR vessel and the supporting legs will not be damaged

  18. Risk analysis of environmental hazards at the High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Boccio, J.L.; Ho, V.S.; Johnson, D.H.

    1994-01-01

    In the late 1980s, a Level 1 internal event probabilistic risk assessment (PRA) was performed for the High-Flux Beam Reactor (HFBR), a US Department of Energy research reactor located at Brookhaven National Laboratory. Prior to the completion of that study, a level 1 PRA for external events was initiated, including environmental hazards such as fire, internal flooding, etc. Although this paper provides a brief summary of the risks from environmental hazards, emphasis will be placed on the methodology employed in utilizing industrial event databases for event frequency determination for the HFBR complex. Since the equipment in the HFBR is different from that of, say, a commercial nuclear power plant, the current approach is to categorize the industrial events according to the hazard initiators instead of categorizing by initiator location. But first a general overview of the analysis

  19. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  20. Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators

    Science.gov (United States)

    Friedman, Robert P.; Gordon, Jeffrey M.; Ries, Harald

    1995-08-01

    Using the recently-invented tailored edge-ray concentrator (TERC) approach for the design of compact two-stage high-flux solar collectors--a focusing primary reflector and a nonimaging TERC secondary reflector--we present: 1) a new primary reflector shape based on the TERC approach and a secondary TERC tailored to its particular flux map, such that more compact concentrators emerge at flux concentration levels in excess of 90% of the thermodynamic limit; and 2) calculations and raytrace simulations result which demonstrate the V-cone approximations to a wide variety of TERCs attain the concentration of the TERC to within a few percent, and hence represent practical secondary concentrators that may be superior to corresponding compound parabolic concentrator or trumpet secondaries.

  1. Radiation Dosimetry of the Pressure Vessel Internals of the High Flux Beam Reactor

    Science.gov (United States)

    Holden, Norman E.; Reciniello, Richard N.; Hu, Jih-Perng; Rorer, David C.

    2003-06-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. The measurements were made using Red Perspex™ polymethyl methacrylate high-level film dosimeters, a Radcal "peanut" ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rates, the Monte Carlo MCNP code and geometric progressive MicroShield code were used to model the gamma-ray transport and dose buildup.

  2. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR

    International Nuclear Information System (INIS)

    HOLDEN, N.E.; RECINIELLO, R.N.; HU, J.P.; RORER, D.C.

    2002-01-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex(trademark) polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup

  3. Transport of spent nuclear fuel from the High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Holland, Michael; Carelli, Joseph; Shelton, Thomas

    1997-01-01

    The shipment of more than 1000 elements of spent nuclear fuel (SNF) from the Department of Energy's Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR) to the Department's Savannah River Site (SRS) for long term interim storage required overcoming several significant obstacles. The project management team was comprised of DOE, BNL and NAC International personnel. This achievement involved coordinating the efforts of numerous government and contractor organizations such as the U.S. Coast Guard, the U.S. Nuclear Regulatory Commission, state and local governments, marine and motor carriers, and carrier inspectors. Unique experience was gained during development and execution of the project in the following areas: dry transfer of SNF to shipping casks; inter-modal transfers; logistics; cask licensing by the Nuclear Regulatory Commission (NRC); compliance with environmental regulations; transportation plan development, and stakeholder outreach and coordination

  4. Why does the need of HEU for high flux research reactors remain?

    International Nuclear Information System (INIS)

    Glaeser, W.

    1991-01-01

    It has shown that high performance high flux reactors need an ongoing supply of highly enriched uranium. The new fuel materials in their highly enriched version offer prospective for advanced and better neutron sources vital for the future of neutron research. This is another very attractive result of the RERTR programme. One-sided restriction would only provide marginal or no values for research. If we adopt the sometimes expressed views that high enriched RERTR developed fuel should only be made available when unique benefits to mankind could be obtained, then certainly basic research at the forefront belongs to this category. HEU would only pose theoretical difficulties, if it would remain under proper safeguards and obviously this is the way to be pursued. (orig.)

  5. High flux and high resolution VUV beam line for synchrotron radiation

    International Nuclear Information System (INIS)

    Wilcke, H.; Boehmer, W.; Schwentner, N.

    1982-04-01

    A beam line has been optimized for high flux and high resolution in the wavelength range from 30 nm to 300 nm. Sample chambers for luminescence spectroscopy on gaseous, liquid and solid samples and for photoelectron spectroscopy have been integrated. The synchrotron radiation from the storage ring DORIS (at DESY, Hamburg) emitted into 50 mrad in horizontal and into 2.2 mrad in vertical direction is focused by a cylindrical and a plane elliptical mirror into the entrance slit of a 2m normal incidence monochromator. The light flux from the exit slit is focused by a rotational elliptic mirror onto the sample yielding a size of the light spot of 4 x 0.15 mm 2 . The light flux at the sample reaches 7 x 10 12 photons nm -1 s -1 at 8 eV photon energy for a current of 100 mA in DORIS. A resolution of 0.007 nm has been obtained. (orig.)

  6. The applied research program of the High Flux Neutron Generator at the National Nuclear Center, Havana

    International Nuclear Information System (INIS)

    Perez, G.; Martin, G.; Ceballos, C.; Padron, I.; Shtejer, K.; Perez, N.; Guibert, R.; Ledo, L.M.; Cruz Inclan, Carlos

    2001-01-01

    The Havana High Flux Neutron Generator facility is an intense neutron source based on a 20 mA duoplasmatron ion source and a 250 kV high voltage power supply. It has been installed in the Neutron Generator Laboratory at the Center of Applied Technologies and Nuclear Research in 1997. This paper deal outlined the future applied program to be carried out in this facility in the next years. The Applied Research Program consists on install two nuclear analytic techniques: the PELAN technique which uses the neutron generator in the pulse mode and the Low Energy PIXE technique which uses the same facility as a low energy proton accelerator for PIXE analysis. (author)

  7. Reactor vessel dismantling at the high flux materials testing reactor Petten

    International Nuclear Information System (INIS)

    Tas, A.; Teunissen, G.

    1986-01-01

    The project of replacing the reactor vessel of the high flux materials testing reactor (HFR) originated in 1974 when results of several research programs confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report describes the dismantling philosophy and organisation, the design of special underwater equipment, the dismantling of the reactor vessel and thermal column, and the conditioning and shielding activities resulting in a working area for the installation of the new vessel with no access limitations due to radiation. Finally an overview of the segmentation, waste disposal and radiation exposure is given. The total dismantling, segmentation and conditioning activities resulted in a total collective radiation dose of 300 mSv. (orig.) [de

  8. Design and use of the ORNL HFIR [High Flux Isotope Reactor] pneumatic tube irradiation systems

    International Nuclear Information System (INIS)

    Dyer, F.F.; Emery, J.F.; Robinson, L.; Teasley, N.A.

    1987-01-01

    A second pneumatic tube that was recently installed in the High Flux Isotope Reactor for neutron activation analysis is described. Although not yet tested, the system is expected to have a thermal neutron flux of about 1.5 x 10 14 cm -2 s -1 . A delayed neutron counter is an integral part of the pneumatic tube, and all of the hardware is present to enable automated use of the counter. The system is operated with a Gould programmable controller that is programmed with an IBM personal computer. Automation of any mode of operation, including the delayed neutron counter, will only require a nominal amount of software development. Except for the lack of a hot cell, the irradiation facility has all of the advantageous features of an older pneumatic tube that has been in operation for 17 years. The design of the system and some applications and methods of operation are described

  9. Alize 3 - first critical experiment for the franco-german high flux reactor - calculations

    International Nuclear Information System (INIS)

    Scharmer, K.

    1969-01-01

    The results of experiments in the light water cooled D 2 O reflected critical assembly ALIZE III have been compared to calculations. A diffusion model was used with 3 fast and epithermal groups and two overlapping thermal groups, which leads to good agreement of calculated and measured power maps, even in the case of strong variations of the neutron spectrum in the core. The difference of calculated and measured k eff was smaller than 0.5 per cent δk/k. Calculations of void and structure material coefficients of the reactivity of 'black' rods in the reflector, of spectrum variations (Cd-ratio, Pu-U-ratio) and to the delayed photoneutron fraction in the D 2 O reflector were made. Measurements of the influence of beam tubes on reactivity and flux distribution in the reflector were interpreted with regard to an optimum beam tube arrangement for the Franco- German High Flux Reactor. (author) [fr

  10. External event Probabilistic Risk Assessment for the High Flux Isotope Reactor (HFIR)

    International Nuclear Information System (INIS)

    Flanagan, G.F.; Johnson, D.H.; Buttemer, D.; Perla, H.F.; Chien, S.H.

    1989-01-01

    The High Flux Isotope Reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988 a level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 x 10 -4 . In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 50% of the internal event initiated contribution and is dominated by seismic events

  11. New temperature monitoring devices for high-temperature irradiation experiments in the high flux reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, M.; Futterer, M. A.; Lapetite, J. M. [European Commission Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Fourrez, S. [THERMOCOAX SAS, BP 26, Planquivon, 61438 Flers Cedex (France); Morice, R. [Laboratoire National de Metrologie et d' Essais, 1 rue Gaston Boissier, 75724 Paris (France)

    2009-07-01

    Within the European High Temperature Reactor Technology Network (HTR-TN) and related projects a number of HTR fuel irradiations are planned in the High Flux Reactor Petten (HFR), The Netherlands, with the objective to explore the potential of recently produced fuel for even higher temperature and burn-up. Irradiating fuel under defined conditions to extremely high burn-ups will provide a better understanding of fission product release and failure mechanisms if particle failure occurs. After an overview of the irradiation rigs used in the HFR, this paper sums up data collected from previous irradiation tests in terms of thermocouple data. Some research and development work for further improvement of thermocouples and other on-line instrumentation will be outlined. (authors)

  12. Calculations for HFIR [High Flux Isotope Reactor] fuel plate non- bonding and fuel segregation uncertainty factors

    International Nuclear Information System (INIS)

    Kirkpatrick, J.R.

    1990-10-01

    The effects of non-bonds and of fuel segregation on the package factors of the heat flux in the High Flux Isotope Reactor (HFIR) are examined. The effects of the two defects are examined both separately and together. It is concluded that the peaking factors that are used in the present HFIR thermal analysis code are conservative and thus no changes in the peaking factors are necessary to continue to ensure that HFIR is safe. A study was made of the effect of the non-bond spot diameter on the peaking factor. The conclusion is that the spot can have diameter more than three times the maximum value allowed by the specifications before the peaking factor is greater than the maximum value specified in the present HFIR thermal analysis code. 6 refs., 7 figs., 8 tabs

  13. Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D., E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Bakaeva, A. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent (Belgium); Pardoen, T.; Favache, A. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2 L5.02.02, 1348 Louvain-la-Neuve (Belgium); Zhurkin, E.E. [Department of Experimental Nuclear Physics K-89, Faculty of Physics and Mechanics, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation)

    2016-08-01

    Surface hardness of tungsten after high flux deuterium plasma exposure has been characterized by nanoindentation. The effect of plasma exposure was rationalized on the basis of available theoretical models. Resistance to plastic penetration is enhanced within the 100 nm sub-surface region, attributed to the pinning of geometrically necessary dislocations on nanometric deuterium cavities – signature of plasma-induced defects and deuterium retention. Sub-surface extension of thereby registered plasma-induced damage is in excellent agreement with the results of alternative measurements. The study demonstrates suitability of nano-indentation to probe the impact of deposition of plasma-induced defects in tungsten on near surface plasticity under ITER-relevant plasma exposure conditions.

  14. The proposed use of low enriched uranium fuel in the High Flux Australian Reactor (HIFAR)

    International Nuclear Information System (INIS)

    Vittorio, D.; Durance, G.

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) operates the High Flux Australian Reactor (HIFAR). HIFAR commenced operation in the late 1950's with fuel elements containing uranium enriched to 93%. From that time the level of enrichment has gradually decreased to the current level of 60%. It is now proposed to further reduce the enrichment of HIFAR fuel to <20% by utilising LEU fuel assemblies manufactured by RISO National Laboratory, that were originally intended for use in the DR-3 reactor. Minor modifications have been made to the assemblies to adapt them for use in HIFAR. A detailed design review has been performed and initial safety analysis and reactor physics calculations are to be submitted to ARPANSA as part of a four-stage approval process. (author)

  15. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, Trent; Guida, Tracey

    2010-01-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  16. Effect of high flux plasma exposure on the micro-structural and -mechanical properties of ITER specification tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Dubinko, A., E-mail: adubinko@sckcen.be [Institute for Nuclear Material Sciences, SCK-CEN, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, 9000 Ghent (Belgium); Terentyev, D. [Institute for Nuclear Material Sciences, SCK-CEN, 2400 Mol (Belgium); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Bakaeva, A. [Institute for Nuclear Material Sciences, SCK-CEN, 2400 Mol (Belgium); Department of Applied Physics, Ghent University, 9000 Ghent (Belgium); Pardoen, T. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2 L5.02.02, 1348 Louvain‐la‐Neuve (Belgium); Zibrov, M. [Department of Applied Physics, Ghent University, 9000 Ghent (Belgium); Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching (Germany); FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven (Netherlands); Physik-Department E28, Technische Universität München, James-Franck-Straße 1, D-85748 Garching (Germany); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Morgan, T.W. [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven (Netherlands)

    2017-02-15

    Highlights: • Plasma exposure induces dislocation-dominated microstructure. • The exposure-induced changes in microstructure vanish beyond a depth of 12–15 μm. • Surface hardness after the plasma exposure increases significantly in the sub-surface region of 1.5–3 μm. - Abstract: We have performed a combined study using transmission electron microscopy (TEM), nuclear reaction analysis (NRA) and nano-indentation (NI) techniques to reveal the impact of high flux plasma exposure on the properties of a sub-surface region of the commercially available pure tungsten fabricated following the ITER specification. TEM examination revealed the formation of a dense dislocation network and dislocation tangles, resulting in a strong increase in the dislocation density by at least one order of magnitude as compared to the bulk density. The plasma-induced dislocation microstructure vanishes within a depth of about 10–15 μm from the top of the exposed surface. Surface hardness after the plasma exposure was characterized by NI and was found to increase significantly in the sub-surface region of 1.5–3 μm. That was attributed to the resistance of the plasma-induced dislocation networks and deuterium-induced defects, whose presence within a depth of ∼1 μm was unambiguously detected by the NRA measurements as well.

  17. Presentation of the High-Flux Reactor of the Institut Laue-Langevin

    International Nuclear Information System (INIS)

    Guyon, H.

    2006-01-01

    Full text of publication follows: The High-Flux Reactor (HFR) of the Institut Laue-Langevin is the world's most intense source of neutrons for fundamental research. Thanks to its extremely compact core, which is made up of a single fuel element, the HFR is capable of producing a neutron flux of up to 1.5.10 15 n.cm -2 .s -1 with a moderate power output of 58 MW. Its heavy water reflector thermalizes these neutrons, giving them a wave length of the order of one angstrom. They then become an excellent tool for exploring the atomic structure of matter. In order to provide a full neutron spectrum, the reactor is also equipped with a hot source (a block of graphite heated to 2000 deg. C) and two cold sources (a volume of liquid deuterium at 25 K). All the reactor's components can be replaced and adapted in order to keep pace with both changing scientific needs and changing safety requirements. For example, in 1992 the reactor block was replaced, a second cold source was installed in 1985, and the beam tubes are replaced at regularly intervals and are also occasionally modified. In the same way, the reactor's civil engineering structures are currently being reinforced in order to comply with the reassessment of the reference earthquake spectra. Finally, the Institut Laue-Langevin's reactor is equipped with three solid containment barriers: - the fuel cladding: during the 35 years the reactor has been in operation, a cladding failure has never been detected; - the leak-tight primary cooling system: this is partly submerged in a pool which provides radiological shielding; - the double-wall containment: an overpressure of air is maintained between the inner reinforced concrete wall and the outer metal wall. The High-Flux Reactor is therefore all set to provide the scientific community with top quality service for the next 20 years to come, on a site which: - is home to the brightest synchrotron in the world (ESRF); - benefits from the microbiology expertise of the EMBL

  18. Presentation of the High-Flux Reactor of the Institut Laue-Langevin

    Energy Technology Data Exchange (ETDEWEB)

    Guyon, H. [Institut Laue-Langevin, Grenoble (France)

    2006-07-01

    Full text of publication follows: The High-Flux Reactor (HFR) of the Institut Laue-Langevin is the world's most intense source of neutrons for fundamental research. Thanks to its extremely compact core, which is made up of a single fuel element, the HFR is capable of producing a neutron flux of up to 1.5.10{sup 15} n.cm{sup -2}.s{sup -1} with a moderate power output of 58 MW. Its heavy water reflector thermalizes these neutrons, giving them a wave length of the order of one angstrom. They then become an excellent tool for exploring the atomic structure of matter. In order to provide a full neutron spectrum, the reactor is also equipped with a hot source (a block of graphite heated to 2000 deg. C) and two cold sources (a volume of liquid deuterium at 25 K). All the reactor's components can be replaced and adapted in order to keep pace with both changing scientific needs and changing safety requirements. For example, in 1992 the reactor block was replaced, a second cold source was installed in 1985, and the beam tubes are replaced at regularly intervals and are also occasionally modified. In the same way, the reactor's civil engineering structures are currently being reinforced in order to comply with the reassessment of the reference earthquake spectra. Finally, the Institut Laue-Langevin's reactor is equipped with three solid containment barriers: - the fuel cladding: during the 35 years the reactor has been in operation, a cladding failure has never been detected; - the leak-tight primary cooling system: this is partly submerged in a pool which provides radiological shielding; - the double-wall containment: an overpressure of air is maintained between the inner reinforced concrete wall and the outer metal wall. The High-Flux Reactor is therefore all set to provide the scientific community with top quality service for the next 20 years to come, on a site which: - is home to the brightest synchrotron in the world (ESRF); - benefits from the

  19. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    International Nuclear Information System (INIS)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J.P.

    2011-01-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 x 10 21 m -2 s -1 , ion fluence: 4 x 10 25 m -2 ) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  20. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Science.gov (United States)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  1. Analytical evaluation of neutron diffusion equation for the geometry of very intense continuous high flux pulsed reactor

    International Nuclear Information System (INIS)

    Narain, Rajendra

    1995-01-01

    Using the concept of Very Intense Continuous High Flux Pulsed Reactor to obtain a rotating high flux pulse in an annular core an analytical treatment for the quasi-static solution with a moving reflector is presented. Under quasi-static situation, time averaged values for important parameters like multiplication factor, flux, leakage do not change with time. As a result the instantaneous solution can be considered to be separable in time and space after correcting for the coordinates for the motion of the pulser. The space behaviour of the pulser is considered as exp(-αx 2 ). Movement of delayed neutron precursors is also taken into account. (author). 4 refs

  2. High-flux/high-temperature solar thermal conversion: technology development and advanced applications

    Directory of Open Access Journals (Sweden)

    Romero Manuel

    2016-01-01

    Full Text Available Solar Thermal Power Plants have generated in the last 10 years a dynamic market for renewable energy industry and a pro-active networking within R&D community worldwide. By end 2015, there are about 5 GW installed in the world, most of them still concentrated in only two countries, Spain and the US, though a rapid process of globalization is taking place in the last few years and now ambitious market deployment is starting in countries like South Africa, Chile, Saudi Arabia, India, United Arab Emirates or Morocco. Prices for electricity produced by today's plants fill the range from 12 to 16 c€/kWh and they are capital intensive with investments above 4000 €/kW, depending on the number of hours of thermal storage. The urgent need to speed up the learning curve, by moving forward to LCOE below 10 c€/kWh and the promotion of sun-to-fuel applications, is driving the R&D programmes. Both, industry and R&D community are accelerating the transformation by approaching high-flux/high-temperature technologies and promoting the integration with high-efficiency conversion systems.

  3. Management of safety and risk at the HFIR [High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Glovier, H.A.

    1990-01-01

    This paper discusses the management of safety and risk at the High-Flux Isotope Reactor (HFIR), a category A research reactor at Oak Ridge National Laboratory (ORNL). The HFIR went critical in 1966 and operated at its designed 100 MW for 20 yr until it was shut down on November 14, 1986. It operated at a >90% availability and without significant event during this period. The result was a complacent management program lacking rigor. This complacency came to an end with the Chernobyl accident, which led to the appointment of an internal committee to assess the safety of ORNL reactor operations. This committee found that HFIR pressure vessel material specimens removed several years earlier had not been analyzed. This issue led to a general review of management practices that were found lacking in quality assurance, safety documentation, training process, and emergency planning, among others. Management accountability was lacking, as shown by design basis and safety analyses that were not up to data and by the fact that reactor operators whose requalification examinations had not been graded were allowed to continue operating the reactor over a long period of time. Between shutdown in 1986 and restart in April 1989, significant management changes and initiatives were made in the area of risk and safety management of ORNL reactors. These are presented briefly in this paper

  4. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  5. The neutron small-angle camera D11 at the high-flux reactor, Grenoble

    International Nuclear Information System (INIS)

    Ibel, K.

    1976-01-01

    The neutron small-angle scattering system at the high-flux reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small-angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The full length of the collimator before the fixed sample position can be reduced by movable neutron guides; the second flight path of 40 m full length contains detector sites in various positions. Thus a large range of momentum transfers can be used with the same relative resolution. Scattering angles between 5 x 10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered at different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. (Auth.)

  6. Irradiation of structural materials in contact with lead bismuth eutectic in the high flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Magielsen, A.J., E-mail: magielsen@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Jong, M.; Bakker, T.; Luzginova, N.V.; Mutnuru, R.K.; Ketema, D.J.; Fedorov, A.V. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands)

    2011-08-31

    In the framework of the materials domain DEMETRA in the European Transmutation research and development project EUROTRANS, irradiation experiment IBIS has been performed in the High Flux Reactor in Petten. The objective was to investigate the synergystic effects of irradiation and lead bismuth eutectic exposure on the mechanical properties of structural materials and welds. In this experiment ferritic martensitic 9 Cr steel, austenitic 316L stainless steel and their welds have been irradiated for 250 Full Power Days up to a dose level of 2 dpa. Irradiation temperatures have been kept constant at 300 deg. C and 500 deg. C. During the post-irradiation test phase, tensile tests performed on the specimens irradiated at 300 deg. C have shown that the irradiation hardening of ferritic martensitic 9 Cr steel at 1.3 dpa is 254 MPa, which is in line with the irradiation hardening obtained for ferritic martensitic Eurofer97 steel investigated in the fusion program. This result indicates that no LBE interaction at this irradiation temperature is present. A visual inspection is performed on the specimens irradiated in contact with LBE at 500 deg. C and have shown blackening on the surface of the specimens and remains of LBE that makes a special cleaning procedure necessary before post-irradiation mechanical testing.

  7. Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Ott, Larry J.; Ellis, Ronald James; McDuffee, Joel Lee; Spellman, Donald J.; Bevard, Bruce Balkcom

    2009-01-01

    The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

  8. Total quality management for addressing suspect parts at the Oak Ridge High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Hendrix, K.A.; Tulay, M.P.

    1993-01-01

    Martin Marietta Energy System (MMES) Research Reactors Division (RRD), operator of the High Flux Isotope Reactor (HFIR) recently embarked on an aggressive Program to address the issue of suspect Parts and to enhance their procurement process. Through the application of TQM process improvement, RRD has already achieved improved efficiency in specifying, procuring, and accepting replacement items for its largest research reactor. These process improvements have significantly decreased the risk of installing suspect parts in the HFIR safety systems. To date, a systematic plan has been implemented, which includes the following elements: Process assessment and procedure review; Procedural enhancements; On-site training and technology transfer; Enhanced receiving inspections; Performance supplier evaluations and source verifications integrated processes for utilizing commercial grade products in nuclear safety-related applications. This paper will describe the above elements, how a partnership between MMES and Gilbert/Commonwealth facilitated the execution of the plan, and how process enhancements were applied. We will also present measures for improved efficiency and productivity, that MMES intends to continually address with Quality Action Teams

  9. Tensile and impact testing of an HFBR [High Flux Beam Reactor] control rod follower

    International Nuclear Information System (INIS)

    Czajkowski, C.J.; Schuster, M.H.; Roberts, T.C.; Milian, L.W.

    1989-08-01

    The Materials Technology Group of the Department of Nuclear Energy (DNE) at Brookhaven National Laboratory (BNL) undertook a program to machine and test specimens from a control rod follower from the High Flux Beam Reactor (HFBR). Tensile and Charpy impact specimens were machined and tested from non-irradiated aluminum alloys in addition to irradiated 6061-T6 from the HFBR. The tensile test results on irradiated material showed a two-fold increase in tensile strength to a maximum of 100.6 ksi. The impact resistance of the irradiated material showed a six-fold decrease in values (3 in-lb average) compared to similar non-irradiated material. Fracture toughness (K I ) specimens were tested on an unirradiated compositionally and dimensionally similar (to HFBR follower) 6061 T-6 material with K max values of 24.8 ± 1.0 Ksi√in (average) being obtained. The report concludes that the specimens produced during the program yielded reproducible and believable results and that proper quality assurance was provided throughout the program. 9 figs., 6 tabs

  10. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  11. Total Reflection X-ray Fluorescence Analysis (TXRF) using the high flux SAXS camera

    CERN Document Server

    Wobrauschek, P; Pepponi, G; Bergmann, A; Glatter, O

    2002-01-01

    Combining the high photon flux from a rotating anode X-ray tube with an X-ray optical component to focus and monochromatize the X-ray beam is the most promising instrumentation for best detection limits in the modern XRF laboratory. This is realized by using the design of a high flux SAXS camera in combination with a 4 kW high brilliant rotating Cu anode X-ray tube with a graded elliptically bent multilayer and including a new designed module for excitation in total reflection geometry within the beam path. The system can be evacuated thus reducing absorption and scattering of air and removing the argon peak in the spectra. Another novelty is the use of a Peltier cooled drift detector with an energy resolution of 148 eV at 5.9 keV and 5 mm sup 2 area. For Co detection limits of about 300 fg determined by a single element standard have been achieved. Testing a real sample NIST 1643d led to detection limits in the range of 300 ng/l for the medium Z.

  12. High flux testing reactor Petten. Replacement of the reactor vessel and connected components. Overall report

    International Nuclear Information System (INIS)

    Chrysochoides, N.G.; Cundy, M.R.; Von der Hardt, P.; Husmann, K.; Swanenburg de Veye, R.J.; Tas, A.

    1985-01-01

    The project of replacing the HFR originated in 1974 when results of several research programmes confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report contains the detailed chronology of events concerning preparation and execution of the replacement. After a 14 months' outage the reactor resumed routine operation on 14th February, 1985. At the end of several years of planning and preparation the reconstruction proceded in the following steps: unloading of the old core, decay of short-lived radioactivity in December 1983, removal of the old tank and of its peripheral equipment in January-February 1984, segmentation and waste disposal of the removed components in March-April, decontamination of the pools, bottom penetration overhauling in May-June, installation of the new tank and other new components in July-September, testing and commissioning, including minor modifications in October-December, and, trials runs and start-up preparation in January-February 1985. The new HFR Petten features increased and improved experimental facilities. Among others the obsolete thermal columns was replaced by two high flux beam tubes. Moreover the new plant has been designed for future increases of reactor power and neutron fluxes. For the next three to four years the reactor has to cope with a large irradiation programme, claiming its capacity to nearly 100%

  13. Evaluation of HFIR [High Flux Isotope Reactor] pressure-vessel integrity considering radiation embrittlement

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Merkle, J.G.; Nanstad, R.K.

    1988-04-01

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of ∼10 4 less), that is, a rate effect

  14. On RELAP5-simulated High Flux Isotope Reactor reactivity transients: Code change and application

    International Nuclear Information System (INIS)

    Freels, J.D.

    1993-01-01

    This paper presents a new and innovative application for the RELAP5 code (hereafter referred to as ''the code''). The code has been used to simulate several transients associated with the (presently) draft version of the High-Flux Isotope Reactor (HFIR) updated safety analysis report (SAR). This paper investigates those thermal-hydraulic transients induced by nuclear reactivity changes. A major goal of the work was to use an existing RELAP5 HFIR model for consistency with other thermal-hydraulic transient analyses of the SAR. To achieve this goal, it was necessary to incorporate a new self-contained point kinetics solver into the code because of a deficiency in the point-kinetics reactivity model of the Mod 2.5 version of the code. The model was benchmarked against previously analyzed (known) transients. Given this new code, four event categories defined by the HFIR probabilistic risk assessment (PRA) were analyzed: (in ascending order of severity) a cold-loop pump start; run-away shim-regulating control cylinder and safety plate withdrawal; control cylinder ejection; and generation of an optimum void in the target region. All transients are discussed. Results of the bounding incredible event transient, the target region optimum void, are shown. Future plans for RELAP5 HFIR applications and recommendations for code improvements are also discussed

  15. HTR fuel research in the HTR-TN network on the high flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; Conrad, R.; Sevini, P.; Burghartz, M. [HFR Unit, Institute for Advanced Materials, European Commission, Joint Research Centre, Petten (Netherlands); Languille, A. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Guillermier, P. [FRAMATOME ANP, 69 - Lyon (France); Bakker, K. [Nuclear Research and Consultancy Group, Petten (Netherlands); Nabielek, H. [Forschungszentrum Juelich (Germany)

    2001-07-01

    Foremost, this paper explains the economic and strategic reasons for the comeback of the HTR reactor as one of the most promising reactors in the future. To study all the points related to HTR technology, a European network called HTR-TN was created in April 2000, with actually twenty European companies involved. This paper explains the organisation of the network and the related task-groups. In the field of fuel, one of these task-groups works on the fuel cycle and another works on the fuel itself in order to validate by testing HTR fuel possibilities. To this aim, an experimental loop is under construction in the HFR reactor to test full-size pebble type fuel elements and another under study to test compact fuel possibilities. These loops are based on all the experience accumulated by the High Flux Reactor in the years 70-90, when a lot of test were performed for fuel and material for the HTR technology and the facility design uses all the existing HFR knowledge. In conclusion, a host of research work, co-ordinated in the frame of a European network HTR-TN has begun. and should allow in the near future a substantial progress in the knowledge of this very promising fuel. (author)

  16. Monitoring the fast neutrons in a high flux: The case for 242Pu fission chambers

    International Nuclear Information System (INIS)

    Filliatre, P.; Jammes, C.; Oriol, L.; Geslot, B.; Vermeeren, L.

    2009-01-01

    Fission chambers are widely used for on-line monitoring of neutron fluxes in irradiation reactors. A selective measurement of a component of interest of the neutron flux is possible in principle thanks to a careful choice of the deposit material. However, measuring the fast component is challenging when the flux is high (up to 10 15 n/cm 2 /s) with a significant thermal component. The main problem is that the isotopic content of a material selected for its good response to fast neutrons evolves with irradiation, so that the material is more and more sensitive to thermal neutrons. Within the framework of the FNDS (Fast Neutron Detector System) project, we design tools that simulate the evolution of the isotopic composition and fission rate for several deposits under any given flux. In the case of a high flux with a significant thermal component, 242 Pu is shown after a comprehensive study of all possibilities to be the best choice for measuring the fast component, as long as its purity is sufficient. If an estimate of the thermal flux is independently available, one can correct the signal for that component. This suggests a system of two detectors, one of which being used for such a correction. It is of very high interest when the detectors must be operated up to a high neutron fluence. (authors)

  17. Monitoring the fast neutrons in a high flux: The case for {sup 242}Pu fission chambers

    Energy Technology Data Exchange (ETDEWEB)

    Filliatre, P.; Jammes, C.; Oriol, L.; Geslot, B. [Commissariat a l' Energie Atomique, DEN/SPEX/LDCI, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2009-07-01

    Fission chambers are widely used for on-line monitoring of neutron fluxes in irradiation reactors. A selective measurement of a component of interest of the neutron flux is possible in principle thanks to a careful choice of the deposit material. However, measuring the fast component is challenging when the flux is high (up to 10{sup 15} n/cm{sup 2}/s) with a significant thermal component. The main problem is that the isotopic content of a material selected for its good response to fast neutrons evolves with irradiation, so that the material is more and more sensitive to thermal neutrons. Within the framework of the FNDS (Fast Neutron Detector System) project, we design tools that simulate the evolution of the isotopic composition and fission rate for several deposits under any given flux. In the case of a high flux with a significant thermal component, {sup 242}Pu is shown after a comprehensive study of all possibilities to be the best choice for measuring the fast component, as long as its purity is sufficient. If an estimate of the thermal flux is independently available, one can correct the signal for that component. This suggests a system of two detectors, one of which being used for such a correction. It is of very high interest when the detectors must be operated up to a high neutron fluence. (authors)

  18. Magnetic losses at high flux densities in nonoriented Fe-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Appino, C.; Fiorillo, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), Torino (Italy); Ragusa, C. [Dipartimento di Ingegneria Elettrica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)], E-mail: carlo.ragusa@polito.it; Xie, B. [Dipartimento di Ingegneria Elettrica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2008-10-15

    We present and discuss power loss measurements performed in Fe-(3.5 wt%)Si nonoriented laminations up to very high flux densities. The results are obtained on disk samples using a 1D/2D single-sheet tester, where the fieldmetric and the thermometric methods are applied upon overlapping polarization ranges. The power loss in the highest polarization regimes (e.g. J{sub p}>1.8 T) is measured, in particular, by the rate of rise of temperature method, both under controlled and uncontrolled flux density waveform, the latter case emulating the conditions met in practical unsophisticated experiments. Lack of control at such extreme J{sub p} levels is conducive to strong flux distortion, but the correspondingly measured loss figure can eventually be converted to the one pertaining to sinusoidal induction at the same J{sub p} values. This is demonstrated as a specific application of the statistical theory of magnetic losses, where the usual formulation for the energy losses in magnetic sheets under distorted induction is exploited in reverse fashion.

  19. Production of Thorium-229 at the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Boll, Rose Ann; Garland, Marc A.; Mirzadeh, Saed

    2008-01-01

    The investigation of targeted cancer therapy using -emitters has developed considerably in recent years and clinical trials have generated promising results. In particular, the initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the -emitter 213Bi in killing cancer cells. Pre-clinical studies have also shown the potential application of both 213Bi and its 225Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. Bismuth-213 is obtained from a radionuclide generator system from decay of the 10-d 225Ac parent, a member of the 7340-y 229Th chain. Currently, 233U is the only viable source for high purity 229Th; however, due to increasing difficulties associated with 233U safeguards, processing additional 233U is presently unfeasible. The recent decision to downblend and dispose of enriched 233U further diminished the prospects for extracting 229Th from 233U stock. Nevertheless, the anticipated growth in demand for 225Ac may soon exceed the levels of 229Th (∼40 g or ∼8 Ci; ∼80 times the current ORNL 229Th stock) present in the aged 233U stockpile. The alternative routes for the production of 229Th, 225Ra and 225Ac include both reactor and accelerator approaches. Here, we describe production of 229Th via neutron transmutation of 226Ra targets in the ORNL High Flux Isotope Reactor (HFIR).

  20. The method of life extension for the High Flux Isotope Reactor vessel

    International Nuclear Information System (INIS)

    Chang, Shib-Jung.

    1995-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A hydrostatic pressure test (hydrotest) is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the reactor life from the safe hydrostatic pressure. The life extension calculation provides the following information on the remaining life of the reactor as a function of the nil ductility temperature increase: the probability of vessel fracture due to hydrotest vs vessel life at several hydrotest pressures; the hydrotest time interval vs the uncertainty of the nil ductility temperature increase rate; and the hydrotest pressure vs the uncertainty of the nil ductility temperature increase rate. It is understood that the use of a complete range of uncertainties of the nil ductility temperature increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 degree F

  1. HTR fuel research in the HTR-TN network on the high flux reactor

    International Nuclear Information System (INIS)

    Guidez, J.; Conrad, R.; Sevini, P.; Burghartz, M.; Languille, A.; Guillermier, P.; Bakker, K.; Nabielek, H.

    2001-01-01

    Foremost, this paper explains the economic and strategic reasons for the comeback of the HTR reactor as one of the most promising reactors in the future. To study all the points related to HTR technology, a European network called HTR-TN was created in April 2000, with actually twenty European companies involved. This paper explains the organisation of the network and the related task-groups. In the field of fuel, one of these task-groups works on the fuel cycle and another works on the fuel itself in order to validate by testing HTR fuel possibilities. To this aim, an experimental loop is under construction in the HFR reactor to test full-size pebble type fuel elements and another under study to test compact fuel possibilities. These loops are based on all the experience accumulated by the High Flux Reactor in the years 70-90, when a lot of test were performed for fuel and material for the HTR technology and the facility design uses all the existing HFR knowledge. In conclusion, a host of research work, co-ordinated in the frame of a European network HTR-TN has begun. and should allow in the near future a substantial progress in the knowledge of this very promising fuel. (author)

  2. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  3. Thermoluminescent dosemeters (TLD) exposed to high fluxes of gamma radiation, thermal neutrons and protons

    International Nuclear Information System (INIS)

    Gambarini, G.; Martini, M.; Meinardi, F.; Raffaglio, C.; Salvadori, P.; Scacco, A.; Sichirollo, A.E.

    1996-01-01

    Thermoluminescent dosemeters (TLD), widely experimented and utilized in personal dosimetry, have some advantageous characteristics which induce one to employ them also in radiotherapy. The new radiotherapy techniques are aimed at selectively depositing a high dose in cancerous tissues. This goal is reached by utilising both conventional and other more recently proposed radiation, such as thermal neutrons and heavy charged particles. In these inhomogeneous radiation fields a reliable mapping of the spatial distribution of absorbed dose is desirable, and the utilized dosemeters have to give such a possibility without notably perturbing the radiation field with the materials of the dosemeters themselves. TLDs, for their small dimension and their tissue equivalence for most radiation, give good support in the mapping of radiation fields. After exposure to the high fluxes of therapeutic beams, some commercial TL dosemeters have shown a loss of reliability. An investigation has therefore be performed, both on commercial and on laboratory made phosphors, in order to investigate their behaviour in such radiation fields. In particular the thermal neutron and gamma ray mixed field of the thermal column of a nuclear reactor, of interest for Boron Neutron Capture Therapy (B.N.C.T.) and a proton beam, of interest for proton therapy, were considered. Here some results obtained with new TL phosphors exposed in such radiation fields are presented, after a short description of some radiation damage effect on commercial LiF TLDs exposed in the (n th ,γ) field of the thermal column of a reactor. (author)

  4. A neutronic feasibility study for LEU conversion of the High Flux Beam Reactor (HFBR)

    International Nuclear Information System (INIS)

    Pond, R.B.; Hanan, N.A.; Matos, J.E.

    1997-01-01

    A neutronic feasibility study for converting the High Flux Beam Reactor at Brookhaven National Laboratory from HEU to LEU fuel was performed at Argonne National Laboratory. The purpose of this study is to determine what LEU fuel density would be needed to provide fuel lifetime and neutron flux performance similar to the current HEU fuel. The results indicate that it is not possible to convert the HFBR to LEU fuel with the current reactor core configuration. To use LEU fuel, either the core needs to be reconfigured to increase the neutron thermalization or a new LEU reactor design needs to be considered. This paper presents results of reactor calculations for a reference 28-assembly HEU-fuel core configuration and for an alternative 18-assembly LEU-fuel core configuration with increased neutron thermalization. Neutronic studies show that similar in-core and ex-core neutron fluxes, and fuel cycle length can be achieved using high-density LEU fuel with about 6.1 gU/cm 3 in an altered reactor core configuration. However, hydraulic and safety analyses of the altered HFBR core configuration needs to be performed in order to establish the feasibility of this concept. (author)

  5. Scientific upgrades at the high flux isotope reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Selby, D.L.; Garrett, D.L.; Lucas, A.T.; Reeves, M.E.

    2001-01-01

    The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the high flux isotope reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: 1) larger beam tubes, 2) a new monochromator drum for the HB-1 beam line, 3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, 4) new instruments for the HB-2 beamline, 5) a new monochromator drum for the HB-3 beam line, 6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, 7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, 8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, 9) a number of new instruments for the cold beams including two new SANS instruments, and 10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule. (orig.)

  6. Change of chemical bond and wettability of polylacticacid implanted with high-flux carbon ion

    International Nuclear Information System (INIS)

    Zhang Jizhong; Kang Jiachen; Zhang Xiaoji; Zhou Hongyu

    2008-01-01

    Polylacticacid (PLA) was submitted to high-flux carbon ion implantation with energy of 40 keV. It was investigated to the effect of ion fluence (1 x 10 12 -1 x 10 15 ions/cm 2 ) on the properties of the polymer. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), wettability, and roughness were employed to study change of structure and properties of the as-implanted PLA samples. Six carbon bonds, that is, C, C-H, C-O-C, C-O, O-C-O, and >C=O, were observed on surfaces of the as-implanted PLA samples. The intensities of various chemical bonds changed with increasing ion fluence. AFM images displayed that there was irradiation damage and that it was related closely with ion fluence. At fluence as high as 1 x 10 15 ions/cm 2 surface-restructuring phenomenum took place on the surface of the PLA. Wettability was also affected by the variation on the fluence. With increasing ion fluence, the water contact angle of the as-implanted PLA samples changed gradually reaching a maximum of 76.5 deg. with 1 x 10 13 ions/cm 2 . The experimental results revealed that carbon ion fluence strongly affected surface chemical bond, morphology, wettability, and roughness of the PLA samples

  7. Testosterone Injection

    Science.gov (United States)

    ... typical male characteristics. Testosterone injection works by supplying synthetic testosterone to replace the testosterone that is normally ... as a pellet to be injected under the skin.Testosterone injection may control your symptoms but will ...

  8. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 91: Area 3 U-3fi Injection Well, Nevada Test Site, Nevada, for the period October 2000-October 2001

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Injection Well during the October 2000 to October 2001 period. The U-3fi Injection Well is located in Area 3 of the Nevada Test Site (NTS), Nye County, Nevada. Inspections of the Area 3 U-3fi Injection Well are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste disposal unit closure. The objective of the neutron-logging program is to monitor the soil moisture conditions along the 128-meter (m) (420-ft) ER3-3 monitoring well and detect changes that may be indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft) or to detect changes that may be indicative of subsidence within the disposal unit itself

  9. Effects of High-Flux versus Low-Flux Membranes on Pulmonary Function Tests in Hemodialysis Patients.

    Science.gov (United States)

    Momeni, Ali; Rouhi, Hamid; Kiani, Glareh; Amiri, Masoud

    2013-01-01

    Several studies have been carried out to evaluate the effects of dialysis on pulmonary function tests (PFT). Dialysis procedure may reduce lung volumes and capacities or cause hypoxia; however, to the best of our knowledge, there is no previous study evaluating the effects of membrane type (high flux vs. low flux) on PFT in these patients. The aim of this study was the evaluation of this relationship. In this cross-sectional study, 43 hemodialysis patients without pulmonary disease were enrolled. In these patients dialysis was conducted by low-and high-flux membranes and before and after the procedure, spirometry was done and the results were evaluated by t-test and chi square test. The mean age of patients was 56.34 years. Twenty-three of them were female (53.5%). Type of membrane (high flux vs. low flux) had no effect on spirometry results of patients despite the significant decrease in the body weight during the dialysis session. High flux membrane had no advantage over low flux membrane in terms of improvement in spirometry findings; thus, we could not offer these expensive membranes for this purpose.

  10. Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity : contradicting the flux-selectivity paradigm

    NARCIS (Netherlands)

    Peters, T.A.; Poeth, C.H.S.; Benes, N.E.; Buijs, H.C.W.M.; Vercauteren, F.F.; Keurentjes, J.T.F.

    2006-01-01

    Thin, high-flux and highly selective cross-linked poly(vinyl)alcohol waterselective layers have been prepared on top of hollow fibre ceramic supports. The supports consist of an alpha-Al2O3 hollow fibre substrate and an intermediate gamma-Al2O3 layer, which provides a sufficiently smooth surface for

  11. Job/task analysis for I ampersand C [Instrumentation and Controls] instrument technicians at the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Duke, L.L.

    1989-09-01

    To comply with Department of Energy Order 5480.XX (Draft), a job/task analysis was initiated by the Maintenance Management Department at Oak Ridge National Laboratory (ORNL). The analysis was applicable to instrument technicians working at the ORNL High Flux Isotope Reactor (HFIR). This document presents the procedures and results of that analysis. 2 refs., 2 figs

  12. Erosion of pyrolytic graphite and Ti-doped graphite due to high flux irradiation

    International Nuclear Information System (INIS)

    Ohtsuka, Yusuke; Ohashi, Junpei; Ueda, Yoshio; Isobe, Michiro; Nishikawa, Masahiro

    1997-01-01

    The erosion of pyrolytic graphite and titanium doped graphite RG-Ti above 1,780 K was investigated by 5 keV Ar beam irradiation with the flux from 4x10 19 to 1x10 21 m -2 ·s -1 . The total erosion yields were significantly reduced with the flux. This reduction would be attributed to the reduction of RES (radiation enhanced sublimation) yield, which was observed in the case of isotropic graphite with the flux dependence of RES yield of φ -0.26 (φ: flux) obtained in our previous work. The yield of pyrolytic graphite was roughly 30% higher than that of isotropic graphite below the flux of 10 20 m -2 ·s -1 whereas each yield approached to very close value at the highest flux of 1x10 21 m -2 ·s -1 . This result indicated that the effect of graphite structure on the RES yield, which was apparent in the low flux region, would disappear in the high flux region probably due to the disordering of crystal structure. In the case of irradiation to RG-Ti at 1,780 K, the surface undulations evolved with a mean height of about 3 μm at 1.2x10 20 m -2 ·s -1 , while at higher flux of 8.0x10 20 m -2 ·s -1 they were unrecognizable. These phenomena can be explained by the reduction of RES of graphite parts excluding TiC grains. (author)

  13. Lessons Learned in the Update of a Safety Limit for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Cook, David Howard

    2009-01-01

    A recent unreviewed safety question (USQ) regarding a portion of the High Flux Isotope Reactor (HFIR) transient decay heat removal analysis focused on applicability of a heat transfer correlation at the low flow end of reactor operations. During resolution of this issue, review of the correlations used to establish the safety limit (SL) on reactor flux-to-flow ratio revealed the need to change the magnitude of the SL at the low flow end of reactor operations and the need to update the hot spot fuel damage criteria to incorporate current knowledge involving parallel channel flow stability. Because of the original safety design strategy for the reactor, resolution of the issues for the flux-to-flow ratio involved reevaluation of all key process variable SLs and limiting control settings (LCSs) using the current version of the heat transfer analysis code for the reactor. Goals of the work involved updating and upgrading the SL analysis where necessary, while preserving the safety design strategy for the reactor. Changes made include revisions to the safety design criteria at low flows to address the USQ, update of the process- and analysis input-variable uncertainty considerations, and upgrade of the safety design criteria at high flow. The challenges faced during update/upgrade of this SL and LCS are typical of the problems found in the integration of safety into the design process for a complex facility. In particular, the problems addressed in the area of instrument uncertainties provide valuable lessons learned for establishment and configuration control of SLs for large facilities

  14. Elaboration of mini plates with U-Mo for irradiation in a high flux reactor

    International Nuclear Information System (INIS)

    Pasqualini, Enrique E.

    2005-01-01

    Full text: International new efforts for the reconversion of HEU in research, testing and radioisotopes production reactors, have greatly incremented U-Mo fuels qualification activities. These qualifications require the resolution of undesired interaction at high fluxes between UMo particles and the aluminum matrix in the case of dispersed fuels and the development of U-Mo monolithic fuels. These efforts are being manifested in the planning and execution of additional series of irradiation tests of mini plates and full size plates. Recently, CNEA has elaborated mini plates with different proposals for the irradiation at the ATR reactor (250 MWTH, maximum thermal neutron flux 10 15 n.cm -2 .seg -1 ) at Idaho National Laboratory, USA. Uranium 7% (w/w) molybdenum (U-7Mo) particles were coated with silicon. Chemical vapour deposition (CVD) of silane and high temperature diffusion of silicon were used. Hydrided, milled and dehydrated (HMD) particles heat treated at 1000 C degrees during four hours and centrifugal atomized powder were coated and the results compared. Mini plates were elaborated with both kinds of particles. Mini plates were also elaborated with U-7Mo and silicon particles dispersed in the aluminium matrix. Monolithic mini plates were also developed by co lamination of U-7Mo with a Zircaloy-4 cladding. The different steps of this process are detailed and the method is shown to be versatile, can be easily scaled up and is performed with small modifications of usual equipment in fuel plants. The irradiation experiment is called RERTR-7A, includes a total of 32 mini plates and it is planed to finalize by mid 2006. (author) [es

  15. Probability of fracture and life extension estimate of the high-flux isotope reactor vessel

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in ductile-brittle transition temperature (DBTT) for fracture, often denoted by RT NDT for carbon steel. This transition temperature can be calibrated by the drop-weight test and, sometimes, by the Charpy impact test. The life extension for the high-flux isotope reactor (HFIR) vessel is calculated by using the method of fracture mechanics that is incorporated with the effect of the DBTT change. The failure probability of the HFIR vessel is limited as the life of the vessel by the reactor core melt probability of 10 -4 . The operating safety of the reactor is ensured by periodic hydrostatic pressure test (hydrotest). The hydrotest is performed in order to determine a safe vessel static pressure. The fracture probability as a result of the hydrostatic pressure test is calculated and is used to determine the life of the vessel. Failure to perform hydrotest imposes the limit on the life of the vessel. The conventional method of fracture probability calculations such as that used by the NRC-sponsored PRAISE CODE and the FAVOR CODE developed in this Laboratory are based on the Monte Carlo simulation. Heavy computations are required. An alternative method of fracture probability calculation by direct probability integration is developed in this paper. The present approach offers simple and expedient ways to obtain numerical results without losing any generality. In this paper, numerical results on (1) the probability of vessel fracture, (2) the hydrotest time interval, and (3) the hydrotest pressure as a result of the DBTT increase are obtained

  16. High-Flux Hemodialysis and High-Volume Hemodiafiltration Improve Serum Calcification Propensity.

    Directory of Open Access Journals (Sweden)

    Marijke Dekker

    Full Text Available Calciprotein particles (CPPs may play an important role in the calcification process. The calcification propensity of serum (T50 is highly predictive of all-cause mortality in chronic kidney disease patients. Whether T50 is therapeutically improvable, by high-flux hemodialysis (HD or hemodiafiltration (HDF, has not been studied yet.We designed a cross-sectional single center study, and included stable prevalent in-center dialysis patients on HD or HDF. Patients were divided into two groups based on dialysis modality, were on a thrice-weekly schedule, had a dialysis vintage of > 3 months and vascular access providing a blood flow rate > 300 ml/min. Calcification propensity of serum was measured by the time of transformation from primary to secondary CPP (T50 test, by time-resolved nephelometry.We included 64 patients, mean convective volume was 21.7L (SD 3.3L. In the pooled analysis, T50 levels increased in both the HD and HDF group with pre- and post-dialysis (mean (SD of 244(64 - 301(57 and 253(55 - 304(61 min respectively (P = 0.43(HD vs. HDF. The mean increase in T50 was 26.29% for HD and 21.97% for HDF patients (P = 0.61 (HD vs. HDF. The delta values (Δ of calcium, phosphate and serum albumin were equal in both groups. Baseline T50 was negatively correlated with phosphate, and positively correlated with serum magnesium and fetuin-A. The ΔT50 was mostly influenced by Δ phosphate (r = -0.342; P = 0.002 HD and r = -0.396; P<0.001 HDF in both groups.HD and HDF patients present with same baseline T50 calcification propensity values pre-dialysis. Calcification propensity is significantly improved during both HD and HDF sessions without significant differences between both modalities.

  17. A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 1

    International Nuclear Information System (INIS)

    1998-01-01

    The Department of Industry, Science and Tourism selected PLG, an EQE International Company, to systematically and independently evaluate the safety of the High Flux Australian Reactor (HIFAR), located at Lucas Heights, New South Wales. PLG performed a comprehensive probabilistic safety assessment (PSA) to quantify the risks posed by operation of HIFAR . The PSA identified possible accident scenarios, estimated their likelihood of occurrence, and assigned each scenario to a consequence category; i.e., end state. The accident scenarios developed included the possible release of radioactive material from irradiated nuclear fuel and of tritium releases from reactor coolant. The study team developed a recommended set of safety criteria against which the results of the PSA may be judged. HIFAR was found to exceed one of the two primary safety objectives and two of the five secondary safety objectives. Reactor coolant leaks, earthquakes, and coolant pump trips were the accident initiators that contributed most to scenarios that could result in fuel overheating. Scenarios initiated by earthquakes were the reason the frequency criterion for the one primary safety objective was exceeded. Overall, the plant safety status has been shown to be generally good with no evidence of major safety-related problems from its operation. One design deficiency associated with the emergency core cooling system was identified that should be corrected as soon as possible. Additionally, several analytical issues have been identified that should be investigated further. The results from these additional investigations should be used to determine whether additional plant and procedural changes are required, or if further evaluations of postulated severe accidents are warranted. Supporting information can be found in Appendix A for the seismic analysis and in the Appendix B for selected other external events

  18. Probabilistic fracture mechanics analysis for the life extension estimate of the high flux isotope reactor vessel

    International Nuclear Information System (INIS)

    Chang, S.J.

    1997-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A new method of fracture probability calculation is presented in this paper. The fracture probability as a result of the hydrostatic pressure test (hydrotest) is used to determine the life of the vessel. The hydrotest is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the safe reactor operation time from the time of the satisfactory hydrostatic test. The life extension calculation provides the following information on the remaining life of the reactor as a function of the NDT increase: (1) the life of the vessel is determined by the probability of vessel fracture as a result of hydrotest at several hydrotest pressures and vessel embrittlement conditions, (2) the hydrotest time interval vs the NDT increase rate, and (3) the hydrotest pressure vs the NDT increase rate. It is understood that the use of a complete range of uncertainties of the NDT increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 degrees F

  19. A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Department of Industry, Science and Tourism selected PLG, an EQE International Company, to systematically and independently evaluate the safety of the High Flux Australian Reactor (HIFAR), located at Lucas Heights, New South Wales. PLG performed a comprehensive probabilistic safety assessment (PSA) to quantify the risks posed by operation of HIFAR . The PSA identified possible accident scenarios, estimated their likelihood of occurrence, and assigned each scenario to a consequence category; i.e., end state. The accident scenarios developed included the possible release of radioactive material from irradiated nuclear fuel and of tritium releases from reactor coolant. The study team developed a recommended set of safety criteria against which the results of the PSA may be judged. HIFAR was found to exceed one of the two primary safety objectives and two of the five secondary safety objectives. Reactor coolant leaks, earthquakes, and coolant pump trips were the accident initiators that contributed most to scenarios that could result in fuel overheating. Scenarios initiated by earthquakes were the reason the frequency criterion for the one primary safety objective was exceeded. Overall, the plant safety status has been shown to be generally good with no evidence of major safety-related problems from its operation. One design deficiency associated with the emergency core cooling system was identified that should be corrected as soon as possible. Additionally, several analytical issues have been identified that should be investigated further. The results from these additional investigations should be used to determine whether additional plant and procedural changes are required, or if further evaluations of postulated severe accidents are warranted. Supporting information can be found in Appendix A for the seismic analysis and in the Appendix B for selected other external events refs., 139 tabs., 85 figs. Prepared for Department of Industry, Science and Tourism

  20. The High Flux Isotope Reactor (HFIR) cold source project at ORNL

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Chang, S.J.; Freels, J.D. . E-mail-yb2@ornl.gov

    1998-01-01

    Following the decision to cancel the Advanced Neutron Source (ANS) Project at Oak Ridge National Laboratory (ORNL), it was determined that a hydrogen cold source should be retrofitted into an existing beam tube of the High Flux Isotope Reactor (HFIR) at ORNL. The preliminary design of this system has been completed and an 'approval in principle' of the design has been obtained from the internal ORNL safety review committees and the U.S. Department of Energy (DOE) safety review committee. The cold source concept is basically a closed loop forced flow supercritical hydrogen system. The supercritical approach was chosen because of its enhanced stability in the proposed high heat flux regions. Neutron and gamma physics of the moderator have been analyzed using the 3D Monte Carlo code MCNP 1 A D structural analysis model of the moderator vessel, vacuum tube, and beam tube was completed to evaluate stress loadings and to examine the impact of hydrogen detonations in the beam tube. A detailed ATHENA 2 system model of the hydrogen system has been developed to simulate loop performance under normal and off-normal transient conditions. Semi-prototypic hydrogen loop tests of the system have been performed at the Arnold Engineering Design Center (AEDC) located in Tullahoma, Tennessee to verify the design and benchmark the analytical system model. A 3.5 kW refrigerator system has been ordered and is expected to be delivered to ORNL by the end of this calendar year. Our present schedule shows the assembling of the cold source loop on site during the fall of 1999 for final testing before insertion of the moderator plug assembly into the reactor beam tube during the end of the year 2000. (author)

  1. Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure

    Energy Technology Data Exchange (ETDEWEB)

    Grigorev, Petr, E-mail: grigorievpit@gmail.com [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnologies, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg (Russian Federation); Matveev, Dmitry [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Trilateral Euregio Cluster, 52425, Jülich (Germany); Bakaeva, Anastasiia [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Department of Applied Physics, Ghent University (Belgium); Terentyev, Dmitry [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol, 2400 (Belgium); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnologies, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg (Russian Federation); Van Oost, Guido [Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Noterdaeme, Jean-Marie [Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000, Gent (Belgium); Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2016-12-01

    Tungsten is a primary candidate for plasma facing materials for future fusion devices. An important safety concern in the design of plasma facing components is the retention of hydrogen isotopes. Available experimental data is vast and scattered, and a consistent physical model of retention of hydrogen isotopes in tungsten is still missing. In this work we propose a model of non-equilibrium hydrogen isotopes trapping under fusion relevant plasma exposure conditions. The model is coupled to a diffusion-trapping simulation tool and is used to interpret recent experiments involving high plasma flux exposures. From the computational analysis performed, it is concluded that high flux high temperature exposures (T = 1000 K, flux = 10{sup 24} D/m{sup 2}/s and fluence of 10{sup 26} D/m{sup 2}) result in generation of sub-surface damage and bulk diffusion, so that the retention is driven by both sub-surface plasma-induced defects (bubbles) and trapping at natural defects. On the basis of the non-equilibrium trapping model we have estimated the amount of H stored in the sub-surface region to be ∼10{sup −5} at{sup −1}, while the bulk retention is about 4 × 10{sup −7} at{sup −1}, calculated by assuming the sub-surface layer thickness of about 10 μm and adjusting the trap concentration to comply with the experimental results for the integral retention.

  2. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. To address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).

  3. Impact of high-flux haemodialysis on the probability of target attainment for oral amoxicillin/clavulanic acid combination therapy.

    Science.gov (United States)

    Hui, Katrina; Patel, Kashyap; Kong, David C M; Kirkpatrick, Carl M J

    2017-07-01

    Clearance of small molecules such as amoxicillin and clavulanic acid is expected to increase during high-flux haemodialysis, which may result in lower concentrations and thus reduced efficacy. To date, clearance of amoxicillin/clavulanic acid (AMC) during high-flux haemodialysis remains largely unexplored. Using published pharmacokinetic parameters, a two-compartment model with first-order input was simulated to investigate the impact of high-flux haemodialysis on the probability of target attainment (PTA) of orally administered AMC combination therapy. The following pharmacokinetic/pharmacodynamic targets were used to calculate the PTA. For amoxicillin, the time that the free concentration remains above the minimum inhibitory concentration (MIC) of ≥50% of the dosing period (≥50%ƒT >MIC ) was used. For clavulanic acid, the time that the free concentration was >0.1 mg/L of ≥45% of the dosing period (≥45%ƒT >0.1 mg/L ) was used. Dialysis clearance reported in low-flux haemodialysis for both compounds was doubled to represent the likely clearance during high-flux haemodialysis. Monte Carlo simulations were performed to produce concentration-time profiles over 10 days in 1000 virtual patients. Seven different regimens commonly seen in clinical practice were explored. When AMC was dosed twice daily, the PTA was mostly ≥90% for both compounds regardless of when haemodialysis commenced. When administered once daily, the PTA was 20-30% for clavulanic acid and ≥90% for amoxicillin. The simulations suggest that once-daily orally administered AMC in patients receiving high-flux haemodialysis may result in insufficient concentrations of clavulanic acid to effectively treat infections, especially on days when haemodialysis occurs. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. Independent variations of applied voltage and injection current for controlling the quantum-confined Stark effect in an InGaN/GaN quantum-well light-emitting diode.

    Science.gov (United States)

    Chen, Horng-Shyang; Liu, Zhan Hui; Shih, Pei-Ying; Su, Chia-Ying; Chen, Chih-Yen; Lin, Chun-Han; Yao, Yu-Feng; Kiang, Yean-Woei; Yang, C C

    2014-04-07

    A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.

  5. Addition of polyurethane dispersions to Portland G for oil wells steam injection submitted to vapor injection; Adicao de poliuretana em dispersao a Portland G para cimentacao de pocos de petroleo sujeitos a injecao de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.B. da; Lima, F.M. de; Martinelli, A.M.; Bezerra, U.T.; Mello, D.M.A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Araujo, R.G.S. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Portland cement is by far the most important binding material used in oil well cementing. The cement sheath is responsible for both the mechanical stability of the wellbore and zonal isolation. During primary cementing and the production lifespan of the well, the cement sheath is exposed to adverse thermo-mechanical conditions, which may crack the intrinsically brittle cement material. Cracking affects the mechanical integrity of the sheath resulting in the contamination of oil or gas pay zones, as well as in the increase of producing costs related to the extraction of pebble and water. This scenario is especially encountered in wells containing heavy oils, typical of the Northeastern region of Brazil. The objective of the present study was to improve the fracture toughness of hardened Special Portland Cement slurries by the addition of aqueous polyurethane to Portland-based slurries used in primary cementing, plug backs and squeeze operations, improving environmental and economical impacts. The results revealed that the addition of polyurethane increased the viscosity of the slurry but still within the limits established by oil well cement guidelines. No significant increase was observed in the compressive strength of the cement. However, the addition of polyurethane improved the toughness of the cement increasing its ability to withstand thermo-mechanical cycles typical of heavy oil recovery. In addition, significant reduction in permeability was observed as the contents of polyurethane increased, contributing to the reduction in set time and gas migration through the cement sheath. (author)

  6. High-throughput flow injection analysis mass spectroscopy with networked delivery of color-rendered results. 2. Three-dimensional spectral mapping of 96-well combinatorial chemistry racks.

    Science.gov (United States)

    Görlach, E; Richmond, R; Lewis, I

    1998-08-01

    For the last two years, the mass spectroscopy section of the Novartis Pharma Research Core Technology group has analyzed tens of thousands of multiple parallel synthesis samples from the Novartis Pharma Combinatorial Chemistry program, using an in-house developed automated high-throughput flow injection analysis electrospray ionization mass spectroscopy system. The electrospray spectra of these samples reflect the many structures present after the cleavage step from the solid support. The overall success of the sequential synthesis is mirrored in the purity of the expected end product, but the partial success of individual synthesis steps is evident in the impurities in the mass spectrum. However this latter reaction information, which is of considerable utility to the combinatorial chemist, is effectively hidden from view by the very large number of analyzed samples. This information is now revealed at the workbench of the combinatorial chemist by a novel three-dimensional display of each rack's complete mass spectral ion current using the in-house RackViewer Visual Basic application. Colorization of "forbidden loss" and "forbidden gas-adduct" zones, normalization to expected monoisotopic molecular weight, colorization of ionization intensity, and sorting by row or column were used in combination to highlight systematic patterns in the mass spectroscopy data.

  7. Thermal Safety Analyses for the Production of Plutonium-238 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, Christopher J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hobbs, Randy W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    There has been a considerable effort over the previous few years to demonstrate and optimize the production of plutonium-238 (238Pu) at the High Flux Isotope Reactor (HFIR). This effort has involved resources from multiple divisions and facilities at the Oak Ridge National Laboratory (ORNL) to demonstrate the fabrication, irradiation, and chemical processing of targets containing neptunium-237 (237Np) dioxide (NpO2)/aluminum (Al) cermet pellets. A critical preliminary step to irradiation at the HFIR is to demonstrate the safety of the target under irradiation via documented experiment safety analyses. The steady-state thermal safety analyses of the target are simulated in a finite element model with the COMSOL Multiphysics code that determines, among other crucial parameters, the limiting maximum temperature in the target. Safety analysis efforts for this model discussed in the present report include: (1) initial modeling of single and reduced-length pellet capsules in order to generate an experimental knowledge base that incorporate initial non-linear contact heat transfer and fission gas equations, (2) modeling efforts for prototypical designs of partially loaded and fully loaded targets using limited available knowledge of fabrication and irradiation characteristics, and (3) the most recent and comprehensive modeling effort of a fully coupled thermo-mechanical approach over the entire fully loaded target domain incorporating burn-up dependent irradiation behavior and measured target and pellet properties, hereafter referred to as the production model. These models are used to conservatively determine several important steady-state parameters including target stresses and temperatures, the limiting condition of which is the maximum temperature with respect to the melting point. The single pellet model results provide a basis for the safety of the irradiations, followed by parametric analyses in the initial prototypical designs

  8. Measurements with the high flux lead slowing-down spectrometer at LANL

    International Nuclear Information System (INIS)

    Danon, Y.; Romano, C.; Thompson, J.; Watson, T.; Haight, R.C.; Wender, S.A.; Vieira, D.J.; Bond, E.; Wilhelmy, J.B.; O'Donnell, J.M.; Michaudon, A.; Bredeweg, T.A.; Schurman, T.; Rochman, D.; Granier, T.; Ethvignot, T.; Taieb, J.; Becker, J.A.

    2007-01-01

    A Lead Slowing-Down Spectrometer (LSDS) was recently installed at LANL [D. Rochman, R.C. Haight, J.M. O'Donnell, A. Michaudon, S.A. Wender, D.J. Vieira, E.M. Bond, T.A. Bredeweg, A. Kronenberg, J.B. Wilhelmy, T. Ethvignot, T. Granier, M. Petit, Y. Danon, Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator, Nucl. Instr. and Meth. A 550 (2005) 397]. The LSDS is comprised of a cube of pure lead 1.2 m on the side, with a spallation pulsed neutron source in its center. The LSDS is driven by 800 MeV protons with a time-averaged current of up to 1 μA, pulse widths of 0.05-0.25 μs and a repetition rate of 20-40 Hz. Spallation neutrons are created by directing the proton beam into an air-cooled tungsten target in the center of the lead cube. The neutrons slow down by scattering interactions with the lead and thus enable measurements of neutron-induced reaction rates as a function of the slowing-down time, which correlates to neutron energy. The advantage of an LSDS as a neutron spectrometer is that the neutron flux is 3-4 orders of magnitude higher than a standard time-of-flight experiment at the equivalent flight path, 5.6 m. The effective energy range is 0.1 eV to 100 keV with a typical energy resolution of 30% from 1 eV to 10 keV. The average neutron flux between 1 and 10 keV is about 1.7 x 10 9 n/cm 2 /s/μA. This high flux makes the LSDS an important tool for neutron-induced cross section measurements of ultra-small samples (nanograms) or of samples with very low cross sections. The LSDS at LANL was initially built in order to measure the fission cross section of the short-lived metastable isotope of U-235, however it can also be used to measure (n, α) and (n, p) reactions. Fission cross section measurements were made with samples of 235 U, 236 U, 238 U and 239 Pu. The smallest sample measured was 10 ng of 239 Pu. Measurement of (n, α) cross section with 760 ng of Li-6 was also demonstrated. Possible future cross section

  9. The primary results for the mixed carbon material used for high flux steady-state tokamak operation in China

    International Nuclear Information System (INIS)

    Guo, Q.G.; Li, J.G.; Zhai, G.T.; Liu, L.; Song, J.R.; Zhang, L.F.; He, Y.X.; Chen, J.L.

    2001-01-01

    Several types of carbon mixed materials have been developed in China to be used for high flux steady-state tokamak operation. Performance evaluation of these materials is necessary to determine their applicability as PFCs for high flux steady state. This paper describes the primary results of carbon mixed materials and the effects of dopants on properties are primarily discussed. Test results reveal that bulk boronized graphite has excellent physical and mechanical properties while their thermal conductivity is no more than 73 W/m K due to the formation of a uniform boron-carbon solid solution. In case of multi-element doped graphite, titanium dopant or a decreased boron content is favorable to enhance thermal conductivity. A kind of doped graphite has been developed with thermal conductivity as high as 278 W/m K by optimizing the compositions. Correlations among compositions, microstructure and properties of such doped graphite are discussed

  10. Studies for recovering injection capacity in wells of the Cerro Prieto, BC, geothermal field; Estudios para recuperar la capacidad de aceptacion en pozos inyectores del campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Rosales, Julio [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, Baja California (Mexico)]. E-mail: julio.alvarez@cfe.gob.mx

    2010-01-15

    As in geothermal fields around the world, at Cerro Prieto geothermal field, Baja California, former exploratory and production wells are used to inject residual brine. Since the 1980s, studies and activities have been carried out to find ways to recharge the reservoir and dispose of brine without harming the environment or underground aquifers. These include infiltration and cold-and-hot injection. Some of the studies are presented here, including analyses of litho-facies; core samples; pressure, temperature and spinner logs; well tests and injection rates-plus some studies on the shallow aquifer. All have been useful in fulfilling requirements made by environmental authorities. Because injection rates constantly decrease due to formation damage, it is proposed an additional technique be used to reduce such damages and prolong the lifetime of cold-and-hot injection wells-while ensuring the environment and shallow aquifers are not affected. [Spanish] Al igual que en diversos campos geotermicos en el mundo, en el de Cerro Prieto, Baja California se han utilizado tanto pozos inyectores perforados ex profeso como antiguos pozos exploratorios y productores para inyectar el fluido residual al subsuelo. Desde la decada de los 80 se han realizado diversos estudios y acciones en ese campo geotermico para recargar al yacimiento y para disponer del fluido residual, sin ocasionar danos al ambiente ni a los cuerpos hidricos del subsuelo, que van desde la infiltracion hasta la inyeccion en frio y en caliente. Este articulo presenta los diferentes estudios realizados con ese objetivo en el campo, incluyendo el analisis de litofacies, de nucleos de formacion, de registros de presion, temperatura y spinner, las pruebas en pozos y analisis de tasas de aceptacion, asi como los efectuados en el acuifero superficial. Todos ellos han sido de utilidad para atender los requerimientos de las autoridades ambientales. Finalmente, y en virtud de que las tasas de aceptacion de los pozos

  11. Methods and applications in high flux neutron imaging; Methoden und Anwendungen fuer bildgebende Verfahren mit hohen Neutronenfluessen

    Energy Technology Data Exchange (ETDEWEB)

    Ballhausen, H.

    2007-02-07

    This treatise develops new methods for high flux neutron radiography and high flux neutron tomography and describes some of their applications in actual experiments. Instead of single images, time series can be acquired with short exposure times due to the available high intensity. To best use the increased amount of information, new estimators are proposed, which extract accurate results from the recorded ensembles, even if the individual piece of data is very noisy and in addition severely affected by systematic errors such as an influence of gamma background radiation. The spatial resolution of neutron radiographies, usually limited by beam divergence and inherent resolution of the scintillator, can be significantly increased by scanning the sample with a pinhole-micro-collimator. This technique circumvents any limitations in present detector design and, due to the available high intensity, could be successfully tested. Imaging with scattered neutrons as opposed to conventional total attenuation based imaging determines separately the absorption and scattering cross sections within the sample. For the first time even coherent angle dependent scattering could be visualized space-resolved. New applications of high flux neutron imaging are presented, such as materials engineering experiments on innovative metal joints, time-resolved tomography on multilayer stacks of fuel cells under operation, and others. A new implementation of an algorithm for the algebraic reconstruction of tomography data executes even in case of missing information, such as limited angle tomography, and returns quantitative reconstructions. The setup of the world-leading high flux radiography and tomography facility at the Institut Laue-Langevin is presented. A comprehensive appendix covers the physical and technical foundations of neutron imaging. (orig.)

  12. Effects of High-Flux versus Low-Flux Membranes on Pulmonary Function Tests in Hemodialysis Patients

    OpenAIRE

    Momeni, Ali; Rouhi, Hamid; Kiani, Glareh; Amiri, Masoud

    2013-01-01

    Background Several studies have been carried out to evaluate the effects of dialysis on pulmonary function tests (PFT). Dialysis procedure may reduce lung volumes and capacities or cause hypoxia; however, to the best of our knowledge, there is no previous study evaluating the effects of membrane type (high flux vs. low flux) on PFT in these patients. The aim of this study was the evaluation of this relationship. Materials and Methods In this cross-sectional study, 43 hemodialysis patients wit...

  13. Application of the successive linear programming technique to the optimum design of a high flux reactor using LEU fuel

    International Nuclear Information System (INIS)

    Mo, S.C.

    1991-01-01

    The successive linear programming technique is applied to obtain the optimum thermal flux in the reflector region of a high flux reactor using LEU fuel. The design variables are the reactor power, core radius and coolant channel thickness. The constraints are the cycle length, average heat flux and peak/average power density ratio. The characteristics of the optimum solutions with various constraints are discussed

  14. The Effect of High-Flux Hemodialysis on Hemoglobin Concentrations in Patients with CKD: Results of the MINOXIS Study

    Science.gov (United States)

    Schneider, Andreas; Drechsler, Christiane; Krane, Vera; Krieter, Detlef H.; Scharnagl, Hubert; Schneider, Markus P.; Wanner, Christoph

    2012-01-01

    Summary Background and objectives Hemodialysis treatment induces markers of inflammation and oxidative stress, which could affect hemoglobin levels and the response to erythropoietin use. This study sought to determine whether high-flux dialysis would help improve markers of renal anemia, inflammation, and oxidative stress compared with low-flux dialysis. Design, settings, participants, & measurements In a prospective, controlled study, 221 patients undergoing maintenance hemodialysis and receiving darbepoetin-alfa treatment (mean age, 66 years; 55% male) from 19 centers were screened in a 20-week run-in period of low-flux hemodialysis with a synthetic dialysis membrane. Thereafter, 166 patients were enrolled and randomly assigned to receive a synthetic high-flux membrane or to continue on low-flux dialysis for 52 weeks. Data on myeloperoxidase, oxidized LDL, high-sensitivity C-reactive protein, and the Malnutrition Inflammation Score were collected at baseline and after 52 weeks; routine laboratory data, such as hemoglobin, ferritin, and albumin, and the use of darbepoetin-alfa, were also measured in the run-in period. Results After 52 weeks, the low-flux and the high-flux groups did not differ with respect to hemoglobin (mean ± SD, 11.7±0.9 g/dl versus 11.7±1.1 g/dl; P=0.62) or use of darbepoetin-alfa (mean dosage ± SD, 29.8±24.8 μg/wk versus 26.0±31.1 μg/wk; P=0.85). Markers of inflammation, oxidative stress, or nutritional status also did not differ between groups. Conclusion Over 1 year, high-flux dialysis had no superior effects on hemoglobin levels or markers of inflammation, oxidative stress, and nutritional status. These data do not support the hypothesis that enhanced convective toxin removal would improve patient outcome. PMID:22096040

  15. Cost-effectiveness analysis of online hemodiafiltration versus high-flux hemodialysis

    Directory of Open Access Journals (Sweden)

    Ramponi F

    2016-09-01

    Full Text Available Francesco Ramponi,1,2 Claudio Ronco,1,3 Giacomo Mason,1 Enrico Rettore,4 Daniele Marcelli,5,6 Francesca Martino,1,3 Mauro Neri,1,7 Alejandro Martin-Malo,8 Bernard Canaud,5,9 Francesco Locatelli10 1International Renal Research Institute (IRRIV, San Bortolo Hospital, Vicenza, 2Department of Economics and Management, University of Padova, Padova, 3Department of Nephrology, San Bortolo Hospital, Vicenza, 4Department of Sociology and Social Research, University of Trento, FBK-IRVAPP & IZA, Trento, Italy; 5Europe, Middle East, Africa and Latin America Medical Board, Fresenius Medical Care,, Bad Homburg, Germany; 6Danube University, Krems, Austria; 7Department of Management and Engineering, University of Padova, Vicenza, Italy; 8Nephrology Unit, Reina Sofia University Hospital, Córdoba, Spain; 9School of Medicine, Montpellier University, Montpellier, France; 10Department of Nephrology, Manzoni Hospital, Lecco, Italy Background: Clinical studies suggest that hemodiafiltration (HDF may lead to better clinical outcomes than high-flux hemodialysis (HF-HD, but concerns have been raised about the cost-effectiveness of HDF versus HF-HD. Aim of this study was to investigate whether clinical benefits, in terms of longer survival and better health-related quality of life, are worth the possibly higher costs of HDF compared to HF-HD.Methods: The analysis comprised a simulation based on the combined results of previous published studies, with the following steps: 1 estimation of the survival function of HF-HD patients from a clinical trial and of HDF patients using the risk reduction estimated in a meta-analysis; 2 simulation of the survival of the same sample of patients as if allocated to HF-HD or HDF using three-state Markov models; and 3 application of state-specific health-related quality of life coefficients and differential costs derived from the literature. Several Monte Carlo simulations were performed, including simulations for patients with different

  16. Spectral resolution and high-flux capability tradeoffs in CdTe detectors for clinical CT.

    Science.gov (United States)

    Hsieh, Scott S; Rajbhandary, Paurakh L; Pelc, Norbert J

    2018-04-01

    than the ideal photon counting detector. The optimal pixel size depends on a number of factors such as x-ray technique and object size. At high technique (140 kVp/500 mA), the ratio of variance for a 450 micron pixel compared to a 250 micron pixel size is 2126%, 200%, 97%, and 78% when imaging 10, 15, 20, and 25 cm of water, respectively. If 300 mg/cm 2 of iodine is also added to the object, the variance ratio is 117%, 91%, 74%, and 72%, respectively. Nonspectral tasks, such as equivalent monoenergetic imaging, are less sensitive to spectral distortion. The detector pixel size is an important design consideration in CdTe detectors. Smaller pixels allow for improved capabilities at high flux but increase charge sharing, which in turn compromises spectral performance. The optimal pixel size will depend on the specific task and on the charge shaping time. © 2018 American Association of Physicists in Medicine.

  17. Granisetron Injection

    Science.gov (United States)

    Granisetron immediate-release injection is used to prevent nausea and vomiting caused by cancer chemotherapy and to ... nausea and vomiting that may occur after surgery. Granisetron extended-release (long-acting) injection is used with ...

  18. Edaravone Injection

    Science.gov (United States)

    Edaravone injection is used to treat amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease; a condition in which ... die, causing the muscles to shrink and weaken). Edaravone injection is in a class of medications called ...

  19. Meropenem Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by killing bacteria that cause infection.Antibiotics such as meropenem injection will not work for colds, flu, or other viral infections. Taking ...

  20. Chloramphenicol Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by stopping the growth of bacteria..Antibiotics such as chloramphenicol injection will not work for colds, flu, or other viral infections. Taking ...

  1. Colistimethate Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by killing bacteria.Antibiotics such as colistimethate injection will not work for colds, flu, or other viral infections. Using ...

  2. Defibrotide Injection

    Science.gov (United States)

    Defibrotide injection is used to treat adults and children with hepatic veno-occlusive disease (VOD; blocked blood ... the body and then returned to the body). Defibrotide injection is in a class of medications called ...

  3. Nalbuphine Injection

    Science.gov (United States)

    ... injection is in a class of medications called opioid agonist-antagonists. It works by changing the way ... suddenly stop using nalbuphine injection, you may experience withdrawal symptoms including restlessness; teary eyes; runny nose; yawning; ...

  4. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.

    Science.gov (United States)

    Bouša, Daniel; Friess, Karel; Pilnáček, Kryštof; Vopička, Ondřej; Lanč, Marek; Fónod, Kristián; Pumera, Martin; Sedmidubský, David; Luxa, Jan; Sofer, Zdeněk

    2017-08-22

    The preparation and gas-separation performance of self-standing, high-flux, graphene oxide (GO) membranes is reported. Defect-free, 15-20 μm thick, mechanically stable, unsupported GO membranes exhibited outstanding gas-separation performance towards H 2 /CO 2 that far exceeded the corresponding 2008 Robeson upper bound. Remarkable separation efficiency of GO membranes for H 2 and bulky C 3 or C 4 hydrocarbons was achieved with high flux and good selectivity at the same time. On the contrary, N 2 and CH 4 molecules, with larger kinetic diameter and simultaneously lower molecular weight, relative to that of CO 2 , remained far from the corresponding H 2 /N 2 or H 2 /CH 4 upper bounds. Pore size distribution analysis revealed that the most abundant pores in GO material were those with an effective pore diameter of 4 nm; therefore, gas transport is not exclusively governed by size sieving and/or Knudsen diffusion, but in the case of CO 2 was supplemented by specific interactions through 1) hydrogen bonding with carboxyl or hydroxyl functional groups and 2) the quadrupole moment. The self-standing GO membranes presented herein demonstrate a promising route towards the large-scale fabrication of high-flux, hydrogen-selective gas membranes intended for the separation of H 2 /CO 2 or H 2 /alkanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Masashi, E-mail: Masashi.Shimada@inl.gov [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Calderoni, P. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Oda, T. [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo 113-8656 (Japan); Oya, Y. [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Sokolov, M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhang, K. [Hydrogen Isotope Research Center, University of Toyama, Toyama 930-8555 (Japan); Cao, G. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Kolasinski, R. [Hydrogen and Metallurgical Science Department, Sandia National Laboratories, Livermore, CA 94551 (United States); Sharpe, J.P. [Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 x 10{sup 21} m{sup -2} s{sup -1}, ion fluence: 4 x 10{sup 25} m{sup -2}) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  6. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 91: AREA 3 U3 fi INJECTION WELL, NEVADA TEST SITE, NEVADA FOR THE PERIOD NOVEMBER 2003 - OCTOBER 2004

    International Nuclear Information System (INIS)

    2005-01-01

    This Post-Closure Inspection and Monitoring report provides an analysis and summary of inspections, meteorological information, and neutron soil moisture monitoring for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well, Nevada Test Site (NTS), Nevada. This report covers the annual period November 2003 through October 2004. Site inspections of CAU 91 are performed every six months to identify any significant changes that could impact the proper operation of the waste disposal unit. Inspection results for the current period indicate that the overall condition of the concrete pad, perimeter fence, and warning signs is good

  7. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Geothermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equipment

    International Nuclear Information System (INIS)

    Nancy Moller Weare

    2006-01-01

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  8. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  9. Corrective Action Investigation Plan for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 322 consists of three Corrective Action Sites (CASs): 01-25-01, AST Release (Area 1); 03-25-03, Mud Plant AST Diesel Release (Area 3); 03-20-05, Injection Wells (Area 3). Corrective Action Unit 322 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. The investigation of three CASs in CAU 322 will determine if hazardous and/or radioactive constituents are present at concentrations and locations that could potentially pose a threat to human health and the environment. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  10. Irradiation effects in fused quartz 'Suprasil' as a detector of fission fragments under high flux of reactor neutrons

    International Nuclear Information System (INIS)

    Moraes, O.M.G. de.

    1984-01-01

    A systematic study about the registration characteristics of synthetic fused quartz 'Suprasil I' use as a detector of fission fragments under high flux of reactor neutrons and the effects of irradiation on it was performed. Fission fragments of 252 Cf, gamma radiation doses of of 60 Co up to 150 MGy, and integrated neutrons fluxes up to 10 20 n/cm 2 were used. A model to explain the effects on track registration and development characteristics of 'Suprasil I' irradiated on reactors were proposed, based on the obtained results for efficiency an for annealing. (C.G.C.) [pt

  11. NT-proBNP and troponin T levels differ after haemodialysis with a low versus high flux membrane

    OpenAIRE

    Laveborn, Emilie; Lindmark, Krister; Skagerlind, Malin; Stegmayr, Bernd

    2015-01-01

    BACKGROUND: Brain natriuretic peptide (BNP), N-terminal-proBNP (NT-proBNP), and high sensitive cardiac troponin T (TnT) are markers that are elevated in chronic kidney disease and correlate with increased risk of mortality. Data are conflicting on the effect of biomarker levels by hemodialysis (HD).Our aim was to clarify to what extent HD with low-flux (LF) versus high-flux (HF) membranes affects the plasma levels of BNP, NT-proBNP, and TnT. METHODS AND MATERIALS: 31 HD patients were included...

  12. Storage of laser pulses in a Fabry-Perot optical cavity for high flux x-ray

    International Nuclear Information System (INIS)

    Takezawa, K.; Honda, Y.; Sasao, N.; Araki, S.; Higashi, Y.; Taniguchi, T.; Urakawa, J.; Nomura, M.; Sakai, H.

    2004-01-01

    We have a plan to produce a high flux x-ray for medical use by using a Fabry-Perot optical cavity in which the lower pulses from a mode-locked laser are stored and enhanced. In this plan, the X-ray is produced from the Compton scattering of electrons in a storage ring with the laser light in the optical cavity. In order to increase X-ray flux, high power laser light is necessary. We show the enhancement of the laser power from the model locked laser with a Fabry-Perot optical cavity. (author)

  13. Subcutaneous Injections

    DEFF Research Database (Denmark)

    Thomsen, Maria

    This thesis is about visualization and characterization of the tissue-device interaction during subcutaneous injection. The tissue pressure build-up during subcutaneous injections was measured in humans. The insulin pen FlexTouchr (Novo Nordisk A/S) was used for the measurements and the pressure ...

  14. Hydromorphone Injection

    Science.gov (United States)

    ... anyone else to use your medication. Store hydromorphone injection in a safe place so that no one else can use it accidentally or on purpose. Keep track of how much medication is left so ... with hydromorphone injection may increase the risk that you will develop ...

  15. Ketorolac Injection

    Science.gov (United States)

    ... an older adult, you should know that ketorolac injection is not as safe as other medications that can be used to treat your condition. Your doctor may choose to prescribe a different medication ... to ketorolac injection.Your doctor or pharmacist will give you the ...

  16. Paclitaxel Injection

    Science.gov (United States)

    (pak'' li tax' el)Paclitaxel injection must be given in a hospital or medical facility under the supervision of a doctor who is experienced in giving chemotherapy medications for cancer.Paclitaxel injection may cause a large decrease in the number of white blood cells (a type of blood cell ...

  17. Design description and validation results for the IFMIF High Flux Test Module as outcome of the EVEDA phase

    Directory of Open Access Journals (Sweden)

    F. Arbeiter

    2016-12-01

    Full Text Available During the Engineering Validation and Engineering Design Activities (EVEDA phase (2007-2014 of the International Fusion Materials Irradiation Facility (IFMIF, an advanced engineering design of the High Flux Test Module (HFTM has been developed with the objective to facilitate the controlled irradiation of steel samples in the high flux area directly behind the IFMIF neutron source. The development process addressed included manufacturing techniques, CAD, neutronic, thermal-hydraulic and mechanical analyses complemented by a series of validation activities. Validation included manufacturing of 1:1 parts and mockups, test of prototypes in the FLEX and HELOKA-LP helium loops of KIT for verification of the thermal and mechanical properties, and irradiation of specimen filled capsule prototypes in the BR2 test reactor. The prototyping activities were backed by several R&D studies addressing focused issues like handling of liquid NaK (as filling medium and insertion of Small Specimen Test Technique (SSTT specimens into the irradiation capsules. This paper provides an up-todate design description of the HFTM irradiation device, and reports on the achieved performance criteria related to the requirements. Results of the validation activities are accounted for and the most important issues for further development are identified.

  18. Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation

    Science.gov (United States)

    Liu, Lu; Li, Shouzhe; Liu, Dongping; Benstetter, Günther; Zhang, Yang; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Wu, Yunfeng; Bi, Zhenhua

    2018-04-01

    In this study, polycrystalline tungsten (W) and three oxide dispersed strengthened W with 0.1 vol %, 1.0 vol % and 5.0 vol % lanthanum trioxide (La2O3) were irradiated with low-energy (200 eV) and high-flux (5.8 × 1021 or 1.4 × 1022 ions/m2ṡs) He+ ions at elevated temperature. After He+ irradiation at a fluence of 3.0 × 1025/m2, their surface damages were observed by scanning electron microscopy, energy dispersive spectroscopy, scanning electron microscopy-electron backscatter diffraction, and conductive atomic force microscopy. Micron-sized holes were formed on the surface of W alloys after He+ irradiation at 1100 K. Analysis shows that the La2O3 grains doped in W were sputtered preferentially by the high-flux He+ ions when compared with the W grains. For irradiation at 1550 K, W nano-fuzz was formed at the surfaces of both polycrystalline W and La2O3-doped W. The thickness of the fuzz layers formed at the surface of La2O3-doped W is 40% lower than the one of polycrystalline W. The presence of La2O3 could suppress the diffusion and coalescence of He atoms inside W, which plays an important role in the growth of nanostructures fuzz.

  19. Preliminary investigation of actinide and xenon reactivity effects in accelerator transmutation of waste high-flux systems

    International Nuclear Information System (INIS)

    Olson, K.R.; Henderson, D.L.

    1995-01-01

    The possibility of an unstable positive reactivity growth in an accelerator transmutation of waste (ATW)-type high-flux system is investigated. While it has always been clear that xenon is an important actor in the reactivity response of a system to flux changes, it has been suggested that in very high thermal flux transuranic burning systems, a positive, unstable reactivity growth could be caused by the actinides alone. Initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately. The maximum change in reactivity after a flux change caused by the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or startup. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response caused by the actinides. The capabilities and applications of both the current actinide model and the xenon model are discussed. Finally, the need for a complete dynamic model for the high-flux fluid-fueled ATW system is addressed

  20. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  1. Glenohumeral Joint Injections

    Science.gov (United States)

    Gross, Christopher; Dhawan, Aman; Harwood, Daniel; Gochanour, Eric; Romeo, Anthony

    2013-01-01

    Context: Intra-articular injections into the glenohumeral joint are commonly performed by musculoskeletal providers, including orthopaedic surgeons, family medicine physicians, rheumatologists, and physician assistants. Despite their frequent use, there is little guidance for injectable treatments to the glenohumeral joint for conditions such as osteoarthritis, adhesive capsulitis, and rheumatoid arthritis. Evidence Acquisition: We performed a comprehensive review of the available literature on glenohumeral injections to help clarify the current evidence-based practice and identify deficits in our understanding. We searched MEDLINE (1948 to December 2011 [week 1]) and EMBASE (1980 to 2011 [week 49]) using various permutations of intra-articular injections AND (corticosteroid OR hyaluronic acid) and (adhesive capsulitis OR arthritis). Results: We identified 1 and 7 studies that investigated intra-articular corticosteroid injections for the treatment of osteoarthritis and adhesive capsulitis, respectively. Two and 3 studies investigated the use of hyaluronic acid in osteoarthritis and adhesive capsulitis, respectively. One study compared corticosteroids and hyaluronic acid injections in the treatment of osteoarthritis, and another discussed adhesive capsulitis. Conclusion: Based on existing studies and their level of evidence, there is only expert opinion to guide corticosteroid injection for osteoarthritis as well as hyaluronic acid injection for osteoarthritis and adhesive capsulitis. PMID:24427384

  2. Temozolomide Injection

    Science.gov (United States)

    ... balance or coordination fainting dizziness hair loss insomnia memory problems pain, itching, swelling, or redness in the place where the medication was injected changes in vision Some side effects can be serious. If you ...

  3. Buprenorphine Injection

    Science.gov (United States)

    ... injection is in a class of medications called opiate partial agonists. It works to prevent withdrawal symptoms ... help. If the victim has collapsed, had a seizure, has trouble breathing, or can't be awakened, ...

  4. Risperidone Injection

    Science.gov (United States)

    ... release (long-acting) injection is used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...

  5. Haloperidol Injection

    Science.gov (United States)

    ... haloperidol extended-release injection are used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...

  6. Omalizumab Injection

    Science.gov (United States)

    ... injection is used to decrease the number of asthma attacks (sudden episodes of wheezing, shortness of breath, and ... about how to treat symptoms of a sudden asthma attack. If your asthma symptoms get worse or if ...

  7. Injection Tests

    CERN Document Server

    Kain, V

    2009-01-01

    The success of the start-up of the LHC on 10th of September was in part due to the preparation without beam and injection tests in 2008. The injection tests allowed debugging and improvement in appropriate portions to allow safe, efficient and state-of-the-art commissioning later on. The usefulness of such an approach for a successful start-up becomes obvious when looking at the problems we encountered before and during the injection tests and could solve during this period. The outline of the preparation and highlights of the different injection tests will be presented and the excellent performance of many tools discussed. A list of shortcomings will follow, leading to some planning for the preparation of the run in 2009.

  8. Cefotaxime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefotaxime injection will not work for colds, flu, or other viral infections. Using ...

  9. Cefuroxime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefuroxime injection will not work for colds, flu, or other viral infections. Using ...

  10. Doripenem Injection

    Science.gov (United States)

    ... is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as doripenem injection will not work for colds, flu, or other viral infections. Taking ...

  11. Daptomycin Injection

    Science.gov (United States)

    ... in a class of medications called cyclic lipopeptide antibiotics. It works by killing bacteria.Antibiotics such as daptomycin injection will not work for treating colds, flu, or other viral infections. ...

  12. Ceftaroline Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftaroline injection will not work for colds, flu, or other viral infections. Using ...

  13. Aztreonam Injection

    Science.gov (United States)

    ... is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as aztreonam injection will not work for colds, flu, or other viral infections. Taking ...

  14. Cefazolin Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefazolin injection will not work for colds, flu, or other viral infections. Taking ...

  15. Ceftazidime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftazidime injection will not work for colds, flu, or other viral infections. Using ...

  16. Cefotetan Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefotetan injection will not work for colds, flu, or other viral infections. Using ...

  17. Cefoxitin Injection

    Science.gov (United States)

    ... is in a class of medications called cephamycin antibiotics. It works by killing bacteria.Antibiotics such as cefoxitin injection will not work for colds, flu, or other viral infections. Taking ...

  18. Tigecycline Injection

    Science.gov (United States)

    ... is in a class of medications called tetracycline antibiotics. It works by killing bacteria that cause infection.Antibiotics such as tigecycline injection will not work for colds, flu, or other viral infections. Using ...

  19. Ertapenem Injection

    Science.gov (United States)

    ... is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as ertapenem injection will not work for colds, flu, or other viral infections. Taking ...

  20. Ceftriaxone Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftriaxone injection will not work for colds, flu, or other viral infections.Using ...

  1. Cefepime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefepime injection will not work for colds, flu, or other viral infections. Using ...

  2. Telavancin Injection

    Science.gov (United States)

    ... is in a class of medications called lipoglycopeptide antibiotics. It works by killing bacteria that cause infection.Antibiotics such as telavancin injection will not work for colds, flu, or other viral infections. Using ...

  3. Doxycycline Injection

    Science.gov (United States)

    ... is in a class of medications called tetracycline antibiotics. It works by killing bacteria that cause infections.Antibiotics such as doxycycline injection will not work for colds, flu, or other viral infections. Taking ...

  4. Vancomycin Injection

    Science.gov (United States)

    ... is in a class of medications called glycopeptide antibiotics. It works by killing bacteria that cause infections.Antibiotics such as vancomycin injection will not work for colds, flu, or other viral infections. Taking ...

  5. Octreotide Injection

    Science.gov (United States)

    ... carton and protect it from light. Dispose of multi-dose vials of the immediate-release injection 14 ... and immediately place the medication in a safe location – one that is up and away and out ...

  6. Moxifloxacin Injection

    Science.gov (United States)

    ... tendon area, or inability to move or to bear weight on an affected area.Using moxifloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  7. Delafloxacin Injection

    Science.gov (United States)

    ... a tendon area, or inability to move or bear weight on an affected area.Using delafloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  8. Levofloxacin Injection

    Science.gov (United States)

    ... tendon area, or inability to move or to bear weight on an affected area.Using levofloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  9. Ciprofloxacin Injection

    Science.gov (United States)

    ... a tendon area, or inability to move or bear weight on an affected area.Using ciprofloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  10. Alirocumab Injection

    Science.gov (United States)

    ... 9 (PCSK9) inhibitor monoclonal antibodies. It works by blocking the production of LDL cholesterol in the body ... hives difficulty breathing or swallowing swelling of the face, throat, tongue, lips, and eyes Alirocumab injection may ...

  11. Evolocumab Injection

    Science.gov (United States)

    ... 9 (PCSK9) inhibitor monoclonal antibody. It works by blocking the production of LDL cholesterol in the body ... hives difficulty breathing or swallowing swelling of the face, throat, tongue, lips, and eyes Evolocumab injection may ...

  12. Acyclovir Injection

    Science.gov (United States)

    ... It is also used to treat first-time genital herpes outbreaks (a herpes virus infection that causes sores ... in the body. Acyclovir injection will not cure genital herpes and may not stop the spread of genital ...

  13. Butorphanol Injection

    Science.gov (United States)

    ... Butorphanol is in a class of medications called opioid agonist-antagonists. It works by changing the way ... suddenly stop using butorphanol injection, you may experience withdrawal symptoms such as nervousness, agitation, shakiness, diarrhea, chills, ...

  14. Operational characteristics of the high flux plasma generator Magnum-PSI

    Energy Technology Data Exchange (ETDEWEB)

    Eck, H.J.N. van, E-mail: h.j.n.vaneck@differ.nl [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Abrams, T. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Berg, M.A. van den; Brons, S.; Eden, G.G. van [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Meiden, H.J. van der; Morgan, T.W.; Pol, M.J. van de; Scholten, J.; Smeets, P.H.M.; De Temmerman, G.; Vries, P.C. de; Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-10-15

    Highlights: •We have described the design and capabilities of the plasma experiment Magnum-PSI. •The plasma conditions are well suited for PSI studies in support of ITER. •Quasi steady state heat fluxes over 10 MW m{sup −2} have been achieved. •Transient heat and particle loads can be generated to simulate ELM instabilities. •Lithium coating can be applied to the surfaces of samples under vacuum. -- Abstract: In Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It aims at conditions that enable fundamental studies of plasma–surface interactions in the regime relevant for fusion reactors such as ITER: 10{sup 23}–10{sup 25} m{sup −2} s{sup −1} hydrogen plasma flux densities at 1–5 eV. To study the effects of transient heat loads on a plasma-facing surface, a high power pulsed magnetized arc discharge has been developed. Additionally, the target surface can be transiently heated with a pulsed laser system during plasma exposure. In this contribution, the current status, capabilities and performance of Magnum-PSI are presented.

  15. Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)

    International Nuclear Information System (INIS)

    Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B.; Griess, J.C.

    1994-01-01

    The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume

  16. Hydrogen pumping and release by graphite under high flux plasma bombardment

    International Nuclear Information System (INIS)

    Hirooka, Y.; Leung, W.K.; Conn, R.W.; Goebel, D.M.; Labombard, B.; Nygren, R.; Wilson, K.L.

    1988-01-01

    Inert gas (helium or argon) plasma bombardment has been found to increase the surface gas adsorptivity of isotropic graphite (POCO-graphite), which can then getter residual gases in a high vacuum system. The inert gas plasma bombardment was carried out at a flux ∼ 1 x 10 18 ions s -1 cm -2 to a fluence of the order of 10 21 ions/cm 2 and at temperatures around 800 degree C. The plasma bombarding energy was varied between 100 and 200 eV. The gettering speed of the activated graphite surface is estimated to be as large as 25 liters s -1 cm -2 at total pressures between 10 -6 and 10 -7 torr. The gettering capacity estimated is 0.025 torr-liter/cm 2 at room temperature. The gettering capability of graphite can be easily recovered by repeating inert gas plasma bombardment. The activated graphite surface exhibits a smooth, sponge-like morphology with significantly increased pore openings, which correlates with the observed increase in the surface gas adsorptivity. The activated graphite surface has been observed to pump hydrogen plasma particles as well. From calibrated H-alpha measurements, the dynamic hydrogen retention capacity is evaluated to be as large as 2 x 10 18 H/cm 2 at temperatures below 100 degree C and at a plasma bombarding energy of 300 eV

  17. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation

    Science.gov (United States)

    Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan

    2018-05-01

    Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.

  18. Design and characterization of a 64 channels ASIC front-end electronics for high-flux particle beam detectors

    Science.gov (United States)

    Fausti, F.; Mazza, G.; Attili, A.; Mazinani, M. Fadavi; Giordanengo, S.; Lavagno, M.; Manganaro, L.; Marchetto, F.; Monaco, V.; Sacchi, R.; Vignati, A.; Cirio, R.

    2017-09-01

    A new wide-input range 64-channels current-to-frequency converter ASIC has been developed and characterized for applications in beam monitoring of therapeutic particle beams. This chip, named TERA09, has been designed to extend the input current range, compared to the previous versions of the chip, for dealing with high-flux pulsed beams. A particular care was devoted in achieving a good conversion linearity over a wide bipolar input current range. Using a charge quantum of 200 fC, a linearity within ±2% for an input current range between 3 nA and 12 μA is obtained for individual channels, with a gain spread among the channels of about 3%. By connecting all the 64 channels of the chip to a common input, the current range can be increased 64 times preserving a linearity within ±3% in the range between and 20 μA and 750 μA.

  19. Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High Flux, High Efficiency, and Continuous Oil-Water Separation.

    Science.gov (United States)

    Zhou, Wenting; Li, Song; Liu, Yan; Xu, Zhengzheng; Wei, Sufeng; Wang, Guoyong; Lian, Jianshe; Jiang, Qing

    2018-03-21

    Traditional oil-water separation materials have to own ultrahigh or ultralow surface energy. Thus, they can only be wetted by one of the two, oil or water. Our experiment here demonstrates that the wettability in oil-water mixtures can be tuned by oil and water initially. Hierarchical voids are built on commercial copper foams with the help of hydrothermally synthesized titanium dioxide nanorods. The foams can be easily wetted by both oil and water. The water prewetted foams are superhydrophilic and superoleophobic under oil-water mixtures, meanwhile the oil prewetted foams are superoleophilic and superhydrophobic. In this paper, many kinds of water-oil mixtures were separated by two foams, prewetted by corresponding oil or water, respectively, combining a straight tee in a high flux, high efficiency, and continuous mode. This research indicates that oil-water mixtures can be separated more eco-friendly and at lower cost.

  20. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Christian M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  1. Application of expert systems to heat exchanger control at the 100-megawatt high-flux isotope reactor

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Clark, F.H.; Mullens, J.A.; Otaduy, P.J.; Wehe, D.K.

    1985-01-01

    The High-Flux Isotope Reactor (HFIR) is a 100-MW pressurized water reactor at the Oak Ridge National Laboratory. It is used to produce isotopes and as a source of high neutron flux for research. Three heat exchangers are used to remove heat from the reactor to the cooling towers. A fourth heat exchanger is available as a spare in case one of the operating heat exchangers malfunctions. It is desirable to maintain the reactor at full power while replacing the failed heat exchanger with the spare. The existing procedures used by the operators form the initial knowledge base for design of an expert system to perform the switchover. To verify performance of the expert system, a dynamic simulation of the system was developed in the MACLISP programming language. 2 refs., 3 figs

  2. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  3. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR [High Flux Isotope Reactor] Reactor

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs

  4. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  5. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  6. Application of the IEAF-2001 activation data library to activation analyses of the IFMIF high flux test module

    International Nuclear Information System (INIS)

    Fischer, U.; Wilson, P.P.H.; Leichtle, D.; Simakov, S.P.; Moellendorff, U. von; Konobeev, A.; Korovin, Yu.; Pereslavtsev, P.; Schmuck, I.

    2002-01-01

    A complete activation data library IEAF-2001 (intermediate energy activation file) has been developed in standard ENDF-6 format with neutron-induced activation cross sections for 679 target nuclides from Z=1 (hydrogen) to Z=84 (polonium) and incident neutron energies up to 150 MeV. Using the NJOY processing code, an IEAF-2001 working library has been prepared in a 256 energy group structure for enabling activation analyses of the International Fusion Material Irradiation Facility (IFMIF) D-Li neutron source. This library was applied to the activation analysis of the IFMIF high flux test module using the recent Analytical and Laplacian Adaptive Radioactivity Analysis activation code which is capable of handling the variety of reaction channels open in the energy domain above 20 MeV. The IEAF-2001 activation library was thus shown to be suitable for activation analyses in fusion technology and intermediate energy applications such as the IFMIF D-Li neutron source

  7. Investigating the suitability of GaAs:Cr material for high flux X-ray imaging

    Science.gov (United States)

    Veale, M. C.; Bell, S. J.; Duarte, D. D.; French, M. J.; Hart, M.; Schneider, A.; Seller, P.; Wilson, M. D.; Kachkanov, V.; Lozinskaya, A. D.; Novikov, V. A.; Tolbanov, O. P.; Tyazhev, A.; Zarubin, A. N.

    2014-12-01

    Semi-insulating wafers of GaAs material with a thickness of 500μm have been compensated with chromium by Tomsk State University. Initial measurements have shown the material to have high resistivity (3 × 109Ωcm) and tests with pixel detectors on a 250 μm pitch produced uniform spectroscopic performance across an 80 × 80 pixel array. At present, there is a lack of detectors that are capable of operating at high X-ray fluxes (> 108 photons s-1 mm-2) in the energy range 5-50 keV. Under these conditions, the poor stopping power of silicon, as well as issues with radiation hardness, severely degrade the performance of traditional detectors. While high-Z materials such as CdTe and CdZnTe may have much greater stopping power, the formation of space charge within these detectors degrades detector performance. Initial measurements made with GaAs:Cr detectors suggest that many of its material properties make it suitable for these challenging conditions. In this paper the radiation hardness of the GaAs:Cr material has been measured on the B16 beam line at the Diamond Light Source synchrotron. Small pixel detectors were bonded to the STFC Hexitec ASIC and were irradiated with 3 × 108 photons s-1 mm-2 monochromatic 12 keV X-rays up to a maximum dose of 0.6 MGy. Measurements of the spectroscopic performance before and after irradiation have been used to assess the extent of the radiation damage.

  8. Hydrogen pumping and release by graphite under high flux plasma bombardment

    International Nuclear Information System (INIS)

    Hirooka, Y.; Leung, W.K.; Conn, R.W.; Goebel, D.M.; LaBombard, B.; Nygren, R.; Wilson, K.L.

    1988-01-01

    Inert gas (helium or argon) plasma bombardment has been found to increase the surface gas adsorptivity of isotropic graphite (POCO-graphite), which can then getter residual gases in a high vacuum system. The inert gas plasma bombardment was carried out at a flux ≅ 1 x 10 18 ions s -1 cm -2 to a fluence of the order of 10 21 ions/cm 2 and at temperatures around 800 0 C. The gettering capability of graphite can be easily recovered by repeating inert gas plasma bombardment. The activated graphite surface exhibits a smooth, sponge-like morphology with significantly increased pore openings, which correlates with the observed increase in the surface gas adsorptivity. The activated graphite surface has been observed to pump hydrogen plasma particles as well. From calibrated H-alpha measurements, the dynamic hydrogen retention capacity is evaluated to be as large as 2 x 10 18 H/cm 2 at temperatures below 100 0 C and at a plasma bombarding energy of 300 eV. The graphite temperature was varied between 15 and 480 0 C. Due to the plasma particle pumping capability, hydrogen recycling from the activated graphite surface is significantly reduced, relative to that from a pre-saturated surface. A pre-saturated surface was also observed to reproducibly pump a hydrogen plasma to a concentration of 9.5 x 10 17 H/cm 2 . The hydrogen retention capacity of graphite is found to decrease with increasing temperature. A transient pumping mechanism associated with the sponge-like surface morphology is conjectured to explain the large hydrogen retention capacity. Hydrogen release behavior under helium and argon plasma bombardment was also investigated, and the result indicated the possibility of some in-pore retrapping effect. 43 refs., 11 figs

  9. Report of the ANS Project Feasibility Workshop for a High Flux Isotope Reactor-Center for Neutron Research Facility

    International Nuclear Information System (INIS)

    Peretz, F.J.; Booth, R.S.

    1995-07-01

    The Advanced Neutron Source (ANS) Conceptual Design Report (CDR) and its subsequent updates provided definitive design, cost, and schedule estimates for the entire ANS Project. A recent update to this estimate of the total project cost for this facility was $2.9 billion, as specified in the FY 1996 Congressional data sheet, reflecting a line-item start in FY 1995. In December 1994, ANS management decided to prepare a significantly lower-cost option for a research facility based on ANS which could be considered during FY 1997 budget deliberations if DOE or Congressional planners wished. A cost reduction for ANS of about $1 billion was desired for this new option. It was decided that such a cost reduction could be achieved only by a significant reduction in the ANS research scope and by maximum, cost-effective use of existing High Flux Isotope Reactor (HFIR) and ORNL facilities to minimize the need for new buildings. However, two central missions of the ANS -- neutron scattering research and isotope production-were to be retained. The title selected for this new option was High Flux Isotope Reactor-Center for Neutron Research (HFIR-CNR) because of the project's maximum use of existing HFIR facilities and retention of selected, central ANS missions. Assuming this shared-facility requirement would necessitate construction work near HFIR, it was specified that HFIR-CNR construction should not disrupt normal operation of HFIR. Additional objectives of the study were that it be highly credible and that any material that might be needed for US Department of Energy (DOE) and Congressional deliberations be produced quickly using minimum project resources. This requirement made it necessary to rely heavily on the ANS design, cost, and schedule baselines. A workshop methodology was selected because assessment of each cost and/or scope-reduction idea required nearly continuous communication among project personnel to ensure that all ramifications of propsed changes

  10. Design of a new neutron delivery system for high flux source

    International Nuclear Information System (INIS)

    Boffy, Romain

    2016-01-01

    The building of new experimental neutron beam facilities as well as the renewal programmes under development at some of the already existing installations have pinpointed the urgent need to develop neutron guide technology in order to make such neutron transport devices more efficient and durable. In fact, a number of mechanical failures of neutron guides have been reported by several research centres. It is therefore important to understand the behaviour of the glass substrates on top of which the neutron optics mirrors are deposited, and how these materials degrade under radiation conditions. The case of the European Spallation Source (ESS), at present under construction at Lund, is a good example. It previews the deployment of neutron guides having more than 100 metres of length for most of the instruments. Also, the future renovation programme of the ILL, called Endurance, foresees the refurbishment of several beam lines. This Ph.D. thesis was the result of a collaboration agreement between the ILL and ESS-Bilbao, aiming to improve the performance and sustainability of future neutron delivery systems. Four different industrially produced alkali-borosilicate glasses were selected for this study: Borofloat, N-ZK7, N-BK7, and S-BSL7. The first three are well known within the neutron instrumentation community, as they have already been used in several installations; whereas the last one is, at present, considered a candidate for making future mirror substrates. All four glasses have a comparable content of boron oxide of about 10 mol.%. The presence of such a strong neutron absorption element is in fact a mandatory component for the manufacturing of neutron guides, because it provides a radiological shielding for the environment. This benefit is, however, somewhat counterbalanced, since the resulting 10 B(n,alpha) 7 Li reactions degrade the glass due to the deposited energy of 2.5 MeV by the α particle and the recoil nuclei. In fact, the brittleness of some of

  11. Comparison of toxin removal outcomes in online hemodiafiltration and intra-dialytic exercise in high-flux hemodialysis: A prospective randomized open-label clinical study protocol

    Directory of Open Access Journals (Sweden)

    Maheshwari Vaibhav

    2012-11-01

    Full Text Available Abstract Background Maintenance hemodialysis (HD patients universally suffer from excess toxin load. Hemodiafiltration (HDF has shown its potential in better removal of small as well as large sized toxins, but its efficacy is restricted by inter-compartmental clearance. Intra-dialytic exercise on the other hand is also found to be effective for removal of toxins; the augmented removal is apparently obtained by better perfusion of skeletal muscles and decreased inter-compartmental resistance. The aim of this trial is to compare the toxin removal outcome associated with intra-dialytic exercise in HD and with post-dilution HDF. Methods/design The main hypothesis of this study is that intra-dialytic exercise enhances toxin removal by decreasing the inter-compartmental resistance, a major impediment for toxin removal. To compare the HDF and HD with exercise, the toxin rebound for urea, creatinine, phosphate, and β2-microglobulin will be calculated after 2 hours of dialysis. Spent dialysate will also be collected to calculate the removed toxin mass. To quantify the decrease in inter-compartmental resistance, the recently developed regional blood flow model will be employed. The study will be single center, randomized, self-control, open-label prospective clinical research where 15 study subjects will undergo three dialysis protocols (a high flux HD, (b post-dilution HDF, (c high flux HD with exercise. Multiple blood samples during each study session will be collected to estimate the unknown model parameters. Discussion This will be the first study to investigate the exercise induced physiological change(s responsible for enhanced toxin removal, and compare the toxin removal outcome both for small and middle sized toxins in HD with exercise and HDF. Successful completion of this clinical research will give important insights into exercise effect on factors responsible for enhanced toxin removal. The knowledge will give confidence for implementing

  12. Fibre-optical measurement of the time curve of layer temperatures in a well as a result of heat injection and heat extraction; Untersuchung der zeitlichen Entwicklung von Schichttemperaturen in einer Bohrung bei Waermeaus- und Waermeeinspeisung mit Hilfe faseroptischer Temperaturmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Hurtig, E; Groswig, S; Kasch, M [GESO GmbH, Jena (Germany)

    1997-12-01

    The relations between the thermal processes around a 200 m deep geothermal well and the petrographic composition were studied using the fibre optic temperature sensing method. The heat injection and heat extraction properties depend on the petrographic properties (porosity, permeability) of the individual layers. Coarse sandy, water saturated layers have good properties, silts and clays have poor properties for het storage and heat extraction. Heat transport occurs in well defined layers with good hydraulic properties and can be explained by a convective heat transport model. (orig.) [Deutsch] Mit faseroptischen Temperaturmessungen in einer Erdwaermesonde (EWS)-Bohrung wurde der Zusammenhang zwischen den thermischen Prozessen unmittelbar um die EWS und dem petrographischen Aufbau untersucht. Das Waermeein- bzw. -ausspeisevermoegen haengt von der petrographischen Ausbildung der einzelnen Schichten ab (Porositaet, Kf-Wert). Grobsandige bis kiesige, wassergesaettigte Schichten haben guenstige, schluffig-tonige unguenstige Eigenschaften fuer die Waermeaus- bzw. -einspeisung. Der wesentliche Waermetransport erfolgt in definierten geringmaechtigen Schichten mit guten hydraulischen Eigenschaften. Der Waermetransport in poroesen, wassergefuellten Schichten kann mit einem konvektiven Waermetransportmodell erklaert werden. (orig.)

  13. Type A verification report for the high flux beam reactor stack and grounds, Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    Harpenau, Evan M.

    2012-01-01

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA). The HFBR Stack and Grounds surveys began in June 2011 and were completed in September 2011. Survey activities by BSA included gamma walkover scans and sampling of the as-left soils in accordance with the BSA Work Procedure (BNL 2010a). The Field Sampling Plan - Stack and Remaining HFBR Outside Areas (FSP) stated that gamma walk-over surveys would be conducted with a bare sodium iodide (NaI) detector, and a collimated detector would be used to check areas with elevated count rates to locate the source of the high readings (BNL 2010b). BSA used the Mult- Agency Radiation Survey and Site Investigation Manual (MARSSIM) principles for determining the classifications of each survey unit. Therefore, SUs 6 and 7 were identified as Class 1 and SU 8 was deemed Class 2 (BNL 2010b). Gamma walkover surveys of SUs 6, 7, and 8 were completed using a 2 1/2 2 NaI detector coupled to a data-logger with a global positioning system (GPS). The 100% scan surveys conducted prior to the final status survey (FSS) sampling identified two general soil areas and two isolated soil locations with elevated radioactivity. The general areas of elevated activity

  14. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  15. High Flux Heat Exchanger

    Science.gov (United States)

    1993-01-01

    maximum jet velocity (6.36 m/s), and maximum number of jets (nine). Wadsworth and Mudawar [49] describe the use of a single slotted nozzle to provide...H00503 (ASME), pp. 121-128, 1989. 40 49. D. C. Wadsworth and I. Mudawar , "Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional...Jets of Dielectric Liquid," HTD-Vol. 111, Heat Transfer in Electrglif, Book No. H00503 (ASME), pp. 79-87, 1989. 50. D.C. Wadsworth and I. Mudawar

  16. Teduglutide Injection

    Science.gov (United States)

    ... who need additional nutrition or fluids from intravenous (IV) therapy. Teduglutide injection is in a class of medications ... of the ingredients.tell your doctor and pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking ...

  17. Dexrazoxane Injection

    Science.gov (United States)

    ... are used to treat or prevent certain side effects that may be caused by chemotherapy medications. Dexrazoxane injection (Zinecard) is used to prevent or decrease heart damage caused by doxorubicin in women who are taking the medication to treat breast cancer that has spread to other parts of the ...

  18. Triptorelin Injection

    Science.gov (United States)

    ... puberty too soon, resulting in faster than normal bone growth and development of sexual characteristics) in children 2 years and older. Triptorelin injection is in a class of medications called gonadotropin-releasing hormone (GnRH) agonists. It works by decreasing the amount ...

  19. Short-lived radionuclides produced on the ORNL 86-inch cyclotron and High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Lamb, E.

    1985-01-01

    The production of short-lived radionuclides at ORNL includes the preparation of target materials, irradiation on the 86-in. cyclotron and in the High Flux Isotope Reactor (HFIR), and chemical processing to recover and purify the product radionuclides. In some cases the target materials are highly enriched stable isotopes separated on the ORNL calutrons. High-purity 123 I has been produced on the 86-in. cyclotron by irradiating an enriched target of 123 Te in a proton beam. Research on calutron separations has led to a 123 Te product with lower concentrations of 124 Te and 126 Te and, consequently to lower concentrations of the unwanted radionuclides, 124 I and 126 I, in the 123 I product. The 86-in. cyclotron accelerates a beam of protons only but is unique in providing the highest available beam current of 1500 μA at 21 MeV. This beam current produces relatively large quantities of radionuclides such as 123 I and 67 Ga

  20. Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    De Temmerman, G., E-mail: gregory.detemmerman@iter.org [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); ITER Organization, Route de Vinon sur Verdon, CS 90 096, 13067 Saint Paul-lez-Durance (France); Morgan, T.W.; Eden, G.G. van; Kruif, T. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); Wirtz, M. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Microstructure and Properties of Materials (IEK-2), EURATOM Association, 52425 Jülich (Germany); Matejicek, J.; Chraska, T. [Institute of Plasma Physics, Association EURATOM-IPP, CR Prague (Czech Republic); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, CS 90 096, 13067 Saint Paul-lez-Durance (France); Wright, G.M. [MIT Plasma Science and Fusion Center, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2015-08-15

    The thermal shock behaviour of tungsten exposed to high-flux plasma is studied using a high-power laser. The cases of laser-only, sequential laser and hydrogen (H) plasma and simultaneous laser plus H plasma exposure are studied. H plasma exposure leads to an embrittlement of the material and the appearance of a crack network originating from the centre of the laser spot. Under simultaneous loading, significant surface melting is observed. In general, H plasma exposure lowers the heat flux parameter (F{sub HF}) for the onset of surface melting by ∼25%. In the case of He-modified (fuzzy) surfaces, strong surface deformations are observed already after 1000 laser pulses at moderate F{sub HF} = 19 MJ m{sup −2} s{sup −1/2}, and a dense network of fine cracks is observed. These results indicate that high-fluence ITER-like plasma exposure influences the thermal shock properties of tungsten, lowering the permissible transient energy density beyond which macroscopic surface modifications begin to occur.

  1. Semiconducting lithium indium diselenide: Charge-carrier properties and the impacts of high flux thermal neutron irradiation

    Science.gov (United States)

    Hamm, Daniel S.; Rust, Mikah; Herrera, Elan H.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Stowe, Ashley; Preston, Jeff; Lukosi, Eric D.

    2018-06-01

    This paper reports on the charge carrier properties of several lithium indium diselenide (LISe) semiconductors. It was found that the charge collection efficiency of LISe was improved after high flux thermal neutron irradiation including the presence of a typically unobservable alpha peak from hole-only collection. Charge carrier trap energies of the irradiated sample were measured using photo-induced current transient spectroscopy. Compared to previous studies of this material, no significant differences in trap energies were observed. Through trap-filled limited voltage measurements, neutron irradiation was found to increase the density of trap states within the bulk of the semiconductor, which created a polarization effect under alpha exposure but not neutron exposure. Further, the charge collection efficiency of the irradiated sample was higher (14-15 fC) than that of alpha particles (3-5 fC), indicating that an increase in hole signal contribution resulted from the neutron irradiation. Finally, it was observed that significant charge loss takes place near the point of generation, producing a significant scintillation response and artificially inflating the W-value of all semiconducting LISe crystals.

  2. Prediction of Flow and Temperature Distributions in a High Flux Research Reactor Using the Porous Media Approach

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2017-01-01

    Full Text Available High thermal neutron fluxes are needed in some research reactors and for irradiation tests of materials. A High Flux Research Reactor (HFRR with an inverse flux trap-converter target structure is being developed by the Reactor Engineering Analysis Lab (REAL at Tsinghua University. This paper studies the safety of the HFRR core by full core flow and temperature calculations using the porous media approach. The thermal nonequilibrium model is used in the porous media energy equation to calculate coolant and fuel assembly temperatures separately. The calculation results show that the coolant temperature keeps increasing along the flow direction, while the fuel temperature increases first and decreases afterwards. As long as the inlet coolant mass flow rate is greater than 450 kg/s, the peak cladding temperatures in the fuel assemblies are lower than the local saturation temperatures and no boiling exists. The flow distribution in the core is homogeneous with a small flow rate variation less than 5% for different assemblies. A large recirculation zone is observed in the outlet region. Moreover, the porous media model is compared with the exact model and found to be much more efficient than a detailed simulation of all the core components.

  3. The high flux reactor Petten, A multi-purpose research and test facility for the future of nuclear energy

    International Nuclear Information System (INIS)

    Bergmans, H.; Duijves, K.; Conrad, R.; Markgraf, J.F.W.; May, R.; Moss, R.L.; Sordon, G.; Tartaglia, G.P.

    1996-01-01

    The High Flux Reactor (HFR) at Petten, is owned by the European Commission (EC) and managed by the Institute for Advanced Materials (IAM) of the Joint Research Centre (JRC) of the EC. Its operation has been entrusted since 1962 to the Netherlands Energy Research Foundation (ECN). The HFR is one of the most powerful multi-purpose research and test reactors in the world. Together with the ECN hot cells at Petten, it has provided since three decades an integral and full complement of irradiation and examination services as required by current and future research and development for nuclear energy, industry and research organizations. Since 1963, the HFR has recognized record of consistent, reliable and high availability of more than 250 days of operation per year. The HFR has 20 in-core and 12 poolside irradiation positions, plus 12 beam tubes. With a variety of dedicated irradiation devices, and with its long-standing experience in executing small and large irradiation projects, the HFR is particularly suited for fuel, materials and components testing for all reactor lines, including thermonuclear fusion reactors. In addition, processing with neutrons and gamma rays, neutron-based research and inspection services are employed by industry and research, such as activation analysis, boron neutron capture therapy, neutron radiography and neutron diffraction. Moreover, in recent years, HFRs' mission has been broadened within the area of radioisotopes production, where, within a few years, the HFR has attained the European leadership in production volume

  4. Analysis and modeling of flow blockage-induced steam explosion events in the High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Lestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.; Kirkpatrick, J.

    1993-01-01

    This paper provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor during flow blockage events. The overall workscope included modeling and analysis of core melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several miliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. Therefore, it is judged that the HFIR vessel and top head structure will be able to withstand loads generated from thermally driven steam explosions initiated by any credible flow blockage event. A substantial margin to safety was demonstrated

  5. Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors

    Science.gov (United States)

    Moradi, Golshan; Zinadini, Sirus; Rajabi, Laleh; Dadari, Soheil

    2018-01-01

    The nanofibrous Polyacrylonitrile (PAN) membranes embedded with fumarate-alumoxane (Fum-A) nanoparticles were prepared via electrospinning technique as high flux and antifouling membranes for membrane bioreactor (MBR) applications. The effect of Fum-A nanoparticles on membrane morphology, surface hydrophilicity, pure water flux, effluent turbidity and the antifouling property was investigated. Fum-A is a carboxylate-alumoxane nanoparticle covered by extra hydroxyl and carboxylate groups on its surface. By embedding Fum-A nanoparticles into the spinning solution, the surface hydrophilicity and pure water flux of the resulted membranes were improved. The smooth surface of fibers at the low amount of nanoparticles and the agglomeration of nanoparticles at their high concentration were shown in SEM images of the membranes surface. The energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) analysis of the prepared Fum-A/PAN membrane confirmed the presence of carboxylate and hydroxyl functional groups of Fum-A nanoparticles on the surface of the Fum-A nanoparticles containing membrane. The results obtained from the filtration of activated sludge suspension revealed that by addition of a low amount of Fum-A nanoparticles, the irreversible fouling was significantly decreased due to the higher hydrophilicity. The Fum-A/PAN membranes showed superior permeate flux and antifouling properties compared to bare electrospun PAN membrane. Finally, 2 wt.% Fum-A/PAN membrane exhibited the highest FRR of 96% and the lowest irreversible fouling of 4% with excellent durability of antifouling property during twenty repeated activated sludge filtrations.

  6. Preliminary considerations of an intense slow positron facility based on a 78Kr loop in the high flux isotopes reactor

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Donohue, D.L.; Peretz, F.J.; Montgomery, B.H.; Hayter, J.B.

    1990-01-01

    Suggestions have been made to the National Steering Committee for the Advanced Neutron Source (ANS) by Mills that provisions be made to install a high intensity slow positron facility, based on a 78 Kr loop, that would be available to the general community of scientists interested in this field. The flux of thermal neutrons calculated for the ANS is E + 15 sec -1 m -2 , which Mills has estimated will produce 5 mm beam of slow positrons having a current of about 1 E + 12 sec -1 . The intensity of such a beam will be a least 3 orders of magnitude greater than those presently available. The construction of the ANS is not anticipated to be complete until the year 2000. In order to properly plan the design of the ANS, strong considerations are being given to a proof-of-principle experiment, using the presently available High Flux Isotopes Reactor, to test the 78 Kr loop technique. The positron current from the HFIR facility is expected to be about 1 E + 10 sec -1 , which is 2 orders of magnitude greater than any other available. If the experiment succeeds, a very valuable facility will be established, and important formation will be generated on how the ANS should be designed. 3 refs., 1 fig

  7. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  8. Nacre-Templated Synthesis of Highly Dispersible Carbon Nanomeshes for Layered Membranes with High-Flux Filtration and Sensing Properties.

    Science.gov (United States)

    Kong, Meng; Li, Mingjie; Shang, Ruoxu; Wu, Jingyu; Yan, Peisong; Xu, Dongmei; Li, Chaoxu

    2018-01-24

    Marine shells not only represent a rapidly accumulating type of fishery wastes but also offer a unique sort of hybrid nanomaterials produced greenly and massively in nature. The elaborate "brick and mortar" structures of nacre enabled the synthesis of carbon nanomeshes with <1 nm thickness, hierarchical porosity, and high specific surface area through pyrolysis, in which two-dimensional (2D) organic layers served as the carbonaceous precursor and aragonite platelets as the hard template. Mineral bridges within 2D organic layers templated the formation of mesh pores of 20-70 nm. In contrast to other hydrophobic carbon nanomaterials, these carbon nanomeshes showed super dispersibility in diverse solvents and thus processability for membranes through filtration, patterning, spray-coating, and ink-writing. The carbon membranes with layered structures were capable of serving not only for high-flux filtration and continuous flow absorption but also for electrochemical and strain sensing with high sensitivity. Thus, utilization of marine shells, on one hand, relieves the environmental concern of shellfish waste, on the other hand, offers a facile, green, low-cost, and massive approach to synthesize unique carbon nanomeshes alternative to graphene nanomeshes and applicable in environmental adsorption, filtration, wearable sensors, and flexible microelectronics.

  9. Analysis and modeling of flow-blockage-induced steam explosion events in the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.

    1994-01-01

    This article provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor (HFIR) during flow blockage events. The overall work scope included modeling and analysis of core-melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and, finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several milliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. 19 refs., 11 figs

  10. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays

    Directory of Open Access Journals (Sweden)

    Jakub Pekárek

    2016-09-01

    Full Text Available This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5 × 10 5 and 8 × 10 6 photons per mm 2 per second. It was observed that polarization occurs at an X-ray flux higher than 3 × 10 6 mm − 2 ·s − 1 . Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect.

  11. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    International Nuclear Information System (INIS)

    Renfro, David G.; Cook, David Howard; Freels, James D.; Griffin, Frederick P.; Ilas, Germina; Sease, John D.; Chandler, David

    2012-01-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  12. Botulinum Neurotoxin Injections

    Science.gov (United States)

    ... botulinum neurotoxin as much art as it is science. It is in your best interest to locate the most well-trained and experienced doctor you can find. Before making an appointment to receive botulinum neuro toxin injections, ask the office personnel which doctor ...

  13. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Corvan, D.J., E-mail: dcorvan01@qub.ac.uk; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 10{sup 20} photons s{sup −1}mm{sup −2}mrad{sup −2} 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above. - Highlights: • How synchrotron radiation can be produced in an all optical setting using laser-plasmas. • Generating high-energy, high-flux gamma ray beams. • Presenting results from a recent NLTS experimental campaign. • Reveal insight into the experimental techniques employed.

  14. Publication of the second amendment to the German-French Convention on the construction and operation of a very high flux reactor and to its complementary agreement

    International Nuclear Information System (INIS)

    1982-01-01

    Full text in German, English, and French of the amendment to the London Convention of December 9, 1981 between the Federal Republic of Germany, France, Great Britain and Northern Ireland concerning the operating cost and the use of the high flux reactor in Grenoble at the Max-von-Laue Institute. (HP) [de

  15. Impact of low- or high-flux haemodialysis and online haemodiafiltration on inflammatory markers and lipid profile in chronic haemodialysis patients.

    Science.gov (United States)

    Akoglu, Hadim; Dede, Fatih; Piskinpasa, Serhan; Falay, Mesude Y; Odabas, Ali Riza

    2013-01-01

    We aimed to evaluate the impact of low- or high-flux haemodialysis (HD) and online haemodiafiltration (OL-HDF) on inflammation and the lipid profile in HD patients. 50 HD patients were assigned to two groups for HD with low-flux (n = 25) or high-flux (n = 25) polysulphone dialysers for 6 weeks. Subsequently, all patients were haemodialysed with a low-flux polysulphone dialyser for 6 weeks, then transferred to OL-HDF for another 6 weeks. Blood samples for lipids and inflammatory markers (IL-6, IL-8, TNF-α, hs-CRP) were obtained at baseline and every 6 weeks. Changes in inflammatory markers and lipids from baseline to the 6-week dialysis period did not differ between low- and high-flux groups. When patients were transferred from low-flux HD to OL-HDF, IL-6, IL-8, and TNF-α levels significantly decreased whereas HDL and LDL cholesterol significantly increased. Low- and high-flux polysulphone membranes had similar effects on lipids and inflammatory markers, whereas OL-HDF potently reduced pro-inflammatory cytokines. Copyright © 2013 S. Karger AG, Basel.

  16. The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling

    NARCIS (Netherlands)

    van Eden, G. G.; Morgan, T. W.; van der Meiden, H. J.; J Matejicek,; T Chraska,; Wirtz, M.; De Temmerman, G.

    2014-01-01

    The performance of the full-W ITER divertor may be significantly affected by the interplay between steady-state plasma exposure and transient events. To address this issue, the effect of a high-flux H plasma on the thermal shock response of W to ELM-like transients has been investigated. Transient

  17. Determination of the theoretical feasibility for the transmutation of europium isotopes from high flux isotope reactor control cylinders

    International Nuclear Information System (INIS)

    Elam, K.R.; Reich, W.J.

    1995-09-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is a 100 MWth light-water research reactor designed and built in the 1960s primarily for the production of transuranic isotopes. The HFIR is equipped with two concentric cylindrical blade assemblies, known as control cylinders, that are used to control reactor power. These control cylinders, which become highly radioactive from neutron exposure, are periodically replaced as part of the normal operation of the reactor. The highly radioactive region of the control cylinders is composed of europium oxide in an aluminum matrix. The spent HFIR control cylinders have historically been emplaced in the ORNL Waste Area Grouping (WAG) 6. The control cylinders pose a potential radiological hazard due to the long lived radiotoxic europium isotopes 152 Eu, 154 Eu, and 155 Eu. In a 1991 health evaluation of WAG 6 (ERD 1991) it was shown that these cylinders were a major component of the total radioactivity in WAG 6 and posed a potential exposure hazard to the public in some of the postulated assessment scenarios. These health evaluations, though preliminary and conservative in nature, illustrate the incentive to investigate methods for permanent destruction of the europium radionuclides. When the cost of removing the control cylinders from WAG 6, performing chemical separations and irradiating the material in HFIR are factored in, the option of leaving the control cylinders in place for decay must be considered. Other options, such as construction of an engineered barrier around the disposal silos to reduce the chance of migration, should also be analyzed

  18. Temperature-dependent surface modification of Ta due to high-flux, low-energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Novakowski, T.J.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    This work examines the response of Tantalum (Ta) as a potential candidate for plasma-facing components (PFCs) in future nuclear fusion reactors. Tantalum samples were exposed to high-flux, low-energy He + ion irradiation at different temperatures in the range of 823–1223 K. The samples were irradiated at normal incidence with 100 eV He + ions at constant flux of 1.2 × 10 21 ions m −2  s −1 to a total fluence of 4.3 × 10 24 ions m −2 . An additional Ta sample was also irradiated at 1023 K using a higher ion fluence of 1.7 × 10 25 ions m −2 (at the same flux of 1.2 × 10 21 ions m −2  s −1 ), to confirm the possibility of fuzz formation at higher fluence. This higher fluence was chosen to roughly correspond to the lower fluence threshold of fuzz formation in Tungsten (W). Surface morphology was characterized with a combination of field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). These results demonstrate that the main mode of surface damage is pinholes with an average size of ∼70 nm 2 for all temperatures. However, significantly larger pinholes are observed at elevated temperatures (1123 and 1223 K) resulting from the agglomeration of smaller pinholes. Ex situ X-ray photoelectron spectroscopy (XPS) provides information about the oxidation characteristics of irradiated surfaces, showing minimal exfoliation of the irradiated Ta surface. Additionally, optical reflectivity measurements are performed to further characterize radiation damage on Ta samples, showing gradual reductions in the optical reflectivity as a function of temperature.

  19. Modernization of the High Flux Isotope Reactor (HFIR) to Provide a Cold Neutron Source and Experimentation Facility

    International Nuclear Information System (INIS)

    Rothrock, Benjamin G.; Farrar, Mike B.

    2009-01-01

    In June 1961, construction was started on the High Flux Isotope Reactor (HFIR) facility inside the Oak Ridge National Laboratory (ORNL), at the recommendation of the U.S. Atomic Energy Commission (AEC) Division of Research. Construction was completed in early 1965 with criticality achieved on August 25, 19651. From the first full power operating cycle beginning in September 1966, the HFIR has achieved an outstanding record of service to the scientific community. In early 1995, the ORNL deputy director formed a group to examine the need for upgrades to the HFIR following the cancellation of the Advanced Neutron Source Project by DOE. This group indicated that there was an immediate need for the installation of a cold neutron source facility in the HFIR to produce cold neutrons for neutron scattering research uses. Cold neutrons have long wavelengths in the range of 4-12 angstroms. Cold neutrons are ideal for research applications with long length-scale molecular structures such as polymers, nanophase materials, and biological samples. These materials require large scale examination (and therefore require a longer wavelength neutron). These materials represent particular areas of science are at the forefront of current research initiatives that have a potentially significant impact on the materials we use in our everyday lives and our knowledge of biology and medicine. This paper discusses the installation of a cold neutron source at HFIR with respect to the project as a modernization of the facility. The paper focuses on why the project was required, the scope of the cold source project with specific emphasis on the design, and project management information.

  20. The Effects Of The Use Of A High-Efficiency, High-Flux Dialysis Membrane On The Nutritional Status Of Patients Receiving Maintenance Hemodialysis

    Directory of Open Access Journals (Sweden)

    Won-Min Hwang

    2012-06-01

    Full Text Available It is possible to observe improvement in the general state of patients receiving maintenance hemodialysis, including decreased joint symptoms, decreased pruritus, and better appetite, by using a high-efficiency, high-flux dialysis membrane. We aimed to determine the effects of the use of a high-flux dialysis membrane on improvement in the nutritional status of dialysis patients. Two months before the replacement with a high-efficiency, high-flux dialysis membrane and one, three, six, and twelve months after the replacement, the subjective global assessment (SGA, biochemical markers, and a Body Composition Analyzer was used to assess the nutritional status and determine hemodialysis adequacy, along with a biochemical test, in 25 stable patients (M: F=10:15, 54.5±12.7 (37∼80 yrs. Of all the patients, 3 got better results from SGA, 12 the same results, and 10 worse results, in the follow-up period. There was no significant increase or decrease after the replacement with a high-flux dialysis membrane in biochemical parameters and nutritional parameters. While there was also no improvement in body weight, fat mass, muscle mass, lean fat mass, visceral fat, or the degree of edema measured by the body composition analyzer after the replacement, basal metabolism was improved from 1179.2±143.5 kcal before the replacement to 1264.8±145.4, 1241±138.3, and 1201.0±317.0 kcal one, three, twelve months after the replacement, respectively, on the average (p<0.001, p=0.001, p=0.023; thus, the improvement was greatest one month after the replacement and, then, decreased over time. In conclusion, the use of a high-efficiency, high-flux dialysis membrane generally failed to improve the nutritional status of patients receiving maintenance hemodialysis but increased the indirect index of basal metabolism alone at its early stage.

  1. Syringe injectable electronics

    Science.gov (United States)

    Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M.

    2015-01-01

    Seamless and minimally-invasive three-dimensional (3D) interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating syringe injection and subsequent unfolding of submicrometer-thick, centimeter-scale macroporous mesh electronics through needles with a diameter as small as 100 micrometers. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with > 90% device yield. We demonstrate several applications of syringe injectable electronics as a general approach for interpenetrating flexible electronics with 3D structures, including (i) monitoring of internal mechanical strains in polymer cavities, (ii) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (iii) in vivo multiplexed neural recording. Moreover, syringe injection enables delivery of flexible electronics through a rigid shell, delivery of large volume flexible electronics that can fill internal cavities and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics. PMID:26053995

  2. Syringe-injectable electronics.

    Science.gov (United States)

    Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang; Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M

    2015-07-01

    Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

  3. Well acidizing

    Energy Technology Data Exchange (ETDEWEB)

    Street, E H

    1980-01-23

    The apparatus relates in particular to a well-treating process in which an aqueous acid solution having a pH of < 2 is injected into a subterranean reservoir in a manner such that materials that contain ferric ions are present in the acid and, as the acid reacts within the reservoir and attains a pH exceeding 3, tend to be precipitated as ferric ion-containing solid materials that may plug the pores of the reservoir. Such a precipitation is prevented by dissolving in the acid solution an amount of 5-sulfosalicylic acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 0.5 to 3 but is less than enough to cause a significant salting-out of solid materials, and an amount of citric acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 3 to 6 but is less than enough to precipitate a significant amount of calcium citrate. The amount of the 5-sulfosalicylic acid may be from 0.01 to 0.05 moles/l and the amount of citric acid is from 0.001 to 0.009 moles/l. 11 claims.

  4. SQL Injection Attacks and Defense

    CERN Document Server

    Clarke, Justin

    2012-01-01

    SQL Injection Attacks and Defense, First Edition: Winner of the Best Book Bejtlich Read Award "SQL injection is probably the number one problem for any server-side application, and this book unequaled in its coverage." -Richard Bejtlich, Tao Security blog SQL injection represents one of the most dangerous and well-known, yet misunderstood, security vulnerabilities on the Internet, largely because there is no central repository of information available for penetration testers, IT security consultants and practitioners, and web/software developers to turn to for help. SQL Injection Att

  5. The effect of carbon impurities on molybdenum surface morphology evolution under high-flux low-energy helium ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Gonderman, S.; Bharadwaj, N.; Hassanein, A.

    2016-01-01

    We report on the role of carbon (C) impurities, in molybdenum (Mo) fuzz evolutions on Mo surface during 100 eV He + ion irradiations. In this study we considered 0.01, 0.05, and 0.5% C + ion impurities in He + ion irradiations. For introducing such tiny C + ion impurities, gas mixtures of He and CH 4 have been chosen in following ratios; 99.95: 0.05, 99.75: 0.25, and 97.5: 2.5. Apart from these three cases, two additional cases, 100% He + ion (for Mo fuzz growth due to only He + ions) and 100% H + ion (for confirming the significance of tiny 0.04–2.0% H + ions in terms of Mo fuzz evolutions on Mo surface, if any), have also been considered. Ion energy (100 eV), ion fluence (2.6 × 10 24  ions m −2 ), and target temperature (923 K) were kept constant for each experiment and their selections were based on our previous studies [1,2]. Our study shows homogeneously populated and highly dense Mo fuzz evolutions on entire Mo surface for 100% He + ion irradiation case. Enhancement of C + ion impurities in He + ions causes a sequential reduction in Mo fuzz evolutions, leading to almost complete prevention of Mo fuzz evolutions for 0.5% C + ion impurity concentrations. Additionally, no fuzz formation for 100% H + ion irradiation at all, were seen (apart from some tiny nano-structuring, in very limited regions). This indicates that there is no significant role of H + ions in Mo fuzz evolutions (at least for such tiny amount, 0.04–2.0% H + ions). The study is significant to understand the behavior of potential high-Z plasma facing components (PFCs), in the, presence of tiny amount of C impurities, for nuclear fusion relevant applications. - Highlights: • Mo Fuzz evolutions due to low-energy high-flux 100% He + ion irradiation. • Sequential reduction in Mo fuzz evolutions with increasing C + ion impurities in He + ions. • Almost complete prevention of Mo fuzz evolutions for 0.5% C + ion impurity in He + ions. • No Mo fuzz formation for 100% H + ion

  6. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Office of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low and high

  7. Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Ellis, Ronald James [ORNL; Gehin, Jess C [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL

    2007-11-01

    This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology

  8. Calculation method of water injection forward modeling and inversion process in oilfield water injection network

    Science.gov (United States)

    Liu, Long; Liu, Wei

    2018-04-01

    A forward modeling and inversion algorithm is adopted in order to determine the water injection plan in the oilfield water injection network. The main idea of the algorithm is shown as follows: firstly, the oilfield water injection network is inversely calculated. The pumping station demand flow is calculated. Then, forward modeling calculation is carried out for judging whether all water injection wells meet the requirements of injection allocation or not. If all water injection wells meet the requirements of injection allocation, calculation is stopped, otherwise the demand injection allocation flow rate of certain step size is reduced aiming at water injection wells which do not meet requirements, and next iterative operation is started. It is not necessary to list the algorithm into water injection network system algorithm, which can be realized easily. Iterative method is used, which is suitable for computer programming. Experimental result shows that the algorithm is fast and accurate.

  9. Assessment of the Structural Integrity of a Prototypical Instrumented IFMIF High Flux Test Module Rig by Fully 3D X-Ray Microtomography

    International Nuclear Information System (INIS)

    Tiseanu, I.; Craciunescu, T.; Mandache, B.N.; Simon, M.; Heinzel, V.; Stratmanns, E.; Simakov, S.P.; Leichtle, D.

    2006-01-01

    An inspection procedure to asses the mechanical integrity of IFMIF (International Fusion Materials Irradiation Facility) capsules and rigs during the irradiation campaign is necessary. Due to its penetration ability and contrast mechanism, the X-ray micro-tomography is the only known tool that could meet these requirements. In the High Flux Test Module (HFTM) of IFMIF miniaturized specimens are densely packed in capsules. The capsules which wear electric heaters and thermocouples are housed in rigs. To assure a well defined thermal contact the heater wires have to be attached to the capsules by brazing them into grooves. The examination of the quality of the braze material layer is of crucial interest in order to assure the best heat coupling of the heater wires to the capsule. A high density of the heaters is necessary to maintain the required temperature and, in addition NaK filling of narrow channels is employed for improving the 3D-heat transfer between the irradiation specimens and the capsule wall. Fully 3D tomographic inspections of a prototypical HFTM instrumented capsule, developed and manufactures at FZK, were conducted. In order to identify the optimum irradiation parameters and scanning configuration we carried out a comparative NDT analysis on two micro-tomography facilities, our compact, high magnification installation at NILPRP and two high-end industrial tomography facilities with higher X-ray energy and intensity at HWM. At optimum inspection parameters of a microfocus X-ray source (U=220 kV and I=300 μA) the geometry resolution was about 30-50 microns for characteristic dimension of the sample of 50 mm. Voids of 30 microns diameter and cracks of about 20 microns width can be detected. The absolute error of geometrical measurements should be sufficient for the assessment of the structural integrity of the irradiation capsule and for the geometry description within the thermal-hydraulic modeling. Space resolution could be further improved if one

  10. Injection and lessons for 2012

    International Nuclear Information System (INIS)

    Bracco, C.; Barnes, M.J.; Bartmann, W.; Cornelis, K.; Drosdal, L.N.; Goddard, B.; Kain, V.; Meddahi, M.; Mertens, V.; Uythoven, J.

    2012-01-01

    Injection of 144 bunches into the LHC became fully operational during the 2011 run and one nominal injection of 288 bunches was accomplished. Several mitigation solutions were put in place to minimise losses from the Transfer Line (TL) collimators and losses from kicking de-bunched beam during injection. Nevertheless, shot-by- shot and bunch-by-bunch trajectory variations, as well as long terms drifts, were observed and required a regular re-steering of the TL implying a non negligible amount of time spent for injection setup. Likely sources of instability have been identified (i.e. MKE and MSE ripples) and possible cures to optimise 2012 operation are presented. Well defined references for TL steering will be defined in a more rigorous way in order to allow a more straightforward and faster injection setup. Encountered and potential issues of the injection system, in particular the injection kickers MKI, are discussed also in view of injections with a higher number of bunches. (authors)

  11. Injection and lessons for 2012

    CERN Document Server

    Bracco, C; Bartmann, W; Cornelis, K; Drosdal, L N; Goddard, B; Kain, V; Meddahi, M; Mertens, V; Uythoven, J

    2012-01-01

    Injection of 144 bunches into the LHC became fully operational during the 2011 run and a nominal injection of 288 bunches was accomplished during MD time. Several mitigation solutions were put in place to minimise losses from the transfer line (TL) collimators and losses from kicking debunched beam during injection. Nevertheless, shot-by-shot and bunch-by-bunch trajectory variations, as well as long terms drifts, were observed and required a regular resteering of the TL implying a non negligible amount of time spent for injection setup. Likely sources of instability have been identified (i.e. MKE and MSE ripples) and possible cures to optimise 2012 operation are presented. Well defined references for TL steering will be defined in a more rigorous way in order to allow a more straightforward and faster injection setup. Encountered and potential issues of the injection system, in particular the injection kickers MKI, are discussed also in view of injections with a higher number of bunches.

  12. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    Harpeneau, Evan M. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  13. Area monitoring in a deposit of radioactive material: high flux air sampling for determination of long half-life alpha emitters

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.; Py Junior, Delcy de A.; Dores, Luis A. de C.B.; Antunes, Ana Claudia da Silva; Garcia Filho, Oswaldo; Oliveira, Sergio Quinet de; Dantas, Marcelino V.A.; Kelecom, Alphonse

    2011-01-01

    The present paper presents the program of high-flux monitoring and the results obtained in the year 2009. The derivative limit (LD) of air concentration was of 0.25 Bq/m 3 . The permanence control is a important factor in the occupational control of workers, and also the use of EPs the behavioural cares, and the radioprotection training for allowing the access to those areas. Neither workers, inspector nor visitors reached the limit of investigation

  14. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-01-01

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the

  15. The effect of carbon impurities on molybdenum surface morphology evolution under high-flux low-energy helium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Gonderman, S.; Bharadwaj, N.; Hassanein, A.

    2016-09-15

    We report on the role of carbon (C) impurities, in molybdenum (Mo) fuzz evolutions on Mo surface during 100 eV He{sup +} ion irradiations. In this study we considered 0.01, 0.05, and 0.5% C{sup +} ion impurities in He{sup +} ion irradiations. For introducing such tiny C{sup +} ion impurities, gas mixtures of He and CH{sub 4} have been chosen in following ratios; 99.95: 0.05, 99.75: 0.25, and 97.5: 2.5. Apart from these three cases, two additional cases, 100% He{sup +} ion (for Mo fuzz growth due to only He{sup +} ions) and 100% H{sup +} ion (for confirming the significance of tiny 0.04–2.0% H{sup +} ions in terms of Mo fuzz evolutions on Mo surface, if any), have also been considered. Ion energy (100 eV), ion fluence (2.6 × 10{sup 24} ions m{sup −2}), and target temperature (923 K) were kept constant for each experiment and their selections were based on our previous studies [1,2]. Our study shows homogeneously populated and highly dense Mo fuzz evolutions on entire Mo surface for 100% He{sup +} ion irradiation case. Enhancement of C{sup +} ion impurities in He{sup +} ions causes a sequential reduction in Mo fuzz evolutions, leading to almost complete prevention of Mo fuzz evolutions for 0.5% C{sup +} ion impurity concentrations. Additionally, no fuzz formation for 100% H{sup +} ion irradiation at all, were seen (apart from some tiny nano-structuring, in very limited regions). This indicates that there is no significant role of H{sup +} ions in Mo fuzz evolutions (at least for such tiny amount, 0.04–2.0% H{sup +} ions). The study is significant to understand the behavior of potential high-Z plasma facing components (PFCs), in the, presence of tiny amount of C impurities, for nuclear fusion relevant applications. - Highlights: • Mo Fuzz evolutions due to low-energy high-flux 100% He{sup +} ion irradiation. • Sequential reduction in Mo fuzz evolutions with increasing C{sup +} ion impurities in He{sup +} ions. • Almost complete prevention of Mo

  16. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are

  17. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Alexander, C.W.; Hobbs, R.L.

    1998-01-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed

  18. Assessment of the structural integrity of a prototypical instrumented IFMIF high flux test module rig by fully 3D X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Tiseanu, Ion [National Institute for Laser, Plasma and Radiation Physics, Plasma Physics and Nuclear Fusion Laboratory NILPRP, P.O. Box MG-36, R-77125 Bucharest-Magurele (Romania)], E-mail: tiseanu@infim.ro; Simon, Martin [Hans Waelischmiller GmbH (HWM), Schiessstattweg 16, D-88677 Markdorf (Germany); Craciunescu, Teddy; Mandache, Bogdan N. [National Institute for Laser, Plasma and Radiation Physics, Plasma Physics and Nuclear Fusion Laboratory NILPRP, P.O. Box MG-36, R-77125 Bucharest-Magurele (Romania); Heinzel, Volker; Stratmanns, Erwin; Simakov, Stanislaw P.; Leichtle, Dieter [Forschungszentrum Karlsruhe (FZK), Institut fuer Reaktorsicherheit IRS, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2007-10-15

    An inspection procedure to assess the mechanical integrity of the International Fusion Materials Irradiation Facility (IFMIF) capsules and rigs during the irradiation campaign is necessary. Due to its penetration ability and contrast mechanism, the X-ray microtomography is the only known tool that could meet these requirements. In the high flux test module (HFTM) of IFMIF miniaturized specimens are densely packed in capsules. The capsules, which wear electric heaters and thermocouples, are housed in rigs. To assure a well-defined thermal contact the heater wires have to be attached to the capsules by brazing them into grooves. The examination of the quality of the braze material layer is of crucial interest in order to assure the best heat coupling of the heater wires to the capsule. A high density of the heaters is necessary to maintain the required temperature and, in addition NaK filling of narrow channels is employed for improving the 3D-heat transfer between the irradiation specimens and the capsule wall. Fully 3D tomographic inspections of a prototypical HFTM instrumented capsule, developed and manufactured at FZK, were conducted. In order to identify the optimum irradiation parameters and scanning configuration we carried out a comparative NDT analysis on two microtomography facilities: a compact, high magnification installation at NILPRP and a high-end industrial tomography facility with higher X-ray energy and intensity at HWM. At optimum inspection parameters of a directional microfocus X-ray source (U = 220 kV and I = 300 {mu}A) the geometry resolution was about 30 microns for characteristic dimension of the sample of 50 mm. Voids of 30 microns diameter and cracks of about 20 microns width can be detected. The absolute error of geometrical measurements is sufficient for the assessment of the structural integrity of the irradiation capsule and for the geometry description within the thermal-hydraulic modeling. The space resolution and the overall

  19. Assessment of the structural integrity of a prototypical instrumented IFMIF high flux test module rig by fully 3D X-ray microtomography

    International Nuclear Information System (INIS)

    Tiseanu, Ion; Simon, Martin; Craciunescu, Teddy; Mandache, Bogdan N.; Heinzel, Volker; Stratmanns, Erwin; Simakov, Stanislaw P.; Leichtle, Dieter

    2007-01-01

    An inspection procedure to assess the mechanical integrity of the International Fusion Materials Irradiation Facility (IFMIF) capsules and rigs during the irradiation campaign is necessary. Due to its penetration ability and contrast mechanism, the X-ray microtomography is the only known tool that could meet these requirements. In the high flux test module (HFTM) of IFMIF miniaturized specimens are densely packed in capsules. The capsules, which wear electric heaters and thermocouples, are housed in rigs. To assure a well-defined thermal contact the heater wires have to be attached to the capsules by brazing them into grooves. The examination of the quality of the braze material layer is of crucial interest in order to assure the best heat coupling of the heater wires to the capsule. A high density of the heaters is necessary to maintain the required temperature and, in addition NaK filling of narrow channels is employed for improving the 3D-heat transfer between the irradiation specimens and the capsule wall. Fully 3D tomographic inspections of a prototypical HFTM instrumented capsule, developed and manufactured at FZK, were conducted. In order to identify the optimum irradiation parameters and scanning configuration we carried out a comparative NDT analysis on two microtomography facilities: a compact, high magnification installation at NILPRP and a high-end industrial tomography facility with higher X-ray energy and intensity at HWM. At optimum inspection parameters of a directional microfocus X-ray source (U = 220 kV and I = 300 μA) the geometry resolution was about 30 microns for characteristic dimension of the sample of 50 mm. Voids of 30 microns diameter and cracks of about 20 microns width can be detected. The absolute error of geometrical measurements is sufficient for the assessment of the structural integrity of the irradiation capsule and for the geometry description within the thermal-hydraulic modeling. The space resolution and the overall

  20. Golimumab Injection

    Science.gov (United States)

    ... with another medication called azathioprine (Imuran) or 6-mercaptopurine (Purinethol). Children and teenagers should not normally receive ... medicines you are taking, as well as any products such as vitamins, minerals, or other dietary supplements. ...

  1. Violation of multiparticle Bell inequalities for low- and high-flux parametric amplification using both vacuum and entangled input states

    International Nuclear Information System (INIS)

    Reid, M.D.; Munro, W.J.; De Martini, F.

    2002-01-01

    We show how polarization measurements on the output fields generated by parametric down conversion will reveal a violation of multiparticle Bell inequalities, in the regime of both low- and high-output intensity. In this case, each spatially separated system, upon which a measurement is performed, is comprised of more than one particle. In view of the formal analogy with spin systems, the proposal provides an opportunity to test the predictions of quantum mechanics for spatially separated higher spin states. Here the quantum behavior possible even where measurements are performed on systems of large quantum (particle) number may be demonstrated. Our proposal applies to both vacuum-state signal and idler inputs, and also to the quantum-injected parametric amplifier as studied by De Martini et al. The effect of detector inefficiencies is included, and weaker Bell-Clauser-Horne inequalities are derived to enable realistic tests of local hidden variables with auxiliary assumptions for the multiparticle situation

  2. Safe injection procedures, injection practices, and needlestick ...

    African Journals Online (AJOL)

    Nermine Mohamed Tawfik Foda

    2017-01-10

    Jan 10, 2017 ... sures regarding disposable injection equipment, waste containers, hand hygiene ... injection practices lead to high prevalence of NSSIs in operating rooms. .... guidelines, the availability of training courses to HCWs, and provi-.

  3. ILL High Flux Reactor in the event of an earthquake: Safety targets, technical approaches and work carried out

    International Nuclear Information System (INIS)

    Plewinski, Francois; Coiscault, Thomas

    2006-01-01

    The Institut Max von Laue - Paul Langevin is a pan-European research organisation and the world leader in neutron science and technology. Since 1971 it has been operating the ILL High-Flux Reactor (HFR), the most intense continuous neutron source in the world. The ILL is governed by an intergovernmental Convention between France, Germany and the United Kingdom, which was signed in 1967; since then several other countries have joined the ILL as Scientific Member countries: Italy, Spain, Switzerland, Russia, Austria, the Czech Republic and Sweden. The fourth ten-year extension to the agreement was signed at the end of 2002, thus ensuring that the Institute will continue to operate until at least the end of 2013. Thanks to the reliability of the HFR since its very first years of operation, scientific output at the ILL has developed in a spectacular fashion, allowing the Institute to become the world's foremost neutron facility in terms of scientific publications. The Millennium Programme, a 20 MEURO development plan, was set up in 2000 with the aim of launching an accelerated but sustainable programme of instrument renewal which will maintain the ILL's leading position. Over the next 10 years, a further 100 MEURO of investment is foreseen for the Millennium Programme. By way of comparison, the annual ILL general budget is around 75 MEURO. In 2002 the facility underwent a general safety review, including an assessment of the impact of a safe shutdown earthquake. The Refit Programme for upgrading the installations and improving safety levels is now under way, in order to allow the ILL to operate for at least another 20 years. The contents of the paper is as follows: 1. Context; 2. HFR operations and scientific experiments; 3. HFR operations - Safety; 3.1. Operation at nominal power; 3.2. Automatic reactor shutdown - Transition to natural convection; 4. Seismic scenario; 4.1. Target equivalent doses for local populations; 4.2. Relevant source terms; 4.3. Radiological

  4. Injection Laryngoplasty Materials

    OpenAIRE

    Haldun Oðuz

    2013-01-01

    Injection laryngoplasty is one of the treatment options for voice problems. In the recent years, more safe and more biocompatible injection materials are available on the market. Long and short term injection materials are discussed in this review.

  5. Penicillin G Procaine Injection

    Science.gov (United States)

    Penicillin G procaine injection is used to treat certain infections caused by bacteria. Penicillin G procaine injection should not be used to ... early in the treatment of certain serious infections. Penicillin G procaine injection is in a class of ...

  6. Rheological behaviour of Portland G and polyurethane slurries applied to oil wells submitted a steam injection; Comportamento reologico de pastas de cimento Portland G e poliuretana para cimentacao de pocos sujeitos a injecao de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, U.; Martinelli, A.E.; Melo, D.M.; Silva, L.; Lima, F. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Araujo, R.G. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Two point of view can be focused with respect to the behavior of slurries for cementing. The first refers to the rheological properties, they should submit to the established limits by the standards. A second point of view refers to the problems originated from the use of the secondary recovery by steam injection, that wakes up tensile tension in the sheath. A solution for this problem is the addition of thermal stronger polymer to the cement slurry, increasing your tensile strength. However, this practice is usually accompanied by the increase of the viscosity of the slurry, that make difficult the pumping. Studies involving rheological aspects and thickening time were accomplished with slurries additivated with polyurethane for evaluation of your pumpability. Correlations were observed among polyurethane concentration, viscosity and thickening time. Mathematical models are proposed correlating the three parameters. A good values were found for concentrations among 1,5 % and 2,5 % of polyurethane. The polyurethane actuated as a charge reducing the slurry fluidity, then the increase of the viscosity. In the condition of setting of cement, the polyurethane stimulated a better dispersion and approach of the particles of the cement with water, accelerating the typical precipitation process of the cement hydration. (author)

  7. Water injection profiling

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1982-01-01

    A method of neutron-gamma logging is described, in which water, injected in a cased well borehole with peforations, is irradiated with neutrons of 10 MeV or greater, and subsequent gamma radiation is detected by a pair of detectors along the borehole. Counting rates of detectors are analyzed in terms of two gamma ray energy windows. Linear flow velocity of fluid moving downward within the casing is used in conjunction with count rate data to determine volume flow rates of water moving in other directions. Apparatus includes a sonde with a neutron source and appropriate gamma sensors

  8. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Weaver, P.C.

    2010-01-01

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 5 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the concrete duct from Trench 5 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 5 was appropriate based on recent verification results from Trenches 2, 3, and 4, and the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch pipe from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 5. Based on the pre-excavation sample results of the soil overburden the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that resolved each ORISE comment adequately (BNL 2010a). ORISE referred to the revised HFBR Underground Utilities FSP FSS data to conduct the Type A verification

  9. Geothermal Injection Monitoring in Klamath Falls, OR

    Energy Technology Data Exchange (ETDEWEB)

    Culver, G

    1990-01-01

    Klamath Falls has nearly a 150-year history of geothermal utilization. The geothermal aquifer has been the subject of many studies and is probably the most tested direct use reservoir in the world. This provides good background data for increased monitoring needed as new injection wells are drilled. Prior to July 1990, few injection wells existed. A city ordinance requires injection after July 1990. The city and major injectors have initiated a monitoring system.

  10. Porous media heat transfer for injection molding

    Science.gov (United States)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  11. Finite Volume Scheme for Double Convection-Diffusion Exchange of Solutes in Bicarbonate High-Flux Hollow-Fiber Dialyzer Therapy

    Directory of Open Access Journals (Sweden)

    Kodwo Annan

    2012-01-01

    Full Text Available The efficiency of a high-flux dialyzer in terms of buffering and toxic solute removal largely depends on the ability to use convection-diffusion mechanism inside the membrane. A two-dimensional transient convection-diffusion model coupled with acid-base correction term was developed. A finite volume technique was used to discretize the model and to numerically simulate it using MATLAB software tool. We observed that small solute concentration gradients peaked and were large enough to activate solute diffusion process in the membrane. While CO2 concentration gradients diminished from their maxima and shifted toward the end of the membrane, concentration gradients peaked at the same position. Also, CO2 concentration decreased rapidly within the first 47 minutes while optimal concentration was achieved within 30 minutes of the therapy. Abnormally high diffusion fluxes were observed near the blood-membrane interface that increased diffusion driving force and enhanced the overall diffusive process. While convective flux dominated total flux during the dialysis session, there was a continuous interference between convection and diffusion fluxes that call for the need to seek minimal interference between these two mechanisms. This is critical for the effective design and operation of high-flux dialyzers.

  12. Enhancement of Toxic Substances Clearance from Blood Equvalent Solution and Human Whole Blood through High Flux Dialyzer by 1 MHz Ultrasound

    Directory of Open Access Journals (Sweden)

    Shiran M. B.

    2017-06-01

    Full Text Available Background: Hemodialysis is a process of removing waste and excess fluid from blood when kidneys cannot function efficiently. It often involves diverting blood to the filter of the dialysis machin to be cleared of toxic substances. Fouling of pores in dialysis membrane caused by adhesion of plasma protein and other toxins will reduce the efficacy of the filtre. Objective: In This study, the influence of pulsed ultrasound waves on diffusion and the prevention of fouling in the filter membrane were investigated. Material and Methods: Pulsed ultrasound waves with frequency of 1 MHz at an intensity of 1 W/cm2 was applied to the high flux (PES 130 filter. Blood and blood equivalent solutions were passed through the filter in separate experimental setups. The amount of Creatinine, Urea and Inulin cleared from both blood equvalent solution and human whole blood passed through High Flux (PES 130 filter were measured in the presence and absence of ultrasound irradiation. Samples were taken from the outlet of the dialyzer every five minutes and the clearance of each constituent was calculated. Results: Statistical analysis of the blood equvalent solution and whole blood indicated the clearance of Urea and Inulin in the presence of ultrasound increased (p<0.05, while no significant effects were observed for Creatinine. Conclusion: It may be concluded that ultrasound, as a mechanical force, can increase the rate of clearance of some toxins (such as middle and large molecules in the hemodialysis process.

  13. Enhancement of Toxic Substances Clearance from Blood Equvalent Solution and Human Whole Blood through High Flux Dialyzer by 1 MHz Ultrasound

    Science.gov (United States)

    Shiran, M.B.; Barzegar Marvasti, M.; Shakeri-Zadeh, A.; Shahidi, M.; Tabkhi, N.; Farkhondeh, F.; Kalantar, E.; Asadinejad, A.

    2017-01-01

    Background: Hemodialysis is a process of removing waste and excess fluid from blood when kidneys cannot function efficiently. It often involves diverting blood to the filter of the dialysis machin to be cleared of toxic substances. Fouling of pores in dialysis membrane caused by adhesion of plasma protein and other toxins will reduce the efficacy of the filtre. Objective: In This study, the influence of pulsed ultrasound waves on diffusion and the prevention of fouling in the filter membrane were investigated. Material and Methods: Pulsed ultrasound waves with frequency of 1 MHz at an intensity of 1 W/cm2 was applied to the high flux (PES 130) filter. Blood and blood equivalent solutions were passed through the filter in separate experimental setups. The amount of Creatinine, Urea and Inulin cleared from both blood equvalent solution and human whole blood passed through High Flux (PES 130) filter were measured in the presence and absence of ultrasound irradiation. Samples were taken from the outlet of the dialyzer every five minutes and the clearance of each constituent was calculated. Results: Statistical analysis of the blood equvalent solution and whole blood indicated the clearance of Urea and Inulin in the presence of ultrasound increased (p<0.05), while no significant effects were observed for Creatinine. Conclusion: It may be concluded that ultrasound, as a mechanical force, can increase the rate of clearance of some toxins (such as middle and large molecules) in the hemodialysis process. PMID:28580332

  14. Enhanced Oil Recovery by a Horizontal Well Located Inside a Polymer Flood Pilot Récupération assistée des hydrocarbures par forage horizontal à l'intérieur d'un pilote d'injection de polymère

    Directory of Open Access Journals (Sweden)

    Foxonet F.

    2006-11-01

    Full Text Available Amongst the new technologies conceived to improve production from oil zones, horizontal drilling associated with an injection scheme appears to be highly promising. In this respect, well CR 163 H, drilling unconsolidated sand as the main objective, has been an interesting experience. Elf Aquitaine is now reputed for its knowledge and expertise in horizontal drilling and CR 163 H was its fifth but probably most difficult horizontal well. This time the target was a 7 m thick sand reservoir at a vertical depth of 580 m inside a polymer flood pilot. In this inverted seven spot configuration with one injector in the center and 6 producers at a distance of 400 m, a polymer solution was injected from 1977 to 1983, followed by water injection. The horizontal section of CR 163 H is located at the northern edge of the pilot at a distance of 350 m from the injector and roughly follows the curved shape of the expected oil bank. Its productivity index is about 7 times that of the average of the vertical surrounding wells. A sharp drop in the water-cut occurred in March 1988 until October 1988 and then leveled out to the same value as the nearby wells. This behaviour was clearly due to the oil bank generated by the polymer injection, making CR 163 H an efficient tool for what could be called Geometrically enhanced oil recovery . Parmi les nouvelles technologies étudiées pour améliorer la production des zones pétrolifères, le forage horizontal associé à un programme d'injection semble très prometteur. L'expérience du puits CR 163 H, foré dans une couche de grès non consolidé, est très intéressante à cet égard. Pour Elf Aquitaine, dont l'expertise en matière de forage horizontal est aujourd'hui reconnue, le puits CR 163 H a été la cinquième expérience dans ce domaine mais sans doute la plus difficile. Le forage visait un réservoir gréseux de 7 m d'épaisseur situé à 580 m de profondeur, dans un pilote d'injection de polymère. La

  15. Promoting Safe Injection Practices : The Challenge Ahead

    Directory of Open Access Journals (Sweden)

    V K Srivastava

    2006-06-01

    Full Text Available Injections are one of the most common health care procedures in the world. Global estimates range between 12 billion-16 billion injections each year’. Most of the injections (90 to 95% are given for therapeutic purposes and only 5 to 10% are given for immunization. It is estimated that worldwide every year a billion injections are given to women and children for immunization. Up to half of these injections are currently thought to be unsafe. Due to the sheer burden of injections and the coresponding magnitude of unsafe injections, the proportion of blood borne pathogen transmission is much larger than is due to unsafe blood transfusion. Unsafe injections are responsible for million cases of Hepatitis B and C and an estimated one-quarter of a million cases of HIV annually. Worldwide 8 to 16 million hepatitis B, 2.3 - 4.7 million hepatitis C and 80,000 - 1,60,000 HIV infections are estimated to occur yearly form reuse of syringes and needles without adequate sterilization2. In the less developed countries, the unsafe injection practices account for an estimated $ 535 million in health care costs and result in nearly 1.3 million deaths a year. In a developing country like India where unnecessary injections are common, the total bur­den of injections is estimated to be 3.7 billion injections per year3. Certain studies that have been carried out in India,along with anecdotal evidence point towards a large numbe- of unnecessary, inappropriate, unsafe injections and inadequate sharps waste management4 5. A high proportion of injections given in India for immunization are unsafe due to reuse of needles/ syringes. The popularity of curative injections remains high due to various factors influencing the behaviour of prescribers / injection givers as well as clients.

  16. Foam injection method and system

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, W C; Parmley, J B; Shepard, J C

    1977-05-10

    A method is described for more efficiently practicing in situ combustion techniques by generating a gas-water mist or foam adjacent to the combustion formation within the injection well. The mist or foam is forced out of the well into the formation to transport heat away from the burned region of the formation toward the periphery of the combustion region to conserve fuel. Also taught are a method and system for fluid treating a formation while maintaining enhanced conformance of the fluid injection profile by generating a mist or foam down-hole adjacent to the formation and then forcing the mist or foam out into the formation. (19 claims)

  17. Worldwide Injection Technique Questionnaire Study: Population Parameters and Injection Practices.

    Science.gov (United States)

    Frid, Anders H; Hirsch, Laurence J; Menchior, Astrid R; Morel, Didier R; Strauss, Kenneth W

    2016-09-01

    From February 1, 2014, through June 30, 2015, 13,289 insulin-injecting patients from 423 centers in 42 countries took part in one of the largest surveys ever performed in diabetes. The goal was to assess patient characteristics, as well as historical and practical aspects of their injection technique. Results show that 4- and 8-mm needle lengths are each used by nearly 30% of patients and 5- and 6-mm needles each by approximately 20%. Higher consumption of insulin (as measured by total daily dose) is associated with having lipohypertrophy (LH), injecting into LH, leakage from the injection site, and failing to reconstitute cloudy insulin. Glycated hemoglobin values are, on average, 0.5% higher in patients with LH and are significantly higher with incorrect rotation of sites and with needle reuse. Glycated hemoglobin values are lower in patients who distribute their injections over larger injection areas and whose sites are inspected routinely. The frequencies of unexpected hypoglycemia and glucose variability are significantly higher in those with LH, those injecting into LH, those who incorrectly rotate sites, and those who reuse needles. Needles associated with diabetes treatment are the most commonly used medical sharps in the world. However, correct disposal of sharps after use is critically suboptimal. Many used sharps end up in public trash and constitute a major accidental needlestick risk. Use of these data should stimulate renewed interest in and commitment to optimizing injection practices in patients with diabetes. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  18. Safe injection procedures, injection practices, and needlestick ...

    African Journals Online (AJOL)

    Nermine Mohamed Tawfik Foda

    2017-01-10

    Jan 10, 2017 ... Background: Of the estimated 384,000 needle-stick injuries occurring in hospitals each year, 23% occur in surgical settings. This study was conducted to assess safe injection procedures, injection practices, and circumstances contributing to needlestick and sharps injures (NSSIs) in operating rooms.

  19. Improved waterflooding efficiency by horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Popa, C. G. [Petroleum and Gas Univ., Ploesti (Romania); Clipea, M. [SNP Petrom SA, ICPT Campina (Romania)

    1998-12-31

    The influence of well pattern involving the use of horizontal wells on the overall efficiency of the waterflooding process was analyzed. Three different scenarios were examined: (1) a pattern of using two parallel horizontal wells, one for injection, the other for production, (2) a pattern of one horizontal well for water injection and several vertical wells for production, and (3) a pattern of using vertical wells for injection and one horizontal well for production. In each case, the waterflooding process was simulated using a two phase two dimensional numerical model. Results showed that the pressure loss along the horizontal section had a large influence on the sweep efficiency whether the horizontal well was used for injection or production. Overall, the most successful combination appeared to be using vertical wells for injection and horizontal wells for production. 4 refs., 1 tab., 15 figs.

  20. Hanford wells

    International Nuclear Information System (INIS)

    McGhan, V.L.; Myers, D.A.; Damschen, D.W.

    1976-03-01

    The Hanford Reservation contains about 2100 wells constructed from pre-Hanford Works to the present. As of Jan. 1976, about 1800 wells still exist, 850 of which were drilled to the groundwater table; 700 still contain water. This report provides the most complete documentation of these wells and supersedes all previous compilations, including BNWL-1739

  1. Design and Thermal Analysis for Irradiation of Pyrolytic Carbon/Silicon Carbide Diffusion Couples in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept consisting of a spherical fuel kernel made of uranium oxide and uranium carbide, surrounded by a porous carbonaceous buffer layer and successive layers of dense inner pyrolytic carbon (IPyC), silicon carbide (SiC) deposited by chemical vapor , and dense outer pyrolytic carbon (OPyC). This fuel concept is being considered for advanced reactor applications such as high temperature gas-cooled reactors (HTGRs) and molten salt reactors (MSRs), as well as for accident-tolerant fuel for light water reactors (LWRs). Development and implementation of TRISO fuel for these reactor concepts support the US Department of Energy (DOE) Office of Nuclear Energy mission to promote safe, reliable nuclear energy that is sustainable and environmentally friendly. During operation, the SiC layer serves as the primary barrier to metallic fission products and actinides not retained in the kernel. It has been observed that certain fission products are released from TRISO fuel during operation, notably, Ag, Eu, and Sr [1]. Release of these radioisotopes causes safety and maintenance concerns.

  2. Nanoindentation study of the combined effects of crystallography, heat treatment and exposure to high-flux deuterium plasma in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zayachuk, Y., E-mail: yevhen.zayachuk@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Armstrong, D.E.J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Bystrov, K. [FOM Institute DIFFER- Dutch Institute for Fundamental Energy Research, Trilateral Euregio Cluster, De Zaale 20, 3612 AJ Eindhoven (Netherlands); Van Boxel, S. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Morgan, T. [FOM Institute DIFFER- Dutch Institute for Fundamental Energy Research, Trilateral Euregio Cluster, De Zaale 20, 3612 AJ Eindhoven (Netherlands); Roberts, S.G. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2017-04-01

    tungsten samples were heat-treated to achieve partial recrystallization and exposed to high ion flux deuterium plasma at different temperatures and fluences. Continuous stiffness nanoindentation measurements of near-surface hardness were performed in the grains of specific annealing states and of specific crystallographic orientation, determined by electron backscatter diffraction (EBSD); indentation pile-up was investigated using surface profilometry. Bulk hardness of unexposed tungsten does not strongly depend on grain orientation, but depends on the annealing state of the grain, with values between ∼4.3 GPa for recrystallized grains and ∼5.5 for non-recrystallized ones. Grains with <111> surface normal orientation feature the least pile-up, while grains with <001> orientation the most; pile-up also depends on the annealing state, being generally lower in recrystallized grains. Plasma exposure leads to the increase of hardness, most significantly near the surface. The width of plasma-affected zone increases with the increase of exposure temperature and fluence, as well in recrystallized grains, correlating with the increase of diffusion depth. Plasma exposure does not lead to the emergence of orientation-dependence of hardness. Both indentation pile-up and near-surface indentation pop-ins are generally suppressed by plasma exposure.

  3. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  4. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, R.T. III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N.

    2006-01-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U 3 O 8 mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties

  5. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  6. Selection of support structure materials for irradiation experiments in the HFIR [High Flux Isotope Reactor] at temperatures up to 500 degrees C

    International Nuclear Information System (INIS)

    Farrell, K.; Longest, A.W.

    1990-01-01

    The key factor in the design of capsules for irradiation of test specimens in the High Flux Isotope Reactor at preselected temperatures up to 500 degree C utilizing nuclear heating is a narrow gas-filled gap which surrounds the specimens and controls the transfer of heat from the specimens through the wall of a containment tube to the reactor cooling water. Maintenance of this gap to close tolerances is dependent on the characteristics of the materials used to support the specimens and isolate them from the water. These support structure materials must have low nuclear heating rates, high thermal conductivities, and good dimensional stabilities under irradiation. These conditions are satisfied by certain aluminum alloys. One of these alloys, a powder metallurgy product containing a fine dispersion of aluminum oxide, is no longer manufactured. A new alloys of this type, with the trade name DISPAL, is determined to be a suitable substitute. 23 refs., 13 figs., 3 tabs

  7. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline.

    Science.gov (United States)

    Dhiman, I; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X; Jiang, C Y; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3 He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe 3 Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3 He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  8. Sodium Ferric Gluconate Injection

    Science.gov (United States)

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  9. Calcitonin Salmon Injection

    Science.gov (United States)

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to treat Paget's disease ...

  10. Iron Dextran Injection

    Science.gov (United States)

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  11. Aminocaproic Acid Injection

    Science.gov (United States)

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  12. Deoxycholic Acid Injection

    Science.gov (United States)

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  13. Cluster beam injection

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Fois, M.

    1978-01-01

    Areas of possible applications of cluster injection are discussed. The deposition inside the plasma of molecules, issued from the dissociation of the injected clusters, has been computed. Some empirical scaling laws for the penetration are given

  14. Antigen injection (image)

    Science.gov (United States)

    Leprosy is caused by the organism Mycobacterium leprae . The leprosy test involves injection of an antigen just under ... if your body has a current or recent leprosy infection. The injection site is labeled and examined ...

  15. Fuel-Coolant-Interaction modeling and analysis work for the High Flux Isotope Reactor Safety Analysis Report

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Chang, S.J.; Freels, J.; Gat, U.; Lepard, B.L.; Gwaltney, R.C.; Luttrell, C.; Kirkpatrick, J.

    1993-07-01

    A brief historical background and a description of short- and long-term task plan development for effective closure of this important safety issue for the HFIR are given. Short-term aspects deal with Fuel-Coolant-Interaction (FCI) issues experimentation, modeling, and analysis for the flow-blockage-induced steam explosion events in direct support of the SAR. Long-term aspects deal with addressing FCI issues resulting from other accidents in conjunction with issues dealing with aluminum ignition, which can result in an order of magnitude increase in overall energetics. Problem formulation, modeling, and computer code simulation for the various phases of steam explosions are described. The evaluation of core melt initiation propagation, and melt superheat are described. Core melt initiation and propagation have been studied using simple conservative models as well as from modeling and analysis using RELAP5. Core debris coolability, heatup, and melting/freezing aspects have been studied by use of the two-dimensional melting/freezing analysis code 2DKO, which was also benchmarked with MELCOR code predictions. Descriptions are provided for the HM, BH, FCIMOD, and CTH computer codes that have been implemented for studying steam explosion energetics from the standpoint of evaluating bounding loads by thermodynamic models or best-estimate loads from one- and two-dimensional simulations of steam explosion energetics. Vessel failure modeling and analysis was conducted using the principles of probabilistic fracture mechanics in conjunction with ADINA code calculations. Top head bolts failure modeling has also been conducted where the failure criterion was based upon stresses in the bolts exceeding the material yield stress for a given time duration. Missile transport modeling and analysis was conducted by setting up a one-dimensional mathematical model that accounts for viscous dissipation, virtual mass effects, and material inertia

  16. Water Well Locations - Conservation Wells

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The conservation well layer identifies the permitted surface location of oil and gas conservation wells that have not been plugged. These include active, regulatory...

  17. Amazing wells

    Energy Technology Data Exchange (ETDEWEB)

    Ross, E.; Leschart, M.; Mahoney, J.; Smith, M.

    2002-02-01

    Six wells and a drilling rig, setting company, national and world records such as deepest well, longest horizontal well, and record setting completion technology are described. Steam assisted gravity drainage (SAGD) is mainly responsible for these outstanding successes. Discovered more than 20 years ago by a then Imperial oil scientist (Dr. Roger Butler) SAGD promises recovery rates of about 70 per cent for the right reservoir; more than twice the 25 to 30 per cent recovery rate with cyclic stimulation at Cold Lake and an average recovery rate of about 28 per cent for all Alberta light, medium and heavy oil wells. The seven facilities discussed in this article are : (1) Alberta Energy Company's Forest Hill oil sands project near Cold Lake, the first commercial SAGD operation where well pairs are producing 1,200-1,500 bbls per day; (2) Talisman Energy's Lovett River wells, which hold the company's depth record for a horizontal well in the Alberta Foothills; (3) Also owned by Talisman Energy in the Buchan Field in the North Sea, this well is famous for the fact that it was drilled with coiled tubing from a floating production vessel; : (4) in the Peco Field, south of Edson Alberta and owned by EOG Resources Canada, this well holds the Canadian offshore record for a single run using rotary steerable technology; (5) Burlington Resources Canada 's Burlington HZ Hinton 2-34-52-26 W5M well is best known for its record setting extended reach open hole coiled tubing job; (6) another Burlington Resources well holds the record for the deepest one-trip whipstock system ever run in Canada and milled successfully in one trip; and (7) a drilling rig in the Wabasca-Brintnell area of northern Alberta, owned by Canadian Natural Resources Limited, holds the record for drilling the largest number of horizontal holes in one year with the same rig.

  18. Live Well

    Science.gov (United States)

    ... Health Conditions Live Well Mental Health Substance Use Smoking Healthy Diet Physical Activity Family Planning Living with HIV: Travel ... to his or her health and well-being. Smoking - Tobacco use is the ... year. Healthy Diet - No matter your HIV status, healthy eating is ...

  19. Hanford wells

    International Nuclear Information System (INIS)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details

  20. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Harpenau, E.M.

    2010-01-01

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 1 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the 42-inch duct and 14-inch line in Trench 1 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 1 was appropriate based on recent verification results from Trenches 2, 3, 4, and 5, and the minimal potential for residual radioactivity in the area. The removal of underground utilities has been performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch duct from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 1. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the gamma spectroscopy results for 14 FSS soil samples, four core samples, and one duplicate sample collected from Trench 1. Sample results for the radionuclides of concern were below the established cleanup goals. However, in sample PH-3

  1. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  2. Militantly Well

    DEFF Research Database (Denmark)

    Vigh, Henrik Erdman

    2015-01-01

    futures that transcend conflict engagement and wartime suffering for young militiamen. It clarifies the positive prospects that are expected to lie beyond the known horrors of war. Though conflict and warfare may provide strange points of departure for talking about well-being, imaginaries of happiness...... stand out from a background of hardship and are talked about in both a quite concrete way, as a lack of insecurity, as well as in an abstract way, as realization of social being. However, for most of the people I talk to, happiness remains elusive and evades their desperate attempts to grasp it...

  3. X-ray response of CdZnTe detectors grown by the vertical Bridgman technique: Energy, temperature and high flux effects

    Energy Technology Data Exchange (ETDEWEB)

    Abbene, L., E-mail: leonardo.abbene@unipa.it [Dipartimento di Fisica e Chimica (DiFC), Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Gerardi, G.; Turturici, A.A.; Raso, G. [Dipartimento di Fisica e Chimica (DiFC), Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Benassi, G. [due2lab s.r.l., Via Paolo Borsellino 2, Scandiano, Reggio Emilia 42019 (Italy); Bettelli, M. [IMEM/CNR, Parco Area delle Scienze 37/A, Parma 43100 (Italy); Zambelli, N. [due2lab s.r.l., Via Paolo Borsellino 2, Scandiano, Reggio Emilia 42019 (Italy); Zappettini, A. [IMEM/CNR, Parco Area delle Scienze 37/A, Parma 43100 (Italy); Principato, F. [Dipartimento di Fisica e Chimica (DiFC), Università di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy)

    2016-11-01

    Nowadays, CdZnTe (CZT) is one of the key materials for the development of room temperature X-ray and gamma ray detectors and great efforts have been made on both the device and the crystal growth technologies. In this work, we present the results of spectroscopic investigations on new boron oxide encapsulated vertical Bridgman (B-VB) grown CZT detectors, recently developed at IMEM-CNR Parma, Italy. Several detectors, with the same electrode layout (gold electroless contacts) and different thicknesses (1 and 2.5 mm), were realized: the cathode is a planar electrode covering the detector surface (4.1×4.1 mm{sup 2}), while the anode is a central electrode (2×2 mm{sup 2}) surrounded by a guard-ring electrode. The detectors are characterized by electron mobility-lifetime product (µ{sub e}τ{sub e}) values ranging between 0.6 and 1·10{sup −3} cm{sup 2}/V and by low leakage currents at room temperature and at high bias voltages (38 nA/cm{sup 2} at 10000 V/cm). The spectroscopic response of the detectors to monochromatic X-ray and gamma ray sources ({sup 109}Cd, {sup 241}Am and {sup 57}Co), at different temperatures and fluxes (up to 1 Mcps), was measured taking into account the mitigation of the effects of incomplete charge collection, pile-up and high flux radiation induced polarization phenomena. A custom-designed digital readout electronics, developed at DiFC of University of Palermo (Italy), able to perform a fine pulse shape and height analysis even at high fluxes, was used. At low rates (200 cps) and at room temperature (T=25 °C), the detectors exhibit an energy resolution FWHM around 4% at 59.5 keV, for comparison an energy resolution of 3% was measured with Al/CdTe/Pt detectors by using the same electronics (A250F/NF charge sensitive preamplifier, Amptek, USA; nominal ENC of 100 electrons RMS). At high rates (750 kcps), energy resolution values of 7% and 9% were measured, with throughputs of 2% and 60% respectively. No radiation polarization phenomena were

  4. Temperature-dependent surface porosity of Nb{sub 2}O{sub 5} under high-flux, low-energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Novakowski, T.J., E-mail: tnovakow@purdue.edu; Tripathi, J.K.; Hosinski, G.M.; Joseph, G.; Hassanein, A.

    2016-01-30

    Graphical abstract: - Highlights: • Nb{sub 2}O{sub 5} surfaces are nanostructured with a novel He{sup +} ion irradiation process. • High-flux, low energy He{sup +} ion irradiation generates highly porous surfaces. • Top-down approach guarantees good contact between different crystallites. • Sample annealing demonstrates temperature effect on surface morphology. • Surface pore diameter increases with increasing temperature. - Abstract: The present study reports on high-flux, low-energy He{sup +} ion irradiation as a novel method of enhancing the surface porosity and surface area of naturally oxidized niobium (Nb). Our study shows that ion-irradiation-induced Nb surface micro- and nano-structures are highly tunable by varying the target temperature during ion bombardment. Mirror-polished Nb samples were irradiated with 100 eV He{sup +} ions at a flux of 1.2 × 10{sup 21} ions m{sup −2} s{sup −1} to a total fluence of 4.3 × 10{sup 24} ions m{sup −2} with simultaneous sample annealing in the temperature range of 773–1223 K to demonstrate the influence of sample temperature on the resulting Nb surface morphology. This surface morphology was primarily characterized using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Below 923 K, Nb surfaces form nano-scale tendrils and exhibit significant increases in surface porosity. Above 923 K, homogeneously populated nano-pores with an average diameter of ∼60 nm are observed in addition to a smaller population of sub-micron sized pores (up to ∼230 nm in diameter). Our analysis shows a significant reduction in surface pore number density and surface porosity with increasing sample temperature. High-resolution ex situ X-ray photoelectron spectroscopy (XPS) shows Nb{sub 2}O{sub 5} phase in all of the ion-irradiated samples. To further demonstrate the length scales in which radiation-induced surface roughening occurs, optical reflectivity was performed over a spectrum of

  5. SQL injection detection system

    OpenAIRE

    Vargonas, Vytautas

    2017-01-01

    SQL injection detection system Programmers do not always ensure security of developed systems. That is why it is important to look for solutions outside being reliant on developers. In this work SQL injection detection system is proposed. The system analyzes HTTP request parameters and detects intrusions. It is based on unsupervised machine learning. Trained by regular request data system detects outlier user parameters. Since training is not reliant on previous knowledge of SQL injections, t...

  6. Piezoelectric Injection Systems

    Science.gov (United States)

    Mock, R.; Lubitz, K.

    The origin of direct injection can be doubtlessly attributed to Rudolf Diesel who used air assisted injection for fuel atomisation in his first self-ignition engine. Although it became apparent already at that time that direct injection leads to reduced specific fuel consumption compared to other methods of fuel injection, it was not used in passenger cars for the moment because of its disadvantageous noise generation as the requirements with regard to comfort were seen as more important than a reduced specific consumption.

  7. Urinary incontinence - injectable implant

    Science.gov (United States)

    ... repair; ISD repair; Injectable bulking agents for stress urinary incontinence ... and disorders: physiology of micturition, voiding dysfunction, urinary incontinence, urinary tract infections, and painful bladder syndrome. In: Lobo ...

  8. CFD simulation of CO_2 sorption on K_2CO_3 solid sorbent in novel high flux circulating-turbulent fluidized bed riser: Parametric statistical experimental design study

    International Nuclear Information System (INIS)

    Thummakul, Theeranan; Gidaspow, Dimitri; Piumsomboon, Pornpote; Chalermsinsuwan, Benjapon

    2017-01-01

    Highlights: • Circulating-turbulent fluidization was proved to be advantage on CO_2 sorption. • The novel regime was proven to capture CO_2 higher than the conventional regimes. • Uniform solid particle distribution was observed in the novel fluidization regime. • The system continuity had more effect in the system than the process system mixing. • Parametric experimental design analysis was studied to evaluate significant factor. - Abstract: In this study a high flux circulating-turbulent fluidized bed (CTFB) riser was confirmed to be advantageous for carbon dioxide (CO_2) sorption on a potassium carbonate solid sorbent. The effect of various parameters on the CO_2 removal level was evaluated using a statistical experimental design. The most appropriate fluidization regime was found to occur between the turbulent and fast fluidization regimes, which was shown to capture CO_2 more efficiently than conventional fluidization regimes. The highest CO_2 sorption level was 93.4% under optimized CTFB operating conditions. The important parameters for CO_2 capture were the inlet gas velocity and the interactions between the CO_2 concentration and the inlet gas velocity and water vapor concentration. The CTFB regime had a high and uniform solid particle distribution in both the axial and radial system directions and could transport the solid sorbent to the regeneration reactor. In addition, the process system continuity had a stronger effect on the CO_2 removal level in the system than the process system mixing.

  9. Calculation of the transmutation rates of Tc-99, I-129 and Cs-135 in the High Flux Reactor, in the Phenix Reactor and in a light water reactor

    International Nuclear Information System (INIS)

    Bultman, J.

    1992-04-01

    Transmutation of long-lived fission products is of interest for the reduction of the possible dose to the population resulting from long-term leakage of nuclear waste from waste disposals. Three isotopes are of special interest: Tc-99, I-129 and Cs-135. Therefore, experiments on transmutation of these isotopes in nuclear reactors are planned. In the present study, the possible transmutation rates and mass reductions are determined for experiments in High Flux Reactor (HFR) located in Petten (Netherlands) and in Phenix (France). Also, rates were determined for a standard Light Water Reactor (LWR). The transmutation rates of the 3 fission products will be much higher in HFR than in Phenix reactor, as both total flux and effective cross sections are higher. For thick targets the effective half lives are approximately 3, 2 and 7 years for Tc-99, I-129 and Cs-135 irradiation respectively in HFR and 22, 16 and 40 years for Tc-99, I-129 and Cs-135 irradiation in Phenix reactor. The transmutation rates in LWR are low. Only the relatively large power of LWR guarantees a large total mass reduction. Especially transmutation of Cs-135 will be very difficult in Phenix and LWR, clearly shown by the very long effective half lives of 40 and 100 years, respectively. (author). 7 refs.; 5 figs.; 7 tabs

  10. Dosimetry work and calculations in connection with the irradiation of large devices in the high flux materials testing reactor BR2

    International Nuclear Information System (INIS)

    De Raedt, C.; Leenders, L.; Tourwe, H.; Farrar, H. IV.

    1982-01-01

    For about fifteen years the high flux reactor BR2 has been involved in the testing of fast reactor fuel pins. In order to simulate the fast reactor neutron environment most devices are irradiated under cadmium screen, cutting off the thermal flux component. Extensive neutronic calculations are performed to help the optimization of the fuel bundle design. The actual experiments are preceded by irradiations of their mock-ups in BR02, the zero power model of BR2. The mock-up irradiations, supported by supplementary calculations, are performed for the determination of the main neutronic characteristics of the irradiation proper in BR2 and for the determination of the corresponding operation data. At the end of the BR2 irradiation, the experimental results, such as burn-ups, neutron fluences, helium production in the fuel pin claddings, etc. are correlated by neutronic calculations in order to examine the consistency of the post-irradiation results and to validate the routine calculation procedure and cross-section data employed. A comparison is made in this paper between neutronic calculation results and some post-irradiation data for MOL 7D, a cadmium screened sodium cooled loop containing a nineteen fuel pin bundle

  11. High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater

    International Nuclear Information System (INIS)

    Zhang, Lin; Lu, Ying; Liu, Ying-Ling; Li, Ming; Zhao, Hai-Yang; Hou, Li-An

    2016-01-01

    Graphene oxide (GO)-based membranes provide an encouraging opportunity to support high separation efficiency for wastewater treatment. However, due to the relatively weak interaction between GO nanosheets, it is difficult for bare GO-based membranes to survive in cross-flow filtration. In addition, the permeation flux of the bare GO membrane is not high sufficiently due to its narrow interlayer spacing. In this study, GO membranes interlinked with multi-walled carbon nanotubes (MWCNTs) via covalent bonds were fabricated on modified polyacrylonitrile (PAN) supports by vacuum filtration. Due to the strong bonds between GO, MWCNTs and the PAN membrane, the membranes could be used for the treatment of simulated nuclear wastewater containing strontium via a cross-flow process. The result showed a high flux of 210.7 L/(m"2 h) at 0.4 MPa, which was approximately 4 times higher than that of commercial nanofiltration membranes. The improved water permeation was attributed to the nanochannels created by the interlinked MWCNTs in the GO layers. In addition, the hybrid membrane exhibited a high rejection of 93.4% for EDTA-chelated Sr"2"+ in an alkaline solution, and could also be used to separate Na"+/Sr"2"+ mixtures. These results indicate that the MWCNTs-interlinked GO membrane has promising prospects for application in radioactive waste treatment.

  12. Radiological protection considerations during the treatment of glioblastoma patients by boron neutron capture therapy at the high flux reactor in Petten, The Netherlands

    International Nuclear Information System (INIS)

    Moss, R.L.; Rassow, J.; Finke, E.; Sauerwein, W.; Stecher-Rasmussen, F.

    2001-01-01

    A clinical trial of Boron Neutron Capture Therapy (BNCT) for glioblastoma patients has been in progress at the High Flux Reactor (HFR) at Petten since October 1997. The JRC (as licence holder of the HFR) must ensure that radiological protection measures are provided. The BNCT trial is a truly European trial, whereby the treatment takes place at a facility in the Netherlands under the responsibility of clinicians from Germany and patients are treated from several European countries. Consequently, radiological protection measures satisfy both German and Dutch laws. To respect both laws, a BNCT radioprotection committee was formed under the chairmanship of an independent radioprotection expert, with members representing all disciplines in the trial. A special nuance of BNCT is that the radiation is provided by a mixed neutron/gamma beam. The radiation dose to the patient is thus a complex mix due to neutrons, gammas and neutron capture in boron, nitrogen and hydrogen, which, amongst others, need to be correctly calculated in non-commercial and validated treatment planning codes. Furthermore, due to neutron activation, measurements on the patient are taken regularly after treatment. Further investigations along these lines include dose determination using TLDs and boron distribution measurements using on-line gamma ray spectroscopy. (author)

  13. The high-flux effect on deuterium retention in TiC and TaC doped tungsten at high temperatures

    Science.gov (United States)

    Zibrov, Mikhail; Bystrov, Kirill; Mayer, Matej; Morgan, Thomas W.; Kurishita, Hiroaki

    2017-10-01

    Samples made of tungsten (W) doped either with titanium carbide (W-1.1TiC) or tantalum carbide (W-3.3TaC) were exposed to a low-energy (40 eV/D), high-flux (1.8-5 × 1023 D/m2s) deuterium (D) plasma at temperatures of about800 K, 1050 K, and 1250 K to a fluence of about1 × 1027 D/m2. The deuterium (D) inventory in the samples was examined by nuclear reaction analysis and thermal desorption spectroscopy. At 800 K the D bulk concentrations and total D inventories in W-1.1TiC and W-3.3TaC were more than one order of magnitude higher compared to that in pure polycrystalline W. At 1050 K and 1250 K the D concentrations in all types of samples were very low (≤10-5 at. fr.); however the D inventories in W-1.1TiC were significantly higher compared to those in W-3.3TaC and pure W. It is suggested that D trapping inside the carbide precipitates and at their boundaries is essential at high temperatures and high incident fluxes, especially in W-1.1TiC.

  14. Preliminary Analysis of High-Flux RSG-GAS to Transmute Am-241 of PWR’s Spent Fuel in Asian Region

    Science.gov (United States)

    Budi Setiawan, M.; Kuntjoro, S.

    2018-02-01

    A preliminary study of minor actinides (MA) transmutation in the high flux profile RSG-GAS research reactor was performed, aiming at an optimal transmutation loading for present nuclear energy development. The MA selected in the analysis includes Am-241 discharged from pressurized water reactors (PWRs) in Asian region. Until recently, studies have been undertaken in various methods to reduce radiotoxicity from actinides in high-level waste. From the cell calculation using computer code SRAC2006, it is obtained that the target Am-241 which has a cross section of the thermal energy absorption in the region (group 8) is relatively large; it will be easily burned in the RSG-GAS reactor. Minor actinides of Am-241 which can be inserted in the fuel (B/T fuel) is 2.5 kg which is equivalent to Am-241 resulted from the partition of spent fuel from 2 units power reactors PWR with power 1000MW(th) operated for one year.

  15. CoSi2 growth on Si(001) by reactive deposition epitaxy: Effects of high-flux, low-energy ion irradiation

    International Nuclear Information System (INIS)

    Lim, C. W.; Greene, J. E.; Petrov, I.

    2006-01-01

    CoSi 2 layers, CoSi 2 (parallel sign)(001) Si and [100] CoSi 2 (parallel sign)[100] Si , contain fourfold symmetric (111) twinned domains oriented such that (221) CoSi 2 (parallel sign)(001) Si and CoSi 2 (parallel sign)[110] Si . We demonstrate that high-flux low-energy (E Ar + =9.6 eV) Ar + ion irradiation during deposition dramatically increases the area fraction f u of untwinned regions from 0.17 in films grown under standard magnetically balanced conditions in which the ratio J Ar + /J Co of the incident Ar + to Co fluxes is 1.4 to 0.72 with J Ar + /J Co =13.3. TEM analyses show that the early stages of RDE CoSi 2 (001) film growth proceed via the Volmer-Weber mode with independent nucleation of both untwinned and twinned islands. Increasing J Ar + /J Co results in larger values of both the number density and area of untwinned with respect to twinned islands. The intense Ar + ion bombardment creates additional low-energy adsorption sites that favor the nucleation of untwinned islands while collisionally enhancing Co surface mobilities which, in turn, increases the probability of itinerant Co adatoms reaching these sites

  16. High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin; Lu, Ying [Key Laboratory of Biomass Chemical Engineering, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 (China); Liu, Ying-Ling [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Li, Ming [Xi' an High-Tech Institute, Xi' an 710025 (China); Zhao, Hai-Yang [Key Laboratory of Biomass Chemical Engineering, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 (China); Hou, Li-An, E-mail: houla@cae.cn [Key Laboratory of Biomass Chemical Engineering, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 (China); Xi' an High-Tech Institute, Xi' an 710025 (China)

    2016-12-15

    Graphene oxide (GO)-based membranes provide an encouraging opportunity to support high separation efficiency for wastewater treatment. However, due to the relatively weak interaction between GO nanosheets, it is difficult for bare GO-based membranes to survive in cross-flow filtration. In addition, the permeation flux of the bare GO membrane is not high sufficiently due to its narrow interlayer spacing. In this study, GO membranes interlinked with multi-walled carbon nanotubes (MWCNTs) via covalent bonds were fabricated on modified polyacrylonitrile (PAN) supports by vacuum filtration. Due to the strong bonds between GO, MWCNTs and the PAN membrane, the membranes could be used for the treatment of simulated nuclear wastewater containing strontium via a cross-flow process. The result showed a high flux of 210.7 L/(m{sup 2} h) at 0.4 MPa, which was approximately 4 times higher than that of commercial nanofiltration membranes. The improved water permeation was attributed to the nanochannels created by the interlinked MWCNTs in the GO layers. In addition, the hybrid membrane exhibited a high rejection of 93.4% for EDTA-chelated Sr{sup 2+} in an alkaline solution, and could also be used to separate Na{sup +}/Sr{sup 2+} mixtures. These results indicate that the MWCNTs-interlinked GO membrane has promising prospects for application in radioactive waste treatment.

  17. Wellness centrum

    OpenAIRE

    Krchňák, Petr

    2016-01-01

    Diplomová práce „Wellness centrum'' je zpracována ve formě prováděcí dokumentace obsahující všechny náležitosti dle platných norem a předpisů. Navržený objekt je řešen jako třípodlažní budova. Objekt slouží veřejnosti k rekreaci a sportu. V 1S je umístěno technické zázemí, zázemí pro zaměstnance, šatny a posilovna. V 1 NP se nachází kavárna a wellness. Ve 2NP se nachází kanceláře pro administrativu budovy, masáže, solárium, šatny a fitness sál. Budova je založena na základových patkách a nosn...

  18. Horizontal wells in subsurface remediation

    International Nuclear Information System (INIS)

    Losonsky, G.; Beljin, M.S.

    1992-01-01

    This paper reports on horizontal wells which offer an effective alternative to vertical wells in various environmental remediation technologies. Hydrogeological advantages of horizontal wells over vertical wells include a larger zone of influence, greater screen length, higher specific capacity and lower groundwater screen entrance velocity. Because of these advantages, horizontal wells can reduce treatment time and costs of groundwater recovery (pump-and-treat), in situ groundwater aeration (sparging) and soil gas extraction (vacuum extraction). Horizontal wells are also more effective than vertical wells in landfill leachate collection (under-drains), bioremediation, and horizontal grout injection

  19. Electron injection in microtron

    International Nuclear Information System (INIS)

    Axinescu, S.

    1977-01-01

    A review of the methods of injecting electrons in the microtron is presented. A special attention is paid to efficient injection systems developed by Wernholm and Kapitza. A comparison of advantages and disadvantages of both systems is made in relation to the purpose of the microtron. (author)

  20. Dimethyl Ether Injection Studies

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.; Glensvig, Michael; Abata, Duane L.

    1998-01-01

    A series of preliminary investigations has been performed in order to investigate the behavior of DME in a diesel injection environment. These studies have in-cluded visual observations of the spray penetration and angles for high pressure injection into Nitrogen using conventional jerk pump inje...

  1. Wellness hotel

    OpenAIRE

    Bambas, Vratislav

    2013-01-01

    Novostavba Wellness hotelu. Objekt je částečně podsklepen. Hotel se skládá ze tří částí. Střední trakt je železobetonový skelet a má pět nadzemních podlaží. Tato část slouží jako vstupní hala a hlavní schodiště. Boční trakty mají čtyři nadzemní podlaží a jejich nosný systém je příčný stěnový, zděný, ze systému Porotherm. V suterénu se nachází zázemí hotelu a bazén. Do přízemí je umístěno restaurační zařízení. Ve druhém patře se nacházejí pokoje, posilovna a služby. V posledním patře jsou pouz...

  2. Optimization of the testing volumes with respect to neutron flux levels in the two-target high flux D-Li neutron source for the international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Kelleher, W.P.; Varsamis, G.L.

    1989-01-01

    An economic and fusion-relevant source of high-energy neutrons is an essential element in the fusion nuclear technology and development program. This source can be generated by directing a high energy deuteron beam onto a flowing liquid lithium target, producing neutrons via the D-Lithium stripping reaction. Previous work on this type of source concentrated on a design employing one deuteron beam of modest amperage. This design was shown to have a relatively small testing volume with high flux gradients and was therefor considered somewhat unattractive from a materials testing standpoint. A design using two lithium targets and two high-amperage beams has recently been proposed. This two beam design has been examined in an effort to maximize the test volume while minimizing the flux gradients and minimizing the effect of radiation damage on one target due to the other. A spatial, energy and angle dependent neutron source modeling the D-Lithium source was developed. Using this source, a 3-dimensional map of uncollided flux within the test volume was calculated. The results showed that the target separation has little effect on the available experimental volume and that a testing volume of ∼35 liters is available with a volume averaged flux above 10 14 n/cm 2 /s. The collided flux within the test volume was then determined by coupling the source model with a Monte Carlo code. The spectral effects of the high-energy tail in the flux were examined and evaluated as to possible effects on materials response. Calculations comparing the radiation damage to materials from the D-Lithium source to that cause by a standard DT fusion first-wall neutron flux spectrum showed that the number of appm and dpa, as well as the ratio appm/dpa and dpa/MW/m 2 are within 30% for the two sources. 8 refs., 8 figs

  3. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  4. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  5. Comparison of survival between dialysis patients with incident high-flux hemodialysis versus on-line hemodiafiltration: A single center experience in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohamed Said Abdelsalam

    2018-01-01

    Full Text Available Conventional hemodialysis (HD is the most common treatment modality used for renal replacement therapy. The concept of HD is based on the diffusion of solutes across a semipermeable membrane. Hemofiltration (HF is based on convective transport of solutes; hemodiafiltration (HDF is based on combined convective and diffusive therapies. Data about survival benefit of on-line HDF (OL-HDF over high-flux HD (HF-HD is conflicting. We conducted this study to investigate if there is a survival difference between the two treatment modalities. This study is a retrospective, single-center study in which 78 patients were screened; 18 were excluded and 60 patients were analyzed. The study patients were aged 47.5 ± 20.7 years, 33 patients (55% were on HF-HD, and 27 patients (45% were on OL-HDF. A total of 24 patients (40% of both groups were diabetic and, the mean duration on dialysis was 43.5 ±21.3 months in the HF-HD group and 41.2 ± 22.0 months in the OL-HDF group. The mean substitution volume for OL-HDF was 22.3 ± 2.5 L. Survival was 73% [95%, confidence interval (CI 60–84] in the HF-HD group and 65% (95%, CI 54–75 in the OL-HDF group by the end of the study period. The unadjusted hazard ratio (HR with 95% CI comparing HF-HD to high-volume postdilution OL-HDF was 0.78 (0.10–5.6; P = 0.810. Kaplan–Meier analysis for patient survival over five years showed no significant difference between the two modalities. Prospective controlled trials with a larger number of patients will be needed to assess the long-term clinical outcome of postdilution OL-HDF over HF-HD.

  6. RELAP5/MOD2. 5 analysis of the HFBR (High Flux Beam Reactor) for a loss of power and coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

    1990-05-01

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs.

  7. RELAP5/MOD2.5 analysis of the HFBR [High Flux Beam Reactor] for a loss of power and coolant accident

    International Nuclear Information System (INIS)

    Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

    1990-05-01

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs

  8. Ultrafine tungsten as a plasma-facing component in fusion devices: effect of high flux, high fluence low energy helium irradiation

    International Nuclear Information System (INIS)

    El-Atwani, O.; Gonderman, Sean; Allain, J.P.; Efe, Mert; Klenosky, Daniel; Qiu, Tian; De Temmerman, Gregory; Morgan, Thomas; Bystrov, Kirill

    2014-01-01

    This work discusses the response of ultrafine-grained tungsten materials to high-flux, high-fluence, low energy pure He irradiation. Ultrafine-grained tungsten samples were exposed in the Pilot-PSI (Westerhout et al 2007 Phys. Scr. T128 18) linear plasma device at the Dutch Institute for Fundamental Energy Research (DIFFER) in Nieuwegein, the Netherlands. The He flux on the tungsten samples ranged from 1.0 × 10 23 –2.0 × 10 24  ions m −2  s −1 , the sample bias ranged from a negative (20–65) V, and the sample temperatures ranged from 600–1500 °C. SEM analysis of the exposed samples clearly shows that ultrafine-grained tungsten materials have a greater fluence threshold to the formation of fuzz by an order or magnitude or more, supporting the conjecture that grain boundaries play a major role in the mechanisms of radiation damage. Pre-fuzz damage analysis is addressed, as in the role of grain orientation on structure formation. Grains of (1 1 0) and (1 1 1) orientation showed only pore formation, while (0 0 1) oriented grains showed ripples (higher structures) decorated with pores. Blistering at the grain boundaries is also observed in this case. In situ TEM analysis during irradiation revealed facetted bubble formation at the grain boundaries likely responsible for blistering at this location. The results could have significant implications for future plasma-burning fusion devices given the He-induced damage could lead to macroscopic dust emission into the fusion plasma. (paper)

  9. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designs allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.

  10. THE RHIC INJECTION SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

    1999-03-29

    The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

  11. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    2014-01-01

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an inject......We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used...

  12. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an inject......We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used...

  13. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  14. Injectable agents affecting subcutaneous fats.

    Science.gov (United States)

    Chen, David Lk; Cohen, Joel L; Green, Jeremy B

    2015-09-01

    Mesotherapy is an intradermal or subcutaneous injection of therapeutic agents to induce local effects, and was pioneered in Europe during the 1950s. For the past 2 decades, there has been significant interest in the use of mesotherapy for minimally invasive local fat contouring. Based on the theorized lipolytic effects of the agent phosphatidylcholine, initial attempts involved its injection into subcutaneous tissue. With further studies, however, it became apparent that the activity attributed to phosphatidylcholine mesotherapy was due to the adipolytic effects of deoxycholate, a detergent used to solubilize phosphatidylcholine. Since then, clinical trials have surfaced that demonstrate the efficacy of a proprietary formulation of deoxycholate for local fat contouring. Current trials on mesotherapy with salmeterol, a b-adrenergic agonist and lipolysis stimulator, are underway-with promising preliminary results as well. ©2015 Frontline Medical Communications.

  15. Hip joint injection

    Science.gov (United States)

    ... medicine into the joint. The provider uses a real-time x-ray (fluoroscopy) to see where to place ... Wakefield RJ. Arthrocentesis and injection of joints and soft tissue. In: Firestein GS, Budd RC, Gabriel SE, ...

  16. Premixed direct injection disk

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  17. Imipenem and Cilastatin Injection

    Science.gov (United States)

    Imipenem and cilastatin injection is used to treat certain serious infections that are caused by bacteria, including ... area), gynecological, blood, skin, bone, and joint infections. Imipenem is in a class of medications called carbapenem ...

  18. Quinupristin and Dalfopristin Injection

    Science.gov (United States)

    ... are in a class of medications called streptogramin antibiotics. They work by killing bacteria that cause infections.Antibiotics such as quinupristin and dalfopristin injection will not work for colds, flu, or other viral infections. Taking ...

  19. Botulinum toxin injection - larynx

    Science.gov (United States)

    Injection laryngoplasty; Botox - larynx: spasmodic dysphonia-BTX; Essential voice tremor (EVT)-btx; Glottic insufficiency; Percutaneous electromyography - guided botulinum toxin treatment; Percutaneous indirect laryngoscopy - guided botulinum toxin treatment; ...

  20. The PEP injection system

    International Nuclear Information System (INIS)

    Brown, K.L.; Avery, R.T.; Peterson, J.M.

    1988-01-01

    A system to transport 10-to-15-GeV electron and positron beams from the Stanford Linear Accelerator and to inject them into the PEP storage ring under a wide variety of lattice configurations has been designed. Optically, the transport line consists of three 360/degree/ phase-shift sections of FODO lattice, with bending magnets interspersed in such a way as to provide achromaticity, convenience in energy and emittance definition, and independent tuning of the various optical parameters for matching into the ring. The last 360/degree/ of phase shift has 88 milliradians of bend in a vertical plane and deposits the beam at the injection septum via a Lambertson magnet. Injection is accomplished by launching the beam with several centimeters of radial betatron amplitude in a fast bump provided by a triad of pulsed kicker magnets. Radiation damping reduces the collective amplitude quickly enough to allow injection at a high repetition rate