WorldWideScience

Sample records for high-flux beam reactor

  1. The High Flux Beam Reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1994-01-01

    Brookhaven National Laboratory's High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want 'more'. In the mid-50's the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments

  2. Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

    International Nuclear Information System (INIS)

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.

    1995-04-01

    This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed

  3. Radiation dosimetry at the BNL High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.

    1998-02-01

    The HFBR is a heavy water, D 2 O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of 235 U. The core is 53 cm high and 48 cm in diameter and has an active volume of 97 liters. The HFBR, which was designed to operate at forty mega-watts, 40 NW, was upgraded to operate at 60 NW. Since 1991, it has operated at 30 MW. In a normal 30 MW operating cycle the HFBR operates 24 hours a day for thirty days, with a six to fourteen day shutdown period for refueling and maintenance work. While most reactors attempts to minimize the escape of neutrons from the core, the HFBR's D 2 O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9. The HFBR neutron dosimetry effort described here compares measured and calculated energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles

  4. HFBR handbook, 1992: High flux beam reactor

    International Nuclear Information System (INIS)

    Axe, J.D.; Greenberg, R.

    1992-10-01

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance

  5. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  6. A neutronic feasibility study for LEU conversion of the High Flux Beam Reactor (HFBR)

    International Nuclear Information System (INIS)

    Pond, R.B.; Hanan, N.A.; Matos, J.E.

    1997-01-01

    A neutronic feasibility study for converting the High Flux Beam Reactor at Brookhaven National Laboratory from HEU to LEU fuel was performed at Argonne National Laboratory. The purpose of this study is to determine what LEU fuel density would be needed to provide fuel lifetime and neutron flux performance similar to the current HEU fuel. The results indicate that it is not possible to convert the HFBR to LEU fuel with the current reactor core configuration. To use LEU fuel, either the core needs to be reconfigured to increase the neutron thermalization or a new LEU reactor design needs to be considered. This paper presents results of reactor calculations for a reference 28-assembly HEU-fuel core configuration and for an alternative 18-assembly LEU-fuel core configuration with increased neutron thermalization. Neutronic studies show that similar in-core and ex-core neutron fluxes, and fuel cycle length can be achieved using high-density LEU fuel with about 6.1 gU/cm 3 in an altered reactor core configuration. However, hydraulic and safety analyses of the altered HFBR core configuration needs to be performed in order to establish the feasibility of this concept. (author)

  7. Seismic upgrading of the Brookhaven High Flux Beam Research Reactor

    International Nuclear Information System (INIS)

    Subudhi, M.

    1985-01-01

    In recent years the High Flux Beam Research (HFBR) reactor facility at Brookhaven National Laboratory (BNL) was upgraded from 40 to 50 MW power level. The reactor plant was built in the early sixties to the seismic design requirements of the period, using the static load approach. While the plant power level was upgraded, the seismic design was also improved according to current design criteria. This included the development of new floor response spectra for the facility and an overall seismic analysis of those systems important to the safe shutdown of the reactor. Items included in the reanalysis are the containment building with its internal structure, the piping systems, tanks, equipment, and heat exchangers. This paper describes the procedure utilized in developing the floor response spectra for the existing facility. Also included in the paper are the findings and recommendations, based on the seismic analysis, regarding the seismic adequacy of structural and mechanical systems vital to achieving the safe shutdown of the reactor. 11 references, 4 figures, 1 table

  8. Decommissioning of the High Flux Beam Reactor at Brookhaven Lab

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-05-27

    The High Flux Beam Reactor at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on October 31, 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shutdown in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor’s spent fuel pool. The reactor remained shutdown for almost three years for safety and environmental reviews. In November 1999 the United States Department of Energy decided to permanently shutdown the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR cleanup conducted during 1999-2009 will be described in the paper.

  9. Utilization of cold neutron beams at intermediate flux reactors

    International Nuclear Information System (INIS)

    Clark, D.D.

    1992-01-01

    With the advent of cold neutron beam (CNB) facilities at U.S. reactors [National Institute of Standards and Technology (NIST) in 1991; Cornell University and the University of Texas at Austin, anticipated in 1992], it is appropriate to reexamine the types of research for which they are likely to be best suited or uniquely suited. With the exception of a small-angle neutron scattering facility at Brookhaven National Laboratory, there has been no prior experience in the United States with such beams, but they have been extensively used at European reactors where cold neutron sources and neutron guides were developed some years age. This paper does not discuss specialized cases such as ultracold neutrons or very high flux facilities such as the Institute Laue-Langevin ractor and the proposed advanced neutron source. Instead, it concentrates on potential utilization of CNBs at intermediate-flux reactors such as at Cornell and Texas, i.e., in the 1-MW range and operated <24 h a day

  10. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR [High Flux Isotope Reactor] Reactor

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs

  11. Radiation Dosimetry of the Pressure Vessel Internals of the High Flux Beam Reactor

    Science.gov (United States)

    Holden, Norman E.; Reciniello, Richard N.; Hu, Jih-Perng; Rorer, David C.

    2003-06-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. The measurements were made using Red Perspex™ polymethyl methacrylate high-level film dosimeters, a Radcal "peanut" ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rates, the Monte Carlo MCNP code and geometric progressive MicroShield code were used to model the gamma-ray transport and dose buildup.

  12. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR

    International Nuclear Information System (INIS)

    HOLDEN, N.E.; RECINIELLO, R.N.; HU, J.P.; RORER, D.C.

    2002-01-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex(trademark) polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup

  13. Rebuilding the Brookhaven high flux beam reactor: A feasibility study

    International Nuclear Information System (INIS)

    Brynda, W.J.; Passell, L.; Rorer, D.C.

    1995-01-01

    After nearly thirty years of operation, Brookhaven's High Flux Beam Reactor (HFBR) is still one of the world's premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR's value as a national scientific resource, members of the Laboratory's scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor's research capabilities

  14. Risk analysis of environmental hazards at the High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Boccio, J.L.; Ho, V.S.; Johnson, D.H.

    1994-01-01

    In the late 1980s, a Level 1 internal event probabilistic risk assessment (PRA) was performed for the High-Flux Beam Reactor (HFBR), a US Department of Energy research reactor located at Brookhaven National Laboratory. Prior to the completion of that study, a level 1 PRA for external events was initiated, including environmental hazards such as fire, internal flooding, etc. Although this paper provides a brief summary of the risks from environmental hazards, emphasis will be placed on the methodology employed in utilizing industrial event databases for event frequency determination for the HFBR complex. Since the equipment in the HFBR is different from that of, say, a commercial nuclear power plant, the current approach is to categorize the industrial events according to the hazard initiators instead of categorizing by initiator location. But first a general overview of the analysis

  15. Decommissioning of the High Flux Beam Reactor at Brookhaven National Laboratory.

    Science.gov (United States)

    Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E

    2012-08-01

    The High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory was a heavy-water cooled and moderated reactor that achieved criticality on 31 October 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost 3 y for safety and environmental reviews. In November 1999, the United States Department of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR's cleanup performed during 1999-2009, to allow the BNL facilities to be re-accessed by the public, will be described in the paper.

  16. Seismic hazard studies for the high flux beam reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Costantino, C.J.; Heymsfield, E.; Park, Y.J.; Hofmayer, C.H.

    1991-01-01

    This paper presents the results of a calculation to determine the site specific seismic hazard appropriate for the deep soil site at Brookhaven National Laboratory (BNL) which is to be used in the risk assessment studies being conducted for the High Flux Beam Reactor (HFBR). The calculations use as input the seismic hazard defined for the bedrock outcrop by a study conducted at Lawrence Livermore National Laboratory (LLNL). Variability in site soil properties were included in the calculations to obtain the seismic hazard at the ground surface and compare these results with those using the generic amplification factors from the LLNL study

  17. Dosimetry issues for an ultra-high flux beam and multipurpose research reactor design

    International Nuclear Information System (INIS)

    West, C.D.

    1993-01-01

    The Advanced Neutron Source is a new user facility for all fields of neutron research, including neutron beam experiments, materials analysis, materials testing, and isotope production. The complement and layout of the experimental facilities have been determined sufficiently, at a conceptual design level, to make reliable cost and schedule estimates. The source of neutrons will be a heavy water reactor, constructed largely of aluminum, with an available thermal neutron flux 5--10 times higher than existing research reactors. Among the dosimetry issues to be faced are damage prediction and surveillance for component life attainment; measurement of fluence and spectra in regions where both change substantially over a distance of a few centimeters; and characterization and measurement of the radiation field in the research areas around the neutron beam experiments

  18. Studies on the instrumentation of a beam-tube medium flux reactor

    International Nuclear Information System (INIS)

    Axmann, A.; Pollet, J.L.; Queudot, J.

    1979-01-01

    In the years 1977/78, the ad hoc commitee for medium-flux reactor development of the Federal Ministry for Research and Technology developed constructional concepts for a medium-flux reactor to be utilized by beam tube experiments. The HMI has elaborated contributions for discussions of the subject of instrumentation, in particular for experiments in solid state physics. These contributions are contained in the report. (orig./RW) [de

  19. Transport of spent nuclear fuel from the High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Holland, Michael; Carelli, Joseph; Shelton, Thomas

    1997-01-01

    The shipment of more than 1000 elements of spent nuclear fuel (SNF) from the Department of Energy's Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR) to the Department's Savannah River Site (SRS) for long term interim storage required overcoming several significant obstacles. The project management team was comprised of DOE, BNL and NAC International personnel. This achievement involved coordinating the efforts of numerous government and contractor organizations such as the U.S. Coast Guard, the U.S. Nuclear Regulatory Commission, state and local governments, marine and motor carriers, and carrier inspectors. Unique experience was gained during development and execution of the project in the following areas: dry transfer of SNF to shipping casks; inter-modal transfers; logistics; cask licensing by the Nuclear Regulatory Commission (NRC); compliance with environmental regulations; transportation plan development, and stakeholder outreach and coordination

  20. Instrumentation for the advanced high-flux reactor workshop: proceedings

    International Nuclear Information System (INIS)

    Moon, R.M.

    1984-01-01

    The purpose of the Workshop on Instrumentation for the Advanced High-Flux Reactor, held on May 30, 1984, at the Oak Ridge National Laborattory, was two-fold: to announce to the scientific community that ORNL has begun a serious effort to design and construct the world's best research reactor, and to solicit help from the scientific community in planning the experimental facilities for this reactor. There were 93 participants at the workshop. We are grateful to the visiting scientists for their enthusiasm and interest in the reactor project. Our goal is to produce a reactor with a peak thermal flux in a large D 2 O reflector of 5 x 10 15 n/cm 2 s. This would allow the installation of unsurpassed facilities for neutron beam research. At the same time, the design will provide facilities for isotope production and materials irradiation which are significantly improved over those now available at ORNL. This workshop focussed on neutron beam facilities; the input from the isotope and materials irradiation communities will be solicited separately. The reactor project enjoys the full support of ORNL management; the present activities are financed by a grant of $663,000 from the Director's R and D Fund. However, we realize that the success of the project, both in realization and in use of the reactor, depends on the support and imagination of a broad segment of the scientific community. This is more a national project than an ORNL project. The reactor would be operated as a national user facility, open to any research proposal with high scientific merit. It is therefore important that we maintain a continuing dialogue with outside scientists who will be the eventual users of the reactor and the neutron beam facilities. The workshop was the first step in establishing this dialogue; we anticipate further workshops as the project continues

  1. Very high flux steady state reactor and accelerator based sources

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Simos, N.; Shapiro, S.; Hastings, J.

    2004-01-01

    With the number of steady state neutron sources in the US declining (including the demise of the Bnl HFBR) the remaining intense sources are now in Europe (i.e. reactors - ILL and FMR, accelerator - PSI). The intensity of the undisturbed thermal flux for sources currently in operation ranges from 10 14 n/cm 2 *s to 10 15 n/cm 2 *s. The proposed Advanced Neutron Source (ANS) was to be a high power reactor (about 350 MW) with a projected undisturbed thermal flux of 7*10 15 n/cm 2 *s but never materialized. The objective of the current study is to explore the requirements and implications of two source concepts with an undisturbed flux of 10 16 n/cm 2 *s. The first is a reactor based concept operating at high power density (10 MW/l - 15 MW/l) and a total power of 100 MW - 250 MW, depending on fissile enrichment. The second is an accelerator based concept relying on a 1 GeV - 1.5 GeV proton Linac with a total beam power of 40 MW and a liquid lead-bismuth eutectic target. In the reactor source study, the effects of fissile material enrichment, coolant temperature and pressure drop, and estimates of pressure vessel stress levels will be investigated. The fuel form for the reactor will be different from all other operating source reactors in that it is proposed to use an infiltrated graphitic structure, which has been developed for nuclear thermal propulsion reactor applications. In the accelerator based source the generation of spallation products and their activation levels, and the material damage sustained by the beam window will be investigated. (authors)

  2. Radiological characterization of the pressure vessel internals of the BNL High Flux Beam Reactor.

    Science.gov (United States)

    Holden, Norman E; Reciniello, Richard N; Hu, Jih-Perng

    2004-08-01

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, measurements and calculations of the decay gamma-ray dose-rate were performed in the reactor pressure vessel and on vessel internal structures such as the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. Measurements of gamma-ray dose rates were made using Red Perspex polymethyl methacrylate high-dose film, a Radcal "peanut" ion chamber, and Eberline's RO-7 high-range ion chamber. As a comparison, the Monte Carlo MCNP code and MicroShield code were used to model the gamma-ray transport and dose buildup. The gamma-ray dose rate at 8 cm above the center of the Transition Plate was measured to be 160 Gy h (using an RO-7) and 88 Gy h at 8 cm above and about 5 cm lateral to the Transition Plate (using Red Perspex film). This compares with a calculated dose rate of 172 Gy h using Micro-Shield. The gamma-ray dose rate was 16.2 Gy h measured at 76 cm from the reactor core (using the "peanut" ion chamber) and 16.3 Gy h at 87 cm from the core (using Red Perspex film). The similarity of dose rates measured with different instruments indicates that using different methods and instruments is acceptable if the measurement (and calculation) parameters are well defined. Different measurement techniques may be necessary due to constraints such as size restrictions.

  3. Use of sup(233)U for high flux reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Liem, P.H.

    1991-01-01

    The feasibility design study on the graphite moderated gas cooled reactor as a high flux reactor has been performed. The core of the reactor is equipped with two graphite reflectors, i.e., the inner reflector and the outer reflector. The highest value of the thermal neutron flux and moderately high thermal neutron flux are expected to be achieved in the inner reflector region and in the outer reflector region respectively. This reactor has many merits comparing to the conventional high flux reactors. It has the inherent safety features associated with the modular high temperature reactors. Since the core is composed with pebble bed, the on-power refueling can be performed and the experiment time can be chosen as long as necessary. Since the thermal-to-fast flux ratio is large, the background neutron level is low and material damage induced by fast neutrons are small. The calculation was performed using a four groups diffusion approximation in a one-dimensional spherical geometry and a two-dimensional cylindrical geometry. By choosing the optimal values of the core-reflector geometrical parameters and moderator-to-fuel atomic density, high thermal neutron flux can be obtained. Because of the thermal neutron flux can be obtained. Because of the thermal design constraint, however, this design will produce a relatively large core volume (about 10 7 cc) and consequently a higher reactor power (100 MWth). Preliminary calculational results show that with an average power density of only 10 W/cc, maximum thermal neutron flux of 10 15 cm -2 s -1 can be achieved in the inner reflector. The eta value of 233 U is larger than 235 U. By introducing 233 U as the fissile material for this reactor, the thermal neutron flux level can be increased by about 15%. (author). 3 refs., 2 figs., 4 tabs

  4. Operation of the High Flux Reactor. Annual report 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This year was characterized by the end of a major rebuilding of the installation during which the reactor vessel and its peripheral components were replaced by new and redesigned equipment. Both operational safety and experimental use were largely improved by the replacement. The reactor went back to routine operation on February 14, 1985, and has been operating without problem since then. All performance parameters were met. Other upgrading actions started during the year concerned new heat exchangers and improvements to the reactor building complex. The experimental load of the High Flux Reactor reached a satisfactory level with an average of 57%. New developments aimed at future safety related irradiation tests and at novel applications of neutrons from the horizontal beam tubes. A unique remote encapsulation hot cell facility became available adding new possibilities for fast breeder fuel testing and for intermediate specimen examination. The HFR Programme hosted an international meeting on development and use of reduced enrichment fuel for research reactors. All aspects of core physics, manufacture technology, and licensing of novel, proliferation-free, research reactor fuel were debated

  5. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    Harpeneau, Evan M. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  6. The High Flux Reactor Petten, present status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Ahlf, J [Institute for Advanced Materials, Joint Research Centre, Petten (Netherlands)

    1990-05-01

    The High Flux Reactor (HFR) in Petten, The Netherlands, is a light water cooled and moderated multipurpose research reactor of the closed-tank in pool type. It is operated with highly enriched Uranium fuel at a power of 45 MW. The reactor is owned by the European Communities and operated under contract by the Dutch ECN. The HFR programme is funded by The Netherlands and Germany, a smaller share comes from the specific programmes of the Joint Research Centre (JRC) and from third party contract work. Since its first criticality in 1961 the reactor has been continuously upgraded by implementing developments in fuel element technology and increasing the power from 20 MW to the present 45 MV. In 1984 the reactor vessel was replaced by a new one with an improved accessibility for experiments. In the following years also other ageing equipment has been replaced (primary heat exchangers, pool heat exchanger, beryllium reflector elements, nuclear and process instrumentation, uninterruptable power supply). Control room upgrading is under preparation. A new safety analysis is near to completion and will form the basis for a renewed license. The reactor is used for nuclear energy related research (structural materials and fuel irradiations for LWR's, HTR's and FBR's, fusion materials irradiations). The beam tubes are used for nuclear physics as well as solid state and materials sciences. Radioisotope production at large scale, processing of gemstones and silicon with neutrons, neutron radiography and activation analysis are actively pursued. A clinical facility for boron neutron capture therapy is being designed at one of the large cross section beam tubes. It is foreseen to operate the reactor at least for a further decade. The exploitation pattern may undergo some changes depending on the requirements of the supporting countries and the JRC programmes. (author)

  7. The High Flux Reactor Petten, present status and prospects

    International Nuclear Information System (INIS)

    Ahlf, J.

    1990-01-01

    The High Flux Reactor (HFR) in Petten, The Netherlands, is a light water cooled and moderated multipurpose research reactor of the closed-tank in pool type. It is operated with highly enriched Uranium fuel at a power of 45 MW. The reactor is owned by the European Communities and operated under contract by the Dutch ECN. The HFR programme is funded by The Netherlands and Germany, a smaller share comes from the specific programmes of the Joint Research Centre (JRC) and from third party contract work. Since its first criticality in 1961 the reactor has been continuously upgraded by implementing developments in fuel element technology and increasing the power from 20 MW to the present 45 MV. In 1984 the reactor vessel was replaced by a new one with an improved accessibility for experiments. In the following years also other ageing equipment has been replaced (primary heat exchangers, pool heat exchanger, beryllium reflector elements, nuclear and process instrumentation, uninterruptable power supply). Control room upgrading is under preparation. A new safety analysis is near to completion and will form the basis for a renewed license. The reactor is used for nuclear energy related research (structural materials and fuel irradiations for LWR's, HTR's and FBR's, fusion materials irradiations). The beam tubes are used for nuclear physics as well as solid state and materials sciences. Radioisotope production at large scale, processing of gemstones and silicon with neutrons, neutron radiography and activation analysis are actively pursued. A clinical facility for boron neutron capture therapy is being designed at one of the large cross section beam tubes. It is foreseen to operate the reactor at least for a further decade. The exploitation pattern may undergo some changes depending on the requirements of the supporting countries and the JRC programmes. (author)

  8. Testing of research reactor fuel in the high flux reactor (Petten)

    International Nuclear Information System (INIS)

    Guidez, J.; Markgraf, J.W.; Sordon, G.; Wijtsma, F.J.; Thijssen, P.J.M.; Hendriks, J.A.

    1999-01-01

    The two types of fuel most frequently used by the main research reactors are metallic: highly enriched uranium (>90%) and silicide low enriched uranium ( 3 . However, a need exists for research on new reactor fuel. This would permit some plants to convert without losses in flux or in cycle length and would allow new reactor projects to achieve higher possibilities especially in fluxes. In these cases research is made either on silicide with higher density, or on other types of fuel (UMo, etc.). In all cases when new fuel is proposed, there is a need, for safety reasons, to test it, especially regarding the mechanical evolution due to burn-up (swelling, etc.). Initially, such tests are often made with separate plates, but lately, using entire elements. Destructive examinations are often necessary. For this type of test, the High Flux Reactor, located in Petten (The Netherlands) has many specific advantages: a large core, providing a variety of interesting positions with high fluence rate; a downward coolant flow simplifies the engineering of the device; there exists easy access with all handling possibilities to the hot-cells; the high number of operating days (>280 days/year), together with the high flux, gives a possibility to reach quickly the high burn-up needs; an experienced engineering department capable of translating specific requirements to tailor-made experimental devices; a well equipped hot-cell laboratory on site to perform all necessary measurements (swelling, γ-scanning, profilometry) and all destructive examinations. In conclusion, the HFR reactor readily permits experimental research on specific fuels used for research reactors with all the necessary facilities on the Petten site. (author)

  9. Neutron flux enhancement in the NRAD reactor

    International Nuclear Information System (INIS)

    Weeks, A.A.; Heidel, C.C.; Imel, G.R.

    1988-01-01

    In 1987 a series of experiments were conducted at the NRAD reactor facility at Argonne National Laboratory - West (ANL-W) to investigate the possibility of increasing the thermal neutron content at the end of the reactor's east beam tube through the use of hydrogenous flux traps. It was desired to increase the thermal flux for a series of experiments to be performed in the east radiography cell, in which the enhanced flux was required in a relatively small volume. Hence, it was feasible to attempt to focus the cross section of the beam to a smaller area. Two flux traps were constructed from unborated polypropylene and tested to determine their effectiveness. Both traps were open to the entire cross-sectional area of the neutron beam (as it emerges from the wall and enters the beam room). The sides then converged such that at the end of the trap the beam would be 'focused' to a greater intensity. The differences in the two flux traps were primarily in length, and hence angle to the beam as the inlet and outlet cross-sectional areas were held constant. The experiments have contributed to the design of a flux trap in which a thermal flux of nearly 10 9 was obtained, with an enhancement of 6.61

  10. A high intensity positron beam at the Brookhaven reactor

    International Nuclear Information System (INIS)

    Weber, M.; Lynn, K.G.; Roellig, L.O.; Mills, A.P. Jr.; Moodenbaugh, A.R.

    1987-01-01

    We describe a high intensity, low energy positron beam utilizing high specific activity /sup 64/Cu sources (870 Ci/g) produced in a reactor with high thermal neutron flux. Fast-to-slow moderation can be performed in a self moderation mode or with a transmission moderator. Slow positron rates up to 1.6 x 10/sup 8/ e/sup +//s with a half life of 12.8 h are calculated. Up to 1.0 x 10/sup 8/ e/sup +//s have been observed. New developments including a Ne moderator and an on-line isotope separation process are discussed. 21 refs., 9 figs

  11. Tensile and impact testing of an HFBR [High Flux Beam Reactor] control rod follower

    International Nuclear Information System (INIS)

    Czajkowski, C.J.; Schuster, M.H.; Roberts, T.C.; Milian, L.W.

    1989-08-01

    The Materials Technology Group of the Department of Nuclear Energy (DNE) at Brookhaven National Laboratory (BNL) undertook a program to machine and test specimens from a control rod follower from the High Flux Beam Reactor (HFBR). Tensile and Charpy impact specimens were machined and tested from non-irradiated aluminum alloys in addition to irradiated 6061-T6 from the HFBR. The tensile test results on irradiated material showed a two-fold increase in tensile strength to a maximum of 100.6 ksi. The impact resistance of the irradiated material showed a six-fold decrease in values (3 in-lb average) compared to similar non-irradiated material. Fracture toughness (K I ) specimens were tested on an unirradiated compositionally and dimensionally similar (to HFBR follower) 6061 T-6 material with K max values of 24.8 ± 1.0 Ksi√in (average) being obtained. The report concludes that the specimens produced during the program yielded reproducible and believable results and that proper quality assurance was provided throughout the program. 9 figs., 6 tabs

  12. Neutron flux enhancement in the NRAD reactor

    International Nuclear Information System (INIS)

    Weeks, A.A.; Heidel, C.C.; Imel, G.R.

    1988-01-01

    In 1987 a series of experiments were conducted at the NRAD reactor facility at Argonne National Laboratory - West (ANL-W) to investigate the possibility of increasing the thermal neutron content at the end of the reactor's east beam tube through the use of hydrogenous flux traps. It was desired to increase the thermal flux for a series of experiments to be performed in the east radiography cell, in which the enhanced flux was required in a relatively small volume. Hence, it was feasible to attempt to focus the cross section of the beam to a smaller area. Two flux traps were constructed from unborated polypropylene and tested to determine their effectiveness. Both traps were open to the entire cross-sectional area of the neutron beam (as it emerges from the wall and enters the beam room). The sides then converged such that at the end of the trap the beam would be 'focused' to a greater intensity. The differences in the two flux traps were primarily in length, and hence angle to the beam as the inlet and outlet cross-sectional areas were held constant. It should be noted that merely placing a slab of polypropylene in the beam will not yield significant multiplication as neutrons are primarily scattered away

  13. High Flux Isotope Reactor technical specifications

    International Nuclear Information System (INIS)

    1985-11-01

    This report gives technical specifications for the High Flux Isotope Reactor (HFIR) on the following: safety limits and limiting safety system settings; limiting conditions for operation; surveillance requirements; design features; and administrative controls

  14. The High Flux Isotope Reactor (HFIR) cold source project at ORNL

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Chang, S.J.; Freels, J.D. . E-mail-yb2@ornl.gov

    1998-01-01

    Following the decision to cancel the Advanced Neutron Source (ANS) Project at Oak Ridge National Laboratory (ORNL), it was determined that a hydrogen cold source should be retrofitted into an existing beam tube of the High Flux Isotope Reactor (HFIR) at ORNL. The preliminary design of this system has been completed and an 'approval in principle' of the design has been obtained from the internal ORNL safety review committees and the U.S. Department of Energy (DOE) safety review committee. The cold source concept is basically a closed loop forced flow supercritical hydrogen system. The supercritical approach was chosen because of its enhanced stability in the proposed high heat flux regions. Neutron and gamma physics of the moderator have been analyzed using the 3D Monte Carlo code MCNP 1 A D structural analysis model of the moderator vessel, vacuum tube, and beam tube was completed to evaluate stress loadings and to examine the impact of hydrogen detonations in the beam tube. A detailed ATHENA 2 system model of the hydrogen system has been developed to simulate loop performance under normal and off-normal transient conditions. Semi-prototypic hydrogen loop tests of the system have been performed at the Arnold Engineering Design Center (AEDC) located in Tullahoma, Tennessee to verify the design and benchmark the analytical system model. A 3.5 kW refrigerator system has been ordered and is expected to be delivered to ORNL by the end of this calendar year. Our present schedule shows the assembling of the cold source loop on site during the fall of 1999 for final testing before insertion of the moderator plug assembly into the reactor beam tube during the end of the year 2000. (author)

  15. High-energy tritium beams as current drivers in tokamak reactors

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams

  16. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  17. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  18. Presentation of the High-Flux Reactor of the Institut Laue-Langevin

    International Nuclear Information System (INIS)

    Guyon, H.

    2006-01-01

    Full text of publication follows: The High-Flux Reactor (HFR) of the Institut Laue-Langevin is the world's most intense source of neutrons for fundamental research. Thanks to its extremely compact core, which is made up of a single fuel element, the HFR is capable of producing a neutron flux of up to 1.5.10 15 n.cm -2 .s -1 with a moderate power output of 58 MW. Its heavy water reflector thermalizes these neutrons, giving them a wave length of the order of one angstrom. They then become an excellent tool for exploring the atomic structure of matter. In order to provide a full neutron spectrum, the reactor is also equipped with a hot source (a block of graphite heated to 2000 deg. C) and two cold sources (a volume of liquid deuterium at 25 K). All the reactor's components can be replaced and adapted in order to keep pace with both changing scientific needs and changing safety requirements. For example, in 1992 the reactor block was replaced, a second cold source was installed in 1985, and the beam tubes are replaced at regularly intervals and are also occasionally modified. In the same way, the reactor's civil engineering structures are currently being reinforced in order to comply with the reassessment of the reference earthquake spectra. Finally, the Institut Laue-Langevin's reactor is equipped with three solid containment barriers: - the fuel cladding: during the 35 years the reactor has been in operation, a cladding failure has never been detected; - the leak-tight primary cooling system: this is partly submerged in a pool which provides radiological shielding; - the double-wall containment: an overpressure of air is maintained between the inner reinforced concrete wall and the outer metal wall. The High-Flux Reactor is therefore all set to provide the scientific community with top quality service for the next 20 years to come, on a site which: - is home to the brightest synchrotron in the world (ESRF); - benefits from the microbiology expertise of the EMBL

  19. Presentation of the High-Flux Reactor of the Institut Laue-Langevin

    Energy Technology Data Exchange (ETDEWEB)

    Guyon, H. [Institut Laue-Langevin, Grenoble (France)

    2006-07-01

    Full text of publication follows: The High-Flux Reactor (HFR) of the Institut Laue-Langevin is the world's most intense source of neutrons for fundamental research. Thanks to its extremely compact core, which is made up of a single fuel element, the HFR is capable of producing a neutron flux of up to 1.5.10{sup 15} n.cm{sup -2}.s{sup -1} with a moderate power output of 58 MW. Its heavy water reflector thermalizes these neutrons, giving them a wave length of the order of one angstrom. They then become an excellent tool for exploring the atomic structure of matter. In order to provide a full neutron spectrum, the reactor is also equipped with a hot source (a block of graphite heated to 2000 deg. C) and two cold sources (a volume of liquid deuterium at 25 K). All the reactor's components can be replaced and adapted in order to keep pace with both changing scientific needs and changing safety requirements. For example, in 1992 the reactor block was replaced, a second cold source was installed in 1985, and the beam tubes are replaced at regularly intervals and are also occasionally modified. In the same way, the reactor's civil engineering structures are currently being reinforced in order to comply with the reassessment of the reference earthquake spectra. Finally, the Institut Laue-Langevin's reactor is equipped with three solid containment barriers: - the fuel cladding: during the 35 years the reactor has been in operation, a cladding failure has never been detected; - the leak-tight primary cooling system: this is partly submerged in a pool which provides radiological shielding; - the double-wall containment: an overpressure of air is maintained between the inner reinforced concrete wall and the outer metal wall. The High-Flux Reactor is therefore all set to provide the scientific community with top quality service for the next 20 years to come, on a site which: - is home to the brightest synchrotron in the world (ESRF); - benefits from the

  20. Production of high-specific activity radionuclides using SM high-flux reactor

    International Nuclear Information System (INIS)

    Karelin, Ye.A.; Toporov, Yu.G.; Filimonov, V.T.; Vakhetov, F.Z.; Tarasov, V.A.; Kuznetsov, R.A.; Lebedev, V.M.; Andreev, O.I.; Melnik, M.I.; Gavrilov, V.D.

    1997-01-01

    The development of High Specific Activity (HSA) radionuclides production technologies is one of the directions of RIAR activity, and the high flux research reactor SM, having neutron flux density up to 2.10 15 cm -2 s 1 in a wide range of neutron spectra hardness, plays the principal role in this development. The use of a high-flux reactor for radionuclide production provides the following advantages: production of radionuclides with extremely high specific activity, decreasing of impurities content in irradiated targets (both radioactive and non-radioactive), cost-effective use of expensive isotopically enriched target materials. The production technologies of P-33, Gd-153, W-188, Ni-63, Fe-55,59, Sn-113,117m,119m, Sr- 89, applied in industry, nuclear medicine, research, etc, were developed by RIAR during the last 5-10 years. The research work included the development of calculation procedures for radionuclide reactor accumulation forecast, experimental determination of neutron cross-sections, the development of irradiated materials reprocessing procedures, isolation and purification of radionuclides. The principal results are reviewed in the paper. (authors)

  1. Evaluation of HFIR [High Flux Isotope Reactor] pressure-vessel integrity considering radiation embrittlement

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Merkle, J.G.; Nanstad, R.K.

    1988-04-01

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of ∼10 4 less), that is, a rate effect

  2. Transmutation of technetium into stable ruthenium in high flux conceptual research reactor

    International Nuclear Information System (INIS)

    Amrani, N.; Boucenna, A.

    2007-01-01

    The effectiveness of transmutation for the long lived fission product technetium-99 in high flux research reactor, considering its large capture cross section in thermal and epithermal region is evaluated. The calculation of Ruthenium concentration evolution under irradiation was performed using Chain Solver 2.20 code. The approximation used for the transmutation calculation is the assumption that the influence of change in irradiated materials structures on the reactor operator mode characteristics is insignificant. The results on Technetium transmutation in high flux research reactor suggested an effective use of this kind of research reactors. The evaluation brings a new concept of multi-recycle Technetium transmutation using HFR T RAN (High Flux Research Reactor for Transmutation)

  3. Upgrading and modernization of the high flux reactor Petten

    International Nuclear Information System (INIS)

    Ahlf, J.

    1992-01-01

    The High Flux Reactor (HFR) at Petten, The Netherlands, owned by the European Communities and operated by the Netherlands Energy Research Foundation, is a water-cooled and moderated, multipurpose research reactor of the closed-tank in-pool type, operated at 45 MW. Performance upgrading comprised two power increases from 20 MW via 30 MW to 45 MW, providing more and higher rated irradiation positions in the tank. With the replacement of the original reactor vessel the experimental capabilities of the reactor were improved. Better pool side facilities and the introduction of a large cross-section, double, beam tube were implemented. Additional major installation upgrading activities consisted of the replacement of the primary and the pool heat exchangers, replacement of the beryllium reflector elements, extension of the overpower protection systems and upgrading of the nuclear instrumentation as well as the guaranteed power supply. Control room upgrading is in progress. A full new safety analysis, as well as the introduction of a comprehensive Quality Assurance system, are summarized under software upgrading. Continuous modernization and upgrading also takes place of equipment for fuel and structural materials irradiations for fission reactors and future fusion machines. In parallel, all supporting services, as well as the management structure for large irradiation programmes, have been developed. Presently the reactor is operating at about 275 full power days per year with an average utilization of the irradiation positions of 70 to 80%. (orig.)

  4. [Project for] a high-flux extracted neutron beam reactor [for physicists]; Un [projet de] reacteur a haut flux et faisceaux sortis [pour physiciens

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    French requirements in neutron beams of different energies extracted from a reactor are briefly described. The well-known importance of cold neutrons (above 4 Angstrom) is emphasized. The main characteristics of a reactor suitable for physicists are outlined: They are: 1 - A flux of about 7. 10{sup 14} thermal neutrons in the heavy water of the reflector, 2 - Maximum flexibility obtained by: - physical separation of the core and the reflector, - independence of the different experiments, - possibility of modifying physical experiments up to - and including - the nature of the used reflector, without any appreciable interruption in the operation of the reactor, - reduction of fixed shields to a minimum; ample use of liquid shields (water) and fluid shields (sands). 3 - Technological continuity as far as possible with French research reactors (Siloe, Pegase, Osiris) already existing or under construction. 4 - Safety of operation arising from simplicity of conception. 5 - Minimised construction costs. Lowering of the operating costs is looked for indirectly in the simplification of the solutions and the reduction of operating staff, rather than directly by reducing the consumption of fuel elements and energy. The recommended solution can be described as a closed-core non-pressurized swimming-pool reactor, highly under-moderated by the cooling light water. Surrounding the reactor are a number of 'beam tubes-loops' each consisting of: - a part of the reflector (heavy water in the example described), - a part of neutron extraction beam tube, - the circuits required for their cooling, - the inlet systems of suitable fluids to the beam tube nose (liquid hydrogen in the example described), - the necessary outlets for measurement and control system. The whole 'beam tubes loops' is immersed in the water of the metallic self-supporting swimming-pool. The shielding outside the swimming-pool is composed for the most part by heavy sand in which is the rest of the beam extraction

  5. High flux testing reactor Petten. Replacement of the reactor vessel and connected components. Overall report

    International Nuclear Information System (INIS)

    Chrysochoides, N.G.; Cundy, M.R.; Von der Hardt, P.; Husmann, K.; Swanenburg de Veye, R.J.; Tas, A.

    1985-01-01

    The project of replacing the HFR originated in 1974 when results of several research programmes confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report contains the detailed chronology of events concerning preparation and execution of the replacement. After a 14 months' outage the reactor resumed routine operation on 14th February, 1985. At the end of several years of planning and preparation the reconstruction proceded in the following steps: unloading of the old core, decay of short-lived radioactivity in December 1983, removal of the old tank and of its peripheral equipment in January-February 1984, segmentation and waste disposal of the removed components in March-April, decontamination of the pools, bottom penetration overhauling in May-June, installation of the new tank and other new components in July-September, testing and commissioning, including minor modifications in October-December, and, trials runs and start-up preparation in January-February 1985. The new HFR Petten features increased and improved experimental facilities. Among others the obsolete thermal columns was replaced by two high flux beam tubes. Moreover the new plant has been designed for future increases of reactor power and neutron fluxes. For the next three to four years the reactor has to cope with a large irradiation programme, claiming its capacity to nearly 100%

  6. Alize 3 - first critical experiment for the franco-german high flux reactor - calculations

    International Nuclear Information System (INIS)

    Scharmer, K.

    1969-01-01

    The results of experiments in the light water cooled D 2 O reflected critical assembly ALIZE III have been compared to calculations. A diffusion model was used with 3 fast and epithermal groups and two overlapping thermal groups, which leads to good agreement of calculated and measured power maps, even in the case of strong variations of the neutron spectrum in the core. The difference of calculated and measured k eff was smaller than 0.5 per cent δk/k. Calculations of void and structure material coefficients of the reactivity of 'black' rods in the reflector, of spectrum variations (Cd-ratio, Pu-U-ratio) and to the delayed photoneutron fraction in the D 2 O reflector were made. Measurements of the influence of beam tubes on reactivity and flux distribution in the reflector were interpreted with regard to an optimum beam tube arrangement for the Franco- German High Flux Reactor. (author) [fr

  7. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  8. Determination and analysis of neutron flux distribution on radial Piercing beam port for utilization of Kartini research reactor

    International Nuclear Information System (INIS)

    Widarto

    2002-01-01

    Determination and analysis of neutron flux measurements on radial piercing beam port have been done as completion experimental data document and progressing on utilization of the Kartini research reactor purposes. The analysis and determination of the neutron flux have been carried out by using Au foils detector neutron activation analysis method which put on the radius of cross section (19 cm) and a long of radial piercing beam port (310 cm) Based on the calculation, distribution of the thermal neutron flux is around (8.3 ± 0.9) x 10 5 ncm -2 s -1 to (6.8 ± 0.5) x 10 7 ncm -2 s -1 and fast neutron is (5.0 ± 0.2) x 10 5 ncm -2 s -1 to (1.43 ± 0.6) x 10 7 ncm -2 s -1 . Analyzing by means of curve fitting method could be concluded that the neutron flux distribution on radial piercing beam port has profiled as a polynomial curve. (author)

  9. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  10. Short-lived radionuclides produced on the ORNL 86-inch cyclotron and High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Lamb, E.

    1985-01-01

    The production of short-lived radionuclides at ORNL includes the preparation of target materials, irradiation on the 86-in. cyclotron and in the High Flux Isotope Reactor (HFIR), and chemical processing to recover and purify the product radionuclides. In some cases the target materials are highly enriched stable isotopes separated on the ORNL calutrons. High-purity 123 I has been produced on the 86-in. cyclotron by irradiating an enriched target of 123 Te in a proton beam. Research on calutron separations has led to a 123 Te product with lower concentrations of 124 Te and 126 Te and, consequently to lower concentrations of the unwanted radionuclides, 124 I and 126 I, in the 123 I product. The 86-in. cyclotron accelerates a beam of protons only but is unique in providing the highest available beam current of 1500 μA at 21 MeV. This beam current produces relatively large quantities of radionuclides such as 123 I and 67 Ga

  11. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  12. MAPLE research reactor beam-tube performance

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Gillespie, G.E.

    1989-05-01

    Atomic Energy of Canada Limited (AECL) has been developing the MAPLE (Multipurpose Applied Physics Lattice Experimental) reactor concept as a medium-flux neutron source to meet contemporary research reactor applications. This paper gives a brief description of the MAPLE reactor and presents some results of computer simulations used to analyze the neutronic performance. The computer simulations were performed to identify how the MAPLE reactor may be adapted to beam-tube applications such as neutron radiography

  13. High Flux Materials Testing Reactor (HFR), Petten

    International Nuclear Information System (INIS)

    1975-09-01

    After conversion to burnable poison fuel elements, the High Flux Materials Testing Reactor (HFR) Petten (Netherlands), operated through 1974 for 280 days at 45 MW. Equipment for irradiation experiments has been replaced and extended. The average annual occupation by experiments was 55% as compared to 38% in 1973. Work continued on thirty irradiation projects and ten development activities

  14. Annual report 1990. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    Ahlf, J.; Gevers, A.

    1990-01-01

    In 1990 the operation of the High Flux Reactor was carried out as planned. The availability was 96% of scheduled operating time. The average utilization of the reactor was 71% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  15. Annual report 1989 operation of the high flux reactor

    International Nuclear Information System (INIS)

    Ahlf, J.; Gevers, A.

    1989-01-01

    In 1989 the operation of the High Flux Reactor Petten was carried out as planned. The availability was more than 100% of scheduled operating time. The average occupation of the reactor by experimental devices was 72% of the practical occupation limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons and for radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  16. Annual Report 1991. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    Ahlf, J.; Gevers, A.

    1992-01-01

    In 1991 the operation of the High Flux Reactor was carried out as planned. The availability was more than 100% of scheduled operating time. The average utilization of the reactor was 69% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. Development activities addressed upgrading of irradiation devices, neutron capture therapy, neutron radiography and neutron transmutation doping of silicon. General activities in support of running irradiation programmes progressed in the normal way

  17. Scientific upgrades at the high flux isotope reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Selby, D.L.; Garrett, D.L.; Lucas, A.T.; Reeves, M.E.

    2001-01-01

    The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the high flux isotope reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: 1) larger beam tubes, 2) a new monochromator drum for the HB-1 beam line, 3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, 4) new instruments for the HB-2 beamline, 5) a new monochromator drum for the HB-3 beam line, 6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, 7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, 8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, 9) a number of new instruments for the cold beams including two new SANS instruments, and 10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule. (orig.)

  18. The neutron beam facility at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Hunter, B.; Kennedy, S.

    1999-01-01

    Full text: The Australian federal government gave ANSTO final approval to build a research reactor to replace HIFAR on August 25th 1999. The replacement reactor is to be a multipurpose reactor with a thermal neutron flux of 3 x 10 14 n.cm -2 .s -1 and having improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The replacement reactor will commence operation in 2005 and will cater for Australian scientific, industrial and medical needs well into the 21st century. The scientific capabilities of the neutron beams at the replacement reactor are being developed in consultation with representatives from academia, industry and government research laboratories to provide a facility for condensed matter research in physics, chemistry, materials science, life sciences, engineering and earth sciences. Cold, thermal and hot neutron sources are to be installed, and neutron guides will be used to position most of the neutron beam instruments in a neutron guide hall outside the reactor confinement building. Eight instruments are planned for 2005, with a further three to be developed by 2010. A conceptual layout for the neutron beam facility is presented including the location of the planned suite of neutron beam instruments. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by an accredited reactor builder in a turnkey contract. Tenders have been called for December 1999, with selection of contractor planned by June 2000. The neutron beam instruments will be developed by ANSTO and other contracted organisations in consultation with the user community and interested overseas scientists. The facility will be based, as far as possible, around a neutron guide hall that is be served by three thermal and three cold neutron guides. Efficient transportation of thermal and cold neutrons to the guide hall requires the use of modern super

  19. High flux-fluence measurements in fast reactors

    International Nuclear Information System (INIS)

    Lippincott, E.P.; Ulseth, J.A.

    1977-01-01

    Characterization of irradiation environments for fuels and materials tests in fast reactors requires determination of the neutron flux integrated over times as long as several years. An accurate integration requires, therefore, passive dosimetry monitors with long half-life or stable products which can be conveniently measured. In addition, burn-up, burn-in, and burn-out effects must be considered in high flux situations and use of minimum quantities of dosimeter materials is often desirable. These conditions force the use of dosimeter and dosimeter container designs, measured products, and techniques that are different from those that are used in critical facilities and other well-characterized benchmark fields. Recent measurements in EBR-II indicate that high-accuracy results can be attained and that tie-backs to benchmark field technique calibrations can be accomplished

  20. Heat transfer for ultrahigh flux reactor

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Lake, J.A.; Oh, C.H.

    1987-01-01

    The use of a uniquely designed nuclear reactor to supply neutrons for materials research is the focus of recent reactor design efforts. The biological, materials, and fundamental physics aspects of research require neutron fluxes much higher than present research and testing facilities can produce. The most advanced research using neutrons as probing detectors is being done in the High Flux Reactor at the Institut Laue Langeuin, France. The design of a reactor that can produce neutron fluxes of 1.0 x 10 16 n/cm 2 .s requires a relatively high power (300 MW range) and a small core volume (approximately 30 liters). This combination of power and volume leads to a high power density which places increased demands on thermal hydraulic margins

  1. Final report of the HFIR [High Flux Isotope Reactor] irradiation facilities improvement project

    International Nuclear Information System (INIS)

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987

  2. Reactor vessel dismantling at the high flux materials testing reactor Petten

    International Nuclear Information System (INIS)

    Tas, A.; Teunissen, G.

    1986-01-01

    The project of replacing the reactor vessel of the high flux materials testing reactor (HFR) originated in 1974 when results of several research programs confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report describes the dismantling philosophy and organisation, the design of special underwater equipment, the dismantling of the reactor vessel and thermal column, and the conditioning and shielding activities resulting in a working area for the installation of the new vessel with no access limitations due to radiation. Finally an overview of the segmentation, waste disposal and radiation exposure is given. The total dismantling, segmentation and conditioning activities resulted in a total collective radiation dose of 300 mSv. (orig.) [de

  3. Neutron beam facilities at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett

    2001-01-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10 14 n/cm 2 /sec and a liquid D 2 cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  4. A high-flux low-energy hydrogen ion beam using an end-Hall ion source

    NARCIS (Netherlands)

    Veldhoven, J. van; Sligte, E. te; Janssen, J.P.B.

    2016-01-01

    Most ion sources that produce high-flux hydrogen ion beams perform best in the high energy range (keV). Alternatively, some plasma sources produce very-lowenergy ions (<< 10 eV). However, in an intermediate energy range of 10-200 eV, no hydrogen ion sources were found that produce high-flux beams.

  5. RELAP5/MOD2. 5 analysis of the HFBR (High Flux Beam Reactor) for a loss of power and coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

    1990-05-01

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs.

  6. RELAP5/MOD2.5 analysis of the HFBR [High Flux Beam Reactor] for a loss of power and coolant accident

    International Nuclear Information System (INIS)

    Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

    1990-05-01

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs

  7. High Flux Isotope Reactor power upgrade status

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Hale, R.E.; Cheverton, R.D.

    1997-01-01

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions

  8. A conceptual high flux reactor design with scope for use in ADS ...

    Indian Academy of Sciences (India)

    By design the flux level in the seed fuel has been kept lower than in the high flux trap zones so that the burning rate of the seed is reduced. Another important objective of the design is to maximize the time interval of refueling. As against a typical refueling interval of a few weeks in such high flux reactor cores, it is desired to ...

  9. A Compact, High-Flux Cold Atom Beam Source

    Science.gov (United States)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  10. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  11. Fuel management at the Petten high flux reactor

    International Nuclear Information System (INIS)

    Thijssen, P.J.M.

    1999-01-01

    Several years ago the shipment of spent fuel of the High Flux Reactor (HFR) at Petten has come to a standstill resulting in an ever growing stock of fuel elements that are labelled 'fully burnt up'. Examination of those elements showed that a reasonably number of them have a relatively high 235 U mass left. A reactor physics analysis showed that the use of such elements in the peripheral core zone allows the loading of four instead of five fresh fuel elements in many cycle cores. For the assessment of safety and performance parameters of HFR cores a new calculational tool is being developed. It is based on AEA Technology's Reactor physics code suite Winfrith Improved Multigroup Scheme (WIMS). NRG produced pre- and post-processing facilities to feed input data into WIMS's 2D transport code CACTUS and to extract relevant parameters from the output. The processing facilities can be used for many different types of application. (author)

  12. Pressurizer pump reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    During a prolonged outage from November 1986 to May 1990, numerous changes were made at the High Flux Isotope Reactor (HFIR). Some of these changes involved the pressurizer pumps. An analysis was performed to calculate the impact of these changes on the pressurizer system availability. The analysis showed that the availability of the pressurizer system dropped from essentially 100% to approximately 96%. The primary reason for the decrease in availability comes because off-site power grid disturbances sometimes result in a reactor trip with the present pressurizer pump configuration. Changes are being made to the present pressurizer pump configuration to regain some of the lost availability

  13. Operating manual for the High Flux Isotope Reactor. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    1965-06-01

    This report contains a comprehensive description of the High Flux Isotope Reactor facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procedures are presented in another report.

  14. 1982 Annual status report: operation of the high flux reactor

    International Nuclear Information System (INIS)

    1983-01-01

    The high flux materials testing reactor has been operated in 1982 within a few percent of the pre-set schedule, attaining 73% overall availability. Its utilization reached another record figure in 20 years: 81% without, 92% with, the low enrichment test elements irradiated during the year

  15. Reactor - and accelerator-based filtered beams

    International Nuclear Information System (INIS)

    Mill, A.J.; Harvey, J.R.

    1980-01-01

    The neutrons produced in high flux nuclear reactors and in accelerator, induced fission and spallation reactions, represent the most intense sources of neutrons available for research. However, the neutrons from these sources are not monoenergetic, covering the broad range extending from 10 -3 eV up to 10 7 eV or so. In order to make quantitative measurements of the effects of neutrons and their dependence on neutron energy it is desirable to have mono-energetic neutron sources. The paper describes briefly methods of obtaining mono-energetic neutrons and different methods of filtration. This is followed by more detailed discussion of neutron window filters and a summary of the filtered beam facilities using this technique. The review concludes with a discussion of the main applications of filtered beams and their present and future importance

  16. High flux and high resolution VUV beam line for synchrotron radiation

    International Nuclear Information System (INIS)

    Wilcke, H.; Boehmer, W.; Schwentner, N.

    1982-04-01

    A beam line has been optimized for high flux and high resolution in the wavelength range from 30 nm to 300 nm. Sample chambers for luminescence spectroscopy on gaseous, liquid and solid samples and for photoelectron spectroscopy have been integrated. The synchrotron radiation from the storage ring DORIS (at DESY, Hamburg) emitted into 50 mrad in horizontal and into 2.2 mrad in vertical direction is focused by a cylindrical and a plane elliptical mirror into the entrance slit of a 2m normal incidence monochromator. The light flux from the exit slit is focused by a rotational elliptic mirror onto the sample yielding a size of the light spot of 4 x 0.15 mm 2 . The light flux at the sample reaches 7 x 10 12 photons nm -1 s -1 at 8 eV photon energy for a current of 100 mA in DORIS. A resolution of 0.007 nm has been obtained. (orig.)

  17. High flux isotope reactor cold source preconceptual design study report

    International Nuclear Information System (INIS)

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E.

    1995-12-01

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH 2 moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project

  18. Experimental measurements and theoretical simulations for neutron flux in self-serve facility of Dhruva reactor

    International Nuclear Information System (INIS)

    Rana, Y.S.; Mishra, Abhishek; Singh, Tej

    2016-06-01

    Dhruva is a 100 MW th tank type research reactor with natural metallic uranium as fuel and heavy water as coolant, moderator and reflector. The reactor is utilized for production of a large variety of radioisotopes for fulfilling growing demands of various applications in industrial, agricultural and medicinal sectors, and neutron beam research in condensed matter physics. The core consists of two on-power tray rods for radioisotope production and fifteen experimental beam holes for neutron beam research. Recently, a self-serve facility has also been commissioned in one of the through tubes in the reactor for carrying out short term irradiations. To get accurate information about neutron flux spectrum, measurements have been carried out in self-serve facility of Dhruva reactor. The present report describes measurement method, analysis technique and results. Theoretical estimations for neutron flux were also carried out and a comparison between theoretical and experimental results is made. (author)

  19. COMPARISON OF COOLING SCHEMES FOR HIGH HEAT FLUX COMPONENTS COOLING IN FUSION REACTORS

    Directory of Open Access Journals (Sweden)

    Phani Kumar Domalapally

    2015-04-01

    Full Text Available Some components of the fusion reactor receives high heat fluxes either during the startup and shutdown or during the operation of the machine. This paper analyzes different ways of enhancing heat transfer using helium and water for cooling of these high heat flux components and then conclusions are drawn to decide the best choice of coolant, for usage in near and long term applications.

  20. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  1. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  2. High-flux first-wall design for a small reversed-field pinch reactor

    International Nuclear Information System (INIS)

    Cort, G.E.; Graham, A.L.; Christensen, K.E.

    1982-01-01

    To achieve the goal of a commercially economical fusion power reactor, small physical size and high power density should be combined with simplicity (minimized use of high-technology systems). The Reversed-Field Pinch (RFP) is a magnetic confinement device that promises to meet these requirements with power densities comparable to those in existing fission power plants. To establish feasibility of such an RFP reactor, a practical design for a first wall capable of withstanding high levels of cyclic neutron wall loadings is needed. Associated with the neutron flux in the proposed RFP reactor is a time-averaged heat flux of 4.5 MW/m 2 with a conservatively estimated transient peak approximately twice the average value. We present the design for a modular first wall made from a high-strength copper alloy that will meet these requirements of cyclic thermal loading. The heat removal from the wall is by subcooled water flowing in straight tubes at high linear velocities. We combined a thermal analysis with a structural fatigue analysis to design the heat transfer module to last 10 6 cycles or one year at 80% duty for a 26-s power cycle. This fatigue life is compatible with a radiation damage life of 14 MW/yr/m 2

  3. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report.

  4. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    International Nuclear Information System (INIS)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report

  5. Reactor beam calculations to determine optimum delivery of epithermal neutrons for treatment of brain tumors

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Nigg, D.W.; Capala, J.

    1997-01-01

    Studies were performed to assess theoretical tumor control probability (TCP) for brain-tumor treatment with boron neutron capture therapy (BNCT) using epithermal neutron sources from reactors. The existing epithermal-neutron beams at the Brookhaven Medical Research Reactor Facility (BMRR), the Petten High Flux Reactor Facility (HWR) and the Finnish Research Reactor 1 (FIR1) have been analyzed and characterized using common analytical and measurement methods allowing for this inter-comparison. Each of these three facilities is unique and each offers an advantage in some aspect of BNCT, but none of these existing facilities excel in all neutron-beam attributes as related to BNCT. A comparison is therefore also shown for a near-optimum reactor beam which does not currently exist but which would be feasible with existing technology. This hypothetical beam is designated BNCT-1 and has a spectrum similar to the FIR-1, the mono-directionality of the HFR and the intensity of the BMRR. A beam very similar to the BNCT-1 could perhaps be achieved with modification of the BMRR, HFR, or FIR, and could certainly be realized in a new facility with today's technology

  6. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Aguilar, F.; Paredes, L.; Rivera M, T.

    2013-10-01

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a 6 Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  7. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  8. The operating experience and incident analysis for High Flux Engineering Test Reactor

    International Nuclear Information System (INIS)

    Zhao Guang

    1999-01-01

    The paper describes the incidents analysis for High Flux Engineering test reactor (HFETR) and introduces operating experience. Some suggestion have been made to reduce the incidents of HFETR. It is necessary to adopt new improvements which enhance the safety and reliability of operation. (author)

  9. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Science.gov (United States)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  10. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E. [Consorzio RFX—Associazione EURATOM-ENEA per la Fusione, Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  11. Electron beam solenoid reactor concept

    International Nuclear Information System (INIS)

    Bailey, V.; Benford, J.; Cooper, R.; Dakin, D.; Ecker, B.; Lopez, O.; Putman, S.; Young, T.S.T.

    1977-01-01

    The electron Beam Heated Solenoid (EBHS) reactor is a linear magnetically confined fusion device in which the bulk or all of the heating is provided by a relativistic electron beam (REB). The high efficiency and established technology of the REB generator and the ability to vary the coupling length make this heating technique compatible with several radial and axial enery loss reduction options including multiple-mirrors, electrostatic and gas end-plug techniques. This paper addresses several of the fundamental technical issues and provides a current evaluation of the concept. The enhanced confinement of the high energy plasma ions due to nonadiabatic scattering in the multiple mirror geometry indicates the possibility of reactors of the 150 to 300 meter length operating at temperatures > 10 keV. A 275 meter EBHS reactor with a plasma Q of 11.3 requiring 33 MJ of beam eneergy is presented

  12. Application of expert systems to heat exchanger control at the 100-megawatt high-flux isotope reactor

    International Nuclear Information System (INIS)

    Clapp, N.E. Jr.; Clark, F.H.; Mullens, J.A.; Otaduy, P.J.; Wehe, D.K.

    1985-01-01

    The High-Flux Isotope Reactor (HFIR) is a 100-MW pressurized water reactor at the Oak Ridge National Laboratory. It is used to produce isotopes and as a source of high neutron flux for research. Three heat exchangers are used to remove heat from the reactor to the cooling towers. A fourth heat exchanger is available as a spare in case one of the operating heat exchangers malfunctions. It is desirable to maintain the reactor at full power while replacing the failed heat exchanger with the spare. The existing procedures used by the operators form the initial knowledge base for design of an expert system to perform the switchover. To verify performance of the expert system, a dynamic simulation of the system was developed in the MACLISP programming language. 2 refs., 3 figs

  13. External event Probabilistic Risk Assessment for the High Flux Isotope Reactor (HFIR)

    International Nuclear Information System (INIS)

    Flanagan, G.F.; Johnson, D.H.; Buttemer, D.; Perla, H.F.; Chien, S.H.

    1989-01-01

    The High Flux Isotope Reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988 a level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 x 10 -4 . In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 50% of the internal event initiated contribution and is dominated by seismic events

  14. Seismic, high wind, tornado, and probabilistic risk assessment of the high flux isotope reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Hashimoto, P.S.; Dizon, J.O.; Hashimoto, P.S.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR). Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed

  15. Australia's new high performance research reactor

    International Nuclear Information System (INIS)

    Miller, R.; Abbate, P.M.

    2003-01-01

    A contract for the design and construction of the Replacement Research Reactor was signed in July 2000 between ANSTO and INVAP from Argentina. Since then the detailed design has been completed, a construction authorization has been obtained, and construction has commenced. The reactor design embodies modern safety thinking together with innovative solutions to ensure a highly safe and reliable plant. Also significant effort has been placed on providing the facility with diverse and ample facilities to maximize its use for irradiating material for radioisotope production as well as providing high neutron fluxes for neutron beam research. The project management organization and planing is commensurate with the complexity of the project and the number of players involved. (author)

  16. Split core experiments; Part I. Axial neutron flux distribution measurements in the reactor core with a central horizontal reflector

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P; Raisic, N; Obradovic, D; Jovanovic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1965-05-01

    A series of critical experiments were performed on the RB reactor in order to determine the thermal neutron flux increase in the central horizontal reflector formed by a split reactor core. The objectives of these experiments were to study the possibilities of improving the thermal neutron flux characteristics of the neutron beam in the horizontal beam tube of the RA research reactor. The construction of RA reactor enables to split the core in two, to form a central horizontal reflector in front of the beam tube. This is achieved by replacing 2% enriched uranium slugs in the fuel channel by dummy aluminium slugs. The purpose of the first series of experiments was to study the gain in thermal neutron component inside the horizontal reflector and the loss of reactivity as a function of the lattice pitch and central reflector thickness.

  17. Lessons Learned in the Update of a Safety Limit for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Cook, David Howard

    2009-01-01

    A recent unreviewed safety question (USQ) regarding a portion of the High Flux Isotope Reactor (HFIR) transient decay heat removal analysis focused on applicability of a heat transfer correlation at the low flow end of reactor operations. During resolution of this issue, review of the correlations used to establish the safety limit (SL) on reactor flux-to-flow ratio revealed the need to change the magnitude of the SL at the low flow end of reactor operations and the need to update the hot spot fuel damage criteria to incorporate current knowledge involving parallel channel flow stability. Because of the original safety design strategy for the reactor, resolution of the issues for the flux-to-flow ratio involved reevaluation of all key process variable SLs and limiting control settings (LCSs) using the current version of the heat transfer analysis code for the reactor. Goals of the work involved updating and upgrading the SL analysis where necessary, while preserving the safety design strategy for the reactor. Changes made include revisions to the safety design criteria at low flows to address the USQ, update of the process- and analysis input-variable uncertainty considerations, and upgrade of the safety design criteria at high flow. The challenges faced during update/upgrade of this SL and LCS are typical of the problems found in the integration of safety into the design process for a complex facility. In particular, the problems addressed in the area of instrument uncertainties provide valuable lessons learned for establishment and configuration control of SLs for large facilities

  18. Annual progress report 1988, operation of the high flux reactor

    International Nuclear Information System (INIS)

    1989-01-01

    In 1988 the High Flux Reactor Petten was routinely operated without any unforeseen event. The availability was 99% of scheduled operation. Utilization of the irradiation positions amounted to 80% of the practical occupation limit. The exploitation pattern comprised nuclear energy deployment, fundamental research with neutrons, and radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  19. Component and system simulation models for High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sozer, A.

    1989-08-01

    Component models for the High Flux Isotope Reactor (HFIR) have been developed. The models are HFIR core, heat exchangers, pressurizer pumps, circulation pumps, letdown valves, primary head tank, generic transport delay (pipes), system pressure, loop pressure-flow balance, and decay heat. The models were written in FORTRAN and can be run on different computers, including IBM PCs, as they do not use any specific simulation languages such as ACSL or CSMP. 14 refs., 13 figs

  20. Production of Sn-117m in the BR2 high-flux reactor.

    Science.gov (United States)

    Ponsard, B; Srivastava, S C; Mausner, L F; Russ Knapp, F F; Garland, M A; Mirzadeh, S

    2009-01-01

    The BR2 reactor is a 100MW(th) high-flux 'materials testing reactor', which produces a wide range of radioisotopes for various applications in nuclear medicine and industry. Tin-117m ((117m)Sn), a promising radionuclide for therapeutic applications, and its production have been validated in the BR2 reactor. In contrast to therapeutic beta emitters, (117m)Sn decays via isomeric transition with the emission of monoenergetic conversion electrons which are effective for metastatic bone pain palliation and radiosynovectomy with lesser damage to the bone marrow and the healthy tissues. Furthermore, the emitted gamma photons are ideal for imaging and dosimetry.

  1. Surveillance programme and upgrading of the High Flux Reactor Petten

    International Nuclear Information System (INIS)

    Bieth, Michel

    1995-01-01

    The High Flux Reactor (HFR) at Petten (The Netherlands), a 45 MW light water cooled and moderated research reactor in operation during more than 30 years, has been kept up to date by replacing ageing components. In 1984, the HFR was shut down for replacement of the aluminium. reactor vessel which had been irradiated during more than 20 years. The demonstration that the new vessel contains no critical defect requires knowledge of the material properties of the aluminium alloy Al 5154 with and without neutron irradiation and of the likely defect presence through the periodic in-service inspections. An irradiation damage surveillance programme has been started in 1985 for the new vessel material to provide information on fracture mechanics properties. After the vessel replacement, the existing process of continuous upgrading and replacement of ageing components was accelerated. A stepwise upgrade of the control room is presently under realization. (author)

  2. Surveillance programme and upgrading of the High Flux Reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Bieth, Michel [Commission of the European Communities, Joint Research Centre, Institute for Advanced Materials, High Flux Reactor Unit, Petten (Netherlands)

    1995-07-01

    The High Flux Reactor (HFR) at Petten (The Netherlands), a 45 MW light water cooled and moderated research reactor in operation during more than 30 years, has been kept up to date by replacing ageing components. In 1984, the HFR was shut down for replacement of the aluminium. reactor vessel which had been irradiated during more than 20 years. The demonstration that the new vessel contains no critical defect requires knowledge of the material properties of the aluminium alloy Al 5154 with and without neutron irradiation and of the likely defect presence through the periodic in-service inspections. An irradiation damage surveillance programme has been started in 1985 for the new vessel material to provide information on fracture mechanics properties. After the vessel replacement, the existing process of continuous upgrading and replacement of ageing components was accelerated. A stepwise upgrade of the control room is presently under realization. (author)

  3. Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Harris, S.P.; Stover, R.L.; Hashimoto, P.S.; Dizon, J.O.

    1989-01-01

    Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs

  4. New temperature monitoring devices for high-temperature irradiation experiments in the high flux reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, M.; Futterer, M. A.; Lapetite, J. M. [European Commission Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Fourrez, S. [THERMOCOAX SAS, BP 26, Planquivon, 61438 Flers Cedex (France); Morice, R. [Laboratoire National de Metrologie et d' Essais, 1 rue Gaston Boissier, 75724 Paris (France)

    2009-07-01

    Within the European High Temperature Reactor Technology Network (HTR-TN) and related projects a number of HTR fuel irradiations are planned in the High Flux Reactor Petten (HFR), The Netherlands, with the objective to explore the potential of recently produced fuel for even higher temperature and burn-up. Irradiating fuel under defined conditions to extremely high burn-ups will provide a better understanding of fission product release and failure mechanisms if particle failure occurs. After an overview of the irradiation rigs used in the HFR, this paper sums up data collected from previous irradiation tests in terms of thermocouple data. Some research and development work for further improvement of thermocouples and other on-line instrumentation will be outlined. (authors)

  5. Thermal problems on high flux beam lines

    International Nuclear Information System (INIS)

    Avery, R.T.

    1983-09-01

    Wiggler and undulator magnets can provide very intense photon flux densities to beam line components. This paper addresses some thermal/materials consequences due to such impingement. The LBL/Exxon/SSRL hybrid-wiggler Beam Line VI now nearing operation will be able to provide up to approx. 7 kW of total photon power at planned SPEAR operating conditions. The first masks are located at 6.5 meters from the source and may receive a peak power density (transverse to the beam) exceeding 20 kW/cm 2 . Significantly, this heat transfer rate exceeds that radiated from the sun's surface (7 kW/cm 2 ) and is comparable to that of welding torches. Clearing, cooling and configuration are of critical importance. Configurations for the first fixed mask, the movable mask, and the pivot mask on this beam line are presented together with considerations of thermal stress fatigue and of heat transfer by conduction to water-cooling circuits. Some preliminary information on heating of crystals and mirrors is also presented

  6. Status in 1998 of the high flux reactor fuel cycle

    International Nuclear Information System (INIS)

    Guidez, J.; Gevers, A.; Wijtsma, F.J.; Thijssen, P.M.J.

    1998-01-01

    The High Flux Reactor located at Petten (The Netherlands), is owned by the European Commission and is operated under contract by ECN (Netherlands Energy Research Foundation). This plant is in operation since 1962 using HEU enriched at 90%. Conversion studies were conducted several years ago with the hypothesis of a global conversion of the entire core. The results of these studies have shown a costly operation with a dramatic decrease of the thermal flux which is necessary for the medical use of the plant (Molybdene 99 production). Some tests with low enriched elements were also conducted with several companies, several geometrical configurations and several enrichments. They are described in this paper. Explanations are also given on future possibilities for new fuel testing. (author)

  7. Application of the successive linear programming technique to the optimum design of a high flux reactor using LEU fuel

    International Nuclear Information System (INIS)

    Mo, S.C.

    1991-01-01

    The successive linear programming technique is applied to obtain the optimum thermal flux in the reflector region of a high flux reactor using LEU fuel. The design variables are the reactor power, core radius and coolant channel thickness. The constraints are the cycle length, average heat flux and peak/average power density ratio. The characteristics of the optimum solutions with various constraints are discussed

  8. Tests of SEC stability in high flux proton beams

    International Nuclear Information System (INIS)

    Agoritsas, V.; Witkover, R.L.

    1979-01-01

    The Secondary Emission Chamber (SEC) is used to measure the beam intensity in slow extracted beam channels of proton synchrotrons around the world. With the improvements in machine intensity, these monitors have been exposed to higher flux conditions than in the past. A change in sensitivity of up to 25% has been observed in the region around the beam spot. Using SEC's of special construction, a series of tests was performed at FNAL, BNL-AGS and CERN-PS. The results of these tests and conclusions about the construction of more stable SEC's are presented

  9. Reactor-moderated intermediate-energy neutron beams for neutron-capture therapy

    International Nuclear Information System (INIS)

    Less, T.J.

    1987-01-01

    One approach to producing an intermediate energy beam is moderating fission neutrons escaping from a reactor core. The objective of this research is to evaluate materials that might produce an intermediate beam for NCT via moderation of fission neutrons. A second objective is to use the more promising moderator material in a preliminary design of an NCT facility at a research reactor. The evaluations showed that several materials or combinations of materials could produce a moderator source for an intermediate beam for NCT. The best neutron spectrum for use in NCT is produced by Al 2 O 3 , but mixtures of Al metal and D 2 O are also attractive. Using the best moderator materials, results were applied to the design of an NCT moderator at the Georgia Institute of Technology Research Reactor's bio-medical facility. The amount of photon shielding and thermal neutron absorber were optimized with respect to the desired photon dose rate and intermediate neutron flux at the patient position

  10. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  11. Measurements of neutron flux in the RA reactor

    International Nuclear Information System (INIS)

    Raisic, N.

    1961-12-01

    This report includes the following separate parts: Thermal neutron flux in the experimental channels od RA reactor; Epithermal neutron flux in the experimental channels od RA reactor; Fast neutron flux in the experimental channels od RA reactor; Thermal neutron flux in the thermal column and biological experimental channel; Neutronic measurements in the RA reactor cell; Temperature reactivity coefficient of the RA reactor; design of the device for measuring the activity of wire [sr

  12. Preliminary considerations of an intense slow positron facility based on a 78Kr loop in the high flux isotopes reactor

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Donohue, D.L.; Peretz, F.J.; Montgomery, B.H.; Hayter, J.B.

    1990-01-01

    Suggestions have been made to the National Steering Committee for the Advanced Neutron Source (ANS) by Mills that provisions be made to install a high intensity slow positron facility, based on a 78 Kr loop, that would be available to the general community of scientists interested in this field. The flux of thermal neutrons calculated for the ANS is E + 15 sec -1 m -2 , which Mills has estimated will produce 5 mm beam of slow positrons having a current of about 1 E + 12 sec -1 . The intensity of such a beam will be a least 3 orders of magnitude greater than those presently available. The construction of the ANS is not anticipated to be complete until the year 2000. In order to properly plan the design of the ANS, strong considerations are being given to a proof-of-principle experiment, using the presently available High Flux Isotopes Reactor, to test the 78 Kr loop technique. The positron current from the HFIR facility is expected to be about 1 E + 10 sec -1 , which is 2 orders of magnitude greater than any other available. If the experiment succeeds, a very valuable facility will be established, and important formation will be generated on how the ANS should be designed. 3 refs., 1 fig

  13. Lessons learned form high-flux isotope reactor restart efforts

    International Nuclear Information System (INIS)

    Dahl, T.L.

    1989-01-01

    When the high-flux isotope reactor's (HFIR's) pressure vessel irradiation surveillance specimens were examined in December 1986, unexpected embrittlement was found. The resulting investigation disclosed widespread deficiencies in quality assurance and management practices. On March 24, 1987, the US Department of Energy (DOE) mandated a shutdown of all five Oak Ridge National Laboratory (ORNL) research reactors. Since the beginning of 1987, 18 different formal review groups have evaluated the management and operations of the HFIR. The root cause of the identified deficiencies in the HFIR program was defined as a lack of rigor in management practices and complacency built on twenty years of trouble-free operation. A number of lessons can be learned from the HFIR experience. Particular insight can be gained by comparing the HFIR organization prior to the shutdown with the organization that exists today. Key elements in such a comparison include staffing, funding, discipline, and formality in operations, maintenance, and management

  14. Effects of high heat flux hydrogen and helium mixture beam irradiation on surface modification and hydrogen retention in tungsten materials

    International Nuclear Information System (INIS)

    Tokunaga, K.; Fujiwara, T.; Ezato, K.; Suzuki, S.; Akiba, M.; Kurishita, H.; Nagata, S.; Tsuchiya, B.; Tonegawa, A.; Yoshida, N.

    2009-01-01

    High heat flux experiments using a hydrogen-helium mixture beam have been carried out on powder metallurgy tungsten (PM-W) and ultra fine grain W-TiC alloy (W-0.5 wt%TiC-H 2 ). The energy of is 18 keV. Beam flux and heat flux at the beam center is 2.0 x 10 21 atoms/m 2 s and 7.0 MW/m 2 , respectively. Typical ratio of He/D ion is 0.25. Beam duration is 1.5-3 s and interval of beam shot start is 30 s. The samples are irradiated up to a fluence of 10 22 -10 24 He/m 2 by the repeated irradiation pulses. After the irradiation, surface modification by the irradiation and hydrogen retention, surface composition have been investigated. Surface modification by hydrogen-helium mixture beams is completely different from results of single beam irradiation. In particular, mixture beam irradiation causes remarkably high hydrogen retention.

  15. Status of neutron beam utilization at the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Dien, Nguyen Nhi; Hai, Nguyen Canh

    2003-01-01

    The 500-kW Dalat nuclear research reactor was reconstructed from the USA-made 250-kW TRIGA Mark II reactor. After completion of renovation and upgrading, the reactor has been operating at its nominal power since 1984. The reactor is used mainly for radioisotope production, neutron activation analysis, neutron beam researches and reactor physics study. In the framework of the reconstruction and renovation project of the 1982-1984 period, the reactor core, the control and instrumentation system, the primary and secondary cooling systems, as well as other associated systems were newly designed and installed by the former Soviet Union. Some structures of the reactor, such as the reactor aluminum tank, the graphite reflector, the thermal column, horizontal beam tubes and the radiation concrete shielding have been remained from the previous TRIGA reactor. As a typical configuration of the TRIGA reactor, there are four neutron beam ports, including three radial and one tangential. Besides, there is a large thermal column. Until now only two-neutron beam ports and the thermal column have been utilized. Effective utilization of horizontal experimental channels is one of the important research objectives at the Dalat reactor. The research program on effective utilization of these experimental channels was conducted from 1984. For this purpose, investigations on physical characteristics of the reactor, neutron spectra and fluxes at these channels, safety conditions in their exploitation, etc. have been carried out. The neutron beams, however, have been used only since 1988. The filtered thermal neutron beams at the tangential channel have been extracted using a single crystal silicon filter and mainly used for prompt gamma neutron activation analysis (PGNAA), neutron radiography (NR) and transmission experiments (TE). The filtered quasi-monoenergetic keV neutron beams using neutron filters at the piercing channel have been used for nuclear data measurements, study on

  16. High Flux Isotope Reactor quarterly report, July--September 1975

    International Nuclear Information System (INIS)

    McCord, R.V.; Corbett, B.L.

    1975-01-01

    The replacement of the permanent beryllium reflector was completed this quarter. The reactor was shut down for 87 days for this maintenance operation. Erosion of the sealing surface at the stainless steel adaptor flange on the HB-1 beam tube facility was confirmed. A soft metallic O-ring was used to effect a seal when this facility was reassembled. A comprehensive inspection of the normally inaccessible parts of the reactor pressure vessel was made. No abnormalities were found

  17. Radiation protection commissioning of neutron beam instruments at the OPAL research reactor

    International Nuclear Information System (INIS)

    Parkes, Alison; Saratsopoulos, John; Deura, Michael; Kenny, Pat

    2008-01-01

    The neutron beam facilities at the 20 MW OPAL Research Reactor were commissioned in 2007 and 2008. The initial suite of eight neutron beam instruments on two thermal neutron guides, two cold neutron guides and one thermal beam port located at the reactor face, together with their associated shielding were progressively installed and commissioned according to their individual project plans. Radiation surveys were systematically conducted as reactor power was raised in a step-wise manner to 20 MW in order to validate instrument shielding design and performance. The performance of each neutron guide was assessed by neutron energy spectrum and flux measurements. The activation of beam line components, decay times assessments and access procedures for Bragg Institute beam instrument scientists were established. The multiple configurations for each instrument and the influence of operating more than one instrument or beamline simultaneously were also tested. Areas of interest were the shielding around the secondary shutters, guide shield and bunker shield interfaces and monochromator doors. The shielding performance, safety interlock checks, improvements, radiation exposures and related radiation protection challenges are discussed. This paper discusses the health physics experience of commissioning the OPAL Research Reactor neutron beam facilities and describes health physics results, actions taken and lessons learned during commissioning. (author)

  18. 1984 Operation of the high flux reactor

    International Nuclear Information System (INIS)

    1985-01-01

    The programme resources in 1984 were largely devoted to the replacement of the old reactor vessel and its peripheral equipment. The original vessel had been in operation for more than 20 years and doubts had arisen about the condition of the aluminium tank after so long an exposure to neutrons. The operation, which had never been attempted before on a reactor of that size and complexity was planned and prepared over a number of years to take advantage of the occasion to provide a much improved vessel, incorporating the latest design features. The plant was shut down at the end of November 1983 and the 14 months operation began with a short cooling-off period for decay of short lived radioactivity followed by removal of the old tank and its dissection into pieces convenient for consolidation and storage as radioactive waste. After decontamination of the shielding pool, the new vessel and neutron beam tubes were installed and the reactor was recommissioned. Routine 45 MW operation was resumed on 14 February 1985 and has been uneventful since then

  19. Status report of the program on neutron beam utilization at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1996-08-01

    The thermal reactor is an intense source not only of thermal neutron, but also intermediate as well as fast neutrons. Using the filtered neutron beam technique at steady state atomic reactor allows receiving the neutrons in the intermediate energy region with the most available intense flux at present. In the near time at the Dalat reactor the filtered neutron beam technique has been applied. Utilization of the filtered neutron beams in basic and applied researches has been a important activity of the Dalat Nuclear Research Institute (DNRI). This report presents some relevant characteristics of the filtered neutron beams and their utilization in nuclear data measurements, neutron capture gamma ray spectroscopy, neutron radiography, neutron dose calibration and other applications. (author). 3 refs, 2 figs

  20. Eddy-current inspection of high flux isotope reactor nuclear control rods

    International Nuclear Information System (INIS)

    Smith, J.H.; Chitwood, L.D.

    1981-07-01

    Inner control rods for the High Flux Isotope Reactor were nondestructively inspected for defects by eddy-current techniques. During these examinations aluminum cladding thickness and oxide thickness on the cladding were also measured. Special application techniques were required because of the high-radiation levels (approx. 10 5 R/h at 30 cm) present and the relatively large temperature gradients that occurred on the surface of the control rods. The techniques used to perform the eddy-current inspections and the methods used to reduce the associated data are described

  1. The high flux reactor Petten, A multi-purpose research and test facility for the future of nuclear energy

    International Nuclear Information System (INIS)

    Bergmans, H.; Duijves, K.; Conrad, R.; Markgraf, J.F.W.; May, R.; Moss, R.L.; Sordon, G.; Tartaglia, G.P.

    1996-01-01

    The High Flux Reactor (HFR) at Petten, is owned by the European Commission (EC) and managed by the Institute for Advanced Materials (IAM) of the Joint Research Centre (JRC) of the EC. Its operation has been entrusted since 1962 to the Netherlands Energy Research Foundation (ECN). The HFR is one of the most powerful multi-purpose research and test reactors in the world. Together with the ECN hot cells at Petten, it has provided since three decades an integral and full complement of irradiation and examination services as required by current and future research and development for nuclear energy, industry and research organizations. Since 1963, the HFR has recognized record of consistent, reliable and high availability of more than 250 days of operation per year. The HFR has 20 in-core and 12 poolside irradiation positions, plus 12 beam tubes. With a variety of dedicated irradiation devices, and with its long-standing experience in executing small and large irradiation projects, the HFR is particularly suited for fuel, materials and components testing for all reactor lines, including thermonuclear fusion reactors. In addition, processing with neutrons and gamma rays, neutron-based research and inspection services are employed by industry and research, such as activation analysis, boron neutron capture therapy, neutron radiography and neutron diffraction. Moreover, in recent years, HFRs' mission has been broadened within the area of radioisotopes production, where, within a few years, the HFR has attained the European leadership in production volume

  2. Upgrades of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1994-12-31

    The first epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR) was installed in 1988 and produced a neutron beam that was satisfactory for the development of NCT with epithermal neutrons. This beam was used routinely until 1992 when the beam was upgraded by rearranging fuel elements in the reactor core to achieve a 50% increase in usable flux. Next, after computer modeling studies, it was proposed that the Al and Al{sub 2}O{sub 3} moderator material in the shutter that produced the epithermal neutrons could be rearranged to enhance the beam further. However, this modification was not started because a better option appeared, namely to use fission plates to move the source of fission neutrons closer to the moderator and the patient irradiation position to achieve more efficient moderation and production of epithermal neutrons. A fission plate converter (FPC) source has been designed recently and, to test the concept, implementation of this upgrade has started. The predicted beam parameters will be 12 x 10{sup 9} n{sub epi}/cm{sup 2}sec accompanying with doses from fast neutrons and gamma rays per epithermal neutron of 2.8 x 10{sup -11} and < 1 x 10{sup -11} cGycm{sup 2}/n, respectively, and a current-to-flux ratio of epithermal neutrons of 0.78. This conversion could be completed by late 1996.

  3. The feature of high flux engineering test reactor and its role in nuclear power development

    International Nuclear Information System (INIS)

    Lu Guangquan

    1987-01-01

    The High Flux Engineering Test Reactor (HFETR) designed and built by Chinese own efforts reached to its initial criticality on Dec. 27, 1979, and then achieved high power operation on Dec. 16, 1980. Until Nov. 11. 1986, the reactor had been operated for thirteen cycles. The paper presents briefly main feature of HFETR and its utilization during past years. The paper also deals with its role in nuclear power development. Finally, author gives his opinion on comprehensive utilization of HFETR. (author)

  4. High flux Particle Bed Reactor systems for rapid transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Maise, G.; Steinberg, M.; Todosow, M.

    1993-01-01

    An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based actinide burner concept also possesses a number of safety and economic benefits relative to other reactor based transmutation approaches including a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high in temperatures while retaining virtually all fission products. In addition the reactor also posesses a number of ''engineered safety features,'' which, along with the use of high temperature capable materials further enhance its safety characteristics

  5. Neutronics shielding analysis of the last mirror-beam duct system for a laser fusion power reactor

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Klein, A.C.

    1981-01-01

    A Monte Carlo three-dimensional neutronics analysis for the last mirror-beam duct system for the SOLASE conceptual laser-driven fusion power reactor design is presented. Detailed geometric configurations including the reactor cavity, the two last mirrors, and the three-section two-right-angle bends duct are modeled. Measurements are given of the dimensions and compositions of the reactor components, and of neutron scalar fluxes, spatial dependencies and neutron volumetric heating rates for the cases of aluminum or Boral as laser beam duct liners, and ordinary concrete or lead mortar as shield material. A three-dimensional modeling of laser-driven reactor penetrations is employed. The particle leakage is found to be excessively high for the configuration of the conceptual design considered and the advantages and disadvantages of various solutions, such as the use of Boral as a duct liner and the use of lead mortar instead of ordinary concrete as a shield material, are considered

  6. EL-2 reactor: Thermal neutron flux distribution

    International Nuclear Information System (INIS)

    Rousseau, A.; Genthon, J.P.

    1958-01-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  7. Neutron flux distribution forecasting device of reactor

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi

    1991-01-01

    A neutron flux distribution is forecast by using current data obtained from a reactor. That is, the device of the present invention comprises (1) a neutron flux monitor disposed in various positions in the reactor, (2) a forecasting means for calculating and forecasting a one-dimensional neutron flux distribution relative to imaginable events by using data obtained from the neutron flux monitor and physical models, and (3) a display means for displaying the results forecast in the forecasting means to a reactor operation console. Since the forecast values for the one-dimensional neutron flux distribution relative to the imaginable events are calculated in the device of the present invention by using data obtained from the neutron flux monitor and the physical models, the data as a base of the calculation are new and the period for calculating the forecast values can be shortened. Accordingly, although there is a worry of providing some errors in the forecast values, they can be utilized sufficiently as reference data. As a result, the reactor can be operated more appropriately. (I.N.)

  8. High flux reactor evolutions and improvements

    International Nuclear Information System (INIS)

    Guyon, H.

    2005-01-01

    Following the changes over the years in experimental and safety requirements at the ILL a great deal of work has been carried out on the installations: - In 1985, a new cold source was installed, allowing the production of ultra-cold neutrons via a vertical channel. - From 1991 to 1995 the reactor block was replaced, allowing us to perform reactivity calculations and determine other neutronic values. - In 2003, a new hot source was installed with three beam tubes viewing it; the new system is now operating very efficiently. - This year a major beam tube is to be replaced with a new zircaloy tube. - And finally, from 2003 to 2006, the facility is being upgraded significantly to withstand newly-defined safe-shutdown earthquakes. In parallel, developments are on-going on the efficiency of the instruments and the neutron guides under the Millennium Programme. These will result in overall gains in data collection of over a factor of 10. As the ILL's international convention has been extended to the end of 2013 the Institute is therefore now well-set to maintain its position as a centre of excellence in the scientific use of slow neutrons for the twenty years to come. (author)

  9. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L., E-mail: mabs500@gmail.com, E-mail: narain@ufpe.br, E-mail: jairbezerra@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociências. Departamento de Energia Nuclear

    2017-07-01

    Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

  10. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

    International Nuclear Information System (INIS)

    Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L.

    2017-01-01

    Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

  11. Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Ott, Larry J.; Ellis, Ronald James; McDuffee, Joel Lee; Spellman, Donald J.; Bevard, Bruce Balkcom

    2009-01-01

    The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

  12. Neutron flux determination at the IPR-R1 Triga Mark I neutron beam extractor

    International Nuclear Information System (INIS)

    Zangirolami, Dante Marco; Maretti Junior, Fausto; Ferreira, Andrea Vidal

    2009-01-01

    The IPR-R1 Triga Mark I Reactor located at the CDTN/CNEN, Belo Horizonte, Brazil, has been operating since November of 1960. In this work, measurements of thermal and epithermal neutron flux along the IPR-R1 neutron beam extractor were performed by neutron activation of reference materials using the two foils method. The obtained results were compared with results from two previous works: an experimental measurement done in a previous reactor core configuration and a numerical work made by Monte Carlo simulation using the actual reactor core configuration. The main purpose of this work is to update the measured data to the actual reactor core configuration. (author)

  13. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    International Nuclear Information System (INIS)

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F.; Vermeeren, L.; Lopez, A. Legrand

    2011-01-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10 20 n/cm 2 . A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  14. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    Science.gov (United States)

    Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.

    2011-03-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  15. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F. [CEA, DEN, Cadarache, SPEx/LDCI, F-13108 Saint-Paul-lez-Durance (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lopez, A. Legrand [CEA, DEN, Saclay, SIREN/LECSI, F-91400 Saclay (France)

    2011-03-15

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10{sup 20} n/cm{sup 2}. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  16. Neutron scattering at the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Cable, J.W. Chakoumakos, B.C.; Dai, P.

    1995-01-01

    The title facilities offer the brightest source of neutrons in the national user program. Neutron scattering experiments probe the structure and dynamics of materials in unique and complementary ways as compared to x-ray scattering methods and provide fundamental data on materials of interest to solid state physicists, chemists, biologists, polymer scientists, colloid scientists, mineralogists, and metallurgists. Instrumentation at the High- Flux Isotope Reactor includes triple-axis spectrometers for inelastic scattering experiments, a single-crystal four diffractometer for crystal structural studies, a high-resolution powder diffractometer for nuclear and magnetic structure studies, a wide-angle diffractometer for dynamic powder studies and measurements of diffuse scattering in crystals, a small-angle neutron scattering (SANS) instrument used primarily to study structure-function relationships in polymers and biological macromolecules, a neutron reflectometer for studies of surface and thin-film structures, and residual stress instrumentation for determining macro- and micro-stresses in structural metals and ceramics. Research highlights of these areas will illustrate the current state of neutron science to study the physical properties of materials

  17. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    In Canada the need for advanced neutron sources has long been recognized. During the past several years Atomic Energy of Canada Limited (AECL) has been developing the new MAPLE multipurpose reactor concept. To date, the MAPLE program has focused on the development of a modest-cost multipurpose medium-flux neutron source to meet contemporary requirements for applied and basic research using neutron beams, for small-scale materials testing and analysis and for radioisotope production. The basic MAPLE concept incorporates a compact light-water cooled and moderated core within a heavy water primary reflector to generate strong neutron flux levels in a variety of irradiation facilities. In view of renewed Canadian interest in a high-flux neutron source, the MAPLE group has begun to explore advanced concepts based on AECL's experience with heavy water reactors. The overall objective is to define a high-flux facility that will support materials testing for advanced power reactors, new developments in extracted neutron-beam applications, and/or production of radioisotopes. The design target is to attain performance levels of HFR-Grenoble, HFBR, HFIR in a new heavy water-cooled, -moderated,-reflected reactor based on rodded LEU fuel. Physics, shielding, and thermohydraulic studies have been performed for the MAPLE heavy water reactor. 14 refs., 4 figs., 1 tab

  18. Surface analyses of TiC coated molybdenum limiter material exposed to high heat flux electron beam

    International Nuclear Information System (INIS)

    Onozuka, M.; Uchikawa, T.; Yamao, H.; Kawai, H.; Kousaku, A.; Nakamura, H.; Niikura, S.

    1986-01-01

    Observation and surface analyses of TiC coated molybdenum exposed to high heat flux have been performed to study thermal damage resistance of TiC coated molybdenum limiter material. High heat loads were provided by a 120 kW electron beam facility. (author)

  19. High Flux Isotope Reactor system RELAP5 input model

    International Nuclear Information System (INIS)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model

  20. Fabrication of control rods for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.

    1998-01-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A

  1. Fabrication of control rods for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  2. Development of a high-heat-flux target for multimegawatt, multisecond neutral beams at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.; Bush, C.E.

    1984-01-01

    A high-heat-flux target has been developed for intercepting multimegawatt, multisecond neutral beam power at the Oak Ridge National Laboratory (ORNL). Water-cooled copper swirl tubes are used for the heat transfer medium; these tubes exhibit an enhancement in burnout heat flux over conventional axial-flow tubes. The target consists of 126 swirl tubes (each 0.95 cm in outside diameter with 0.16-cm-thick walls and approx. =1 m long) arranged in a V-shape. Two arrays of parallel tubes inclined at an angle α to the beam axis form the V-shape, and this geometry reduces the surface heat flux by a factor of 1/sin α (for the present design, α =13 0 and 21 0 ). In tests with the ORNL long-pulse ion source (13- by 43-cm grid), the target has handled up to 3-MW, 30-s beam pulses with no deleterious effects. The peak power density was estimated at approx. =15 kW/cm 2 normal to the beam axis (5.4 kW/cm 2 maximum on tube surfaces). The water flow rate through the target was 41.6 L/s (660 gpm) or 0.33 L/s (5.2 gpm) per tube (axial flow velocity = 11.6 m/s). The corresponding pressure drop across the target was 1.14 MPa (165 psi) with an inlet pressure of 1.45 MPa (210 psia). Data are also presented from backup experiments in which individual tubes were heated by a small ion source (10-cm-diam grid) to characterize tube performance. These results suggest that the target should handle peak power densities in the range 25 to 30 kW/cm 2 normal to the beam axis (approx. =10 kW/cm 2 maximum on tube surfaces) with the present flow parameters. This translates to beam power levels of 5 to 6 MW for equivalent beam optics

  3. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  4. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  5. The development of ex-core neutron flux monitoring system for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying

  6. The development of ex-core neutron flux monitoring system for integral reactor

    International Nuclear Information System (INIS)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S.

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying the ex

  7. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  8. Prediction of Flow and Temperature Distributions in a High Flux Research Reactor Using the Porous Media Approach

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2017-01-01

    Full Text Available High thermal neutron fluxes are needed in some research reactors and for irradiation tests of materials. A High Flux Research Reactor (HFRR with an inverse flux trap-converter target structure is being developed by the Reactor Engineering Analysis Lab (REAL at Tsinghua University. This paper studies the safety of the HFRR core by full core flow and temperature calculations using the porous media approach. The thermal nonequilibrium model is used in the porous media energy equation to calculate coolant and fuel assembly temperatures separately. The calculation results show that the coolant temperature keeps increasing along the flow direction, while the fuel temperature increases first and decreases afterwards. As long as the inlet coolant mass flow rate is greater than 450 kg/s, the peak cladding temperatures in the fuel assemblies are lower than the local saturation temperatures and no boiling exists. The flow distribution in the core is homogeneous with a small flow rate variation less than 5% for different assemblies. A large recirculation zone is observed in the outlet region. Moreover, the porous media model is compared with the exact model and found to be much more efficient than a detailed simulation of all the core components.

  9. Management of safety and risk at the HFIR [High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Glovier, H.A.

    1990-01-01

    This paper discusses the management of safety and risk at the High-Flux Isotope Reactor (HFIR), a category A research reactor at Oak Ridge National Laboratory (ORNL). The HFIR went critical in 1966 and operated at its designed 100 MW for 20 yr until it was shut down on November 14, 1986. It operated at a >90% availability and without significant event during this period. The result was a complacent management program lacking rigor. This complacency came to an end with the Chernobyl accident, which led to the appointment of an internal committee to assess the safety of ORNL reactor operations. This committee found that HFIR pressure vessel material specimens removed several years earlier had not been analyzed. This issue led to a general review of management practices that were found lacking in quality assurance, safety documentation, training process, and emergency planning, among others. Management accountability was lacking, as shown by design basis and safety analyses that were not up to data and by the fact that reactor operators whose requalification examinations had not been graded were allowed to continue operating the reactor over a long period of time. Between shutdown in 1986 and restart in April 1989, significant management changes and initiatives were made in the area of risk and safety management of ORNL reactors. These are presented briefly in this paper

  10. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    Neve de Mevergnies, M.

    1977-01-01

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  11. Pursuing nuclear energy with no nuclear contamination - from neutron flux reactor to deuteron flux reactor

    International Nuclear Information System (INIS)

    Li, X. Z.; Wei, Q. M.; Liu, B.; Zhu, X. G.; Ren, S. L.

    2007-01-01

    -free channel in the deuteron-deuteron fusion reaction. Even if polarized deuteron has long enough life-time to keep its polarity in hot fusion plasma, there is still the probability to have the neutron emission channel from deuteron-deuteron fusion. The neutron emission in hot plasma containing deuterons is inevitable. Isomer Hf-178 was proposed to reduce the neutron emission in terms of gamma decay controlled by X-ray. Although its reality is still in question, the resonance plays key role in this concept as well. Condensed matter nuclear science provided another chance to approach nuclear energy with no nuclear contamination. Selective resonant tunneling would select only the neutron free channel. There are five major steps in the past 17 years: (1) Selective Resonant tunneling model has been successful to explain the 3 major puzzles in cold fusion proposed by nuclear physicist(i.e. penetration of Coulomb barrier, no neutron emission, no gamma radiation), and successful also to explain the 3 major cross-section data in hot fusion(i.e. d+t, d+d, d+He 3 ). The Nobel prize laureate, B. Josephson of Cambridge University, cited this theory in the famous Lindau Meeting (2004).[1,2] (2) Deuteron flux through the palladium surface at specific temperature was found correlated with heat flow in various experiments in China, Switzerland, Japan, France and Italy.[3,4] (3) The nuclear products have been confirmed in a series of nuclear transmutation experiments using deuterium flux permeating through the thin film on the palladium surface.[5] (4) Distinct from the beam-target experiment, a special procedure was proposed to search this resonance between lattice energy level and nuclear energy level. (5) Instead of the electrolytic cell, the gas loading technique has been used. It led to the discovery of the temperature of these resonances which may be as high as 1000 degree C. This would change greatly the usage of this nuclear energy. We may propose the future subjects of study as

  12. Irradiation effects in fused quartz 'Suprasil' as a detector of fission fragments under high flux of reactor neutrons

    International Nuclear Information System (INIS)

    Moraes, O.M.G. de.

    1984-01-01

    A systematic study about the registration characteristics of synthetic fused quartz 'Suprasil I' use as a detector of fission fragments under high flux of reactor neutrons and the effects of irradiation on it was performed. Fission fragments of 252 Cf, gamma radiation doses of of 60 Co up to 150 MGy, and integrated neutrons fluxes up to 10 20 n/cm 2 were used. A model to explain the effects on track registration and development characteristics of 'Suprasil I' irradiated on reactors were proposed, based on the obtained results for efficiency an for annealing. (C.G.C.) [pt

  13. High heat flux facility GLADIS

    International Nuclear Information System (INIS)

    Greuner, H.; Boeswirth, B.; Boscary, J.; McNeely, P.

    2007-01-01

    The new ion beam facility GLADIS started the operation at IPP Garching. The facility is equipped with two individual 1.1 MW power ion sources for testing actively cooled plasma facing components under high heat fluxes. Each ion source generates heat loads between 3 and 55 MW/m 2 with a beam diameter of 70 mm at the target position. These parameters allow effective testing from probes to large components up to 2 m length. The high heat flux allows the target to be installed inclined to the beam and thus increases the heated surface length up to 200 mm for a heat flux of 15 MW/m 2 in the standard operating regime. Thus the facility has the potential capability for testing of full scale ITER divertor targets. Heat load tests on the WENDELSTEIN 7-X pre-series divertor targets have been successfully started. These tests will validate the design and manufacturing for the production of 950 elements

  14. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  15. Emergency diesel generator reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    A program to apply some of the techniques of reliability engineering to the High Flux Isotope Reactor (HFIR) was started on August 8, 1992. Part of the program was to track the conditional probabilities of the emergency diesel generators responding to a valid demand. This was done to determine if the performance of the emergency diesel generators (which are more than 25 years old) has deteriorated. The conditional probabilities of the diesel generators were computed and trended for the period from May 1990 to December 1992. The calculations indicate that the performance of the emergency diesel generators has not deteriorated in recent years, i.e., the conditional probabilities of the emergency diesel generators have been fairly stable over the last few years. This information will be one factor than may be considered in the decision to replace the emergency diesel generators

  16. Analytical evaluation of neutron diffusion equation for the geometry of very intense continuous high flux pulsed reactor

    International Nuclear Information System (INIS)

    Narain, Rajendra

    1995-01-01

    Using the concept of Very Intense Continuous High Flux Pulsed Reactor to obtain a rotating high flux pulse in an annular core an analytical treatment for the quasi-static solution with a moving reflector is presented. Under quasi-static situation, time averaged values for important parameters like multiplication factor, flux, leakage do not change with time. As a result the instantaneous solution can be considered to be separable in time and space after correcting for the coordinates for the motion of the pulser. The space behaviour of the pulser is considered as exp(-αx 2 ). Movement of delayed neutron precursors is also taken into account. (author). 4 refs

  17. Why does the need of HEU for high flux research reactors remain?

    International Nuclear Information System (INIS)

    Glaeser, W.

    1991-01-01

    It has shown that high performance high flux reactors need an ongoing supply of highly enriched uranium. The new fuel materials in their highly enriched version offer prospective for advanced and better neutron sources vital for the future of neutron research. This is another very attractive result of the RERTR programme. One-sided restriction would only provide marginal or no values for research. If we adopt the sometimes expressed views that high enriched RERTR developed fuel should only be made available when unique benefits to mankind could be obtained, then certainly basic research at the forefront belongs to this category. HEU would only pose theoretical difficulties, if it would remain under proper safeguards and obviously this is the way to be pursued. (orig.)

  18. Experimental complex for high flux-materials interaction research

    International Nuclear Information System (INIS)

    Gagen-Torn, V.K.; Kirillov, I.R.; Komarov, V.L.; Litunovsky, V.N.; Mazul, I.V.; Ovchinnikov, I.B.; Prokofjev, Yu.G.; Saksagansky, G.L.; Titov, V.A.

    1995-01-01

    The experimental complex for high heat flux testing of divertor materials and bumper mock-ups under conditions close to both ITER stationary and plasma disruption PFC heat loads is described. High power plasma and electron beams are using as high heat flux sources. The former are applied to disruption simulation experiments. The values of pulsed plasma heat flux load up to 110 MJ/m 2 and stationary e-beam load up to 15 MW/m 2 can obtained on these facilities. (orig.)

  19. Surface analyses of TiC coated molybdenum limiter material exposed to high heat flux electron beam

    International Nuclear Information System (INIS)

    Onozuka, M.; Uchikawa, T.; Yamao, H.; Kawai, H.; Kousaku, A.; Nakamura, H.; Niikura, S.

    1987-01-01

    Observation and surface analyses of TiC coated molybdenum exposed to high heat flux have been performed to study thermal damage resistance of TiC coated molybdenum limiter material. High heat loads were provided by a 120 kW electron beam facility. SEM, AES and EPMA have been applied to the surface analyses

  20. Status of High Flux Isotope Reactor (HFIR) post-restart safety analysis and documentation upgrades

    International Nuclear Information System (INIS)

    Cook, D.H.; Radcliff, T.D.; Rothrock, R.B.; Schreiber, R.E.

    1990-01-01

    The High Flux Isotope Reactor (HFIR), an experimental reactor located at the Oak Ridge National Laboratory (ORNL) and operated for the US Department of Energy by Martin Marietta Energy Systems, was shut down in November, 1986 after the discovery of unexpected neutron embrittlement of the reactor vessel. The reactor was restarted in April, 1989, following an extensive review by DOE and ORNL of the HFIR design, safety, operation, maintenance and management, and the implementation of several upgrades to HFIR safety-related hardware, analyses, documents and procedures. This included establishing new operating conditions to provide added margin against pressure vessel failure, as well as the addition, or upgrading, of specific safety-related hardware. This paper summarizes the status of some of the follow-on (post-restart) activities which are currently in progress, and which will result in a comprehensive set of safety analyses and documentation for the HFIR, comparable with current practice in commercial nuclear power plants. 8 refs

  1. Irradiation experiments and materials testing capabilities in High Flux Reactor in Petten

    International Nuclear Information System (INIS)

    Luzginova, N.; Blagoeva, D.; Hegeman, H.; Van der Laan, J.

    2011-01-01

    The text of publication follows: The High Flux Reactor (HFR) in Petten is a powerful multi-purpose research and materials testing reactor operating for about 280 Full Power Days per year. In combination with hot cells facilities, HFR provides irradiation and post-irradiation examination services requested by nuclear energy research and development programs, as well as by industry and research organizations. Using a variety of the custom developed irradiation devices and a large experience in executing irradiation experiments, the HFR is suitable for fuel, materials and components testing for different reactor types. Irradiation experiments carried out at the HFR are mainly focused on the understanding of the irradiation effects on materials; and providing databases for irradiation behavior of materials to feed into safety cases. The irradiation experiments and materials testing at the HFR include the following issues. First, materials irradiation to support the nuclear plant life extensions, for instance, characterization of the reactor pressure vessel stainless steel claddings to insure structural integrity of the vessel, as well as irradiation of the weld material coupons to neutron fluence levels that are representative for Light Water Reactors (LWR) internals applications. Secondly, development and qualification of the structural materials for next generation nuclear fission reactors as well as thermo-nuclear fusion machines. The main areas of interest are in both conventional stainless steel and advanced reduced activation steels and special alloys such as Ni-base alloys. For instance safety-relevant aspects of High Temperature Reactors (HTR) such as the integrity of fuel and structural materials with increasing neutron fluence at typical HTR operating conditions has been recently assessed. Thirdly, support of the fuel safety through several fuel irradiation experiments including testing of pre-irradiated LWR fuel rods containing UO 2 or MOX fuel. Fourthly

  2. EL-2 reactor: Thermal neutron flux distribution; EL-2: Repartition du flux de neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A; Genthon, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  3. Alize 3 - first critical experiment for the franco-german high flux reactor - calculations; Alize 3 - premiere experience critique pour le reacteur a haut flux franco-allemand. Calculs

    Energy Technology Data Exchange (ETDEWEB)

    Scharmer, K [Commissariat a l' Energie Atomique, Dir. des Piles Atomiques, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The results of experiments in the light water cooled D{sub 2}O reflected critical assembly ALIZE III have been compared to calculations. A diffusion model was used with 3 fast and epithermal groups and two overlapping thermal groups, which leads to good agreement of calculated and measured power maps, even in the case of strong variations of the neutron spectrum in the core. The difference of calculated and measured k{sub eff} was smaller than 0.5 per cent {delta}k/k. Calculations of void and structure material coefficients of the reactivity of 'black' rods in the reflector, of spectrum variations (Cd-ratio, Pu-U-ratio) and to the delayed photoneutron fraction in the D{sub 2}O reflector were made. Measurements of the influence of beam tubes on reactivity and flux distribution in the reflector were interpreted with regard to an optimum beam tube arrangement for the Franco- German High Flux Reactor. (author) [French] Les resultats des experiences faites dans la maquette critique ALIZE III, refrigeree a l'eau legere et reflechie par l'eau lourde, ont ete compares aux calculs. On a utilise un modele de la theorie de diffusion a trois groupes rapides et epithermiques et deux groupes thermiques qui se recouvrent. Ce modele a permis de calculer la distribution de puissance dans le coeur en bon accord avec les mesures, meme dans le cas d'une forte variation du spectre des neutrons dans le coeur. L'erreur entre k{sub eff} calcule et mesure etait inferieure a 0,5 pour cent {delta}k/k. Le coefficient de vide et des materiaux de structure, la reactivite des barres 'noires', les variations du spectre (rapport Cd, rapport Pu/U) et la fraction des photo-neutrons retardes sont egalement calcules. Les mesures de reactivite et de perturbation de flux dans le reflecteur, dues aux canaux, ont ete interpretees du point de vue d'un arrangement optimum des canaux pour le Reacteur a Haut Flux Franco-Allemand. (auteur)

  4. The proposed use of low enriched uranium fuel in the High Flux Australian Reactor (HIFAR)

    International Nuclear Information System (INIS)

    Vittorio, D.; Durance, G.

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) operates the High Flux Australian Reactor (HIFAR). HIFAR commenced operation in the late 1950's with fuel elements containing uranium enriched to 93%. From that time the level of enrichment has gradually decreased to the current level of 60%. It is now proposed to further reduce the enrichment of HIFAR fuel to <20% by utilising LEU fuel assemblies manufactured by RISO National Laboratory, that were originally intended for use in the DR-3 reactor. Minor modifications have been made to the assemblies to adapt them for use in HIFAR. A detailed design review has been performed and initial safety analysis and reactor physics calculations are to be submitted to ARPANSA as part of a four-stage approval process. (author)

  5. Safety and quality management at the high flux reactor Petten

    International Nuclear Information System (INIS)

    Zurita, A.; Ahlf, J.

    1995-01-01

    The High Flux Reactor (HFR) is one high power multi-purpose materials testing research reactor of the tank-in-pool type, cooled and moderated by light-water. It is operated at 45 MW at a prescribed schedule of 11 cycles per year, each comprising 25 operation days and three shut-down days. Since the licence for the operation of HFR was granted in 1962, a total of 14 amendments to the original licence have been made following different modifications in the installations. In the meantime, international nuclear standards were developed, especially in the framework of the NUSS programme of the IAEA, which were adopted by the Dutch Licensing Authorities. In order to implement the new standards, the situation at the HFR was comprehensively reviewed in the course of an audit performed by the Dutch Licensing Authorities in 1988. This also resulted in formulating the task of setting-up an 'HFR - Integral Quality Assurance Handbook' (HFR-IQAD) involving both organizations JRCIAM and ECN, which had the unique framework and basic guideline to assure the safe and efficient operation and exploitation of the HFR and to promote safety and quality in all aspects of HFR related activities. The assurance of safe and efficient operation and exploitation of the HFR is condensed together under the concepts of safety and quality of services and is achieved through the safety and quality management. (orig.)

  6. E-beam heated linear solenoid reactors

    International Nuclear Information System (INIS)

    Benford, J.; Bailey, V.; Oliver, D.

    1976-01-01

    A conceptual design and system analysis shows that electron beam heated linear solenoidal reactors are attractive for near term applications which can use low gain fusion sources. Complete plant designs have been generated for fusion based breeders of fissile fuel over a wide range of component parameters (e.g., magnetic fields, reactor lengths, plasma densities) and design options (e.g., various radial and axial loss mechanisms). It appears possible that a reactor of 100 to 300 meters length operating at power levels of 1000 MWt can economically produce 2000 to 8000 kg/yr of 233 U to supply light water reactor fuel needs beyond 2000 A.D. Pure fusion reactors of 300 to 500 meter lengths are possible. Physics and operational features of reactors are described. Beam heating by classical and anomalous energy deposition is reviewed. The technology of the required beams has been developed to MJ/pulse levels, within a factor of 20 of that needed for full scale production reactors. The required repetitive pulsing appears practical

  7. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  8. Fusion reactor development using high power particle beams

    International Nuclear Information System (INIS)

    Ohara, Y.

    1990-01-01

    The present paper outlines major applications of the ion source/accelerator to fusion research and also addresses the present status and future plans for accelerator development. Applications of ion sources/accelerators for fusion research are discussed first, focusing on plasma heating, plasma current drive, plasma current profile control, and plasma diagnostics. The present status and future plan of ion sources/accelerators development are then described focusing on the features of existing and future tokamak equipment. Positive-ion-based NBI systems of 100 keV class have contributed to obtaining high temperature plasmas whose parameters are close to the fusion break-even condition. For the next tokamak fusion devices, a MeV class high power neutral beam injector, which will be used to obtain a steady state burning plasma, is considered to become the primary heating and current drive system. Development of such a system is a key to realize nuclear fusion reactor. It will be entirely indebted to the development of a MeV class high current negative deuterium ion source/accelerator. (N.K.)

  9. The new high flux neutron source FRM-2 in Munich

    International Nuclear Information System (INIS)

    Roegler, H.J.; Wierheim, G.

    2002-01-01

    Quite some years ago in 1974 to be exact, the first consideration on a new neutron source started at the technical university of Munich (Germany). 27 years later the new high flux neutron source (FRM-2) was read for hot operation, now delayed by a refused approval for its third partial license by the federal government of Germany despite a wide support from the scientific community. FRM-2 is a tank-type research reactor cooled by water, moderated by heavy water and whose thermal power was limited to 20 MW maximum. The extreme compact core together with the applied inverse flux principle led to a neutron flux design value of 8.10 18 n/m 2 .s at the reflector peak. 10 beam tubes will allow an optimized use of the high neutron flux. A hot neutron source with graphite at about 2200 Celsius degrees and a cold neutron source with liquid D 2 at about 25 K will provide shifted energy spectra. The utilization of FRM-2 is many-fold: neutronography and tomography, medical irradiation, radio-nuclide production, doping of pure silicon, neutron activation analysis. (A.C.)

  10. Neutral-beam systems for magnetic-fusion reactors

    International Nuclear Information System (INIS)

    Fink, J.H.

    1981-01-01

    Neutral beams for magnetic fusion reactors are at an early stage of development, and require considerable effort to make them into the large, reliable, and efficient systems needed for future power plants. To optimize their performance to establish specific goals for component development, systematic analysis of the beamlines is essential. Three ion source characteristics are discussed: arc-cathode life, gas efficiency, and beam divergence, and their significance in a high-energy neutral-beam system is evaluated

  11. Experimental studies on mitigation of LOCA for a high flux research reactor

    International Nuclear Information System (INIS)

    Saxena, A.K.

    2006-01-01

    Experimental studies on the rewetting behaviour of hot vertical annular channels were performed to study the mitigation of consequences of loss of coolant accident (LOCA) for a high flux research reactor. Studies were carried out to study the rewetting behaviour with hot inner tube, for bottom flooding and top flow rewetting conditions. The tube was made of stainless steel. Experiments were conducted for water flow rates in the annulus upto 7 litres per minute (l pm) (11.7 x 10 -5 m 3 s -1 ). The initial surface temperature of the inner tube was varied from 200 to 500 degC. (author)

  12. maximum neutron flux at thermal nuclear reactors

    International Nuclear Information System (INIS)

    Strugar, P.

    1968-10-01

    Since actual research reactors are technically complicated and expensive facilities it is important to achieve savings by appropriate reactor lattice configurations. There is a number of papers, and practical examples of reactors with central reflector, dealing with spatial distribution of fuel elements which would result in higher neutron flux. Common disadvantage of all the solutions is that the choice of best solution is done starting from the anticipated spatial distributions of fuel elements. The weakness of these approaches is lack of defined optimization criteria. Direct approach is defined as follows: determine the spatial distribution of fuel concentration starting from the condition of maximum neutron flux by fulfilling the thermal constraints. Thus the problem of determining the maximum neutron flux is solving a variational problem which is beyond the possibilities of classical variational calculation. This variational problem has been successfully solved by applying the maximum principle of Pontrjagin. Optimum distribution of fuel concentration was obtained in explicit analytical form. Thus, spatial distribution of the neutron flux and critical dimensions of quite complex reactor system are calculated in a relatively simple way. In addition to the fact that the results are innovative this approach is interesting because of the optimization procedure itself [sr

  13. Neutron flux measurements in PUSPATI Triga Reactor

    International Nuclear Information System (INIS)

    Gui Ah Auu; Mohamad Amin Sharifuldin Salleh; Mohamad Ali Sufi.

    1983-01-01

    Neutron flux measurement in the PUSPATI TRIGA Reactor (PTR) was initiated after its commissioning on 28 June 1982. Initial measured thermal neutron flux at the bottom of the rotary specimen rack (rotating) and in-core pneumatic terminus were 3.81E+11 n/cm 2 sec and 1.10E+12n/cm 2 sec respectively at 100KW. Work to complete the neutron flux data are still going on. The cadmium ratio, thermal and epithermal neutron flux are measured in the reactor core, rotary specimen rack, in-core pneumatic terminus and thermal column. Bare and Cadmium covered gold foils and wires are used for the above measurement. The activities of the irradiated gold foils and wires are determined using Ge(Li) and hyperpure germinium detectors. (author)

  14. The advanced MAPLE reactor concept

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Lee, A.G.; Gillespie, G.E.; Smith, H.J.

    1989-01-01

    High-flux neutron sources are continuing to be of interest both in Canada and internationally to support materials testing for advanced power reactors, new developments in extracted-neutron-beam applications, and commercial production of selected radioisotopes. The advanced MAPLE reactor concept has been developed to meet these needs. The advanced MAPLE reactor is a new tank-type D 2 O reactor that uses rodded low-enrichment uranium fuel in a compact annular core to generate peak thermal-neutron fluxes of 1 x 10 19 n·s -1 in a central irradiation rig with a thermal power output of 50 MW. Capital and incremental development costs are minimized by using MAPLE reactor technology to the greatest extent practicable

  15. Study of the RP-10 reactor neutron beam applied to the neutron radiography

    International Nuclear Information System (INIS)

    Zegarra, Manuel; Lopez, Alcides

    2013-01-01

    We have studied the RP-10 reactor radial neutron beam No. 3, which is used for neutron radiographies, by comparing radiograph's with and without the inner duct, and neutron flux determination with in flakes along the external duct, being the presence of photons creating signals at comparable levels of neutron effects, which reduce the quality of the analysis, values around 10 6 and 10 4 n/cm 2 s for thermal and epithermal flux were obtained respectively. It is recommended evaluate the design of the internal duct which presents strong photon emission. (authors).

  16. Flux distribution measurements in the Bruce B Unit 6 reactor using a transportable traveling flux detector system

    International Nuclear Information System (INIS)

    Leung, T.C.; Drewell, N.H.; Hall, D.S.; Lopez, A.M.

    1987-01-01

    A transportable traveling flux detector (TFD) system for use in power reactors has been developed and tested at Chalk River Nuclear Labs. in Canada. It consists of a miniature fission chamber, a motor drive mechanism, a computerized control unit, and a data acquisition subsystem. The TFD system was initially designed for the in situ calibration of fixed self-powered detectors in operating power reactors and for flux measurements to verify reactor physics calculations. However, this system can also be used as a general diagnostic tool for the investigation of apparent detector failures and flux anomalies and to determine the movement of reactor internal components. This paper describes the first successful use of the computerized TFD system in an operating Canada deuterium uranium (CANDU) power reactor and the results obtained from the flux distribution measurements. An attempt is made to correlate minima in the flux profile with the locations of fuel channels so that future measurements can be used to determine the sag of the channels. Twenty-seven in-core flux detector assemblies in the 855-MW (electric) Unit 6 reactor of the Ontario Hydro Bruce B Generating Station were scanned

  17. Design of a tokamak fusion reactor first wall armor against neutral beam impingement

    International Nuclear Information System (INIS)

    Myers, R.A.

    1977-12-01

    The maximum temperatures and thermal stresses are calculated for various first wall design proposals, using both analytical solutions and the TRUMP and SAP IV Computer Codes. Beam parameters, such as pulse time, cycle time, and beam power, are varied. It is found that uncooled plates should be adequate for near-term devices, while cooled protection will be necessary for fusion power reactors. Graphite and tungsten are selected for analysis because of their desirable characteristics. Graphite allows for higher heat fluxes compared to tungsten for similar pulse times. Anticipated erosion (due to surface effects) and plasma impurity fraction are estimated. Neutron irradiation damage is also discussed. Neutron irradiation damage (rather than erosion, fatigue, or creep) is estimated to be the lifetime-limiting factor on the lifetime of the component in fusion power reactors. It is found that the use of tungsten in fusion power reactors, when directly exposed to the plasma, will cause serious plasma impurity problems; graphite should not present such an impurity problem

  18. Epithermal neutron beam design for neutron capture therapy at the Power Burst Facility and the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Parsons, D.K.; Rushton, B.L.; Nigg, D.W.

    1990-01-01

    Nuclear design studies have been performed for two reactor-based epithermal neutron beams for cancer treatment by neutron capture therapy (NCT). An intermediate-intensity epithermal beam has been designed and implemented at the Brookhaven Medical Research Reactor (BMRR). Measurements show that the BMRR design predictions for the principal characteristics of this beam are accurate. A canine program for research into the biological effects of NCT is now under way at BMRR. The design for a high-intensity epithermal beam with minimal contamination from undesirable radiation components has been finalized for the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. This design will be implemented when it is determined that human NCT trials are advisable. The PBF beam will exhibit approximately an order of magnitude improvement in absolute epithermal flux intensity over that available in the BMRR, and its angular distribution and spectral characteristics will be more advantageous for NCT. The combined effects of beam intensity, angular distribution, spectrum, and contaminant level allow the desired tumor radiation dose to be delivered in much shorter times than are possible with the currently available BMRR beam, with a significant reduction (factor of 3 to 5) in collateral dose due to beam contaminants

  19. Monitoring the beam flux in molecular beam epitaxy using laser multiphoton ionization

    International Nuclear Information System (INIS)

    Chien, R.; Sogard, M.R.

    1990-01-01

    In this paper, we will describe a method using laser nonresonant multiphoton ionization to measure beam flux in molecular beam epitaxy (MBE) systems. The results were obtained in a test chamber where a focused excimer laser beam was used to photoionize a small fraction of the atomic and molecular beams. The constituents of the beams were identified by a time-of-flight mass spectrometer. Ion signal strength was found to be directly correlated to the temperature of the atomic beam oven. Good stability and sensitivity on gallium, aluminum, and silicon atomic beams was demonstrated. Arsenic was also detected. We demonstrated very sensitive detection of contaminant atomic and molecular constituents of our system. We have also detected the presence of short-term fluctuations in the gallium flux from an effusion source. These fluctuations, previously suspected, can be in excess of ±10%

  20. Description of the intense, low energy, monoenergetic positron beam at Brookhaven

    International Nuclear Information System (INIS)

    Lynn, K.G.; Mills, A.P. Jr.; Roellig, L.O.; Weber, M.

    1985-01-01

    An intense (4 x 10 7 s -1 ), low energy (approx. =1.0 eV), monoenergetic (ΔE approx. = 75 MeV) beam of positrons has been built at the Brookhaven National Laboratory. This flux is more than 10 times greater than any existing beam from radioactive sources. Plans are underway to increase further the flux by more than an order of magnitude. The intense low energy positron beam is made by utilizing the High Flux Beam Reactor at Brookhaven to produce the isotope 64 Cu with an activity of 40 curies of positrons. Source moderation techniques are utilized to produce the low energy positron beam from the high energy positrons emitted from 64 Cu. 31 refs., 7 figs

  1. Construction of the Neutron Beam Facility at Australia's OPAL Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, J.S.

    2005-01-01

    Full text: Australia's new research reactor, OPAL, has been designed for high quality neutron beam science and radioisotope production. It has a capacity for eighteen neutron beam instruments to be located at the reactor face and in a neutron guide hall. The new neutron beam facility features a 20 litre liquid deuterium cold neutron source and supermirror neutron reflecting guides for intense cold and thermal neutron beams. Nine neutron beam instruments are under development, of which seven are scheduled for completion in early 2007. The project is approaching the hot-commissioning stage, where criticality will be demonstrated. Installation of the neutron beam transport system and neutron beam instruments in the neutron guide hall and at the reactor face is underway, and the path to completion of this project is relatively clear. The lecture will outline Australia's aspirations for neutron science at the OPAL reactor, and describe the neutron beam facility under construction. The status of this project and a forecast of the program to completion, including commissioning and commencement of routine operation in 2007 will also be discussed. This project is the culmination of almost a decade of effort. We now eagerly anticipate catapulting Australia's neutron beam science capability to meet the best in the world today. (author)

  2. Neutron flux enhancement at LASREF

    International Nuclear Information System (INIS)

    Sommer, W.F.; Ferguson, P.D.; Wechsler, M.S.

    1991-01-01

    The accelerator at the Los Alamos Meson Physics Facility produces a 1-mA beam of protons at an energy of 800 MeV. Since 1985, the Los Alamos Spallation Radiation Effects Facility (LASREF) has made use of the neutron flux that is generated as the incident protons interact with the nuclei in targets and a copper beam stop. A variety of basic and applied experiments in radiation damage and radiation effects have been completed. Recent studies indicate that the flux at LASREF can be increased by at least a factor of ten from the present level of about 5 E+17 m -2 s -1 . This requires changing the beam-stop material from Cu to W and optimizing the geometry of the beam-target interaction region. These studies are motivated by the need for a large volume, high energy, and high intensity neutron source in the development of materials for advanced energy concepts such as fusion reactors. 18 refs., 7 figs., 2 tabs

  3. Neutron flux enhancement at LASREF

    International Nuclear Information System (INIS)

    Sommer, W.F.; Ferguson, P.D.; Wechsler, M.S.

    1992-01-01

    The accelerator at the Los Alamos Meson Physiscs Facility produces a 1 mA beam of protons at an energy of 800 MeV. Since 1985, the Los Alamos Spallation Radiation Effects Facility (LASREF) has made use of the neutron flux that is generated as the incident protons interact with the targets and a copper beam stop. A variety of basic and applied experiments in radiation damage and radiation effects have been completed. Recent studies indicate that the flux at LASREF can be increased by at least a factor of 10 from the present level of about 5 E + 17 m -2 s -1 . This requires changing the beam stop material from Cu to W and optimizing the geometry of the beam-target interaction region. These studies are motivated by the need for a large volume, high energy, and high intensity neutron source in the development of materials for advanced energy concepts such as fusion reactors. (orig.)

  4. Neutron flux enhancement at LASREF

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F. (Los Alamos National Lab., Los Alamos, NM (United States)); Ferguson, P.D. (Univ. of Missouri, Rolla, MO (United States)); Wechsler, M.S. (Iowa State Univ., Ames, IA (United States))

    1992-09-01

    The accelerator at the Los Alamos Meson Physiscs Facility produces a 1 mA beam of protons at an energy of 800 MeV. Since 1985, the Los Alamos Spallation Radiation Effects Facility (LASREF) has made use of the neutron flux that is generated as the incident protons interact with the targets and a copper beam stop. A variety of basic and applied experiments in radiation damage and radiation effects have been completed. Recent studies indicate that the flux at LASREF can be increased by at least a factor of 10 from the present level of about 5 E + 17 m[sup -2] s[sup -1]. This requires changing the beam stop material from Cu to W and optimizing the geometry of the beam-target interaction region. These studies are motivated by the need for a large volume, high energy, and high intensity neutron source in the development of materials for advanced energy concepts such as fusion reactors. (orig.).

  5. Temperature and void reactivity coefficient calculations for the high flux isotope reactor safety analysis report

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Williams, L.R.

    1994-07-01

    This report provides documentation of a series of calculations performed in 1991 in order to provide input for the High Flux Isotope Reactor Safety Analysis Report. In particular, temperature and void reactivity coefficients were calculated for beginning-of-life, end-of-life, and xenon equilibrium (29 h) conditions. Much of the data used to prepare the computer models for these calculations was derived from the original HFIR nuclear design study

  6. HTR fuel research in the HTR-TN network on the high flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; Conrad, R.; Sevini, P.; Burghartz, M. [HFR Unit, Institute for Advanced Materials, European Commission, Joint Research Centre, Petten (Netherlands); Languille, A. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Guillermier, P. [FRAMATOME ANP, 69 - Lyon (France); Bakker, K. [Nuclear Research and Consultancy Group, Petten (Netherlands); Nabielek, H. [Forschungszentrum Juelich (Germany)

    2001-07-01

    Foremost, this paper explains the economic and strategic reasons for the comeback of the HTR reactor as one of the most promising reactors in the future. To study all the points related to HTR technology, a European network called HTR-TN was created in April 2000, with actually twenty European companies involved. This paper explains the organisation of the network and the related task-groups. In the field of fuel, one of these task-groups works on the fuel cycle and another works on the fuel itself in order to validate by testing HTR fuel possibilities. To this aim, an experimental loop is under construction in the HFR reactor to test full-size pebble type fuel elements and another under study to test compact fuel possibilities. These loops are based on all the experience accumulated by the High Flux Reactor in the years 70-90, when a lot of test were performed for fuel and material for the HTR technology and the facility design uses all the existing HFR knowledge. In conclusion, a host of research work, co-ordinated in the frame of a European network HTR-TN has begun. and should allow in the near future a substantial progress in the knowledge of this very promising fuel. (author)

  7. HTR fuel research in the HTR-TN network on the high flux reactor

    International Nuclear Information System (INIS)

    Guidez, J.; Conrad, R.; Sevini, P.; Burghartz, M.; Languille, A.; Guillermier, P.; Bakker, K.; Nabielek, H.

    2001-01-01

    Foremost, this paper explains the economic and strategic reasons for the comeback of the HTR reactor as one of the most promising reactors in the future. To study all the points related to HTR technology, a European network called HTR-TN was created in April 2000, with actually twenty European companies involved. This paper explains the organisation of the network and the related task-groups. In the field of fuel, one of these task-groups works on the fuel cycle and another works on the fuel itself in order to validate by testing HTR fuel possibilities. To this aim, an experimental loop is under construction in the HFR reactor to test full-size pebble type fuel elements and another under study to test compact fuel possibilities. These loops are based on all the experience accumulated by the High Flux Reactor in the years 70-90, when a lot of test were performed for fuel and material for the HTR technology and the facility design uses all the existing HFR knowledge. In conclusion, a host of research work, co-ordinated in the frame of a European network HTR-TN has begun. and should allow in the near future a substantial progress in the knowledge of this very promising fuel. (author)

  8. Calculation of the transmutation rates of Tc-99, I-129 and Cs-135 in the High Flux Reactor, in the Phenix Reactor and in a light water reactor

    International Nuclear Information System (INIS)

    Bultman, J.

    1992-04-01

    Transmutation of long-lived fission products is of interest for the reduction of the possible dose to the population resulting from long-term leakage of nuclear waste from waste disposals. Three isotopes are of special interest: Tc-99, I-129 and Cs-135. Therefore, experiments on transmutation of these isotopes in nuclear reactors are planned. In the present study, the possible transmutation rates and mass reductions are determined for experiments in High Flux Reactor (HFR) located in Petten (Netherlands) and in Phenix (France). Also, rates were determined for a standard Light Water Reactor (LWR). The transmutation rates of the 3 fission products will be much higher in HFR than in Phenix reactor, as both total flux and effective cross sections are higher. For thick targets the effective half lives are approximately 3, 2 and 7 years for Tc-99, I-129 and Cs-135 irradiation respectively in HFR and 22, 16 and 40 years for Tc-99, I-129 and Cs-135 irradiation in Phenix reactor. The transmutation rates in LWR are low. Only the relatively large power of LWR guarantees a large total mass reduction. Especially transmutation of Cs-135 will be very difficult in Phenix and LWR, clearly shown by the very long effective half lives of 40 and 100 years, respectively. (author). 7 refs.; 5 figs.; 7 tabs

  9. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    International Nuclear Information System (INIS)

    Lychagin, E.V.; Mityukhlyaev, V.A.; Muzychka, A.Yu.; Nekhaev, G.V.; Nesvizhevsky, V.V.; Onegin, M.S.; Sharapov, E.I.; Strelkov, A.V.

    2016-01-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium ("4He). The PIK reactor is chosen as a perspective example of application of this idea, which consists of installing "4He UCN source in the beam of thermal or cold neutrons and surrounding the source with moderator-reflector, which plays the role of cold neutron (CN) source feeding the UCN source. CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator–reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of "4He source with solid methane (CH_4) or/and liquid deuterium (D_2) moderator–reflector. We show that such a source with CH_4 moderator–reflector at the PIK reactor would provide the UCN density of ~1·10"5 cm"−"3, and the UCN production rate of ~2·10"7 s"−"1. These values are respectively 1000 and 20 times larger than those for the most intense UCN user source. The UCN density in a source with D_2 moderator-reflector would reach the value of ~2·10"5 cm"−"3, and the UCN production rate would be equal ~8·10"7 s"−"1. Installation of such a source in a beam of CNs would slightly increase the density and production rate.

  10. Experimental Study of Thermal Crisis in Connection with Tokamak Reactor High Heat Flux Components

    International Nuclear Information System (INIS)

    Gallo, D.; Giardina, M.; Castiglia, F.; Celata, G.P.; Mariani, A.; Zummo, G.; Cumo, M.

    2000-01-01

    The results of an experimental research on high heat flux thermal crisis in forced convective subcooled water flow, under operative conditions of interest to the thermal-hydraulic design of TOKAMAK fusion reactors, are here reported. These experiments, carried out in the framework of a collaboration between the Nuclear Engineering Department of Palermo University and the National Institute of Thermal - Fluid Dynamics of the ENEA - Casaccia (Rome), were performed on the STAF (Scambio Termico Alti Flussi) water loop and consisted, essentially, in a high speed photographic study which enabled focusing several information on bubble characteristics and flow patterns taking place during the burnout phenomenology

  11. High power ring methods and accelerator driven subcritical reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, Malek Haj [Univ. of Grenoble (France)

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the

  12. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, Trent; Guida, Tracey

    2010-01-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  13. The method of life extension for the High Flux Isotope Reactor vessel

    International Nuclear Information System (INIS)

    Chang, Shib-Jung.

    1995-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A hydrostatic pressure test (hydrotest) is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the reactor life from the safe hydrostatic pressure. The life extension calculation provides the following information on the remaining life of the reactor as a function of the nil ductility temperature increase: the probability of vessel fracture due to hydrotest vs vessel life at several hydrotest pressures; the hydrotest time interval vs the uncertainty of the nil ductility temperature increase rate; and the hydrotest pressure vs the uncertainty of the nil ductility temperature increase rate. It is understood that the use of a complete range of uncertainties of the nil ductility temperature increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 degree F

  14. High Fluency Low Flux Embrittlement Models of LWR Reactor Pressure Vessel Embrittlement and a Supporting Database from the UCSB ATR-2 Irradiation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-01-24

    Reactor pressure vessel embrittlement may limit the lifetime of light water reactors (LWR). Embrittlement is primarily caused by formation of nano-scale precipitates, which cause hardening and a subsequent increase in the ductile-to-brittle transition temperature of the steel. While the effect of Cu has historically been the largest research focus of RPV embrittlement, there is increasing evidence that Mn, Ni and Si are likely to have a large effect at higher fluence, where Mn-Ni-Si precipitates can form, even in the absence of Cu. Therefore, extending RPV lifetimes will require a thorough understanding of both precipitation and embrittlement at higher fluences than have ever been observed in a power reactor. To address this issue, test reactors that irradiate materials at higher neutron fluxes than power reactors are used. These experiments at high neutron flux can reach extended life neutron fluences in only months or several years. The drawback of these test irradiations is that they add additional complexity to interpreting the data, as the irradiation flux also plays a role into both precipitate formation and irradiation hardening and embrittlement. This report focuses on developing a database of both microstructure and mechanical property data to better understand the effect of flux. In addition, a previously developed model that enables the comparison of data taken over a range of neutron flux is discussed.

  15. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  16. Absolute measurement of neutron fluxes inside the reactor core

    International Nuclear Information System (INIS)

    Ajdacic, S. V.

    1964-10-01

    The subject of this work is the development and study of two methods of neutron measurements in nuclear reactors, the new method of high neutron flux measurements and the Li 6 -semiconductor neutron spectrometer. This work is presented in four sections: Section I. The introduction explains the need for neutron measurements in reactors. A critical survey is given of the existing methods of high neutron flux measurement and methods of fast neutron spectrum determination. Section II. Theoretical basis of the work of semiconductor counters and their most important characteristics are given. Section III. The main point of this section is in presenting the basis of the new method which the author developed, i.e., the long-tube method, and the results obtained by it, with particular emphasis on absolute measurement of high neutron fluxes. Advantages and limitations of this method are discussed in details at the end of this section. Section IV. A comparison of the existing semiconductor neutron spectrometers is made and their advantages and shortcomings underlined. A critical analysis of the obtained results with the Li 6 -semiconductor spectrometer with plane geometry is given. A new type of Li 6 -semiconductor spectrometer is described, its characteristics experimentally determined, and a comparison of it with a classical Li 6 -spectrometer made (author)

  17. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Christian M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  18. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline.

    Science.gov (United States)

    Dhiman, I; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X; Jiang, C Y; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3 He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe 3 Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3 He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  19. Achievement and development of neutron beam utilization in research reactors

    International Nuclear Information System (INIS)

    Isshiki, Masahiko

    1996-01-01

    Especially regarding the neutron beam experiment in Japan, the basic research has been developed by utilizing the JRR-2 of Japan Atomic Energy Research Institute and the KUR of Kyoto University over long years. Now, the JRR-3M of JAERI was revived as a high performance, general purpose reactor, and bears important roles as the neutron beam experiment center in Japan. Thanks to one of the most powerful reactor neutron sources in the world and the cold neutron source, the environment of research was greatly improved, and the excellent results of researches began to be reported. The discovery of neutrons by Chadwick and the history of the related researches are described. As neutron sources, radioisotopes, accelerators and nuclear reactors are properly used corresponding to purposes. As the utilization of research reactors for neutron sources, the utilization for irradiation and neutron beam experiment are carried out. The outline of the research reactor JRR-3M is explained. The state of utilization in neutron scattering experiment, neutron radiography, prompt γ-ray analysis and the medical irradiation of neutrons is reported. (K.I.)

  20. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  1. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility

    International Nuclear Information System (INIS)

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively. - Highlights: • Two in-core neutron detectors and three BNCT neutron beam monitors were compared. • BNCT neutron beam monitors improve the stability in neutron

  2. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  3. High heat flux tests of mock-ups for ITER divertor application

    International Nuclear Information System (INIS)

    Giniatulin, R.; Gervash, A.; Komarov, V.L.; Makhankov, A.; Mazul, I.; Litunovsky, N.; Yablokov, N.

    1998-01-01

    One of the most difficult tasks in fusion reactor development is the designing, fabrication and high heat flux testing of actively cooled plasma facing components (PFCs). At present, for the ITER divertor project it is necessary to design and test components by using mock-ups which reflect the real design and fabrication technology. The cause of failure of the PFCs is likely to be through thermo-cycling of the surface with heat loads in the range 1-15 MW m -2 . Beryllium, tungsten and graphite are considered as the most suitable armour materials for the ITER divertor application. This work presents the results of the tests carried out with divertor mock-ups clad with beryllium and tungsten armour materials. The tests were carried out in an electron beam facility. The results of high heat flux screening tests and thermo-cycling tests in the heat load range 1-9 MW m -2 are presented along with the results of metallographic analysis carried out after the tests. (orig.)

  4. Muon flux measurement with silicon detectors in the CERN neutrino beams

    International Nuclear Information System (INIS)

    Heijne, H.M.

    1983-01-01

    The present work mainly describes the 'Neutrino Flux Monitoring' system (NFM), which has been built for the 400-GeV Super Proton Synchrotron (SPS) neutrino beams. A treatment is given of some general subjects related to the utilization of silicon detectors and the properties of high-energy muons. Energy loss of minimal-ionizing particles, which has to be distinguished from energy deposition in the detector, is considered. Secondary radiation, also called 'spray', consisting of 'delta rays' and other cascade products, is shown to play an important role in the muon flux measurement inside a shield, especially for muons of high energy (> 100 GeV). Radiation induced damage in the detectors, which determines the long term performance, is discussed. The relation between the detector response and the real muon flux is determined. The use of NFM system for on-line beam monitoring is described. (Auth.)

  5. Excitation of neutron flux waves in reactor core transients

    International Nuclear Information System (INIS)

    Carew, J.F.; Neogy, P.

    1983-01-01

    An analysis of the excitation of neutron flux waves in reactor core transients has been performed. A perturbation theory solution has been developed for the time-dependent thermal diffusion equation in which the absorption cross section undergoes a rapid change, as in a PWR rod ejection accident (REA). In this analysis the unperturbed reactor flux states provide the basis for the spatial representation of the flux solution. Using a simplified space-time representation for the cross section change, the temporal integrations have been carried out and analytic expressions for the modal flux amplitudes determined. The first order modal excitation strength is determined by the spatial overlap between the initial and final flux states, and the cross section perturbation. The flux wave amplitudes are found to be largest for rapid transients involving large reactivity perturbations

  6. Design of collimator in the radial piercing beam port of Kartini reactor for boron neutron capture therapy

    International Nuclear Information System (INIS)

    M Ilma Muslih A; Andang Widiharto; Yohannes Sardjono

    2014-01-01

    Studies were carried out to design a collimator which results in epithermal neutron beam for in vivo experiment of Boron Neutron Capture Therapy (BNCT) at the Kartini Research Reactor by means of Monte Carlo N-Particle (MCNP) codes. Reactor within 100 kW of thermal power was used as the neutron source. All materials used were varied in size, according to the value of mean free path for each material. MCNP simulations indicated that by using 5 cm thick of Ni (95%) as collimator wall, 15 cm thick of Al as moderator, 1 cm thick of Pb as γ-ray shielding, 1.5 cm thick of Boral as additional material, with 2 cm aperture diameter, epithermal neutron beam with maximum flux of 5.03 x 10 8 n.cm -2 .s -1 could be produced. The beam has minimum fast neutron and γ-ray components of, respectively, 2.17 x 10 -13 Gy.cm 2 .n -1 and 1.16 x 10 -13 Gy.cm 2 .n -l , minimum thermal neutron per epithermal neutron ratio of 0.12, and maximum directionality of 0.835 . It did not fully pass the IAEA's criteria, since the epithermal neutron flux was below the recommended value, 1.0 x 10 9 n.cm -2 .s -l . Nonetheless, it was still usable with epithermal neutron flux exceeding 5.0 x 10 8 n.cm -2 .s -1 and fast neutron flux close to 2 x 10 -13 Gy.cm 2 .n -1 it is still feasible for BNCT in vivo experiment. (author)

  7. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    International Nuclear Information System (INIS)

    Cartier, J.; Casoli, P.; Chappert, F.

    2013-01-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  8. High heat flux cooling for accelerator targets

    International Nuclear Information System (INIS)

    Silverman, I.; Nagler, A.

    2002-01-01

    Accelerator targets, both for radioisotope production and for high neutron flux sources generate very high thermal power in the target material which absorbs the particles beam. Generally, the geometric size of the targets is very small and the power density is high. The design of these targets requires dealing with very high heat fluxes and very efficient heat removal techniques in order to preserve the integrity of the target. Normal heat fluxes from these targets are in the order of 1 kw/cm 2 and may reach levels of an order of magnitude higher

  9. Production of Thorium-229 at the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Boll, Rose Ann; Garland, Marc A.; Mirzadeh, Saed

    2008-01-01

    The investigation of targeted cancer therapy using -emitters has developed considerably in recent years and clinical trials have generated promising results. In particular, the initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the -emitter 213Bi in killing cancer cells. Pre-clinical studies have also shown the potential application of both 213Bi and its 225Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. Bismuth-213 is obtained from a radionuclide generator system from decay of the 10-d 225Ac parent, a member of the 7340-y 229Th chain. Currently, 233U is the only viable source for high purity 229Th; however, due to increasing difficulties associated with 233U safeguards, processing additional 233U is presently unfeasible. The recent decision to downblend and dispose of enriched 233U further diminished the prospects for extracting 229Th from 233U stock. Nevertheless, the anticipated growth in demand for 225Ac may soon exceed the levels of 229Th (∼40 g or ∼8 Ci; ∼80 times the current ORNL 229Th stock) present in the aged 233U stockpile. The alternative routes for the production of 229Th, 225Ra and 225Ac include both reactor and accelerator approaches. Here, we describe production of 229Th via neutron transmutation of 226Ra targets in the ORNL High Flux Isotope Reactor (HFIR).

  10. Analysis of calculated neutron flux response at detectors of G.A. Siwabessy multipurpose reactor (RSG-GAS Reactor)

    International Nuclear Information System (INIS)

    Taryo, Taswanda

    2002-01-01

    Multi Purpose Reactor G.A. Siwabessy (RSG-GAS) reactor core possesses 4 fission-chamber detectors to measure intermediate power level of RSG-GAS reactor. Another detector, also fission-chamber detector, is intended to measure power level of RSG-GAS reactor. To investigate influence of space to the neutron flux values for each detector measuring intermediate and power levels has been carried out. The calculation was carried out using combination of WIMS/D4 and CITATION-3D code and focused on calculation of neutron flux at different detector location of RSG-GAS typical working core various scenarios. For different scenarios, all calculation results showed that each detector, located at different location in the RSG-GAS reactor core, causes different neutron flux occurred in the reactor core due to spatial time effect

  11. Absolute measurement of neutron fluxes inside the reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Ajdacic, S V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1964-10-15

    The subject of this work is the development and study of two methods of neutron measurements in nuclear reactors, the new method of high neutron flux measurements and the Li{sup 6}-semiconductor neutron spectrometer. This work is presented in four sections: Section I. The introduction explains the need for neutron measurements in reactors. A critical survey is given of the existing methods of high neutron flux measurement and methods of fast neutron spectrum determination. Section II. Theoretical basis of the work of semiconductor counters and their most important characteristics are given. Section III. The main point of this section is in presenting the basis of the new method which the author developed, i.e., the long-tube method, and the results obtained by it, with particular emphasis on absolute measurement of high neutron fluxes. Advantages and limitations of this method are discussed in details at the end of this section. Section IV. A comparison of the existing semiconductor neutron spectrometers is made and their advantages and shortcomings underlined. A critical analysis of the obtained results with the Li{sup 6}-semiconductor spectrometer with plane geometry is given. A new type of Li{sup 6}-semiconductor spectrometer is described, its characteristics experimentally determined, and a comparison of it with a classical Li{sup 6}-spectrometer made (author)

  12. Reliable estimation of neutron flux in BWR reactor vessel using the tort code (2) application to neutron and gamma flux estimation

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, M. [Toshiba Corp., Yokohama (Japan); Tsukiyama, T.; Hayashi, K. [Hitachi Engineering Co. Ltd., Hitachi-shi (Japan)

    2001-07-01

    A neutron and gamma flux distribution around the core of BWR commercial plant in Japan was calculated, using a three-dimensional transport code, TORT in DOORS32 code system. In the external of the core, the bottom of the model was at an elevation of 150 cm below the bottom of active fuel, the top of the model was at an elevation of the top of the shroud head dome and the radial part of the model was to the outside of the reactor pressure vessel. The top guide beams were modeled explicitly to obtain the neutron and gamma flux distribution both in the beams and outside beams. The each control rod guide tube was also modeled with homogeneous region which included the blade wing and poison tubes so that we could obtain the neutron and gamma flux distribution around the each control rod guide tube. The calculation model mentioned above needed very large memory size which exceeded a few decade giga-bytes. As the using the splicing/coupling method had uncertainly at the splicing/coupling boundary, in this work the calculation was performed without this splicing/coupling method. On the other hand, radioactivity data were measured for a few pieces of the top guide beam, shroud and in-core monitor guide tube in the same plant which was analyzed in the above calculation. So the calculation results were able to be compared with those measured data as benchmarking and at the end of this task, the C/M values at these measured points were obtained and calculation model using TORT was evaluated. (authors)

  13. Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choopan Dastjerdi, M.H., E-mail: mdastjerdi@aeoi.org.ir [Reactor Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khalafi, H.; Kasesaz, Y.; Mirvakili, S.M.; Emami, J.; Ghods, H.; Ezzati, A. [Reactor Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2016-05-11

    To obtain a thermal neutron beam for neutron radiography applications, a neutron collimator has been designed and implemented at the Tehran Research Reactor (TRR). TRR is a 5 MW open pool light water moderated reactor with seven beam tubes. The neutron collimator is implemented in the E beam tube of the TRR. The design of the neutron collimator was performed using MCNPX Monte Carlo code. In this work, polycrystalline bismuth and graphite have been used as a gamma filter and an illuminator, respectively. The L/D parameter of the facility was chosen in the range of 150–250. The thermal neutron flux at the image plane can be varied from 2.26×10{sup 6} to 6.5×10{sup 6} n cm{sup −2} s{sup −1}. Characterization of the beam was performed by ASTM standard IQI and foil activation technique to determine the quality of neutron beam. The results show that the obtained neutron beam has a good quality for neutron radiography applications.

  14. Measurements of neutron flux distributions in the core of the Ljubljana TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Rant, J.; Ravnik, M.; Mele, I.; Dimic, V.

    2008-01-01

    Recently the Ljubljana TRIGA Mark II Reactor has been refurbished and upgraded to pulsed operation. To verify the core design calculations using TRIGAP and PULSTR1 codes and to obtain necessary data for future irradiation and neutron beam experiments, an extensive experimental program of neutron flux mapping and neutron field characterization was carried out. Using the existing neutron measuring thimbles complete axial and radial distributions in two radial directions were determined for two different core configurations. For one core configuration the measurements were also carried out in the pulsed mode. For flux distributions thin Cu (relative measurements) and diluted Au wires (absolute values) were used. For each radial position the cadmium ratio was determined in two axial levels. The core configuration was rather uniform, well defined (fresh fuel of a single type, including fuelled followers) and compact (no irradiation channels or gaps), offering unique opportunity to test the computer codes for TRIGA reactor calculations. The neutron flux measuring procedures and techniques are described and the experimental results are presented. The agreement between the predicted and measured power peaking factors are within the error limits of the measurements (<±5%) and calculations (±10%). Power peaking occurs in the B ring, and in the A ring (centre) there is a significant flux depression. (authors)

  15. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designs allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.

  16. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France); Casoli, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, Valduc, F-21120 Is sur Tille (France); Chappert, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  17. Job/task analysis for I ampersand C [Instrumentation and Controls] instrument technicians at the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Duke, L.L.

    1989-09-01

    To comply with Department of Energy Order 5480.XX (Draft), a job/task analysis was initiated by the Maintenance Management Department at Oak Ridge National Laboratory (ORNL). The analysis was applicable to instrument technicians working at the ORNL High Flux Isotope Reactor (HFIR). This document presents the procedures and results of that analysis. 2 refs., 2 figs

  18. High flux transmutation of fission products and actinides

    International Nuclear Information System (INIS)

    Gerasimov, A.; Kiselev, G.; Myrtsymova, L.

    2001-01-01

    Long-lived fission products and minor actinides accumulated in spent nuclear fuel of power reactors comprise the major part of high level radwaste. Their incineration is important from the point of view of radwaste management. Transmutation of these nuclides by means of neutron irradiation can be performed either in conventional nuclear reactors, or in specialized transmutation reactors, or in ADS facilities with subcritical reactor and neutron source with application of proton accelerator. Different types of transmutation nuclear facilities can be used in order to insure optimal incineration conditions for radwaste. The choice of facility type for optimal transmutation should be based on the fundamental data in the physics of nuclide transformations. Transmutation of minor actinides leads to the increase of radiotoxicity during irradiation. It takes significant time compared to the lifetime of reactor facility to achieve equilibrium without effective transmutation. High flux nuclear facilities allow to minimize these draw-backs of conventional facilities with both thermal and fast neutron spectrum. They provide fast approach to equilibrium and low level of equilibrium mass and radiotoxicity of transmuted actinides. High flux facilities are advantageous also for transmutation of long-lived fission products as they provide short incineration time

  19. Electron temperature profiles in high power neutral-beam-heated TFTR [Tokamak Fusion Test Reactor] plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Grek, B.; Stauffer, F.J.; Goldston, R.J.; Fredrickson, E.D.; Wieland, R.M.; Zarnstorff, M.C.

    1987-09-01

    In 1986, the maximum neutral beam injection (NBI) power in the Tokamak Fusion Test Reactor (TFTR) was increased to 20 MW, with three beams co-parallel and one counter-parallel to I/sub p/. TFTR was operated over a wide range of plasma parameters; 2.5 19 19 m -3 . Data bases have been constructed with over 600 measured electron temperature profiles from multipoint TV Thomson scattering which span much of this parameter space. We have also examined electron temperature profile shapes from electron cyclotron emission at the fundamental ordinary mode and second harmonic extraordinary mode for a subset of these discharges. In the light of recent work on ''profile consistency'' we have analyzed these temperature profiles in the range 0.3 < (r/a) < 0.9 to determine if a profile shape exists which is insensitive to q/sub cyl/ and beam-heating profile. Data from both sides of the temperature profile [T/sub e/(R)] were mapped to magnetic flux surfaces [T/sub e/(r/a)]. Although T/sub e/(r/a), in the region where 0.3 < r/a < 0.9 was found to be slightly broader at lower q/sub cyl/, it was found to be remarkably insensitive to β/sub p/, to the fraction of NBI power injected co-parallel to I/sub p/, and to the heating profile going from peaked on axis, to hollow. 10 refs., 8 figs

  20. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  1. Numerical simulation in a subcooled water flow boiling for one-sided high heat flux in reactor divertor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P., E-mail: pinliu@aust.edu.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001 (China); Peng, X.B., E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, X.D. [Institute of Air Conditioning and Refrigeration, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Huang, S.H. [University of Science and Technology of China, Hefei 230026 (China); Mao, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • The Eulerian multiphase models coupled with Non-equilibrium Boiling model can effectively simulate the subcooled water flow boiling. • ONB and FDB appear earlier and earlier with the increase of heat fluxes. • The void fraction increases gradually along the flow direction. • The inner CuCrZr tube deteriorates earlier than the outer tungsten layer and the middle OFHC copper layer. - Abstract: In order to remove high heat fluxes for plasma facing components in International Thermonuclear Experimental Reactor (ITER) divertor, a numerical simulation of subcooled water flow boiling heat transfer in a vertically upward smooth tube was conducted in this paper on the condition of one-sided high heat fluxes. The Eulerian multiphase model coupled with Non-equilibrium Boiling model was adopted in numerical simulation of the subcooled boiling two-phase flow. The heat transfer regions, thermodynamic vapor quality (x{sub th}), void fraction and temperatures of three components on the condition of the different heat fluxes were analyzed. Numerical results indicate that the onset of nucleate boiling (ONB) and fully developed boiling (FDB) appear earlier and earlier with increasing heat flux. With the increase of heat fluxes, the inner CuCrZr tube will deteriorate earlier than the outer tungsten layer and the middle oxygen-free high-conductivity (OFHC) copper layer. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.

  2. High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets

    Science.gov (United States)

    Alejo, A.; Krygier, A. G.; Ahmed, H.; Morrison, J. T.; Clarke, R. J.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.; Kar, S.

    2017-06-01

    A forwardly-peaked bright neutron source was produced using a laser-driven, deuteron-rich ion beam in a pitcher-catcher scenario. A proton-free ion source was produced via target normal sheath acceleration from Au foils having a thin layer of D2O ice at the rear side, irradiated by sub-petawatt laser pulses (˜200 J, ˜750 fs) at peak intensity ˜ 2× {10}20 {{W}} {{cm}}-2. The neutrons were preferentially produced in a beam of ˜70° FWHM cone along the ion beam forward direction, with maximum energy up to ˜40 MeV and a peak flux along the axis ˜ 2× {10}9 {{n}} {{sr}}-1 for neutron energy above 2.5 MeV. The experimental data is in good agreement with the simulations carried out for the d(d,n)3He reaction using the deuteron beam produced by the ice-layered target.

  3. Simulation of Particle Fluxes at the DESY-II Test Beam Facility

    International Nuclear Information System (INIS)

    Schuetz, Anne

    2015-05-01

    In the course of this Master's thesis ''Simulation of Particle Fluxes at the DESY-II Test Beam Facility'' the test beam generation for the DESY test beam line was studied in detail and simulated with the simulation software SLIC. SLIC uses the Geant4 toolkit for realistic Monte Carlo simulations of particles passing through detector material.After discussing the physics processes relevant for the test beam generation and the principles of the beam generation itself, the software used is introduced together with a description of the functionality of the Geant4 Monte Carlo simulation. The simulation of the test beam line follows the sequence of the test beam generation. Therefore, it starts with the simulation of the beam bunch of the synchrotron accelerator DESY-II, and proceeds step by step with the single test beam line components. An additional benefit of this thesis is the provision of particle flux and trajectory maps, which make fluxes directly visible by following the particle tracks through the simulated beam line. These maps allow us to see each of the test beam line components, because flux rates and directions change rapidly at these points. They will also guide the decision for placements of future test beam line components and measurement equipment.In the end, the beam energy and its spread, and the beam rate of the final test beam in the test beam area were studied in the simulation, so that the results can be compared to the measured beam parameters. The test beam simulation of this Master's thesis will serve as a key input for future test beam line improvements.

  4. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Alexander, C.W.; Hobbs, R.L.

    1998-01-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed

  5. Physics and safety of advanced research reactors

    International Nuclear Information System (INIS)

    Boening, K.; Hardt, P. von der

    1987-01-01

    Advanced research reactor concepts are presently being developed in order to meet the neutron-based research needs of the nineties. Among these research reactors, which are characterized by an average power density of 1-10 MW per liter, highest priority is now generally given to the 'beam tube reactors'. These provide very high values of the thermal neutron flux (10 14 -10 16 cm -2 s -1 ) in a large volume outside of the reactor core, which can be used for sample irradiations and, in particular, for neutron scattering experiments. The paper first discusses the 'inverse flux trap concept' and the main physical aspects of the design and optimization of beam tube reactors. After that two examples of advanced research reactor projects are described which may be considered as two opposite extremes with respect to the physical optimization principle just mentioned. The present situation concerning cross section libraries and neutronic computer codes is more or less satisfactory. The safety analyses of advanced research reactors can largely be updated from those of current new designs, partially taking advantage of the immense volume of work done for power reactors. The paper indicates a few areas where generic problems for advanced research reactor safety are to be solved. (orig.)

  6. Total quality management for addressing suspect parts at the Oak Ridge High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Hendrix, K.A.; Tulay, M.P.

    1993-01-01

    Martin Marietta Energy System (MMES) Research Reactors Division (RRD), operator of the High Flux Isotope Reactor (HFIR) recently embarked on an aggressive Program to address the issue of suspect Parts and to enhance their procurement process. Through the application of TQM process improvement, RRD has already achieved improved efficiency in specifying, procuring, and accepting replacement items for its largest research reactor. These process improvements have significantly decreased the risk of installing suspect parts in the HFIR safety systems. To date, a systematic plan has been implemented, which includes the following elements: Process assessment and procedure review; Procedural enhancements; On-site training and technology transfer; Enhanced receiving inspections; Performance supplier evaluations and source verifications integrated processes for utilizing commercial grade products in nuclear safety-related applications. This paper will describe the above elements, how a partnership between MMES and Gilbert/Commonwealth facilitated the execution of the plan, and how process enhancements were applied. We will also present measures for improved efficiency and productivity, that MMES intends to continually address with Quality Action Teams

  7. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Office of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low and high

  8. High precision flux measurements in conventional neutrino beams: the ENUBET project

    CERN Document Server

    Longhin, Andrea

    2017-01-01

    The challenges of precision neutrino physics require measurements of absolute neutrino cross sec- tions at the GeV scale with exquisite (1%) precision. This precision is presently limited to by the uncertainties on neutrino flux at the source. A reduction of this uncertainty by one order of mag- nitude can be achieved monitoring the positron production in the decay tunnel originating from the K e 3 decays of charged kaons in a sign and momentum selected narrow band beam. This novel technique enables the measurement of the most relevant cross-sections for CP violation ( ν e and ̄ ν e ) with a precision of 1% and requires a special instrumented beam-line. Such non-conventional beam-line will be developed in the framework of the ENUBET Horizon-2020 Consolidator Grant, recently approved by the European Research Council. We present the Project, the first experimen- tal results on ultra-compact calorimeters that can embedded in the instrumented decay tunnel and the advances on the simulation of the beamline. A r...

  9. Elaboration of mini plates with U-Mo for irradiation in a high flux reactor

    International Nuclear Information System (INIS)

    Pasqualini, Enrique E.

    2005-01-01

    Full text: International new efforts for the reconversion of HEU in research, testing and radioisotopes production reactors, have greatly incremented U-Mo fuels qualification activities. These qualifications require the resolution of undesired interaction at high fluxes between UMo particles and the aluminum matrix in the case of dispersed fuels and the development of U-Mo monolithic fuels. These efforts are being manifested in the planning and execution of additional series of irradiation tests of mini plates and full size plates. Recently, CNEA has elaborated mini plates with different proposals for the irradiation at the ATR reactor (250 MWTH, maximum thermal neutron flux 10 15 n.cm -2 .seg -1 ) at Idaho National Laboratory, USA. Uranium 7% (w/w) molybdenum (U-7Mo) particles were coated with silicon. Chemical vapour deposition (CVD) of silane and high temperature diffusion of silicon were used. Hydrided, milled and dehydrated (HMD) particles heat treated at 1000 C degrees during four hours and centrifugal atomized powder were coated and the results compared. Mini plates were elaborated with both kinds of particles. Mini plates were also elaborated with U-7Mo and silicon particles dispersed in the aluminium matrix. Monolithic mini plates were also developed by co lamination of U-7Mo with a Zircaloy-4 cladding. The different steps of this process are detailed and the method is shown to be versatile, can be easily scaled up and is performed with small modifications of usual equipment in fuel plants. The irradiation experiment is called RERTR-7A, includes a total of 32 mini plates and it is planed to finalize by mid 2006. (author) [es

  10. Microstructural stability of spark-plasma-sintered Wf/W composite with zirconia interface coating under high-heat-flux hydrogen beam irradiation

    Directory of Open Access Journals (Sweden)

    M. Avello de Lama

    2017-12-01

    In this paper, the durability and chemical stability of Wf/W composite specimens under cyclic heat-flux loads up to 20 MW/m² (surface temperature: 1260 °C was investigated using hydrogen neutral beam. The bulk material was fabricated by means of spark-plasma-sintering (SPS method using fine tungsten powder and a stack of tungsten wire meshes as reinforcement where the surface of the wire was coated with zirconia thin film to produce an engineered interface. The impact of plasma beam irradiation on microstructure was examined for two kinds of specimens produced at different sintering temperatures, 1400 °C and 1700 °C. Results of microscopic (SEM and chemical (EDX analysis are presented comparing the microstructure and element distribution maps obtained before and after heat flux loading. Effects of different sintering temperatures on damage behaviour are discussed. The present composite materials are shown to be applicable as plasma-facing material for high-heat-flux components.

  11. Extraction of gadolinium from high flux isotope reactor control plates

    International Nuclear Information System (INIS)

    Kohring, M.W.

    1987-04-01

    Gadolinium-153 is an important radioisotope used in the diagnosis of various bone disorders. Recent medical and technical developments in the detection and cure of osteoporosis, a bone disease affecting an estimated 50 million people, have greatly increased the demand for this isotope. The Oak Ridge National Laboratory (ORNL) has produced 153 Gd since 1980 primarily through the irradiation of a natural europium-oxide powder followed by the chemical separation of the gadolinium fraction from the europium material. Due to the higher demand for 153 Gd, an alternative production method to supplement this process has been investigated. This process involves the extraction of gadolinium from the europium-bearing region of highly radioactive, spent control plates used at the High Flux Isotope Reactor (HFIR) with a subsequent re-irradiation of the extracted material for the production of the 153 Gd. Based on the results of experimental and calculational analyses, up to 25 grams of valuable gadolinium (≥60% enriched in 152 Gd) resides in the europium-bearing region of the HFIR control components of which 70% is recoverable. At a specific activity yield of 40 curies of 153 Gd for each gram of gadolinium re-irradiated, 700 one-curie sources can be produced from each control plate assayed

  12. Maximum neutron flux in thermal reactors

    International Nuclear Information System (INIS)

    Strugar, P.V.

    1968-12-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples

  13. Repetition rates in heavy ion beam driven fusion reactors

    Science.gov (United States)

    Peterson, Robert R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10-4 torr (3×1012 cm-3) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors.

  14. Repetition rates in heavy ion beam driven fusion reactors

    International Nuclear Information System (INIS)

    Peterson, R.R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10 -4 torr (3 x 10 12 cm -3 ) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors

  15. Study of filtration of reactor beam of neutrons with cadmium in a multilayer shielding containing boron carbide

    International Nuclear Information System (INIS)

    Megahid, R.M.; El-Kall, E.H.

    1986-01-01

    Experimental measurements were carried out to study the effect of cadmium on the distribution and attenuation of reactor thermal neutrons emitted from a reactor core and the new thermal neutrons produced in a heterogeneous shield of water, iron, iron + B 4 C and ordinary concrete. The measurements were made using a reactor beam of neutrons filtered with cadmium emitted from one of the horizontal channels of ET-RR-1. It is found that the presence of cadmium sheet at channel exit causes a marked decrease in the thickness of the shield required to attenuate the thermal neutron flux by a certain factor. 12 refs., 5 figures. (author)

  16. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  17. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    International Nuclear Information System (INIS)

    Renfro, David G.; Cook, David Howard; Freels, James D.; Griffin, Frederick P.; Ilas, Germina; Sease, John D.; Chandler, David

    2012-01-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  18. Deuteron beam interaction with Li jet for a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1995-09-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (>14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities

  19. Deuteron beam interaction with lithium jet in a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1996-01-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities. (orig.)

  20. Fast neutron fluxes distribution in Egyptian ilmenite concrete

    International Nuclear Information System (INIS)

    Megahed, R.M.; Abou El-Nasr, T.Z.; Bashter, I.I.

    1978-01-01

    This work is concerned with the study of the distribution of fast neutron fluxes in a new type of heavy concrete made from Egyptian ilmenite ores. The neutron source used was a collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor. Measurements were carried-out using phosphorous activation detectors. Iso-flux curves were represented which give directly the shape and thickness required to attenuate the emitted fast neutron flux to a certain value. The relaxation lengths were also evaluated from the measured data for both disc monodirectional source and infinite plane monodirectional source. The obtained values were compared with that calculated using the derived values of relative number densities and microscopic removal cross-sections of the different constituents. The obtained data show that ilmenite concrete attenuates fast neutron flux more strongly than ordinary concrete. A semiemperical formula was derived to calculate the fast neutron flux at different thicknesses along the beam axis. Another semiemperical formula was also derived to calculate the fast neutron flux in ordinary concrete along the beam axis using the corresponding value in ilmenite concrete

  1. High quality flux control system for electron gun evaporation

    International Nuclear Information System (INIS)

    Appelbloom, A.M.; Hadley, P.; van der Marel, D.; Mooij, J.E.

    1991-01-01

    This paper reports on a high quality flux control system for electron gun evaporation developed and tested for the MBE growth of high temperature superconductors. The system can be applied to any electron gun without altering the electron gun itself. Essential elements of the system are a high bandwidth mass spectrometer, control electronics and a high voltage modulator to sweep the electron beam over the melt at high frequencies. the sweep amplitude of the electron beam is used to control the evaporation flux at high frequencies. The feedback loop of the system has a bandwidth of over 100 Hz, which makes it possible to grow superlattices and layered structures in a fast and precisely controlled manner

  2. Determination of neutron flux densities in WWR-S reactor core

    International Nuclear Information System (INIS)

    Tomasek, F.

    1989-04-01

    The method is described of determining neutron flux densities and neutron fluences using activation detectors. The basic definitions and relations for determining reaction rates, fluence and neutron flux as well as the characteristics of some reactions and of sitable activation detectors are reported. The flux densities were determined of thermal and fast neutrons and of gamma quanta in the WWR-S reactor core. The data measured in the period 1984-1987 are tabulated. Cross sections for the individual reactions were determined from spectra measurements processed using program SAND-II and cross section library ENDF-B IV. Neutron flux densities were also measured for the WWR-S reactor vertical channels. (E.J.). 10 figs., 8 tabs., 111 refs

  3. Measurement of the thermal flux distribution in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Tangari, C.M.; Moreira, J.M.L.; Jerez, R.

    1986-01-01

    The knowledge of the neutron flux distribution in research reactors is important because it gives the power distribution over the core, and it provides better conditions to perform experiments and sample irradiations. The measured neutron flux distribution can also be of interest as a means of comparison for the calculational methods of reactor analysis currently in use at this institute. The thermal neutron flux distribution of the IEA-R1 reactor has been measured with the miniature chamber WL-23292. For carrying out the measurements, it was buit a guide system that permit the insertion of the mini-chamber i between the fuel of the fuel elements. It can be introduced in two diferent positions a fuel element and in each it spans 26 axial positions. With this guide system the thermal neutron flux distribution of the IEA-R1 nuclear reactor can be obtained in a fast and efficient manner. The element measured flux distribution shows clearly the effects of control rods and reflectors in the IEA-R1 reactor. The difficulties encountered during the measurements are mentioned with detail as well as the procedures adopteed to overcome them. (Author) [pt

  4. Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Ellis, Ronald James [ORNL; Gehin, Jess C [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL

    2007-11-01

    This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology

  5. Determination flux in the Reactor JEN-1

    International Nuclear Information System (INIS)

    Manas Diaz, L.; Montes Ponce de leon, J.

    1960-01-01

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 μ gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs

  6. Neutron beam facilities at the replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: On September 3rd 1997 the Australian Federal Government announced their decision to replace the HIFAR research reactor by 2005. The proposed reactor will be a multipurpose reactor with improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The neutron beam facilities are intended to cater for Australian scientific needs well into the 21st century. In the first stage of planning the neutron Beam Facilities at the replacement reactor, a Consultative Group was formed (BFCG) to determine the scientific capabilities of the new facility. Members of the group were drawn from academia, industry and government research laboratories. The BFCG submitted their report in April 1998, outlining the scientific priorities to be addressed. Cold and hot neutron sources are to be included, and cold and thermal neutron guides will be used to position most of the instruments in a neutron guide hall outside the reactor confinement building. In 2005 it is planned to have eight instruments installed with a further three to be developed by 2010, and seven spare instrument positions for development of new instruments over the life of the reactor. A beam facilities technical group (BFTG) was then formed to prepare the engineering specifications for the tendering process. The group consisted of some members of the BFCG, several scientists and engineers from ANSTO, and scientists from leading neutron scattering centres in Europe, USA and Japan. The BFTG looked in detail at the key components of the facility such as the thermal, cold and hot neutron sources, neutron collimators, neutron beam guides and overall requirements for the neutron guide hall. The report of the BFTG, completed in August 1998, was incorporated into the draft specifications for the reactor project, which were distributed to potential reactor vendors. An assessment of the first stage of reactor vendor submissions was completed in

  7. KüFA safety testing of HTR fuel pebbles irradiated in the High Flux Reactor in Petten

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, O., E-mail: oliver.seeger@rwth-aachen.de [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Laurie, M., E-mail: mathias.laurie@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Abjani, A. El; Ejton, J.; Boudaud, D.; Freis, D.; Carbol, P.; Rondinella, V.V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Fütterer, M. [European Commission, Joint Research Centre (JRC), Institute for Energy and Transport (IET), Nuclear Reactor Integrity Assessment and Knowledge Management Unit, PO Box 2, 1755 ZG Petten (Netherlands); Allelein, H.-J. [Lehrstuhl für Reaktorsicherheit und -technik an der RWTH Aachen, Kackertstraße 9, 52072 Aachen (Germany)

    2016-09-15

    The Cold Finger Apparatus (KühlFinger-Apparatur—KüFA) in operation at JRC-ITU is designed to experimentally scrutinize the effects of Depressurization LOss of Forced Circulation (D-LOFC) accident scenarios on irradiated High Temperature Reactor (HTR) fuel pebbles. Up to 1600 °C, the reference maximum temperature for these accidents, high-quality German HTR fuel pebbles have already demonstrated a small fission product release. This paper discusses and compares the releases obtained from KüFA-testing the pebbles HFR-K5/3 and HFR-EU1/3, which were both irradiated in the High Flux Reactor (HFR) in Petten. We present the time-dependent fractional release of the volatile fission product {sup 137}Cs as well as the fission gas {sup 85}Kr for both pebbles. For HFR-EU1/3 the isotopes {sup 134}Cs and {sup 154}Eu as well as the shorter-lived {sup 110m}Ag have also been measured. A detailed description of the experimental setup and its accuracy is given. The data for the recently tested pebbles is discussed in the context of previous results.

  8. 2012 review of French research reactors

    International Nuclear Information System (INIS)

    Estrade, Jerome

    2013-01-01

    Proposed by the French Reactor Operators' Club (CER), the meeting and discussion forum for operators of French research reactors, this report first gives a brief presentation of these reactors and of their scope of application, and a summary of highlights in 2012 for each of them. Then, it proposes more detailed presentations and reviews of characteristics, activities, highlights, objectives and results for the different types of reactors: neutron beam reactors (Orphee, High flux reactor-Laue-Langevin Institute or HFR-ILL), technological irradiation reactors (Osiris and Phenix), training reactors (Isis and Azur), reactors for safety research purposes (Cabri and Phebus), reactors for neutronic studies (Caliban, Prospero, Eole, Minerve and Masurca), and new research reactors (the RES facility and the Jules Horowitz reactor or JHR)

  9. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    2000-01-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source

  10. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  11. A recycling molecular beam reactor

    International Nuclear Information System (INIS)

    Prada-Silva, G.; Haller, G.L.; Fenn, J.B.

    1974-01-01

    In a Recycling Molecular Beam Reactor, RMBR, a beam of reactant gas molecules is formed from a supersonic free jet. After collision with a target the molecules pass through the vacuum pumps and are returned to the nozzle source. Continuous recycling permits the integration of very small reaction probabilities into measurable conversions which can be analyzed by gas chromatography. Some preliminary experiments have been carried out on the isomerization of cyclopropane

  12. Calculation with MCNP of capture photon flux in VVER-1000 experimental reactor.

    Science.gov (United States)

    Töre, Candan; Ortego, Pedro

    2005-01-01

    The aim of this study is to obtain by Monte Carlo method the high energy photon flux due to neutron capture in the internals and vessel layers of the experimental reactor LR-0 located in REZ, Czech Republic, and loaded with VVER-1000 fuel. The calclated neutron, photon and photon to neutron flux ratio are compared with experimental measurements performed with a multi-parameter stilbene detector. The results show clear underestimation of photon flux in downcomer and some overestimation at vessel surface and 1/4 thickness but a good fitting for deeper points in vessel.

  13. Generating the flux map of Nigeria Research Reactor-1 for efficient ...

    African Journals Online (AJOL)

    One of the main uses to which the Nigeria Research Reactor-1 (NIRR-1) will be put is neutron activation analysis. The activation analyst requires information about the flux level at various points within and around the reactor core to enable him identify the point of optimum flux (at a given operating power) for any irradiation ...

  14. High intensity multi beam design of SANS instrument for Dhruva reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Sohrab, E-mail: abbas@barc.gov.in; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Désert, S. [Laboratoire Leon Brillouin, CEA, Saclay, 91191 (France)

    2016-05-23

    A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10{sup −4} Å{sup −1} with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies of agglomerates larger than few tens of nm.

  15. Development of high flux thermal neutron generator for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vainionpaa, Jaakko H., E-mail: hannes@adelphitech.com [Adelphi Technology, 2003 E Bayshore Rd, Redwood City, CA 94063 (United States); Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K. [Adelphi Technology, 2003 E Bayshore Rd, Redwood City, CA 94063 (United States); Jones, Glenn [G& J Jones Enterprice, 7486 Brighton Ct, Dublin, CA 94568 (United States); Pantell, Richard H. [Department of Electrical Engineering, Stanford University, Stanford, CA (United States)

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3–5 · 10{sup 7} n/cm{sup 2}/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 10{sup 10} n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  16. Calculations for HFIR [High Flux Isotope Reactor] fuel plate non- bonding and fuel segregation uncertainty factors

    International Nuclear Information System (INIS)

    Kirkpatrick, J.R.

    1990-10-01

    The effects of non-bonds and of fuel segregation on the package factors of the heat flux in the High Flux Isotope Reactor (HFIR) are examined. The effects of the two defects are examined both separately and together. It is concluded that the peaking factors that are used in the present HFIR thermal analysis code are conservative and thus no changes in the peaking factors are necessary to continue to ensure that HFIR is safe. A study was made of the effect of the non-bond spot diameter on the peaking factor. The conclusion is that the spot can have diameter more than three times the maximum value allowed by the specifications before the peaking factor is greater than the maximum value specified in the present HFIR thermal analysis code. 6 refs., 7 figs., 8 tabs

  17. Neutron beam facilities at the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Kim, S.

    2003-01-01

    The exciting development for Australia is the construction of a modern state-of-the-art 20-MW Replacement Research Reactor which is currently under construction to replace the aging reactor (HIFAR) at ANSTO in 2006. To cater for advanced scientific applications, the replacement reactor will provide not only thermal neutron beams but also a modern cold-neutron source moderated by liquid deuterium at approximately -250 deg C, complete with provision for installation of a hot-neutron source at a later stage. The latest 'supermirror' guides will be used to transport the neutrons to the Reactor Hall and its adjoining Neutron Guide Hall where a suite of neutron beam instruments will be installed. These new facilities will expand and enhance ANSTO's capabilities and performance in neutron beam science compared with what is possible with the existing HIFAR facilities, and will make ANSTO/Australia competitive with the best neutron facilities in the world. Eight 'leading-edge' neutron beam instruments are planned for the Replacement Research Reactor when it goes critical in 2006, followed by more instruments by 2010 and beyond. Up to 18 neutron beam instruments can be accommodated at the Replacement Research Reactor, however, it has the capacity for further expansion, including potential for a second Neutron Guide Hall. The first batch of eight instruments has been carefully selected in conjunction with a user group representing various scientific interests in Australia. A team of scientists, engineers, drafting officers and technicians has been assembled to carry out the Neutron Beam Instrument Project to successful completion. Today, most of the planned instruments have conceptual designs and are now being engineered in detail prior to construction and procurement. A suite of ancillary equipment will also be provided to enable scientific experiments at different temperatures, pressures and magnetic fields. This paper describes the Neutron Beam Instrument Project and gives

  18. Dynamic response of the high flux isotope reactor structure caused by nearby heavy load drop

    International Nuclear Information System (INIS)

    Chang, Shih-Jung.

    1995-01-01

    A heavy load of 50,000 lb is assumed to drop from 10 ft above the bottom of the High Flux Isotope Reactor (HFIR) pool at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying the ABAQUS computer code The results show that both the BM vessel structure and its supporting legs are subjected to elastic disturbances only and, therefore, will not be damaged. The bottom slab of the pool, however, will be damaged to about half of the slab thickness. The velocity response spectrum at the concrete floor next to the HFIR vessel as a result of the vibration caused by the impact is obtained. It is concluded, that the damage caused by heavy load drop at the loading station is controlled by the slab damage and the nearby HFIR vessel and the supporting legs will not be damaged

  19. Characterization of high flux magnetized helium plasma in SCU-PSI linear device

    Science.gov (United States)

    Xiaochun, MA; Xiaogang, CAO; Lei, HAN; Zhiyan, ZHANG; Jianjun, WEI; Fujun, GOU

    2018-02-01

    A high-flux linear plasma device in Sichuan University plasma-surface interaction (SCU-PSI) based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors. In this paper, the helium plasma has been characterized by a double-pin Langmuir probe. The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T. The core density and ion flux of helium plasma have a strong dependence on the applied current, magnetic field strength and gas flow rate. It could reach an electron density of 1.2 × 1019 m-3 and helium ion flux of 3.2 × 1022 m-2 s-1, with a gas flow rate of 4 standard liter per minute, magnetic field strength of 0.2 T and input power of 11 kW. With the addition of -80 V applied to the target to increase the helium ion energy and the exposure time of 2 h, the flat top temperature reached about 530 °C. The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy. These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.

  20. Design and use of the ORNL HFIR [High Flux Isotope Reactor] pneumatic tube irradiation systems

    International Nuclear Information System (INIS)

    Dyer, F.F.; Emery, J.F.; Robinson, L.; Teasley, N.A.

    1987-01-01

    A second pneumatic tube that was recently installed in the High Flux Isotope Reactor for neutron activation analysis is described. Although not yet tested, the system is expected to have a thermal neutron flux of about 1.5 x 10 14 cm -2 s -1 . A delayed neutron counter is an integral part of the pneumatic tube, and all of the hardware is present to enable automated use of the counter. The system is operated with a Gould programmable controller that is programmed with an IBM personal computer. Automation of any mode of operation, including the delayed neutron counter, will only require a nominal amount of software development. Except for the lack of a hot cell, the irradiation facility has all of the advantageous features of an older pneumatic tube that has been in operation for 17 years. The design of the system and some applications and methods of operation are described

  1. Ultrahigh flux reactor design probing the limits of plate fuel technology

    International Nuclear Information System (INIS)

    Lake, J.A.; Parsons, D.K.; Liebenthal, J.L.; Ryskamp, J.M.; Fillmore, G.N.; Deboisblanc, D.R.

    1986-01-01

    The need for a new steady-state thermal neutron source of unprecedented intensity has been the subject of numerous national meetings and discussions. The National Research Council Committee on Major Facilities for Materials Research recently issued a high priority recommendation that site-independent design studies for such a facility begin immediately. The high intensity neutron source is projected to open new frontiers in the use of neutrons as a probe in various aspects of materials and biological research and fundamental physics. The challenge put forth by the research community is to produce a source with a tenfold increase in intensity over any currently operating or planned facility and, therefore, to thrust the thermal neutron flux intensity into the 10 16 n/(cm 2 s) range. The purpose of the recent Idaho National Engineering Laboratory (INEL) activities in this area has been to identify and examine the limitations and the capabilities of the historically well-characterized plate-fuel technology to achieve the required performance levels in a user-friendly environment. Workbench design concepts were identified, upon which constraints and performance limitations could be evaluated and parametric trade-off analyses and preliminary design optimization studies could be performed. Although considerable optimization remains to be performed and a large number of cost/benefit trade-offs exist, it appears that a reactor core with innovative geometry, constructed of plate-type fuel elements, can achieve the 10 16 n/(cm 2 s) goal thermal flux level in a large external volume which has the quality and accessibility for beam research. (orig.)

  2. A high-speed data acquisition system to measure low-level current from self-powered flux detectors in CANDU nuclear reactors

    International Nuclear Information System (INIS)

    Lawrence, C.B.; Hall, D.S.

    1982-05-01

    Self-powered flux detectors are used in CANDU nuclear power reactors to determine the spatial neutron flux distribution in the reactor core for use by both the reactor control and safety systems. To establish the dynamic response of different types of flux detectors, the Chalk River Nuclear Laboratories have an ongoing experimental irradiation program in the NRU research reactor for which a data acquistion system has been developed. The system described in this paper is used to measure the currents from the detectors both at a slow, regular logging interval, and at a rapid, adaptive rate following a reactor shutdown. Currents that range from 100 pA to 1 mA full scale can be measured from up to 38 detectors and stored at sampling rates of up to 20 samples per second. The dynamic characteristics of the detectors can be computed from the stored records. The data acquisition system comprises a DEC LSI-11/23 microcomputer, dual cartridge disks, floppy disks, a hard copy and a video display terminal. The RT-11 operating system is used and all application programs are written in FORTRAN

  3. Construction of the neutron beam facility at Australia's OPAL research reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane J.

    2006-01-01

    Australia's new research reactor, OPAL, has been designed principally for neutron beam science and radioisotope production. It has a capacity for 18 neutron beam instruments, located at the reactor face and in a neutron guide hall. The neutron beam facility features a 20 l liquid deuterium cold neutron source and cold and thermal supermirror neutron guides. Nine neutron beam instruments are under development, of which seven are scheduled for completion in early 2007. The project is approaching the hot-commissioning stage, when criticality will be demonstrated. Installation of the neutron beam transport system and neutron beam instruments in the neutron guide hall and at the reactor face is underway, and the path to completion of this project is relatively clear. This paper will outline the key features of the OPAL reactor, and will describe the neutron beam facility in particular. The status of the construction and a forecast of the program to completion, including commissioning and commencement of routine operation in 2007 will also be discussed

  4. Measurements of neutron flux in the RA reactor; Merenje karakteristika neutronskog fluksa u reaktoru RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This report includes results of the following measurements performed at the RA reactor: thermal neutron flux in the experimental channels, epithermal and fast neutron flux, neutron flux in the biological shield, neutron flux distribution in the reactor cell.

  5. Ion Flux Measurements in Electron Beam Produced Plasmas in Atomic and Molecular Gases

    Science.gov (United States)

    Walton, S. G.; Leonhardt, D.; Blackwell, D. D.; Murphy, D. P.; Fernsler, R. F.; Meger, R. A.

    2001-10-01

    In this presentation, mass- and time-resolved measurements of ion fluxes sampled from pulsed, electron beam-generated plasmas will be discussed. Previous works have shown that energetic electron beams are efficient at producing high-density plasmas (10^10-10^12 cm-3) with low electron temperatures (Te < 1.0 eV) over the volume of the beam. Outside the beam, the plasma density and electron temperature vary due, in part, to ion-neutral and electron-ion interactions. In molecular gases, electron-ion recombination plays a significant role while in atomic gases, ion-neutral interactions are important. These interactions also determine the temporal variations in the electron temperature and plasma density when the electron beam is pulsed. Temporally resolved ion flux and energy distributions at a grounded electrode surface located adjacent to pulsed plasmas in pure Ar, N_2, O_2, and their mixtures are discussed. Measurements are presented as a function of operating pressure, mixture ratio, and electron beam-electrode separation. The differences in the results for atomic and molecular gases will also be discussed and related to their respective gas-phase kinetics.

  6. Burnout experiment in subcooled forced-convection boiling of water for beam dumps of a high power neutral beam injector

    International Nuclear Information System (INIS)

    Horiike, Hiroshi; Kuriyama, Masaaki; Morita, Hiroaki

    1982-01-01

    Experimental studies were made on burnout heat flux in highly subcooled forced-convection boiling of water for the design of beam dumps of a high power neutral beam injector for Japan Atomic Energy Research Institute Tokamak-60. These dumps are composed of many circular tubes with two longitudinal fins. The tube was irradiated with nonuniformly distributed hydrogen ion beams of 120 to 200 kW for as long as 10 s. The coolant water was circulated at flow velocities of 3 to 7.5 m/s at exit pressures of 0.4 to 0.9 MPa. The burnout and film-boiling data were obtained at local heat fluxes of 8 to 15 MW/m 2 . These values were as high as 2.5 times larger than those for the circumferentially uniform heat flux case with the same parameters. These data showed insensitivity to local subcooling as well as to pressure, and simple burnout correlations were derived. From these results, the beam dumps have been designed to receive energetic beam fluxes of as high as 5 MW/m 2 with a margin of a factor of 2 for burnout

  7. High heat flux components with Be armour before and after neutron irradiation

    International Nuclear Information System (INIS)

    Lodato, A.; Derz, H.; Duwe, R.; Linke, J.; Roedig, M.

    2000-01-01

    Beryllium/copper mock-ups produced by different joining techniques have been tested in the electron beam facility JUDITH (Juelich Divertor Test Facility in Hot Cells) at Forschungszentrum Juelich. The experiments described in this paper represent the conclusive part of a test program started in 1994. The properties of non-irradiated Be/Cu joints have been characterised in a previous test campaign. Post-irradiation tests are now being carried out to investigate the neutron damage on the joints. The neutron irradiation on selected mock-ups has been carried out in the High Flux Reactor (HFR) at Petten (The Netherlands). Parametric finite element thermal analyses have been carried out to establish the allowable heat flux value to be applied during the tests. Screening tests up to power densities of ∼7 MW/m 2 and thermal fatigue tests up to 1000 cycles have been performed. None of these mock-ups showed any indication of failure. Post-mortem analyses (metallography, SEM) have also been conducted

  8. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    Science.gov (United States)

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Optimization of neutron flux distribution in Isotope Production Reactor

    International Nuclear Information System (INIS)

    Valladares, G.L.

    1988-01-01

    In order to optimize the thermal neutrons flux distribution in a Radioisotope Production and Research Reactor, the influence of two reactor parameters was studied, namely the Vmod / Vcomb ratio and the core volume. The reactor core is built with uranium oxide pellets (UO 2 ) mounted in rod clusters, with an enrichment level of ∼3 %, similar to LIGHT WATER POWER REATOR (LWR) fuel elements. (author) [pt

  10. Anti-neutrino flux in a research reactor for non-proliferation application

    Energy Technology Data Exchange (ETDEWEB)

    Khakshournia, Samad; Foroughi, Shokoufeh [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Atomic Energy Organization of Iran (AEOI)

    2017-11-15

    Owing to growing interest in the study of emitted antineutrinos from nuclear reactors to test the Atomic Energy Agency safeguards, antineutrino flux was studied in the Tehran Research Reactor (TRR) using ORIGEN code. According to our prediction, antineutrino rate was obtained 2.6 x 10{sup 17} (v{sub e}/sec) in the core No. 57F of the TRR. Calculations indicated that evolution of antineutrino flux was very slow with time and the performed refueling had not an observable effect on antineutrino flux curve for a 5 MW reactor with the conventional refueling program. It is seen that for non-proliferation applications the measurement of the contribution of {sup 239}Pu to the fission using an antineutrino detector is not viable in the TRR.

  11. Progress of High Heat Flux Component Manufacture and Heat Load Experiments in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Lian, Y.; Xu, Z.; Chen, J.; Chen, L.; Wang, Q.; Duan, X., E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, Chengu (China); Luo, G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yan, Q. [University of Science and Technology Beijing, Beijing (China)

    2012-09-15

    Full text: High heat flux components for first wall and divertor are the key subassembly of the present fusion experiment apparatus and fusion reactors in the future. It is requested the metallurgical bonding among the plasma facing materials (PFMs), heat sink and support materials. As to PFMs, ITER grade vacuum hot pressed beryllium CN-G01 was developed in China and has been accepted as the reference material of ITER first wall. Additionally pure tungsten and tungsten alloys, as well as chemical vapor deposition (CVD) W coating are being developed for the aims of ITER divertor application and the demand of domestic fusion devices, and significant progress has been achieved. For plasma facing components (PFCs), high heat flux components used for divertor chamber are being studied according to the development program of the fusion experiment reactor of China. Two reference joining techniques of W/Cu mockups for ITER divertor chamber are being developed, one is mono-block structure by pure copper casting of tungsten surface following by hot iso-static press (HIP), and another is flat structure by brazing. The critical acceptance criteria of high heat flux components are their high heat load performance. A 60 kW Electron-beam Material testing Scenario (EMS-60) has been constructed at Southwestern Institute of Physics (SWIP),which adopts an electron beam welding gun with maximum energy of 150 keV and 150 x 150 mm{sup 2} scanning area by maximum frame rate of 30 kHz. Furthermore, an Engineering Mockup testing Scenario (EMS-400) facility with 400 kW electron-beam melting gun is under construction and will be available by the end of this year. After that, China will have the comprehensive capability of high heat load evaluation from PFMs and small-scale mockups to engineering full scale PFCs. A brazed W/CuCrZr mockup with 25 x 25 x 40 mm{sup 3} in dimension was tested at EMS-60. The heating and cooling time are 10 seconds and 15 seconds, respectively. The experiment

  12. Framework for a sustainable development of neutron beam work in the smaller research reactors

    International Nuclear Information System (INIS)

    Carvalho, F.G.; Margaca, F.M.A.

    1995-01-01

    The authors analyze the present situation of research reactors for neutron beam work in the light of the changes that took place in the nuclear field during the last decades. Trends in supply and demand of neutron beam time in view of the specific requirements of the techniques and of the user's community are outlined. It is argued that resources, both human and material, should be considered in a global perspective, encompassing the national, regional and international levels, where national facilities, mostly low flux research reactors, should be looked upon as a valuable component of a commonwealth of resources to be usefully exploited for the benefit of the neutron user's community at large. The importance of international cooperation to develop a higher level of research reactor utilization is emphasized while suggestions concerning the role of IAEA are made, particularly, to promote the mobility of scientists and engineers directed from developed to less developed countries (LDC's) where research reactors are in operation. The potential of small research reactors in LDC's as an instrument of the country's general scientific and technological development is pointed out as well as difficulties commonly experienced and essential requirements of a successful performance with emphasis on the importance of establishing close links with the national scientific community and especially with university groups. The scientific and technological relevance of neutron scattering techniques is discussed. Reference is made to the techniques best suited to modest research reactor facilities as well as to the importance of developing a local competence in instrument design, optimization and construction. (author). 12 refs

  13. The epithermal neutron-flux distribution in the reactor RA - Vinca

    International Nuclear Information System (INIS)

    Marinkov, V.; Bikit, I.; Martinc, R.; Veskovic, M.; Slivka, J.; Vaderna, S.

    1987-01-01

    The distribution of the epithermal neutron flux in the reactor RA - Vinca has been measured by means of Zr - activation detectors. In the channel VK-8 non-homogeneous flux distribution was observed (author) [sr

  14. Investigating The Neutron Flux Distribution Of The Miniature Neutron Source Reactor MNSR Type

    International Nuclear Information System (INIS)

    Nguyen Hoang Hai; Do Quang Binh

    2011-01-01

    Neutron flux distribution is the important characteristic of nuclear reactor. In this article, four energy group neutron flux distributions of the miniature neutron source reactor MNSR type versus radial and axial directions are investigated in case the control rod is fully withdrawn. In addition, the effect of control rod positions on the thermal neutron flux distribution is also studied. The group constants for all reactor components are generated by the WIMSD code, and the neutron flux distributions are calculated by the CITATION code. The results show that the control rod positions only affect in the planning area for distribution in the region around the control rod. (author)

  15. Analysis of Neutron Flux Distribution in Rsg-Gas Reactor With U-Mo Fuels

    Directory of Open Access Journals (Sweden)

    Taswanda Taryo

    2004-01-01

    Full Text Available The use of U-Mo fuels in research reactors seems to be promising and, recently, world researchers have carried out these such activities actively. The National Nuclear Energy Agency (BATAN which owns RSG-GAS reactor available in Serpong Research Center for Atomic Energy should anticipate this trend. It is, therefore, this research work on the use of U-Mo fuels in RSG-GAS reactor should be carried out. The work was focused on the analysis of neutron flux distribution in the RSG-GAS reactor using different content of molybdenum in U-Mo fuels. To begin with, RSG-GAS reactor core model was developed and simulated into X, Y and Z dimensions. Cross section of materials based on the developed cells of standard and control fuels was then generated using WIMS-D5-B. The criticality calculations were finally carried out applying BATAN-2DIFF code. The results showed that the neutron flux distribution obtained in U-Mo-fuel-based RSG-GAS core is very similar to those achieved in the 300-gram sillicide-fuel-based RSG-GAS reactor core. Indeed, the utilization of the U-Mo RSG-GAS core can be very similar to that of the high-density sillicide reactor core and even could be better in the future.

  16. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  17. Design and characterization of a 64 channels ASIC front-end electronics for high-flux particle beam detectors

    Science.gov (United States)

    Fausti, F.; Mazza, G.; Attili, A.; Mazinani, M. Fadavi; Giordanengo, S.; Lavagno, M.; Manganaro, L.; Marchetto, F.; Monaco, V.; Sacchi, R.; Vignati, A.; Cirio, R.

    2017-09-01

    A new wide-input range 64-channels current-to-frequency converter ASIC has been developed and characterized for applications in beam monitoring of therapeutic particle beams. This chip, named TERA09, has been designed to extend the input current range, compared to the previous versions of the chip, for dealing with high-flux pulsed beams. A particular care was devoted in achieving a good conversion linearity over a wide bipolar input current range. Using a charge quantum of 200 fC, a linearity within ±2% for an input current range between 3 nA and 12 μA is obtained for individual channels, with a gain spread among the channels of about 3%. By connecting all the 64 channels of the chip to a common input, the current range can be increased 64 times preserving a linearity within ±3% in the range between and 20 μA and 750 μA.

  18. Prompt-gamma spectrometry for the optimization of reactor neutron beams in biomedical research

    International Nuclear Information System (INIS)

    Borisov, G.I.; Komkov, M.M.; Leonov, V.F.

    1988-01-01

    In order to select the optimal spectral composition and size for the reactor neutron beams applied to in vivo analysis and therapy in biomedical research it is necessary to determine the spatial slow-neutron flux distributions produced by the beam in the irradiated object and to calculate or measure the neutron dose equivalents of both the original spectrum and the moderated neutrons. In this study the maximum neutron dose equivalents are found by spectrometry of the prompt-γ emission from the interaction of neutrons with atomic nuclei in the irradiated object. Different spectral distributions were produced by using an unfiltered beam together with filters of quartz, cadmium, 10 B, iron, aluminum, and sulfur. The phantom used was a tank filled with an aqueous solution of urea. Cadmium-containing organs were simulated. For in vivo neutron-activation analysis of human tissues at a depth of 2-5 cm it was found advisable to use neutrons of 20-40 keV mean energy with a beam area of at least 45 cm 2

  19. Thermal flux flattering and increase of reactor output

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, J; Bussac, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    It is worthwhile, when building power reactors, to have excess reactivity in order to increase rating by fitting closely together the heat sources and the cooling possibilities. The power per unit volume of a graphite reactor can then be increased, given the power of the most heavily loaded channel. The solutions adopted for G.1, G.2, and E.D.F.1 are described here, and also the improvements based on the actual neutron flux flattening, the introduction of several zones for the coolant, the variation of uranium rod and coolant channel diameters according to their location, and finally the change in lattice pitch. The perturbation of neutron flux due to variation of mean absorption in the lattice is also discussed. (author)

  20. Heavy ion beam transport through liquid lithium first wall ICF reactor cavities

    International Nuclear Information System (INIS)

    Stroud, P.D.

    1985-01-01

    This analysis addresses the critical issue of the final transport of a heavy ion beam in an inertial confinement fusion reactor. The beam must traverse the reaction chamber from the final focusing lens to the target without being disrupted. This requirement has a strong impact on the reactor design. It is essential to the development of ICF fusion reactor technology, that the restrictions placed on the reactor engineering parameters by final beam transport consideration be understood early on

  1. Self-adjointness of the fast flux in a pressurized water reactor

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1985-01-01

    Most computer codes for the analysis of systems transients rely on a simplified representation of the active core, typically employing either a one-dimensional or a point kinetics model. The collapsing of neutronics data from multidimensional steady-state calculations normally employs flux/flux-adjoint weighting. The multidimensional calculations, however, usually are performed only for the forward problem, not the adjoint. The collapsing methodologies employed in generating the neutronics input for transient codes typically construct adjoint fluxes from the assumption that the fast flux is self-adjoint. Until now, no further verification of this assumption has been undertaken for thermal reactors. As part of the verification effort for EPRI's reactor analysis support package, the validity of this assumption now has been investigated for a modern pressurized water reactor (PWR). The PDQ-7 code was employed to perform two-group fine-mesh forward and adjoint calculations for a two-dimensional representation of Zion Unit 2 at beginning of life, based on the standard PWR ARMP model. It has been verified that the fast flux is very nearly self-adjoint in a PWR. However, a significant error can arise during the subsequent construction of the thermal adjoint flux unless allowance is made for the difference between the forward and adjoint thermal buckling terms. When such a difference is included, the thermal adjoint flux can be estimated very accurately

  2. Calculation of neutron fluxes in biological shield of the TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Bozic, M.; Zagar, T.; Ravnik, M.

    2001-01-01

    The complete calculation of neutron fluxes in biological shield and verification with experimental results is presented. Calculated results are obtained with TORT code (TORT-Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code). Experimental results used for comparison are available from irradiation experiment with selected type of concrete and other materials in irradiation channel 4 in TRIGA Mark II reactor. These experimental results were used as a benchmark. Homogeneous type of problem (without inserted irradiation channel) and problem with asymmetry (inserted beam port 4, filled with different materials) were of interest for neutron flux calculation. Deviation from material data set up as original parameters is also considered (first of all presence of water in concrete and density of concrete) for type of concrete in biological shield and for selected type of concrete in irradiation channel. BUGLE-96 (47 neutron energy groups) library is used. Excellent agreement between calculated and experimental results for reaction rate is received.(author)

  3. Comparison of radioactive doses after the last protection layer insight the reactor structure for Russian VVER-1000 and German PWR-1300 reactors

    International Nuclear Information System (INIS)

    Rahimi, A.; Mansourshaiflu, N.; Alizadeh, M. R.

    2004-01-01

    In pressurized reactors (VVER and PWR), various protections layers are used for reducing the output core doses. At any protection layer, some amount of neutron and gamma doses is reduced. In this project the axial flux of neutron and gamma beams have been evaluated at various protection layers in the operation state the German PWR-1300 and Russian VVER-1000 reactors by the MCNP computer code. For the purpose of effective use of the MCNP code and assuring its correct performance about of fluxed beams common and series of scientific answers and bench marks should be considered and the results obtained by the MCNP code, be compared with this answers. Then by using appropriate method, for reducing the flux variants of neutron and gamma beams at various protection layers of German PWR-1300 and Russian VVER-1000 reactors of the operation state of both reactors have been accelerated. In this projects, bench marks are computations and numbers existing in PSAR's present at Bushehr nuclear power plant. At the end, by using the results obtained and the standard doses, the time which a person can have work activity at the reactor wall (after the last protection layer), was compared for the operation status of the German PWR-1300 and Russian VVER-1000 reactors

  4. Kartini Research Reactor prospective studies for neutron scattering application

    International Nuclear Information System (INIS)

    Widarto

    1999-01-01

    The Kartini Research Reactor (KRR) is located in Yogyakarta Nuclear Research Center, Yogyakarta - Indonesia. The reactor is operated for 100 kW thermal power used for research, experiments and training of nuclear technology. There are 4 beam ports and 1 column thermal are available at the reactor. Those beam ports have thermal neutron flux around 10 7 n/cm 2 s each other and used for sub critical assembly, neutron radiography studies and Neutron Activation Analysis (NAA). Design of neutron collimator has been done for piercing radial beam port and the calculation result of collimated neutron flux is around 10 9 n/cm 2 s. This paper describes experiment facilities and parameters of the Kartini research reactor, and further more the prospective studies for neutron scattering application. The purpose of this paper is to optimize in utilization of the beam ports facilities and enhance the manpower specialty. The special characteristic of the beam ports and preliminary studies, pre activities regarding with neutron scattering studies for KKR is presented. (author)

  5. Assessment of beam tube performance for the maple research reactor

    International Nuclear Information System (INIS)

    Lee, A.G.

    1986-06-01

    The MAPLE research reactor is a versatile new research facility that can be adapted to meet the requirements of a variety of reactor applications. A particular group of reactor applications involves the use of beams of radiation extracted from the reactor core via tubes that penetrate through the biological shield and terminate in the reflector surrounding the fuelled core. An assessment is given of the neutron and gamma radiation fields entering beam tubes that are located radially or tangentially with respect to the core

  6. Device for detecting neutron flux in nuclear reactor. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bessho, Y; Nishizawa, Y

    1976-07-30

    The object of the invention is to ensure accuracy in the operation of the nuclear reactor by reducing the difference that results between the readings of a Traversing Incore Probe (TIP) and a Local Power Range Monitor (LPRM) when the neutron flux distribution undergoes a change. In an apparatus for detecting neutrons in a nuclear reactor, an LPRM sensor comprising a layer containing a substance capable of nuclear fission, a section filled with argon gas and a collector is constructed so as to surround a TIP within a TIP guide tube at the height of the reactor axis. In this way, the LPRM detects the average value of neutron distribution in the region surrounding the TIP, so that no great difference between the readings of both the sensors is produced even if the neutron flux distribution is changed.

  7. TORT application in reactor pressure vessel neutron flux calculations

    International Nuclear Information System (INIS)

    Belousov, S.I.; Ilieva, K.D.; Antonov, S.Y.

    1994-01-01

    The neutron flux values onto reactor pressure vessel for WWER-1000 and WWER-440 reactors, at the places important for metal embrittlement surveillance have been calculated by 3 dimensional code TORT and synthesis method. The comparison of the results received by both methods confirms their good consistency. (authors). 13 refs., 4 tabs

  8. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, M. [National Radiation Protection Department - NRPD, Atomic Energy Organization of Iran - AEOI, Tehran (Iran, Islamic Republic of); End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Kasesaz, Y.; Khalafi, H.; Shayesteh, M. [Radiation Application School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  9. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    International Nuclear Information System (INIS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Shayesteh, M.

    2015-01-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  10. Measuring neutron flux density in near-vessel space of a commercial WWER-1000 reactor

    International Nuclear Information System (INIS)

    Borodkin, G.I.; Eremin, A.N.; Lomakin, S.S.; Morozov, A.G.

    1987-01-01

    Distribution of neutron flux density in two experimental channels on the reactor vessel external surface and in ionization chamber channel of a commercial WWER-1000 reactor, is measured by the activation detector technique. Azimuthal distributions of fast and thermal neutron fluxes and height distributions of fast neutron flux density within energy range >1.2 and 2.3 MeV are obtained. Conclusion is made, that reactor core state and its structural peculiarities in the measurement range essentially affect space and energy distribution of neutron field near the vessel. It should be taken into account when determining permissible neutron fluence for the reactor vessel

  11. The status of the PIK reactor

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu V [Academy of Sciences of Russia, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation)

    1992-07-01

    This report describes the 100 MW research reactor PIK which is now under construction. The thermal neutron flux in the heavy water reflector exceeds 10{sup 15} cm{sup -2}s{sup -1}; in the light water trap, it is about 4{center_dot}10{sup 15} cm{sup -2}s{sup -1}. The replaceable core vessel allows to vary the parameters of the core over a wide range. The reactor provides sources of hot, cold and ultracold neutrons for 10 horizontal, 6 inclined neutron beams, and 8 neutron guides. At the ends of the beam tubes, the neutron flux is 10{sup 10} - 10{sup 11} cm{sup -2}s{sup -1}. The flux of the long wave neutrons exceeds 10{sup 9} cm{sup -2}s{sup -1}. To ensure precise measurements, the experimental hall is protected against vibrations. The project meets all modern safety requirements. The calculated parameters of the reactor were verified using a full-scale mock-up. Seventy percent of the reactor construction and installation were completed in the beginning of 1992. (author)

  12. The applications of research reactors. Report of an advisory group meeting

    International Nuclear Information System (INIS)

    2001-08-01

    Owners and operators of many research reactors are finding that their facilities are not being utilized as fully as they might wish. Perhaps the original mission of the reactor has been accomplished or a particular analysis is now performed better in other ways. In addition, the fact that a research reactor exists and is available does not guarantee that users will come seeking to take advantage of the facility. Therefore, many research reactor owners and operators recognize that there is a need to develop a strategic plan for long term sustainability, including the 'marketing' of their facilities. An important first element in writing a strategic plan is to evaluate the current and potential capabilities of the reactor. The purpose of this document is to assist in such an evaluation by providing some factual and advisory information with respect to all of the current applications of research reactors. By reference to this text, each facility owner and operator will be able to assess whether or not a new application is feasible with the reactor, and what will be required to develop capability in that application. Applications fall into four broad categories: human resource development, irradiations, extracted beam work and testing. The human resource category includes public information, training and education and can be accomplished by any reactor. Irradiation applications involves inserting material into the reactor to induce radioactivity for analytical purposes, to produce radioisotopes or to induce radiation damage effects. Almost all reactors can be utilized for some irradiation applications, but as the reactor flux gets higher the range of potential uses gets larger. Beam work usually includes using neutron beams outside of the reactor for a variety of analytical purposes. Because of the magnitude of the fluxes needed at some distance from the core, most beam work can only be performed by the intermediate and higher powered research reactors. Testing nuclear

  13. Flux-limited diffusion coefficients in reactor physics applications

    International Nuclear Information System (INIS)

    Pounders, J.; Rahnema, F.; Szilard, R.

    2007-01-01

    Flux-limited diffusion theory has been successfully applied to problems in radiative transfer and radiation hydrodynamics, but its relevance to reactor physics has not yet been explored. The current investigation compares the performance of a flux-limited diffusion coefficient against the traditionally defined transport cross section. A one-dimensional BWR benchmark problem is examined at both the assembly and full-core level with varying degrees of heterogeneity. (authors)

  14. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  15. On flux effects in a low alloy steel from a Swedish reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Boåsen, Magnus, E-mail: boasen@kth.se [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Efsing, Pål [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Ehrnstén, Ulla [VTT Technical Research Centre of Finland Ltd, PO Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    This study aims to investigate the presence of Unstable Matrix Defects in irradiated pressure vessel steel from weldments of the Swedish PWR Ringhals 4 (R4). Hardness tests have been performed on low flux (surveillance material) and high flux (Halden reactor) irradiated material samples in combination with heat treatments at temperatures of 330, 360 and 390 °C in order to reveal eventual recovery of any hardening features induced by irradiation. The experiments carried out in this study could not reveal any hardness recovery related to Unstable Matrix Defects at relevant temperatures. However, a difference in hardness recovery was found between the low and the high flux samples at heat treatments at higher temperatures than expected for the annihilation of Unstable Matrix Defects–the observed recovery is here attributed to differences of the solute clusters formed by the high and low flux irradiations. - Highlights: • Hardness testing is combined with post irradiation annealing at 330, 360 and 390 °C. • Unstable matrix defects is studied in a reactor pressure vessel steel. • Comparison between surveillance material and accelerated irradiation. • No evidence of unstable matrix defects, i.e. not present in studied material. • Difference in hardness recovery between irradiation conditions found at 390 °C.

  16. A new detector for the measurement of neutron flux in nuclear reactors

    International Nuclear Information System (INIS)

    Koch, L.; Labeyrie, J.; Tarassenko, S.

    1958-01-01

    The detector described is designed for the instantaneous measurement of thermal neutron fluxes, in the presence of high γ ray activity; this detector can withstand temperatures as high as 500 deg. C. It is based on the following principle: radioactive atoms resulting from heavy-nucleus fission are carried by a gas flow to a detector recording their β and γ disintegration. Thermal neutron fluxes as low as few neutrons per cm 2 per second can be measured. This detector may be used to control a nuclear reactor, to plot the thermal flux distribution with an excellent definition (1 mm 2 ) for fluxes higher than 10 8 n/cm 2 /s. The time response of the system to a sharp variation of flux is limited, in case of large fluxes, to the transit time of the gas flow between the fission product emitter and the detector; of the order of one tenth of a sec per meter of piping. The detector may also be applied for spectroscopy of fission products eider than 0,1 s. (author) [fr

  17. EU Development of High Heat Flux Components

    International Nuclear Information System (INIS)

    Linke, J.; Lorenzetto, P.; Majerus, P.; Merola, M.; Pitzer, D.; Roedig, M.

    2005-01-01

    The development of plasma facing components for next step fusion devices in Europe is strongly focused to ITER. Here a wide spectrum of different design options for the divertor target and the first wall have been investigated with tungsten, CFC, and beryllium armor. Electron beam simulation experiments have been used to determine the performance of high heat flux components under ITER specific thermal loads. Beside thermal fatigue loads with power density levels up to 20 MWm -2 , off-normal events are a serious concern for the lifetime of plasma facing components. These phenomena are expected to occur on a time scale of a few milliseconds (plasma disruptions) or several hundred milliseconds (vertical displacement events) and have been identified as a major source for the production of neutron activated metallic or tritium enriched carbon dust which is of serious importance from a safety point of view.The irradiation induced material degradation is another critical concern for future D-T-burning fusion devices. In ITER the integrated neutron fluence to the first wall and the divertor armour will remain in the order of 1 dpa and 0.7 dpa, respectively. This value is low compared to future commercial fusion reactors; nevertheless, a nonnegligible degradation of the materials has been detected, both for mechanical and thermal properties, in particular for the thermal conductivity of carbon based materials. Beside the degradation of individual material properties, the high heat flux performance of actively cooled plasma facing components has been investigated under ITER specific thermal and neutron loads

  18. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities

    International Nuclear Information System (INIS)

    Mansy, M.S.; Bashter, I.I.; El-Mesiry, M.S.; Habib, N.; Adib, M.

    2015-01-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5–133 keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named “QMNB” was developed in the “MATLAB” programming language to perform the required calculations. - Highlights: • Quasi-monoenergetic neutron beams in energy range from (1.5–133) keV. • Interference between the resonance and potential scattering amplitudes. • Epithermal neutron beams used in BNCT

  19. Measurements of neutron flux in the RA reactor; Merenje karakteristika neutronskog fluksa u reaktoru RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This report includes the following separate parts: Thermal neutron flux in the experimental channels od RA reactor; Epithermal neutron flux in the experimental channels od RA reactor; Fast neutron flux in the experimental channels od RA reactor; Thermal neutron flux in the thermal column and biological experimental channel; Neutronic measurements in the RA reactor cell; Temperature reactivity coefficient of the RA reactor; design of the device for measuring the activity of wire. [Serbo-Croat] Ovaj izvestaj sadrzi sledece referate: Fluks termalnih neutrona u eksperimentalnim kanalima reaktora RA; Fluks epitermalnih neutrona u eksperimentalnim kanalima reaktora RA; Fluks brzih neutrona u eksperimentalnim kanalima reaktora RA; Fluks termalnih neurona u termalnoj koloni i bioloskom eksperimentalnom kanalu; Neutronska merenja u elementarnoj celiji reaktora RA; Temperaturni koeficijent reaktivnosti reaktora RA; Projekat uredjaja za merenje radioaktivnosti zice.

  20. Dosimetry work and calculations in connection with the irradiation of large devices in the high flux materials testing reactor BR2

    International Nuclear Information System (INIS)

    De Raedt, C.; Leenders, L.; Tourwe, H.; Farrar, H. IV.

    1982-01-01

    For about fifteen years the high flux reactor BR2 has been involved in the testing of fast reactor fuel pins. In order to simulate the fast reactor neutron environment most devices are irradiated under cadmium screen, cutting off the thermal flux component. Extensive neutronic calculations are performed to help the optimization of the fuel bundle design. The actual experiments are preceded by irradiations of their mock-ups in BR02, the zero power model of BR2. The mock-up irradiations, supported by supplementary calculations, are performed for the determination of the main neutronic characteristics of the irradiation proper in BR2 and for the determination of the corresponding operation data. At the end of the BR2 irradiation, the experimental results, such as burn-ups, neutron fluences, helium production in the fuel pin claddings, etc. are correlated by neutronic calculations in order to examine the consistency of the post-irradiation results and to validate the routine calculation procedure and cross-section data employed. A comparison is made in this paper between neutronic calculation results and some post-irradiation data for MOL 7D, a cadmium screened sodium cooled loop containing a nineteen fuel pin bundle

  1. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Bryant, Rebecca; Kszos, Lynn A.

    2011-01-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  2. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  3. Muon flux measurement with silicon detectors in the CERN neutrino beams

    International Nuclear Information System (INIS)

    Heijne, E.H.M.

    1983-01-01

    The neutrino beam installations at the CERN SPS accelerator are described, with emphasis on the beam monitoring systems. Especially the muon flux measurement system is considered in detail, and the calibration procedure and systematic aspects of the measurements are discussed. An introduction is given to the use of silicon semiconductor detectors and their related electronics. Other special chapters concern non-linear phenomena in the silicon detectors, radiation damage in silicon detectors, energy loss and energy deposition in silicon and a review of energy loss phenomena for high energy muons in matter. (orig.)

  4. Materials research with neutron beams from a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Root, J.; Banks, D. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario (Canada)

    2015-03-15

    Because of the unique ways that neutrons interact with matter, neutron beams from a research reactor can reveal knowledge about materials that cannot be obtained as easily with other scientific methods. Neutron beams are suitable for imaging methods (radiography or tomography), for scattering methods (diffraction, spectroscopy, and reflectometry) and for other possibilities. Neutron-beam methods are applied by students and researchers from academia, industry and government to support their materials research programs in several disciplines: physics, chemistry, materials science and life science. The arising knowledge about materials has been applied to advance technologies that appear in everyday life: transportation, communication, energy, environment and health. This paper illustrates the broad spectrum of materials research with neutron beams, by presenting examples from the Canadian Neutron Beam Centre at the NRU research reactor in Chalk River. (author)

  5. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. To address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).

  6. Safety assessment of Department of Energy nuclear reactors

    International Nuclear Information System (INIS)

    1981-03-01

    One of the first tasks of the NFPQT Committee was to determine which DOE reactors would be assessed. The Committee determined that in view of the limited time available to conduct the assessment, 13 DOE reactors were of such size (physical, power or fission product inventory) to warrant review. This determination was approved by the Under Secretary. A decision was also made in the cases of three weapons material production reactors, C, K and P, to concentrate on the K reactor only, since all three are of the same basic design, have the same operating features, are all at the same site, and are all operated by the same contractor. The assessment was accomplished in the following ways: reviewing the results of assessments conducted by the DOE organizations with reactor safety responsibilities, which were undertaken in compliance with the request of the various program directors; reviewing selected documents that were requested by the Committee and assembled at DOE Headquarters; interviewing DOE Headquarters and Field Office personnel; and conducting on-site reviews of four reactors located at four different sites. The four reactors for on-site reviews were: Advanced Test Reactor (ATR); K Production Reactor; High Flux Beam Reactor (HFBR); and High Flux Isotope Reactor (HFIR). Specific findings and recommendations from the assessment are presented

  7. Focal spot size predictions for beam transport through a gas-filled reactor

    International Nuclear Information System (INIS)

    Yu, S.S.; Lee, E.P.; Buchanan, H.L.

    1980-01-01

    Results from calculations of focal spot size for beam transport through a gas-filled reactor are summarized. In the converging beam mode, we find an enlargement of the focal spot due to multiple scattering and zeroth order self-field effects. This enlargement can be minimized by maintaining small reactors together with a careful choice of the gaseous medium. The self-focused mode, on the other hand, is relatively insensitive to the reactor environment, but is critically dependent upon initial beam quality. This requirement on beam quality can be significantly eased by the injection of an electron beam of modest current from the opposite wall

  8. Ageing management of AG3NET beam tubes in ORPHEE Research

    International Nuclear Information System (INIS)

    Florence, Gupta; Maud, Corbel

    2013-01-01

    The materials used in research reactors come from the best compromise between research needs and safety issues such as integrity of equipment during their whole life. For example, aluminium alloys such as AG3NET are interesting for research reactors dedicated to the production of neutron flux since they are transparent to neutrons but they become fragile under irradiation. Therefore the evolution of material's mechanical properties under irradiation is a topic of interest for research reactors safety and operators must implement an ageing management program of equipment subject to irradiation. This kind of aluminium alloys compound is used in many French research reactors like the Jules Horowitz reactor (JHR) and ORPHEE reactor operated by the Atomic Energy and Alternative Energies Commission (CEA) or the high flux reactor (HFR) operated by the Laue-Langevin Institute (ILL). Particularly, in the ORPHEE reactor, AG3NET is used for beam tubes, located in the heavy water tank surrounding the core, which guide neutrons towards experimental stations. The failure of a beam tube in ORPHEE reactor can lead to a reactivity insertion in the core, whose effects can be managed by the control rods system. Nevertheless, to control the effects of ageing on such equipment, the operator plans to replace the beam tubes on the basis of a criterion he defined. For the ORPHEE's second periodic safety review, the operator has re-evaluated the situation of the beam tubes with regard of this criterion and has established a beam tube replacement schedule. The 'Institut de Radioprotection et de Surete Nucleaire' (IRSN), as a technical support of the French nuclear safety authority, assessed the elements presented by the CEA for this periodic safety review and concluded that the replacement criterion used for these equipment lead to reach a fragile behaviour of the materials. Thus, the breaking of several beam tubes can't be excluded but this situation can leads to severe consequences on the

  9. Proposal for a new method of reactor neutron flux distribution determination

    Energy Technology Data Exchange (ETDEWEB)

    Popic, V R [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1964-01-15

    A method, based on the measurements of the activity produced in a medium flowing with variable velocity through a reactor, for the determination of the neutron flux distribution inside a reactor is considered theoretically (author)

  10. Neutral-beam-injected tokamak fusion reactors: a review

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1976-08-01

    The theories of energetic-ion velocity distributions, stability, injection, and orbits were summarized. The many-faceted role of the energetic ions in plasma heating, fueling, and current maintenance, as well as in the direct enhancement of fusion power multiplication and power density, is discussed in detail for three reactor types. The relevant implications of recent experimental results on several beam-injected tokamaks are examined. The behavior of energetic ions is found to be in accordance with classical theory, large total ion energy densities are readily achieved, and plasma equilibrium and stability are maintained. The status of neutral-beam injectors and of conceptual design studies of beam-driven reactors are briefly reviewed. The principal plasma-engineering problems are those associated directly with achieving quasi-stationary operation

  11. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    International Nuclear Information System (INIS)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F.C.; Geske, M.; Taha, A.; Pelzer, K.; Schloegl, R.

    2006-01-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N 2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N 2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH 3 · radicals is successfully demonstrated

  12. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    Science.gov (United States)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F. C.; Geske, M.; Taha, A.; Pelzer, K.; Schlögl, R.

    2006-05-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000°C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10ms. A detection time resolution of up to 20ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250°C on a Pt catalyst are presented. The detection of CH3• radicals is successfully demonstrated.

  13. Control Rods in high-Flux Swimming-Pool Reactors; Les Barres de Controle dans les Piles Piscines a Haut Flux; Reguliruyushchie sterzhni dlya reaktorov bassejnovogo tipa s vysokoj plotnost'yu nejtronnogo potoka; Las Barras de Control en los Reactores Tipo Piscina de Flujo Elevado

    Energy Technology Data Exchange (ETDEWEB)

    Ageroni, P.; Blum, P.; Denielou, G.; Denis, P.; Meunier, C. [Centre d' Etudes Nucleaires de Grenoble (France)

    1964-06-15

    Control-rod problems in open swimming-pool high-flux and high specific power research reactors are examined in the light of the calibrations and experiments made during the construction of the SILOE reactor. Control-rod operating experience for this reactor at 13 MW is also described. 2. The following are considered in turn: (a) Reactivity balances and reactivity values for the different types of rod tested (cadmium, B4C , rare earths and combinations of these different elements). (b) Flux peaks set up in the core by the presence of the control rods, their incidence on the specific power, the fast fluxes that can be obtained and means of increasing them. (c ) The technological problems involved in constructing the rods. (d) In-pile cooling, vibration, deformation and scram-time problems. 3. In conclusion, current studies on control rods in open swimming-pool reactors operating in the 10 - 30 1W range are briefly summarized. (author) [French] 1. Les problemes poses par les barres de controle dans les reacteurs de recherche de type piscine ouverte a haute puissance specifique et haut flux sont examines a la lumiere des calculs et des experiences effectues pendant la construction du reacteur SILOE. Les resultats de l'experience de fonctionnement a 13 MW de ce reacteur sont egalement presentes en ce qui concerne les barres de controle. 2. On examine successivement: a) les bilans de reactivite et les valeurs en reactivite des differents types de barres qui ont ete essayes (Cadmium, B 4C , terres rares et combinaisons de ces differents elements). b) Les pics de flux crees dans le coeur par la presence de barres de controle, leur incidence sur la puissance specifique, et les flux rapides que l'on peut obtenir ainsi que les moyens correspondants d'accroitre ces flux. c) Les problemes technologiques poses par la construction des barres. d) Les problemes de refrigeration, de vibration, de deformation, de temps de chute en pile. 3. En conclusion on decrit sommairement les

  14. Thai Research Reactor (TRR-1/M1) Neutron Beam Measurements

    International Nuclear Information System (INIS)

    Ratanatongchai, Wichian

    2009-07-01

    Full text: Neutron beam tube of neutron radiography facility at Thai Research Reactor (TRR-1/M1) Thailand Institute of Nuclear Technology (public organization) is a divergent beam. The rectangular open-end of the beam tube is 16 cm x 17 cm while the inner-end is closed to the reactor core. The neutron beam size was measured using 20 cm x 40 cm neutron imaging plate. The measurement at the position 100 cm from the end of the collimator has shown that the beam size was 18.2 cm x 19.0 cm. Gamma ray in neutron the beam was also measured by the identical position using industrial X ray film. The area of gamma ray was 27.8 cm x 31.1 cm with the highest intensity found to be along the neutron beam circumference

  15. The neutron small-angle camera D11 at the high-flux reactor, Grenoble

    International Nuclear Information System (INIS)

    Ibel, K.

    1976-01-01

    The neutron small-angle scattering system at the high-flux reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small-angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The full length of the collimator before the fixed sample position can be reduced by movable neutron guides; the second flight path of 40 m full length contains detector sites in various positions. Thus a large range of momentum transfers can be used with the same relative resolution. Scattering angles between 5 x 10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered at different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. (Auth.)

  16. Determination of the theoretical feasibility for the transmutation of europium isotopes from high flux isotope reactor control cylinders

    International Nuclear Information System (INIS)

    Elam, K.R.; Reich, W.J.

    1995-09-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is a 100 MWth light-water research reactor designed and built in the 1960s primarily for the production of transuranic isotopes. The HFIR is equipped with two concentric cylindrical blade assemblies, known as control cylinders, that are used to control reactor power. These control cylinders, which become highly radioactive from neutron exposure, are periodically replaced as part of the normal operation of the reactor. The highly radioactive region of the control cylinders is composed of europium oxide in an aluminum matrix. The spent HFIR control cylinders have historically been emplaced in the ORNL Waste Area Grouping (WAG) 6. The control cylinders pose a potential radiological hazard due to the long lived radiotoxic europium isotopes 152 Eu, 154 Eu, and 155 Eu. In a 1991 health evaluation of WAG 6 (ERD 1991) it was shown that these cylinders were a major component of the total radioactivity in WAG 6 and posed a potential exposure hazard to the public in some of the postulated assessment scenarios. These health evaluations, though preliminary and conservative in nature, illustrate the incentive to investigate methods for permanent destruction of the europium radionuclides. When the cost of removing the control cylinders from WAG 6, performing chemical separations and irradiating the material in HFIR are factored in, the option of leaving the control cylinders in place for decay must be considered. Other options, such as construction of an engineered barrier around the disposal silos to reduce the chance of migration, should also be analyzed

  17. Moderator/collimator for a proton/deuteron linac to produce a high-intensity, high-quality thermal neutron beam for neutron radiography

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.; Imel, G.R.; McMichael, G.E.

    1995-01-01

    Reactor based high resolution neutron radiography facilities are able to deliver a well-collimated (L/D ≥100) thermal flux of 10 6 n/cm 2 ·sec to an image plane. This is well in excess of that achievable with the present accelerator based systems such as sealed tube D-T sources, Van der Graaff's, small cyclotrons, or low duty factor linacs. However, continuous wave linacs can accelerate tens of milliamperes of protons to 2.5 to 4 MeV. The MCNP code has been used to analyze target/moderator configurations that could be used with Argonne's Continuous Wave Linac (ACWL). These analyses have shown that ACWL could be modified to generate a neutron beam that has a high intensity and is of high quality

  18. Transport calculation of neutron flux distribution in reflector of PW reactor

    International Nuclear Information System (INIS)

    Remec, I.

    1982-01-01

    Two-dimensional transport calculation of the neutron flux and spectrum in the equatorial plain of PW reactor, using computer program DOT 3, is presented. Results show significant differences between neutron fields in which test samples and reactor vessel are exposed. (author)

  19. Preliminary study of a flux converter for experimental reactor

    International Nuclear Information System (INIS)

    Malouch, M.F.

    1998-01-01

    The purpose of this project is to define the characteristics of a flux converter dedicated to increase the fast neutron flux in irradiation devices placed in the core of Osiris experimental reactor. This preliminary work has dealt with the neutronic and thermal-hydraulic aspects of this problem. The synthesis of the results produced by the codes APOLLO2, DAIXY, MERCURE5.3 and FLICA-3M shows that a cylindrical converter equipped with 5 fissile rings can enhance the fast flux by a 35% factor in an experimental device set in its center. (A.C.)

  20. Equipment for thermal neutron flux measurements in reactor R2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E; Nilsson, T; Claeson, S

    1960-04-15

    For most of the thermal neutron flux measurements in reactor R2 cobalt wires will be used. The loading and removal of these wires from the reactor core will be performed by means of a long aluminium tube and electromagnets. After irradiation the wires will be scanned in a semi-automatic device.

  1. On the possible use of the MASURCA reactor as a flexible, high-intensity, fast neutron beam facility

    Science.gov (United States)

    Dioni, Luca; Jacqmin, Robert; Sumini, Marco; Stout, Brian

    2017-09-01

    In recent work [1, 2], we have shown that the MASURCA research reactor could be used to deliver a fairly-intense continuous fast neutron beam to an experimental room located next to the reactor core. As a consequence of the MASURCA favorable characteristics and diverse material inventories, the neutron beam intensity and spectrum can be further tailored to meet the users' needs, which could be of interest for several applications. Monte Carlo simulations have been performed to characterize in detail the extracted neutron (and photon) beam entering the experimental room. These numerical simulations were done for two different bare cores: A uranium metallic core (˜30% 235U enriched) and a plutonium oxide core (˜25% Pu fraction, ˜78% 239Pu). The results show that the distinctive resonance energy structures of the two core leakage spectra are preserved at the channel exit. As the experimental room is large enough to house a dedicated set of neutron spectrometry instruments, we have investigated several candidate neutron spectrum measurement techniques, which could be implemented to guarantee well-defined, repeatable beam conditions to users. Our investigation also includes considerations regarding the gamma rays in the beams.

  2. Operational characteristics of the high flux plasma generator Magnum-PSI

    Energy Technology Data Exchange (ETDEWEB)

    Eck, H.J.N. van, E-mail: h.j.n.vaneck@differ.nl [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Abrams, T. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Berg, M.A. van den; Brons, S.; Eden, G.G. van [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Meiden, H.J. van der; Morgan, T.W.; Pol, M.J. van de; Scholten, J.; Smeets, P.H.M.; De Temmerman, G.; Vries, P.C. de; Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-10-15

    Highlights: •We have described the design and capabilities of the plasma experiment Magnum-PSI. •The plasma conditions are well suited for PSI studies in support of ITER. •Quasi steady state heat fluxes over 10 MW m{sup −2} have been achieved. •Transient heat and particle loads can be generated to simulate ELM instabilities. •Lithium coating can be applied to the surfaces of samples under vacuum. -- Abstract: In Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It aims at conditions that enable fundamental studies of plasma–surface interactions in the regime relevant for fusion reactors such as ITER: 10{sup 23}–10{sup 25} m{sup −2} s{sup −1} hydrogen plasma flux densities at 1–5 eV. To study the effects of transient heat loads on a plasma-facing surface, a high power pulsed magnetized arc discharge has been developed. Additionally, the target surface can be transiently heated with a pulsed laser system during plasma exposure. In this contribution, the current status, capabilities and performance of Magnum-PSI are presented.

  3. Dosimetry of mixed gamma - neutron fluxes in the active zone of working reactor and gamma-flux after quenching

    International Nuclear Information System (INIS)

    Mussaeva, M.A.; Zinov'ev, V.; Ibragimova, E.M.; Muminov, M.I.

    2006-01-01

    vacancy, varied within 0.57 - 2.8. Besides, pure SiO 2 samples in the Cd - can filled with water were irradiated in the thermal column of operating reactor for 6 hours. Under these conditions the fast neutron flux was estimated as weak as 6·10 10 n/cm 2 s, the fluence was 1.3·10 15 cm -2 . The optical density of band 215 nm was 2.5, while the neutron fluence was ∼30 times less. Thus, the concentration of E ' -centers does not correlate with a neutron fluence. To extract the contribution from gamma-rays into the induced optical absorption in the glass matrix, samples of pure SiO 2 were irradiated by gamma-rays in 4 hours after quenching the reactor at the ionization current of 50 nA during 30 minutes, 12 and 24 hours; next time in 9 hours after the quenching at 40 nA and for 120 hours at 10 nA. In this case the gamma-spectrum did not include 10 MeV line from oxygen due to the short life-time, which prevails in the spectrum of working reactor. Maximal dose of γ-radiation of the quenched reactor was shown to induce the band at 215 nm up to the density of 0.5. When the sample was in contact with water the efficiency of E'-center production was 2 times higher that in dry condition. Thus, the high efficiency of structure defect production in SiO 2 glass owes to the influence of 10 MeV γ-radiation of the working reactor. The work was carried out under the grant F2.1.2 from Center of Science and Technology of Uzbekistan and supported by NATO CBP.EAP.CLG.981765. (author)

  4. Main technical options of the Jules Horowitz reactor project to achieve high flux performances and high safety level

    International Nuclear Information System (INIS)

    Ballagny, A.; Bergamaschi, Y.; Bouilloux, Y.; Bravo, X.; Guigon, B.; Rommens, M.; Tremodeux, P.

    2003-01-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it and will offer a quite larger experimental field. It has the ambition to provide the necessary nuclear data and to maintain a fission research capability in Europe after 2010. The Jules Horowitz Reactor will represent a significant step in terms of performances and experimental capabilities. This paper will present the main design option resulting from the preliminary studies. The choice of the specific power around 600 kW/I for the reference core configuration is a key decision to ensure the required flux level. Consequently many choices have to be made regarding the materials used in the core and the fuel element design. These involve many specific qualifications including codes validation. The main safety options are based on: - A safety approach based upon the defence-in-depth principle. - A strategy of generic approaches to assess experimental risks in the facility. - Internal events analysis taking into account risks linked to reactor and experiments (e.g., radioactive source-term). - Systematic consideration of external hazards (e.g., earthquake, airplane crash) and internal hazards. - Design of containment to manage and mitigate a severe reactor accident (consideration of 'BORAX' accident, according to french safety practice for MTRs, beyond design basis reactivity insertion accident, involving core melting and core destruction phenomena). (authors)

  5. Main technical options of the Jules Horowitz Reactor project to achieve high flux performances and high safety level

    International Nuclear Information System (INIS)

    Ballagny, A.; Bergamaschi, Y.; Bouilloux, Y.; Bravo, X.; Guigon, B.; Rommens, M.; Tremodeux, P.

    2003-01-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it and will offer a quite larger experimental field. It has the ambition to provide the necessary nuclear data and to maintain a fission research capability in Europe after 2010. The Jules Horowitz Reactor will represent a significant step in terms of performances and experimental capabilities. This paper will present the main design option resulting from the preliminary studies. The choice of the specific power around 600 KW/l for the reference core configuration is a key decision to ensure the required flux level. Consequently many choices have to be made regarding the materials used in the core and the fuel element design. These involve many specific qualifications including codes validation. The main safety options are based on: 1) A safety approach based upon the defence-in-depth principle. 2) A strategy of generic approaches to assess experimental risks in the facility. 3) Internal events analysis taking into account risks linked to reactor and experiments (eg., radioactive source-term). 4) Systematic consideration of external hazards (eg., earthquake, airplane crash) and internal hazards. 5) Design of containment to manage and mitigate a severe reactor accident (consideration of 'BORAX' accident, according to french safety practice for MTRs, beyond design basis reactivity insertion accident, involving core melting and core destruction phenomena). (author)

  6. Reference equilibrium core with central flux irradiation facility for Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Israr, M.; Shami, Qamar-ud-din; Pervez, S.

    1997-11-01

    In order to assess various core parameters a reference equilibrium core with Low Enriched Uranium (LEU) fuel for Pakistan Research Reactor (PARR-1) was assembled. Due to increased volume of reference core, the average neutron flux reduced as compared to the first higher power operation. To get a higher neutron flux an irradiation facility was created in centre of the reference equilibrium core where the advantage of the neutron flux peaking was taken. Various low power experiments were performed in order to evaluate control rods worth and neutron flux mapping inside the core. The neutron flux inside the central irradiation facility almost doubled. With this arrangement reactor operation time was cut down from 72 hours to 48 hours for the production of the required specific radioactivity. (author)

  7. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements

    International Nuclear Information System (INIS)

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-01-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. - Highlights: • Neutron flux redistribution due to control rod movement in JSI TRIGA has been studied. • Detector response sensitivity to the control rod position has been minimized. • Optimal radial and axial detector positions have been determined

  8. Seismic strengthening of the ILL High Flux Reactor building

    International Nuclear Information System (INIS)

    Germane, Lionel; Plewinski, Francois; Thiry, Jean-Michel

    2006-01-01

    The Institut Max von Laue - Paul Langevin is an international research organisation and world leader in neutron science and technology. Since 1971 it has been operating the ILL HFR (High-Flux Reactor), the most intense continuous neutron source in the world. The ILL is governed by an international cooperation agreement between France, Germany and the United Kingdom; the fourth ten-year extension to the agreement was signed at the end of 2002, thus ensuring that the Institute will continue to operate until at least the end of 2013. In 2002 the facility underwent a general safety review, including an assessment of the impact of a safe shutdown earthquake. A broader programme for upgrading the installations and improving safety levels is now under way. As this has been treated in another paper, we will focus here on the seismic study carried out on the reactor building. The paper has the following contents: 1. Context; 1.1. Presentation of the ILL; 1.2. Description of the installations; 1.3. Safety objectives in the event of an earthquake; 1.4. Safety functions to be guaranteed in the event of an earthquake; 1.5. Safety functions required of the building; 2. Description of the building; 3. Organisation of the project; 3.1. Background; 3.2. Organisation; 4. General Methodology of the studies; 5. Progress of the studies; 5.1. Definition of the strengthening measures; 5.2. Validation of the strengthening option; 6. Seismic strengthening of the building; 6.1. Description of the strengthening measures; 6.2. Implementation of the strengthening measures; 6.2.1. Pilot operation; 6.2.2. Main operation; 7. Conclusion. To summarize, the presence of specialists in the ILL team, and the fact that the initial studies were performed by the project team itself, improved our general understanding of the issues and facilitated dialogue and exchange between all those involved (operators, technicians, outside experts, technical contractors and the French safety authorities). Everyone was

  9. Optimizing a three-element core design for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    West, C.D.

    1995-01-01

    Source of neutrons in the proposed Advanced Neutron Source facility is a multipurpose research reactor providing 5-10 times the flux, for neutron beams, of the best existing facilities. Baseline design for the reactor core, based on the ''no new inventions'' rule, was an assembly of two annular fuel elements similar to those used in the Oak Ridge and Grenoble high flux reactors, containing highly enriched U silicide particles. DOE commissioned a study of the use of medium- or low-enriched U; a three-element core design was studied as a means to provide extra volume to accommodate the additional U compound required when the fissionable 235 U has to be diluted with 238 U to reduce the enrichment. This paper describes the design and optimization of that three-element core

  10. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  11. Flux measurement in ZBR at the TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Dauke, M.

    2005-01-01

    The determination of the neutron flux in the TRIGA-2-Vienna reactor was the objective of this research. The theory of the method (4π-β detectors) is presented as well as the determination of the maximum flux, gold-cadmium differential measurement, cobalt-wire measurement, finally a comparison of all results was made and interpreted. (nevyjel)

  12. An optimization study of peak thermal neutron flux in moderators of advanced repetitive pulse reactors

    International Nuclear Information System (INIS)

    Asaoka, Takumi; Watanabe, N.

    1976-01-01

    In achieving a high peak thermal neutron flux in hydrogenous moderators installed in repetitive pulse reactors, the core-moderator arrangement can play as much an important role as the moderator design itself. However, the effect of the former has not been adequately emphasized to date, while a rather extensive study has been made on the latter. The present study concerns with a core-moderator system parameter optimization for a repetitive accelerator pulsed fast reactor. The results have shown that small differences in the arrangement resulting from the optimizations of various parameters are significant and the effects can be summed up to give an increase in the peak thermal flux by a factor of about two. (auth.)

  13. Analysis of JKT01 Neutron Flux Detector Measurements In RSG-GAS Reactor Using LabVIEW

    Science.gov (United States)

    Rokhmadi; Nur Rachman, Agus; Sujarwono; Taryo, Taswanda; Sunaryo, Geni Rina

    2018-02-01

    The RSG-GAS Reactor, one of the Indonesia research reactors and located in Serpong, is owned by the National Nuclear Energy Agency (BATAN). The RSG-GAS reactor has operated since 1987 and some instrumentation and control systems are considered to be degraded and ageing. It is therefore, necessary to evaluate the safety of all instrumentation and controls and one of the component systems to be evaluated is the performance of JKT01 neutron flux detector. Neutron Flux Detector JKT01 basically detects neutron fluxes in the reactor core and converts it into electrical signals. The electrical signal is then forwarded to the amplifier (Amplifier) to become the input of the reactor protection system. One output of it is transferred to the Main Control Room (RKU) showing on the analog meter as an indicator used by the reactor operator. To simulate all of this matter, a program to simulate the output of the JKT01 Neutron Flux Detector using LabVIEW was developed. The simulated data is estimated using a lot of equations also formulated in LabVIEW. The calculation results are also displayed on the interface using LabVIEW available in the PC. By using this simulation program, it is successful to perform anomaly detection experiments on the JKT01 detector of RSG-GAS Reactor. The simulation results showed that the anomaly JKT01 neutron flux using electrical-current-base are respectively, 1.5×,1.7× and 2.0×.

  14. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Adam R [ORNL

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  15. Environmental effects on the response of self-powered flux detectors in CANDU reactors

    International Nuclear Information System (INIS)

    Lynch, G.F.; Shields, R.B.; Joslin, C.W.

    1976-01-01

    Self-powered flux detectors are playing an increasingly important role in the control and safety systems of CANDU-type reactors. In this paper we report on recent experiments to determine how local reactor conditions affect the output signals from self-powered detectors with vanadium, platinum and cobalt emitters. The results are interpreted in terms of variations in the local neutron, γ-ray and electron fluxes. (author)

  16. Intermediate-energy neutron beam for NCT at MURR

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    The University of Missouri Research Reactor (MURR) is one of the high-flux reactors in the USA and it can be used to produce an intense beam of intermediate-energy neutrons for neutron capture therapy. Two methods are being evaluated at MURR to produce such a beam. The first uses a moderator of Al 2 O 3 replacing part of the graphite and water on one side of the core of the reactor to produce a source of predominantly intermediate-energy neutrons. The second method is a filter of 238 U between the core and the patient position to pass only intermediate-energy neutrons. The results of these evaluations are presented in this paper along with an outline of the other resources at the University of Missouri-Columbia that are available to support an NCT program. 4 references, 7 figures, 1 table

  17. Probability of fracture and life extension estimate of the high-flux isotope reactor vessel

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in ductile-brittle transition temperature (DBTT) for fracture, often denoted by RT NDT for carbon steel. This transition temperature can be calibrated by the drop-weight test and, sometimes, by the Charpy impact test. The life extension for the high-flux isotope reactor (HFIR) vessel is calculated by using the method of fracture mechanics that is incorporated with the effect of the DBTT change. The failure probability of the HFIR vessel is limited as the life of the vessel by the reactor core melt probability of 10 -4 . The operating safety of the reactor is ensured by periodic hydrostatic pressure test (hydrotest). The hydrotest is performed in order to determine a safe vessel static pressure. The fracture probability as a result of the hydrostatic pressure test is calculated and is used to determine the life of the vessel. Failure to perform hydrotest imposes the limit on the life of the vessel. The conventional method of fracture probability calculations such as that used by the NRC-sponsored PRAISE CODE and the FAVOR CODE developed in this Laboratory are based on the Monte Carlo simulation. Heavy computations are required. An alternative method of fracture probability calculation by direct probability integration is developed in this paper. The present approach offers simple and expedient ways to obtain numerical results without losing any generality. In this paper, numerical results on (1) the probability of vessel fracture, (2) the hydrotest time interval, and (3) the hydrotest pressure as a result of the DBTT increase are obtained

  18. Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements

    International Nuclear Information System (INIS)

    2014-07-01

    The recent advances in the development of nuclear science and technology, demonstrating the globally growing economy, require highly accurate, powerful simulations and precise analysis of the experimental results. Confidence in these results is still determined by the accuracy of the atomic and nuclear input data. For studying material response, neutron beams produced from accelerators and research reactors in broad energy spectra are reliable and indispensable tools to obtain high accuracy experimental results for neutron induced reactions. The IAEA supports the accomplishment of high precision nuclear data using nuclear facilities in particular, based on particle accelerators and research reactors around the world. Such data are essential for numerous applications in various industries and research institutions, including the safety and economical operation of nuclear power plants, future fusion reactors, nuclear medicine and non-destructive testing technologies. The IAEA organized and coordinated the technical meeting Use of Neutron Beams for High Precision Nuclear Data Measurements, in Budapest, Hungary, 10–14 December 2012. The meeting was attended by participants from 25 Member States and three international organizations — the European Organization for Nuclear Research (CERN), the Joint Research Centre (JRC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (OECD/NEA). The objectives of the meeting were to provide a forum to exchange existing know-how and to share the practical experiences of neutron beam facilities and associated instrumentation, with regard to the measurement of high precision nuclear data using both accelerators and research reactors. Furthermore, the present status and future developments of worldwide accelerator and research reactor based neutron beam facilities were discussed. This publication is a summary of the technical meeting and additional materials supplied by the international

  19. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  20. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, R.T. III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N.

    2006-01-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U 3 O 8 mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties

  1. Closed Loop In-Reactor Assembly (CLIRA): a fast flux test facility test vehicle

    International Nuclear Information System (INIS)

    Oakley, D.J.

    1978-01-01

    The Closed Loop In-Reactor Assembly (CLIRA) is a test vehicle for in-core material and fuel experiments in the Fast Flux Test Facility (FFTF). The FFTF is a fast flux nuclear test reactor operated for the Department of Energy (DOE) by Westinghouse Hanford Company in Richland, Washington. The CLIRA is a removable/replaceable part of the Closed Loop System (CLS) which is a sodium coolant system providing flow and temperature control independent of the reactor coolant system. The primary purpose of the CLIRA is to provide a test vehicle which will permit testing of nuclear fuels and materials at conditions more severe than exist in the FTR core, and to isolate these materials from the reactor core

  2. High flux polarized neutrons triple-axis spectrometer: 2T (LLB-Saclay)

    International Nuclear Information System (INIS)

    Bourges, Ph.; Hennion, B.; Sidis, Y.; Boutrouille, Ph.; Baroni, P.

    1999-01-01

    A description of the performance of the newly designed thermal beam triple-axis spectrometer, 2T at LLB (Saclay) is given. The beam tube will be increased to 50 x 120 mm 2 (HxV) before the monochromator. A gain of about a factor 2 on the neutron flux at the monitor position is expected after this operation, scheduled on April/May 1999. Polarized neutrons beam option will be installed on this triple axis. The polarization is obtained using high quality heusler crystals recently grown at ILL. The size of both heusler monochromator and analyzer have been chosen to fully cover the beam size. The monochromator (analyzer) will be equipped with a vertical (horizontal) curvature. The flux of the polarized beam on the detector is then expected to be 5 times better than IN20 at ILL (best existing polarized neutrons triple-axis on thermal beam) with incident energy upto 75 MeV. (author)

  3. Large area negative ion source for high voltage neutral beams

    International Nuclear Information System (INIS)

    Poulsen, P.; Hooper, E.B. Jr.

    1979-11-01

    A source of negative deuterium ions in the multi-ampere range is described that is readily extrapolated to reactor size, 10 amp or more of neutral beam, that is of interest in future experiments and reactors. The negative ion source is based upon the double charge exchange process. A beam of positive ions is created and accelerated to an energy at which the attachment process D + M → D - + M + proceeds efficiently. The positive ions are atomically neutralized either in D 2 or in the charge exchange medium M. Atomic species make a second charge exchange collision in the charge target to form D - . For a sufficiently thick target, the beam reaches an equilibrium fraction of negative ions. For reasons of efficiency, the target is typically alkali metal vapor; this experiment uses sodium. The beam of negative ions can be accelerated to high (>200 keV) energy, the electrons stripped from the ions, and a high energy neutral beam formed

  4. Preliminary Accident Analyses for Conversion of the Massachusetts Institute of Technology Reactor (MITR) from Highly Enriched to Low Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, Arne P. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, Erik H. [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Kaichao S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newton, Jr., Thomas H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. This report presents the preliminary accident analyses for MITR cores fueled with LEU monolithic U-Mo alloy fuel with 10 wt% Mo. Preliminary results demonstrate adequate performance, including thermal margin to expected safety limits, for the LEU accident scenarios analyzed.

  5. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  6. Determination of the neutron energy and spatial distributions of the neutron beam from the TSR-II in the large beam shield

    International Nuclear Information System (INIS)

    Clifford, C.E.; Muckenthaler, F.J.

    1976-01-01

    The TSR-II reactor of the ORNL Tower Shielding Facility has recently been relocated within a new, fixed shield. A principal feature of the new shield is a beam port of considerably larger area than that of its predecessor. The usable neutron flux has thereby been increased by a factor of approximately 200. The bare beam neutron spectrum behind the new shield has been experimentally determined over the energy range from 0.8 to 16 MeV. A high level of fission product gamma ray background prevented measurement of bare beam spectra below 0.8 MeV, however neutron spectra in the energy range from 8 keV to 1.4 MeV were obtained for two simple, calculable shielding configurations. Also measured in the present work were weighted integral flux distributions and fast neutron dose rates

  7. Behaviour of aged and new flux detectors in Darlington reactors

    Energy Technology Data Exchange (ETDEWEB)

    Banica, C.; Foster, M., E-mail: Constantin.Banica@OPG.com [Ontario Power Generation, Darlington Nuclear, Bowmanville, Ontario (Canada)

    2013-07-01

    In-core neutron flux detectors are used for protective and safety functions in the Darlington NGS 'A' CANDU reactors. This paper presents new observations regarding the aging of flux detectors, including response to fuelling, response to unit shutdown and indicators of detector noise. Comparisons of detector signals before and after replacement confirm previous assumptions about aging effects. (author)

  8. Comparison between different flux traps assembled in the core of the nuclear reactor IPEN/MB-01 by measuring of the thermal and epithermal neutron fluxes using activation foils

    International Nuclear Information System (INIS)

    Mura, Luiz Ernesto Credidio; Bitelli, Ulysses d'Utra; Mura, Luis Felipe Liambos; Carluccio, Thiago; Andrade, Graciete Simoes de

    2011-01-01

    The production of radioisotopes is one of the most important applications of nuclear research reactors. This study investigated a method called Flux Trap, which is used to increase the yield of production of radioisotopes in nuclear reactors. The method consists in the rearrangement of the fuel rods to allow the increase of the thermal neutron flux in the irradiation region inside the reactor core, without changing the standard reactor power level. Various configurations were assembled with the objective of finding the configuration with the highest thermal neutron flux in the region of irradiation. The method of activation analysis was used to measure the thermal neutron flux and determine the most efficient reactor core configuration . It was found that there was an increase in the thermal neutron flux of 337% in the most efficient configuration, which demonstrates the effectiveness of the method. (author)

  9. Heat flux to the limiter during disruptions and neutral beam injection in Doublet-III

    International Nuclear Information System (INIS)

    Hino, T.; DeGrassie, J.; Taylor, T.S.; Hopkins, G.; Meyer, C.; Petrie, T.W.; Kahn, C.L.; Ejima, S.

    1984-01-01

    The heat flux to the Doublet-III primary limiter has been monitored during plasma disruptions and during neutral beam injection. The surface temperature of the movable TiC-coated graphite limiter was measured with an Inframetrics thermal imaging system and a suitably filtered silicon photodiode spot detector. In addition, the floating electric potential of the limiter with respect to the vacuum vessel was measured. The heat pulse duration to the limiter was measured by the spot detector with a time response of x approx.= 10 μs and these times were correlated with the plasma parameters. In limiter discharges, 20% of the plasma kinetic stored energy goes to the limiter during disruptions. The power balance during disruptions is also discussed. During neutral beam injection, the limiter is not heated uniformly; the ion drift side receives much more thermal flux than the electron drift side. The fraction of beam power going to the limiter is as high as approx.= 35% in normal limiter discharges. (orig.)

  10. Analyses of divertor high heat-flux components on thermal and electromagnetic loads

    Energy Technology Data Exchange (ETDEWEB)

    Araki, M.; Kitamura, K.; Suzuki, S. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Urata, K. [Mitsubishi Geavy Industries Ltd., 2-5-1, Marunouchi,Chiyoda-ku, Tokyo 100 (Japan)

    1998-09-01

    In the International Thermonuclear Experimental Reactor (ITER), the divertor high heat-flux components are subjected not to only severe heat and particle loads, but also to large electromagnetic loads during reactor operation. A great deal of R and D has been carried out throughout the world with regard to the design of robust high heat-flux components. Based on R and D results, small and intermediate size mock-ups constructed from various armor tile materials have been successfully developed with respect to a thermomechanical point of view. However, little analysis has been carried out with regard to the elastic stresses induced with in the high heat-flux components via the electromagnetic loads during a plasma disruption. Furthermore, past research has only considered thermomechanical and electromagnetic loadings separately and uncoupled. Therefore, a systematic analysis of the combined effects of thermomechanical and electromagnetic loadings has been performed, with the analytical results assessed by ASME section 3 evaluation code. (orig.) 20 refs.

  11. Analyses of divertor high heat-flux components on thermal and electromagnetic loads

    International Nuclear Information System (INIS)

    Araki, M.; Kitamura, K.; Suzuki, S.

    1998-01-01

    In the International Thermonuclear Experimental Reactor (ITER), the divertor high heat-flux components are subjected not to only severe heat and particle loads, but also to large electromagnetic loads during reactor operation. A great deal of R and D has been carried out throughout the world with regard to the design of robust high heat-flux components. Based on R and D results, small and intermediate size mock-ups constructed from various armor tile materials have been successfully developed with respect to a thermomechanical point of view. However, little analysis has been carried out with regard to the elastic stresses induced with in the high heat-flux components via the electromagnetic loads during a plasma disruption. Furthermore, past research has only considered thermomechanical and electromagnetic loadings separately and uncoupled. Therefore, a systematic analysis of the combined effects of thermomechanical and electromagnetic loadings has been performed, with the analytical results assessed by ASME section 3 evaluation code. (orig.)

  12. Bayesian statistics applied to neutron activation data for reactor flux spectrum analysis

    International Nuclear Information System (INIS)

    Chiesa, Davide; Previtali, Ezio; Sisti, Monica

    2014-01-01

    Highlights: • Bayesian statistics to analyze the neutron flux spectrum from activation data. • Rigorous statistical approach for accurate evaluation of the neutron flux groups. • Cross section and activation data uncertainties included for the problem solution. • Flexible methodology applied to analyze different nuclear reactor flux spectra. • The results are in good agreement with the MCNP simulations of neutron fluxes. - Abstract: In this paper, we present a statistical method, based on Bayesian statistics, to analyze the neutron flux spectrum from the activation data of different isotopes. The experimental data were acquired during a neutron activation experiment performed at the TRIGA Mark II reactor of Pavia University (Italy) in four irradiation positions characterized by different neutron spectra. In order to evaluate the neutron flux spectrum, subdivided in energy groups, a system of linear equations, containing the group effective cross sections and the activation rate data, has to be solved. However, since the system’s coefficients are experimental data affected by uncertainties, a rigorous statistical approach is fundamental for an accurate evaluation of the neutron flux groups. For this purpose, we applied the Bayesian statistical analysis, that allows to include the uncertainties of the coefficients and the a priori information about the neutron flux. A program for the analysis of Bayesian hierarchical models, based on Markov Chain Monte Carlo (MCMC) simulations, was used to define the problem statistical model and solve it. The first analysis involved the determination of the thermal, resonance-intermediate and fast flux components and the dependence of the results on the Prior distribution choice was investigated to confirm the reliability of the Bayesian analysis. After that, the main resonances of the activation cross sections were analyzed to implement multi-group models with finer energy subdivisions that would allow to determine the

  13. Critical heat flux correlation analysis for PWR reactors with low mass flow

    International Nuclear Information System (INIS)

    Carajilescov, Pedro

    1996-01-01

    The major limit in the thermalhydraulic design of water cooled reactors consists in the occurrence of critical heat flux, which is verified by correlation of large range of validity. In the present work, the major design correlations were analyzed, through comparisons with experimental data, for utilization in PWR with low mass flux in the core. The results show that the EPRI correlation, with modifications, gives conservative results, from the safety point of view, with lower data spreading, being the most indicated for the reactor thermal design. (author)

  14. High-energy pion beams: Problems and prospects

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1992-01-01

    The investigation of relatively unexplored research areas with high energy pion beams requires new facilities. Presently existing meson factories such as LAMPF, TRIUMF and PSI provide insufficient pion fluxes above the 3,3 resonance region for access to topics such as strangeness production with the (π, K) reaction, baryon resonances, rare meson decays, and nuclear studies with penetrating pion beams. The problems and prospects of useful beams for these studies will be reviewed, both for existing facilities such as the AGS and KEK, and for possible future facilities like KAON and PILAC

  15. Neutron flux measurement and thermal power calibration of the IAN-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sarta Fuentes, Jose A.; Castiblanco Bohorquez, Luis A

    2008-10-29

    The IAN-R1 TRIGA reactor in Colombia was initially fueled with MTR-HEU enriched to 93% U-235, operated since 1965 at 10 kW, and was upgraded to 30 kW in 1980. General Atomics achieved in 1997 the conversion of HEU fuel to LEU fuel TRIGA type, and upgraded the reactor power to 100 kW. Since the IAN-R1 TRIGA reactor was in an extended shutdown during seven years, it was necessary to repeat some results of the commissioning test conducted in 1997. The thermal power calibration was carried out using the calorimetric method. The reactor was operated approximately at 20 kW during 3.5 hours, with manual power corrections since the automatic control system failed and with the forced refrigeration off. During the calorimetric experiment, the pool temperature was measured with a RTD which is installed near to the core. The dates were collected in intervals of 30 minutes. For establishing thermal power reactor, the water temperature versus the running were registered. For a calculated tank volume of 16 m{sup 3}, the tank constant calculated for the IAN-R1 TRIGA reactor is 0.0539 C/kW-hr. The reactor power determined was 19 kW. The core configuration is a rectangular grid plate that holds a combination of 4-rod and 3-rod clusters. The core contains 50 fuel rods with LEU fuel TRIGA (UZr H1.6) type enriched to 19.7%. The radial reflector consists of twenty graphite elements six of which are used for isotope production. The top an bottom reflectors are the cylindrical graphite end reflectors which are installed above and below of the active fuel section in each fuel rod. The spatial dependence of thermal neutron flux was measured axially in the 3-rod clusters 4C, 3D, 5E and in the 4F graphite element. The spatial distribution of the thermal neutron was determined using a self-powered detector and the absolute value of thermal neutron flux was determined by a gold activation detector. The (n, b- ) reaction is applied to determine the relative spatial distribution of thermal

  16. The high-energy dual-beam facility

    International Nuclear Information System (INIS)

    Kaletta, D.

    1984-07-01

    This proposal presents a new experimental facility at the Kernforschungszentrum Karlsruhe (KfK) to study the effects of irradiation on the first wall and blanket materials of a fusion reactor. A special effort is made to demonstrate the advantages of the Dual Beam Technique (DBT) as a future research tool for materials development within the European Fusion Technology Programme. The Dual-Beam-Technique allows the production both of helium and of damage in thick metal and ceramic specimens by simultaneous irradiation with high energy alpha particles and protons produced by the two KfK cyclotrons. The proposal describes the Dual Beam Technique the planned experimental activities and the design features of the Dual Beam Facility presently under construction. (orig.) [de

  17. A parametric study on characteristics for nuclear design of high-performance research reactor

    International Nuclear Information System (INIS)

    Joe, D. G.; Lee, C. S.; Lee, B. C.; Seo, C. G.; Chae, H. T.; Park, C.

    2003-01-01

    A conceptual design of advanced research reactor with high neutron performance has been performed at KAERI based on design and operation experience obtained from HANARO. In this study, nuclear characteristics of design parameters such as various types of fuel assemblies, structural materials of core and fuel assembly, and the number of absorber rods were analyzed. Among rod, plate and tube type fuel assemblies considered, tube type assembly seems to be preferable as a high performance research reactor fuel because of high thermal margin and neutron flux in reflector. Aluminium block as a structural material of core was shown to be superior to flow tube due to higher reactivity and thermal flux in reflector. The stiffener to fix plates in th fuel assembly had the no impact on fast flux in central trap. The reduction of thermal flux in reflector caused by the stiffener was about 7%. If the control absorber rods of 4 mm thickness were chosen, it would be possible to operate the reactor with fresh fuel assemblies from the initial core

  18. Triga IPR-R1 neutron beam: increasing the thematic of applications in CDTN

    International Nuclear Information System (INIS)

    Sebastiao, Rita de C.O.; Rodrigues, Rogerio R.; Leal, Alexandre S.

    2007-01-01

    The neutron flux in a research reactor can be used in several applications such as the neutron activation analysis, the radioisotopes production, study of DNA and protein structures, doping of silicon and neutron radiography. The enhancement of the nuclear research reactor utilization with the introduction of new applications would be possible with the availability of a neutron beam and with the neutron energy spectra completely characterized. This work evaluates the use of TRIGA reactor of CDTN/CNEN as a source of neutron beam. The readiness of a neutron beam with appropriate intensity and energy spectrum would make possible the increasing of the thematic of applications and researches in this reactor. The main contribution to this theme is to evaluate the thermal and epithermal neutron flux in the vertical extractor of the TRIGA IPR-R1. The simulation was performed in this work using the MCNP code. (author)

  19. Department of Energy's High Flux Beam Reactor (HFBR), September 15--19, 1980: An independent on-site safety review

    International Nuclear Information System (INIS)

    1981-02-01

    The intent of this on-site safety review was to make a broad management assessment of HFBR operations, rather than conduct a detailed in-depth audit. The result of the review should only be considered as having identified trends or indications. The Team's observations and recommendations for the most part are based upon licensed reactor facility practices used to meet industry standards. These standards form the basis for many of the comments in this report. The Team believes that a uniform minimum standard of performance should be achieved in the operation of DOE reactors. In order to assure that this is accomplished, clear standards are necessary. Consistent with the past AEC and ERDA policy, the team has used the standards of the commercial nuclear power industry. It is recognized that this approach is conservative in that the HFBR reactor has a significantly greater degree of inherent safety (low pressure, temperature, power, etc.) than a licensed reactor

  20. Probabilistic fracture mechanics analysis for the life extension estimate of the high flux isotope reactor vessel

    International Nuclear Information System (INIS)

    Chang, S.J.

    1997-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A new method of fracture probability calculation is presented in this paper. The fracture probability as a result of the hydrostatic pressure test (hydrotest) is used to determine the life of the vessel. The hydrotest is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the safe reactor operation time from the time of the satisfactory hydrostatic test. The life extension calculation provides the following information on the remaining life of the reactor as a function of the NDT increase: (1) the life of the vessel is determined by the probability of vessel fracture as a result of hydrotest at several hydrotest pressures and vessel embrittlement conditions, (2) the hydrotest time interval vs the NDT increase rate, and (3) the hydrotest pressure vs the NDT increase rate. It is understood that the use of a complete range of uncertainties of the NDT increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 degrees F

  1. The CEA research reactors

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    1993-01-01

    Two main research reactors, specifically designed, PEGASE reactor and Laue-Langevin high flux reactor, are presented. The PEGASE reactor was designed at the end of the 50s for the study of the gas cooled reactor fuel element behaviour under irradiation; the HFR reactor, was designed in the late 60s to serve as a high yield and high level neutron source. Historical backgrounds, core and fuel characteristics and design, flux characteristics, etc., are presented. 5 figs

  2. Conceptual Design of a Clinical BNCT Beam in an Adjacent Dry Cell of the Jozef Stefan Institute TRIGA Reactor

    International Nuclear Information System (INIS)

    Maucec, Marko

    2000-01-01

    The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation point, the efficiency of a fission plate with almost 1.5 kg of 20% enriched uranium and 2.3 kW of thermal power is investigated. With the same purpose in mind, the TRIGA reactor core setup is optimized, and standard fresh fuel elements are concentrated partly in the outermost ring of the core. Further, a detailed parametric study of the materials and dimensions for all the relevant parts of the irradiation facility is carried out. Some of the standard epithermal neutron filter/moderator materials, as well as 'pressed-only' low-density Al 2 O 3 and AlF 3 , are considered. The proposed version of the BNCT facility, with PbF 2 as the epithermal neutron filter/moderator, provides an epithermal neutron flux of ∼1.1 x 10 9 n/cm 2 .s, thus enabling patient irradiation times of nfast /φ epi -13 Gy.cm 2 /n and [overdot]D γ /φ epi -13 Gy.cm 2 /n), the in-air performances of the proposed beam are comparable to all existing epithermal BNCT facilities. The design presents an equally efficient alternative to the BNCT beams in TRIGA reactor thermal columns that are more commonly applied. The cavity of the dry cell, a former JSI TRIGA reactor spent-fuel storage facility, adjacent to the thermalizing column, could rather easily be rearranged into a suitable patient treatment room, which would substantially decrease the overall developmental costs

  3. A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 1

    International Nuclear Information System (INIS)

    1998-01-01

    The Department of Industry, Science and Tourism selected PLG, an EQE International Company, to systematically and independently evaluate the safety of the High Flux Australian Reactor (HIFAR), located at Lucas Heights, New South Wales. PLG performed a comprehensive probabilistic safety assessment (PSA) to quantify the risks posed by operation of HIFAR . The PSA identified possible accident scenarios, estimated their likelihood of occurrence, and assigned each scenario to a consequence category; i.e., end state. The accident scenarios developed included the possible release of radioactive material from irradiated nuclear fuel and of tritium releases from reactor coolant. The study team developed a recommended set of safety criteria against which the results of the PSA may be judged. HIFAR was found to exceed one of the two primary safety objectives and two of the five secondary safety objectives. Reactor coolant leaks, earthquakes, and coolant pump trips were the accident initiators that contributed most to scenarios that could result in fuel overheating. Scenarios initiated by earthquakes were the reason the frequency criterion for the one primary safety objective was exceeded. Overall, the plant safety status has been shown to be generally good with no evidence of major safety-related problems from its operation. One design deficiency associated with the emergency core cooling system was identified that should be corrected as soon as possible. Additionally, several analytical issues have been identified that should be investigated further. The results from these additional investigations should be used to determine whether additional plant and procedural changes are required, or if further evaluations of postulated severe accidents are warranted. Supporting information can be found in Appendix A for the seismic analysis and in the Appendix B for selected other external events

  4. A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Department of Industry, Science and Tourism selected PLG, an EQE International Company, to systematically and independently evaluate the safety of the High Flux Australian Reactor (HIFAR), located at Lucas Heights, New South Wales. PLG performed a comprehensive probabilistic safety assessment (PSA) to quantify the risks posed by operation of HIFAR . The PSA identified possible accident scenarios, estimated their likelihood of occurrence, and assigned each scenario to a consequence category; i.e., end state. The accident scenarios developed included the possible release of radioactive material from irradiated nuclear fuel and of tritium releases from reactor coolant. The study team developed a recommended set of safety criteria against which the results of the PSA may be judged. HIFAR was found to exceed one of the two primary safety objectives and two of the five secondary safety objectives. Reactor coolant leaks, earthquakes, and coolant pump trips were the accident initiators that contributed most to scenarios that could result in fuel overheating. Scenarios initiated by earthquakes were the reason the frequency criterion for the one primary safety objective was exceeded. Overall, the plant safety status has been shown to be generally good with no evidence of major safety-related problems from its operation. One design deficiency associated with the emergency core cooling system was identified that should be corrected as soon as possible. Additionally, several analytical issues have been identified that should be investigated further. The results from these additional investigations should be used to determine whether additional plant and procedural changes are required, or if further evaluations of postulated severe accidents are warranted. Supporting information can be found in Appendix A for the seismic analysis and in the Appendix B for selected other external events refs., 139 tabs., 85 figs. Prepared for Department of Industry, Science and Tourism

  5. Transient neutrons flux behaviour in a spherical reactor core

    International Nuclear Information System (INIS)

    Souza, A.W.A. de.

    1978-11-01

    This work studies the transient neutron flux in a fast reactor of spherical geometry. The burning of U 235 nuclei is equated and two kinds of reflector were studied. The numeric solutions are then compared with the results for those reflectors. (author) [pt

  6. Role of plasma enhanced atomic layer deposition reactor wall conditions on radical and ion substrate fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Mark J., E-mail: msowa@ultratech.com [Ultratech/Cambridge NanoTech, 130 Turner Street, Building 2, Waltham, Massachusetts 02453 (United States)

    2014-01-15

    Chamber wall conditions, such as wall temperature and film deposits, have long been known to influence plasma source performance on thin film processing equipment. Plasma physical characteristics depend on conductive/insulating properties of chamber walls. Radical fluxes depend on plasma characteristics as well as wall recombination rates, which can be wall material and temperature dependent. Variations in substrate delivery of plasma generated species (radicals, ions, etc.) impact the resulting etch or deposition process resulting in process drift. Plasma enhanced atomic layer deposition is known to depend strongly on substrate radical flux, but film properties can be influenced by other plasma generated phenomena, such as ion bombardment. In this paper, the chamber wall conditions on a plasma enhanced atomic layer deposition process are investigated. The downstream oxygen radical and ion fluxes from an inductively coupled plasma source are indirectly monitored in temperature controlled (25–190 °C) stainless steel and quartz reactors over a range of oxygen flow rates. Etch rates of a photoresist coated quartz crystal microbalance are used to study the oxygen radical flux dependence on reactor characteristics. Plasma density estimates from Langmuir probe ion saturation current measurements are used to study the ion flux dependence on reactor characteristics. Reactor temperature was not found to impact radical and ion fluxes substantially. Radical and ion fluxes were higher for quartz walls compared to stainless steel walls over all oxygen flow rates considered. The radical flux to ion flux ratio is likely to be a critical parameter for the deposition of consistent film properties. Reactor wall material, gas flow rate/pressure, and distance from the plasma source all impact the radical to ion flux ratio. These results indicate maintaining chamber wall conditions will be important for delivering consistent results from plasma enhanced atomic layer deposition

  7. High power beam dump project for the accelerator prototype LIPAc: cooling design and analysis

    International Nuclear Information System (INIS)

    Parro Albeniz, M.

    2015-01-01

    In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with

  8. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  9. Numerical model for swirl flow cooling in high-heat-flux particle beam targets and the design of a swirl-flow-based plasma limiter

    International Nuclear Information System (INIS)

    Milora, S.L.; Combs, S.K.; Foster, C.A.

    1984-11-01

    An unsteady, two-dimensional heat conduction code has been used to study the performance of swirl-flow-based neutral particle beam targets. The model includes the effects of two-phase heat transfer and asymmetric heating of tubular elements. The calorimeter installed in the Medium Energy Test Facility, which has been subjected to 30-s neutral beam pulses with incident heat flux intensities of greater than or equal to 5 kW/cm 2 , has been modeled. The numerical results indicate that local heat fluxes in excess of 7 kW/cm 2 occur at the water-cooled surface on the side exposed to the beam. This exceeds critical heat flux limits for uniformly heated tubes wih straight flow by approximately a factor of 5. The design of a plasma limiter based on swirl flow heat transfer is presented

  10. The development of maple technology for materials testing, isotope production, and neutron-beam applications

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Gillespie, G.E.; Lee, A.G.; Bishop, W.E.

    1996-01-01

    AECL has been developing MAPLE technology to meet Canadian and international requirements for high-performance research reactors. MAPLE refers to a family of open-tank-in-pool reactors that employ compact H 2 O-cooled cores within D 2 O vessels to efficiently furnish neutrons to various types of irradiation facilities. The initial focus was on a 10-MW t Canadian facility for radioisotope production, the HANARO multipurpose-reactor project, and an associated R and D program. Recently, AECL began to develop the concept for a new Canadian Irradiation Research Facility (IRF) which will support the continued evolution of CANDU (CANadian Deuterium Uranium) technology and generate neutrons for basic and applied materials science. Additionally, AECL is currently developing a standardized MAPLE research-centre design with integrated neutron-application facilities; various reactor-core options have been optimized for different combinations of utilization: a 19-site core for neutron-beam applications and ancillary isotope production, a 31-site core for multipurpose materials testing and neutron-beam applications, and twin 18-site cores for high-flux neutron-beam applications. (author)

  11. Flux distribution measurements in the Bruce A unit 1 reactor

    International Nuclear Information System (INIS)

    Okazaki, A.; Kettner, D.A.; Mohindra, V.K.

    1977-07-01

    Flux distribution measurements were made by copper wire activation during low power commissioning of the unit 1 reactor of the Bruce A generating station. The distribution was measured along one diameter near the axial and horizontal midplanes of the reactor core. The activity distribution along the copper wire was measured by wire scanners with NaI detectors. The experiments were made for five configurations of reactivity control mechanisms. (author)

  12. Design of filtered epithermal neutron beams for BNC

    International Nuclear Information System (INIS)

    Greenwood, R.C.

    1986-01-01

    The design principles of filters (installed in nuclear reactors) to provide epithermal neutron beams suitable for use in 10 B Neutron Capture Therapy (BNCT) are reviewed. The goal of such filters is to provide epithermal neutron beams within an energy range of 1 keV to 30 keV with fluxes in excess of 5 x 10 8 neutrons/cm 2 .s, and having acceptably low contaminant fast neutron (> 30 keV) and gamma components. Filters considered for this application include 238 U, Sc, Fe/Al and Al/S. It is shown that in order to achieve a goal epithermal neutron flux of > 5 x 10 8 neutrons/cm 2 .s, such filters must be located in radial beam channels which view essentially the complete reactor core. Based on considerations of estimated epithermal fluxes, cost and availability of materials, and transmitted neutron energy spectrum, it is suggested that a filter consisting of elements of Al, S, Ti and V might prove to be an optimum design for BNCT applications. 13 references, 3 figures, 8 tables

  13. Quantitative high dynamic range beam profiling for fluorescence microscopy

    International Nuclear Information System (INIS)

    Mitchell, T. J.; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-01-01

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences

  14. IGORR 1: Proceedings of the 1. meeting of the International Group On Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    West, C D [comp.

    1990-05-01

    Descriptions of the ongoing projects presented at this Meeting were concerned with: New Research Reactor FRM-II at Munich; MITR-II reactor; The Advanced. Neutron Source (ANS) Project; The high Flux Reactor Petten, Status and Prospects; The High Flux Beam Reactor Instrumentation Upgrade; BER-II Upgrade; The BR2 Materials Testing Reactor Past, Ongoing and Under-Study Upgrades; The ORPHEE, Reactor Current Status and Proposed Enhancement of Experimental Variabilities; Construction of the Upgraded JRR-3; Status of the University of Missouri-Columbia Research Reactor Upgrade; the Reactor and Cold Neutron Facility at NIST; Upgrade of Materials Irradiation Facilities in HFIR; Backfitting of the FRG Reactors; University Research Reactors in the United States; and Organization of the ITER Project - Sharing of Informational Procurements. Topics of interest were: Thermal-hydraulic tests and correlations, Corrosion tests and analytical models , Multidimensional kinetic analysis for small cores, Fuel plates fabrication, Fuel plates stability, Fuel irradiation, Burnable poison irradiation, Structural materials irradiation, Neutron guides irradiation, Cold Source materials irradiation, Cold Source LN{sub 2} test, Source LH2-H{sub 2}O reaction (H or D), Instrumentation upgrading and digital control system, Man-machine interface.

  15. IGORR 1: Proceedings of the 1. meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    West, C.D.

    1990-05-01

    Descriptions of the ongoing projects presented at this Meeting were concerned with: New Research Reactor FRM-II at Munich; MITR-II reactor; The Advanced. Neutron Source (ANS) Project; The high Flux Reactor Petten, Status and Prospects; The High Flux Beam Reactor Instrumentation Upgrade; BER-II Upgrade; The BR2 Materials Testing Reactor Past, Ongoing and Under-Study Upgrades; The ORPHEE, Reactor Current Status and Proposed Enhancement of Experimental Variabilities; Construction of the Upgraded JRR-3; Status of the University of Missouri-Columbia Research Reactor Upgrade; the Reactor and Cold Neutron Facility at NIST; Upgrade of Materials Irradiation Facilities in HFIR; Backfitting of the FRG Reactors; University Research Reactors in the United States; and Organization of the ITER Project - Sharing of Informational Procurements. Topics of interest were: Thermal-hydraulic tests and correlations, Corrosion tests and analytical models , Multidimensional kinetic analysis for small cores, Fuel plates fabrication, Fuel plates stability, Fuel irradiation, Burnable poison irradiation, Structural materials irradiation, Neutron guides irradiation, Cold Source materials irradiation, Cold Source LN 2 test, Source LH2-H 2 O reaction (H or D), Instrumentation upgrading and digital control system, Man-machine interface

  16. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs.

  17. Comparison of neutron fluxes obtained by 2-D and 3-D geometry with different shielding libraries in biological shield of the TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    Bozic, M.; Zagar, T.; Ravnik, M.

    2003-01-01

    Neutron fluxes in different spatial locations in biological shield are obtained with TORT code (TORT-Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code). Libraries used with TORT code were BUGLE-96 library (coupled library with 47 neutron groups and 20 gamma groups) and VITAMIN-B6 library (coupled library with 199 neutron groups and 42 gamma groups). BUGLE-96 library is derived from VITAMIN-B6 library. 2-D and 3-D models for homogeneous type of problem (without inserted beam port 4) and problem with asymmetry (non-homogeneous problem; inserted beam port 4, filled with different materials) were of interest for neutron flux calculation. The main purpose is to verify the possibility for using 2-D approximation model instead of large 3-D model in some calculations. Another purpose of this paper was to compare neutron spectral constants obtained from neutron fluxes (3-D model) determined with smaller BUGLE-96 library with new constants obtained from fluxes calculated with bigger VITAMIN-B6 library. These neutron spectral constants are used in isotopic calculation with SCALE code package (ORIGEN-S). In past only neutron spectral constants determined by neutron fluxes from BUGLE-96 library were used. Experimental results used for isotopic composition comparison are available from irradiation experiment with selected type of concrete and other materials in beam port 4 (irradiation channel 4) in TRIGA Mark II reactor. These experimental results were used as a benchmark in this paper. (author)

  18. Thermoluminescent dosemeters (TLD) exposed to high fluxes of gamma radiation, thermal neutrons and protons

    International Nuclear Information System (INIS)

    Gambarini, G.; Martini, M.; Meinardi, F.; Raffaglio, C.; Salvadori, P.; Scacco, A.; Sichirollo, A.E.

    1996-01-01

    Thermoluminescent dosemeters (TLD), widely experimented and utilized in personal dosimetry, have some advantageous characteristics which induce one to employ them also in radiotherapy. The new radiotherapy techniques are aimed at selectively depositing a high dose in cancerous tissues. This goal is reached by utilising both conventional and other more recently proposed radiation, such as thermal neutrons and heavy charged particles. In these inhomogeneous radiation fields a reliable mapping of the spatial distribution of absorbed dose is desirable, and the utilized dosemeters have to give such a possibility without notably perturbing the radiation field with the materials of the dosemeters themselves. TLDs, for their small dimension and their tissue equivalence for most radiation, give good support in the mapping of radiation fields. After exposure to the high fluxes of therapeutic beams, some commercial TL dosemeters have shown a loss of reliability. An investigation has therefore be performed, both on commercial and on laboratory made phosphors, in order to investigate their behaviour in such radiation fields. In particular the thermal neutron and gamma ray mixed field of the thermal column of a nuclear reactor, of interest for Boron Neutron Capture Therapy (B.N.C.T.) and a proton beam, of interest for proton therapy, were considered. Here some results obtained with new TL phosphors exposed in such radiation fields are presented, after a short description of some radiation damage effect on commercial LiF TLDs exposed in the (n th ,γ) field of the thermal column of a reactor. (author)

  19. Performance characterization of the SERI High-Flux Solar Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, A.; Bingham, C. (Solar Energy Research Inst., Golden, CO (United States)); O' Gallagher, J.; Winston, R.; Sagie, D. (Univ. of Chicago, IL (United States))

    1991-12-01

    This paper describes a unique, new solar furnace at the Solar Energy Research Institute (SERI) that can generate a wide range of flux concentrations to support research in areas including materials processing, high-temperature detoxification and high-flux optics. The furnace is unique in that it uses a flat, tracking heliostat along with a long focal length-to-diameter (f/D) primary concentrator in an off-axis configuration. The experiments are located inside a building completely outside the beam between the heliostat and primary concentrator. The long f/D ratio of the primary concentrator was designed to take advantage of a nonimaging secondary concentrator to significantly increase the flux concentration capabilities of the system. Results are reported for both the single-stage and two-stage configurations. (orig.).

  20. Research and materials irradiation reactors

    International Nuclear Information System (INIS)

    Ballagny, A.; Guigon, B.

    2004-01-01

    Devoted to the fundamental and applied research on materials irradiation, research reactors are nuclear installations where high neutrons flux are maintained. After a general presentation of the research reactors in the world and more specifically in France, this document presents the heavy water cooled reactors and the water cooled reactors. The third part explains the technical characteristics, thermal power, neutron flux, operating and details the Osiris, the RHF (high flux reactor), the Orphee and the Jules Horowitz reactors. The last part deals with the possible utilizations. (A.L.B.)

  1. Measure of thermal neutron flux in the IPEN/MB-01 reactor using 197 Au wire activation detectors

    International Nuclear Information System (INIS)

    Marques, Andre Luis Ferreira

    1995-01-01

    This dissertation has aimed at developing a neutron flux measurement technique by means of detectors activation analysis. The main task of this work was the implementation of this thermal neutron flux measurement technique, using gold wires as activation detectors in the IPEN/MB-01 reactor core. The neutron thermal flux spatial distribution was obtained by gold wire activation technique, with wire diameters of 0.125 mm and 0.250 mm in seven selected reactor experimental channels. The values of thermal flux were about 10 9 neutrons/cm 2 .s. This experiment has been the first one conducted with gold wires in the IPEN/MB-01 reactor, being this technique implemented for use by experiments in flux mapping of the core

  2. Beam plug replacement and alignment under high radiation conditions for cold neutron facilities at Hanaro

    International Nuclear Information System (INIS)

    Yeong-Garp, Cho; Jin-Won, Shin; Jung-Hee, Lee; Jeong-Soo, Ryu

    2010-01-01

    Full text : The HANARO, an open-tank-in-pool type research reactor of a 30 MWth power in Korea, has been operating for 15 years since its initial criticality in February 1995. The beam port assigned for the cold neutron at HANARO had been used for an 8-m SANS without neutron guides until it was replaced by a cold neutron guide system in 2008. It was developed a cold neutron guide system for the delivery of cold neutrons from the cold neutron source in the reactor to the neutron scattering instruments in the guide hall. Since the HANARO has been operated from 1995, it was a big challenge to replace the existing plug and shutter with the new facilities under high radiation conditions. When the old plug was removed from the beam port in 2008, the radiation level was 230 mSv/hr at the end of beam port. In addition to that, there were more difficult situations such as the poor as-built dimensions of the beam port, limited work space and time constraint due to other constructions in parallel in the reactor hall. Before the removal of the old plug the level of the radiation was measured coming out through a small hole of the plug to estimate the radiation level during the removal of the old plug and installation of a new plug. Based on the measurement and analysis results, special tools and various shielding facilities were developed for the removal of old in-pile plug and the installation of the new in-pile plug assembly safely. In 2008, the old plug and shutter were successfully replaced by the new plug and shutter as shown in this article with a minimum exposure to the workers. A laser tracker system was also one of the main factors in our successful installation and alignment under high radiation conditions and limited work space. The laser tracker was used to measure and align all the mechanical facilities and the neutron guides with a minimum radiation exposure to workers. The alignment of all the guides and accessories were possible during reactor operation because

  3. Dissolution flowsheet for high flux isotope reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Foster, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  4. Recent High Heat Flux Tests on W-Rod-Armored Mockups

    International Nuclear Information System (INIS)

    Nygren, Richard E.; Youchison, Dennis L.; McDonald, Jimmie M.; Lutz, Thomas J.; Miszkiel, Mark E.

    2000-01-01

    In the authors initial high heat flux tests on small mockups armored with W rods, done in the small electron beam facility (EBTS) at Sandia National Laboratories, the mockups exhibited excellent thermal performance. However, to reach high heat fluxes, they reduced the heated area to only a portion (approximately25%) of the sample. They have now begun tests in their larger electron beam facility, EB 1200, where the available power (1.2 MW) is more than enough to heat the entire surface area of the small mockups. The initial results indicate that, at a given power, the surface temperatures of rods in the EB 1200 tests is somewhat higher than was observed in the EBTS tests. Also, it appears that one mockup (PW-10) has higher surface temperatures than other mockups with similar height (10mm) W rods, and that the previously reported values of absorbed heat flux on this mockup were too high. In the tests in EB 1200 of a second mockup, PW-4, absorbed heat fluxes of approximately22MW/m 2 were reached but the corresponding surface temperatures were somewhat higher than in EBTS. A further conclusion is that the simple 1-D model initially used in evaluating some of the results from the EBTS testing was not adequate, and 3-D thermal modeling will be needed to interpret the results

  5. Development of SiC Neutron Detector Assembly to Measure the Neutron Flux of the Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Hwan; Park, June Sic; Shin, Hee Sung; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    At present, the conventional detector to measure the neutron at harsh environment is a Self Powered Neutron Detector (SPND). Rhodium(Rh)-103 is in the SPND. When neutron is incident on the Rhodium, the neutron capture reaction occurs, and the Rh-103 is converted to Rh-104. The Rh-104 is decayed to Pd-104 by {beta}-decay, and electrons are generated as the decay products. Because of the half life of Rh-104, approximately 5 minutes are required for the SPND output to reach the equilibrium condition. Therefore the on-line monitoring of the nuclear reactor state is limited if the neutron flux in the reactor core is monitored with the SPND. Silicon carbide (SiC) has the possibility to be developed as neutron detector at harsh environment, because the SiC can be operative at high temperature and high neutron flux conditions. Previously, the basic operation properties of the SiC detector were studied. Also, the radiation response of the SiC detector was studied at high neutron and gamma dose rate. The measurement results for an ex-core neutron flux monitor or a neutron flux monitor of the spent fuel were published. The SiC detector was also developed as neutron detector to measure the fissile material with active interrogation method. However, the studies about the development of SiC detector are still limited. In the present work, the radiation damage effect of the SiC detector was studied. The detector structure was determined based on the study, and a neutron detector assembly was made with the SiC detectors. The neutron and gamma-ray response of the detector assembly is presented in this paper. The detector assembly was positioned in the HANARO research reactor core, the performance test was done. The preliminary results are also included in this paper

  6. Present status of neutron beam facilities at the research reactor, HANARO, and its future prospect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hee; Kang, Young-Hwan; Kuk, Il-Hiun [Korea Atomic Energy Research Institute, Taejon (Korea)

    2001-03-01

    Korea has been operating its new research reactor, HANARO, since its first criticality in 1995. It is an open-tank-in-pool type reactor using LEU fuel with thermal neutron flux of 2 x 10{sup 14} nominally at the nose in the D{sub 2}O reflector having 7 horizontal beam ports and a provision of vertical hole for cold neutron source installation. KAERI has pursued an extensive instrument development program since 1992 by the support of the nuclear long-term development program of the government and there are now 4 working instruments. A high resolution powder diffractometer and a neutron radiography facility has been operational since late 1997 and 1996, respectively. A four-circle diffractometer has been fully working since mid 1999 and a small angle neutron spectrometer is just under commissioning phase. With the development of linear position sensitive detector with delay-line readout electronics, we have developed a residual stress instrument as an optional machine to the HRPD for last two years. Around early 1998 informal users program started with friendly users and it became a formal users support program by the ministry of science and technology. Short description for peer group formation and users activities is given. (author)

  7. Present status of neutron beam facilities at the research reactor, HANARO, and its future prospect

    International Nuclear Information System (INIS)

    Lee, Chang-Hee; Kang, Young-Hwan; Kuk, Il-Hiun

    2001-01-01

    Korea has been operating its new research reactor, HANARO, since its first criticality in 1995. It is an open-tank-in-pool type reactor using LEU fuel with thermal neutron flux of 2 x 10 14 nominally at the nose in the D 2 O reflector having 7 horizontal beam ports and a provision of vertical hole for cold neutron source installation. KAERI has pursued an extensive instrument development program since 1992 by the support of the nuclear long-term development program of the government and there are now 4 working instruments. A high resolution powder diffractometer and a neutron radiography facility has been operational since late 1997 and 1996, respectively. A four-circle diffractometer has been fully working since mid 1999 and a small angle neutron spectrometer is just under commissioning phase. With the development of linear position sensitive detector with delay-line readout electronics, we have developed a residual stress instrument as an optional machine to the HRPD for last two years. Around early 1998 informal users program started with friendly users and it became a formal users support program by the ministry of science and technology. Short description for peer group formation and users activities is given. (author)

  8. Influence of implanted helium on nickel resistance under simulation of plasma flux disruption in nuclear fusion reactor

    International Nuclear Information System (INIS)

    Kadin, B.A.; Pol'skij, V.I.; Yakushin, V.L.; Markin, A.V.; Tserevitinov, S.S.; Vasil'ev, V.I.

    1992-01-01

    Investigation results are presented of radiation erosion of constructive materials of the first wall of a thermonuclear reactor. The erosion is conditioned by successive repeated action of pulse processes, imitating plasma disruption, and helium ion fluxes at 40 keV and 2 x 10 21 -10 22 m -2 fluence. As imitating processes are used fluxes of deuterium high-temperature plasma. It is shown that preliminary action by high-temperature plasma leads to substantial suppression of radiation erosion, included by subsequent ion irradiation

  9. Measurement and calculation of spatial and energetic neutron flux in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    Bittelli, U.D.

    1988-01-01

    This work presents spatial and energetic flux distribution measured in the IEA-R1 reactor core. The thermal neutron flux was measured by gold activation foils (bare and covered with cadmium) in the fuel element number 108 (reaction: 197 Au(n,γ) 198 Au) at 451W overall reactor power. The fast neutron flux was measured by indium activation foils (reaction: 115 In(n,n') 115m In) in the fuel elements number 94 at 4510W overall reactor power. The neutron energy spectrum was adjusted by SAND II code with the data produced by the irradiation of seven activation detectors in the fuel element number 94 at 4510 W overall reactor power. The following reactions were used: 58 Fe(n,γ) 59 Fe, 232 Th(n,γ) 233 Th, 197 Au(n,γ) 198 Au, 59 Co(n,γ) 60 Co, 54 Fe(n,p) 54 Mn, 24 Mg(n,p) 24 Na, 47 Ti(n,p) 47 Sc, 48 Ti(n,p) 48 Sc and 115 In(n,n') 115m In. The experimental results compared to those obtained by CITATION (spatial distribution flux) and HAMMER (energetic distribution flux) code, showed good agreement. The results presented in this work are a good contribution for a better knowledge of spatial and energetic neutron flux distribution in the IEA-R1 reactor core, besides that the experimental procedure is easily applicable to another situations. (autor) [pt

  10. Precise determination of the degree of polarization of a cold neutron beam

    International Nuclear Information System (INIS)

    Nastoll, H.; Schreckenbach, K.; Baglin, C.; Bussiere, A.; Guillaud, J.P.; Kossakowski, R.; Liaud, P.

    1991-01-01

    A cold neutron beam at the ILL High Flux Reactor was used to produce highly polarized neutrons by means of a bent supermirror polarizer. A following current sheet spin flipper allowed the change of the neutron spin direction relative to the guiding magnetic fields. The degree of polarization of the beam was measured as a function of the neutron velocity in the range 300-1500 m/s achieving an accuracy of 0.2% at typically 98% polarization. Two spin flippers and the permutation of three supermirror polarizers as polarizer/analyzer were employed. (orig.)

  11. A description of the Canadian irradiation-research facility proposed to replace the NRU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A G; Lidstone, R F; Bishop, W E; Talbot, E F; McIlwain, H [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    To replace the aging NRU reactor, AECL has developed the concept for a dual-purpose national Irradiation Research Facility (IRF) that tests fuel and materials for CANDU (CANada Deuterium Uranium) reactors and performs materials research using extracted neutron beams. The IRF includes a MAPLE reactor in a containment building, experimental facilities, and support facilities. At a nominal reactor power of 40 MW{sub t}, the IRF will generate powers up to 1 MW in natural-uranium CANDU bundles, fast-neutron fluxes up to 1.4 x 10{sup 18} n{center_dot}m{sup -2}{center_dot}s{sup -1} in Zr-alloy specimens, and thermal-neutron fluxes matching those available to the NRU beam tubes. (author). 9 refs., 5 tabs., 2 figs.

  12. Apparatus for servicing a jet pump hold down beam in a nuclear reactor

    International Nuclear Information System (INIS)

    Howell, D.A.; Hydeman, J.E.; Slater, J.L.; Bodnar, R.J.; Golick, L.R.; Sckera, R.S.; Roth, C.H. Jr.

    1991-01-01

    This patent describes an apparatus for replacing the hold down beam of a fluid circulating jet pump mounted in a nuclear reactor, the hold down beam having a beam body, a pair of opposed beam tabs and a pair of opposed beam positioning trunnions extending outwardly from the beam body. It comprises a housing having a lower surface configured to be positionable over the body of the hold down beam; means coupled to the housing for engaging the beam trunnions and securing the beam body against the lower surface of the housing; means coupled to the housing for depressing the beam tabs while the beam body is secured against the lower surface of the housing; means coupled to the trunnion engaging means and the beam tab depressing means for selectively actuating the trunnion engaging means and the beam tab depressing means from a position remote from the nuclear reactor; and means connectable to the housing for selectively changing the directional orientation of the beam

  13. On the utilization of neutron beams of research reactors in research and applications

    International Nuclear Information System (INIS)

    FAYEK, M.K.

    2000-01-01

    Nuclear research reactors are the most widely available neutron sources, and they are capable of producing very high fluxes of neutrons having a considerable range of energies, from a few MeV to 10 MeV. Therefore, these neutrons can be used in many fields of basic research and for applications in physics, chemistry, medicine, biology, etc. Experiments with research reactors over the last 50 years have laid the foundations of today's nuclear technology. In addition, research reactors continue to be utilized as facilities for testing materials and in training manpower for nuclear programs, because basic training on a research reactor provides an essential understanding of the nuclear process, and personnel become accustomed to work under the special conditions resulting from irradiation and contamination risks

  14. Optimization of the testing volumes with respect to neutron flux levels in the two-target high flux D-Li neutron source for the international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Kelleher, W.P.; Varsamis, G.L.

    1989-01-01

    An economic and fusion-relevant source of high-energy neutrons is an essential element in the fusion nuclear technology and development program. This source can be generated by directing a high energy deuteron beam onto a flowing liquid lithium target, producing neutrons via the D-Lithium stripping reaction. Previous work on this type of source concentrated on a design employing one deuteron beam of modest amperage. This design was shown to have a relatively small testing volume with high flux gradients and was therefor considered somewhat unattractive from a materials testing standpoint. A design using two lithium targets and two high-amperage beams has recently been proposed. This two beam design has been examined in an effort to maximize the test volume while minimizing the flux gradients and minimizing the effect of radiation damage on one target due to the other. A spatial, energy and angle dependent neutron source modeling the D-Lithium source was developed. Using this source, a 3-dimensional map of uncollided flux within the test volume was calculated. The results showed that the target separation has little effect on the available experimental volume and that a testing volume of ∼35 liters is available with a volume averaged flux above 10 14 n/cm 2 /s. The collided flux within the test volume was then determined by coupling the source model with a Monte Carlo code. The spectral effects of the high-energy tail in the flux were examined and evaluated as to possible effects on materials response. Calculations comparing the radiation damage to materials from the D-Lithium source to that cause by a standard DT fusion first-wall neutron flux spectrum showed that the number of appm and dpa, as well as the ratio appm/dpa and dpa/MW/m 2 are within 30% for the two sources. 8 refs., 8 figs

  15. A high temperature reactor for ship propulsion

    International Nuclear Information System (INIS)

    Lobet, P.; Seigel, R.; Thompson, A.C.; Beadnell, R.M.; Beeley, P.A.

    2002-01-01

    The initial thermal hydraulic and physics design of a high temperature gas cooled reactor for ship propulsion is described. The choice of thermodynamic cycle and thermal power is made to suit the marine application. Several configurations of a Helium cooled, Graphite moderated reactor are then analysed using the WIMS and MONK codes from AEA Technology. Two geometries of fuel elements formed using micro spheres in prismatic blocks, and various arrangements of control rods and poison rods are examined. Reactivity calculations through life are made and a pattern of rod insertion to flatten the flux is proposed and analysed. Thermal hydraulic calculations are made to find maximum fuel temperature under high power with optimized flow distribution. Maximum temperature after loss of flow and temperatures in the reactor vessel are also computed. The temperatures are significantly below the known limits for the type of fuel proposed. It is concluded that the reactor can provide the required power and lifetime between refueling within likely space and weight constraints. (author)

  16. High heat flux (HHF) elements for negative ion systems on ITER

    International Nuclear Information System (INIS)

    Milnes, J.; Chuilon, B.; Xue, Y.; Martin, D.; Waldon, C.

    2007-01-01

    Negative Ion Neutral Beam systems on ITER will require actively cooled scrapers and dumps to process and shape the beam before injection into the tokamak. The scale of the systems is much larger than any presently operating, bringing challenges for designers in terms of available sub cooling, total pressure drop, deflection and mandatory remote maintenance. High heat fluxes (∼15-20 MW/m 2 ), pulse lengths in excess of 3000 s and high number of cycles pose new challenges in terms of stress and fatigue life. The designs outlined in the Design Description Document for the ITER Neutral Beam System [N53 DDD 29 01-07-03 R 0.1. ITER Design Description Document, DDD 5.3, Neutral Beam H and CD system (including Appendices).], based on swirl tubes, have been reviewed as part of the design process and recommendations made. Additionally, alternative designs have been proposed based on the Hypervapotron high heat flux elements with modified geometry and drawing upon a vast background knowledge of large scale equipment procurement and integration. A full thermo-mechanical analysis of all HHF components has also been undertaken based on ITER design criteria and the limited material data available. The advantages and disadvantages of all designs are presented and recommendations for improvements discussed

  17. Radiological protection considerations during the treatment of glioblastoma patients by boron neutron capture therapy at the high flux reactor in Petten, The Netherlands

    International Nuclear Information System (INIS)

    Moss, R.L.; Rassow, J.; Finke, E.; Sauerwein, W.; Stecher-Rasmussen, F.

    2001-01-01

    A clinical trial of Boron Neutron Capture Therapy (BNCT) for glioblastoma patients has been in progress at the High Flux Reactor (HFR) at Petten since October 1997. The JRC (as licence holder of the HFR) must ensure that radiological protection measures are provided. The BNCT trial is a truly European trial, whereby the treatment takes place at a facility in the Netherlands under the responsibility of clinicians from Germany and patients are treated from several European countries. Consequently, radiological protection measures satisfy both German and Dutch laws. To respect both laws, a BNCT radioprotection committee was formed under the chairmanship of an independent radioprotection expert, with members representing all disciplines in the trial. A special nuance of BNCT is that the radiation is provided by a mixed neutron/gamma beam. The radiation dose to the patient is thus a complex mix due to neutrons, gammas and neutron capture in boron, nitrogen and hydrogen, which, amongst others, need to be correctly calculated in non-commercial and validated treatment planning codes. Furthermore, due to neutron activation, measurements on the patient are taken regularly after treatment. Further investigations along these lines include dose determination using TLDs and boron distribution measurements using on-line gamma ray spectroscopy. (author)

  18. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere; [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author) 197 refs.

  19. A complete fuel development facility utilizing a dual core TRIGA reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, A; Law, G C [General Atomic Co., San Diego, CA (United States)

    1974-07-01

    A TRIGA Dual Core Reactor System has been chosen by the Romanian Government as the heart of a new fuel development facility which will be operated by the Romanian Institute for Nuclear Technologies. The Facility, which will be operational in 1976, is an integral part of the Romanian National Program for Power Reactor Development, with particular emphasis being placed on fuel development. The unique combination of a new 14 MW steady state TRIGA reactor, and the well-proven TRIGA Annular Core Pulsing Reactor (ACPR) in one below-ground reactor pool resulted in a substantial construction cost savings and gives the facility remarkable experimental flexibility. The inherent safety of the TRIGA fuel elements in both reactor cores means that a secondary containment building is not necessary, resulting in further construction cost savings. The 14 MW steady state reactor gives acceptably high neutron fluxes for long- term testing of various prototype fuel-cladding-coolant combinations; and the TRIGA ACPR high pulse capability allows transient testing of fuel specimens, which is so important for accurate prediction of the performance of power reactor fuel elements under postulated failure conditions. The 14 MW steady state reactor has one large and three small in-core irradiation loop positions, two large irradiation loop positions adjacent to the core face, and twenty small holes in the beryllium reflector for small capsule irradiation. The power level of 14 MW will yield peak unperturbed thermal neutron fluxes in the central experiment position approaching 3.0 x 10{sup 14} n/cm{sup 2}-sec. The ACPR has one large dry central experimental cavity which can be loaded at pool level through a shielded offset loading tube; a small diameter in-core flux trap; and an in-core pneumatically-operated capsule irradiation position. A peak pulse of 15,000 MW will yield a peak fast neutron flux in the central experimental cavity of about 1.5 x 10{sup 17} n/cm{sup 2}-sec. The pulse width at

  20. Publication of the second amendment to the German-French Convention on the construction and operation of a very high flux reactor and to its complementary agreement

    International Nuclear Information System (INIS)

    1982-01-01

    Full text in German, English, and French of the amendment to the London Convention of December 9, 1981 between the Federal Republic of Germany, France, Great Britain and Northern Ireland concerning the operating cost and the use of the high flux reactor in Grenoble at the Max-von-Laue Institute. (HP) [de

  1. Scaling of heavy ion beam probes for reactor-size devices

    International Nuclear Information System (INIS)

    Hickok, R.L.; Jennings, W.C.; Connor, K.A.; Schoch, P.M.

    1984-01-01

    Heavy ion beam probes for reactor-size plasma devices will require beam energies of approximately 10 MeV. Although accelerator technology appears to be available, beam deflection systems and parallel plate energy analyzers present severe difficulties if existing technology is scaled in a straightforward manner. We propose a different operating mode which will use a fixed beam trajectory and multiple cylindrical energy analyzers. Development effort will still be necessary, but we believe the basic technology is available

  2. Diamond monochromator for high heat flux synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Smither, R.K.; Davey, S.; Purohit, A.

    1992-12-01

    Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond mollochromator system. In this Paper, we consider various aspects, advantage and disadvantages, and promises and pitfalls of such a system and evaluate the comparative an monochromator subjected to the high heat load of the most powerful x-ray beam that will become available in the next few years. The results of experiments performed to evaluate the diffraction properties of a currently available synthetic single crystal diamond are also presented. Fabrication of diamond-based monochromator is within present technical means

  3. The Intense Slow Positron Beam Facility at the NC State University PULSTAR Reactor

    International Nuclear Information System (INIS)

    Hawari, Ayman I.; Moxom, Jeremy; Hathaway, Alfred G.; Brown, Benjamin; Gidley, David W.; Vallery, Richard; Xu, Jun

    2009-01-01

    An intense slow positron beam is in its early stages of operation at the 1-MW open-pool PULSTAR research reactor at North Carolina State University. The positron beam line is installed in a beam port that has a 30-cmx30-cm cross sectional view of the core. The positrons are created in a tungsten converter/moderator by pair-production using gamma rays produced in the reactor core and by neutron capture reactions in cadmium cladding surrounding the tungsten. Upon moderation, slow (∼3 eV) positrons that are emitted from the moderator are electrostatically extracted, focused and magnetically guided until they exit the reactor biological shield with 1-keV energy, approximately 3-cm beam diameter and an intensity exceeding 6x10 8 positrons per second. A magnetic beam switch and transport system has been installed and tested that directs the beam into one of two spectrometers. The spectrometers are designed to implement state-of-the-art PALS and DBS techniques to perform positron and positronium annihilation studies of nanophases in matter.

  4. Fracture analysis of HFIR beam tube caused by radiation embrittlement

    International Nuclear Information System (INIS)

    Chang, S.J.

    1994-01-01

    With an attempt to estimate the neutron beam tube embrittlement condition for the Oak Ridge High Flux Isotope Reactor (HFIR), fracture mechanics calculations are carried out in this paper. The analysis provides some numerical result on how the tube has been structurally weakened. In this calculation, a lateral impact force is assumed. Numerical result is obtained on how much the critical crack size should be reduced if the beam tube has been subjected to an extended period of irradiation. It is also calculated that buckling strength of the tube is increased, not decreased, with irradiation

  5. Colliding beam fusion reactor space propulsion system

    International Nuclear Information System (INIS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 10 6 -10 9 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, I sp ∼10 6 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameterx10-meters length, magnetic field ∼7 Tesla, ion beam current ∼10 A, and fuels of either D-He 3 ,P-B 11 ,P-Li 6 ,D-Li 6 , etc

  6. Simulation of electron beam in a MET as charged particles flux

    International Nuclear Information System (INIS)

    Hernandez-Valle, Alberto; Valverde-Noguera, Vanessa; Lopez-Gomez, Ignacio; Chine-Polito, Bruno; Esquivel-Isern, Ricardo; Chaves-Noguera, Juan

    2015-01-01

    The behavior of an electron beam is simulated in a transmission electron microscope (TEM). The simulation is performed according to the acceleration voltage, the excitation current of the lenses and the relative permeability of the pole pieces, through the software COMSOL Multiphysics version 4.2a. The dispersed electrons filtered by diaphragms have showed a low vertical speed as result. Graphics have exposed an increase in the magnetic flux density, intensifying the magnetic permeability of the polar pieces, the angle of the divergent electrons and vertical velocity reduction. Observations have showed that the number of electrons in the system remains unaffected in the general behavior of the beam and the magnitude of the magnetic flux density. (Author) [es

  7. Thermal neutron flux measurements in the rotary specimen rack of the IPR-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rose Mary G. do Prado; Rodrigues, Rogério R.; Souza, Luiz Claudio A., E-mail: souzarm@cdtn.br, E-mail: rrr@cdtn.br, E-mail: lcas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The thermal neutron flux in the rotary specimen rack of the IPR-R1 TRIGA reactor at the Nuclear Technology Development Center (CDTN), Belo Horizonte, Brazil, has been measured by the neutron activation method, using bare and cadmium covered gold foils. Those foils were irradiated in the rotary specimen rack with the reactor at 100 kW. The reactor core configuration has 63 fuel elements, composed of 59 original aluminum-clad elements and 4 stainless steel-clad fuel elements. The gamma activities of the foils were measured using Ge spectrometer. The perturbations of the thermal neutron flux caused by the introduction of an absorbing foil into the medium were considered in order to obtain accurate determination of the flux. The thermal neutron flux obtained was 7.4 x 10{sup 11} n.cm{sup -2}.s{sup -1}. (author)

  8. Report of the ANS Project Feasibility Workshop for a High Flux Isotope Reactor-Center for Neutron Research Facility

    International Nuclear Information System (INIS)

    Peretz, F.J.; Booth, R.S.

    1995-07-01

    The Advanced Neutron Source (ANS) Conceptual Design Report (CDR) and its subsequent updates provided definitive design, cost, and schedule estimates for the entire ANS Project. A recent update to this estimate of the total project cost for this facility was $2.9 billion, as specified in the FY 1996 Congressional data sheet, reflecting a line-item start in FY 1995. In December 1994, ANS management decided to prepare a significantly lower-cost option for a research facility based on ANS which could be considered during FY 1997 budget deliberations if DOE or Congressional planners wished. A cost reduction for ANS of about $1 billion was desired for this new option. It was decided that such a cost reduction could be achieved only by a significant reduction in the ANS research scope and by maximum, cost-effective use of existing High Flux Isotope Reactor (HFIR) and ORNL facilities to minimize the need for new buildings. However, two central missions of the ANS -- neutron scattering research and isotope production-were to be retained. The title selected for this new option was High Flux Isotope Reactor-Center for Neutron Research (HFIR-CNR) because of the project's maximum use of existing HFIR facilities and retention of selected, central ANS missions. Assuming this shared-facility requirement would necessitate construction work near HFIR, it was specified that HFIR-CNR construction should not disrupt normal operation of HFIR. Additional objectives of the study were that it be highly credible and that any material that might be needed for US Department of Energy (DOE) and Congressional deliberations be produced quickly using minimum project resources. This requirement made it necessary to rely heavily on the ANS design, cost, and schedule baselines. A workshop methodology was selected because assessment of each cost and/or scope-reduction idea required nearly continuous communication among project personnel to ensure that all ramifications of propsed changes

  9. Proposal for the theoretical investigation of the relativistic beam-plasma interaction with application to the proof-of-principle electron beam-heated linear solenoidal reactor

    International Nuclear Information System (INIS)

    Thode, L.E.

    1978-09-01

    A 36-month program to study the linear relativistic electron beam-plasma interaction is proposed. This program is part of a joint proposal between the Physics International Company (PI) and Los Alamos Scientific Laboratory (LASL) that combines the advanced electron beam generator technology at PI with the highly developed computer simulation technology at LASL. The proposed LASL program includes direct support for 1- and 3-m beam-plasma interaction experiments planned at PI and development of theory relevant for design of a 10-m proof-of-principle electron beam-driven linear solenoidal reactor

  10. Critical Heat Flux Phenomena at HighPressure & Low Mass Fluxes: NEUP Final Report Part I: Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Wu, Qiao [Oregon State Univ., Corvallis, OR (United States)

    2015-04-30

    This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.

  11. Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Benedikt, Michael

    With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...

  12. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  13. Structural mechanisms of the flux effect for VVER-1000 reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Gurovich, B.; Kuleshova, E.; Fedotova, S.; Maltsev, D.; Zabusov, O.; Frolov, A.; Erak, D.; Zhurko, D.

    2015-01-01

    To justify the lifetime extension of VVER-1000 reactor pressure vessels (RPV) up to 60 years and more it is necessary to expand the existing surveillance samples database to beyond design fluence by means of accelerated irradiation in a research reactor. Herewith since the changes in mechanical properties of materials under irradiation are due to occurring structural changes, correct analysis of the data obtained at accelerated irradiation of VVER-1000 RPV materials requires a clear understanding of the structural mechanisms that are responsible for the flux effect in VVER-1000 RPV steels. Two mechanisms are responsible for radiation embrittlement of VVER-1000 RPV steels: the hardening one (radiation hardening due to formation of radiation-induced Ni-based precipitates and radiation defects) and non-hardening one (due to formation of impurities segregations at grain boundaries - reversible temper brittleness). In this context for an adequate interpretation of the mechanical tests results when justifying the lifetime extension of existing units a complex of comparative structural studies (TEM, SEM and AES) of VVER-1000 RPV materials irradiated in different conditions (in research reactor IR-8 and within surveillance samples) was performed. It is shown that the flux effect is observed for materials with high nickel content (weld metals with Ni content > 1.35%) and it is mostly due to the contribution of non-hardening mechanism of radiation embrittlement (the difference in the accumulation kinetics of grain boundary phosphorus segregation) and somewhat contribution of the hardening mechanism (the difference in density of radiation-induced precipitates). Therefore when analyzing the results obtained from the accelerated irradiation of VVER-1000 WM the correction for the flux effect should be made. (authors)

  14. Neutron flux measurement in the thermal column of the Malaysian TRIGA mark II reactor with MCNP verification

    International Nuclear Information System (INIS)

    Abdel Munem, E.; Shukri, A.; Tajuddin, A.A.

    2006-01-01

    A study of the thermal column of the Malaysian TRIGA Mark II reactor, forming part of a feasibility study for BNCT was proposed in 2001. In the current study, pure metals were used to measure the neutron flux at selected points in the thermal column and the neutron flux determined using SAND-II. Monte Carlo simulation of the thermal column was also carried out. The reactor core was homogenized and calculations of the neutron flux through the graphite stringers performed using MCNP5. The results show good agreement between the measured flux and the MCNP calculated flux. An obvious extension from this is that the MCNP neutron flux output can be utilized as an input spectrum for SAND-II for the flux iteration. (author)

  15. The Growth of GaN on Si by the Beam Flux Modulation

    International Nuclear Information System (INIS)

    Roh, C. H.; Ha, M. W.; Song, H. J.; Choi, H. G.; Lee, J. H.; Ra, Y. W.; Hahn, C. K.

    2011-01-01

    AlGaN/GaN HEMT structure was grown on Si (111) substrate by plasma-assisted molecular beam epitaxy (PA-MBE) using a beam flux modulation methods. In this result, it was verified that the propagation of treading dislocation (TD) due to N-rich GaN layer was effectively suppressed.

  16. Vietnam Project For Production Of Radioactive Beam Based On ISOL Technique With The Dalat Reactor

    International Nuclear Information System (INIS)

    Le Hong Khiem; Phan Viet Cuong; Fadi Ibrahim

    2011-01-01

    The presence in Vietnam of Dalat nuclear reactor dedicated to fundamental studies is a unique opportunity to produce Radioactive Ion (RI) Beams with the fission of a 235 U induced by the thermal neutrons produced by the reactor. We propose to produce RI beams at the Dalat nuclear reactor using ISOL (Isotope Separation On-Line) technique. This project should be a unique opportunity for Vietnamese nuclear physics community to use its own facilities to produce RI beams for studying nuclear physics at an international level. (author)

  17. Development of a Neutron Flux Monitoring System for Sodium-cooled Fast Reactors

    OpenAIRE

    Verma, Vasudha

    2017-01-01

    Safety and reliability are one of the key objectives for future Generation IV nuclear energy systems. The neutron flux monitoring system forms an integral part of the safety design of a nuclear reactor and must be able to detect any irregularities during all states of reactor operation. The work in this thesis mainly concerns the detection of in-core perturbations arising from unwanted movements of control rods with in-vessel neutron detectors in a sodium-cooled fast reactor. Feasibility stud...

  18. Characteristics and uses of a 250 kW TRIGA reactor

    International Nuclear Information System (INIS)

    Dimic, V.

    1985-01-01

    The 250 kW TRIGA Mark II reactor is a light water reactor with solid fuel elements in which the zirconium hydride moderator is homogeneously distributed between enriched uranium. Therefore the reactor has the large prompt negative temperature coefficient of reactivity, the fuel also has very high retention of radioactive fission products. The reactor core is a cylindrical configuration with an annular graphite reflector. The experimental facilities include a rotary specimen rack, a central incore radiation thimble, a pneumatic transfer system, and pulsing capability. Other experimental facilities include two radial and two tangential beam tubes, a graphite thermal column, and a graphite thermalizing column. At the steady state power of 250 kW the peak flux is 1x10 13 n/cm 2 s in the central test position. In addition, pulsing to about 2000 MW is usually provided giving peak fluxes of about 2x10 16 n/cm 2 sec. All TRIGA reactors produce a core-average thermal neutron flux of about 10 7 n.v per watt. Only with very large accelerators could such a high neutron flux be achieved. In order to give an appreciation for the research conducted at research reactors, the types of research could be summarized as follows: thermal neutron scattering, neutron radiography, neutron and nuclear physics, activation analysis, radiochemistry, biology and medicine, and teaching and training. Typical applied research with a 250 kW reactor has been conducted in medicine in biology, archeology, metallurgy and materials science, engineering and criminology. It is well known that research reactors have been used routinely to produce isotopes for industry and medicine. In some instances, reactors are the preferred method of isotope production. We can conclude that the 250 kW TRIGA research reactor is a useful and wide ranging source of radiation for basic and applied research. The operation cost for this instrument is relatively low. (author)

  19. A conceptual design of LIB fusion reactor: UTLIF(2)

    International Nuclear Information System (INIS)

    Madarame, Haruki; Kondo, Shunsuke; Iwata, Shuichi; Oka, Yoshiaki; Miya, Kenzo.

    1984-01-01

    UTLIF(2) is a conceptual design study on a light ion beam driven fusion reactor based on a concept of rod-bundle blanket. Survivability and maintainability of the first wall and the blanket are regarded as of major importance in the design. The blanket rod is composed of a thick tube which has enough stiffness, a thin wrapping wall which receives high heat flux, and liquid lithium which breeds tritium and removes generated heat. The rod can be pulled out from the outside of the reactor vessel, hence the replacement is very easy. Nuclear and thermal analysis have been made and the performance of the reactor has been shown to be satisfactory. (author)

  20. Calculation of self-shielding coefficients, flux depression and cadmium factor for thermal neutron flux measurement of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Marques, Andre Luis Ferreira; Ting, Daniel Kao Sun; Mendonca, Arlindo Gilson

    1996-01-01

    A calculation methodology of Flux Depression, Self-Shielding and Cadmium Factors is presented, using the ANISN code, for experiments conducted at the IPEN/MB-01 Research Reactor. The correction factors were determined considering thermal neutron flux and 0.125 e 0.250 mm diameter of 197 Au wires. (author)

  1. Utilizations of filtered neutron beams at Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.D.; Chau, L.N.; Tan, V.H.; Hiep, N.T.; Phuong, L.B.

    1992-01-01

    Neutron beam utilizations in basic and applied researches have been important activities at the Dalat nuclear reactor. The neutron filters with single crystal of silicon are used to produce thermal neutrons at the tangential horizontal channel and quasi-monoenergetic 144 KeV and 54 KeV neutrons at the piercing beam tube. The paper presents some relevant characteristics of the filtered neutron beams at the two horizontal channels. Applications of neutron beams in prompt gamma-ray activation analysis and in nuclear data measurements are briefly described. (author)

  2. HIBALL - a conceptual heavy ion beam driven fusion reactor study. Vol. 1

    International Nuclear Information System (INIS)

    Badger, B.; El-Guebaly, L.; Engelstad, R.; Hassanein, A.; Klein, A.; Kulcinski, G.; Larsen, E.; Lee, K.; Lovell, E.; Moses, G.

    1981-12-01

    A preliminary concept for a heavy-ion beam driven inertial confinement fusion power plant is presented. The high repetition rate of the RF accelerator driver is utilized to serve four reactor chambers alternatingly. In the chambers a novel first-wall protection scheme is used. At a target gain of 83 the total net electrical output is 3.8 GW. The recirculating power fraction is below 15%. The main goal of the comprehensive HIBALL study (which is continuing) is to demonstrate the compatibility of the design of the driver, the target and the reactor chambers. Though preliminary, the present dessign is essentially self-consistent. Tentative cost estimates are given. The costs compare well with those found in similar studies on other types of fusion reactors. (orig.) [de

  3. Copper alloys for high heat flux structure applications

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Fabritsiev, S.A.

    1994-01-01

    The mechanical and physical properties of copper alloys are reviewed and compared with the requirements for high heat flux structural applications in fusion reactors. High heat flux structural materials must possess a combination of high thermal conductivity and high mechanical strength. The three most promising copper alloys at the present time are oxide dispersion-strengthened copper (Cu-Al 2 O 3 ) and two precipitation-hardened copper alloys (Cu-Cr-Zr and Cu-Ni-Be). These three alloys are capable of room temperature yield strengths >400 MPa and thermal conductivities up to 350 W/m-K. All of these alloys require extensive cold working to achieve their optimum strength. Precipitation-hardened copper alloys such Cu-Cr-Zr are susceptible to softening due to precipitate overaging and recrystallization during brazing, whereas the dislocation structure in Cu-Al 2 O 3 remains stabilized during typical high temperature brazing cycles. All three alloys exhibit good resistance to irradiation-induced softening and void swelling at temperatures below 300 degrees C. The precipitation-strengthened allows typically soften during neutron irradiation at temperatures above about 300 degrees C and therefore should only be considered for applications operating at temperatures 2 O 3 ) is considered to be the best candidate for high heat flux structural applications

  4. Development and testing of CFC-copper high heat flux elements

    International Nuclear Information System (INIS)

    Mitteau, R.; Chappuis, P.; Deschamps, P.; Schlosser, J.; Viallet, H.; Vieider, G.

    1994-01-01

    In the frame of high heat flux development for plasma facing components, CEA has designed, fabricated and tested over twenty specimens, with some of them for the NET divertor application. Several Carbon Fibre Composites (CFC) and copper grades have been used with flat tile or macro bloc configuration. All the mock-ups were tested in the electron beam facility EB200, for steady-state flux and fatigue up to 1000 cycles. The best four are presented. (author) 3 refs.; 11 figs

  5. Primary study for boron neutron capture therapy uses the RSG-GAS beam tube facility

    International Nuclear Information System (INIS)

    Suroso

    2000-01-01

    The minimum epithermal neutron flux as one of the prerequisite of Boron Neutron Capture Therapy (BNCT) is 1.0 x 10 9 n/(cm 2 s) RSG-GAS have 6 beam tube facilities for neutron source, which is one of the beam tube S-2 has a possibility to utilization for BNCT facility. The totally flux neutron measurement in the front of S-2 beam tube is 1.8 x 10 7 n/(cm 2 s). The neutron flux measurement was less than for BNCT minimum prerequisite. Concerning to the flux neutron production in the reactor, which is reach to 2.5 x 10 14 n/(cm 2 s), there for the S-2 beam tube could be used beside collimator modification

  6. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    International Nuclear Information System (INIS)

    Du, Y.; Liyu, A. V.; Droubay, T. C.; Chambers, S. A.; Li, G.

    2014-01-01

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio

  7. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow

    International Nuclear Information System (INIS)

    Boscary, J.

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs

  8. Selection of support structure materials for irradiation experiments in the HFIR [High Flux Isotope Reactor] at temperatures up to 500 degrees C

    International Nuclear Information System (INIS)

    Farrell, K.; Longest, A.W.

    1990-01-01

    The key factor in the design of capsules for irradiation of test specimens in the High Flux Isotope Reactor at preselected temperatures up to 500 degree C utilizing nuclear heating is a narrow gas-filled gap which surrounds the specimens and controls the transfer of heat from the specimens through the wall of a containment tube to the reactor cooling water. Maintenance of this gap to close tolerances is dependent on the characteristics of the materials used to support the specimens and isolate them from the water. These support structure materials must have low nuclear heating rates, high thermal conductivities, and good dimensional stabilities under irradiation. These conditions are satisfied by certain aluminum alloys. One of these alloys, a powder metallurgy product containing a fine dispersion of aluminum oxide, is no longer manufactured. A new alloys of this type, with the trade name DISPAL, is determined to be a suitable substitute. 23 refs., 13 figs., 3 tabs

  9. Fabrication of high aspect ratio nanocell lattices by ion beam irradiation

    International Nuclear Information System (INIS)

    Ishikawa, Osamu; Nitta, Noriko; Taniwaki, Masafumi

    2016-01-01

    Highlights: • Nanocell lattice with a high aspect ratio on InSb semiconductor surface was fabricated by ion beam irradiation. • The fabrication technique consisting of top-down and bottom-up processes was performed in FIB. • High aspect ratio of 2 was achieved in nanocell lattice with a 100 nm interval. • The intermediate-flux irradiation is favorable for fabrication of nanocell with a high aspect ratio. - Abstract: A high aspect ratio nanocell lattice was fabricated on the InSb semiconductor surface using the migration of point defects induced by ion beam irradiation. The fabrication technique consisting of the top-down (formation of voids and holes) and bottom-up (growth of voids and holes into nanocells) processes was performed using a focused ion beam (FIB) system. A cell aspect ratio of 2 (cell height/cell diameter) was achieved for the nanocell lattice with a 100 nm dot interval The intermediate-flux ion irradiation during the bottom-up process was found to be optimal for the fabrication of a high aspect ratio nanocell.

  10. Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements. Annex: Individual Reports

    International Nuclear Information System (INIS)

    2014-07-01

    The recent advances in the development of nuclear science and technology, demonstrating the globally growing economy, require highly accurate, powerful simulations and precise analysis of the experimental results. Confidence in these results is still determined by the accuracy of the atomic and nuclear input data. For studying material response, neutron beams produced from accelerators and research reactors in broad energy spectra are reliable and indispensable tools to obtain high accuracy experimental results for neutron induced reactions. The IAEA supports the accomplishment of high precision nuclear data using nuclear facilities in particular, based on particle accelerators and research reactors around the world. Such data are essential for numerous applications in various industries and research institutions, including the safety and economical operation of nuclear power plants, future fusion reactors, nuclear medicine and non-destructive testing technologies. The IAEA organized and coordinated the technical meeting Use of Neutron Beams for High Precision Nuclear Data Measurements, in Budapest, Hungary, 10–14 December 2012. The meeting was attended by participants from 25 Member States and three international organizations — the European Organization for Nuclear Research (CERN), the Joint Research Centre (JRC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (OECD/NEA). The objectives of the meeting were to provide a forum to exchange existing know-how and to share the practical experiences of neutron beam facilities and associated instrumentation, with regard to the measurement of high precision nuclear data using both accelerators and research reactors. Furthermore, the present status and future developments of worldwide accelerator and research reactor based neutron beam facilities were discussed. This publication is a summary of the technical meeting and additional materials supplied by the international

  11. Transmutation studies of minor actinides in high intensity neutron fluxes

    International Nuclear Information System (INIS)

    Fioni, G.; Bolognese, T.; Cribier, M.; Marie, F.; Roettger, S.; Faust, H.; Leconte, Ph.

    1999-01-01

    Integral measurements of nuclear data and of the transmutation potential in specific neutron fluxes, constitute the fastest and essential way to overcome to the large uncertainties present in the nuclear data libraries. In the frame of the activities of the Directorate for Science of Matter (DSM) of the French Atomic Energy Authority (CEA), a new project is proposed so as to carry out integral measurements relevant for nuclear waste transmutation systems. A new beam tube will be installed to irradiate actinides and fission fragment samples at different distances from the fuel element of the ILL reactor. Variable neutron energy spectra could then be obtained by choosing the distance between the sample and the fuel element, opening the way to the determination of the ideal physical conditions to incinerate nuclear waste in hybrid transmutation systems. (author)

  12. On-line fast flux measurements in the BR2 reactor

    International Nuclear Information System (INIS)

    Vermeeren, L.

    2009-01-01

    Since 2001, CEA-Cadarache and the Belgian Nuclear Research Centre SCK-CEN are collaborating on the development and in-pile qualification of subminiature fission chambers (diameter of 1.5 mm). Initially, efforts concentrated on fission chambers for the in-pile measurement of thermal fluxes (with 235 U as fissile material). Meanwhile successful long-term tests of the prototypes have been performed in various environments: in low temperature (40-100 degress Celsius) BR2 pool water (up to a thermal neutron fluence of 3 1 0 21 n/cm 2 ) and in the CALLISTO PWR loop (300 degrees Celsius, 155 bars). The long-term qualification of derived industrial detectors (Photonis CFUZ53) in CALLISTO is still ongoing. However, for various types of irradiations in research reactors, the knowledge of the evolution of the fast neutron flux is even of more interest than the thermal flux data. Therefore the collaboration program was extended to the development and the in-pile qualification of subminiature or miniature fission chambers (with 3 mm diameter) for fast neutron detection, for which 242 Pu was selected as the optimal fissile material. In order to achieve the on-line in-pile measurement of fast neutron flux, the fission chambers will be operated in the Campbelling mode (based on the mean square fluctuation of the detector current). In this mode the gamma induced contribution to the signal can be efficiently suppressed. Moreover, a data processing software will take into account the evolution of the fissile deposit in order to assess on-line the fast flux sensitivity and to correct for the low energy neutron contributions. The final objective is to qualify a Fast Neutron Detector System (FNDS) able to provide on-line data for local fast neutron fluxes in Material Testing Reactors. The on-line measurement of the fast neutron flux would contribute significantly to the characterization of the irradiation conditions during test experiments with materials and innovative fuel elements

  13. Evaluation of critical heat flux performances for design strategy of new research reactor nuclear fuels

    International Nuclear Information System (INIS)

    Chang, Soon Heung; Bang, In Cheol; Lee, Kwi Lim; Jeong, Yong Hoon

    2006-02-01

    The present project investigated stable burnout heat flux correlations applicable to research reactor operation conditions of low pressure, low temperature and high flow rate. In addition, in series of thermal limits important to safety of the reactor, ONB and OFI correlations also were investigated. There are some world CHF databases for tube-inside flow. In order to design a research reactor, DNB is final design limit factor and so the collection of the data or correlation are very important. The optimal core cooling capability can be done by considering neutronics, economical efficiency, materials limit together through engineering judgement based on DNB correlations. The project collected the materials and correlations applicable to research reactor conditions. The correlations give a fundamental base for analyzing thermal limit factors and will be used helpfully in review of regulatory body and designer for safety evaluation

  14. Evaluation of critical heat flux performances for design strategy of new research reactor nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Bang, In Cheol; Lee, Kwi Lim; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2006-02-15

    The present project investigated stable burnout heat flux correlations applicable to research reactor operation conditions of low pressure, low temperature and high flow rate. In addition, in series of thermal limits important to safety of the reactor, ONB and OFI correlations also were investigated. There are some world CHF databases for tube-inside flow. In order to design a research reactor, DNB is final design limit factor and so the collection of the data or correlation are very important. The optimal core cooling capability can be done by considering neutronics, economical efficiency, materials limit together through engineering judgement based on DNB correlations. The project collected the materials and correlations applicable to research reactor conditions. The correlations give a fundamental base for analyzing thermal limit factors and will be used helpfully in review of regulatory body and designer for safety evaluation.

  15. Radiation transport calculations for the ANS [Advanced Neutron Source] beam tubes

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Lillie, R.A.; Slater, C.O.

    1988-01-01

    The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs

  16. Review of inservice inspection and nondestructive examination practices at DOE Category A test and research reactors

    International Nuclear Information System (INIS)

    Anderson, M.T.; Aldrich, D.A.

    1990-09-01

    In-service inspection (ISI) programs are used at commercial nuclear power plants for monitoring the pressure boundary integrity of various systems and components to ensure their continued safe operation. The Department of Energy (DOE) operates several test and research reactors. This report represents an evaluation of the ISI and nondestructive examination (NDE) practices at five DOE Category A (> 20 MW thermal) reactors as compared, where applicable, to the current ISI activities of commercial nuclear power facilities. The purpose of an inservice inspection (ISI) program is to establish regular surveillance of safety-related components to ensure their safe and reliable operation. The integrity of materials comprising these components is generally monitored by means of periodic nondestructive examinations (NDE), which, if appropriately performed, provide methods for identifying degradation that could render components unable to perform their intended safety functions. The reactors evaluated during this review were the Experimental Breeder Reactor 2 and the Fast Flux Test Facility (liquid-metal cooled plants), the Advanced Test Reactor and the High Flux Isotopes Reactor (light-water cooled reactors), and the High Flux Beam Reactor (a heavy-water cooled facility). Although these facilities are extremely diverse in design and operation, they all have less stored energy, smaller inventories of radionuclides, and generally, more remote locations than commercial reactors. However, all DOE test and research facilities contain components similar to those of commercial reactors for which continued integrity is important to maintain plant safety. 10 refs., 6 tabs

  17. Experimental and MCNP5 based evaluation of neutron and gamma flux in the irradiation ports of the University of Utah research reactor

    Directory of Open Access Journals (Sweden)

    Noble Brooklyn

    2012-01-01

    Full Text Available Neutron and gamma flux environment of various irradiation ports in the University of Utah training, research, isotope production, general atomics reactor were experimentally assessed and fully modeled using the MCNP5 code. The experimental measurements were based on the cadmium ratio in the irradiation ports of the reactor, flux profiling using nickel wire, and gamma dose measurements using thermo luminescence dosimeter. Full 3-D MCNP5 reactor model was developed to obtain the neutron flux distributions of the entire reactor core and to compare it with the measured flux focusing at the irradiation ports. Integration of all these analysis provided the updated comprehensive neutron-gamma flux maps of the existing irradiation facilities of the University of Utah TRIGA reactor.

  18. Tokamak Fusion Test Reactor neutral beam injection system vacuum chamber

    International Nuclear Information System (INIS)

    Pedrotti, L.R.

    1977-01-01

    Most of the components of the Neutral Beam Lines of the Tokamak Fusion Test Reactor (TFTR) will be enclosed in a 50 cubic meter box-shaped vacuum chamber. The chamber will have a number of unorthodox features to accomodate both neutral beam and TFTR requirements. The design constraints, and the resulting chamber design, are presented

  19. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay.

    Science.gov (United States)

    An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Cao, D; Cao, G F; Cao, J; Chan, Y L; Chang, J F; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J; Cheng, Z K; Cherwinka, J J; Chu, M C; Chukanov, A; Cummings, J P; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guo, L; Guo, X H; Guo, Y H; Guo, Z; Hackenburg, R W; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hsiung, Y B; Hu, B Z; Hu, T; Huang, E C; Huang, H X; Huang, X T; Huang, Y B; Huber, P; Huo, W; Hussain, G; Jaffe, D E; Jen, K L; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Jones, D; Kang, L; Kettell, S H; Khan, A; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Leung, J K C; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y-C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, J L; Liu, J C; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, X Y; Ma, X B; Ma, Y Q; Malyshkin, Y; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Mitchell, I; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ochoa-Ricoux, J P; Olshevskiy, A; Pan, H-R; Park, J; Patton, S; Pec, V; Peng, J C; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Qiu, R M; Raper, N; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Steiner, H; Stoler, P; Sun, J L; Tang, W; Taychenachev, D; Treskov, K; Tsang, K V; Tull, C E; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, C-H; Wu, Q; Wu, W J; Xia, D M; Xia, J K; Xing, Z Z; Xu, J L; Xu, Y; Xue, T; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Yang, Y Z; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, Z Y; Zeng, S; Zhan, L; Zhang, C; Zhang, C C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, R; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhou, L; Zhuang, H L; Zou, J H

    2017-06-23

    The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW_{th} reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective ^{239}Pu fission fractions F_{239} from 0.25 to 0.35, Daya Bay measures an average IBD yield σ[over ¯]_{f} of (5.90±0.13)×10^{-43}  cm^{2}/fission and a fuel-dependent variation in the IBD yield, dσ_{f}/dF_{239}, of (-1.86±0.18)×10^{-43}  cm^{2}/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the ^{239}Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes ^{235}U, ^{239}Pu, ^{238}U, and ^{241}Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10^{-43}  cm^{2}/fission have been determined for the two dominant fission parent isotopes ^{235}U and ^{239}Pu. A 7.8% discrepancy between the observed and predicted ^{235}U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.

  20. Numerical effects in the neutron flux calculations into WWER-type reactor vessels by Monte Carlo method

    International Nuclear Information System (INIS)

    Alvarez Cardona, C.M.; Rodriguez Gual, M.; Hernandez Valle, S.

    2001-01-01

    The calculation of neutron fluxes and fluence into reactor pressure vessel is a regulatory requirement in the stages of the design, operation and plan lifetime extension. The reactor vessel is considered a unique and non-substitutable part of the NPP that undergoes degradation. The main source of the aging comes from the fast neutron damage induced in the steel crystalline lattice. Due to the proximity of the core edge to the vessel inner surface; the vessel steel is exposed to high fast neutron fluence. The effect of this irradiation on the mechanical properties becomes more acute because of the impurities measured in the Russian steel alloys. In the present paper, a PC version of the Monte Carlo 3-D HEXANN-EVALU system is used for the estimation of the WWER reactor pressure vessel irradiation. It was selected on the basis of its flexible options that on the other hand need to be quantified in connection with the desired magnitudes. The parameters that control the random walk of neutrons as well as the efficiency increasing options included in the code are studied in order to identify their impact in the final results for fluxes and fluence in the reactor pressure vessel. As a result an optimal set of parameters is suggested. (authors)

  1. Combined analysis of neutron and photon flux measurements for the Jules Horowitz reactor core mapping

    Energy Technology Data Exchange (ETDEWEB)

    Fourmentel, D.; Villard, J. F.; Lyoussi, A. [DEN Reactor Studies Dept., French Nuclear Energy and Alternative Energies Commission, CEA Cadarache, 13108 Saint Paul-Lez-Durance (France); Reynard-Carette, C. [Laboratoire Chimie Provence LCP UMR 6264, Univ. of Provence, Centre St. Jerome, 13397 Marseille Cedex 20 (France); Bignan, G.; Chauvin, J. P.; Gonnier, C.; Guimbal, P.; Malo, J. Y. [DEN Reactor Studies Dept., French Nuclear Energy and Alternative Energies Commission, CEA Cadarache, 13108 Saint Paul-Lez-Durance (France); Carette, M.; Janulyte, A.; Merroun, O.; Brun, J.; Zerega, Y.; Andre, J. [Laboratoire Chimie Provence LCP UMR 6264, Univ. of Provence, Centre St. Jerome, 13397 Marseille Cedex 20 (France)

    2011-07-01

    We study the combined analysis of nuclear measurements to improve the knowledge of the irradiation conditions in the experimental locations of the future Jules Horowitz Reactor (JHR). The goal of the present work is to measure more accurately neutron flux, photon flux and nuclear heating in the reactor. In a Material Testing Reactor (MTR), nuclear heating is a crucial parameter to design the experimental devices to be irradiated in harsh nuclear conditions. This parameter drives the temperature of the devices and of the samples. The numerical codes can predict this parameter but in-situ measurements are necessary to reach the expected accuracy. For this reason, one objective of the IN-CORE program [1] is to study the combined measurements of neutron and photon flux and their cross advanced interpretation. It should be reminded that both neutron and photon sensors are not totally selective as their signals are due to neutron and photon interactions. We intend to measure the neutron flux by three different kinds of sensors (Uranium Fission chamber, Plutonium Fission chamber and Self Powered Neutron Detector), the photon flux by two different sensors (Ionization chamber and Self Powered Gamma Detector) and the nuclear heating by two different ones (Differential calorimeter and Gamma Thermometer). For the same parameter, we expect that the use of different kinds of sensors will allow a better estimation of the aimed parameter by mixing different spectrum responses and different neutron and gamma contributions. An experimental test called CARMEN-1 is scheduled in OSIRIS reactor (CEA Saclay - France) at the end of 2011, with the goal to map irradiation locations in the reactor reflector to get a first validation of the analysis model. This article focuses on the sensor selection for CARMEN-1 experiment and to the way to link neutron and photon flux measurements in view to reduce their uncertainties but also to better assess the neutron and photon contributions to nuclear

  2. Combined analysis of neutron and photon flux measurements for the Jules Horowitz reactor core mapping

    International Nuclear Information System (INIS)

    Fourmentel, D.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Bignan, G.; Chauvin, J. P.; Gonnier, C.; Guimbal, P.; Malo, J. Y.; Carette, M.; Janulyte, A.; Merroun, O.; Brun, J.; Zerega, Y.; Andre, J.

    2011-01-01

    We study the combined analysis of nuclear measurements to improve the knowledge of the irradiation conditions in the experimental locations of the future Jules Horowitz Reactor (JHR). The goal of the present work is to measure more accurately neutron flux, photon flux and nuclear heating in the reactor. In a Material Testing Reactor (MTR), nuclear heating is a crucial parameter to design the experimental devices to be irradiated in harsh nuclear conditions. This parameter drives the temperature of the devices and of the samples. The numerical codes can predict this parameter but in-situ measurements are necessary to reach the expected accuracy. For this reason, one objective of the IN-CORE program [1] is to study the combined measurements of neutron and photon flux and their cross advanced interpretation. It should be reminded that both neutron and photon sensors are not totally selective as their signals are due to neutron and photon interactions. We intend to measure the neutron flux by three different kinds of sensors (Uranium Fission chamber, Plutonium Fission chamber and Self Powered Neutron Detector), the photon flux by two different sensors (Ionization chamber and Self Powered Gamma Detector) and the nuclear heating by two different ones (Differential calorimeter and Gamma Thermometer). For the same parameter, we expect that the use of different kinds of sensors will allow a better estimation of the aimed parameter by mixing different spectrum responses and different neutron and gamma contributions. An experimental test called CARMEN-1 is scheduled in OSIRIS reactor (CEA Saclay - France) at the end of 2011, with the goal to map irradiation locations in the reactor reflector to get a first validation of the analysis model. This article focuses on the sensor selection for CARMEN-1 experiment and to the way to link neutron and photon flux measurements in view to reduce their uncertainties but also to better assess the neutron and photon contributions to nuclear

  3. Focused proton beams propagating in reactor of fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Niu, K [Teikyo Heisei Univ., Uruido, Ichihara, Chiba (Japan)

    1997-12-31

    One of the difficult tasks of light ion beam fusion is to propagate the beam in the reactor cavity and to focus the beam on the target. The light ion beam has a certain local divergence angle because there are several causes for divergence at the diode. The electrostatic force induced at the leading edge causes beam divergence during propagation. To confine the beam within a small radius during propagation, the magnetic field must be employed. Here the electron beam is proposed to be launched simultaneously with the launching of the proton beam. If the electron beam has the excess current, the beam induces a magnetic field in the negative azimuthal direction, which confines the ion beam within a small radius by the electrostatic field as well as the electron beam by the Lorentz force. The metal guide around the beam path helps the beam confinement and reduces the total amount of magnetic field energy induced by the electron current. (author). 2 figs., 15 refs.

  4. Survey of the thermal and fast neutron flux distribution in the core of IPR-R1 reactor

    International Nuclear Information System (INIS)

    Guimaraes, R.R.R.

    1985-01-01

    A methodology to obtain the neutron flux distribution inside the core of a reactor is presented, aiming to analyze specifications for increasing reactor power. The activation measurement technique with irradiation of steel eletrodes of 700 mm of lenght, put in acrylic rods was used. In the detection process and in the counting of activation product, a Ge (Li) detector with high resolution and a scanning mechanical system, constructed and projected in CDTN (Nuclear Technology Development Center) were used. (E.G.) [pt

  5. Analysis and modeling of flow-blockage-induced steam explosion events in the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.

    1994-01-01

    This article provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor (HFIR) during flow blockage events. The overall work scope included modeling and analysis of core-melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and, finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several milliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. 19 refs., 11 figs

  6. Methods and codes for neutronic calculations of the MARIA research reactor

    International Nuclear Information System (INIS)

    Andrzejewski, K.; Kulikowska, T.; Bretscher, M.M.; Hanan, N.A.; Matos, J.E.

    1998-01-01

    The core of the MARIA high flux multipurpose research reactor is highly heterogeneous. It consists of beryllium blocks arranged in 6x8 matrix, tubular fuel assemblies, control rods and irradiation channels. The reflector is also heterogeneous and consists of graphite blocks clad with aluminium. Its structure is perturbed by the experimental beam tubes. This paper presents methods and codes used to calculate the MARIA reactor neutronics characteristics and experience gained thus far at IAE and ANL. At ANL the methods of MARIA calculations were developed in connection with RERTR program. At IAE the package of programs was developed to help its operator in optimization of fuel utilization. (author)

  7. Presentation and comparison of experimental critical heat flux data at conditions prototypical of light water small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, M.S., E-mail: 1greenwoodms@ornl.gov; Duarte, J.P.; Corradini, M.

    2017-06-15

    Highlights: • Low mass flux and moderate to high pressure CHF experimental results are presented. • Facility uses chopped-cosine heater profile in a 2 × 2 square bundle geometry. • The EPRI, CISE-GE, and W-3 CHF correlations provide reasonable average CHF prediction. • Neural network analysis predicts experimental data and demonstrates utility of method. - Abstract: The critical heat flux (CHF) is a two-phase flow phenomenon which rapidly decreases the efficiency of the heat transfer performance at a heated surface. This phenomenon is one of the limiting criteria in the design and operation of light water reactors. Deviations of operating parameters greatly alters the CHF condition and must be experimentally determined for any new parameters such as those proposed in small modular reactors (SMR) (e.g. moderate to high pressure and low mass fluxes). Current open literature provides too little data for functional use at the proposed conditions of prototypical SMRs. This paper presents a brief summary of CHF data acquired from an experimental facility at the University of Wisconsin-Madison designed and built to study CHF at high pressure and low mass flux ranges in a 2 × 2 chopped cosine rod bundle prototypical of conceptual SMR designs. The experimental CHF test inlet conditions range from pressures of 8–16 MPa, mass fluxes of 500–1600 kg/m2 s, and inlet water subcooling from 250 to 650 kJ/kg. The experimental data is also compared against several accepted prediction methods whose application ranges are most similar to the test conditions.

  8. Systematic assembly homogenization and local flux reconstruction for nodal method calculations of fast reactor power distributions

    International Nuclear Information System (INIS)

    Dorning, J.J.

    1991-01-01

    A simultaneous pin lattice cell and fuel bundle homogenization theory has been developed for use with nodal diffusion calculations of practical reactors. The theoretical development of the homogenization theory, which is based on multiple-scales asymptotic expansion methods carried out through fourth order in a small parameter, starts from the transport equation and systematically yields: a cell-homogenized bundled diffusion equation with self-consistent expressions for the cell-homogenized cross sections and diffusion tensor elements; and a bundle-homogenized global reactor diffusion equation with self-consistent expressions for the bundle-homogenized cross sections and diffusion tensor elements. The continuity of the angular flux at cell and bundle interfaces also systematically yields jump conditions for the scaler flux or so-called flux discontinuity factors on the cell and bundle interfaces in terms of the two adjacent cell or bundle eigenfunctions. The expressions required for the reconstruction of the angular flux or the 'de-homogenization' theory were obtained as an integral part of the development; hence the leading order transport theory angular flux is easily reconstructed throughout the reactor including the regions in the interior of the fuel bundles or computational nodes and in the interiors of the pin lattice cells. The theoretical development shows that the exact transport theory angular flux is obtained to first order from the whole-reactor nodal diffusion calculations, done using the homogenized nuclear data and discontinuity factors, is a product of three computed quantities: a ''cell shape function''; a ''bundle shape function''; and a ''global shape function''. 10 refs

  9. Four energy group neutron flux distribution in the Syrian miniature neutron source reactor using the WIMSD4 and CITATION code

    International Nuclear Information System (INIS)

    Khattab, K.; Omar, H.; Ghazi, N.

    2009-01-01

    A 3-D (R, θ , Z) neutronic model for the Miniature Neutron Source Reactor (MNSR) was developed earlier to conduct the reactor neutronic analysis. The group constants for all the reactor components were generated using the WIMSD4 code. The reactor excess reactivity and the four group neutron flux distributions were calculated using the CITATION code. This model is used in this paper to calculate the point wise four energy group neutron flux distributions in the MNSR versus the radius, angle and reactor axial directions. Good agreement is noticed between the measured and the calculated thermal neutron flux in the inner and the outer irradiation site with relative difference less than 7% and 5% respectively. (author)

  10. Disruption simulation experiment using high-frequency rastering electron beam as the heat source

    International Nuclear Information System (INIS)

    Yamazaki, S.; Seki, M.

    1987-01-01

    The disruption is a serious event which possibly reduces the lifetime of plasm interactive components, so the effects of the resulting high heat flux on the wall materials must be clearly identified. The authors performed disruption simulation experiments to investigate melting, evaporation, and crack initiation behaviors using an electron beam facility as the heat source. The facility was improved with a high-frequency beam rastering system which provided spatially and temporally uniform heat flux on wider test surfaces. Along with the experiments, thermal and mechanical analyses were also performed. A two-dimensional disruption thermal analysis code (DREAM) was developed for the analyses

  11. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas, E-mail: weber.th@gmx.de [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Mitteau, Raphael; Eaton, Russell [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m{sup 2} are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  12. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    International Nuclear Information System (INIS)

    Weber, Thomas; Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald; Banetta, Stefano; Bellin, Boris; Mitteau, Raphael; Eaton, Russell

    2015-01-01

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m"2 are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  13. Beam propagation through a gaseous reactor: classical transport

    International Nuclear Information System (INIS)

    Yu, S.S.; Buchanan, H.L.; Lee, E.P.; Chambers, F.W.

    1979-01-01

    The present calculations are applicable to any beam geometry with cylindrical symmetry, including the converging beam geometry (large entrance port with radius > or approx. = 10 cm), as well as the pencil-shaped beam (small porthole with radius approx. mm). The small porthole is clearly advantageous from the reactor vessel design point of view. While the physics of the latter mode of propagation may be more complex, analyses up to this point have not revealed any detrimental instability effects that will inhibit propagation. In fact, the large perpendicular velocity v/sub perpendicular/ that the pinched mode can accommodate provides a mechanism for the quenching of filamentary instability. Furthermore, this mode of propagation can withstand more ion scattering and is not subject to the upper bound on pressure (p < 10 torr) which is imposed on the converging beam mode

  14. Experimental approach to high power long duration neutral beams

    International Nuclear Information System (INIS)

    Horiike, Hiroshi

    1981-12-01

    Experimental studies of ion sources and beam dumps for the development of a high power long duration neutral beam injector for JT-60 are presented. Long pulse operation of high power beams requires a high degree of reliability. To develop a reliable ion source with large extraction area, a new duoPIGatron ion source with a coaxially shaped intermediate electrode is proposed and tested. Magnetic configuration is examined numerically to obtain high current arc discharge and source plasma with small density variation. Experimental results show that primary electrons were fed widely from the cathode plasma region to the source plasma region and that dense uniform source plasma could be obtained easily. Source plasma characteristics are studied and comparison of these with other sources are also described. To develop extraction electrode of high power ion source, experimental studies were made on the cooling of the electrode. Long Pulse beams were extracted safely under the condition of high heat loading on the electrode. Finally, burnout study for the development of high power beam dumps is presented. Burnout data were obtained from subcooled forced-convective boiling of water in a copper finned tube irradiated by high power ion beams. The results yield simple burnout correlations which can be used for the prediction of burnout heat flux of the beam dump. (author)

  15. Proposal for a radiation shielding study aiming the implantation of neutrons beam shutter in the J-9 radiation channel of the Argonauta reactor of the Nuclear Engineering Institute

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Larissa R.P.; Cardoso, Domingos D’Oliveira, E-mail: larissa.xavier@cnen.gov.br, E-mail: domingosoliveiralvr71@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Ferreira, Francisco José de Oliveira; Voi, Dante Luiz, E-mail: fferreira@ien.gov.br, E-mail: dante@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Argonauta, the only nuclear research reactor situated in Rio de Janeiro, located at the Institute of Nuclear Engineering (IEN), regularly serves a network of users focused on research and development, and also provides its infrastructure for experimental classes and completion work course. Due to increasing demand for non-destructive thermal neutron assays and production of radioisotopes, there is a search for new procedures and/or devices that optimize users' exposure to neutrons. The implementation of mechanisms that allow access to the irradiation channels without the reactor being turned off and with a shielding configuration that limits the occupational doses at this location is very useful for the operation of the reactor. In order to achieve this, the present work proposes the establishment of a neutron beam shutter of the J-9 irradiation channel of the IEN's Argonauta reactor. In a first step, experimental measurements were made in the irradiation channel of the reactor using a BF3 detector, which is coupled to a spectrometer. In this phase, the neutron beam was aligned to the spectrometer, and different materials were used as shields, aiming the attenuation of the beam. To validate and/or change the configuration of the barrier that best meets the material irradiation needs, a second planned phase is involving the neutron flux simulation of the reactor and the various shields with different boundary conditions using the particle transport code, Monte Carlo N-Particle Extended (MCNP- X). (author)

  16. Proposal for a radiation shielding study aiming the implantation of neutrons beam shutter in the J-9 radiation channel of the Argonauta reactor of the Nuclear Engineering Institute

    International Nuclear Information System (INIS)

    Xavier, Larissa R.P.; Cardoso, Domingos D’Oliveira; Ferreira, Francisco José de Oliveira; Voi, Dante Luiz

    2017-01-01

    Argonauta, the only nuclear research reactor situated in Rio de Janeiro, located at the Institute of Nuclear Engineering (IEN), regularly serves a network of users focused on research and development, and also provides its infrastructure for experimental classes and completion work course. Due to increasing demand for non-destructive thermal neutron assays and production of radioisotopes, there is a search for new procedures and/or devices that optimize users' exposure to neutrons. The implementation of mechanisms that allow access to the irradiation channels without the reactor being turned off and with a shielding configuration that limits the occupational doses at this location is very useful for the operation of the reactor. In order to achieve this, the present work proposes the establishment of a neutron beam shutter of the J-9 irradiation channel of the IEN's Argonauta reactor. In a first step, experimental measurements were made in the irradiation channel of the reactor using a BF3 detector, which is coupled to a spectrometer. In this phase, the neutron beam was aligned to the spectrometer, and different materials were used as shields, aiming the attenuation of the beam. To validate and/or change the configuration of the barrier that best meets the material irradiation needs, a second planned phase is involving the neutron flux simulation of the reactor and the various shields with different boundary conditions using the particle transport code, Monte Carlo N-Particle Extended (MCNP- X). (author)

  17. On Line Neutron Flux Mapping in Fuel Coolant Channels of a Research Reactor

    International Nuclear Information System (INIS)

    Barbot, Loic; Domergue, Christophe; Villard, Jean-Francois; Destouches, Christophe; Braoudakis, George; Wassink, David; Sinclair, Bradley; Osborn, John-C.; Wu, Huayou; Blandin, C.; Thevenin, Mathieu; Corre, Gwenole; Normand, Stephane

    2013-06-01

    This work deals with the on-line neutron flux mapping of the OPAL research reactor. A specific irradiation device has been set up to investigate fuel coolant channels using subminiature fission chambers to get thermal neutron flux profiles. Experimental results are compared to first neutronic calculations and show good agreement (C/E ∼0.97). (authors)

  18. Flux distribution in phantom for biomedical use of beam-type thermal neutrons

    International Nuclear Information System (INIS)

    Aoki, Kazuhiko; Kobayashi, Tooru; Kanda, Keiji; Kimura, Itsuro

    1985-01-01

    For boron neutron capture therapy, the thermal neutron beam is worth using as therapeutic neutron irradiation without useless and unfavorable exposure of normal tissues around tumor and for microanalysis system to measure ppm-order 10 B concentrations in tissue and to search for the location of the metastasis of tumor. In the present study, the thermal neutron flux distribution in a phantom, when beam-type thermal neutrons were incident on it, was measured at the KUR Neutron Guide Tube. The measurements were carried out by two different methods using indium foil. The one is an ordinary foil activation technique by using the 115 In(n, γ) 116m 1 In reactions, while the other is to detect γ-rays from the 115 In(n, γ) 116m 2 In reactions during neutron irradiations with a handy-type Ge detector. The calculations with DOT 3.5 were performed to examine thermal neutron flux in the phantom for various beam size and phantom size. The experimental and calculated results are in good agreement and it is shown that the second type measurement has a potential for practical application as a new monitoring system of the thermal neutron flux in a living body for boron neutron capture therapy. (author)

  19. Progress in neutron beam development at the HFR Petten (feasibility study for a BNCT facility)

    International Nuclear Information System (INIS)

    Constantine, G.; Moss, R.L.; Watkins, P.R.D.; Perks, C.A.; Delafield, H.J.; Ross, D.; Voorbraak, W.P.; Paardekooper, A.; Freudenreich, W.E.; Stecher-Rasmussen, F.

    1990-08-01

    Boron Neutron Capture Therapy, using intermediate energy neutrons to achieve the deep penetration essential for treating brain tumours, can be implemented with a filtered reactor neutron beam. This is designed to minimize the mean energy of the neutrons to keep proton recoil damage to the scalp within normal tissue tolerance limits whilst delivering the required thermal neutron fluence to the tumour over a reasonably short period. This can only be realized in conjunction with a high power density reactor. At the Joint Research Centre Petten an optimized neutron filter is currently being built for installation into the HB11 beam tube of the High Flux Reactor HFR. Part of the development leading to this design has been an extensive study of broad spectrum, filtered beam performance on the HB7 beam tube facility. A wide range of calculations was performed using the Monte Carlo code, MCPN, supported by validation experiments in which several filter configuration incorporating aluminium, sulphur, liquid argon, titanium and cadmium were installed for low power measurements of the neutron fluence rate, neutron spectra and beam gamma-ray contamination. The measurements were carried out within a successful European collaboration. Evaluations were made of the reactor core edge and unfiltered beam spectra, for comparison with MCNP calculations. Multi-foil activation methods and also gamma dose determination in the filtered beam using thermo-luminescent detectors were performed by the ECN. The Harwell/ Birmingham University collaborators undertook the neutron spectrum measurements in the filtered beam. proton recoil spectrometry was used above 30 keV, combined with a multi-sphere and BF 3 chamber response modification technique. Subsequent spectrum adjustment was carried out with the SENSAK code. The agreement between the calculated and measured spectra has given confidence in the reactor and filter modelling methods used to design the HB11 therapy facility. (author). 12 refs

  20. Temporal behavior of neutral particle fluxes in TFTR [Tokamak Fusion Test Reactor] neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.

    1989-09-01

    Data from an E parallel B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs

  1. Design features and performance of the LAMPF high-intensity beam area

    International Nuclear Information System (INIS)

    Agnew, L.; Grisham, D.; Macek, R.J.; Sommer, W.F.; Werbeck, R.D.

    1983-01-01

    LAMPF is a multi-purpose high-intensity meson factory capable of producing a 1 mA beam of 800-MeV protons. The three target cells and the beam stop facilities in the high intensity area have many special design features that are required for operation in the presence of high heat loads and intense radiation fields where accessibility is extremely limited. Reliable targets, beam windows, beam stops, beam transport and diagnostic components, vacuum enclosures, and auxiliary systems have been developed. Sophisticated remote-handling systems are employed for maintenance. Complex protection systems have been developed to guard against damage caused by errant beam. Beam availability approaching 90% has been achieved at currents of 600 to 700 μA. A new facility for direct proton and neutron radiation effects studies will be installed in 1985. The new facility will provide an integrated spallation neutron flux of up to 5 x 10 17 m -2 s -1 and will anable proton irradiation studies in the primary beam

  2. Basic research using the 250 kW research reactor of the Jozef Stefan Institute

    International Nuclear Information System (INIS)

    Dimic, V.

    1984-01-01

    The 250 kW TRIGA Mark II reactor is a light water reactor with solid fuel elements in which the zirconium hydride moderator is homogeneously distributed between enriched uranium. The reactor therefore has a large prompt negative temperature coefficient of reactivity; the fuel also has a very high retention of radioactive fission products. The experimental facilities include a rotary specimen rack, a central in-core radiation thimble, a pneumatic transfer system and pulsing capability. Other experimental facilities include two radial and two tangential beam tubes, a graphite thermal column and a graphite thermalizing column. At the steady state power of 250 kW the peak flux is 1x10 13 n/cm 2 in the central test position. In addition, pulsing to about 2000 MW is usually provided giving peak fluxes of about 2x10 16 n/cm 2 sec. All TRIGA reactors produce a core-average thermal neutron flux of about 10 7 n.v. per watt. Only with very large accelerators can such high fluxes be achieved. The types of research could be summarized as follows: thermal neutron scattering, neutron radiography, neutron and nuclear physics, activation analysis, radiochemistry, biology and medicine, and teaching and training. Typical applied research with a 250 kW reactor has been conducted in medicine, in biology, archaeology, metallurgy and materials science, engineering and criminology. It is well known that research reactors have been used routinely to produce isotopes for industry and medicine. We can conclude that the 250 kW TRIGA reactor is a useful and wide ranging source of radiation for basic and applied research. The operation cost for this instrument is relatively low. (author)

  3. PODESY program for flux mapping of CNA II reactor:

    International Nuclear Information System (INIS)

    Ribeiro Guevara, Sergio

    1988-01-01

    The PODESY program, developed by KWU, calculates the spatial flux distribution of CNA II reactor through a three-dimensional expansion of 90 incore detector measurements. The calculation is made in three steps: a) short-term calculation which considers the control rod positions and it has to be done each time the flux mapping is calculated; b) medium-term calculation which includes local burn-up dependent calculation made by diffusion methods in macro-cell configurations (seven channels in hexagonal distribution), and c) long-term calculation, or macroscopic flux determination, that is a fitting and expansion of measured fluxes, previously corrected by local effects, using the eigen functions of the modified diffusion equation. The paper outlines development of step (c) of the calculation. The incore detectors have been located in the central zone of the core. In order to obtain low errors in the expansion procedure it is necessary to include additional points, whose flux values are assumed to be equivalent to detector measurements. These flux values are calculated with detector measurements and a spatial flux distribution calculated by a PUMA code. This PUMA calculation employs a smooth burn-up distribution (local burn-up variations are considered in step (b) of the whole calculation) representing the state of core evolution at the calculation time. The core evolution referred to ends when the equilibrium core condition is reached. Additionally, a calculation method to be employed in the plant in case of incore detector failures, is proposed. (Author) [es

  4. Spatial distribution of reactor radiation around the horizontal experimental hole of the RA Reactor at Vinca; Prostorna raspodela reaktorskog zracenja oko horizontalnog eksperimentalnog kanala reaktora RA u Vinci

    Energy Technology Data Exchange (ETDEWEB)

    Ninkovic, M; Paligoric, D; Vujisic, B [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1964-10-15

    A survey is given of the measurement of the spatial distribution of thermal and fast neutrons and gamma radiations inside and around the reactor radiation beam which is carried through the experimental channel outside the reactor biological shield thus being a potential danger for the personnel in the reactor hall. The results obtained are used to determine the optimal distribution of the shielding elements around the free radiation beam. The activation method was used to determine the distribution of slow and fast neutrons. The detectors were Au{sup 197} and In {sup 115} for slow, and the S{sup 32} (n,p) P{sup 32} reaction for fast neutrons. The relative distribution of slow and fast neutrons along the beam axis in the space outside the reactor, and evaluation of the absolute value of the flux at the place where the beam comes out from the biological shield are given (author)

  5. Measurement of thermal neutron flux spatial distribution in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    D'Utra Bitelli, U.

    1993-01-01

    This work presents the spatial thermal neutron flux in IEA-R1 reactor obtained by activation foils methods. These measurements were made in 27 fuel elements of the reactor core (165 B configuration). The results are important to compare with theoretical values, power calibration and safety analysis. (author)

  6. Conception of electron beam-driven subcritical molten salt ultimate safety reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abalin, S.S.; Alekseev, P.N.; Ignat`ev, V.V. [Kurchatov Institute, Moscow (Russian Federation)] [and others

    1995-10-01

    This paper is a preliminary sketch of a conception to develop the {open_quotes}ultimate safety reactor{close_quotes} using modern reactor and accelerator technologies. This approach would not require a long-range R&D program. The ultimate safety reactor could produce heat and electric energy, expand the production of fuel, or be used for the transmutation of long-lived wastes. The use of the combined double molten salt reactor system allows adequate neutron multiplication to permit using an electron accelerator for the initial neutron flux. The general parameters of such a system are discussed in this paper.

  7. An easy-to-use method for measuring the flux of free atoms in a cluster beam

    International Nuclear Information System (INIS)

    Cuvellier, J.; Binet, A.

    1988-01-01

    A method is proposed to measure the flux of free atoms remaining in a beam of clusters. The time-of-flight (TOF) of an Ar beam containing clusters was analysed for this purpose using an electron impact + quadrupole mass spectrometer as detector. When considering TOF's with mass settings at Ar + , a double mode structure was observed. The slow component was interpreted as coming from Ar clusters that fragment as Ar + in the ionization chamber of the detector. The rapid mode in the TOF's was linked to the free atoms remaining in the Ar beam. Evaluating the area of this mode allowed one to measure the flux of free atoms in the Ar beam. The method is not restricted to measurements on Ar beams

  8. Neutron energy spectrum flux profile of Ghana's miniature neutron source reactor core

    International Nuclear Information System (INIS)

    Sogbadji, R.B.M.; Abrefah, R.G.; Ampomah-Amoako, E.; Agbemava, S.E.; Nyarko, B.J.B.

    2011-01-01

    Highlights: → The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was studied. → Using 20,484 energy grids, the thermal, slowing down and fast neutron energy regions were studied. - Abstract: The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was understudied using the Monte Carlo method. To create small energy groups, 20,484 energy grids were used for the three neutron energy regions: thermal, slowing down and fast. The moderator, the inner irradiation channels, the annulus beryllium reflector and the outer irradiation channels were the region monitored. The thermal neutrons recorded their highest flux in the inner irradiation channel with a peak flux of (1.2068 ± 0.0008) x 10 12 n/cm 2 s, followed by the outer irradiation channel with a peak flux of (7.9166 ± 0.0055) x 10 11 n/cm 2 s. The beryllium reflector recorded the lowest flux in the thermal region with a peak flux of (2.3288 ± 0.0004) x 10 11 n/cm 2 s. The peak values of the thermal energy range occurred in the energy range (1.8939-3.7880) x 10 -08 MeV. The inner channel again recorded the highest flux of (1.8745 ± 0.0306) x 10 09 n/cm 2 s at the lower energy end of the slowing down region between 8.2491 x 10 -01 MeV and 8.2680 x 10 -01 MeV, but was over taken by the moderator as the neutron energies increased to 2.0465 MeV. The outer irradiation channel recorded the lowest flux in this region. In the fast region, the core, where the moderator is found, the highest flux was recorded as expected, at a peak flux of (2.9110 ± 0.0198) x 10 08 n/cm 2 s at 6.961 MeV. The inner channel recorded the second highest while the outer channel and annulus beryllium recorded very low flux in this region. The flux values in this region reduce asymptotically to 20 MeV.

  9. Spatial fluxes and energy distributions of reactor fast neutrons in two types of heat resistant concretes

    International Nuclear Information System (INIS)

    Akki, T.S.; Benayad, S.A.; Megahid, R.M.

    1992-01-01

    Measurements have been carried out to study the spatial fluxes and energy distributions of reactor fast neutrons transmitted through two types of heat resistant concretes, serpentine concrete and magnetic lemonite concrete. The physical, chemical and mechanical properties of these concretes were checked by well known techniques. In addition, the effect of heating at temperatures up to 500deg C on the crystaline water content was checked by the method of differential thermal analysis. Measurements were performed using a collimated beam of reactor neutrons emitted from a 10 MW research reactor. The neutron spectra transmitted through concrete barriers of different thickness were measured by a scintillation spectrometer with NE-213 liquid organic scintillator. Discrimination against undesired pulses due to gamma-rays was achieved by a method based on pulse shape discrimination technique. The operating principle of this technique is based on the comparison of two weighted time integrals of the detector signal. The measured pulse amplitude distribution was converted to neutron energy distribution by a computational code based on double differentiation technique. The spectrometer workability and the accuracy of the unfolding technique were checked by measuring the neutron spectra of neutrons from Pu-α-Be and 252 Cf neutron sources. The obtained neutron spectra for the two concretes were used to derive the total cross sections for neutrons of different energies. (orig.)

  10. High temperature resistant materials and structural ceramics for use in high temperature gas cooled reactors and fusion plants

    International Nuclear Information System (INIS)

    Nickel, H.

    1992-01-01

    Irrespective of the systems and the status of the nuclear reactor development lines, the availability, qualification and development of materials are crucial. This paper concentrates on the requirements and the status of development of high temperature metallic and ceramic materials for core and heat transferring components in advanced HTR supplying process heat and for plasma exposed, high heat flux components in Tokamak fusion reactor types. (J.P.N.)

  11. Experiments on Critical Heat Flux for CAREM -25 Reactor

    International Nuclear Information System (INIS)

    Mazufri, C.M

    2000-01-01

    The prediction of critical heat flux (CHF) in rod bundles of light water reactors is basically performed with the aid of empirical correlations derived from experimental data.Many CHF correlations have been proposed and are widely used in the analysis of the thermal margin during normal operation, transient, and accident conditions.Correlations found in the open literature are not sufficiently verified for the thermal hydraulic conditions that appear in the CAREM core under normal operation: high pressure, low flow, and low qualities.To compensate this deficiency, an experimental investigation on CHF in such thermal-hydraulic conditions was carried out.The experiments have been performed in the Institute of Physics and Power Engineering of Russian Federation.A short description of facilities, details of the experimental program and some preliminary results obtained are presented in this work

  12. Neutron flux calculations for the Rossendorf research reactor in (hex)- and (hex,z)-geometry using SNAP-3D

    International Nuclear Information System (INIS)

    Koch, R.; Findeisen, A.

    1986-04-01

    The multigroup neutron diffusion theory code SNAP-3D has been used to perform time independent neutron flux and power calculations of the 10 MW Rossendorf research reactor of the type WWR-SM. The report describes these calculations, as well as the actual reactor configuration, some details of the code SNAP-3D, and two- and three-dimensional reactor models. For evaluating the calculations some flux values and control rod worths have been compared with those of measurements. (author)

  13. Horizontal beams creation on a mean power reactor: Isis 700 kW

    International Nuclear Information System (INIS)

    Morin, C.

    1987-08-01

    To satisfy the requests of experimenters, two horizontal beams, tangential at core, have been created. After a brief recall of the Isis reactor the author describes the realized works and gives a summary description of the two beams equipment [fr

  14. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    International Nuclear Information System (INIS)

    Ellison, C.L.; Fuchs, J.

    2010-01-01

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  15. New concept for a high-power beam dump

    International Nuclear Information System (INIS)

    Moir, R.W.; Taylor, C.E.

    1980-01-01

    A new concept for a dump for the ion and neutral beams used in the controlled nuclear fusion program uses thin sheets of a refractory metal such as tungsten formed into troughs having semi-circular cross sections. High-velocity water flowing circumferentially removes heat by subcooled nucleate boiling. Possible advantages are modular construction, lower water-pumping power, and a lower pressure drop than in conventional beam dumps. An example design calculation is shown for a dump capable of absorbing an incident flux of 10 kW/cm 2

  16. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube

    International Nuclear Information System (INIS)

    Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)

  17. Combustion Chemistry of Fuels: Quantitative Speciation Data Obtained from an Atmospheric High-temperature Flow Reactor with Coupled Molecular-beam Mass Spectrometer.

    Science.gov (United States)

    Köhler, Markus; Oßwald, Patrick; Krueger, Dominik; Whitside, Ryan

    2018-02-19

    This manuscript describes a high-temperature flow reactor experiment coupled to the powerful molecular beam mass spectrometry (MBMS) technique. This flexible tool offers a detailed observation of chemical gas-phase kinetics in reacting flows under well-controlled conditions. The vast range of operating conditions available in a laminar flow reactor enables access to extraordinary combustion applications that are typically not achievable by flame experiments. These include rich conditions at high temperatures relevant for gasification processes, the peroxy chemistry governing the low temperature oxidation regime or investigations of complex technical fuels. The presented setup allows measurements of quantitative speciation data for reaction model validation of combustion, gasification and pyrolysis processes, while enabling a systematic general understanding of the reaction chemistry. Validation of kinetic reaction models is generally performed by investigating combustion processes of pure compounds. The flow reactor has been enhanced to be suitable for technical fuels (e.g. multi-component mixtures like Jet A-1) to allow for phenomenological analysis of occurring combustion intermediates like soot precursors or pollutants. The controlled and comparable boundary conditions provided by the experimental design allow for predictions of pollutant formation tendencies. Cold reactants are fed premixed into the reactor that are highly diluted (in around 99 vol% in Ar) in order to suppress self-sustaining combustion reactions. The laminar flowing reactant mixture passes through a known temperature field, while the gas composition is determined at the reactors exhaust as a function of the oven temperature. The flow reactor is operated at atmospheric pressures with temperatures up to 1,800 K. The measurements themselves are performed by decreasing the temperature monotonically at a rate of -200 K/h. With the sensitive MBMS technique, detailed speciation data is acquired and

  18. High heat flux testing of TiC coated molybdenum with a tungsten intermediate layer

    International Nuclear Information System (INIS)

    Fujitsuka, Masakazu; Fukutomi, Masao; Okada, Masatoshi

    1988-01-01

    The use of low atomic number (Z) material coatings for fusion reactor first-wall components has proved to be a valuable technique to reduce the plasma radiation losses. Molybdenum coated with titanium carbide is considered very promising since it has a good capability of receiving heat from the plasma. An interfacial reaction between the TiC film and the molybdenum substrate, however, causes a severe deterioration of the film at elevated temperatures. In order to solve this problem a TiC coated molybdenum with an intermediate tungsten layer was developed. High temperature properties of this material was evaluated by a newly devised electron beam heating apparatus. TiC coatings prepared on a vacuum-heat-treated molybdenum with a tungsten intermediate layer showed good high temperature stability and survived 2.0 s pulses of heating at a power density as high as 53 MW/m 2 . The melt area of the TiC coatings in high heat flux testings also markedly decreased when a tungsten intermediate layer was applied. The melting mechanism of the TiC coatings with and without a tungsten intermediate layer was discussed by EPMA measurements. (author)

  19. Neutron radiography in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Pugliesi, R.; Moraes, A.P.V. de; Yamazaki, I.M.; Freitas Acosta, C. de.

    1988-08-01

    Neutronradiography of several materials have been obtained at the IEA-R1 Nuclear Research Reactor (IPEN-CNEN/SP), by means of two conversion techniques: a) (n, α) at the beam-hole n 0 3 where a collimated thermal neutron beam, exposure area 4 cm x 8cm and flux at the sample 10 5 n/s cm 2 is obtained. The film used was the CN-85 cellulose nitrate coated with lithium tetraborate (conversor). The time irradiation of the film was 15 minutes and in following was eteched during 30 minutes in a NaOH(10%) aqueous solution at a constant temperature of 60 0 C.; b) (n,γ) by using an experimental arrangement installed in the botton of the pool of the reactor. The flux of the collimated neutron beam is 10 5 n/s/cm 2 at the sample and the conversion is made by means of a dysprozium sheet. The film used was Kodak T-5. The irradiation and the transfering time was 2 hours and 20 hours respectively. (author) [pt

  20. Determination flux in the Reactor JEN-1; Medida de flujos de neutrones en el nucleo del Reactor JEN-1

    Energy Technology Data Exchange (ETDEWEB)

    Manas Diaz, L; Montes Ponce de leon, J.

    1960-07-01

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 {mu} gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs.

  1. Microdosimetry of high LET therapeutic beams

    International Nuclear Information System (INIS)

    Ito, Akira

    1980-01-01

    Experimental microdosimetry of high LET therapeutic beams were presented. The cyclotron produced fast neutron beams at IMS, TAMVEC and NRL, a reactor fast neutron at YAYOI, a proctor beam at Harvard and a pion beam at TRIUMF are included. Measurements were performed with a conventional tissue equivalent spherical proportional counter with a logarithmic amplifier which made the recording and analysis quite simple. All the energy deposition spectra were analysed in the conventional manner and anti y F, anti y D as well as anti y D* were calculated. The spectra and their mean lineal energies showed wide variations, depending on the particle type, energy, position in phantom. Fractional contribution of elemental particles ( electron, muon, pion, proton, alpha and so on) to the total dose were analysed. For fast neutron beams, the y spectra stayed almost constant at any depth along the central axis in the phantom. The y spectra of proton beam changed slightly along the depth. On the other side, the y spectra of pion beam change drastically in the phantom between plateau and dose peak region. A novel technique of time-of-flight microdosimetry was employed, which made it possible to separate the fractional contribution of contaminant electrons and muons out of pions. Finally, a map of the radiation quality for all the beams is presented and its significances are discussed. (author)

  2. IFMIF high flux test module - recent progress in design and manufacturing

    International Nuclear Information System (INIS)

    Leichtle, D.; Arbeiter, F.; Dolensky, B.

    2007-01-01

    The International Fusion Material Irradiation Facility (IFMIF) is an accelerator driven neutron source for irradiation tests of candidate fusion reactor materials. Two 40 MeV deuterium beams with 125 mA each strike a liquid lithium jet target, producing a high intensity neutron flux up to 55 MeV, which penetrates the adjacent test modules. Within the High Flux Test Module (HFTM) a testing volume of 0.5 litres filled by qualified small scale specimens will be irradiated at displacement rates of 20-50 dpa/fpy in structural materials. The HFTM will also provide helium and hydrogen production to dpa ratios that reflect within the uncertainties the values expected in a DEMO fusion reactor The Forschungszentrum Karlsruhe (FZK) has developed a HFTM design which closely follows the design premise of maximising the space available for irradiation specimens in the IFMIF high flux zone and in addition allows keeping the temperature nearly constant in the rigs containing the specimen. Within the entire specimen stack the temperature deviation will be below about 15 K. The main design principles applied are (i) filling the gaps between the specimens with liquid metal, (ii) winding three separately controlled heater sections on the inner capsules and (iii) dividing the test rigs in a hot inner and a cold outer zone, which a separated by a gap filled with stagnant helium that serves as a thermal insulator. Channels between the outer covers (the cold parts) are cooled by helium gas at moderate pressure (3 bars at inlet) and temperature (50 C). 12 identical rigs holding the specimen capsules which are heated by segmented helically wound electrical heaters ensure a flexible loading scheme during IFMIF operation. Complementary analyses on nuclear, thermo-hydraulics and mechanical performance of the HFTM were performed to optimize the design. The present paper highlights the main design characteristics as well as recent progress achieved in this area. This includes the stiffening of

  3. Calculation of neutron flux and reactivity by perturbation theory at high order

    International Nuclear Information System (INIS)

    Silva, W.L.P. da; Silva, F.C. da; Thome Filho, Z.D.

    1982-01-01

    A high order pertubation theory is studied, independent of time, applied to integral parameter calculation of a nuclear reactor. A pertubative formulation, based on flux difference technique, which gives directy the reactivity and neutron flux up to the aproximation order required, is presented. As an application of the method, global pertubations represented by fuel temperature variations, are used. Tests were done aiming to verify the relevancy of the approximation order for several intensities of the pertubations considered. (E.G.) [pt

  4. Method and apparatus for controlling the neutron flux in nuclear reactors

    International Nuclear Information System (INIS)

    Minnick, L.E.

    1979-01-01

    A control rod assembly in a nuclear reactor that automatically scrams the reactor when a loss of coolant flow occurs and that can also control the level of neutron flux in the reactor is described. The control rod assembly includes a separator plate having an orifice through which the reactor coolant flows and a sealing surface around the orifice. The control rod in the assembly has a complementary sealing surface. When the control rod and separator plate are brought into contact, the differential pressure across the separator plate caused by the flow of the primary coolant through the reactor core retains the two sealing surfaces together. If the flow of coolant stops or the differential pressure across the separator plate decreases for any reason, the control rod drops by gravity and the reactor is scrammed. The control rod is also automatically dropped as a result of the lateral vibration of an earthquake or by the downward motion of the rod drive shaft, either of which will open the sealing surfaces and reduce the sealing pressure

  5. Australia needs to replace the HIFAR reactor

    International Nuclear Information System (INIS)

    Garnett, Helen

    1993-01-01

    Central to the execution of ANSTO's objectives has been the operation since 1958 of the multipurpose HIFAR research reactor and related infrastructure. However, HIFAR's irradiation facilities, which are used for the provision of radiopharmaceuticals essential for nuclear medicine in Australia, have a limited capacity. The author stated that HIFAR's neutron beam facilities, which are needed by Australian scientists to undertake basic structural studies on a wide range of materials, are unable to provide the resolution and information required to keep Australia in the league of technologically advanced nations. The neutron flux and design limitations of older reactors such as HIFAR inhibit the upgrading of neutron beam facilities to modern standards. It is emphasised that while the cost of the new reactor is a vital issue, what is a prevailing importance is analyses of the cost-benefit and effectiveness of the new reactor, which will be undertaken by the Research Reactor Review. Some of these benefits are briefly outlined. ills

  6. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield

    International Nuclear Information System (INIS)

    Merz, Stefan; Djuricic, Mile; Villa, Mario; Boeck, Helmuth; Steinhauser, Georg

    2011-01-01

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10 9 cm -2 s -1 at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. - Highlights: → Neutron activation is an important process for the waste management of nuclear facilities. → Biological shield of the TRIGA reactor Vienna has been topic of investigation. → Flux values allow a categorization of the concrete concerning radiation protection legislation. → Reactor installations are of great importance as neutron sources into the biological shield. → Every installation shows distinguishable flux profiles.

  7. Fast neutron flux in the RA reactor experimental channels; Fluks brzih neutrona u eksperimentalnim kanalima reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Dobrosavljevic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Fast neutron flux in the RA reactor experimental channels was determined by using threshold reaction detectors. The (n,p) type reactions S{sub 32} (n,p)P{sub 32}, and Al{sub 24} (n,p)Na{sub 24}. Prepared sulphur and phosphorous foils were placed in cadmium boxes and irradiated in experimental channels VK-5, VK-7 and VK-9. Gold foils were irradiated simultaneously for controlling the reactor power. Reactor power was 100 kW during irradiation of half an hour. Activity of P{sub 32} and S{sub 31} after reactor shutdown was measured by 4{pi} counter and three calibrated GM counters. Absolute neutron flux was determined by using thus obtained data.

  8. Upgrading of the Munich reactor with a compact core

    International Nuclear Information System (INIS)

    Boening, K.; Glaeser, W.; Meier, J.; Rau, G.; Roehrmoser, A.; Zhang, L.

    1985-01-01

    An extremely small reactor core has been proposed for the project of substantial modernization of the FRM research reactor at Munich. According to the present status this 'compact core' will be a cylinder with a diameter of about 20 cm and 70 cm high. The new high-density U 3 Si/Al dispersion fuel of about 45% enrichment is contained in 20 concentric fuel plate rings. The compact core is surrounded by a large heavy-water tank which will incorporate the user installations (beam tubes and irradiation channels). However, the primary cooling circuit will contain light water which is not only more economic but also essential for the performance of the small core. An important optimization potential to decrease easily the power density peaks in the core is to reduce further the enrichment in those fuel plate rings where the neutron flux is particularly high. Two-dimensional neutron transport calculations show that such a core, containing about 7.5 kg 235 U, should have an effective multiplication factor of about 1.22 and an unperturbed but realistic maximum thermal neutron flux in the heavy water tank of 7 to 8x10 14 cm -2 .s -1 at 20 MW reactor power. (author)

  9. The effect of temperature and the control rod position on the spatial neutron flux distribution in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Omar, H.; Ghazi, N.

    2007-01-01

    The effect of water and fuel temperature increase and changes in the control rod positions on the spatial neutron flux distribution in the Syrian Miniature Neutron Source Reactor (MNSR) is discussed. The cross sections of all the reactor components at different temperatures are generated using the WIMSD4 code. These group constants are used then in the CITATION code to calculate the special neutron flux distribution using four energy groups. This work shows that water and fuel temperature increase in the reactor during the reactor daily operating time does not affect the spatial neutron flux distribution in the reactor. Changing the control rod position does not affect as well the spatial neutron flux distribution except in the region around the control rod position. This stability in the spatial neutron flux distribution, especially in the inner and outer irradiation sites, makes MNSR as a good tool for the neutron activation analysis (NAA) technique and production of radioisotopes with medium or short half lives during the reactor daily operating time. (author)

  10. High heat flux experiment on isotropic graphite using pulsed laser beam

    International Nuclear Information System (INIS)

    Kizaki, Hiroshi; Tokunaga, Kazutoshi; Fukuda, Shigehisa; Yoshida, Naoaki; Muroga, Takeo.

    1989-01-01

    In order to examine the plasma-withstanding behavior of isotropic graphite which is the leading favorite material for the first wall of nuclear fusion reactors, the pulsed thermal loading experiment was carried out by using a laser. As the result of analyzing the gas which was emitted during the pulsed thermal loading, together with the formation and release of various hydrocarbon gases, also the formation of carbon clusters due to the sublimation of carbon was observed. The vacuum characteristics and the dependence on thermal loading condition and surface treatment condition of these released gases were determined, and the problems and the way of improvement in its application to nuclear fusion reactors were elucidated. Since the isotropic graphite is of low atomic number, the radiation loss in plasma is small, and the improvement of the plasma parameters can be expected. Besides, the heat resistance and high temperature stability in vacuum are good, and the induced radioactivity is low. On the other hand, the quantity of gas occlusion is much, various hydrocarbon gases are formed at high temperature, and the wear due to sublimation arises by very high thermal loading. The experimental method, the observation of graphite surface by SEM, and the effect of carbon coating due to thermal decomposition are reported. (K.I.)

  11. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation

    Science.gov (United States)

    Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan

    2018-05-01

    Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.

  12. Critical heat flux experiments for high conversion light water reactor, (3)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Suemura, Takayuki; Hiraga, Fujio; Murao, Yoshio

    1990-03-01

    As a part of the thermal-hydraulic feasibility study of a high conversion light water reactor (HCLWR), critical heat flux (CHF) experiments were performed using triangular array rod bundles under steady-state and flow reduction transient conditions. The geometries of test sections were: rod outer diameter 9.5 mm, number of rods 4∼7, heated length 0.5∼1.0 m, and pitch to diameter ratio (P/D) 1.126∼1.2. The simulated fuel rod was a stainless steel tube and uniformly heated electrically with direct current. In the steady-state tests, pressures ranged: 1.0∼3.9 Mpa, mass velocities: 460∼4270 kg/s·m 2 , and exit qualities: 0.02∼0.35. In the transient tests, the times to CHF detection ranged from 0.5 to 25.4 s. The steady-state CHF's for the 4-rod test sections were higher than those for the 7-rod test sections with respect to the bundle averaged flow conditions. The measured CHF's increased with decreasing the heated length and decreased with decreasing the P/D. Based on the local flow conditions obtained with the subchannel analysis code COBRA-IV-I, KfK correlation agreed with the CHF data within 20 %, while WSC-2, EPRI-B and W, EPRI-Columbia and Kattor correlations failed to give satisfactory agreements. Under flow reduction rates less than 6 %/s, no significant difference in the onset conditions of DNB (departure from nucleate boiling) was recognized between the steady-state and transient conditions. At flow reduction rates higher than 6 %/s, on the other hand, the DNB occurred earlier than the DNB time predicted with the steady-state experiments. (author)

  13. Absolute measurements of the fast neutron flux in the reactor RA

    Energy Technology Data Exchange (ETDEWEB)

    Berovic, N; Boreli, F; Dragin, R [Institute of Nuclear Sciences Boris Kidric, Department of physics, Vinca, Beograd (Serbia and Montenegro)

    1961-10-15

    The absolute neutron flux in the vertical VK-5 hole of the reactor RA was determined by using the {sup 27}Al (n, alpha) {sup 24}Na reaction, and by counting the {sup 24}Na - 2.5 MeV gamma line photopeak activity. A method for the determination of {sigma}{sub eff} as a mean value between the two large limiting cases of neutron spectra is used. The flux at the power level of 5 MW was found to be (2.5{+-}0.9){center_dot}10{sup 12}n/cm{sup 2}sec (author)

  14. On RELAP5-simulated High Flux Isotope Reactor reactivity transients: Code change and application

    International Nuclear Information System (INIS)

    Freels, J.D.

    1993-01-01

    This paper presents a new and innovative application for the RELAP5 code (hereafter referred to as ''the code''). The code has been used to simulate several transients associated with the (presently) draft version of the High-Flux Isotope Reactor (HFIR) updated safety analysis report (SAR). This paper investigates those thermal-hydraulic transients induced by nuclear reactivity changes. A major goal of the work was to use an existing RELAP5 HFIR model for consistency with other thermal-hydraulic transient analyses of the SAR. To achieve this goal, it was necessary to incorporate a new self-contained point kinetics solver into the code because of a deficiency in the point-kinetics reactivity model of the Mod 2.5 version of the code. The model was benchmarked against previously analyzed (known) transients. Given this new code, four event categories defined by the HFIR probabilistic risk assessment (PRA) were analyzed: (in ascending order of severity) a cold-loop pump start; run-away shim-regulating control cylinder and safety plate withdrawal; control cylinder ejection; and generation of an optimum void in the target region. All transients are discussed. Results of the bounding incredible event transient, the target region optimum void, are shown. Future plans for RELAP5 HFIR applications and recommendations for code improvements are also discussed

  15. Muon catalyzed fusion - fission reactor driven by a recirculating beam

    International Nuclear Information System (INIS)

    Eliezer, S.; Tajima, T.; Rosenbluth, M.N.

    1986-01-01

    The recent experimentally inferred value of multiplicity of fusion of deuterium and tritium catalyzed by muons has rekindled interest in its application to reactors. Since the main energy expended is in pion (and consequent muon) productions, we try to minimize the pion loss by magnetically confining pions where they are created. Although it appears at this moment not possible to achieve energy gain by pure fusion, it is possible to gain energy by combining catalyzed fusion with fission blankets. We present two new ideas that improve the muon fusion reactor concept. The first idea is to combine the target, the converter of pions into muons, and the synthesizer into one (the synergetic concept). This is accomplished by injecting a tritium or deuterium beam of 1 GeV/nucleon into DT fuel contained in a magnetic mirror. The confined pions slow down and decay into muons, which are confined in the fuel causing little muon loss. The necessary quantity of tritium to keep the reactor viable has been derived. The second idea is that the beam passing through the target is collected for reuse and recirculated, while the strongly interacted portion of the beam is directed to electronuclear blankets. The present concepts are based on known technologies and on known physical processes and data. 29 refs., 6 figs., 4 tabs

  16. High heat flux x-ray monochromators: What are the limits?

    International Nuclear Information System (INIS)

    Rogers, C.S.

    1997-06-01

    First optical elements at third-generation, hard x-ray synchrotrons, such as the Advanced Photon Source (APS), are subjected to immense heat fluxes. The optical elements include crystal monochromators, multilayers and mirrors. This paper presents a mathematical model of the thermal strain of a three-layer (faceplate, heat exchanger, and baseplate), cylindrical optic subjected to narrow beam of uniform heat flux. This model is used to calculate the strain gradient of a liquid-gallium-cooled x-ray monochromator previously tested on an undulator at the Cornell High Energy Synchrotron Source (CHESS). The resulting thermally broadened rocking curves are calculated and compared to experimental data. The calculated rocking curve widths agree to within a few percent of the measured values over the entire current range tested (0 to 60 mA). The thermal strain gradient under the beam footprint varies linearly with the heat flux and the ratio of the thermal expansion coefficient to the thermal conductivity. The strain gradient is insensitive to the heat exchanger properties and the optic geometry. This formulation provides direct insight into the governing parameters, greatly reduces the analysis time, and provides a measure of the ultimate performance of a given monochromator

  17. Beam plasma 14 MeV neutron source for fusion materials development

    International Nuclear Information System (INIS)

    Ravenscroft, D.; Bulmer, D.; Coensgen, F.; Doggett, J.; Molvik, A.; Souza, P.; Summers, L.; Williamson, V.

    1991-09-01

    The conceptual engineering design and expected performance for a 14 MeV DT neutron source is detailed. The source would provide an intense neutron flux for accelerated testing of fusion reactor materials. The 150-keV neutral beams inject energetic deuterium atoms, that ionize, are trapped, then react with a warm (200 eV), dense tritium target plasma. This produces a neutron source strength of 3.6 x 10 17 n/sec for a neutron power density at the plasma edge of 5--10 MW/m 2 . This is several times the ∼2 MW/m 2 anticipated at the first wall of fusion reactors. This high flux provides accelerated end-of-life tests of 1- to 2-year duration, thus making materials development possible. The modular design of the source and the facilities are described

  18. Visual beam tube inspection at the TRIGA reactor Vienna

    International Nuclear Information System (INIS)

    Boeck, H.; Musilek, A.; Villa, M.

    2006-01-01

    Of the four TRIGA beam tubes two have been visually inspected in 1985. Prior to the inspection the reactor was shut down for 3 weeks. The fuel elements around the beam tubes were removed. Stainless steel dummy elements were inserted in the fuel positions to shield the core radiation. The active part of the Fast Rabbit Tube was removed into the beam tube loading device and transferred to an interim storage: Front dose rate was ∼ 50 mSv/h. Generally the beam tube was very clean, after the last inspection about 30 years ago. A1 cm cut was observed at the beam tube front end. A rigid endoscope was used to check the beam tube's inner surface using a 90 degree deflection objective and photo- and video equipment. The direct dose rate in front of the beam tube was about 30 mSv/h. The beam tube was vacuum cleaned. A corroded shielding tank containing boric acid has leaked. A wooden collimator partially disintegrating due to extreme temperature was removed from beam tube D. Documentation of the inspection for visible defects is produced for later comparison

  19. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: pnch@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)

    2017-03-15

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  20. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    International Nuclear Information System (INIS)

    Park, Jong-beom; Park, No-Cheol; Lee, Sang-Jeong; Park, Young-Pil; Choi, Youngin

    2017-01-01

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.