WorldWideScience

Sample records for high-field magnet applications

  1. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  2. A field-sweep/field-lock system for superconducting magnets--Application to high-field EPR.

    Science.gov (United States)

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G

    2006-12-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of +/-0.4 T and a resolution of up to 10(-5) T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR.

  3. A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR

    Science.gov (United States)

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.

    2007-01-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306

  4. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  5. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Science.gov (United States)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  6. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    International Nuclear Information System (INIS)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-01-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG 1 ) and MOSFET circuits (HCMFG 2 ) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed

  7. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Energy Technology Data Exchange (ETDEWEB)

    Bouda, N. R., E-mail: nybouda@iastate.edu; Pritchard, J.; Weber, R. J.; Mina, M. [Department of Electrical and Computer engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  8. Development of high temperature superconductors for magnetic field applications

    International Nuclear Information System (INIS)

    Larbalestier, D.C.

    1991-01-01

    The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbations to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development

  9. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  10. Fast calculation of magnetic field distribution in magnetic gear for high torque application

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Liu, Xiao; Song, Zhanfeng

    2016-01-01

    burden if finite element method (FEM) is employed. Analytical methods are therefore expected. To date, only the exact subdomain model is capable of precisely predicting the magnetic field behaviors in an analytical manner through solving a matrix equation. However, as pole number of the CMG increases......For applications demanding high torque and high reliability transmission, coaxial magnetic gear (CMG) may be a promising substitute of the mechanical gearbox. However, with the increasing of unit capacity, CMG tends to have a big size with large pole number, which would lead to heavy computation...

  11. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    Science.gov (United States)

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  12. High field high frequency EPR techniques and their application to single molecule magnets

    International Nuclear Information System (INIS)

    Edwards, R.S.; Hill, S.; Goy, P.; Wylde, R.; Takahashi, S.

    2004-01-01

    We present details of a new high-field/high-frequency EPR technique, and its application to measurements of single-molecule magnets (SMMs). By using a quasi-optical set-up and microwave sources covering a continuous frequency range from 170 to 600 GHz, in conjunction with a millimetre-wave vector network analyser, we are able to measure EPR to high magnetic fields. For example, a g=2 system will exhibit EPR at about 14 T at a frequency of 400 GHz. We illustrate the technique by presenting details of recent high-frequency experiments on several SMMs which are variations of the well-known SMM Mn 12 -Ac. This material has a spin ground state of S=10 and large uniaxial anisotropy, hence frequencies above 300 GHz are required in order to observe EPR from the ground state

  13. A viable dipole magnet concept with REBCO CORC® wires and further development needs for high-field magnet applications

    Science.gov (United States)

    Wang, Xiaorong; Caspi, Shlomo; Dietderich, Daniel R.; Ghiorso, William B.; Gourlay, Stephen A.; Higley, Hugh C.; Lin, Andy; Prestemon, Soren O.; van der Laan, Danko; Weiss, Jeremy D.

    2018-04-01

    REBCO coated conductors maintain a high engineering current density above 16 T at 4.2 K. That fact will significantly impact markets of various magnet applications including high-field magnets for high-energy physics and fusion reactors. One of the main challenges for the high-field accelerator magnet is the use of multi-tape REBCO cables with high engineering current density in magnet development. Several approaches developing high-field accelerator magnets using REBCO cables are demonstrated. In this paper, we introduce an alternative concept based on the canted cos θ (CCT) magnet design using conductor on round core (CORC®) wires that are wound from multiple REBCO tapes with a Cu core. We report the development and test of double-layer three-turn CCT dipole magnets using CORC® wires at 77 and 4.2 K. The scalability of the CCT design allowed us to effectively develop and demonstrate important magnet technology features such as coil design, winding, joints and testing with minimum conductor lengths. The test results showed that the CCT dipole magnet using CORC® wires was a viable option in developing a REBCO accelerator magnet. One of the critical development needs is to increase the engineering current density of the 3.7 mm diameter CORC® wire to 540 A mm-2 at 21 T, 4.2 K and to reduce the bending radius to 15 mm. This would enable a compact REBCO dipole insert magnet to generate a 5 T field in a background field of 16 T at 4.2 K.

  14. Trapped magnetic field of a superconducting bulk magnet in high- Tc RE-Ba-Cu-O

    International Nuclear Information System (INIS)

    Fujimoto, Hiroyuki; Yoo, Sang Im; Higuchi, Takamitsu; Nakamura, Yuichi; Kamijo, Hiroki; Nagashima, Ken; Murakami, Masato

    1999-01-01

    Superconducting magnets made of high-T c superconductors are promising for industrial applications. It is well known that REBa 2 Cu 3 O 7-x and LRE (light rare-earth) Ba 2 Cu 3 O 7-x superconductors prepared by melt processes have a high critical current density, J c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J c in high magnetic fields and a much improved irreversibility field, H irr , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train

  15. Neutron Scattering and High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stone, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    The workshop “Neutron Scattering and High Magnetic Fields” was held September 4-5, 2014 at the Oak Ridge National Laboratory (ORNL). The workshop was held in response to a recent report by the National Research Council of the National Academy of Sciences entitled “High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions.”1 This report highlights the fact that neutron scattering measurements carried out in high magnetic fields provide important opportunities for new science. The workshop explored the range of the scientific discoveries that could be enabled with neutron scattering measurements at high fields (25 Tesla or larger), the various technologies that might be utilized to build specialized instruments and sample environment equipment to enable this research at ORNL, and possible routes to funding and constructing these facilities and portable high field sample environments.

  16. Energy dissipation of composite multifilamentary superconductors for high-current ramp-field magnet applications

    International Nuclear Information System (INIS)

    Gung, C.Y.

    1993-01-01

    Energy dissipation, which is also called AC loss, of a composite multifilamentary superconducting wire is one of the most fundamental concerns in building a stable superconducting magnet. Characterization and reduction of AC losses are especially important in designing a superconducting magnet for generating transient magnetic fields. The goal of this thesis is to improve the understanding of AC-loss properties of superconducting wires developed for high-current ramp-field magnet applications. The major tasks include: (1) building an advanced AC-loss measurement system, (2) measuring AC losses of superconducting wires under simulated pulse magnet operations, (3) developing an analytical model for explaining the new AC-loss properties found in the experiment, and (4) developing a computational methodology for comparing AC losses of a superconducting wire with those of a cable for a superconducting pulse magnet. A new experimental system using an isothermal calorimetric method was designed and constructed to measure the absolute AC losses in a composite superconductor. This unique experimental setup is capable of measuring AC losses of a brittle Nb 3 Sn wire carrying high AC current in-phase with a large-amplitude pulse magnetic field. Improvements of the accuracy and the efficiency of this method are discussed. Three different types of composite wire have been measured: a Nb 3 Sn modified jelly-roll (MJR) internal-tin wire used in a prototype ohmic heating coil, a Nb 3 Sn internal-tin wire developed for a fusion reactor ohmic heating coil, and a NbTi wire developed for the magnets in a particle accelerator. The cross sectional constructions of these wires represent typical commercial wires manufactured for pulse magnet applications

  17. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  18. Trapped magnetic field of a superconducting bulk magnet in high- T sub c RE-Ba-Cu-O

    CERN Document Server

    Fujimoto, H; Higuchi, T; Nakamura, Y; Kamijo, H; Nagashima, K; Murakami, M

    1999-01-01

    Superconducting magnets made of high-T sub c superconductors are promising for industrial applications. It is well known that REBa sub 2 Cu sub 3 O sub 7 sub - sub x and LRE (light rare-earth) Ba sub 2 Cu sub 3 O sub 7 sub - sub x superconductors prepared by melt processes have a high critical current density, J sub c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J sub c in high magnetic fields and a much improved irreversibility field, H sub i sub r sub r , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  19. High magnetic field MRI system

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Urata, Masami; Satoh, Kozo

    1990-01-01

    A high field superconducting magnet, 4-5 T in central magnetic field, is required for magnetic resonance spectroscopic imaging (MRSI) on 31 P, essential nuclei for energy metabolism of human body. This paper reviews superconducting magnets for high field MRSI systems. Examples of the cross-sectional image and the spectrum of living animals are shown in the paper. (author)

  20. Magnetic phase diagram of Ce2Fe17 under high pressures in high magnetic fields

    International Nuclear Information System (INIS)

    Ishikawa, Fumihiro; Goto, Tsuneaki; Fujii, Hironobu

    2003-01-01

    The magnetization of Ce 2 Fe 17 was precisely measured under high pressures up to 1.2 GPa in magnetic fields up to 18 T. The magnetic phase diagram in the B-T plane is determined at 0, 0.3, 0.4, 0.6, 0.9 and 1.2 GPa. At 0 GPa, five magnetic phases exist and the application of high pressure produces two additional magnetic phases. The shape of the phase diagram changes drastically with increasing pressure

  1. Pulsed high field magnets. An efficient way of shaping laser accelerated proton beams for application

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)

    2015-07-01

    Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  2. High-field superferric MR magnet

    International Nuclear Information System (INIS)

    Huson, F.R.; Carcagno, R.; Colvin, J.

    1987-01-01

    Current large-bore (>20 cm), high-field (2-T) MR magnets have major implementation disadvantages, mostly related to the extensive stray field of traditional air-core superconducting magnets. To circumvent this problem, the authors designed, constructed, and tested a 30-cm prototype superconducting, self-shielded, high field magnet. This unshimmed superferric magnet can operate between 0.5 and 4 T with a field quality of about one part per million over one quarter of its aperture. The magnet can be ramped from one field strength to another in approximately 10 minutes. The 5-Gauss line extends less than 1 meter outside the magnet structure. Further details, including MR measurements and images, are demonstrated, as well as 1-meter bore scale-up projections

  3. The Humboldt High Magnetic Field Center at Berlin

    International Nuclear Information System (INIS)

    Hansel, S; Mueller, H-U; Anh, T T; Richter, B; Rossmann, H; Ortenberg, M von

    2006-01-01

    The Humboldt High Magnetic Field Center is operated by the Chair for Magnetotransport in Solids of the Department of Physics of the Humboldt-Universitaet zu Berlin. It provides DC-magnetic fields up to 20 T, pulsed nondestructive fields of up to 60 T and megagauss fields of up to 331 T using a single-turn coil generator for experimental application focusing on solid state physics. Magneto-optical investigations are carried out in the MIR, NIR and visible wavelength range as well as transport and magnetization experiments. The facility is open to the scientific community and welcomes users within the European project EuroMagNET. The laboratory will be closed in fall 2006 but its experimental facilities will be further accessible to the community in other labs. The single-turn coil generator will be transferred to LNCMP, Toulouse, France, continuing to provide applicable megagauss fields to the European Community

  4. Development of high field superconducting magnet

    International Nuclear Information System (INIS)

    Irie, Fujio; Takeo, Masakatsu.

    1986-01-01

    Recently, in connection with nuclear fusion research, the development of high field superconducting magnets showed rapid progress. The development of high field magnets of 15 T class by the techniques of winding after heat treatment has been continued in various places, as these techniques are suitable to make large magnets. In 1985, Kyushu University attained the record of 15.5 T. However in high field magnets, there are many problems peculiar to them, and the basic research related to those is demanded. In this report, these general problems, the experience of the design and manufacture in Kyushu University and the related problems are described. The superconducting magnet installed in the Superconducting Magnet Research Center of Kyushu University attained the record of 15.5 T for the first time in March, 1985. In superconducting magnets, very difficult problem must be solved since superconductivity, heat and mechanical force are inter related. The problems of the wire materials for high field, the scale of high field magnets, the condition limiting mean current density, and the development of high field magnets in Kyushu University are described. (Kako, I.)

  5. Nb3Sn High Field Magnets for the High Luminosity LHC Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio

    2015-06-01

    The High Luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11 T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11 T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets.

  6. Novel Electrochemical Phenomena in Magnetic Fields(Research in High Magnetic Fields)

    OpenAIRE

    Mogi, Iwao; Kamiko, Masao

    1996-01-01

    Recent two topics are given of electrochemical studies in steady magnetic fields at the High Field Laboratory of Tohoku University. One is the magnetic-field-induced diffusion-limited-aggregation in the pattern formation of silver electrodeposits . The other is the magnetic field effect on the learning effect in a dopant-exchange process of an organic conducting polymer polypyrrole.

  7. Mechanical design of a high field common coil magnet

    CERN Document Server

    Caspi, S; Dietderich, D R; Gourlay, S A; Gupta, R; McInturff, A; Millos, G; Scanlan, R M

    1999-01-01

    A common coil design for high field 2-in-1 accelerator magnets has been previously presented as a "conductor-friendly" option for high field magnets applicable for a Very Large Hadron Collider. This paper presents the mechanical design for a 14 tesla 2-in-1 dipole based on the common coil design approach. The magnet will use a high current density Nb/sub 3/Sn conductor. The design addresses mechanical issues particular to the common coil geometry: horizontal support against coil edges, vertical preload on coil faces, end loading and support, and coil stresses and strains. The magnet is the second in a series of racetrack coil magnets that will provide experimental verification of the common coil design approach. (9 refs).

  8. High-Field Accelerator Magnets

    International Nuclear Information System (INIS)

    Rijk, G de

    2014-01-01

    In this lecture an overview is given of the present technology for high field accelerator magnets. We indicate how to get high fields and what are the most important parameters. The available conductors and their limitations are presented followed by the most relevant types of coils and support structures. We conclude by showing a number of recent examples of development magnets which are either pure R&D objects or models for the LHC luminosity upgrade

  9. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    International Nuclear Information System (INIS)

    Campbell, Scott; Holesinger, Terry; Huang, Ybing

    2012-01-01

    The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for ∼18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb 3 Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi 2 Sr 2 CaCu 2 O y (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T c (HTS) counterparts, the HTS materials have the very significant advantage

  10. Techniques for Ultra-high Magnetic Field Gradient NMR Diffusion Measurements

    Science.gov (United States)

    Sigmund, Eric E.; Mitrovic, Vesna F.; Calder, Edward S.; Will Thomas, G.; Halperin, William P.; Reyes, Arneil P.; Kuhns, Philip L.; Moulton, William G.

    2001-03-01

    We report on development and application of techniques for ultraslow diffusion coefficient measurements through nuclear magnetic resonance (NMR) in high magnetic field gradients. We have performed NMR experiments in a steady fringe field gradient of 175 T/m from a 23 T resistive Bitter magnet, as well as in a gradient of 42 T/m from an 8 T superconducting magnet. New techniques to provide optimum sensitivity in these experiments are described. To eliminate parasitic effects of the temporal instability of the resistive magnet, we have introduced a passive filter: a highly conductive cryogen-cooled inductive shield. We show experimental demonstration of such a shield’s effect on NMR performed in the Bitter magnet. For enhanced efficiency, we have employed “frequency jumping” in our spectrometer system. Application of these methods has made possible measurements of diffusion coefficients as low as 10-10 cm^2/s, probing motion on a 250 nm length scale.

  11. High Field Magnet R and D in the USA

    International Nuclear Information System (INIS)

    Gourlay, S.A.

    2003-01-01

    Accelerator magnet technology is currently dominated by the use of NbTi superconductor. New and more demanding applications for superconducting accelerator magnets require the use of alternative materials. Several programs in the US are taking advantage of recent improvements in Nb 3 Sn to develop high field magnets for new applications. Highlights and challenges of the US R and D program are presented along with the status of conductor development. In addition, a new R and D focus, the US LHC Accelerator Research Program, will be discussed.

  12. High Field Magnet R and D in the USA

    International Nuclear Information System (INIS)

    Gourlay, Stephen A.

    2003-01-01

    Accelerator magnet technology is currently dominated by the use of NbTi superconductor. New and more demanding applications for superconducting accelerator magnets require the use of alternative materials. Several programs in the US are taking advantage of recent improvements in Nb 3 Sn to develop high field magnets for new applications. Highlights and challenges of the US R and D program are presented along with the status of conductor development. In addition, a new R and D focus, the US LHC Accelerator Research Program, will be discussed

  13. Ultra-High Field Magnets for X-Ray and Neutron Scattering using High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States); Bird, M. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Breneman, Bruce C. [General Atomics, San Diego, CA (United States); Coffey, Michael [Cryomagnetics, Oak Ridge, TN (United States); Cutler, Roy I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duckworth, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erwin, R. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Hahn, Seungyong [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Hernandez, Yamali [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Herwig, Kenneth W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holland, Leo D. [General Atomics, San Diego, CA (United States); Lonergan, Kevin M. [Oxford Instruments, Abingdon (United Kingdom); Melhem, Ziad [Oxford Instruments, Abingdon (United Kingdom); Minter, Stephen J. [Cryomagnetics, Oak Ridge, TN (United States); Nelson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Paranthaman, M. Parans [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pierce, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruff, Jacob [Cornell Univ., Ithaca, NY (United States); Shen, Tengming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherline, Todd E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smeibidl, Peter G. [Helmholtz-Zentrum Berlin (HZB), (Germany); Tennant, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); van der Laan, Danko [Advanced Conductor Technologies, LLC, Boulder, CO (United States); Wahle, Robert J. [Helmholtz-Zentrum Berlin (HZB), (Germany); Zhang, Yifei [SuperPower, Inc., Schenectady, NY (United States)

    2017-01-01

    X-ray and neutron scattering techniques are capable of acquiring information about the structure and dynamics of quantum matter. However, the high-field magnet systems currently available at x-ray and neutron scattering facilities in the United States are limited to fields of 16 tesla (T) at maximum, which precludes applications that require and/or study ultra-high field states of matter. This gap in capability—and the need to address it—is a central conclusion of the 2005 National Academy of Sciences report by the Committee on Opportunities in High Magnetic Field Science. To address this gap, we propose a magnet development program that would more than double the field range accessible to scattering experiments. With the development and use of new ultra-high field–magnets, the program would bring into view new worlds of quantum matter with profound impacts on our understanding of advanced electronic materials.

  14. Magnetic field applications in modern technology and medicine

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1985-05-01

    A brief summary is given of several major applications of magnetism. A description of the range of magnetic field intensities to which humans are exposed in technologies that utilize large stationary magnetic fields is given. 12 refs., 8 figs., 3 tabs

  15. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    Science.gov (United States)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  16. High-performance magnetic field sensor based on superconducting quantum interference filters

    Science.gov (United States)

    Caputo, P.; Oppenländer, J.; Häussler, Ch.; Tomes, J.; Friesch, A.; Träuble, T.; Schopohl, N.

    2004-08-01

    We have developed an absolute magnetic field sensor using a superconducting quantum interference filter (SQIF) made of high-Tc grain-boundary Josephson junctions. The device shows the typical magnetic-field-dependent voltage response V(B ), which is a sharp deltalike dip in the vicinity of zero-magnetic field. When the SQIF is cooled with magnetic shield, and then the shield is removed, the presence of the ambient magnetic field induces a shift of the dip position from B0≈0 to a value B ≈B1, which is about the average value of the Earth's magnetic field, at our latitude. When the SQIF is cooled in the ambient field without shielding, the dip is first found at B ≈B1, and the further shielding of the SQIF results in a shift of the dip towards B0≈0. The low hysteresis observed in the sequence of experiments (less than 5% of B1) makes SQIFs suitable for high precision measurements of the absolute magnetic field. The experimental results are discussed in view of potential applications of high-Tc SQIFs in magnetometry.

  17. Future pulsed magnetic field applications in dynamic high pressure research

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Hawke, R.S.; Burgess, T.J.

    1977-01-01

    The generation of large pressures by magnetic fields to obtain equation of state information is of fairly recent origin. Magnetic fields used in compression experiments produce an almost isentropic sample compression. Axial magnetic field compression is discussed together with a few results chosen to show both advantages and limitations of the method. Magnetic compression with azimuthal fields is then considered. Although there are several potential pitfalls, the possibilities are encouraging for obtaining very large pressures. Next, improved diagnostic techniques are considered. An x-ray ''streaking camera'' is proposed for volume measurements and a more detailed discussion is given on the use of the shift of the ruby fluorescence lines for pressure measurements. Finally, some additional flux compression magnetic field sources are discussed briefly. 5 figures, 2 tables

  18. High magnetic field science and its application in the United States current status and future directions

    CERN Document Server

    National Research Council of the National Academies

    2013-01-01

    The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the str...

  19. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  20. Effects of high-intensity static magnetic fields on a root-based bioreactor system for space applications

    Science.gov (United States)

    Villani, Maria Elena; Massa, Silvia; Lopresto, Vanni; Pinto, Rosanna; Salzano, Anna Maria; Scaloni, Andrea; Benvenuto, Eugenio; Desiderio, Angiola

    2017-11-01

    Static magnetic fields created by superconducting magnets have been proposed as an effective solution to protect spacecrafts and planetary stations from cosmic radiations. This shield can deflect high-energy particles exerting injurious effects on living organisms, including plants. In fact, plant systems are becoming increasingly interesting for space adaptation studies, being useful not only as food source but also as sink of bioactive molecules in future bioregenerative life-support systems (BLSS). However, the application of protective magnetic shields would generate inside space habitats residual magnetic fields, of the order of few hundreds milli Tesla, whose effect on plant systems is poorly known. To simulate the exposure conditions of these residual magnetic fields in shielded environment, devices generating high-intensity static magnetic field (SMF) were comparatively evaluated in blind exposure experiments (250 mT, 500 mT and sham -no SMF-). The effects of these SMFs were assayed on tomato cultures (hairy roots) previously engineered to produce anthocyanins, known for their anti-oxidant properties and possibly useful in the setting of BLSS. Hairy roots exposed for periods ranging from 24 h to 11 days were morphometrically analyzed to measure their growth and corresponding molecular changes were assessed by a differential proteomic approach. After disclosing blind exposure protocol, a stringent statistical elaboration revealed the absence of significant differences in the soluble proteome, perfectly matching phenotypic results. These experimental evidences demonstrate that the identified plant system well tolerates the exposure to these magnetic fields. Results hereby described reinforce the notion of using this plant organ culture as a tool in ground-based experiments simulating space and planetary environments, in a perspective of using tomato 'hairy root' cultures as bioreactor of ready-to-use bioactive molecules during future long-term space missions.

  1. Powder-in-Tube (PIT) Nb3Sn conductors for high-field magnets

    NARCIS (Netherlands)

    Lindenhovius, J.H.; Hornsveld, E.M.; den Ouden, A.; Wessel, Wilhelm A.J.; ten Kate, Herman H.J.

    2000-01-01

    New Nb3Sn conductors, based on the powder-in-tube (PIT) process, have been developed for application in accelerator magnets and high-field solenoids. For application in accelerator magnets, SMI has developed a binary 504 filament PIT conductor by optimizing the manufacturing process and adjustment

  2. Ultra high field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Lethimonnier, F.; Vedrine, P.

    2007-01-01

    Understanding human brain function, brain development and brain dysfunction is one of the great challenges of the twenty first century. Biomedical imaging has now run up against a number of technical constraints that are exposing limits to its potential. In order to overcome the current limits to high-field magnetic resonance cerebral imaging (MRI) and unleash its fullest potential, the Cea has built NeuroSpin, an ultra-high-field neuroimaging facility at its Saclay centre (in the Essonne). NeuroSpin already boasts three fully operational MRI systems. The first is a 3-tesla high-field system and the second is a very-high-field 7-tesla system, both of which are dedicated to clinical studies and investigations in humans, while the third is an ultra-high-field 17.65-tesla system designed for studies on small animals. In 2011, NeuroSpin will be commissioning an 11.7-tesla ultra-high-field system of unprecedented power that is designed for research on human subjects. The level of the magnetic field and the scale required will make this joint French-German project to build the magnet a breakthrough in the international arena. (authors)

  3. Prospects of High Temperature Superconductors for fusion magnets and power applications

    International Nuclear Information System (INIS)

    Fietz, Walter H.; Barth, Christian; Drotziger, Sandra; Goldacker, Wilfried; Heller, Reinhard; Schlachter, Sonja I.; Weiss, Klaus-Peter

    2013-01-01

    Highlights: • An overview of HTS application in fusion is given. • BSCCO application for current leads is discussed. • Several approaches to come to a high current HTS cable are shown. • Open issues and benefits of REBCO high current HTS cables are discussed. -- Abstract: During the last few years, progress in the field of second-generation High Temperature Superconductors (HTS) was breathtaking. Industry has taken up production of long length coated REBCO conductors with reduced angular dependency on external magnetic field and excellent critical current density jc. Consequently these REBCO tapes are used more and more in power application. For fusion magnets, high current conductors in the kA range are needed to limit the voltage during fast discharge. Several designs for high current cables using High Temperature Superconductors have been proposed. With the REBCO tape performance at hand, the prospects of fusion magnets based on such high current cables are promising. An operation at 4.5 K offers a comfortable temperature margin, more mechanical stability and the possibility to reach even higher fields compared to existing solutions with Nb 3 Sn which could be interesting with respect to DEMO. After a brief overview of HTS use in power application the paper will give an overview of possible use of HTS material for fusion application. Present high current HTS cable designs are reviewed and the potential using such concepts for future fusion magnets is discussed

  4. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  5. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    Science.gov (United States)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  6. High magnetic field properties of Fe-pnictide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Fritz

    2015-11-20

    The recent discovery of high-temperature superconductivity in Fe-based materials triggered worldwide efforts to investigate their fundamental properties. Despite a lot of similarities to cuprates and MgB{sub 2}, important differences like near isotropic behaviour in contrast to cuprates and the peculiar pairing symmetry of the order parameter (OP) have been reported. The OP symmetry of Fe-based superconductors (FBS) was theoretically predicted to be of so-called s± state prior to various experimental works. Still, most of the experimental results favour the s± scenario; however, definitive evidence has not yet been reported. Although no clear understanding of the superconducting mechanisms yet exists, potential applications such as high-field magnets and Josephson devices have been explored. Indeed, a lot of reports about FBS tapes, wires, and even SQUIDs have been published to this date. In this thesis, the feasibility of high-field magnet applications of FBS is addressed by studying their transport properties, involving doped BaFe{sub 2}As{sub 2} (Ba-122) and LnFeAs(O,F) [Ln=Sm and Nd]. Particularly, it is important to study physical properties in a sample form (i.e. thin films) that is close to the conditions found in applications. However, the realisation of epitaxial FBS thin films is not an easy undertaking. Recent success in growing epitaxial FBS thin films opens a new avenue to delve into transport critical current measurements. The information obtained through this research will be useful for exploring high-field magnet applications. This thesis consists of 7 chapters: Chapter 1 describes the motivation of this study, the basic background of superconductivity, and a brief summary of the thin film growth of FBS. Chapter 2 describes experimental methods employed in this study. Chapter 3 reports on the fabrication of Co-doped Ba-122 thin films on various substrates. Particular emphasis lies on the discovery of fluoride substrates to be beneficial for

  7. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  8. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  9. Large reversible magnetostrictive effect of MnCoSi-based compounds prepared by high-magnetic-field solidification

    Science.gov (United States)

    Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.

    2018-01-01

    The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.

  10. Magnetic resonance imaging and spectroscopy at ultra high fields

    International Nuclear Information System (INIS)

    Neuberger, Thomas

    2009-01-01

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  11. Magnetic resonance imaging and spectroscopy at ultra high fields

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Thomas

    2009-06-23

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  12. open-quotes High magnetic fields in the USAclose quotes

    International Nuclear Information System (INIS)

    Campbell, L.J.; Parkin, D.M.; Crow, J.E.; Schneider-Muntau, H.J.; Sullivan, N.S.

    1994-01-01

    During the past thirty years research using high magnetic fields has technically evolved in the manner, but not the magnitude, of the so-called big science areas of particle physics, plasma physics, neutron scattering, synchrotron light scattering, and astronomy. Starting from the laboratories of individual researchers it moved to a few larger universities, then to centralized national facilities with research and maintenance staffs, and, finally, to joint international ventures to build unique facilities, as illustrated by the subject of this conference. To better understand the nature of this type of research and its societal justification it is helpful to compare it, in general terms, with the aforementioned big-science fields. High magnetic field research differs from particle physics, plasma physics, and astronomy in three respects: (1) It is generic research that cuts across a wide range of scientific disciplines in physics, chemistry, biology, medicine, and engineering; (2) It studies materials and processes that are relevant for a variety of technological applications and it gives insight into biological processes; (3) It has produced, at least, comparably significant results with incomparably smaller resources. Unlike neutron and synchrotron light scattering, which probe matter, high magnetic fields change the thermodynamic state of matter. This change of state is fundamental and independent of other state variables, such as pressure and temperature. After the magnetic field is applied, various techniques are then used to study the new state

  13. Improving Magnet Designs With High and Low Field Regions

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2011-01-01

    A general scheme for increasing the difference in magnetic flux density between a high and a low magnetic field region by removing unnecessary magnet material is presented. This is important in, e.g., magnetic refrigeration where magnet arrays have to deliver high field regions in close proximity...... to low field regions. Also, a general way to replace magnet material with a high permeability soft magnetic material where appropriate is discussed. As an example, these schemes are applied to a two dimensional concentric Halbach cylinder design resulting in a reduction of the amount of magnet material...

  14. Final report: High current capacity high temperature superconducting film based tape for high field magnets

    International Nuclear Information System (INIS)

    Ying Xin

    2000-01-01

    The primary goal of the program was to establish the process parameters for the continuous deposition of high quality, superconducting YBCO films on one meter lengths of buffered RABiTS tape using MOCVD and to characterize the potential utility of the resulting tapes in high field magnet applications

  15. Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; /Fermilab; Kikuchi, A.; /Tsukuba Magnet Lab.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; /Fermilab; Takeuchi, T.; /Tsukuba Magnet Lab.; Tartaglia, M.; Turrioni, D.; /Fermilab; Verweij, A.P.; /CERN; Wake, M.; Willering, G; /Tsukuba Magnet Lab.; Zlobin, A.V.; /Fermilab

    2006-08-01

    Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

  16. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    Science.gov (United States)

    Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.

    2014-10-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.

  17. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    International Nuclear Information System (INIS)

    Lima, E A; Weiss, B P; Bruno, A C; Carvalho, H R

    2014-01-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x–y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz 1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10 –14  A m 2 , a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays. (paper)

  18. Super-high magnetic fields in spatially inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nastoyashchiy, Anatoly F.

    2012-01-01

    The new phenomenon of a spontaneous magnetic field in spatially inhomogeneous plasma is found. The criteria for instability are determined, and both the linear and nonlinear stages of the magnetic field growth are considered; it is shown that the magnetic field can reach a considerable magnitude, namely, its pressure can be comparable with the plasma pressure. Especially large magnetic fields can arise in hot plasma with a high electron density, for example, in laser-heated plasma. In steady-state plasma, the magnetic field can be self-sustaining. The considered magnetic fields may play an important role in thermal insulation of the plasma. (author)

  19. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  20. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    International Nuclear Information System (INIS)

    Han, K.; Embury, J.D.

    1998-01-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications

  1. Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness.

    Science.gov (United States)

    Hemmersbach, Ruth; Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C M; Albers, Peter W; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-03-01

    The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity.

  2. Study of multi-level atomic systems with the application of magnetic field

    Science.gov (United States)

    Hu, Jianping; Roy, Subhankar; Ummal Momeen, M.

    2018-04-01

    The complexity of multiple energy levels associated with each atomic system determines the various processes related to light- matter interactions. It is necessary to understand the influence of different levels in a given atomic system. In this work we focus on multi- level atomic schemes with the application of magnetic field. We analyze the different EIT windows which appears in the presence of moderately high magnetic field (∼ 10 G) strength.

  3. Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Vanderbemden, P [SUPRATECS and Department of Electrical Engineering and Computer Science B28, Sart-Tilman, B-4000 Liege (Belgium); Hong, Z [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Coombs, T A [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Ausloos, M [SUPRATECS and Department of Physics B5, Sart-Tilman, B-4000 Liege (Belgium); Babu, N Hari [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cardwell, D A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Campbell, A M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2007-09-15

    Bulk melt-processed Y-Ba-Cu-O (YBCO) has significant potential for a variety of high-field permanent-magnet-like applications, such as the rotor of a brushless motor. When used in rotating devices of this kind, however, the YBCO can be subjected to both transient and alternating magnetic fields that are not parallel to the direction of magnetization and which have a detrimental effect on the trapped field. These effects may lead to long-term decay of the magnetization of the bulk sample. In the present work, we analyze both experimentally and numerically the remagnetization process of a melt-processed YBCO single domain that has been partially demagnetized by a magnetic field applied orthogonal to the initial direction of trapped flux. Magnetic torque measurements are used as a tool to probe changes in the remanent magnetization during various sequences of applied field. The application of a small magnetic field between the transverse cycles parallel to the direction of original magnetization results in partial remagnetization of the sample. Rotating the applied field, however, is found to be much more efficient at remagnetizing the bulk material than applying a magnetizing field pulse of the same amplitude. The principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law. Finally, the remagnetization process is shown to result from the complex modification of current distribution within the cross-section of the bulk sample.

  4. Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields

    International Nuclear Information System (INIS)

    Vanderbemden, P; Hong, Z; Coombs, T A; Ausloos, M; Babu, N Hari; Cardwell, D A; Campbell, A M

    2007-01-01

    Bulk melt-processed Y-Ba-Cu-O (YBCO) has significant potential for a variety of high-field permanent-magnet-like applications, such as the rotor of a brushless motor. When used in rotating devices of this kind, however, the YBCO can be subjected to both transient and alternating magnetic fields that are not parallel to the direction of magnetization and which have a detrimental effect on the trapped field. These effects may lead to long-term decay of the magnetization of the bulk sample. In the present work, we analyze both experimentally and numerically the remagnetization process of a melt-processed YBCO single domain that has been partially demagnetized by a magnetic field applied orthogonal to the initial direction of trapped flux. Magnetic torque measurements are used as a tool to probe changes in the remanent magnetization during various sequences of applied field. The application of a small magnetic field between the transverse cycles parallel to the direction of original magnetization results in partial remagnetization of the sample. Rotating the applied field, however, is found to be much more efficient at remagnetizing the bulk material than applying a magnetizing field pulse of the same amplitude. The principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law. Finally, the remagnetization process is shown to result from the complex modification of current distribution within the cross-section of the bulk sample

  5. Using Magnetic Fields to Create and Control High Energy Density Matter

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Mark [Sandia National Laboratory

    2012-05-09

    The recently refurbished Z facility at Sandia National Laboratories is the world’s largest pulsed power driver. Z can efficiently deliver currents as large as 26 Million Amperes to centimeter scale loads. These large currents create large magnetic fields that, in turn, create very large pressures in conducting materials. These very large pressures have been used to create unique conditions for high energy density science experiments for a variety of applications. Recently, we have been exploring the use of very strong magnetic fields to significantly relax the requirements for achieving inertial confinement fusion self heating1. The magnetized liner inertial fusion (MagLIF) concept relies on a cylindrically imploding liner, an axial magnetic field, and a laser heated fuel region. We hope to achieve significant fusion yield on the Z facility with this concept. Initial experiments assessing the growth of the Magneto-Rayleigh Taylor instability are promising and recent calculational work has identified an approach to achieving high gain with this concept.

  6. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  7. A design proposal for high field dipole magnet

    International Nuclear Information System (INIS)

    Hirabayashi, H.; Kobayashi, M.; Shintomi, T.; Tsuchiya, K.; Wake, M.

    1981-06-01

    A design of the high field dipole magnet which is going to be constructed in the KEK-Fermilab collaboration program is proposed. The central field of the magnet is meant to achieve 10 T by the use of ternary alloy conductor in the 1.8 K superfluid environment under atmospheric pressure. Since the electro-magnetic force in such a high field region is strong enough to give a fatal problem, a careful calculation is necessary for the magnet design. The program POISSON and LINDA were used for the magnetic field calculation. The computer code ISAS which is originated from NASTRAN developed at NASA was applied to calculate the stress and the deformation. A horizontal cryostat desigh for the operation of the 10 T dipole magnet is also proposed. (author)

  8. High magnetic field μSR instrument scientific case

    International Nuclear Information System (INIS)

    Amato, A.

    2005-10-01

    In order to gain more insight into the specific behavior of materials, it is often necessary to perform measurements as a function of different external parameters. Despite its high sensitivity to internal fields, this simple observation also applies for the μSR technique. The most common parameter which can be tuned during an experiment is the sample temperature. By using a range of cryostats, temperatures between 0.02 and 900 K can be covered at the PSI μSR Facility. On the other hand, and by using high-energy muons, pressures as high as 10'000 bars can nowadays be reached during μSR experiments. As will be demonstrated in the following Sections, the magnetic field is an additional external parameter playing a fundamental role when studying the ground state properties of materials in condensed matter physics and chemistry. However, the availability of high magnetic fields for μSR experiments is still rather limited. Hence, if on one hand the high value of the gyromagnetic ratio of the muon provides the high magnetic sensitivity of the method, on the other hand it can lead to very high muon-spin precession frequencies when performing measurements in applied fields (the muon-spin precession frequency in a field of 1 Tesla s 135.5 MHz). Consequently, the use of ultra-fast detectors and electronics is mandatory when measuring in magnetic fields exceeding 1 Tesla. If such fields are very intense when compared to the Earth magnetic field -4 Tesla), the energy associated with them is still modest in view of the thermal energy. Hence, the Zeeman energy splitting of a free electron in a magnetic field of 1 Tesla corresponds to a thermal energy as low as 0.67 Kelvin. It is worth mentioning that nowadays magnetic fields of the order of 10 to 15 Tesla are quite common in condensed matter laboratories and have opened up vast new exciting experimental possibilities. (author)

  9. High magnetic field {mu}SR instrument scientific case

    Energy Technology Data Exchange (ETDEWEB)

    Amato, A

    2005-10-15

    In order to gain more insight into the specific behavior of materials, it is often necessary to perform measurements as a function of different external parameters. Despite its high sensitivity to internal fields, this simple observation also applies for the {mu}SR technique. The most common parameter which can be tuned during an experiment is the sample temperature. By using a range of cryostats, temperatures between 0.02 and 900 K can be covered at the PSI {mu}SR Facility. On the other hand, and by using high-energy muons, pressures as high as 10'000 bars can nowadays be reached during {mu}SR experiments. As will be demonstrated in the following Sections, the magnetic field is an additional external parameter playing a fundamental role when studying the ground state properties of materials in condensed matter physics and chemistry. However, the availability of high magnetic fields for {mu}SR experiments is still rather limited. Hence, if on one hand the high value of the gyromagnetic ratio of the muon provides the high magnetic sensitivity of the method, on the other hand it can lead to very high muon-spin precession frequencies when performing measurements in applied fields (the muon-spin precession frequency in a field of 1 Tesla s 135.5 MHz). Consequently, the use of ultra-fast detectors and electronics is mandatory when measuring in magnetic fields exceeding 1 Tesla. If such fields are very intense when compared to the Earth magnetic field < 10{sup -4} Tesla), the energy associated with them is still modest in view of the thermal energy. Hence, the Zeeman energy splitting of a free electron in a magnetic field of 1 Tesla corresponds to a thermal energy as low as 0.67 Kelvin. It is worth mentioning that nowadays magnetic fields of the order of 10 to 15 Tesla are quite common in condensed matter laboratories and have opened up vast new exciting experimental possibilities. (author)

  10. Application of magnets with azimuthal field variation in charged particle optics

    International Nuclear Information System (INIS)

    Dojnikov, N.I.; Lamzin, E.A.; Malitskij, N.D.

    1989-01-01

    Examples of concrete application of magnets with azimuthal field variation are presented. Magnetic mirror and bending-focusing device representing a single magnet with azimuthal field variation, providing achromatic beam bending, are used in the LUEh-40m therapeutic acceleration. A single magnet with azimuthal field variation is also used in magnetic mirror. Achromatic magnet for the Elektronika U-003 10 MeV accelerator is fabricated and examined. 2 refs.; 5 figs

  11. Advanced measurements and techniques in high magnetic fields

    International Nuclear Information System (INIS)

    Campbell, L.J.; Rickel, D.G.; Lacerda, A.H.; Kim, Y.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film

  12. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    A 3T proof-of-principle dipole magnet for accelerator applications, based on 2nd generation high temperature superconducting tape was designed, built, and tested by a consortium under the lead of Danfysik. The magnet was designed to have a straight, circular bore with a good field region of radius...

  13. L10-MnGa based magnetic tunnel junction for high magnetic field sensor

    Science.gov (United States)

    Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wang, H. L.; Wang, X. L.; Wei, D. H.; Zhao, J. H.

    2017-07-01

    We report on the investigation of the magnetic tunnel junction structure designed for high magnetic field sensors with a perpendicularly magnetized L10-MnGa reference layer and an in-plane magnetized Fe sensing layer. A large linear tunneling magnetoresistance ratio up to 27.4% and huge dynamic range up to 5600 Oe have been observed at 300 K, with a low nonlinearity of 0.23% in the optimized magnetic tunnel junction (MTJ). The field response of tunneling magnetoresistance is discussed to explain the field sensing properties in the dynamic range. These results indicate that L10-MnGa based orthogonal MTJ is a promising candidate for a high performance magnetic field sensor with a large dynamic range, high endurance and low power consumption.

  14. Raman study of electronic excitations in MgB2 with application of high magnetic field

    International Nuclear Information System (INIS)

    Machtoub, L.; Takano, Y.; Kito, H.

    2006-01-01

    We present the first results of Raman scattering with application of magnetic field on magnesium diboride (MgB 2 ). In this work, we have investigated the magnetic field dependence of the 72 meV (E 2g mode) and the pair-breaking peak around 100 cm -1 which corresponds to σ-band gap. Intensity enhancement of Raman features around 800 cm -1 accompanied with broadening in the line shape of E 2g mode has been observed in some polycrystalline samples at 0 GPa. Results are compared with previous Raman study under hydrostatic pressure

  15. Tuning microstructure and magnetic properties of electrodeposited CoNiP films by high magnetic field annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun; Wang, Kai [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Li, Donggang, E-mail: lidonggang@smm.neu.edu.cn [School of Metallurgy, Northeastern University, Shenyang 110819 (China); Lou, Changsheng [School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159 (China); Zhao, Yue; Gao, Yang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Wang, Qiang, E-mail: wangq@mail.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2016-10-15

    A high magnetic field (up to 12 T) has been used to anneal 2.6-µm-thick Co{sub 50}Ni{sub 40}P{sub 10} films formed by pulse electrodeposition. The effects of high magnetic field annealing on the microstructure and magnetic properties of CoNiP thin films have been investigated. It was found that a high magnetic field accelerated a phase transformation from fcc to hcp and enhanced the preferred hcp-(002) orientation during annealing. Compared with the films annealed without a magnetic field, annealing at 12 T decreased the surface particle size, roughness, and coercivity, but increased the saturation magnetization and remanent magnetization of CoNiP films. The out-of-plane coercivity was higher than that the in-plane for the as-deposited films. After annealing without a magnetic field, the out-of-plane coercivity was equal to that of the in-plane. However, the out-of-plane coercivity was higher than that of the in-plane when annealing at 12 T. These results indicate that high magnetic field annealing is an effective method for tuning the microstructure and magnetic properties of thin films. - Highlights: • High magnetic field annealing accelerated phase transformation from γ to ε. • High magnetic field annealing enhanced preferred hcp-(002) orientation. • High magnetic field annealing decreased particle size, roughness and coercivity. • High magnetic field annealing increased the saturation and remanent magnetization.

  16. Strain sensors for high field pulse magnets

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Christian [Los Alamos National Laboratory; Zheng, Yan [Los Alamos National Laboratory; Easton, Daniel [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  17. Periodic permanent magnet focusing system with high peak field

    International Nuclear Information System (INIS)

    Zhang Hong; Liu Weiwei; Bai Shuxin; Chen Ke

    2008-01-01

    In this study, hybrid periodic permanent magnet (PPM) system is studied, which has high axial magnetic field and low magnetic leakage. By simulation computation, some laws of magnetic field distribution vs. structure dimensions were obtained. A hybrid PPM is designed and constructed whose peak field reaches 0.6 T. The factors inducing discrepancies between computational results and practical measurements are analyzed. The magnetic field distribution is very sensitive to the variations of constructional parameters. Construction accuracy greatly influences the magnetic field distribution. Research results obtained here are potentially valuable for future work

  18. Magnetic-flux dynamics of high-Tc superconductors in weak magnetic fields

    DEFF Research Database (Denmark)

    Il’ichev, E. V.; Jacobsen, Claus Schelde

    1994-01-01

    Aspects of magnetic-flux dynamics in different types of samples of the high-temperature superconductor YBa2Cu3Ox have been investigated in magnetic fields below 1 Oe and at 77 K. The experiments were carried out in an arrangement including a field coil, a flat sample perpendicular to the field...

  19. Magnetic field-induced Landau Fermi liquid in high-T{sub c} metals

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Shaginyan, V.R

    2003-08-25

    We consider the behavior of strongly correlated electron liquid in high-temperature superconductors within the framework of the fermion condensation model. We show that at low temperatures the normal state recovered by the application of a magnetic field larger than the critical field can be viewed as the Landau Fermi liquid induced by the magnetic field. In this state, the Wiedemann-Franz law and the Korringa law are held and the elementary excitations are the Landau Fermi liquid quasiparticles. Contrary to what might be expected from the Landau theory, the effective mass of quasiparticles depends on the magnetic field. The recent experimental verifications of the Wiedemann-Franz law in heavily hole-overdoped, overdoped and optimally doped cuprates and the verification of the Korringa law in the electron-doped copper oxide superconductor strongly support the existence of fermion condensate in high-T{sub c} metals.

  20. Electrical resistivity of UBe13 in high magnetic fields

    International Nuclear Information System (INIS)

    Schmiedeshoff, G.M.; Lacerda, A.; Fisk, Z.; Smith, J.L.

    1996-01-01

    We have measured the temperature dependent electrical resistivity of single and polycrystal samples of UBe 13 in high magnetic fields. Two maxima in the resistivity are observed at T M1 and T M2 . T M1 , the temperature of the colder maximum, increases quadratically with magnetic field H, a field dependence previously observed under hydrostatic pressure. The high temperature maximum at T M2 emerges in fields above about 4 T and increases linearly with H, a behavior which may be due to a sharpening of the crystal field levels associated with a depression of the Kondo effect by high magnetic fields. copyright 1996 The American Physical Society

  1. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-11-15

    A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  2. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet.

    Science.gov (United States)

    Wang, Y; Yin, D C; Liu, Y M; Shi, J Z; Lu, H M; Shi, Z H; Qian, A R; Shang, P

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  3. Influence of interdiffusion on the magnetic properties of Co/Si (100) films after high magnetic field annealing

    International Nuclear Information System (INIS)

    Zhao, Yue; Wang, Kai; Wang, Qiang; Li, Guojian; Lou, Changsheng; Pang, Hongxuan; He, Jicheng

    2015-01-01

    The influence of interdiffusion on the magnetic properties of Co/Si (100) films after thermal annealing in the presence of a strong magnetic field was investigated. The interdiffusion coefficients of films that were annealed at temperatures of 380 °C and 420 °C in the presence of high magnetic fields were not affected. However, the interdiffusion coefficient of films annealed at 400 °C in the presence of a high magnetic field decreased significantly. The change in the interdiffusion coefficient, caused by high magnetic field annealing, increased the content of the magnetic phase. This increase in the magnetic phase improved the saturation magnetization. A new method of high magnetic field annealing is presented that can modulate the diffusion and magnetic properties of thin films. - Highlights: • Interdiffusion of Co/Si (100) films by high magnetic field annealing was studied. • Thickness of the diffusion layer was reduced by magnetic field annealing at 400 °C. • Interdiffusion coefficient decreased following magnetic field annealing at 400 °C. • Saturation magnetization increased after high magnetic field annealing at 400 °C

  4. Trapped magnetic field of a mini-bulk magnet using YBaCuO at 77 K

    Science.gov (United States)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    2001-09-01

    Melt-processed rare earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field. Solidification processes for producing (L)RE123 superconductors and pinning centers in the (L)RE123 matrix are effective for obtaining high Jc, leading to high-field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated train. We fabricated a mini-superconducting bulk magnet of 200×100 mm2, consisting of 18 bulks, which are a square 33 mm on a side and 10 mm in thickness, and magnetized the mini-magnet by field cooling. The mini-magnet showed the trapped magnetic field of larger than 0.1 T on the surface of the outer vessel of the magnet. The present preliminary study discusses trapped magnetic field properties of the mini-bulk magnet using YBaCuO superconductors at 77 K.

  5. Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid

    International Nuclear Information System (INIS)

    Luo, Longfeng; Pu, Shengli; Tang, Jiali; Zeng, Xianglong; Lahoubi, Mahieddine

    2015-01-01

    A kind of magnetic field sensor using a microfiber coupler (MFC) surrounded with magnetic fluid (MF) is proposed and experimentally demonstrated. As the MFC is strongly sensitive to the surrounding refractive index (RI) and MF's RI is sensitive to magnetic field, the magnetic field sensing function of the proposed structure is realized. Interrogation of magnetic field strength is achieved by measuring the dip wavelength shift and transmission loss change of the transmission spectrum. The experimental results show that the sensitivity of the sensor is wavelength-dependent. The maximum sensitivity of 191.8 pm/Oe is achieved at wavelength of around 1537 nm in this work. In addition, a sensitivity of −0.037 dB/Oe is achieved by monitoring variation of the fringe visibility. These suggest the potential applications of the proposed structure in tunable all-in-fiber photonic devices such as magneto-optical modulator, filter, and sensing

  6. Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Longfeng; Pu, Shengli, E-mail: shlpu@usst.edu.cn; Tang, Jiali [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Zeng, Xianglong [2Key Laboratory of Specialty Fiber Optics and Optical Access Network, Shanghai University, Shanghai 200072 (China); Lahoubi, Mahieddine [Department of Physics, Faculty of Sciences, Laboratory L.P.S., Badji Mokhtar-Annaba University, P. O. Box 12, 23000 Annaba (Algeria)

    2015-05-11

    A kind of magnetic field sensor using a microfiber coupler (MFC) surrounded with magnetic fluid (MF) is proposed and experimentally demonstrated. As the MFC is strongly sensitive to the surrounding refractive index (RI) and MF's RI is sensitive to magnetic field, the magnetic field sensing function of the proposed structure is realized. Interrogation of magnetic field strength is achieved by measuring the dip wavelength shift and transmission loss change of the transmission spectrum. The experimental results show that the sensitivity of the sensor is wavelength-dependent. The maximum sensitivity of 191.8 pm/Oe is achieved at wavelength of around 1537 nm in this work. In addition, a sensitivity of −0.037 dB/Oe is achieved by monitoring variation of the fringe visibility. These suggest the potential applications of the proposed structure in tunable all-in-fiber photonic devices such as magneto-optical modulator, filter, and sensing.

  7. Problem solving in magnetic field: Animation in mobile application

    Science.gov (United States)

    Najib, A. S. M.; Othman, A. P.; Ibarahim, Z.

    2014-09-01

    This paper is focused on the development of mobile application for smart phone, Android, tablet, iPhone, and iPad as a problem solving tool in magnetic field. Mobile application designs consist of animations that were created by using Flash8 software which could be imported and compiled to prezi.com software slide. The Prezi slide then had been duplicated in Power Point format and instead question bank with complete answer scheme was also additionally generated as a menu in the application. Results of the published mobile application can be viewed and downloaded at Infinite Monkey website or at Google Play Store from your gadgets. Statistics of the application from Google Play Developer Console shows the high impact of the application usage in all over the world.

  8. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2011-11-01

    Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa2Cu3Oy (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  9. Iron chalcogenide superconductors at high magnetic fields

    Science.gov (United States)

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  10. Ultra high energy cosmic rays and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Engel, Ralph; Alvarez-Muniz, Jaime; Seckel, David

    2002-07-01

    We follow the propagation of ultra high energy protons in the presence of random and regular magnetic fields and discuss some of the changes in the angular and energy distributions of these particles introduced by the scattering in the magnetic fields.

  11. Ultra high energy cosmic rays and magnetic fields

    International Nuclear Information System (INIS)

    Stanev, Todor; Engel, Ralph; Alvarez-Muniz, Jaime; Seckel, David

    2002-01-01

    We follow the propagation of ultra high energy protons in the presence of random and regular magnetic fields and discuss some of the changes in the angular and energy distributions of these particles introduced by the scattering in the magnetic fields

  12. Characterization of a dielectric phantom for high-field magnetic resonance imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Qi, E-mail: Qi.Duan@nih.gov; Duyn, Jeff H.; Gudino, Natalia; Zwart, Jacco A. de; Gelderen, Peter van [Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 (United States); Sodickson, Daniel K.; Brown, Ryan [The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016 (United States)

    2014-10-15

    Purpose: In this work, a generic recipe for an inexpensive and nontoxic phantom was developed within a range of biologically relevant dielectric properties from 150 MHz to 4.5 GHz. Methods: The recipe includes deionized water as the solvent, NaCl to primarily control conductivity, sucrose to primarily control permittivity, agar–agar to gel the solution and reduce heat diffusivity, and benzoic acid to preserve the gel. Two hundred and seventeen samples were prepared to cover the feasible range of NaCl and sucrose concentrations. Their dielectric properties were measured using a commercial dielectric probe and were fitted to a 3D polynomial to generate a recipe describing the properties as a function of NaCl concentration, sucrose concentration, and frequency. Results: Results indicated that the intuitive linear and independent relationships between NaCl and conductivity and between sucrose and permittivity are not valid. A generic polynomial recipe was developed to characterize the complex relationship between the solutes and the resulting dielectric values and has been made publicly available as a web application. In representative mixtures developed to mimic brain and muscle tissue, less than 2% difference was observed between the predicted and measured conductivity and permittivity values. Conclusions: It is expected that the recipe will be useful for generating dielectric phantoms for general magnetic resonance imaging (MRI) coil development at high magnetic field strength, including coil safety evaluation as well as pulse sequence evaluation (including B{sub 1}{sup +} mapping, B{sub 1}{sup +} shimming, and selective excitation pulse design), and other non-MRI applications which require biologically equivalent dielectric properties.

  13. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Science.gov (United States)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse

    2017-10-17

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  14. Powder-in-tube (PIT) Nb$_{3}$Sn conductors for high-field magnets

    CERN Document Server

    Lindenhovius, J L H; den Ouden, A; Wessel, W A J; ten Kate, H H J

    2000-01-01

    New Nb/sub 3/Sn conductors, based on the powder-in-tube (PIT) process, have been developed for application in accelerator magnets and high-field solenoids. For application in accelerator magnets, SMI has developed a binary 504 filament PIT conductor by optimizing the manufacturing process and adjustment of the conductor lay-out. It uniquely combines a non-copper current density of 2680 A/mm/sup 2/@10 T with an effective filament diameter of about 20 mu m. This binary conductor may be used in a 10 T, wide bore model separator dipole magnet for the LHC, which is being developed by a collaboration of the University of Twente and CERN. A ternary (Nb/7.5wt%Ta)/sub 3/Sn conductor containing 37 filaments is particularly suited for application in extremely high-field superconducting solenoids. This wire features a copper content of 43%, a non-copper current density of 217 A/mm/sup 2/@20 T and a B/sub c2/ of 25.6 T. The main issues and the experimental results of the development program of PIT Nb/sub 3/Sn conductors a...

  15. Particle acceleration through the resonance of high magnetic field and high frequency electromagnetic wave

    International Nuclear Information System (INIS)

    Hong, Liu; He, X.T.; Chen, S.G.; Zhang, W.Y.; He, X.T.; Hong, Liu

    2004-01-01

    We propose a new particle acceleration mechanism. Electrons can be accelerated to relativistic energy within a few electromagnetic wave cycles through the mechanism which is named electromagnetic and magnetic field resonance acceleration (EMRA). We find that the electron acceleration depends not only on the electromagnetic wave intensity, but also on the ratio between electron Larmor frequency and electromagnetic wave frequency. As the ratio approaches to unity, a clear resonance peak is observed, corresponding to the EMRA. Near the resonance regime, the strong magnetic fields still affect the electron acceleration dramatically. We derive an approximate analytical solution of the relativistic electron energy in adiabatic limit, which provides a full understanding of this phenomenon. In typical parameters of pulsar magnetospheres, the mechanism allows particles to increase their energies through the resonance of high magnetic field and high frequency electromagnetic wave in each electromagnetic wave period. The energy spectra of the accelerated particles exhibit the synchrotron radiation behavior. These can help to understand the remaining emission of high energy electron from radio pulsar within supernova remnant. The other potential application of our theory in fast ignition scheme of inertial confinement fusion is also discussed. (authors)

  16. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Hong, Seok-Cheol [Seoul, KR; Cozzarelli, legal representative, Linda A.; Pollard, Martin J [El Cerrito, CA; Cozzarelli, Nicholas R [Berkeley, CA

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  17. Study of HTS Wires at High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Turrioni, D.; Barzi, E.; Lamm, M.J.; Yamada, R.; Zlobin, A.V.; Kikuchi, A.; /Fermilab

    2009-01-01

    Fermilab is working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting (HTS) materials is being considered for these magnets using Helium refrigeration. Critical current (I{sub c}) measurements of HTS conductors were performed at FNAL and at NIMS up to 28 T under magnetic fields at zero to 90 degree with respect to the sample face. A description of the test setups and results on a BSCCO-2223 tape and second generation (2G) coated conductors are presented.

  18. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields

    Science.gov (United States)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-03-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other

  19. Design and Application of Hybrid Magnetic Field-Eddy Current Probe

    Science.gov (United States)

    Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John

    2013-01-01

    The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.

  20. Minimizing magnetic fields for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S., E-mail: stefan.stuiber@ph.tum.de; Sturm, M.; Taggart Singh, J.; Taubenheim, B. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Rohrer, H. K. [Rohrer GmbH, D-80667 München (Germany); Schläpfer, U. [IMEDCO AG, CH-4614 Hägendorf (Switzerland)

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  1. Minimizing magnetic fields for precision experiments

    International Nuclear Information System (INIS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application

  2. Development of an YBCO coil with SSTC conductors for high field application

    Science.gov (United States)

    Shi, Y.; Liu, H. J.; Liu, F.; Tan, Y. F.; Jin, H.; Yu, M.; Lei, L.; Guo, L.; Hong, Z. Y.

    2018-07-01

    With the continuous reduction of the production costs and improvement of the transport performance, YBCO coated conductor is the most promising candidate for the high field magnet application due to its high irreversibility field and strong mechanical properties. Presently a stable production capacity of the YBCO conductors has been achieved by Shanghai Superconducting Technology Co., Ltd (SSTC) in China. Therefore, the demand in high field application with YBCO conductors is growing in China. This paper describes the design, fabrication and preliminary experiment of a solenoid coil with YBCO conductors supplied by SSTC to validate the possibility of high field application. Four same double pancakes were manufactured and assembled for the YBCO coil where the outer diameter and height was 54.3 and 48 mm respectively to match the dimensional limitation of the 14 T background magnets. The critical current (Ic) of YBCO conductors was obtained by measuring as a function of the applied field perpendicular to the YBCO conductor surface which provides the necessary input parameters for preliminary performance evaluation of the coil. Finally the preliminary test and discussion at 77 and 4.2 K were carried out. The consistency of four double pancakes Ic was achieved. The measured results indicate that the fabrication technology of HTS coil is reliable which gives the conference for the in-field test in high field application. This YBCO coil is the first demonstration of the SSTC YBCO coated conductors.

  3. Compact high-field superconducting quadrupole magnet with holmium poles

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, D.B.; Kraus, R.H. Jr.; Lobb, C.T.; Menzel, M.T. (Los Alamos National Lab., NM (United States)); Walstrom, P.L. (Grumman Space Systems, Los Alamos, NM (United States))

    1992-03-15

    A compact high-field superconducting quadrupole magnet was designed and built with poles made of the rare-earth metal holmium. The magnet is intended for use in superconducting coupled-cavity linear accelerators where compact high-field quadrupoles are needed, but where the use of permanent magnets is ruled out because of trapped-flux losses. The magnet has a clear bore diameter of 1.8 cm, outside diameter of 11 cm, length of 11 cm, and pole tip length of 6 cm. The effect of using holmium, a material with a higher saturation field than iron, was investigated by replacing poles made of iron with identical poles made of holmium. The magnet was operated at a temperature of 4.2 K and reached a peak quadrupole field gradient of 355 T/m, a 10% increase over the same magnet with iron poles. This increase in performance is consistent with calculations based on B-H curves that were measured for holmium at 4.2 K. (orig.).

  4. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong; Chen, Youhe

    2015-01-01

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields

  5. Triaxial fiber optic magnetic field sensor for MRI applications

    Science.gov (United States)

    Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea

    2016-05-01

    In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.

  6. Designing magnets with prescribed magnetic fields

    International Nuclear Information System (INIS)

    Liu Liping

    2011-01-01

    We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

  7. New developments in pulsed fields at the US National High Magnetic Field Laboratory

    International Nuclear Information System (INIS)

    Campbell, L.J.; Parkin, D.M.; Rickel, D.G.; Pernambuco-Wise, P.

    1996-01-01

    Los Alamos National Laboratory is a member of a consortium (with Florida State University and the University of Florida) to operate the National High Magnetic Field Laboratory (NHMFL), with funding from the National Science Foundation and the State of Florida. Los Alamos provides unique resources for its component of NHMFL in the form of a 1.4 GW inertial storage motor-generator for high field pulsed magnets and infrastructure for fields generated by flux compression. The NHMFL provides a user facility open to all qualified users, develops magnet technology in association with the private sector, and advances science and technology opportunities. The magnets in service at Los Alamos are of three types. Starting with the pre-existing explosive flux compression capability in 1991, NHMFL added capacitor-driven magnets in December, 1992, and a 20 tesla superconducting magnet in January, 1993. The capacitor-driven magnets continue to grow in diversity and accessibility, with four magnet stations now available for several different magnet types. Two magnets of unprecedented size and strength are nearing completion of assembly and design, respectively. Under final assembly is a quasi-continuous magnet that contains 90 MJ of magnetic energy at full field, and being designed is a non-destructive 100 T magnet containing 140 MJ

  8. High field nuclear magnetic resonance application to polysaccharide chemistry

    International Nuclear Information System (INIS)

    Vincendon, Marc

    1972-01-01

    Nuclear magnetic resonance has been applied to polysaccharide chemistry using time averaging technique and high fields (100 and 250 MHz). The three methyl signals of methyl cellulose and cellulose triacetate are separated, and the C-6 substituent has been identified. Biosynthesis of bacterial cellulose has been performed using deuterium labelled D-glucose and Acetobacter xylinum. Per-acetylated derivative of bacterial cellulose has been studied by NMR; this study permitted us to determine the quantity of deuterium on each position of the anhydro-glucose unit in the polymer. NMR has also been used to see the anomeric end chain of cellulose and amylose derivatives and to show the fixation of bromine and t-butyl group on the free anomeric end chain of cellulose triacetate. (author) [fr

  9. Nickel--chromium strain gages for cryogenic stress analysis of superconducting structures in high magnetic fields

    International Nuclear Information System (INIS)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.; Hirzel, D.G.

    1977-01-01

    Evaluation and calibration measurements were performed on commercial nickel-chromium metal-foil strain gages in a high-magnetic-field (12 T), liquid-helium (4.2 K) environment. The purpose was to fully characterize strain gages for use at cryogenic temperatures in high magnetic fields. In this study, the magnetoresistance of a number of strain gages was measured in three orthogonal directions at mechanical strain levels to 8900 μm/m. As a result, a unique calibration curve was defined for magnetoresistance strain errors that is independent of strain level and field direction to 12 T at 4.2 K. A current strain-gage application is the measurement of superconductor mechanical properties. These gages will soon be used in the stress analysis of superconducting fusion magnets during cooldown from ambient temperatures and during operation at 4.2 K with magnetic fields to 12 T

  10. High-field magnetization of UCuGe single crystal

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Mushnikov, N. V.; Gozo, T.; Honda, F.; Sechovský, V.; Prokeš, K.

    346-347, - (2004), s. 132-136 ISSN 0921-4526 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : uranium intermetallics * UCuGe * high fields * magnetic anisotropy * field-induced phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.679, year: 2004

  11. Ultra-high-field magnets for future hadron colliders

    International Nuclear Information System (INIS)

    McIntyre, P.M.; Shen, W.

    1997-01-01

    Several new concepts in magnetic design and coil fabrication are being incorporated into designs for ultra-high field collider magnets: a 16 Tesla block-coil dual dipole, also using Nb 3 Sn cable, featuring simple pancake coil construction and face-loaded prestress geometry; a 330 T/m block-coil quadrupole; and a ∼ 20 Tesla pipe-geometry dual dipole, using A15 or BSCCO tape. Field design and fabrication issues are discussed for each magnet

  12. Magnetic phase diagram of UNi2Si2 under magnetic field and high-pressure

    International Nuclear Information System (INIS)

    Honda, F.; Oomi, G.; Svoboda, P.; Syshchenko, A.; Sechovsky, V.; Khmelevski, S.; Divis, M.; Andreev, A.V.; Takeshita, N.; Mori, N.; Menovsky, A.A.

    2001-01-01

    Measurements of electrical resistance under high pressure and neutron diffraction in high-magnetic field of single crystalline UNi 2 Si 2 have been performed. We have found the analogy between the p-T and B-T magnetic phase diagrams. It is also found that the propagation vector q Z of incommensurate antiferromagnetic phase decreases with increasing magnetic field. A new pronounced pressure-induced incommensurate-commensurate magnetic phase transition has been detected

  13. Generation of strong inhomogeneous stray fields by high-anisotropy permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Samofalov, V.N. [National Technical University Kharkov Polytechnical Institute, 21 Frunze St., 61002 Kharkov (Ukraine)]. E-mail: samofalov@kpi.kharkov.ua; Ravlik, A.G. [National Technical University Kharkov Polytechnical Institute, 21 Frunze St., 61002 Kharkov (Ukraine); Belozorov, D.P. [National Scientific Center Kharkov Institute of Physics and Techonology, NAS of Ukraine, 1 Akademicheskaja St., 61108 Kharkov (Ukraine); Avramenko, B.A. [National Technical University Kharkov Polytechnical Institute, 21 Frunze St., 61002 Kharkov (Ukraine)

    2004-10-01

    Magnetic stray fields for systems of permanent magnets with high magnetic anisotropy are calculated and measured. It is shown that intensity of these fields exceeds value of an induction of a material of magnets in some time. Besides, these fields are characterized by high gradients, and size H-bar H can reach values up to10{sup 10}-10{sup 11}Oe{sup 2}/cm. Estimations of extremely achievable fields and their gradients are made.

  14. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    Directory of Open Access Journals (Sweden)

    Agustín Leobardo Herrera-May

    2016-08-01

    Full Text Available Microelectromechanical systems (MEMS resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases.

  15. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Condrea, E., E-mail: condrea@nano.asm.md [Institute of Electronic Engineering and Nanotechnologies, Academy of Science of Moldova, 2028 Chisinau, Republic of Moldova (Moldova, Republic of); International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 51-421 Wroclaw (Poland); Gilewski, A. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 51-421 Wroclaw (Poland); MagNet, 50-421 Wroclaw (Poland); Nicorici, A. [Institute of Electronic Engineering and Nanotechnologies, Academy of Science of Moldova, 2028 Chisinau, Republic of Moldova (Moldova, Republic of)

    2016-03-11

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found. - Highlights: • Glass-coated single-crystalline Bi wires attain high limit of elastic strain of up to 3.0%. • Selective modification of the electronic structure of Bi wires is obtained by combining a high magnetic field and uniaxial strain. • The correlation between the exit of the lowest Landau level of electrons and Lifshitz transition was found.

  16. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    International Nuclear Information System (INIS)

    Condrea, E.; Gilewski, A.; Nicorici, A.

    2016-01-01

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found. - Highlights: • Glass-coated single-crystalline Bi wires attain high limit of elastic strain of up to 3.0%. • Selective modification of the electronic structure of Bi wires is obtained by combining a high magnetic field and uniaxial strain. • The correlation between the exit of the lowest Landau level of electrons and Lifshitz transition was found.

  17. Development of high magnetic field soft X-ray spectroscopy and its application to the study of surface and interface

    International Nuclear Information System (INIS)

    Nakamura, Tetsuya; Narumi, Yasuo

    2014-01-01

    Magnetic materials are generally synthesized and used as alloys and compounds. They are also stacked as a multilayer film for spintronics device such as a reading-head sensor of a hard disk drive. The evaluation of magnetization is the most fundamental characterization in studies of magnetic materials. Especially, in alloys and compounds involving more than two magnetic elements, a partial magnetization with respect to each element, we call as an element specific magnetization, promises to provide the deeper understanding of their magnetic property. X-ray magnetic circular dichroism (XMCD) in absorption spectroscopy provides an element specific magnetization. As XMCD became increasingly popular, high-magnetic-field environment for XMCD measurements also became very important in order to investigate paramagnetic, antiferromagnetic, and meta-magnetic materials. Under the circumstance, a high-magnetic-field XMCD measurement technique of the soft-X-ray regime has been developed using a non-destructive pulse magnet having capability of generating 40 T at the twin helical undulators beamline, BL25SU, of SPring-8. In this review, we first introduce the concept and the technical features of high magnetic field XMCD and then show recent examples of the experiments. (author)

  18. Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications

    International Nuclear Information System (INIS)

    Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

    1981-10-01

    Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production

  19. High magnetic field uniformity superconducting magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat with 'warm' aperture diameter of 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements using a NMR-magnetometer are given. The MPT set-up is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the Synchrophasotron of the Laboratory of High Energies (LHE), JINR, Dubna

  20. Windows on the Human Body – in Vivo High-Field Magnetic Resonance Research and Applications in Medicine and Psychology

    Science.gov (United States)

    Moser, Ewald; Meyerspeer, Martin; Fischmeister, Florian Ph. S.; Grabner, Günther; Bauer, Herbert; Trattnig, Siegfried

    2010-01-01

    Analogous to the evolution of biological sensor-systems, the progress in “medical sensor-systems”, i.e., diagnostic procedures, is paradigmatically described. Outstanding highlights of this progress are magnetic resonance imaging (MRI) and spectroscopy (MRS), which enable non-invasive, in vivo acquisition of morphological, functional, and metabolic information from the human body with unsurpassed quality. Recent achievements in high and ultra-high field MR (at 3 and 7 Tesla) are described, and representative research applications in Medicine and Psychology in Austria are discussed. Finally, an overview of current and prospective research in multi-modal imaging, potential clinical applications, as well as current limitations and challenges is given. PMID:22219684

  1. Magnetic nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Krustev, P.; Ruskov, T.

    2007-01-01

    In this paper we describe different biomedical application using magnetic nanoparticles. Over the past decade, a number of biomedical applications have begun to emerge for magnetic nanoparticles of differing sizes, shapes, and compositions. Areas under investigation include targeted drug delivery, ultra-sensitive disease detection, gene therapy, high throughput genetic screening, biochemical sensing, and rapid toxicity cleansing. Magnetic nanoparticles exhibit ferromagnetic or superparamagnetic behavior, magnetizing strongly under an applied field. In the second case (superparamagnetic nanoparticles) there is no permanent magnetism once the field is removed. The superparamagnetic nanoparticles are highly attractive as in vivo probes or in vitro tools to extract information on biochemical systems. The optical properties of magnetic metal nanoparticles are spectacular and, therefore, have promoted a great deal of excitement during the last few decades. Many applications as MRI imaging and hyperthermia rely on the use of iron oxide particles. Moreover magnetic nanoparticles conjugated with antibodies are also applied to hyperthermia and have enabled tumor specific contrast enhancement in MRI. Other promising biomedical applications are connected with tumor cells treated with magnetic nanoparticles with X-ray ionizing radiation, which employs magnetic nanoparticles as a complementary radiate source inside the tumor. (authors)

  2. Development and applications of NMR [nuclear magnetic resonance] in low fields and zero field

    International Nuclear Information System (INIS)

    Bielecki, A.

    1987-05-01

    This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab

  3. Development of an extraction type magnetometer under high pressure and high magnetic fields over 200 kOe in the hybrid magnet

    International Nuclear Information System (INIS)

    Koyama, K; Miura, S; Okada, H; Watanabe, K

    2006-01-01

    An extraction-type magnetometer has been developed, which is performed under pressures up to 12 kbar using a miniature high-pressure clamp-cell, in magnetic fields up to 270 kOe using our hybrid magnet and at the temperature range from 1.5 to 300 K. Magnetization curves can be measured for absolute value over 0.04 emu. We confirmed that resolution is about ±0.01 emu under high pressures and high magnetic fields if a sample has the magnetic moment of about 3 emu. For demonstrating the ability of the instrument, high field magnetization curves for SmMn 2 Ge 2 under high pressures are presented

  4. Application of SQUIDs to low temperature and high magnetic field measurements—Ultra low noise torque magnetometry

    Science.gov (United States)

    Arnold, F.; Naumann, M.; Lühmann, Th.; Mackenzie, A. P.; Hassinger, E.

    2018-02-01

    Torque magnetometry is a key method to measure the magnetic anisotropy and quantum oscillations in metals. In order to resolve quantum oscillations in sub-millimeter sized samples, piezo-electric micro-cantilevers were introduced. In the case of strongly correlated metals with large Fermi surfaces and high cyclotron masses, magnetic torque resolving powers in excess of 104 are required at temperatures well below 1 K and magnetic fields beyond 10 T. Here, we present a new broadband read-out scheme for piezo-electric micro-cantilevers via Wheatstone-type resistance measurements in magnetic fields up to 15 T and temperatures down to 200 mK. By using a two-stage superconducting-quantum interference device as a null detector of a cold Wheatstone bridge, we were able to achieve a magnetic moment resolution of Δm = 4 × 10-15 J/T at maximal field and 700 mK, outperforming conventional magnetometers by at least one order of magnitude in this temperature and magnetic field range. Exemplary de Haas-van Alphen measurement of a newly grown delafossite, PdRhO2, was used to show the superior performance of our setup.

  5. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie; Zhu, Mi [Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-09-14

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when the orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.

  6. High magnetic field magnetization of a new triangular lattice antiferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H. D. [Univ. of Tennessee, Knoxville, TN (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Stritzinger, Laurel Elaine Winter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-23

    In CsV(MoO4)2, the magnetic V3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO4)2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Will it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V3+ (3d2) ions. Apparently we need higher field to reach 1/3 value or full moment.

  7. Photographing magnetic fields in superconductors

    International Nuclear Information System (INIS)

    Harrison, R.B.; Wright, L.S.

    Magneto-optic techniques coupled with high-speed photography are being used to study the destruction of superconductivity by a magnetic field. The phenomenon of superconductivity will be introduced with emphasis placed on the properties of type I and type II superconductors in a magnetic field. The Faraday effect and its application to the study of the penetration of magnetic fields into these superconductors will be described; the relative effectiveness of some types of paramagnetic glass will be demonstrated. A number of cinefilms will be shown to illustrate the versatility of the magneto-optic method for observing flux motion and patterns. The analysis of data obtained from a high speed film (10,200 fps) of a flux jump in Nb-Zr will be presented and discussed

  8. Radiofrequency solutions in clinical high field magnetic resonance

    NARCIS (Netherlands)

    Andreychenko, A.

    2013-01-01

    Magnetic resonance imaging (MRI) and spectroscopy (MRS) benefit from the sensitivity gain at high field (≥7T). However, high field brings also certain challenges associated with growing frequency and spectral dispersion. Frequency growth results in degraded performance of large volume radiofrequency

  9. High-field magnetization of dilute rare earths in yttrium

    DEFF Research Database (Denmark)

    Touborg, P.; Høg, J.; Cock, G. J.

    1974-01-01

    Magnetization measurements have been performed on single crystals of Y containing small amounts of Tb, Dy, or Er at 4.2 K in fields up to 295 × 105 A/m (370 kOe). Crystal-field and molecular-field parameters obtained from measurements of the initial susceptibility versus temperature give a satisf...... a satisfactory quantitative account of the high-field magnetization. This includes characteristic features due to the crossing and mixing of crystal-field levels....

  10. Universal properties of strongly frustrated quantum magnets in high magnetic fields

    International Nuclear Information System (INIS)

    Richter, J.

    2007-01-01

    For a class of frustrated antiferromagnetic spin systems including e.g. the 1D saw tooth chain, the 2D kagom'e and checkerboard, the 3D pyrochlore lattices exact eigenstates consisting of several independent localized magnons in a ferromagnetic environment can be constructed. Important structural elements of the relevant systems are triangles being attached to polygons or lines. Then the magnons can be trapped on these polygons/lines. If the concentration of localized magnons is small they can be distributed randomly over the lattice. Increasing the number of localized magnons their distribution over the lattice becomes more regular and finally the magnons condensate in a crystal-like state. The physical relevance of these eigenstates emerges in high magnetic fields where they become ground states of the system. The spin systems having localized-magnon eigenstates exhibit universal features at low-temperatures in the vicinity of the saturation field: (i) The ground-state magnetization exhibits a macroscopic jump to saturation. This jump is accompanied by a preceding plateau (ii) The ground state at the saturation field is highly degenerate. The degeneracy grows exponentially with the system size and leads to a low-temperature maximum in the isothermal entropy versus field curve at the saturation field and to an enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones. (iii) By mapping the localized magnon spin degrees of freedom on a hard-core lattice gas one can find explicit analytical universal expressions for the low-temperature thermodynamics near saturation field. (iv) The magnetic system may exhibit a field-tuned structural instability in the vicinity of the saturation field. (author)

  11. Structural alloys for high field superconducting magnets

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4 0 K and by rate effects associated with adiabatic heating during the tests. 46 refs

  12. Control of doxorubicin release from magnetic Poly(dl-lactide-co-glycolide) nanoparticles by application of a non-permanent magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Peça, Inês N. [Universidade Nova de Lisboa, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia (Portugal); Bicho, A.; Gardner, Rui [Instituto Gulbenkian de Ciência (Portugal); Cardoso, M. Margarida, E-mail: margarida.cardoso@fct.unl.pt [Universidade Nova de Lisboa, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia (Portugal)

    2015-11-15

    This work studied the effect of the application time of a non-permanent magnetic field on the rate of drug release from iron oxide polymeric nanoparticles. Magnetically responsive doxorubicin loaded poly(d-lactide-co-glycolide) (PLGA) nanoparticles were synthetized by the o/w solvent extraction/evaporation method and characterized. The produced particles show spherical shapes exhibiting a size between 200 and 400 nm, a drug loading of 3.6 % (w/w) and an iron concentration of 20.7 % (w/w). Cell cytotoxicity tests showed that unloaded magnetic PLGA nanoparticles were nontoxic. Concerning the therapeutic activity, doxorubicin-loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterparts (40 against 7 % of dead cells). In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. The final amount and the rate of doxorubicin released increase with the time of field application reaching higher values for a higher number of pulses with a lower duration. Doxorubicin release mechanism has shown to be governed by Fickian diffusion in the absence of a magnetic field while in the presence of a magnetic field some controlled relaxation polymer chains might also be present. The results show that the drug release rate from magnetic PLGA nanoparticles can be modulated through the application time and the on/off cycles duration of a non-permanent magnetic field.

  13. High-field superconducting window-frame beam-transport magnets

    International Nuclear Information System (INIS)

    Allinger, J.; Carroll, A.; Danby, G.; DeVito, B.; Jackson, J.; Leonhardt, W.; Prodell, A.; Skarita, J.

    1982-01-01

    The window-frame design for high-field superconducting beam-transport magnets was first applied to two, 2-m-long, 4-T modules of an 8 0 bending magent which has operated for nine years in the primary proton beam line at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS). The design of two 1.5-m long, 7.6-cm cold-bore superconducting windowframe magnets, described in this paper, intended for the external proton beam transport system at the AGS incorporated evolutionary changes. These magnets generated a maximum aperture field of 6.8 T with a peak field in the dipole coil of 7.1 T. Measured fields are very accurate and are compared to values calculated using the computer programs LINDA and POISSON. Results of quench-propagation studies demonstrate the excellent thermal stability of the magnets. The magnets quench safely without energy extraction at a maximum current density, J = 130 kA/cm 2 in the superconductor, corresponding to J = 57.6 kA/cm 2 overall the conductor at B = 6.7 T

  14. Dynamic Nuclear Polarization at low temperature and high magnetic eld for biomedical applications in Magnetic Resonance Spectroscopic Imaging

    International Nuclear Information System (INIS)

    Goutailler, Florent

    2011-01-01

    The aim of this thesis work was to design, build and optimize a large volume multi-samples DNP (Dynamic Nuclear Polarization) polarizer dedicated to Magnetic Resonance Spectroscopic Imaging applications. The experimental system is made up of a high magnetic field magnet (3,35 T) in which takes place a cryogenic system with a pumped bath of liquid helium ("4He) allowing temperatures lower than 1,2 K. A set of inserts is used for the different steps of DNP: irradiation of the sample by a microwave field (f=94 GHz and P=50 mW), polarization measurement by Nuclear Magnetic Resonance... With this system, up to three samples of 1 mL volume can be polarized to a rate of few per-cents. The system has a long autonomy of four hours, so it can be used for polarizing molecules with a long time constant of polarization. Finally, the possibility to get quasi-simultaneously, after dissolution, several samples with a high rate of polarization opens the way of new applications in biomedical imaging. (author) [fr

  15. High-field Magnet Development toward the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, Giorgio [Fermilab

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  16. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  17. Sudden flux change studies in high field superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Feher, S.; Bordini, B.; Carcagno, R.; Makulski, A.; Orris, D.F.; Pischalnikov, Y.M.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; Zlobin, A.V.

    2004-01-01

    As part of the High Field Magnet Program at Fermilab many magnets have been tested which utilize multi strand Rutherford type cable made of state-of-the art Nb 3 Sn strands. During these magnet tests we observed sudden flux changes by monitoring coil voltages and the magnetic field close to the magnets. These flux changes might be linked to magnet instabilities. The voltage spike signals were correlated with quench antenna signals, a strong indication that these are magnet phenomena. With a new high resolution voltage spike detection system, we were able to observe the detailed structure of the spikes. Two fundamentally different signal shapes were distinguished, most likely generated by different mechanisms

  18. A commercial tokamak reactor using super high field superconducting magnets

    International Nuclear Information System (INIS)

    Schwartz, J.; Bromberg, L.; Cohn, D.R.; Williams, J.E.C.

    1988-01-01

    This paper explores the range of possibilities for producing super high fields with advanced superconducting magnets. Obtaining magnetic fields greater than about 18 T at the coil in a large superconducting magnet system will require advances in many areas of magnet technology. These needs are discussed and potential solutions (advanced superconductors, structural materials and design methods) evaluated. A point design for a commercial reactor with magnetic field at the coil of 24 T and fusion power of 1800 MW is presented. Critical issues and parameters for magnet design are identified. 20 refs., 9 figs., 4 tabs

  19. New type of vortex pinning structure effective at very high magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Muralidhar, M.; Sakai, N.; Chikumoto, N.; Jirsa, Miloš; Machi, T.; Nishiyama, M.; Wu, Y.; Murakami, M.

    2002-01-01

    Roč. 89, č. 32 (2002), s. 237001-1 - 237001-4 ISSN 0031-9007 R&D Projects: GA AV ČR IAA1010919 Institutional research plan: CEZ:AV0Z1010914 Keywords : nanometer-scale pinning * NEG/Ba-rich clusters * Nd 0.33 Eu 0.38 Gd 0.28 )Ba 2 Cu 3 O y * irreversibility field * high-field applications Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.323, year: 2002

  20. Applications, dosimetry and biological interactions of static and time-varying magnetic fields

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1988-08-01

    The primary topics of this presentation include: (1) the applications of magnetic fields in research, industry, and medical technologies; (2) mechanisms of interaction of static and time-varying magnetic fields with living systems; (3) human health effects of exposure to static and time-varying magnetic fields in occupational, medical, and residential settings; and (4) recent advances in the dosimetry of extremely-low-frequency electromagnetic fields. The discussion of these topics is centered about two issues of considerable contemporary interest: (1) potential health effects of the fields used in magnetic resonance imaging and in vivo spectroscopy, and (2) the controversial issue of whether exposure to extremely-low-frequency (ELF) electromagnetic fields in the home and workplace leads to an elevated risk of cancer. 11 refs

  1. Magnetic field structure of experimental high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Deniz, A.V.

    1986-01-01

    The magnetic field structure of several low and high β tokamaks in the Columbia High Beta Tokamak (HBT) was determined by high-impedance internal magnetic probes. From the measurement of the magnetic field, the poloidal flux, toroidal flux, toroidal current, and safety factor are calculated. In addition, the plasma position and cross-sectional shape are determined. The extent of the perturbation of the plasma by the probe was investigated and was found to be acceptably small. The tokamaks have major radii of approx.0.24 m, minor radii of approx.0.05 m, toroidal plasma current densities of approx.10 6 A/m 2 , and line-integrated electron densities of approx.10 20 m -2 . The major difference between the low and high β tokamaks is that the high β tokamak was observed to have an outward shift in major radius of both the magnetic center and peak of the toroidal current density. The magnetic center moves inward in major radius after 20 to 30 μsec, presumably because the plasma maintains major radial equilibrium as its pressure decreases from radiation due to impurity atoms. Both the equilibrium and the production of these tokamaks from a toroidal field stabilized z-pinch are modeled computationally. One tokamak evolves from a state with low β features, through a possibly unstable state, to a state with high β features

  2. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  3. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  4. High-field magnetization of rare-earth ions in scandium

    DEFF Research Database (Denmark)

    Roeland, L. W.; Touborg, P.

    1978-01-01

    The magnetic moments of Tb, Dy, or Er ions in dilute Sc single-crystal alloys have been measured in fields up to 280 × 105 A/m (350 kOe). The Zeeman energies in this high field are comparable to the total crystal-field splittings. This gives rise to characteristic features in the magnetization cu...... curves. The crystal-field parameters obtained previously from experiments in low fields and the Zeeman interaction give a satisfactory quantitative acount of the experimental results....

  5. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.

    2018-05-01

    Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

  6. Review - X-ray diffraction measurements in high magnetic fields and at high temperatures

    Directory of Open Access Journals (Sweden)

    Yoshifuru Mitsui, Keiichi Koyama and Kazuo Watanabe

    2009-01-01

    Full Text Available A system was developed measuring x-ray powder diffraction in high magnetic fields up to 5 T and at temperatures from 283 to 473 K. The stability of the temperature is within 1 K over 6 h. In order to examine the ability of the system, the high-field x-ray diffraction measurements were carried out for Si and a Ni-based ferromagnetic shape-memory alloy. The results show that the x-ray powder diffraction measurements in high magnetic fields and at high temperatures are useful for materials research.

  7. Focus on Materials Analysis and Processing in Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando

    2009-01-01

    Full Text Available Recently, interest in the applications of feeble (diamagnetic and paramagnetic magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan.Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3, which was held on 14–16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields.This focus issue compiles 13 key papers selected from the proceedings

  8. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  9. A high pulsed power supply system designed for pulsed high magnetic field

    International Nuclear Information System (INIS)

    Liu Kefu; Wang Shaorong; Zhong Heqing; Xu Yan; Pan Yuan

    2008-01-01

    This paper introduces the design of high pulsed power supply system for producing pulsed high magnetic field up to 70 T. This system consists of 58 sets of 55 μF of capacitor bank which provides 1.0 MJ energy storage. A set of vacuum closing switch is chosen as main switch for energy discharge into magnetic coil. A crowbar circuit with high power diodes in series with resistor is used to absorb the redundant energy and adjust pulse width. The resistance of magnetic coil changing with current is deduced by energy balance equations. A capacitor-charging power supply using a series-resonant, constant on-time variable frequency control, and zero-current switching charges the capacitor bank in one minute time with high efficiency. The pulsed power supply provides adjustable current and pulse width with 30 kA peak and 30 ms maximum. The primary experiments demonstrate the system reliability. This work provides an engineering guidance for future development of pulsed high magnetic field. (authors)

  10. Volume-based Representation of the Magnetic Field

    CERN Document Server

    Amapane, N; Drollinger, V; Karimäki, V; Klyukhin, V; Todorov, T

    2005-01-01

    Simulation and reconstruction of events in high-energy experiments require the knowledge of the value of the magnetic field at any point within the detector. The way this information is extracted from the actual map of the magnetic field and served to simulation and reconstruction applications has a large impact on accuracy and performance in terms of speed. As an example, the CMS high level trigger performs on-line tracking of muons within the magnet yoke, where the field is discontinuous and largely inhomogeneous. In this case the high level trigger execution time is dominated by the time needed to access the magnetic field map.For this reason, an optimized approach for the access to the CMS field was developed, based on a dedicated representation of thedetector geometry. The detector is modeled in terms of volumes, constructed in such a way that their boundaries correspond to the fiel d discontinuities due to changes in the magnetic permeability of the materials. The field within each volume is therefore c...

  11. High field magnetic behavior in Boron doped Fe{sub 2}VAl Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, Ch., E-mail: venkyphysicsiitm@gmail.com [Department of Physics, Indian Institute of Technology, Kharagpur (India); DCMP & MS, Tata Institute of Fundamental Research, Mumbai (India); Vasundhara, M., E-mail: vasu.mutta@gmail.com [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695019 (India); Srinivas, V. [Department of Physics, Indian Institute of Technology, Chennai (India); Rao, V.V. [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur (India)

    2016-11-15

    We have investigated the magnetic behavior of Fe{sub 2}VAl{sub 1−x}B{sub x} (x=0, 0.03, 0.06 and 0.1) alloys under high temperature and high magnetic field conditions separately. Although, the low temperature DC magnetization data for the alloys above x>0 show clear magnetic transitions, the zero field cooled (ZFC) and field cooled (FC) curves indicate the presence of spin cluster like features. Further, critical exponent (γ) deduced from the initial susceptibility above the T{sub c}, does not agree with standard models derived for 3 dimensional long range magnetic systems. The deviation in γ values are consistent with the short range magnetic nature of these alloys. We further extend the analysis of magnetic behavior by carrying the magnetization measurements at high temperatures and high magnetic fields distinctly. We mainly emphasize the following observations; (i) The magnetic hysteresis loops show sharp upturns at lower fields even at 900 K for all the alloys. (ii) High temperature inverse susceptibility do not overlap until T=900 K, indicating the persistent short range magnetic correlations even at high temperatures. (iii) The Arrott's plot of magnetization data shows spontaneous moment (M{sub S}) for the x=0 alloy at higher magnetic fields which is absent at lower fields (<50 kOe), while the Boron doped samples show feeble M{sub S} at lower fields. The origin of this short range correlation is due to presence of dilute magnetic heterogeneous phases which are not detected from the X-ray diffraction method. - Highlights: • Short range magnetic character has been confirmed by the critical exponents analysis. • Magnetoresistace is about −14% with non-saturating tendency even at 150 kOe for Fe{sub 2}VAl alloy. • Boron doped Fe{sub 2}VAl alloys show a weak magnetism even at T=900 K.

  12. Measurements of flux pumping activation of trapped field magnets

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad [Texas Center for Superconductivity, 202 Houston Science Center, University of Houston, Houston, TX 77204-5002 (United States); Davey, Kent [Physics Department, 617 Science and Research Building I, University of Houston, Houston, TX 77204-5005 (United States)

    2010-11-15

    Large grains of high temperature superconducting (HTS) material can be utilized as trapped field magnets (TFMs). Persistent currents are set up in the HTS when it is cooled in a magnetic field, or exposed to a magnetic field after cooling. TFMs have been improved over the past two decades by the efforts of a large number of worldwide research groups. However, applications using TFMs have lagged, in part due to the problem of high fields needed for activation. We describe herein experiments designed to observe the behaviour of TFM activation using repeated applications of low fields (called 'pumping'). Significant partial activation is obtained using a non-uniform pumping field (e.g., a small permanent magnet) which is higher in the centre of the HTS than at the periphery. Cooling in zero field followed by pumping with such a field results in trapping the full applied field, in comparison to half of the applied field being trapped by cooling in zero field followed by application of a uniform field. We find that for partial activation by cooling in a field and subsequent activation by pumping, the resulting fields are additive. We also conclude that for activation by fluxoid pumping, creep assists the process.

  13. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    Science.gov (United States)

    Condrea, E.; Gilewski, A.; Nicorici, A.

    2016-03-01

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found.

  14. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, Joao

    2017-10-01

    Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in the kTesla range. The B-fields are measured by proton-deflectometry and high-frequency bandwidth B-dot probes. According to our modeling, the quasi-static currents are provided from hot electron ejection from the laser-irradiated surface, accounting for the space charge neutralization and the plasma magnetization. The major control parameter is the laser irradiance Iλ2 . The B-fields ns-scale is long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented enhancement of a factor 5 on the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. We acknowledge funding from French National Agency for Research (ANR), Grant TERRE ANR-2011-BS04-014, and from EUROfusion Consortium, European Union's Horizon 2020 research and innovation programme, Grant 633053.

  15. High speed pulsed magnetic fields measurements, using the Faraday effect

    International Nuclear Information System (INIS)

    Dillet, A.

    1964-12-01

    For these measures, the information used is the light polarization plane rotation induced by the magnetic field in a glass probe. This rotation is detected using a polarizer-analyzer couple. The detector is a photomultiplier used with high-current and pulsed light. In a distributed magnet (gap: 6 x 3 x 3 cm) magnetic fields to measure are 300 gauss, lasting 0.1 μs, with rise times ≤ 35 ns, repetition rate: 1/s. An oscilloscope is used to view the magnetic field from the P.M. plate signal. The value of the field is computed from a previous static calibration. Magnetic fields from 50 to 2000 gauss (with the probe now used) can be measured to about 20 gauss ± 5 per cent, with a frequency range of 30 MHz. (author) [fr

  16. Enhanced Energy Density in Permanent Magnets using Controlled High Magnetic Field during Processing

    Energy Technology Data Exchange (ETDEWEB)

    Carter, William G [ORNL; Rios, Orlando [ORNL; Constantinides, Steven [ORNL

    2016-05-05

    This ORNL Manufacturing Demonstraction Facility (MDF) technical collaboration focused on the use of high magnetic field processing (>2Tesla) using energy efficient large bore superconducting magnet technology and high frequency electromagnetics to improve magnet performance and reduce the energy budget associated with Alnico thermal processing. Alnico, alloys containing Al, Ni, Co and Fe, represent a class of functional nanostructured alloys, and show the greatest potential for supplementing or replacing commercial Nd-based rare-earth alloy magnets.

  17. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  18. Cryogenic magnet case and distributed structural materials for high-field superconducting magnets

    International Nuclear Information System (INIS)

    Summers, L.T.; Miller, J.R.; Kerns, J.A.; Myall, J.O.

    1987-01-01

    The superconducting magnets of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) will generate high magnetic fields over large bores. The resulting electromagnetic forces require the use of large volumes of distributed steel and thick magnet case for structural support. Here we review the design allowables, calculated loads and forces, and structural materials selection for TIBER II. 7 refs., 2 figs., 3 tabs

  19. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures

    Science.gov (United States)

    Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua

    2017-01-01

    The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10  ×  1021 cm-3, while the variation of the hole density is only about 1.16  ×  1020 cm-3.

  20. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications

    OpenAIRE

    Vemulkar, T; Mansell, Rhodri; Petit, Dorothee Celine; Cowburn, Russell Paul; Lesniak, MS

    2015-01-01

    Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer...

  1. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, D. C.; Noyes, P. D.; Miller, G. E.; Weijers, H. W.; Willering, G. P.

    2013-02-13

    The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured at 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.

  2. Application of stable, nitroxide free radicals in solution to low magnetic fields measurements

    International Nuclear Information System (INIS)

    Besson, Rene

    1973-01-01

    The first attempts to use the Overhauser-Abragam effect for measuring low magnetic fields date back to 1956. However, the instability of the free radical used, PREMY'S Salt, as well as its virtual insolubility in solvents other than water, hampered the development of the nuclear magnetic resonance magnetometer realized in accordance to this principle: dynamic polarization of protons. New free radicals stable and soluble in many solvents, will enhanced the interest in the device. In particular, the use of 2,2,6,6, tetramethyl- piperidine-4-one-1-oxide (TANO or TANONE) leads to a high sensitivity, low field magnetometer. The methods of measurements, the required apparatus and sample preparation are first described. Next the results of measurements made both in high and low magnetic fields with various free radicals in different solvents are presented in tabular and graphical form. These measurements have determined which radical-solvent couple will yield a high dynamic polarization coefficient. In addition, the improvement obtained by complete deuteration of the free radical has been demonstrated. Problems connected with the application of such radicals in solution to the 'double effect probe' of the magnetometer built by LETI at CEN Grenoble and the solutions reached are discussed. (author) [fr

  3. A multifunctional energy-saving magnetic field generator

    Science.gov (United States)

    Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua

    2018-03-01

    To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.

  4. Pelvic endometriosis: a comparison between low-field (0.2 T) and high-field (1.5 T) magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Minaif, Karine; Ajzen, Sergio [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. of Imaging Diagnosis]. E-mail: kminaif@uol.com.br; Shigueoka, David Carlos; Minami, Cintia Cristina Satie; Sales, Danilo Moulin; Szejnfeld, Jacob [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. of Imaging Diagnosis. Unit of Abdomen; Ruano, Jose Maria Cordeiro [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. of General Gynecology. Sector of Videlaparoscopy; Noguti, Alberto Sinhiti [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. of General Gynecology

    2008-11-15

    Objective: to compare low-field (0.2 T) with high-field (1.5 T) magnetic resonance imaging in the assessment of pelvic endometriosis and adenomyosis. Materials and methods: twenty-seven female patients with clinically suspected endometriosis were prospectively evaluated by means of high-field and low-field magnetic resonance imaging. The reading of the images was performed by a single radiologist, initiating by the low-field, followed by the high-field images. High-field magnetic resonance imaging was utilized as the golden-standard. Results: among the 27 patients included in the present study, 18 (66.7%) had some type of lesion suggesting the presence of endometriosis demonstrated at high-field images. In 14 of these patients the diagnosis was correctly established by low-field magnetic resonance imaging. Endometriomas, tubal lesions, and endometriotic foci > 7 mm identified at the high-field images were also identified at low-field images with 100% accuracy, sensitivity and specificity. Among the nine patients diagnosed with adenomyosis by high-field images, eight were correctly diagnosed by low-field images with 88.9% accuracy, specificity and sensitivity. Conclusion: low-field magnetic resonance imaging demonstrated a low sensitivity in the detection of small endometriotic foci, high sensitivity in the detection of endometriomas and large endometriotic foci, and high accuracy in the detection of adenomyosis when compared with high-field magnetic resonance imaging. (author)

  5. Pelvic endometriosis: a comparison between low-field (0.2 T) and high-field (1.5 T) magnetic resonance imaging

    International Nuclear Information System (INIS)

    Minaif, Karine; Ajzen, Sergio; Shigueoka, David Carlos; Minami, Cintia Cristina Satie; Sales, Danilo Moulin; Szejnfeld, Jacob; Ruano, Jose Maria Cordeiro; Noguti, Alberto Sinhiti

    2008-01-01

    Objective: to compare low-field (0.2 T) with high-field (1.5 T) magnetic resonance imaging in the assessment of pelvic endometriosis and adenomyosis. Materials and methods: twenty-seven female patients with clinically suspected endometriosis were prospectively evaluated by means of high-field and low-field magnetic resonance imaging. The reading of the images was performed by a single radiologist, initiating by the low-field, followed by the high-field images. High-field magnetic resonance imaging was utilized as the golden-standard. Results: among the 27 patients included in the present study, 18 (66.7%) had some type of lesion suggesting the presence of endometriosis demonstrated at high-field images. In 14 of these patients the diagnosis was correctly established by low-field magnetic resonance imaging. Endometriomas, tubal lesions, and endometriotic foci > 7 mm identified at the high-field images were also identified at low-field images with 100% accuracy, sensitivity and specificity. Among the nine patients diagnosed with adenomyosis by high-field images, eight were correctly diagnosed by low-field images with 88.9% accuracy, specificity and sensitivity. Conclusion: low-field magnetic resonance imaging demonstrated a low sensitivity in the detection of small endometriotic foci, high sensitivity in the detection of endometriomas and large endometriotic foci, and high accuracy in the detection of adenomyosis when compared with high-field magnetic resonance imaging. (author)

  6. High critical magnetic field superconductor La3S4

    International Nuclear Information System (INIS)

    Westerholt, K.; Bach, H.; Wendemuth, R.; Methfessel, S.

    1979-01-01

    A report is presented on electrical conductivity, specific heat and magnetization measurements on La 3 S 4 single crystals. The results show that La 3 S 4 is a strong coupling superconductor with a BCS coherence length of 132 A. This extremely low value makes La 3 S 4 an intrinsic high critical magnetic field superconductor with a Landau-Ginsburg parameter of 20. For the temperature gradient of the upper critical magnetic field at the transition temperature values are found up to 35 kG/K. (author)

  7. Magnetic properties of HoVOΛ4 in high magnetic fields

    International Nuclear Information System (INIS)

    Andronenko, S.I.; Bazhan, A.N.; Ioffe, V.A.; Udalov, Yu.P.

    1985-01-01

    Values magnetization and susceptibility of HoVO 4 , Van Vleck paramagnetic are specified in the 4.2-40 K temperature range and magnetic fields up to 50 kOe. Magnetic properties of HoVO 4 are analyzed using a theoretical model in which the interaction of rare earth ions with the crystal- and magnetic fields is considered. A possibility of rare earth ion interaction with the Bsub(1g), Bsub(2g), Asub(1g) symmetry deformations is also considered. It is stated that magnetic properties of HoVO 4 are completely explained within the frames of the crystal field model; the rare earth ion interactions with deformations are insignificant. Anisotropy of magnetization in the (001) plane is determined by the crystal field B 4 4 , B 6 4 constants; the constants being shown to be positive

  8. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  9. High Tc superconducting magnetic multivibrators for fluxgate magnetic-field sensors

    International Nuclear Information System (INIS)

    Mohri, K.; Uchiyama, T.; Ozeki, A.

    1989-01-01

    Sensitive and quick-response nonlinear inductance characteristics are found for high Tc superconducting (YBa 2 Cu 3 O 7-chi ) disk cores at 77K in which soft magnetic BH hysteresis loops are observed. Various quick response magnetic devices such as modulators, amplifiers and sensors are built using these cores. The magnetizing frequency can be set to more than 20 MHz, which is difficult for conventional ferromagnetic bulk materials such as Permalloy amorphous alloys and ferrite. New quick-response fluxgate type magnetic-field sensors are made using ac and dc voltage sources. The former is used for second-harmonic type sensors, while the latter is for voltage-output multivibrator type sensors. Stable and quick-response sensor characteristics were obtained for two-core type multivibrators

  10. Test of piezo-ceramic motor technology in ITER relevant high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Chiara, E-mail: chiara.monti@enea.it [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Besi Vetrella, Ugo; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Viola, Rosario [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Dubus, Gregory; Damiani, Carlo [Fusion for Energy, c/ Josep Pla, 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2014-10-15

    In the framework of a Fusion for Energy (F4E) grant, a test campaign started in 2012 in order to assess the performance of the in-vessel viewing system (IVVS) probe concept and to verify its compatibility when exposed to ITER typical working conditions. ENEA laboratories went through with several tests simulating high magnetic fields, high temperature, high vacuum, gamma radiation and neutron radiation. A customized motor has been adopted to study the performances of ultrasonic piezo motors technology in high magnetic field conditions. This paper reports on the testing activity performed on the motor in a multi Tesla magnetic field. The job was carried out in a test facility of ENEA laboratories able to achieve 14 T. A maximum field of 10 T, fully compliant with ITER requirements (8 T), was applied. A specific mechanical assembly has been designed and manufactured to hold the motor in the region with high homogeneity of the field. Results obtained so far indicate that the motor is compatible with high magnetic fields, and are presented in the paper.

  11. Conceptual Design of the 45 T Hybrid Magnet at the Nijmegen High Field Magnet Laboratory

    CERN Document Server

    Wiegers, SAJ; Bird, M D; Rook, J; Perenboom, J A A J; Wiegers, S A J; Bonito-Oliva, A; den Ouden, A

    2010-01-01

    A 45 T Hybrid Magnet System is being developed at the Nijmegen High Field Magnet Laboratory as part of the Nijmegen Center for Advanced Spectroscopy. The 45 T Hybrid Magnet System will be used in combination with far-infra-red light produced by a Free Electron Laser under construction directly adjacent to the High Field Magnet Laboratory. The superconducting outsert magnet will consist of three CICC coils wound on a single coil form, using Nb$_{3}$Sn strands. A test program for strand and cable qualification is underway. The CICC will carry 13 kA and the coils will produce 12 T on axis field in a 600 mm warm bore. The nominal operating temperature will be 4.5 K maintained with forced-flow supercritical helium. The insert magnet will produce 33 T at 40 kA in a 32 mm bore consuming 20 MW, and will consist of four coils. The insert magnet will be galvanically and mechanically isolated from the outsert magnet. Complete system availability for users is expected in 2014. In this paper we will report on the conceptu...

  12. On the cosmological propagation of high energy particles in magnetic fields

    International Nuclear Information System (INIS)

    Alves Batista, Rafael

    2015-04-01

    In the present work the connection between high energy particles and cosmic magnetic fields is explored. Particularly, the focus lies on the propagation of ultra-high energy cosmic rays (UHECRs) and very-high energy gamma rays (VHEGRs) over cosmological distances, under the influence of cosmic magnetic fields. The first part of this work concerns the propagation of UHECRs in the magnetized cosmic web, which was studied both analytically and numerically. A parametrization for the suppression of the UHECR flux at energies ∝ 10 18 eV due to diffusion in extragalactic magnetic fields was found, making it possible to set an upper limit on the energy at which this magnetic horizon effect sets in, which is magnetic fields. The newest version, CRPropa 3, is discussed in details, including the novel feature of cosmological effects in three-dimensional simulations, which enables time dependent studies considering simultaneously magnetic field effects and the cosmological evolution of the universe. An interesting possibility is to use UHECRs to constrain properties of cosmic magnetic fields, and vice-versa. Numerical simulations of the propagation of UHECRs in the magnetized cosmic web, obtained through magnetohydrodynamical simulations of structure formation, were performed. It was studied the effects of different magnetic field seeds on the distribution of cosmic magnetic fields today, and their impact on the propagation of cosmic rays. Furthermore, the influence of uncertainties of the strength of

  13. Shrink Tube Insulation Apparatus for Rebco Superconducting Tapes for Use in High Field Magnets

    CERN Document Server

    Whittington, Andrew

    An increasing number of applications require the use of high temperature superconductors (HTS) such as (RE=Rare Earth) Ba2Cu3O7-x (REBCO) coated conductors [1]. HTS conductors show particularly great potential for high field magnets applications [1] due to their high upper critical fields [2], But several groups have shown that REBCO coated conductors are prone to delamination failure [3] [4] [5]. Under relatively low transverse stress the HTS film separates from the substrate and the conductor degrades [6]. This is problematic due to high transverse stresses that occur in fully epoxy impregnated solenoids wound with this conductor. Application of thin walled heat shrink tubing introduces a weak plane around the conductor, preventing delamination degradation [7]. However, manual application of the shrink tubing is impractical, requiring three operators limited to insulating 100 m lengths or less of REBCO conductor. The high risk of damage to the conductor, also associated with this process, shows the need for...

  14. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  15. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I. D., Startsev, E. A., Sefkow, A. B., Davidson, R. C.

    2008-10-10

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite- length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to infuence the self-electric and self-magnetic fields when ωce > ωpeβb, where ωce = eβ/mec is the electron gyrofrequency, ωpe is the electron plasma frequency, and βb = Vb/c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement.

  16. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Startsev, E. A.; Sefkow, A. B.; Davidson, R. C.

    2008-01-01

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite-length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to influence the self-electric and self-magnetic fields when ω ce ∼> ω pe β b , where ω ce = eB/m e c is the electron gyrofrequency, ω pe is the electron plasma frequency, and β b = V b /c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement

  17. High-efficiency and low-cost permanent magnet guideway consideration for high-Tc superconducting Maglev vehicle practical application

    International Nuclear Information System (INIS)

    Deng, Z; Wang, J; Zheng, J; Jing, H; Lu, Y; Ma, G; Liu, L; Liu, W; Zhang, Y; Wang, S

    2008-01-01

    In order to improve the cost performance of the present high-T c superconducting (HTS) Maglev vehicle system for practical application, the multi-pole permanent magnet guideway (PMG) concept was introduced. A well-known double-pole Halbach PMG was chosen as a representative of multi-pole PMGs to compare with traditional monopole PMGs from the point of view of levitation efficiency and cost. Experimental results show that YBCO bulks above the double-pole Halbach PMG can exhibit better load capability and guidance performance as well as dynamics stability at the applied working height between the bulk HTSC and the PMG due to a more reasonable magnetic field distribution at the working range of bulk HTSC. Furthermore, the double-pole PMG configuration can play a more important role in improving guidance performance due to the potential-well field configuration. By comparing with former 'century' PMGs, the double-pole Halbach PMG shows another remarkable advantage in reducing the cost of levitation. As another necessary issue, magnetic field homogeneity and the corresponding magnetic drag force of a double-pole Halbach PMG has been considered by experiment in spite of the above highlights. Synthetically, the multi-pole Halbach PMG design is concluded to be one important choice for future HTS Maglev vehicle applications because of its high efficiency and low cost.

  18. Levitation performance of the magnetized bulk high-T{sub c} superconducting magnet with different trapped fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Wang, J.S., E-mail: tonny@mars.swjtu.edu.c [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Liao, X.L.; Zheng, S.J.; Ma, G.T.; Zheng, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China)

    2011-03-15

    Research highlights: {yields} The different trapped fields bring entirely different levitation performance. {yields} The force relaxation characters is directly bound up with the trapped field. {yields} The higher trapped field not means better levitation performance. {yields} An profitable internal induced current configuration will benefit to suppress flux motion. - Abstract: To a high-T{sub c} superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high-T{sub c} superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  19. Functional magnetic resonance imaging with ultra-high fields

    International Nuclear Information System (INIS)

    Windischberger, C.; Schoepf, V.; Sladky, R.; Moser, E.; Fischmeister, F.P.S.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is currently the primary method for non-invasive functional localization in the brain. With the emergence of MR systems with field strengths of 4 Tesla and above, neuronal activation may be studied with unprecedented accuracy. In this article we present different approaches to use the improved sensitivity and specificity for expanding current fMRT resolution limits in space and time based on several 7 Tesla studies. In addition to the challenges that arise with ultra-high magnetic fields possible solutions will be discussed. (orig.) [de

  20. Five years of magnetic field management

    International Nuclear Information System (INIS)

    Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

    1995-01-01

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors' experiences and shows the results of the specific projects completed in recent years

  1. Analysis and Design Considerations of a High-Power Density, Dual Air Gap, Axial-Field Brushless, Permanent Magnet Motor.

    Science.gov (United States)

    Cho, Chahee Peter

    1995-01-01

    Until recently, brush dc motors have been the dominant drive system because they provide easily controlled motor speed over a wide range, rapid acceleration and deceleration, convenient control of position, and lower product cost. Despite these capabilities, the brush dc motor configuration does not satisfy the design requirements for the U.S. Navy's underwater propulsion applications. Technical advances in rare-earth permanent magnet materials, in high-power semiconductor transistor technology, and in various rotor position-sensing devices have made using brushless permanent magnet motors a viable alternative. This research investigates brushless permanent magnet motor technology, studying the merits of dual-air gap, axial -field, brushless, permanent magnet motor configuration in terms of power density, efficiency, and noise/vibration levels. Because the design objectives for underwater motor applications include high-power density, high-performance, and low-noise/vibration, the traditional, simplified equivalent circuit analysis methods to assist in meeting these goals were inadequate. This study presents the development and verification of detailed finite element analysis (FEA) models and lumped parameter circuit models that can calculate back electromotive force waveforms, inductance, cogging torque, energized torque, and eddy current power losses. It is the first thorough quantification of dual air-gap, axial -field, brushless, permanent magnet motor parameters and performance characteristics. The new methodology introduced in this research not only facilitates the design process of an axial field, brushless, permanent magnet motor but reinforces the idea that the high-power density, high-efficiency, and low-noise/vibration motor is attainable.

  2. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  3. Effects of high-gradient magnetic fields on living cell machinery

    International Nuclear Information System (INIS)

    Zablotskii, V; Lunov, O; Kubinova, S; Polyakova, T; Dejneka, A; Sykova, E

    2016-01-01

    A general interest in biomagnetic effects is related to fundamental studies of the influence of magnetic fields on living objects on the cellular and whole organism levels. Emerging technologies offer new directions for the use of high-gradient magnetic fields to control cell machinery and to understand the intracellular biological processes of the emerging field of nanomedicine. In this review we aim at highlighting recent advances made in identifying fundamental mechanisms by which magnetic gradient forces act on cell fate specification and cell differentiation. The review also provides an analysis of the currently available magnetic systems capable of generating magnetic fields with spatial gradients of up to 10 MT m −1 , with the focus on their suitability for use in cell therapy. Relationships between experimental factors and underlying biophysical mechanisms and assumptions that would ultimately lead to a deeper understanding of cell machinery and the development of more predictive models for the evaluation of the effects of magnetic fields on cells, tissue and organisms are comprehensively discussed. (topical review)

  4. Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel

    Science.gov (United States)

    Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.

    2018-04-01

    Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.

  5. Self-generation of magnetic fields

    International Nuclear Information System (INIS)

    Dolan, T.J.

    2000-01-01

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  6. LLNL high-field coil program

    International Nuclear Information System (INIS)

    Miller, J.R.

    1986-01-01

    An overview is presented of the LLNL High-Field Superconducting Magnet Development Program wherein the technology is being developed for producing fields in the range of 15 T and higher for both mirror and tokamak applications. Applications requiring less field will also benefit from this program. In addition, recent results on the thermomechanical performance of cable-in-conduit conductor systems are presented and their importance to high-field coil design discussed

  7. Excitons and trions in modulation doped structures in high magnetic fields

    International Nuclear Information System (INIS)

    Kochereshko, V.; Andronikov, D.; Platonov, A.; Crooker, S.; Barrick, T.; Karczewski, G.; Tronc, P.

    2004-01-01

    Photoluminescence spectra of modulation-doped CdTe/CdMgTe quantum well structures containing two-dimensional electron gases of low, moderate and high electron concentrations were studied in high magnetic fields up to 45 T. The recombination line of triplet trion state was found in the spectra. A model calculation of photoluminescence spectra in magnetic fields, which takes into account singlet and triplet trion states, was carried out. It was shown that the dark triplet becomes observable in photoluminescence spectra because it becomes the only recombination channel when the formation of the singlet trion state is suppressed by magnetic fields. (author)

  8. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  9. Quasi permanent superconducting magnet of very high field

    Science.gov (United States)

    Ren, Y.; Liu, J.; Weinstein, R.; Chen, I. G.; Parks, D.; Xu, J.; Obot, V.; Foster, C.

    1993-01-01

    We report on persistent field in a quasi-permanent magnet made of high temperature superconductor. The material has an average of 40 percent molar excess of Y, relative to Y1Ba2Cu3O7 and has been irradiated with high energy light ions at 200 MeV. The magnet, which traps 1.52 T at 77.3 K, traps nearly 4 T at 64.5 K. No evidence of giant flux jump or sample cracking was observed.

  10. High field MRI in the diagnosis of multiple sclerosis: high field-high yield?

    International Nuclear Information System (INIS)

    Wattjes, Mike P.; Barkhof, Frederik

    2009-01-01

    Following the approval of the U.S. Food and Drug Administration (FDA), high field magnetic resonance imaging (MRI) has been increasingly incorporated into the clinical setting. Especially in the field of neuroimaging, the number of high field MRI applications has been increased dramatically. Taking advantage on increased signal-to-noise ratio (SNR) and chemical shift, higher magnetic field strengths offer new perspectives particularly in brain imaging and also challenges in terms of several technical and physical consequences. Over the past few years, many applications of high field MRI in patients with suspected and definite multiple sclerosis (MS) have been reported including conventional and quantitative MRI methods. Conventional pulse sequences at 3 T offers higher lesion detection rates when compared to 1.5 T, particularly in anatomic regions which are important for the diagnosis of patients with MS. MR spectroscopy at 3 T is characterized by an improved spectral resolution due to increased chemical shift allowing a better quantification of metabolites. It detects significant axonal damage already in patients presenting with clinically isolated syndromes and can quantify metabolites of special interest such as glutamate which is technically difficult to quantify at lower field strengths. Furthermore, the higher susceptibility and SNR offer advantages in the field of functional MRI and diffusion tensor imaging. The recently introduced new generation of ultra-high field systems beyond 3 T allows scanning in submillimeter resolution and gives new insights into in vivo MS pathology on MRI. The objectives of this article are to review the current knowledge and level of evidence concerning the application of high field MRI in MS and to give some ideas of research perspectives in the future. (orig.)

  11. Stress analysis in high-temperature superconductors under pulsed field magnetization

    Science.gov (United States)

    Wu, Haowei; Yong, Huadong; Zhou, Youhe

    2018-04-01

    Bulk high-temperature superconductors (HTSs) have a high critical current density and can trap a large magnetic field. When bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique, they are also subjected to a large electromagnetic stress, and the resulting thermal stress may cause cracking of the superconductor due to the brittle nature of the sample. In this paper, based on the H-formulation and the law of heat transfer, we can obtain the distributions of electromagnetic field and temperature, which are in qualitative agreement with experiment. After that, based on the dynamic equilibrium equations, the mechanical response of the bulk superconductor is determined. During the PFM process, the change in temperature has a dramatic effect on the radial and hoop stresses, and the maximum radial and hoop stress are 24.2 {{MPa}} and 22.6 {{MPa}}, respectively. The mechanical responses of a superconductor for different cases are also studied, such as the peak value of the applied field and the size of bulk superconductors. Finally, the stresses are also presented for different magnetization methods.

  12. Dual-stage trapped-flux magnet cryostat for measurements at high magnetic fields

    Science.gov (United States)

    Islam, Zahirul; Das, Ritesh K.; Weinstein, Roy

    2015-04-14

    A method and a dual-stage trapped-flux magnet cryostat apparatus are provided for implementing enhanced measurements at high magnetic fields. The dual-stage trapped-flux magnet cryostat system includes a trapped-flux magnet (TFM). A sample, for example, a single crystal, is adjustably positioned proximate to the surface of the TFM, using a translation stage such that the distance between the sample and the surface is selectively adjusted. A cryostat is provided with a first separate thermal stage provided for cooling the TFM and with a second separate thermal stage provided for cooling sample.

  13. Quench Modeling in High-field Nb3Sn Accelerator Magnets

    Science.gov (United States)

    Bermudez, S. Izquierdo; Bajas, H.; Bottura, L.

    The development of high-field magnets is on-going in the framework of the LHC luminosity upgrade. The resulting peak field, in the range of 12 T to 13 T, requires the use Nb3Sn as superconductor. Due to the high stored energy density (compact winding for cost reduction) and the low stabilizer fraction (to achieve the desired margins), quench protection becomes a challenging problem. Accurate simulation of quench transientsin these magnets is hence crucial to the design choices, the definition of priority R&D and to prove that the magnets are fit for operation. In this paper we focus on the modelling of quench initiation and propagation, we describe approaches that are suitable for magnet simulation, and we compare numerical results with available experimental data.

  14. Growth and magnetic properties dependence of the Co–Cu/Cu films electrodeposited under high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Franczak, Agnieszka, E-mail: agnieszka.franczak@mtm.kuleuven.be [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Department of Materials Science (MTM), KU Leuven, Kasteelpark Arenberg 44, 3001 Haverlee (Leuven) (Belgium); Levesque, Alexandra [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Zabinski, Piotr [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Li, Donggang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, 314 Box, 110004 Shenyang (China); Czapkiewicz, Maciej [Department of Electronics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Kowalik, Remigiusz [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Bohr, Frédéric [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); and others

    2015-07-15

    The present work is focused on the investigations of magnetic properties dependence on microstructure of Co–Cu/Cu films electrodeposited under superimposed high magnetic field. The experimental results indicate a strong effect of an external magnetic field on the morphology of deposited films, more precisely on the Co:Cu ratio that determines the film growth. It is shown that the Co–Cu/Cu films electrodeposited without superimposed magnetic field consisted of two clearly visible features: compact film with incorporated granular particles. Under a superimposed external high magnetic field the privilege growth of the particles was induced. As a consequence, development of the well-defined branched structure of Co–Cu/Cu film was observed. In contrary, the phase compositional investigations do not reveal any changes in the phase formation during electrodeposition under magnetic field conditions. Thus, it is assumed that a strong growth of Co–Cu/Cu films in (111) direction under magnetic or non-magnetic electrodeposition conditions is related with the growth of Cu (111) plane and embedded into it some of the Co fcc atoms of same (111) orientation, as well as the Co hcp atoms that grows in the (002) direction. This non-equilibrium growth of Co–Cu/Cu films under magnetic deposition conditions affects strongly the magnetic properties of deposited films, revealing that films obtained under magnetic fields higher than 3 T were no more magnetic materials. - Highlights: • Co–Cu/Cu electrodeposits were obtained at elevated temperature under HMFs. • The effects of HMFs on microstructure and magnetic properties were investigated. • Interesting morphological changes due to HMFs has been observed. • Changes in Co:Cu ratio due to HMFs modified the magnetic properties of deposits.

  15. Growth and magnetic properties dependence of the Co–Cu/Cu films electrodeposited under high magnetic fields

    International Nuclear Information System (INIS)

    Franczak, Agnieszka; Levesque, Alexandra; Zabinski, Piotr; Li, Donggang; Czapkiewicz, Maciej; Kowalik, Remigiusz; Bohr, Frédéric

    2015-01-01

    The present work is focused on the investigations of magnetic properties dependence on microstructure of Co–Cu/Cu films electrodeposited under superimposed high magnetic field. The experimental results indicate a strong effect of an external magnetic field on the morphology of deposited films, more precisely on the Co:Cu ratio that determines the film growth. It is shown that the Co–Cu/Cu films electrodeposited without superimposed magnetic field consisted of two clearly visible features: compact film with incorporated granular particles. Under a superimposed external high magnetic field the privilege growth of the particles was induced. As a consequence, development of the well-defined branched structure of Co–Cu/Cu film was observed. In contrary, the phase compositional investigations do not reveal any changes in the phase formation during electrodeposition under magnetic field conditions. Thus, it is assumed that a strong growth of Co–Cu/Cu films in (111) direction under magnetic or non-magnetic electrodeposition conditions is related with the growth of Cu (111) plane and embedded into it some of the Co fcc atoms of same (111) orientation, as well as the Co hcp atoms that grows in the (002) direction. This non-equilibrium growth of Co–Cu/Cu films under magnetic deposition conditions affects strongly the magnetic properties of deposited films, revealing that films obtained under magnetic fields higher than 3 T were no more magnetic materials. - Highlights: • Co–Cu/Cu electrodeposits were obtained at elevated temperature under HMFs. • The effects of HMFs on microstructure and magnetic properties were investigated. • Interesting morphological changes due to HMFs has been observed. • Changes in Co:Cu ratio due to HMFs modified the magnetic properties of deposits

  16. Magnetic anisotropy study of UGe2in a static high magnetic field

    International Nuclear Information System (INIS)

    Sakon, T; Saito, S; Koyama, K; Awaji, S; Sato, I; Nojima, T; Watanabe, K; Motokawa, M; Sato, N K

    2006-01-01

    UGe 2 has orthorhombic C mmm crystalline symmetry and shows ferromagnetic Heavy-Fermion (HF) Superconductor, which provides superconductivity under pressure in the range from 1.0 GPa to 1.5 GPa. Magnetic field dependence of magnetization shows strong magnetic anisotropy. When a magnetic field is applied parallel to easy axis (a-axis), magnetization presents ferromagnetic behavior. At 4.2 K, which is much lower than the Curie temperature T c = 54 K. Spontaneous magnetization is 1.4 μ B /U, and the magnetization gradually increase with increasing field. On the contrary, when a field is applied parallel to hard axis (b-axis or c-axis), magnetization increases linearly with increasing magnetic field. As for H//b-axis, magnetization is 0.23 μ B /U even at 27 T. Magnetocrystalline anisotropy constant is obtained as 230 [T μ B ] 3.4[kJ/kg] at 4.2 K. This value is comparable with rare-earth magnet Nd 2 Fe 17 , which is typical strongly correlated ferromagnet

  17. Physics of semiconductors in high magnetic fields

    CERN Document Server

    Miura, Noboru

    2008-01-01

    This book summarizes most of the fundamental physical phenomena which semiconductors and their modulated structures exhibit in high magnetic fields. Readers can learn not only the basic theoretical background but also the present state of the art from the most advanced data in this rapidly growing research area.

  18. Safety aspects in high-field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Muehlenweg, M.; Trattnig, S.; Schaefers, G.

    2008-01-01

    With more and more 3 Tesla high-field magnetic resonance (MR) scanners entering clinical routine, the safety notion in MR imaging has also reached a new dimension. The first part of this paper deals with the three most important sources of physical interaction (static magnetic field, gradient and HF fields). The paper discusses the differences compared with the traditional clinical 1.5 T standard scanners, the impact on human beings, the interactions with metallic objects and the relevant safety standards. The second part of the paper examines the issue of MR safety as seen in clinical practice and tries to demonstrate optimization potentials. This includes structural optimization in information distribution and hospital organization as well as test standards and labeling guidelines. (orig.) [de

  19. SYNTHESIS OF ACTIVE SCREENING SYSTEM OF MAGNETIC FIELD OF HIGH VOLTAGE POWER LINES OF DIFFERENT DESIGN TAKING INTO ACCOUNT SPATIAL AND TEMPORAL DISTRIBUTION OF MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2017-04-01

    Full Text Available Purpose. Analyze the spatial and temporal distribution of the magnetic field of high voltage power lines with different design allowing and development of recommendations for the design of active screening systems by magnetic field of high voltage power lines. Methodology. Analysis of the spatial and temporal distribution of the magnetic field of high voltage power lines of different design allowing is made on the basis of Maxwell's equations solutions in the quasi-stationary approximation. Determination of the number, configuration, spatial arrangement and the compensation coil currents is formulated in the form of multiobjective optimization problem that is solved by multi-agent multiswarm stochastic optimization based on Pareto optimal solutions. Results of active screening system for the synthesis of various types of transmission lines with different numbers of windings controlled. The possibility of a significant reduction in the level of the flux density of the magnetic field source within a given region of space. Originality. For the first time an analysis of the spatial and temporal distribution of the magnetic field of power lines with different types and based on findings developed recommendations for the design of active screening system by magnetic field of high voltage power lines. Practical value. Practical recommendations on reasonable choice of the number and spatial arrangement of compensating windings of active screening system by magnetic field of high voltage power lines of different design allowing for the spatial and temporal distribution of the magnetic field. Results of active screening system synthesis of the magnetic field of industrial frequency generated by single-circuit 110 kV high voltage power lines with the supports have 330 - 1T «triangle» rotating magnetic field with full polarization in a residential five-storey building, located near the power lines. The system contains three compensating coil and reduces

  20. Stress Response to High Magnetic Fields in Transgenic Arabidopsis thaliana Plants.

    Science.gov (United States)

    Morgan, A. N.; Watson, B. C.; Maloney, J. R.; Meisel, M. W.; Brooks, J. S.; Paul, A.-L.; Ferl, R. J.

    2000-03-01

    With increasingly greater strength magnetic fields becoming available in research and medicine, the response of living tissue exposed to high magnetic fields has come under investigation. In this experiment, genetically engineered arabidopsis plants were exposed to homogeneous magnetic fields of varying strengths using a superconducting NMR magnet (0 to 9 T) at UF and a resistive magnet (0 to 25 T) at the NHMFL. The engineered plants produce the enzyme β-glucaronidase (GUS) when under stressful environmental conditions. The level of GUS activity is determined through qualitative histochemical assays and quantitative fluorometric assays. The control group of plants experienced baseline levels of GUS activity, but some of the plants that were exposed to magnetic fields in excess of 9 T show increased stress response. Additional information is available at http://www.phys.ufl.edu/ ~meisel/maglev.htm.

  1. SQUID-detected magnetic resonance imaging in microtesla magnetic fields

    International Nuclear Information System (INIS)

    McDermott, Robert; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Mueck, Michael; Myers, Whittier; Haken, Bernard ten; Seton, H.C.; Trabesinger, Andreas H.; Pines, Alex; Clarke, John

    2003-01-01

    We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging

  2. Cryocooled superconducting magnets for high magnetic fields at the HFLSM and future collaboration with the TML

    International Nuclear Information System (INIS)

    Watanabe, K; Nishijima, G; Awaji, S; Koyama, K; Takahashi, K; Kobayashi, N; Kiyoshi, T

    2006-01-01

    A hybrid magnet needs a large amount of liquid helium for operation. In order to make an easy-to-operate hybrid magnet system, we constructed a cryocooled 28 T hybrid magnet, consisting of an outer cryocooled 10 T superconducting magnet and an inner traditional water-cooled 19 T resistive magnet. As a performance test, the cryocooled hybrid magnet generated 27.5 T in a 32 mm room temperature experimental bore. As long as Nb3Sn superconducting wires are employed, the expected maximum high field generation in the cryocooled superconducting magnet will be 17 T at 5 K. We adopted the high temperature superconducting insert coil, employing Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10 superconducting tape. In combination with the low temperature 16.5 T back-up coil with a 174 mm cold bore, the cryocooled high temperature superconducting magnet successfully generated the total central field of 18.1 T in a 52 mm room temperature bore. As a next step, we start the collaboration with the National Institute for Materials Science for the new developmental works of a 30 T high temperature superconducting magnet and a 50 T-class hybrid magnet

  3. Anisotropic transport properties of quasiballistic InAs nanowires under high magnetic field

    Science.gov (United States)

    Vigneau, Florian; Zeng, Zaiping; Escoffier, Walter; Caroff, Philippe; Leturcq, Renaud; Niquet, Yann-Michel; Raquet, Bertrand; Goiran, Michel

    2018-03-01

    The magnetoconductance of a long channel InAs nanowire based field effect transistor in the quasiballistic regime under large magnetic field is investigated. The quasi-1D nanowire is fully characterized by a bias voltage spectroscopy and measurements under magnetic field up to 50 T applied either perpendicular or parallel to the nanowire axis lifting the spin and orbital degeneracies of the subbands. Under normal magnetic field, the conductance shows quantized steps due to the backscattering reduction and a decrease due to depopulation of the 1D modes. Under axial magnetic field, a quasioscillatory behavior is evidenced due to the coupling of the magnetic field with the angular momentum of the wave function. In addition the formation of cyclotron orbits is highlighted under high magnetic field. The experimental results are compared with theoretical calculation of the 1D band structure and related parameters.

  4. Report on the high magnetic field tokamak TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T; Kawai, Y; Toi, K; Hiraki, N; Nakamure, K [Kyushu Univ., Fukuoke (Japan). Research Inst. for Applied Mechanics

    1981-02-01

    A high magnetic field tokamak has been constructed at Kyushu University to study the confinement of high magnetic field tokamak plasma and turbulent heating. The tokamak device consists of toroidal field coils, vertical field coils, horizontal field coils, primary windings, a transformer iron core, turbulent heating coils, and a vacuum chamber. For the observation of plasma, plasma monitors, a micro-wave interferometer, a laser scattering system, a neutral particle energy analyzer, a soft X-ray detector, and a visible spectrometer were installed on the vacuum chamber. The experimental results showed that the central electron temperature was about 640 eV, the central ion temperature 280 eV and mean electron density 2.2 x 10/sup 14//cm/sup 3/. It was found that the proportionality law of electron density and confinement time was valid for this small plasma system. By the turbulent heating, the central ion temperature increased from 170 eV to 580 eV.

  5. A new hybrid protection system for high-field superconducting magnets

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, V.I.; Kirby, G.; ten Kate, Herman H.J.; Verweij, A.P.

    2014-01-01

    The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A

  6. High field dipole magnet design concepts

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1988-12-01

    High field dipole magnets will play a crucial role in the development of future accelerators whether at Fermilab or elsewhere. This paper presents conceptual designs for two such dipoles; 6.6 and 8.8 Tesla, with special focus on their suitability for upgrades to the Fermilab Tevatron. Descriptions and cross-sectional views will be presented as will preliminary estimates of heat loads and costs. 3 refs., 2 figs., 2 tabs

  7. Maximum repulsed magnetization of a bulk superconductor with low pulsed field

    International Nuclear Information System (INIS)

    Tsuchimoto, M.; Kamijo, H.; Fujimoto, H.

    2005-01-01

    Pulsed field magnetization of a bulk high-T c superconductor (HTS) is important technique especially for practical applications of a bulk superconducting magnet. Full magnetization is not obtained for low pulsed field and trapped field is decreased by reversed current in the HTS. The trapped field distribution by repulsed magnetization was previously reported in experiments with temperature control. In this study, repulsed magnetization technique with the low pulsed field is numerically analyzed under assumption of variable shielding current by the temperature control. The shielding current densities are discussed to obtain maximum trapped field by two times of low pulsed field magnetizations

  8. High magnetic field generation for laser-plasma experiments

    International Nuclear Information System (INIS)

    Pollock, B. B.; Froula, D. H.; Davis, P. F.; Ross, J. S.; Fulkerson, S.; Bower, J.; Satariano, J.; Price, D.; Krushelnick, K.; Glenzer, S. H.

    2006-01-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented

  9. Superconductivity basics and applications to magnets

    CERN Document Server

    Sharma, R G

    2015-01-01

    This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.

  10. Application of the magnetic fluid as a detector for changing the magnetic field

    Science.gov (United States)

    Zyatkov, D.; Yurchenko, A.; Yurchenko, V.; Balashov, V.

    2018-05-01

    In article the possibility of use of magnetic fluid as a sensitive element for fixing of change of induction of magnetic field in space is considered. Importance of solvable tasks is connected with search of the perspective magnetic substances susceptible to weak magnetic field. The results of a study of the capacitive method for fixing the change in the magnetic field on the basis of a ferromagnetic liquid are presented. The formation of chain structures in the ferrofluid from magnetic particles under the influence of the applied magnetic field leads to a change in the capacitance of the plate condenser. This task has important practical value for development of a magnetosensitive sensor of change of magnetic field.

  11. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  12. Application of an analytical method for the field calculation in superconducting magnets

    International Nuclear Information System (INIS)

    Martinelli, G.; Morini, A.

    1983-01-01

    Superconducting magnets are taking on ever-growing importance due to their increasing prospects of utilization in electrical machines, nuclear fusion, MHD conversion and high-energy physics. These magnets are generally composed of cylindrical or saddle coils, while a ferromagnetic shield is generally situated outside them. This paper uses an analytical method for calculating the magnetic field at every point in a superconducting magnet composed of cylindrical or saddle coils. The method takes into account the real lengths and finite thickness of the coils as well as their radial and axial ferromagnetic shields, if present. The values and distribution of the flux density for some superconducting magnets of high dimensions and high magnetic field, composed of cylindrical or saddle coils, are also given. The results obtained with analytical method are compared with those obtained using numerical methods

  13. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    International Nuclear Information System (INIS)

    Blackwell, J.J.; O'Grady, K.; Nelson, N.K.; Sharrock, M.P.

    2003-01-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements

  14. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, J.J.; O' Grady, K. E-mail: kog1@york.ac.uk; Nelson, N.K.; Sharrock, M.P

    2003-10-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements.

  15. Magnetic Actuator in Space and Application for High Precision Formation Flying

    National Research Council Canada - National Science Library

    Dargent, Thierry; Maini, Massimiliano

    2005-01-01

    Electromagnetic (EM) actuators in space applications are not a new idea but they are most of the time associated to low Earth orbit missions, where the on-board magnetic moment interacts with the Earth magnetic field...

  16. Novel functional magnetic materials fundamentals and applications

    CERN Document Server

    2016-01-01

    This book presents current research on advanced magnetic materials and multifunctional composites. Recent advances in technology and engineering have resulted from the development of advanced magnetic materials with improved functional magnetic and magneto-transport properties. Certain industrial sectors, such as magnetic sensors, microelectronics, and security, demand cost-effective materials with reduced dimensionality and desirable magnetic properties such as enhanced magnetic softness, giant magnetic field sensitivity, and large magnetocaloric effect.  Expert chapters present the most up-to-date information on the fabrication process, processing, tailoring of properties, and applications of different families of modern functional materials for advanced smart applications. Topics covered include novel magnetic materials and applications; amorphous and nanocrystalline magnetic materials and applications; hard magnetic materials; magnetic shape memory alloys; and magnetic oxides. The book's highly interdis...

  17. High density, high magnetic field concepts for compact fusion reactors

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    One rather discouraging feature of our conventional approaches to fusion energy is that they do not appear to lend themselves to a small reactor for developmental purposes. This is in contrast with the normal evolution of a new technology which typically proceeds to a full scale commercial plant via a set of graduated steps. Accordingly' several concepts concerned with dense plasma fusion systems are being studied theoretically and experimentally. A common aspect is that they employ: (a) high to very high plasma densities (∼10 16 cm -3 to ∼10 26 cm -3 ) and (b) magnetic fields. If they could be shown to be viable at high fusion Q, they could conceivably lead to compact and inexpensive commercial reactors. At least, their compactness suggests that both proof of principle experiments and development costs will be relatively inexpensive compared with the present conventional approaches. In this paper, the following concepts are considered: (1) The staged Z-pinch, (2) Liner implosion of closed-field-line configurations, (3) Magnetic ''fast'' ignition of inertial fusion targets, (4) The continuous flow Z-pinch

  18. Magnetic resonance imaging. Recent studies on biological effects of static magnetic and high-frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Pophof, B.; Brix, G.

    2017-01-01

    During the last few years, new studies on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields used in magnetic resonance imaging (MRI) were published. Many of these studies have not yet been included in the current safety recommendations. Scientific publications since 2010 on biological effects of static and electromagnetic fields in MRI were researched and evaluated. New studies confirm older publications that have already described effects of static magnetic fields on sensory organs and the central nervous system, accompanied by sensory perceptions. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular system. Recent studies of thermal effects of high-frequency electromagnetic fields were focused on the development of anatomically realistic body models and a more precise simulation of exposure scenarios. Strong static magnetic fields can cause unpleasant sensations, in particular, vertigo. In addition, they can influence the performance of the medical staff and thus potentially endanger the patient's safety. As a precaution, medical personnel should move slowly within the field gradient. High-frequency electromagnetic fields lead to an increase in the temperature of patients' tissues and organs. This should be considered especially in patients with restricted thermoregulation and in pregnant women and neonates; in these cases exposure should be kept as low as possible. (orig.) [de

  19. Ultrasound versus high field magnetic resonance imaging in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Tan, York Kiat; Østergaard, Mikkel; Bird, Paul

    2014-01-01

    Over the past decade there have been significant advances in the field of musculoskeletal imaging, especially in the application of ultrasound (US) and magnetic resonance imaging (MRI) to the management of rheumatoid arthritis (RA). Both modalities offer significant advantages over the previous...

  20. The interaction of vacuum arcs with magnetic fields and applications

    International Nuclear Information System (INIS)

    Gorman, J.G.; Kimblin, C.W.; Slade, P.G.; Voshall, R.E.; Wien, R.E.

    1983-01-01

    Vacuum arc/magnetic field interactions are reviewed and extended. An axial magnetic field (parallel to current flow) produces a stable and diffuse vacuum arc. These properties have been used to build a reliable dc switch for the Tokamak Fusion Test Reactor at Princeton. The switching duty for this Ohmic Heating Interrupter involves repetitive interruption of 24kA dc against a 27kV recovery voltage. A transverse magnetic field (perpendicular to current flow) produces an unstable arc with an ensuing high arc voltage. This property has been used to complete a metallic return transfer breaker for the Pacific HVDC Intertie, here the switching duty involves interruption of currents up to 2200A dc against an 80kV recovery voltage

  1. Cosmic Magnetic Fields

    Science.gov (United States)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  2. Enhancement of crystallinity and magnetization in Fe3O4 nanoferrites induced by a high synthesized magnetic field

    Science.gov (United States)

    Ma, Xinxiu; Zhang, Zhanxian; Chen, Shijie; Lei, Wei; Xu, Yan; Lin, Jia; Luo, Xiaojing; Liu, Yongsheng

    2018-05-01

    A one-step hydrothermal method in different dc magnetic fields was used to prepare the Fe3O4 nanoparticles. Under the magnetic field, the average particle size decreased from 72.9 to 41.6 nm, meanwhile, the particle crystallinity is greatly improved. The magnetic field enhances its saturation magnetization and coercivity. The high magnetic field induce another magnetic structure. At room temperature, these nanoparticles exhibit superparamagnetism whose critical size (D sp) is about 26 nm. The Verwey transition is observed in the vicinity of 120 K of Fe3O4 nanoparticles. The effective magnetic anisotropy decreases with the increase of the test temperature because of the H c decreased.

  3. Analysis and design of a slotless tubular permanent magnet actuator for high acceleration applications

    NARCIS (Netherlands)

    Meessen, K.J.; Paulides, J.J.H.; Lomonova, E.A.

    2009-01-01

    This paper presents the design of a linear actuator for high acceleration applications. In the analysis, a slotless tubular permanent magnet actuator is modeled by means of semianalytical field solutions. Several slotless topologies are modeled and compared to achieve the highest acceleration. A

  4. High field magnetization process of (Sm, Nd)2Fe17Ny compounds

    International Nuclear Information System (INIS)

    Yu, M.J.; Tang, N.; Liu, Y.L.; Tegus, O.; Lu, Y.; Kuang, J.P.; Yang, F.M.; Li, X.; Zhou, G.F.; Boer, F.R. de

    1992-01-01

    The crystal structure and high-field magnetization process of (Sm 1-x Nd x ) 2 Fe 17 N y compounds (x = 0.0, 0.1, ..., 1.0, 2 1-x Nd x ) 2 Fe 17 N y compounds were found to crystallize in the rhombohedral Th 2 Zn 17 structure. As x increases, the Curie temperature decreases. The anisotropy fields and easy magnetization direction were investigated from 1.5 K to room temperature by means of high-field magnetization measurements and AC-susceptibility measurements, combined with X-ray diffraction on random and magnetically aligned powder samples. The anisotropy field decreases with increasing x and approaches a minimum value at about x = 0.6, then increases again. A tentative spin phase diagram for the (Sm 1-x Nd x ) 2 Fe 17 N y series is presented. At room temperature, the easy magnetization direction remains along the c-axis up to x = 0.6. (orig.)

  5. Circular swimming in mice after exposure to a high magnetic field.

    Science.gov (United States)

    Houpt, Thomas A; Houpt, Charles E

    2010-06-16

    There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field. (c) 2010 Elsevier Inc. All rights reserved.

  6. Investigation of Anisotropic Bonded Magnets in Permanent Magnet Machine Applications

    Science.gov (United States)

    Khazdozian, H. A.; McCall, S. K.; Kramer, M. J.; Paranthaman, M. P.; Nlebedim, I. C.

    Rare earth elements (REE) provide the high energy product necessary for permanent magnets, such as sintered Nd2Fe14B, in many applications like wind energy generators. However, REEs are considered critical materials due to risk in their supply. To reduce the use of critical materials in permanent magnet machines, the performance of anisotropic bonded NdFeB magnets, aligned under varying magnetic field strength, was simulated using 3D finite element analysis in a 3MW direct-drive permanent magnet generator (DDPMG), with sintered N42 magnets used as a baseline for comparison. For direct substitution of the anisotropic bonded magnets, approximately 85% of the efficiency of the baseline model was achieved, irrespective of the alignment field. The torque and power generation of the DDPMG was not found to vary significantly with increase in the alignment field. Finally, design changes were studied to allow for the achievement of rated torque and power with the use of anisotropic bonded magnets, demonstrating the potential for reduction of critical materials in permanent magnets for renewable energy applications. This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.

  7. High-efficiency and low-cost permanent magnet guideway consideration for high-T{sub c} superconducting Maglev vehicle practical application

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Wang, J; Zheng, J; Jing, H; Lu, Y; Ma, G; Liu, L; Liu, W; Zhang, Y; Wang, S [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn

    2008-11-15

    In order to improve the cost performance of the present high-T{sub c} superconducting (HTS) Maglev vehicle system for practical application, the multi-pole permanent magnet guideway (PMG) concept was introduced. A well-known double-pole Halbach PMG was chosen as a representative of multi-pole PMGs to compare with traditional monopole PMGs from the point of view of levitation efficiency and cost. Experimental results show that YBCO bulks above the double-pole Halbach PMG can exhibit better load capability and guidance performance as well as dynamics stability at the applied working height between the bulk HTSC and the PMG due to a more reasonable magnetic field distribution at the working range of bulk HTSC. Furthermore, the double-pole PMG configuration can play a more important role in improving guidance performance due to the potential-well field configuration. By comparing with former 'century' PMGs, the double-pole Halbach PMG shows another remarkable advantage in reducing the cost of levitation. As another necessary issue, magnetic field homogeneity and the corresponding magnetic drag force of a double-pole Halbach PMG has been considered by experiment in spite of the above highlights. Synthetically, the multi-pole Halbach PMG design is concluded to be one important choice for future HTS Maglev vehicle applications because of its high efficiency and low cost.

  8. Dynamical anisotropic response of black phosphorus under magnetic field

    Science.gov (United States)

    Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong

    2018-04-01

    Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.

  9. Cable testing for Fermilab's high field magnets using small racetrack coils

    International Nuclear Information System (INIS)

    Feher, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bordini, B.; Bossert, R.; Carcagno, R.; Kashikhin, V.I.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Yamada, R.; Zlobin, A.V.

    2004-01-01

    As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb 3 Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable

  10. Processing and characterization of superconducting solenoids made of Bi-2212/Ag-alloy multifilament round wire for high field magnet applications

    Science.gov (United States)

    Chen, Peng

    As the only high temperature superconductor with round wire (RW) geometry, Bi2Sr2CaCu2O8+x (Bi-2212) superconducting wire has the advantages of being multi-filamentary, macroscopically isotropic and twistable. With overpressure (OP) processing techniques recently developed by our group at the National High Magnetic Field Laboratory (NHMFL), the engineering current density (Je) of Bi-2212 RW can be dramatically increased. For example, Je of more than 600 A/mm 2 (4.2 K and 20 T) is achieved after 100 bar OP processing. With these intrinsically beneficial properties and recent processing progress, Bi-2212 RW has become very attractive for high field magnet applications, especially for nuclear magnetic resonance (NMR) magnets and accelerator magnets etc. This thesis summarizes my graduate study on Bi-2212 solenoids for high field and high homogeneity NMR magnet applications, which mainly includes performance study of Bi-2212 RW insulations, 1 bar and OP processing study of Bi-2212 solenoids, and development of superconducting joints between Bi-2212 RW conductors. Electrical insulation is one of the key components of Bi-2212 coils to provide sufficient electrical standoff within coil winding pack. A TiO 2/polymer insulation offered by nGimat LLC was systematically investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric property measurements, and transport critical current (Ic) property measurements. About 29% of the insulation by weight is polymer. When the Bi-2212 wire is fully heat treated, this decomposes with slow heating to 400 °C in flowing O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of more than 100 V. A Bi-2212 RW wound solenoid coil was built using this insulation being offered by nGimat LLC. The coil resistance was constant through coil winding, polymer burn

  11. The high field superconducting magnet program at LLNL: Annual report

    International Nuclear Information System (INIS)

    Miller, J.R.; Chaplin, M.R.; Kerns, J.A.; Leber, R.L.; Rosdahl, A.R.; Slack, D.S.; Summers, L.T.; Zbasnik, J.P.

    1986-01-01

    In FY 86 the program continued along several interrelated thrust areas. These thrust areas have been broadly labeled as follows: (1) Superconductor Research and Technology; (2) Magnet Systems Materials Technology; (3) Magnet Systems Design Technology; (4) High Field Test Facility; and (5) Technology Transfer

  12. Microstructural, magnetic and magnetostrictive properties of Tb0.3Dy0.7Fe1.95 prepared by solidification in a high magnetic field

    International Nuclear Information System (INIS)

    Liu Tie; Liu Yin; Wang Qiang; Gao Pengfei; He Jicheng; Iwai, Kazuhiko

    2013-01-01

    The microstructure evolution and magnetization and magnetostriction properties of Tb 0.3 Dy 0.7 Fe 1.95 alloy solidified in a high magnetic field were investigated. A cellular microstructure was produced, with the grains highly aligned along the direction of the magnetic field. The (Tb,Dy)Fe 2 phase was highly oriented, with its 〈1 1 1〉 axis along the magnetic field direction. The easy magnetization direction of the alloy lay along the magnetic field direction. The magnetostriction at room temperature significantly increased to double that of the sample prepared without high magnetic field; in addition, a sharp rise in the initial magnetostriction at low fields was observed. Applying a high magnetic field during the solidification process is proposed as an effective route for fabricating 〈1 1 1〉 oriented Tb–Dy–Fe compounds, and improving their magnetic and magnetostrictive properties. (paper)

  13. Development of High-Field Permanent Magnetic Circuits for NMRI/MRI and Imaging on Mice

    Directory of Open Access Journals (Sweden)

    Guangxin Wang

    2016-01-01

    Full Text Available The high-field permanent magnetic circuits of 1.2 T and 1.5 T with novel magnetic focusing and curved-surface correction are developed. The permanent magnetic circuit comprises a magnetic yoke, main magnetic steel, nonspherical curved-surface magnetic poles, plugging magnetic steel, and side magnetic steel. In this work, a novel shimming method is proposed for the effective correction of base magnetic field (B0 inhomogeneities, which is based on passive shimming on the telescope aspheric cutting, grinding, and fine processing technology of the nonspherical curved-surface magnetic poles and active shimming adding higher-order gradient coils. Meanwhile, the magnetic resonance imaging dedicated alloy with high-saturation magnetic field induction intensity and high electrical resistivity is developed, and nonspherical curved-surface magnetic poles which are made of the dedicated alloy have very good anti-eddy-current effect. In addition, the large temperature coefficient problem of permanent magnet can be effectively controlled by using a high quality temperature controller and deuterium external locking technique. Combining our patents such as gradient coil, RF coil, and integration computer software, two kinds of small animal Micro-MRI instruments are developed, by which the high quality MRI images of mice were obtained.

  14. MgB_{2} nonlinear properties investigated under localized high rf magnetic field excitation

    Directory of Open Access Journals (Sweden)

    Tamin Tai

    2012-12-01

    Full Text Available The high transition temperature and low surface resistance of MgB_{2} attracts interest in its potential application in superconducting radio frequency accelerating cavities. However, compared to traditional Nb cavities, the viability of MgB_{2} at high rf fields is still open to question. Our approach is to study the nonlinear electrodynamics of the material under localized rf magnetic fields. Because of the presence of the small superconducting gap in the π band, the nonlinear response of MgB_{2} at low temperature is potentially complicated compared to a single-gap s-wave superconductor such as Nb. Understanding the mechanisms of nonlinearity coming from the two-band structure of MgB_{2}, as well as extrinsic sources of nonlinearity, is an urgent requirement. A localized and strong rf magnetic field, created by a magnetic write head, is integrated into our nonlinear-Meissner-effect scanning microwave microscope [T. Tai et al., IEEE Trans. Appl. Supercond. 21, 2615 (2011ITASE91051-822310.1109/TASC.2010.2096531]. MgB_{2} films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location and show a strongly temperature-dependent third harmonic response. We propose that several possible mechanisms are responsible for this nonlinear response.

  15. Cryocooler applications for high-temperature superconductor magnetic bearings

    International Nuclear Information System (INIS)

    Niemann, R. C.

    1998-01-01

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping

  16. High-field superconducting nested coil magnet

    Science.gov (United States)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  17. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    Science.gov (United States)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  18. Operation of cold-cathode gauges in high magnetic fields

    International Nuclear Information System (INIS)

    Thomas, S.R. Jr.; Goerz, D.A.; Pickles, W.L.

    1985-01-01

    The Mirror Fusion Test Facility (MFTF-B), under construction at LLNL, requires measurement of the neutral gas density in high magnetic fields near the plasma at several axial regions. This Background Gas Pressure (BGP) diagnostic will help us understand the role of background neutrals in particle and power balance, particularly in the maintenance of the cold halo plasma that shields the hot core plasma from the returning neutrals. It consists of several cold-cathode, magnetron-type gauges stripped of their permanent magnets, and utilizes the MFTF-B ambient B-field in strengths of 5 to 25 kG. Similar gauges have operated in TMX-U in B-fields up to 3 kG. To determine how well the gauges will perform, we assembled a test stand which operated magnetron gauges in an external, uniform magnetic field of up to 30 kG, over a pressure range of 1E-8 T to 1E-5 T, at several cathode voltages. This paper describes the test stand and presents the results of the tests

  19. The spheromak as a prototype for ultra-high-field superconducting magnets

    International Nuclear Information System (INIS)

    Furth, H.P.; Jardin, S.C.

    1987-08-01

    In view of current progress in the development of superconductor materials, the ultimate high-field limit of superconducting magnets is likely to be set by mechanical stress problems. Maximum field strength should be attainable by means of approximately force-free magnet windings having favorable ''MHD'' stability properties (so that small winding errors will not grow). Since a low-beta finite-flux-hole spheromak configuration qualifies as a suitable prototype, the theoretical and experimental spheromak research effort of the past decade has served to create a substantial technical basis for the design of ultra-high-field superconducting coils. 11 refs

  20. An Overview on Magnetic Field and Electric Field Interactions with Ice Crystallisation; Application in the Case of Frozen Food

    Directory of Open Access Journals (Sweden)

    Piyush Kumar Jha

    2017-10-01

    Full Text Available Ice nucleation is a stochastic process and it is very difficult to be controlled. Freezing technologies and more specifically crystallisation assisted by magnetic, electric and electromagnetic fields have the capability to interact with nucleation. Static magnetic field (SMF may affect matter crystallisation; however, this is still under debate in the literature. Static electric field (SEF has a significant effect on crystallisation; this has been evidenced experimentally and confirmed by the theory. Oscillating magnetic field induces an oscillating electric field and is also expected to interact with water crystallisation. Oscillating electromagnetic fields interact with water, perturb and even disrupt hydrogen bonds, which in turn are thought to increase the degree of supercooling and to generate numerous fine ice crystals. Based on the literature, it seems that the frequency has an influence on the above-mentioned phenomena. This review article summarizes the fundamentals of freezing under magnetic, electric and electromagnetic fields, as well as their applicability and potentials within the food industry.

  1. Magnetic anisotropy of thin sputtered MgB2 films on MgO substrates in high magnetic fields

    Directory of Open Access Journals (Sweden)

    Savio Fabretti

    2014-03-01

    Full Text Available We investigated the magnetic anisotropy ratio of thin sputtered polycrystalline MgB2 films on MgO substrates. Using high magnetic field measurements, we estimated an anisotropy ratio of 1.35 for T = 0 K with an upper critical field of 31.74 T in the parallel case and 23.5 T in the perpendicular case. Direct measurements of a magnetic-field sweep at 4.2 K show a linear behavior, confirmed by a linear fit for magnetic fields perpendicular to the film plane. Furthermore, we observed a change of up to 12% of the anisotropy ratio in dependence of the film thickness.

  2. High-magnetic-field research collaborations

    International Nuclear Information System (INIS)

    Goettee, J.

    1998-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project was to develop collaborations with the academic community to exploit scientific research potential of the pulsed magnetic fields that might be possible with electrically pulsed devices, as well as magneto-cumulative generators. The author started with a campaign of experiments using high-explosive-driven flux compression generators. The campaign's objective was to explore completely novel ideas in condensed-matter physics and chemistry. The initiative was very successful in pulling together top researchers from around the world

  3. Magnetic-Field-Induced Soft-Mode Quantum Phase Transition in the High-Temperature Superconductor La1.855Sr0.145CuO4

    DEFF Research Database (Denmark)

    Chang, J.; Christensen, Niels Bech; Niedermayer, C.

    2009-01-01

    Inelastic neutron-scattering experiments on the high-temperature superconductor La1.855Sr0.145CuO4 reveal a magnetic excitation gap Delta that decreases continuously upon application of a magnetic field perpendicular to the CuO2 planes. The gap vanishes at the critical field required to induce long...

  4. Pulsed Field Waveforms for Magnetization of HTS Gd-Ba-Cu-O Bulk Magnets

    International Nuclear Information System (INIS)

    Ida, T; Matsuzaki, H; Morita, E; Sakashita, H; Harada, T; Ogata, H; Kimura, Y; Miki, M; Kitano, M; Izumi, M

    2006-01-01

    Progress in pulse magnetization technique for high-temperature superconductor bulks of melt-textured RE-Ba-Cu-O with large diameter is important for the realization of power applications. We studied the pulsed power source and pulsed field waveforms to enhance to improve the magnetization properties for Gd-Ba-Cu-O bulk. The risetime and duration of pulse waveform effectively varied distribution of magnetic flux

  5. Slotted cage resonator for high-field magnetic resonance imaging of rodents

    Energy Technology Data Exchange (ETDEWEB)

    Marrufo, O; Vasquez, F; Solis, S E; Rodriguez, A O, E-mail: arog@xanum.uam.mx [Departamento de Ingenieria Electrica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340 (Mexico)

    2011-04-20

    A variation of the high-frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. Circular slots were used instead of cavities to form the coil endplates and it was called the slotted cage resonator coil. The theoretical principles were validated via a coil equivalent circuit and also experimentally with a coil prototype. The radio frequency magnetic field, B1, produced by several coil configurations was numerically simulated using the finite-element approach to investigate their performances. A transceiver coil, 8 cm long and 7.6 cm in diameter, and composed of 4 circular slots with a 15 mm diameter on both endplates, was built to operate at 300 MHz and quadrature driven. Experimental results obtained with the slotted cage resonator coil were presented and showed very good agreement with the theoretical expectations for the resonant frequency as a function of the coil dimensions and slots. A standard birdcage coil was also built for performance comparison purposes. Phantom images were then acquired to compute the signal-to-noise ratio of both coils showing an important improvement of the slotted cage coil over the birdcage coil. The whole-body images of the mouse were also obtained showing high-quality images. Volume resonator coils can be reliably built following the physical principles of the cavity resonator design for high-field magnetic resonance imaging applications of rodents.

  6. Effects of magnetic fields during high voltage live-line maintenance

    Science.gov (United States)

    Göcsei, Gábor; Kiss, István, Dr; Németh, Bálint

    2015-10-01

    In case of transmission and distribution networks, extra low frequency (typically 50 or 60 Hz) electric and magnetic fields have to be taken into consideration separately from each other. Health effects have been documented from exposures to both types of fields. Magnetic fields are qualified as possibly carcinogenic to humans (category “2B”) by WHO's cancer research institute, International Agency for Research on Cancer (IARC), so it is essential to protect the workers against their harmful effects. During live-line maintenance (LLM) electric fields can be shielded effectively by different kinds of conductive clothing, which are enclosed metal surfaces acting as a Faraday-cage. In practice laboratory measurements also prove their efficiency, the required shielding ratio is above 99% by the related standard.. A set of measurements have proved that regular conductive clothing used against the electric fields cannot shield the magnetic fields effectively at all. This paper introduces the possible risks of LLM from the aspect of the health effects of magnetic fields. Although in this case the principle of shielding the electric fields cannot be applied, new considerations in equipment design and technology can be used as a possible solution. Calculations and simulations based on the data of the Hungarian transmission network - which represents the European grid as a part of ENTSO-E - and high-current laboratory measurement results also prove the importance of the topic.

  7. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    CERN Document Server

    Bayer, Christoph M

    2017-01-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  8. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christoph M.

    2017-05-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  9. Influence of High Magnetic Field and Zn Doping on Robust CO Phase of La0.5Ca0.5MnO3

    Science.gov (United States)

    Jin, Z.; Xia, Z. C.; Wei, M.; Yang, F.; Huang, S.; Xiao, G. L.; Shang, C.; Cheng, H.; Wu, H.; Zhang, X. X.; Ouyang, Z. W.

    2017-08-01

    Magnetic and electrical transport properties of La0.5Ca0.5- x Zn x MnO3 ( x = 0, 0.1, 0.15) have been investigated in a wide magnetic field range from 0 T to 50 T. Experimental results show that doping of nonmagnetic Zn2+ ion at Ca site and application of high magnetic field had obvious tuning effects on the stability of the robust charge-order phase, inducing new magnetization and electrical transport behaviors. In particular, obvious temperature and field hysteresis was induced, leading to enhanced magnetoresistance at around room temperature. Based on the intricate interplay between the external magnetic field and chemical strain (lattice distortion) induced by the dopant, which changed the bond length and the angle of double exchange and partially destroyed the charge-order phase, a weak ferromagnetic phase formed. The hysteretic behavior and enhanced magnetoresistance can be understood based on the tuning effects of the high magnetic field and dopant on the stability of the charge-order phase.

  10. Biomaterials and Magnetic fields for Cancer Therapy

    Science.gov (United States)

    Ramachandran, Narayanan; Mazuruk, Konstanty

    2003-01-01

    The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.

  11. Analysis on three-sublattice model of magnetic properties in rare-earth iron garnets under high magnetic fields

    International Nuclear Information System (INIS)

    Wang Wei; Chen Ri; Qi Xin

    2012-01-01

    Highlights: ► An improved three-sublattice model is provided. ► The magnetic properties of the rare-earth ions show great importance to the magnetic behaviors of rare-earth iron garnets. ► The coefficients α i associated with λ and χ are the functions of H e and T. ► The changes of M with H e at different temperatures are revealed. - Abstract: In this paper, based on the molecular field theory, a new and improved three-sublattice model on studying the magnetic properties of ferrimagnetic rare-earth iron garnet in high magnetic fields is introduced. Here, the effective exchange field is described as H i = λM = λχH e , where λ is the coefficient associated with the molecular field, χ is the effective magnetic susceptibility, and H e is external magnetic fields. As is known, the magnetic sublattices in rare-earth iron garnets can be classified three kinds labeled as a, c and d, in our calculations, whose magnetizations are defined as M a , M c and M d , respectively. Then, using this model, the temperature and field dependences of the total magnetization in Dy 3 Fe 5 O 12 (DyIG) are discussed. Meanwhile, the magnetizations of the three kinds of magnetic sublattices are analyzed. Furthermore, our theory suggests that the coefficients α i associated with λ and χ in DyIG show obvious anisotropic, temperature-dependence and field-dependence characteristics. And, the theoretical calculations exactly fit the experimental data.

  12. Real time visualization of dynamic magnetic fields with a nanomagnetic ferrolens

    Science.gov (United States)

    Markoulakis, Emmanouil; Rigakis, Iraklis; Chatzakis, John; Konstantaras, Antonios; Antonidakis, Emmanuel

    2018-04-01

    Due to advancements in nanomagnetism and latest nanomagnetic materials and devices, a new potential field has been opened up for research and applications which was not possible before. We herein propose a new research field and application for nanomagnetism for the visualization of dynamic magnetic fields in real-time. In short, Nano Magnetic Vision. A new methodology, technique and apparatus were invented and prototyped in order to demonstrate and test this new application. As an application example the visualization of the dynamic magnetic field on a transmitting antenna was chosen. Never seen before high-resolution, photos and real-time color video revealing the actual dynamic magnetic field inside a transmitting radio antenna rod has been captured for the first time. The antenna rod is fed with six hundred volts, orthogonal pulses. This unipolar signal is in the very low frequency (i.e. VLF) range. The signal combined with an extremely short electrical length of the rod, ensures the generation of a relatively strong fluctuating magnetic field, analogue to the signal transmitted, along and inside the antenna. This field is induced into a ferrolens and becomes visible in real-time within the normal human eyes frequency spectrum. The name we have given to the new observation apparatus is, SPIONs Superparamagnetic Ferrolens Microscope (SSFM), a powerful passive scientific observation tool with many other potential applications in the near future.

  13. High magnetic field quantum transport in Au nanoparticle–cellulose films

    International Nuclear Information System (INIS)

    Turyanska, L; Makarovsky, O; Patanè, A; Kozlova, N V; Liu, Z; Li, M; Mann, S

    2012-01-01

    We report the magneto-transport properties of cellulose films comprising interconnected networks of gold nanoparticles (Au NPs). Cellulose is a biopolymer that can be made electrically conducting by cellulose regeneration in Au NP dispersions. The mechanism of electronic conduction in the Au–cellulose films changes from variable range hopping to metallic-like conduction with decreasing resistivity. Our experiments in high magnetic fields (up to 45 T) reveal negative magnetoresistance in the highly resistive films. This is attributed to the spin polarization of the Au NPs and the magnetic field induced suppression of electron spin flips during spin-polarized tunneling in the NP network. (paper)

  14. Superconducting permanent magnets and their application in magnetic levitation

    International Nuclear Information System (INIS)

    Schultz, L.; Krabbes, G.; Fuchs, G.; Pfeiffer, W.; Mueller, K.H.

    2002-01-01

    Superconducting permanent magnets form a completely new class of permanent magnets. Of course, they must be cooled to 77 K or below. At very low temperatures (24 K) their magnetization can be a factor of 10 higher than that of the best conventional magnets, providing magnetic forces and energies which are up to two orders of magnitude higher. These new supermagnets became only recently available by the extreme improvement of the quality of melt-textured massive YBa 2 Cu 3 O x samples. Besides having a high magnetization, these superconducting permanent magnets can freeze in any given magnetic field configuration allowing completely new applications like superconducting transport systems or superconducting magnetic bearings. (orig.)

  15. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  16. Calibration and characterization of Bayard-Alpert gauges operating in high magnetic fields

    International Nuclear Information System (INIS)

    Pickles, W.L.; Hunt, A.L.

    1985-11-01

    Standard Bayard-Alpert gauges have been successfully operated for several months in the 0.3 to 0.7 T magnetic fields near the plasma edge of the Tandem Mirror Experiment-Upgrade (TMX-U). The gauges clearly measure gas pressure and maintain calibration within 10% during operation. The gauge filaments are tungsten and are heated with DC. The gauge housing allows operation in the low density plasma outside the limiter radius by thermalizing the neutral gas that enters the gauge and by preventing plasma from entering the gauge. Changing the orientation of the gauge with respect to the magnetic field changes the gauge calibration, or effective sensitivity, by as much as a factor of 100. Only some orientations of the filament collector plane with respect to the magnetic field direction allow calibrated operation as a pressure gauge. This range of angles is approximately from 20 to 50 degrees. The gauge is oriented to produce the desired sensitivity, then calibrated for the magnetic field effects for that position. The correction to sensitivity for magnet field is not strongly species dependent. The gauge species sensitivities for CH 4 , Xe,and Kr measured in the high magnetic fields were found to be close to the published values measured in no magnetic field

  17. High magnetic field measurement utilizing Faraday rotation in SF11 glass in simplified diagnostics.

    Science.gov (United States)

    Dey, Premananda; Shukla, Rohit; Venkateswarlu, D

    2017-04-01

    With the commercialization of powerful solid-state lasers as pointer lasers, it is becoming simpler nowadays for the launch and free-space reception of polarized light for polarimetric applications. Additionally, because of the high power of such laser diodes, the alignment of the received light on the small sensor area of a photo-diode with a high bandwidth response is also greatly simplified. A plastic sheet polarizer taken from spectacles of 3D television (commercially available) is simply implemented as an analyzer before the photo-receiver. SF11 glass is used as a magneto-optic modulating medium for the measurement of the magnetic field. A magnetic field of magnitude more than 8 Tesla, generated by a solenoid has been measured using this simple assembly. The measured Verdet constant of 12.46 rad/T-m is obtained at the wavelength of 672 nm for the SF11 glass. The complete measurement system is a cost-effective solution.

  18. An Equivalent Source Method for Modelling the Lithospheric Magnetic Field Using Satellite and Airborne Magnetic Data

    DEFF Research Database (Denmark)

    Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris

    . Advantages of the equivalent source method include its local nature and the ease of transforming to spherical harmonics when needed. The method can also be applied in local, high resolution, investigations of the lithospheric magnetic field, for example where suitable aeromagnetic data is available......We present a technique for modelling the lithospheric magnetic field based on estimation of equivalent potential field sources. As a first demonstration we present an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010. Three component vector field...... for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid with an increasing grid resolution towards the airborne survey area. The corresponding source values are estimated using an iteratively reweighted least squares algorithm that includes model...

  19. Development of high field magnets at the National Research Institute for Metals. Kinzoku zairyo gijutsu kenkyusho ni okeru kojikai magnet gun no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kiyoshi, T.; Inoue, K.; Maeda, H. (National Research Inst. for Metals, Tsukuba (Japan))

    1993-06-20

    Sinece 1988, the Scince and Technology Agency has initiated the superconductor multicore project, which has a purpose of the versatile study on the high temperature superconducting materials of the oxide series. The National Research Institute for Metals is in charge of 5 cores out of them, and in the performance evaluation core which is one of them, the development of each kind of the high field magnets is being advanced for evaluating the characteristics under the high magnetic field. As the magnets, including the 40T class hybrid magnet which generates the steady state magnetic field of 40T, the superconducting magnet of 20T with a large diameter which generates the magnetic field over 20T with a superconductor, the condenser bank system for the pulse magnet to generate the pulse magnetic field up to 80T, and the ultra-precise magnet system which generates the magnetic field with a high uniformity will be consolidated. Keeping pace with a removal of the National Research Institute for Metals to Tsukuba, the construction of the strong magnetic field station is being advanced in the Sakura area. These several kinds of magnets are scheduled to be used in turn for the international joint study. 33 refs., 5 figs., 4 tabs.

  20. Magnetic field driven domain-wall propagation in magnetic nanowires

    International Nuclear Information System (INIS)

    Wang, X.R.; Yan, P.; Lu, J.; He, C.

    2009-01-01

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  1. Conclusion: probable and possible futures. MRI with ultra high magnetic field

    International Nuclear Information System (INIS)

    Le Bihan, D.

    2009-01-01

    MR neuroimaging does not interfere with brain function. Because it is safe, it can be used to study the brains of both patients and healthy volunteers. The tasks performed by neurons depend largely on their precise location, and high-field magnets have the potential to provide a 5- to 10-fold increase in spatio-temporal resolution. This should allow brain function to be studied on a scale of only a few thousand neurons, possibly at the intermediate scale of the 'neural code'. NeuroSpin, a new CEA research center, is dedicated to neuro-MRI at high magnetic field strengths. As a forum for dialogue between those developing and those using these instruments, it brings together researchers and engineers, technicians and medical doctors. NeuroSpin is one of the few institutions in Europe, if not the world, where these experts can come together in one place to design, construct and use machines equipped with ultra-strong magnets. The strongest 'routine' MR device currently operates at 3 Tesla (60 000 times the earth's magnetic field), whereas a first French system operating at 7 Tesla (140 000 times the earth's field) is now available for human studies, and another system operating at 11.7 Tesla (world record) should be delivered in 2011. Preclinical studies are also being conducted with magnets operating at 7 Tesla and, soon, 17.6 Tesla. (author)

  2. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  3. Young's moduli of cables for high field superconductive dipole magnet

    International Nuclear Information System (INIS)

    Yamada, Shunji; Shintomi, Takakazu.

    1983-01-01

    Superconductive dipole magnets for big accelerators are subjected to enormous electro-magnetic force, when they are operated with high field such as 10 Tesla. They should be constructed by means of superconductive cables, which have high Young's modulus, to obtain good performance. To develop such cables we measured the Young's moduli of cables for practical use of accelerator magnets. They are monolithic and compacted strand cables. We measured also Young's moduli of monolithic copper and brass cables for comparison. The obtained data showed the Young's moduli of 35 and 15 GPa for the monolithic and compacted strand cables, respectively. (author)

  4. Effects of magnetic fields during high voltage live-line maintenance

    International Nuclear Information System (INIS)

    Göcsei, Gábor; Kiss, Dr István; Németh, Bálint

    2015-01-01

    In case of transmission and distribution networks, extra low frequency (typically 50 or 60 Hz) electric and magnetic fields have to be taken into consideration separately from each other. Health effects have been documented from exposures to both types of fields. Magnetic fields are qualified as possibly carcinogenic to humans (category “2B”) by WHO's cancer research institute, International Agency for Research on Cancer (IARC), so it is essential to protect the workers against their harmful effects. During live-line maintenance (LLM) electric fields can be shielded effectively by different kinds of conductive clothing, which are enclosed metal surfaces acting as a Faraday-cage. In practice laboratory measurements also prove their efficiency, the required shielding ratio is above 99% by the related standard.. A set of measurements have proved that regular conductive clothing used against the electric fields cannot shield the magnetic fields effectively at all. This paper introduces the possible risks of LLM from the aspect of the health effects of magnetic fields. Although in this case the principle of shielding the electric fields cannot be applied, new considerations in equipment design and technology can be used as a possible solution. Calculations and simulations based on the data of the Hungarian transmission network - which represents the European grid as a part of ENTSO-E - and high-current laboratory measurement results also prove the importance of the topic. (paper)

  5. Applications of the absolute reaction rate theory to biological responses in electric and magnetic fields

    International Nuclear Information System (INIS)

    Brannen, J.P.; Wayland, J.R.

    1976-01-01

    This paper develops a theoretical foundation for the study of biological responses of electric and magnetic fields. The basis of the development is the absolute reaction rate theory and the effects of fields on reaction rates. A simple application to the response of Bacillus subtilis var niger in a microwave field is made. Potential areas of application are discussed

  6. Magnetic neutron scattering resonance of high-¤Tc¤ superconductors in external magnetic fields: An SO(5) study

    DEFF Research Database (Denmark)

    Mortensen, Asger; Rønnow, Henrik Moodysson; Bruus, Henrik

    2000-01-01

    The magnetic resonance at 41 meV observed in neutron scattering studies of YBa2Cu3O7 holds a key position in the understanding of high-T-c, superconductivity. Within the SO(5) model for superconductivity and antiferromagnetism, we have calculated the effect of an applied magnetic field on the neu......The magnetic resonance at 41 meV observed in neutron scattering studies of YBa2Cu3O7 holds a key position in the understanding of high-T-c, superconductivity. Within the SO(5) model for superconductivity and antiferromagnetism, we have calculated the effect of an applied magnetic field...

  7. Electron dynamics in inhomogeneous magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, Alain, E-mail: A.R.Nogaret@bath.ac.u [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-06-30

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. (topical review)

  8. MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2006-01-01

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

  9. Assembly and Test of HD2, a 36 mm bore high field Nb3Sn Dipole Magnet

    International Nuclear Information System (INIS)

    Ferracin, P.; Bingham, B.; Caspi, S.; Cheng, D.W.; Dietderich, D.R.; Felice, H.; Godeke, A.; Hafalia, A.R.; Hannaford, C.R.; Joseph, J.; Lietzke, A.F.; Lizarazo, J.; Sabbi, G.; Trillaud, F.; Wang, X.

    2008-01-01

    We report on the fabrication, assembly, and test of the Nb 3 Sn dipole magnet HD2. The magnet, aimed at demonstrating the application of Nb 3 Sn superconductor in high field accelerator-type dipoles, features a 36 mm clear bore surrounded by block-type coils with tilted ends. The coil design is optimized to minimize geometric harmonics in the aperture and the magnetic peak field on the conductor in the coil ends. The target bore field of 15 T at 4.3 K is consistent with critical current measurements of extracted strands. The coils are horizontally pre-stressed during assembly using an external aluminum shell pre-tensioned with water-pressurized bladders. Axial pre-loading of the coil ends is accomplished through two end plates and four aluminum tension rods. The strain in coil, shell, and rods is monitored with strain gauges during assembly, cool-down and magnet excitation, and compared with 3D finite element computations. Magnet's training performance, quench locations, and ramp-rate dependence are then analyzed and discussed.

  10. Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field

    DEFF Research Database (Denmark)

    Orlof, A.; Shylau, Artsem; Zozoulenko, I. V.

    2015-01-01

    We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation...... of compressible strips in the potential profile and the electron density. We numerically solve the Dirac equations describing the electron dynamics in quantum dots, and we demonstrate that compressible strips lead to the appearance of plateaus in the electron energies as a function of the magnetic field. Finally...

  11. Fusion Performance of High Magnetic Field Expe-riments

    Science.gov (United States)

    Airoldi, A.; Cenacchi, G.; Coppi, B.

    1997-11-01

    High magnetic field machines have the characteristic of operating well within the usual limitations known as density and beta limits. This feature is highlighted in the Ignitor concept thanks to its reference field of up to 13 T on the magnetic axis and its high current densities. The two reference scenarios with plasma currents of 12 MA and 11 MA respectively, are discussed. The ramp time is 4 sec for both scenarios, whereas the following programmed time dependence of the current is different. The results of an extensive series of numerical simulations using an appropriate version of the 1+1/2D JETTO transport code show that in any case optimal fusion performances are reacheable without needing enhancement over the values of the energy replacement time predicted by the most pessimistic scalings (for the so-called L-mode regime). The density is the crucial parameter involved on the path to ignition that can be achieved provided the density rise is carefully programmed. The density profiles can be controlled by the proper use of the pellet injector that is included in the machine design.

  12. Stable magnetization of iron filled carbon nanotube MFM probes in external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, Franziska; Weissker, Uhland; Muehl, Thomas; Lutz, Matthias U; Mueller, Christian; Leonhardt, Albrecht; Buechner, Bernd, E-mail: f.wolny@ifw-dresden.d [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2010-01-01

    We present results on the application of an iron filled carbon nanotube (Fe-CNT) as a probe for magnetic force microscopy (MFM) in an external magnetic field. If an external field is applied parallel to the sample surface, conventional ferromagnetically coated MFM probes often have the disadvantage that the magnetization of the coating turns towards the direction of the applied field. Then it is difficult to distinguish the effect of the external field on the sample from those on the MFM probe. The Fe-CNT MFM probe has a large shape anisotropy due to the high aspect ratio of the enclosed iron nanowire. Thanks to this the direction of the magnetization stays mainly oriented along the long nanotube axis in in-plane fields up to our experimental limit of 250 mT. Thus, the quality of the MFM images remains unchanged. Apart from this, it is shown that Fe-CNT MFM probe yields a very good magnetic resolution of about 25 nm due to the small diameter of the iron filling.

  13. Inertial fusion reactors and magnetic fields

    International Nuclear Information System (INIS)

    Cornwell, J.B.; Pendergrass, J.H.

    1985-01-01

    The application of magnetic fields of simple configurations and modest strengths to direct target debris ions out of cavities can alleviate recognized shortcomings of several classes of inertial confinement fusion (ICF) reactors. Complex fringes of the strong magnetic fields of heavy-ion fusion (HIF) focusing magnets may intrude into reactor cavities and significantly affect the trajectories of target debris ions. The results of an assessment of potential benefits from the use of magnetic fields in ICF reactors and of potential problems with focusing-magnet fields in HIF reactors conducted to set priorities for continuing studies are reported. Computational tools are described and some preliminary results are presented

  14. Features of laser spectroscopy and diagnostics of plasma ions in high magnetic fields

    International Nuclear Information System (INIS)

    Semerok, A F; Fomichev, S V

    2003-01-01

    Laser induced fluorescence and laser absorption spectroscopies of plasma ions in high magnetic fields have been investigated. Both the high degree of Zeeman splitting of the resonant transitions and the ion rotational movement drastically change the properties of the resonance interaction of the continuous wave laser radiation with ions in highly magnetized plasma. Numerical solution of the density matrix equation for a dissipative two-level system with time-dependent detuning from resonance was used to analyse this interaction. A theoretical simulation was performed and compared with the experimental results obtained from the laser spectroscopy diagnostics of barium plasma ions in high magnetic fields in the several tesla range

  15. Superconducting niobium in high rf magnetic fields

    International Nuclear Information System (INIS)

    Mueller, G.

    1988-01-01

    The benefit of superconducting cavities for accelerator applications depends on the field and Q/sub 0/ levels which can be achieved reliably in mass producible multicell accelerating structures. The presently observed field and Q/sub 0/ limitations are caused by anomalous loss mechanisms which are not correlated with the intrinsic properties of the pure superconductor but rather due to defects or contaminants on the superconducting surface. The ultimate performance levels of clean superconducting cavities built from pure Nb will be given by the rf critical field and the surface resistance of the superconductor. In the first part of this paper a short survey is given of the maximum surface magnetic fields achieved in single-cell cavities. The results of model calculations for the thermal breakdown induced by very small defects and for the transition to the defect free case is discussed in part 2. In the last chapter, a discussion is given for the rf critical field of Nb on the basis of the Ginzburg-Landau Theory. It is shown that not only purity but also the homogeneity of the material should become important for the performance of superconducting Nb cavities at field levels beyond 100mT. Measurement results of the upper critical field for different grades of commercially available Nb sheet materials are given. 58 references, 20 figures, 1 table

  16. Evaluation of metal-foil strain gages for cryogenic application in magnetic fields

    International Nuclear Information System (INIS)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.; Hirzel, D.G.

    1977-01-01

    The requirement for the design and construction of large superconducting magnet systems for fusion research has raised a number of new questions regarding the properties of composite superconducting conductors. One of these, the effect of mechanical stress on the current-carrying capacity of Nb 3 Sn, is of major importance in determining the feasibility of constructing large magnets with this material. A typical experiment for determining such data involves the measurement of critical current versus magnetic field while the conductor is being mechanically strained to various degrees. Techniques are well developed for the current and field measurements, but much less so for the accurate measurement of strain at liquid-helium temperature in a high magnetic field. A study was made of commercial, metal-foil strain gages for use under these conditions. The information developed can also be applied to the use of strain gages as diagnostic tools in superconducting magnets

  17. Comparison of mechanical concepts for $Nb_3Sn$ high field accelerator magnets

    CERN Document Server

    AUTHOR|(CDS)2084469; Peter, Schmolz

    Several magnets using Nb$_{3}$Sn as conductor are currently developed at CERN; these magnets are either slated for future updates of the LHC or for research purposes relating to future accelerators. The mechanical structure is one of the challenging aspects of superconducting high-field magnets. The main purpose of the mechanical structure is to keep the coils in compression till the emergence of the highest electromagnetic forces that are developed in the ultimate field of the magnet. Any loss of pre-compression during the magnet’s excitation would cause too large deformation of the coil and possibly a quench in the conductor owing to relative movements of strands in contact associated with excessive local heat release. However, too high pre-compression would overstrain the conductor and thereby limit the performance of the magnet. This thesis focuses on the mechanical behaviour of three of these magnets. All of them are based on different mechanical designs, “bladder and key” and “collar-based”, ...

  18. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  19. Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy

    Science.gov (United States)

    Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented

  20. Method of regulating magnetic field of magnetic pole center

    International Nuclear Information System (INIS)

    Watanabe, Masao; Yamada, Teruo; Kato, Norihiko; Toda, Yojiro; Kaneda, Yasumasa.

    1978-01-01

    Purpose: To provide the subject method comprising using a plurality of magnetic metal pieces having different thicknesses, regulating very easily symmetry of the field of the magnetic pole center depending upon the combination of said metal pieces, thereby obtaining a magnetic field of high precision. Method: The regulation of magnetic field at the central part of the magnetic field is not depending only upon processing of the center plug, axial movement of trim coil and ion source but by providing a magnetic metal piece such as an iron ring, primary higher harmonics of the field at the center of the magnetic field can be regulated simply while the position of the ion source slit is on the equipotential surface in the field. (Yoshihara, H.)

  1. Static high-gradient magnetic fields affect the functionality of monocytic cells

    Czech Academy of Sciences Publication Activity Database

    Syrovets, T.; Schmidt, Z.; Buechele, B.; Zablotskyy, Vitaliy A.; Dejneka, Alexandr; Dempsey, N.; Simmet, T.

    2014-01-01

    Roč. 28, č. 1 (2014), s. 1-2 ISSN 0892-6638 Institutional support: RVO:68378271 Keywords : static high-gradient * magnet ic fields * affect the functionality * monocytic cells Subject RIV: BM - Solid Matter Physics ; Magnet ism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  2. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  3. Resonant Magnetic Field Sensors Based On MEMS Technology

    Directory of Open Access Journals (Sweden)

    Elías Manjarrez

    2009-09-01

    Full Text Available Microelectromechanical systems (MEMS technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  4. Resonant Magnetic Field Sensors Based On MEMS Technology

    Science.gov (United States)

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  5. High field magnetic anisotropy in praseodymium gallium garnet at low temperatures

    International Nuclear Information System (INIS)

    Wang Wei; Yue Yuan; Liu Gongqiang

    2011-01-01

    Research highlights: → A detailed analysis of crystal field effect is presented, and a set of new crystal field parameters is given to study the magnetic behaviors of the paramagnetic praseodymium gallium garnet (PrGaG). → The contribution of the exchange interaction between the praseodymium ions to the magnetic properties of PrGaG is further explored. Meanwhile, some characteristics of exchange interaction are revealed. → With the consideration of crystal field and exchange interaction, the available experiments are successfully fitted by our theoretical model. → Our theory suggests that PrGaG is ferromagnetic ordering at low temperatures, and the exchange interaction is anisotropic. - Abstract: In this paper, with the consideration of crystal field and exchange interaction between the rare-earth Pr 3+ ions, the magnetic anisotropy in praseodymium gallium garnet (PrGaG) in high magnetic fields and at low temperatures is theoretically analyzed. A set of relatively suitable CF parameters is obtained by studying the influence of the variations of nine CF parameters on the magnetization. However, only taking crystal field effect into account, theoretical calculations indicate that the experiments cannot be excellently interpreted. Then, the exchange interaction between Pr 3+ ion, which can be described as an effective exchange field H v = vM = vχH e = ηH e , is further considered. On the other hand, by evaluating the variation of the parameter η with the magnetic fields, our theory implies that PrGaG exhibits ferrimagnetic ordering at low temperatures, and the exchange interaction in PrGaG displays obvious anisotropy. Also, the theoretical data show better agreements with the experimental results.

  6. Effect of a high-frequency magnetic field on the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field

    International Nuclear Information System (INIS)

    Casado-Pascual, Jesus

    2010-01-01

    Graphical abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. - Abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. The analytical results achieved by applying these two methods are compared with those obtained from the numerical solution of the Schroedinger equation. This comparison leads to the conclusion that the multiple scale method provides a better understanding of the system dynamics than the averaging method. In particular, the averaging method predicts the complete destruction of the resonant behavior by an appropriate choice of the parameter values of the high-frequency magnetic field. This conclusion is disproved both by the numerical results, and also by the results obtained from the multiple scale method.

  7. Development of low temperature and high magnetic field X-ray diffraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P., E-mail: nplallaiuc82@gmail.com; Chaddah, P. [UGC-DAE Consortium for Scientific Research, University campus, Khandwa Road, Indore-452001 (India)

    2015-06-24

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to −8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  8. Levitation performance of high-T{sub c} superconductor in sinusoidal guideway magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn; Wang, J.S.; Jing, H.; Jiang, M.; Zheng, J.; Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2008-12-01

    The vertical component of the Halbach array's magnetic field exhibits a sinusoid distribution because of the closed magnetic flux area between two neighbouring poles, so this field can be regarded as the sinusoidal magnetic field. This article mainly discusses the influence of the closed flux region on the levitation performance of the bulk high-temperature superconductor (HTS). Moreover, the levitation performance is compared between the closed and diverging region of magnetic flux. The experimental results can be analyzed by the magnetic circuit theory and the frozen-image model. The analysis indicates that the closed region of magnetic flux can influence the levitation performance of bulk HTS obviously and provide an extra useful guidance force. These conclusions are helpful to optimize the HTS Maglev system.

  9. Hyperthermic effect of magnetic nanoparticles under electromagnetic field

    Directory of Open Access Journals (Sweden)

    Giovanni Baldi

    2009-06-01

    Full Text Available Magnetic nanoparticles have attracted increasingly attention due to their potential applications in many industrial fields, even extending their use in biomedical applications. In the latter contest the main features of magnetic nanoparticles are the possibility to be driven by external magnetic fields, the ability to pass through capillaries without occluding them and to absorb and convert electromagnetic radiation in to heat (Magnetic Fluid Hyperthermia. The main challenges of the current works on hyperthermia deal with the achievement of highly efficiency magnetic nanoparticles, the surface grafting with ligands able to facilitate their specific internalisation in tumour cells and the design of stealth nanocomposites able to circulate in the blood compartment for a long time. This article presents the synthesis of cobalt ferrite nanoparticles dispersed in diethylene glycol via the so called polyol strategy and the crystal size control through successive synthesis steps. Preliminary heat dissipation evaluations on the prepared samples were carried out and the question of how particles sizes affect their magnetic and hyperthermic properties was addressed as well. Furthermore we will present how surface chemistry can be modified in order to change the dispersity of the product without affecting magnetic and hyperthermic properties.

  10. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata

    Directory of Open Access Journals (Sweden)

    Wiltschko Wolfgang

    2009-10-01

    Full Text Available Abstract Background Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added, the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions. Conclusion The results

  11. [The influence of application of a low-frequency magnetic field on the serum corticosterone level (an experimental study)].

    Science.gov (United States)

    Alabovskiĭ, V V; Gotovskiĭ, M Iu; Vinokurov, A A; Maslov, O V

    2013-01-01

    The results of analysis of the literature publications suggest the necessity of experimental studies aimed at investigation of modulating effect of low-frequency magnetic fields on endocrine organs. The present study was carried out using 200 outbred white male rats (body weight 200-220 g). Corticosterone was measured in blood sera following the application of a low-frequency magnetic field (20 and 53 Hz with induction from 0.4 to 6 mT) generated by a Mini-Expert-T apparatus for induction magnetic therapy during 30 minutes. It was shown that the application of the alternating magnetic field to the adrenal region of the rats in the selected frequency and induction ranges caused a significant increase in the serum corticosterone levels. The results of the present study on the hormonal activity of rat adrenals give reason to consider the influence of the alternating magnetic fields as being modulatory. Analysis of the data thus obtained has demonstrated the non-linear dependence of glucocorticoid activity of the rat adrenal glands on the induction strength of the alternating magnetic field.

  12. Using permanent magnets to boost the dipole field for the High-Energy LHC

    CERN Document Server

    Zimmermann, Frank

    2012-01-01

    The High-Energy LHC (HE-LHC) will be a new accelerator in the LHC tunnel based on novel dipole magnets, with a field up to 20 T, which are proposed to be realized by a hybrid-coil design, comprising blocks made from Nb- Ti, Nb$_{3}$Sn and HTS, respectively. Without the HTS the field would be only 15 T. In this note we propose and study the possibility of replacing the inner HTS layer by (weaker) permanent magnets that might contribute a field of 1-2 T, so that the final field would reach 16-17 T. Advantages would be the lower price of permanent magnets compared with HTS magnets and their availability in principle.

  13. A new hybrid protection system for high-field superconducting magnets

    CERN Document Server

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A new protection system for superconducting magnets is presented, comprising a combination of a novel coupling-loss induced quench (CLIQ) system and conventional quench heaters. CLIQ can provoke a very fast transition to the normal state in coil windings by introducing coupling loss and thus heat in the coil's conductor. The advantage of the hybrid protection system is a global transition, resulting in a much faster current decay, a significantly lower hot-spot temperature, and a more homogeneous temperature distribution in the magnet's coil.

  14. Internal Stresses in Wires for High Field Magnets

    International Nuclear Information System (INIS)

    Han, K.; Embury, J.D.; Lawson, A.C.; Von Dreele, R.B.; Wood, J.T.; Richardson, J.W. Jr.

    1998-01-01

    The codeformation of Cu-Ag or Cu-Nb composite wires used for high field magnets has a number of important microstructural consequences, including the production of very fine scale structures, the development of very high internal surface area to volume ratios during the drawing and the storage of defects at interphase interfaces. In addition, the fabrication and codeformation of phases which differ in crystal structure, thermal expansion, elastic modulus and lattice parameter lead to the development of short wavelength internal stresses. These internal stresses are measured by neutron diffraction and transmission electron microscopy as a function of the imposed drawing strain. The internal stresses lead to important changes in elastic plastic response which can be related to both magnet design and service life and these aspects will be described in detail

  15. Challenges in the development of magnetic particles for therapeutic applications.

    Science.gov (United States)

    Barry, Stephen E

    2008-09-01

    Certain iron-based particle formulations have useful magnetic properties that, when combined with low toxicity and desirable pharmacokinetics, encourage their development for therapeutic applications. This mini-review begins with background information on magnetic particle use as MRI contrast agents and the influence of material size on pharmacokinetics and tissue penetration. Therapeutic investigations, including (1) the loading of bioactive materials, (2) the use of stationary, high-gradient (HG) magnetic fields to concentrate magnetic particles in tissues or to separate material bound to the particles from the body, and (3) the application of high power alternating magnetic fields (AMF) to generate heat in magnetic particles for hyperthermic therapeutic applications are then surveyed. Attention is directed mainly to cancer treatment, as selective distribution to tumors is well-suited to particulate approaches and has been a focus of most development efforts. While magnetic particles have been explored for several decades, their use in therapeutic products remains minimal; a discussion of future directions and potential ways to better leverage magnetic properties and to integrate their use into therapeutic regimens is discussed.

  16. Magnetization and magnetoacoustics of single-crystalline ErFe.sub.5./sub.Al.sub.7./sub. in high magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Gorbunov, Denis; Yasin, S.; Andreev, Alexander V.; Skourski, Y.; Zherlitsyn, S.; Wosnitza, J.

    2014-01-01

    Roč. 357, MAY (2014), s. 61-68 ISSN 0304-8853 R&D Projects: GA ČR GAP204/12/0150 Grant - others:AVČR(CZ) M100101203 Institutional support: RVO:68378271 Keywords : rare-earth intermetallics * ferrimagnetism * magnetic anisotropy * high magnetic fields * field-induced transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.970, year: 2014

  17. Monte Carlo characterization of clinical electron beams in transverse magnetic fields

    International Nuclear Information System (INIS)

    Lee, Michael C.; Ma, Chang-Ming

    2000-01-01

    Monte Carlo simulations were employed to study the characteristics of the electron beams of a clinical linear accelerator in the presence of 1.5 and 3.0 T transverse magnetic fields and to assess the possibility of using magnetic fields in conjunction with modulated electron radiation therapy (MERT). The starting depth of the magnetic field was varied over several centimetres. It was found that peak doses of as much as 2.7 times the surface dose could be achieved with a 1.5 T magnetic field. The magnetic field was shown to reduce the 80% and 20% dose drop-off distance by 50% to 80%. The distance between the 80% dose levels of the pseudo-Bragg peak induced by the magnetic field was found to be extremely narrow, generally less than 1 cm. However, by modulating the energy and intensity of the electron fields while simultaneously moving the magnetic field, a homogeneous dose distribution with low surface dose and a sharp dose fall-off was generated. Heterogeneities are shown to change the effective range of the electron beams, but not eliminate the advantages of a sharp depth-dose drop-off or high peak-to-surface dose ratio. This suggests the applicability of MERT with magnetic fields in heterogeneous media. The results of this study demonstrate the ability to use magnetic fields in MERT to produce highly desirable dose distributions. (author)

  18. Materials processing, pulsed field magnetization and field-pole application to propulsion motors on Gd123 bulk superconductors

    International Nuclear Information System (INIS)

    Izumi, M; Xu, C; Xu, Y; Morita, E; Kimura, Y; Hu, A; Ichihara, M; Murakami, M; Sakai, N; Hirabayashi, I; Sugimoto, H; Miki, M

    2008-01-01

    Gd123 bulk superconductor is one of the promising magnet materials. We studied the materials processing to grow high performance magnet with a doping of nano-sized metal oxides such as ZrO 2 as a candidature of pinning centre. The enhancement of the critical current density was obtained. Growth of nano-sized particles of Gd211 in addition to BaZrO 3 were observed by TEM. The formation of nano-sized particles appears a key to improve the integrated flux trapped inside the bulks and the TEM reveals an intriguing effect of the addition to the microstructure of bulk materials. Magnetization process is crucial especially for an extended machinery. Pulsed field magnetization was applied to the field-pole bulk on the rotor disk of the tested synchronous motor. The trapped flux density of 1.3 T for Gd123 bulk sample and of 60 mm diameter was reached in the limited dimension of the tested motor by a step cooling method down to 38 K with a closed-cycle condensed neon. The pulsed magnetic field was applied with a new type of split-armature coil. A large bulk of 140 mm diameter has also shown a potential flux trapping superior to other smaller specimens. The bulk magnet provides a strong magnetic field around the bulk body itself with high current density relative to a coil winding. A comparative drawing of a 'torque density' of a variety of motors which is defined as the torque divided by the volume of the motor indicates a potential advantage of bulk motor as a super permanent magnet motor

  19. High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration.

    Science.gov (United States)

    Rudolf, Andreas; Walther, Thomas

    2012-11-01

    We report on the realization of an excited-state Faraday anomalous dispersion optical filter (ESFADOF) edge filter based on the 5P(3/2)→8D(5/2) transition in rubidium. A maximum transmission of 81% has been achieved. This high transmission is only possible by utilizing a special configuration of magnetic fields taken from accelerator physics to provide a strong homogeneous magnetic field of approximately 6000 G across the vapor cell. The two resulting steep transmission edges are separated by more than 13 GHz, enabling its application in remote sensing.

  20. [Study of the influence of uniform transverse magnetic field on the dose distribution of high energy electron beam using Monte Carlo method].

    Science.gov (United States)

    You, Shihu; Xu, Yun; Wu, Zhangwen; Hou, Qing; Guo, Chengjun

    2014-12-01

    In the present work, Monte Carlo simulations were employed to study the characteristics of the dose distribution of high energy electron beam in the presence of uniform transverse magnetic field. The simulations carried out the transport processes of the 30 MeV electron beam in the homogeneous water phantom with different magnetic field. It was found that the dose distribution of the 30 MeV electron beam had changed significantly because of the magnetic field. The result showed that the range of the electron beam was decreased obviously and it formed a very high dose peak at the end of the range, and the ratio of maximum dose to the dose of the surface was greatly increased. The results of this study demonstrated that we could change the depth dose distribution of electron beam which is analogous to the heavy ion by modulating the energy of the electron and magnetic field. It means that using magnetic fields in conjunction with electron radiation therapy has great application prospect, but it also has brought new challenges for the research of dose algorithm.

  1. How a High-Gradient Magnetic Field Could Affect Cell Life

    Science.gov (United States)

    Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr

    2016-01-01

    The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate. PMID:27857227

  2. How a High-Gradient Magnetic Field Could Affect Cell Life

    Science.gov (United States)

    Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr

    2016-11-01

    The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate.

  3. The decay properties of the trapped magnetic field in HTS bulk superconducting actuator by AC controlled magnetic field

    International Nuclear Information System (INIS)

    Kim, S.B.; Uwani, Y.; Joo, J.H.; Kawamoto, R.; Jo, Y.S.

    2011-01-01

    The electric device applications of a high temperature superconducting (HTS) bulk magnet, having stable levitation and suspension properties according to their strong flux pinning force, have been proposed and developed. We have been investigating a three-dimensional (3-D) superconducting actuator using HTS bulks to develop a non-contract transportation device which moves freely in space. It is certain for our proposed 3-D superconducting actuator to be useful as a transporter used in a clean room where silicon wafers, which do not like mechanical contact and dust, are manufactured. The proposed actuator consists of the trapped HTS bulk as a mover and two-dimensionally arranged electromagnets as a stator. Up to now, the electromagnets consisted with iron core and copper coil were used as a stator, and each electromagnet was individually controlled using DC power supplies. In our previous work, the unstable movement characteristics of HTS bulk were observed under the DC operation, and the AC electromagnets driven with AC controlled current was proposed to solve these problems. In general, the trapped magnetic field in HTS bulk was decayed by a time-varying external magnetic field. Thus, it needs to optimize the shapes of AC electromagnets and operating patterns, the decay properties of the trapped magnetic field in the HTS bulk mover by the AC magnetic field should be cleared. In this paper, the influences of the frequency, the overall operating time, the strength of magnetization field and drive current against the decay of trapped magnetic field were experimentally studied using the fabricated AC electromagnets.

  4. Flux Trapping Properties of Bulk HIGH-TC Superconductors in Static Field-Cooling Magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2013-06-01

    The trapping process and saturation effect of trapped magnetic flux of bulk high-temperature superconductors by static field-cooling magnetization (FCM) are reported in the paper. With a cryogenic Bell Hall sensor attached on the center of the bulk surface, the synchronous magnetic signals were recorded during the whole magnetization process. It enables us to know the flux trapping behavior since the removal of the excitation field, as well as the subsequent flux relaxation phenomenon and the flux dissipation in the quench process of the bulk sample. With the help of flux mapping techniques, the relationship between the trapped flux and the applied field was further investigated; the saturation effect of trapped flux was discussed by comparing the peak trapped field and total magnetic flux of the bulk sample. These studies are useful to understand the basic flux trapping properties of bulk superconductors.

  5. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  6. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    International Nuclear Information System (INIS)

    Salazar Mejía, C.; Nayak, A. K.; Felser, C.; Nicklas, M.; Ghorbani Zavareh, M.; Wosnitza, J.; Skourski, Y.

    2015-01-01

    The present pulsed high-magnetic-field study on Ni 50 Mn 35 In 15 gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields

  7. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  8. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  9. Cognition and sensation in very high static magnetic fields: a randomized case-crossover study with different field strengths.

    Science.gov (United States)

    Heinrich, Angela; Szostek, Anne; Meyer, Patric; Nees, Frauke; Rauschenberg, Jaane; Gröbner, Jens; Gilles, Maria; Paslakis, Georgios; Deuschle, Michael; Semmler, Wolfhard; Flor, Herta

    2013-01-01

    To establish the extent to which representative cognitive functions in subjects undergoing magnetic resonance (MR) imaging are acutely impaired by static magnetic fields of varying field strengths. This study was approved by the local ethics committee, and informed consent was obtained from all subjects. In this single-blind case-crossover study, 41 healthy subjects underwent an extensive neuropsychologic examination while in MR units of differing field strengths (1.5, 3.0, and 7.0 T), including a mock imager with no magnetic field as a control condition. Subjects were blinded to field strength. Tests were performed while subjects were lying still in the MR unit and while the examination table was moved. The tests covered a representative set of cognitive functions, such as memory, eye-hand coordination, attention, reaction time, and visual discrimination. Subjective sensory perceptions were also assessed. Effects were analyzed with a repeated-measures analysis of variance; the within-subject factors were field strength (0, 1.5, 3.0, and 7.0 T) and state (static, dynamic). Static magnetic fields were not found to have a significant effect on cognitive function at any field strength. However, sensory perceptions did vary according to field strength. Dizziness, nystagmus, phosphenes, and head ringing were related to the strength of the static magnetic field. Static magnetic fields as high as 7.0 T did not have a significant effect on cognition. RSNA, 2012

  10. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  11. DIFFUSION OF MAGNETIC FIELD AND REMOVAL OF MAGNETIC FLUX FROM CLOUDS VIA TURBULENT RECONNECTION

    International Nuclear Information System (INIS)

    Santos-Lima, R.; De Gouveia Dal Pino, E. M.; Lazarian, A.; Cho, J.

    2010-01-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the

  12. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review

    International Nuclear Information System (INIS)

    Huang, Shih-Hung; Juang, Ruey-Shin

    2011-01-01

    Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.

  13. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    Science.gov (United States)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  14. Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

    Directory of Open Access Journals (Sweden)

    Yoshihito Miyatake

    2012-01-01

    Full Text Available Magnetically levitated conveyor system using superconductors is discussed. The system is composed of a levitated conveyor, magnetic rails, a linear induction motor, and some power supplies. In the paper, pulse-field magnetization is applied to the system. Then, the levitation height and the dynamics of the conveyor are controlled. The static and dynamic characteristics of the levitated conveyor are discussed.

  15. A novel superconducting toroidal field magnetic concept using advanced materials

    International Nuclear Information System (INIS)

    Schwartz, J.

    1991-01-01

    The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: Low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high-T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high-T c superconductors within a low-T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress rate, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated. 54 refs., 14 figs., 5 tabs

  16. Effect of very high magnetic field on the optical properties of firefly light emitter oxyluciferin

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weihang; Nakamura, Daisuke [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Wang, Yu [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (China); Mochizuki, Toshimitsu [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiike-dai, Koriyama, Fukushima 963-0215 (Japan); Akiyama, Hidefumi [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Takeyama, Shojiro, E-mail: takeyama@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2015-09-15

    Magnetic field effect on enzymatic reactions is under intensive study in the past decades. Recently, it was reported that firefly bioluminescence was suppressed and red-shifted significantly when exposed to external magnetic field. However in this work, by means of selective excitation, we confirmed that emission properties of firefly light emitter “oxyluciferin” are completely immune to external magnetic field of up to 53 T. These findings pose strong contrast to existing relevant results. Potential reasons for the discrepancies found and the underlying physics towards the understanding of firefly bioluminescence were discussed. - Highlights: • Effect of ultra-high magnetic field on the optical properties of firefly light emitter oxyluciferin was reported. • Emission properties of oxyluciferin were confirmed to be immune to external high magnetic fields up to 53 T. • .Potential reasons for the discrepancies between our results and previous reports and the underlying physics were discussed.

  17. Magnetic field pattern synthesis and its application in targeted drug delivery: Design and implementation.

    Science.gov (United States)

    Hajiaghajani, Amirhossein; Abdolali, Ali

    2018-05-01

    In cancer therapy, magnetic drug targeting is considered as an effective treatment to reduce chemotherapy's side effects. The accurate design and shaping of magnetic fields are crucial for healthy cells to be immune from chemotherapeutics. In this paper, arbitrary 2-dimensional spatial patterns of magnetic fields from DC to megahertz are represented in terms of spatial Fourier spectra with sinusoidal eigenfunctions. Realization of each spatial frequency was investigated by a set of elliptical coils. Therefore, it is shown that the desired pattern was synthesized by simultaneous use of coil sets. Currents running on each set were obtained via fast and straightforward analytical Fourier series calculation. Experimentally scanned sample patterns were in close agreement with full wave analysis. Discussions include the evaluation of the Fourier series approximation error and cross-polarization of produced magnetic fields. It was observed that by employing the controlled magnetic field produced by the proposed setup, we were able to steer therapeutic particles toward the right or left half-spheres of the breast, with an efficiency of 90%. Such a pattern synthesizer may be employed in numerous human arteries as well as other bioelectromagnetic patterning applications, e.g., wireless power transfer, magnetic innervation, and tomography. Bioelectromagnetics. 39:325-338, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  18. Magnetic fields and childhood cancer: an epidemiological investigation of the effects of high-voltage underground cables

    International Nuclear Information System (INIS)

    Bunch, K J; Vincent, T J; Murphy, M F G; Swanson, J

    2015-01-01

    Epidemiological evidence of increased risks for childhood leukaemia from magnetic fields has implicated, as one source of such fields, high-voltage overhead lines. Magnetic fields are not the only factor that varies in their vicinity, complicating interpretation of any associations. Underground cables (UGCs), however, produce magnetic fields but have no other discernible effects in their vicinity. We report here the largest ever epidemiological study of high voltage UGCs, based on 52 525 cases occurring from 1962–2008, with matched birth controls. We calculated the distance of the mother’s address at child’s birth to the closest 275 or 400 kV ac or high-voltage dc UGC in England and Wales and the resulting magnetic fields. Few people are exposed to magnetic fields from UGCs limiting the statistical power. We found no indications of an association of risk with distance or of trend in risk with increasing magnetic field for leukaemia, and no convincing pattern of risks for any other cancer. Trend estimates for leukaemia as shown by the odds ratio (and 95% confidence interval) per unit increase in exposure were: reciprocal of distance 0.99 (0.95–1.03), magnetic field 1.01 (0.76–1.33). The absence of risk detected in relation to UGCs tends to add to the argument that any risks from overhead lines may not be caused by magnetic fields. (paper)

  19. The anisotropic magnetic property and Faraday rotation in Er3Ga5O12 under high magnetic field

    International Nuclear Information System (INIS)

    Wang Wei; Zhang Xijuan; Liu Gongqiang

    2005-01-01

    A theoretical investigation on the anisotropic magnetic property and Faraday rotation in Er 3 Ga 5 O 12 (ErGaG) is presented. With particular consideration of the anisotropy of the exchange interaction between rare-earth ions (Er 3+ ), the magnetization, based on the quantum theory, in ErGaG under high magnetic field (HMF) is calculated. Theoretical calculations show that the appropriate choice of the crystal field (CF) parameters is of great importance. A novel three-level model is presented, and in terms of this model the Faraday rotation under HMF is calculated. In addition, it is demonstrated that the Faraday rotation (θ) depends not only on the magnetization (M) but also on the magnetic field (H e ). The theory is in good agreement with the experiment

  20. Investigation and application of intense magnetic fields to welding of stainless steel tubes

    International Nuclear Information System (INIS)

    Gallizzi, H.

    1986-05-01

    Conventional welding techniques are not always suitable for stainless steels and for a number of other alloys with highly interesting properties, so that new methods must be developed. The purpose of this work was to experiment with a high velocity impact welding method using intense magnetic fields produced in a coil supplied by an electric pulse generator. Nondestructive and destructive tests demonstrated the quality of the resulting weld. Metallurgical analysis of the weld zone confirmed the properties characterizing a satisfactory weld in the solid state with interdiffusion. Potential industrial applications of this technique may be considered after upgrading the pulse generator utilized and in particular for joints of fuel pins for fast reactors [fr

  1. Study of the performance of HPGe detectors operating in very high magnetic fields

    International Nuclear Information System (INIS)

    Agnello, M.; Botta, E.; Bressani, T.; Bruschi, M.; Bufalino, S.; De Napoli, M.; Feliciello, A.; Fontana, A.; Giacobbe, B.; Lavezzi, L.; Raciti, G.; Rapisarda, E.; Rotondi, A.; Sbarra, C.; Sfienti, C.; Zoccoli, A.

    2009-01-01

    A new generation of high-resolution hypernuclear γ-spectroscopy experiments using high-purity germanium (HPGe) detectors is presently designed for the FINUDA spectrometer at DAΦNE, the Frascati Φ-factory, and for PANDA, the p-p-bar hadron spectrometer at the future FAIR facility. In both spectrometers the HPGe detectors have to be operated in strong magnetic fields. In this paper we report on a series of measurements performed on a HPGe detector inserted in a magnetic field of intensity up to 2.5 T, the highest ever reached for operations with a HPGe, and with different orientations of the detector's axis with respect to field direction. A significant worsening of the energy resolution was found, but with a moderate loss of the efficiency. The most relevant features of the peak shapes, described by bi-Gaussian functions, are parametrized in terms of field intensity and energy: this allows to correct the spectra measured in magnetic field and to recover the energy resolution almost completely.

  2. Effect of a high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys

    International Nuclear Information System (INIS)

    Li, Xi; Gagnoud, Annie; Wang, Jiang; Li, Xiaolong; Fautrelle, Yves; Ren, Zhongming; Lu, Xionggang; Reinhart, Guillaume; Nguyen-Thi, Henri

    2014-01-01

    The effect of an axial high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys was investigated. The experimental results indicated that the magnetic field induced the destabilization of the liquid–solid interface and the formation of a band-like structure. The magnetic field also caused the disruption of the columnar η-Zn and ε-Zn 5 Cu dendrites. As the applied magnetic field increased, the columnar-to-equiaxed transition occurred, and the size of the equiaxed grains gradually decreased. The magnetic effects, the magnetic moment and the thermoelectric magnetic effects during the directional solidification of Zn–Cu peritectic alloys under an axial magnetic field were studied. Regular ε-Zn 5 Cu hexagons appeared on the transverse section of the sample fabricated with a high magnetic field (i.e. 16 T). In addition, electron backscatter diffraction analysis revealed that the 〈0 0 0 1〉-crystal direction of the Zn 5 Cu crystal is not only its easy magnetization direction but also its preferred growth direction. The thermoelectric magnetic effects were numerically simulated. The results indicated that a thermoelectric magnetic force acts on the solid near the liquid–solid interface and increases linearly with an increase in the magnetic field. As the effect of the magnetic moment arising from the magnetic crystalline anisotropy is eliminated, the thermoelectric magnetic effect has a substantial effect on the solidification structure. Therefore, the destabilization of the liquid–solid interface and the disruption of the dendrites during directional solidification under the magnetic field are primarily due to the thermoelectric magnetic force acting on the solid

  3. The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd, Y)Ba2Cu3Ox superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Yao, Y; Chen, Y; Shi, T; Liu, Y; Khatri, ND; Liu, J; Lei, C; Galstyan, E; Majkic, G

    2012-10-26

    Critical current performances of state-of-the-art Zr-added (Gd, Y)BaCuO tapes have been investigated over a temperature range of 20-77 K, in magnetic fields up to 9 T and over a wide angular range of magnetic field orientations. The peak in critical current that is commonly observed in the field orientation perpendicular to the tape in BaZrO3 (BZO) containing superconducting tapes is found to vanish at 30 K in magnetic fields at 1-9 T. While the critical current of 15% Zr-added tapes was about 40% lower than that of 7.5% Zr-added tapes at 77 K, the pinning force values of the former were found to be 18-23% higher than those of the latter in the temperature range of 20-40 K and in magnetic fields of 3-5 T. The results from this study emphasize the importance of optimization of coated conductor fabrication processes for optimum performance not just in low magnetic fields at 77 K but also at the operating conditions of low temperatures and high magnetic fields that are of interest, especially for rotating superconducting machinery applications.

  4. The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd,Y)Ba2Cu3Ox superconducting tapes

    International Nuclear Information System (INIS)

    Selvamanickam, V; Yao, Y; Shi, T; Liu, Y; Khatri, N D; Liu, J; Galstyan, E; Majkic, G; Chen, Y; Lei, C

    2012-01-01

    Critical current performances of state-of-the-art Zr-added (Gd, Y)BaCuO tapes have been investigated over a temperature range of 20–77 K, in magnetic fields up to 9 T and over a wide angular range of magnetic field orientations. The peak in critical current that is commonly observed in the field orientation perpendicular to the tape in BaZrO 3 (BZO) containing superconducting tapes is found to vanish at 30 K in magnetic fields at 1–9 T. While the critical current of 15% Zr-added tapes was about 40% lower than that of 7.5% Zr-added tapes at 77 K, the pinning force values of the former were found to be 18–23% higher than those of the latter in the temperature range of 20–40 K and in magnetic fields of 3–5 T. The results from this study emphasize the importance of optimization of coated conductor fabrication processes for optimum performance not just in low magnetic fields at 77 K but also at the operating conditions of low temperatures and high magnetic fields that are of interest, especially for rotating superconducting machinery applications. (paper)

  5. Representation of magnetic fields with toroidal topology in terms of field-line invariants

    International Nuclear Information System (INIS)

    Lewis, H.R.

    1990-01-01

    Beginning with Boozer's representation of magnetic fields with toroidal topology [Phys. Fluids 26, 1288 (1983)], a general formalism is presented for the representation of any magnetic field with toroidal topology in terms of field-line invariants. The formalism is an application to the magnetic field case of results developed recently by Lewis et al. (submitted for publication to J. Phys. A) for arbitrary time-dependent Hamiltonian systems with one degree of freedom. Every magnetic field with toroidal topology can be associated with time-dependent Hamiltonian systems with one degree of freedom and every time-dependent Hamiltonian system with one degree of freedom can be associated with magnetic fields with toroidal topology. In the Hamiltonian context, given any particular function I(q,p,t), Lewis et al. derived those Hamiltonians for which I(q,p,t) is an invariant. In addition, for each of those Hamiltonians, they derived a function canonically conjugate to I(q,p,t) that is also an invariant. They applied this result to the case where I(q,p,t) is expressed as a function of two canonically conjugate functions. This general Hamiltonian formalism provides a basis for representing magnetic fields with toroidal topology in terms of field-line invariants. The magnetic fields usually contain plasma with flow and anisotropic pressure. A class of fields with or without rotational symmetry is identified for which there are magnetic surfaces. The formalism is developed for application to the case of vacuum magnetic fields

  6. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    Science.gov (United States)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  7. Magnetic field induced dynamical chaos.

    Science.gov (United States)

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  8. High-Field Magnetization of Light Rare-Earth Metals

    DEFF Research Database (Denmark)

    McEwen, K.A.; Cock, G.J.; Roeland, L.W.

    1973-01-01

    The magnetization of single crystals of Eu, Sm, Nd, Pr, and Pr-Nd alloys has been measured in fields up to 37 T (370 kG). The results give new information on the magnetic properties of these metals. Of particular interest is a first-order transition from a nonmagnetic to a metamagnetic phase...... in double-hexagonal close-packed Pr, due to the crossing of crystal-field levels, when a field of about 32 T is applied in the hard direction at low temperatures....

  9. Analysis of stochastic magnetic fields formed by the application of resonant magnetic perturbations on MAST and comparison with experiment

    International Nuclear Information System (INIS)

    Denner, P.; Liu, Yueqiang; Kirk, A.; Nardon, E.

    2012-01-01

    In MAST experiments with applied resonant magnetic perturbations (RMPs), clear reduction in line-averaged density has been observed in a wide range of L-mode plasmas when there is an alignment between the perturbation and the equilibrium magnetic field that maximizes the size of the resonant components of the applied magnetic field, as well as in a few H-mode plasmas but with a much stronger sensitivity to this alignment. This density pump-out is the result of increased particle transport, which is thought to be caused by the formation of a stochastic magnetic field in the plasma edge. This paper presents an analysis of the magnetic field structures formed by the application of n = 3 RMPs on MAST, including various parameters characterizing the degree of stochasticity in the plasma edge. Values for these parameters are calculated and compared with the amount of density pump-out observed in MAST experiments. It is found that density pump-out is fairly well correlated with some of the parameters calculated using vacuum modelling, but none of them provides a single threshold value for pump-out that applies to both L- and H-mode plasmas. Plasma response modelling provides a robust criterion for density pump-out that applies both to L- and H-mode plasmas. (paper)

  10. High magnetic field induced otolith fusion in the zebrafish larvae.

    Science.gov (United States)

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-04-11

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish.

  11. High-order coupled cluster method study of frustrated and unfrustrated quantum magnets in external magnetic fields

    International Nuclear Information System (INIS)

    Farnell, D J J; Zinke, R; Richter, J; Schulenburg, J

    2009-01-01

    We apply the coupled cluster method (CCM) in order to study the ground-state properties of the (unfrustrated) square-lattice and (frustrated) triangular-lattice spin-half Heisenberg antiferromagnets in the presence of external magnetic fields. Approximate methods are difficult to apply to the triangular-lattice antiferromagnet because of frustration, and so, for example, the quantum Monte Carlo (QMC) method suffers from the 'sign problem'. Results for this model in the presence of magnetic field are rarer than those for the square-lattice system. Here we determine and solve the basic CCM equations by using the localized approximation scheme commonly referred to as the 'LSUBm' approximation scheme and we carry out high-order calculations by using intensive computational methods. We calculate the ground-state energy, the uniform susceptibility, the total (lattice) magnetization and the local (sublattice) magnetizations as a function of the magnetic field strength. Our results for the lattice magnetization of the square-lattice case compare well to the results from QMC approaches for all values of the applied external magnetic field. We find a value for the magnetic susceptibility of χ = 0.070 for the square-lattice antiferromagnet, which is also in agreement with the results from other approximate methods (e.g., χ = 0.0669 obtained via the QMC approach). Our estimate for the range of the extent of the (M/M s =) 1/3 magnetization plateau for the triangular-lattice antiferromagnet is 1.37 SWT = 0.0794. Higher-order calculations are thus suggested for both SWT and CCM LSUBm calculations in order to determine the value of χ for the triangular lattice conclusively.

  12. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    Various ferrites (Fe-, Li-, Ni/Zn/Cu-, Co-, Co/Ni, Ba- and Sr-ferrites) were investigated with respect to their application for hyperthermia. Temperature changes under an alternating magnetic field were observed. The area of hysteresis loop was much larger in the Ba- and Sr-ferrites than for that of the Fe-, Ni/Zn/Cu-, Li-, Co- and Co/Ni-ferrites. Co-ferrite exhibited the most applicable temperature change ΔT=19.25K (29.62W/gs), in distilled water when the field was 110A/m

  13. The magnetic field application for the gas discharge plasma control in processes of surface coating and modification

    International Nuclear Information System (INIS)

    Asadullin, T Ya; Galeev, I G

    2017-01-01

    In this paper the method of magnetic field application to control the gas discharge plasma effect on the various surfaces in processes of surface coating and modification is considered. The magnetic field directed perpendicular to the direction of electric current in the gas discharge plasma channel is capable to reject this plasma channel due to action of Lorentz force on the moving electrically charged particles [1,2]. The three-dimensional spatial structure of magnetic field is created by system of necessary quantity of the magnets located perpendicular to the direction of course of electric current in the gas-discharge plasma channel. The formation of necessary spatial distribution of magnetic field makes possible to obtain a required distribution of plasma parameters near the processed surfaces. This way of the plasma channel parameters spatial distribution management is the most suitable for application in processes of plasma impact on a surface of irregular shape and in cases when the selective impact of plasma on a part of a surface of a product is required. It is necessary to apply automated computer management of the process parameters [3] to the most effective plasma impact. (paper)

  14. Fast magnetic field computation in fusion technology using GPU technology

    Energy Technology Data Exchange (ETDEWEB)

    Chiariello, Andrea Gaetano [Ass. EURATOM/ENEA/CREATE, Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Formisano, Alessandro, E-mail: Alessandro.Formisano@unina2.it [Ass. EURATOM/ENEA/CREATE, Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Martone, Raffaele [Ass. EURATOM/ENEA/CREATE, Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy)

    2013-10-15

    Highlights: ► The paper deals with high accuracy numerical simulations of high field magnets. ► The porting of existing codes of High Performance Computing architectures allowed to obtain a relevant speedup while not reducing computational accuracy. ► Some examples of applications, referred to ITER-like magnets, are reported. -- Abstract: One of the main issues in the simulation of Tokamaks functioning is the reliable and accurate computation of actual field maps in the plasma chamber. In this paper a tool able to accurately compute magnetic field maps produced by active coils of any 3D shape, wound with high number of conductors, is presented. Under linearity assumption, the coil winding is modeled by means of “sticks”, following each conductor's shape, and the contribution of each stick is computed using high speed Graphic Computing Units (GPU's). Relevant speed enhancements with respect to standard parallel computing environment are achieved in this way.

  15. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  16. Survey of risks related to static magnetic fields in ultra high field MRI; Bestandsaufnahme zu Risiken durch statische Magnetfelder im Zusammenhang mit der Ultrahochfeld-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.E. [Max-Planck-Inst. fuer Kognitions- und Neurowissenschaften, Leipzig (Germany); Cramon, D.Y. von [Max-Planck-Inst. fuer Kognitions- und Neurowissenschaften, Leipzig (Germany); Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany)

    2008-04-15

    In magnetic resonance imaging (MRI), substantial improvements with respect to sensitivity are expected due to the development of so-called ultra high field scanners, i.e., whole-body scanners with a magnetic field strength of 7 T or above. Users of this technology need to evaluate this benefit for potential risks since commercially available systems are not certified as a medical device for human use. This review provides a detailed survey of static field bioeffects related to the exposure of subjects being scanned, to occupational exposure, and to exposure of the general public under consideration of current standards and directives. According to present knowledge, it is not expected that exposure of human subjects to static magnetic fields of 7 T implies a specific risk of damage or disease provided that known contraindications are observed. The available database does not permit definition of exact thresholds for harmful effects. However, experience from previous application of ultra high field MRI indicates that transient phenomena, such as vertigo, nausea, metallic taste, or magnetophosphenes, are more frequently observed. In particular, movements in the field or the gradient of the fringe field seem to lead to detectable effects. Besides such observations, there is a strong demand for systematic investigation of potential interaction mechanisms related to static field exposure during MRI examinations. (orig.)

  17. High field superconducting magnets for accelerators and particle beams

    International Nuclear Information System (INIS)

    Allinger, J.; Danby, G.; Jackson, J.

    1975-01-01

    Experience in designing precision superconducting magnets for fields up to 60 kG is described. Realizable construction tolerances and their impact on field accuracy are discussed. For dipole fields up to 60 kG or more, rectangular coil window frame type magnets are compared with circular or elliptical coil designs. In all cases, the same superconductor current density versus maximum field performance is assumed. The comparison will include field quality and correction required as a function of aperture size, stored energy, ampere turns required, and overall magnet size. In quadrupole design the impact of the allowed superconductor current density being roughly inversely proportional to peak field is severe. For gradients up to one Tesla/cm or greater, similar comparisons for different types of quadrupole construction are made. (U.S.)

  18. Magnetic-Field-Enhanced Incommensurate Magnetic Order in the Underdoped High-Temperature Superconductor YBa2Cu3O6.45

    DEFF Research Database (Denmark)

    Haug, D.; Hinkov, V.; Suchaneck, A.

    2009-01-01

    We present a neutron-scattering study of the static and dynamic spin correlations in the underdoped high-temperature superconductor YBa2Cu3O6.45 in magnetic fields up to 15 T. The field strongly enhances static incommensurate magnetic order at low temperatures and induces a spectral-weight shift...

  19. Biomedical applications of magnetic particles

    CERN Document Server

    Mefford, Thompson

    2018-01-01

    Magnetic particles are increasingly being used in a wide variety of biomedical applications. Written by a team of internationally respected experts, this book provides an up-to-date authoritative reference for scientists and engineers. The first section presents the fundamentals of the field by explaining the theory of magnetism, describing techniques to synthesize magnetic particles, and detailing methods to characterize magnetic particles. The second section describes biomedical applications, including chemical sensors and cellular actuators, and diagnostic applications such as drug delivery, hyperthermia cancer treatment, and magnetic resonance imaging contrast.

  20. GEM detector performance with innovative micro-TPC readout in high magnetic field

    Directory of Open Access Journals (Sweden)

    Garzia I.

    2018-01-01

    Full Text Available Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD, allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs. Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.

  1. GEM detector performance with innovative micro-TPC readout in high magnetic field

    Science.gov (United States)

    Garzia, I.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Cassariti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Dong, J.; Evangelisti, F.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Rolo, M. D.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Verma, S.; Wheadon, R.; Yan, L.

    2018-01-01

    Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD), allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs). Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.

  2. Field Distribution of Transcranial Static Magnetic Stimulation in Realistic Human Head Model.

    Science.gov (United States)

    Tharayil, Joseph J; Goetz, Stefan M; Bernabei, John M; Peterchev, Angel V

    2017-10-10

    The objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS). The spatial distribution of the B-field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B-field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B-field was quantified. Peak B-field magnitude and gradient respectively ranged from 179-245 mT and from 13.3-19.0 T/m across the cortical targets. B-field magnitude, focality, and gradient decreased with magnet-cortex distance. The variation in B-field strength and gradient across the anatomical targets largely arose from the magnet-cortex distance. Head magnetic susceptibilities had negligible impact on the B-field characteristics. The half-maximum focality of the tSMS B-field ranged from 7-12 cm 3 . This is the first presentation and characterization of the three-dimensional (3D) spatial distribution of the B-field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B-field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature. © 2017 International Neuromodulation Society.

  3. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  4. Fabrication of crystal-oriented barium-bismuth titanate ceramics in high magnetic field and subsequent reaction sintering

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Tomita, Yusuke; Furushima, Ryoichi; Uematsu, Keizo; Shimizu, Hiroyuki; Doshida, Yutaka

    2009-01-01

    High magnetic field was applied to fabricate novel lead-free piezoelectric ceramics with a textured structure. A compact of crystallographically oriented grains was prepared by dry forming in a high magnetic field from a mixed slurry of bismuth titanate and barium titanate powders. Bismuth titanate particles with a size of about 1 μ m were used as the host material. In the forming process, the slurry was poured into a mold and set in a magnetic field of 10 T until completely dried. Bismuth titanate particles were highly oriented in the slurry under the magnetic field. The dried powder compact consisted of highly oriented bismuth titanate particles and randomly oriented barium titanate particles. Barium bismuth titanate ceramics with a- and b-axis orientations were successfully produced from the dried compact by sintering at temperatures above 1100 deg. C.

  5. Induction heating of rotating nonmagnetic billet in magnetic field produced by high-parameter permanent magnets

    Directory of Open Access Journals (Sweden)

    Ivo Doležel

    2014-04-01

    Full Text Available An advanced way of induction heating of nonmagnetic billets is discussed and modeled. The billet rotates in a stationary magnetic field produced by unmoving high-parameter permanent magnets fixed on magnetic circuit of an appropriate shape. The mathematical model of the problem consisting of two coupled partial differential equations is solved numerically, in the monolithic formulation. Computations are carried out using our own code Agros2D based on a fully adaptive higher-order finite element method. The most important results are verified experimentally on our own laboratory device.

  6. Application of magnetic nanoparticles in smart enzyme immobilization.

    Science.gov (United States)

    Vaghari, Hamideh; Jafarizadeh-Malmiri, Hoda; Mohammadlou, Mojgan; Berenjian, Aydin; Anarjan, Navideh; Jafari, Nahideh; Nasiri, Shahin

    2016-02-01

    Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research.

  7. High trapped fields in bulk YBCO superconductors

    Science.gov (United States)

    Fuchs, Günter; Gruss, Stefan; Krabbes, Gernot; Schätzle, Peter; Verges, Peter; Müller, Karl-Hartmut; Fink, Jörg; Schultz, Ludwig

    The trapped field properties of bulk melt-textured YBCO material were investigated at different temperatures. In the temperature range of liquid nitrogen, maximum trapped fields of 1.1 T were found at 77 K by doping of YBCO with small amounts of zinc. The improved pinning of zinc-doped YBa2Cu3O7-x (YBCO) results in a pronounced peak effect in the field dependence of the critical current density. the trapped field at lower temperatures increases due to the increasing critical current density, however, at temperatures around 50 K cracking of the material is observed which is exposed to considerably tensile stresses due to Lorentz forces. Very high trapped fields up to 14.4 T were achieved at 22.5 K for a YBCO disk pair by the addition of silver improving the tensile strength of YBCO and by using a bandage made of a steel tube. The steel tube produces a compressive stress on YBCO after cooling down from 300 K to the measuring temperature, which is due to the higher coeeficient of thermal expansion of steel compared with that of YBCO in the a,b plane. The application of superconducting permanent magnets with trapped fields of 10 T and more in superconducting bearings would allow to obtain very high levitation pressures up to 2500 N/cm2 which is two orders of magnitude higher than the levitation pressure achievable in superconducting bearings with conventional permanent magnets. The most important problem for the application of superconducting permanent magnets is the magnetizing procedure of the YBCO material. Results of magnetizing YBCO disks by using of pulsed magnetic fields will be presented.

  8. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  9. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    International Nuclear Information System (INIS)

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (∼1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  10. Magnetic Fields above the Surface of aSuperconductor with Internal Magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Hendrik; /Stanford U., Phys. Dept. /SLAC, SSRl

    2007-06-26

    The author presents a method for calculating the magnetic fields near a planar surface of a superconductor with a given intrinsic magnetization in the London limit. He computes solutions for various magnetic domain boundary configurations and derives relations between the spectral densities of the magnetization and the resulting field in the vacuum half space, which are useful if the magnetization can be considered as a statistical quantity and its features are too small to be resolved individually. The results are useful for analyzing and designing magnetic scanning experiments. Application to existing data from such experiments on Sr{sub 2}RuO{sub 4} show that a domain wall would have been detectable, but the magnetic field of randomly oriented small domains and small defects may have been smaller than the experimental noise level.

  11. Magnetic nanoparticles and their application in biomedicine

    International Nuclear Information System (INIS)

    Felinto, M.C.F.C.; Camilo, R.L.; Diegues, T.G.

    2007-01-01

    The magnetic nanoparticles offer some attractive possibilities in biomedicine for the following reasons: First, they have controllable sizes ranging from a few nanometers up to tens of nanometers, which places them at dimensions that are smaller than or comparable to those of a cell (10-100μm) a virus (20-450 nm) or a protein (5-50 nm). Second, the nanoparticles are magnetic, which means that they obey Coulomb's law, and can be manipulated by an external magnetic field gradient. This possibility, combined with the intrinsic penetrability of magnetic fields into human tissue, opens up many applications involving the transport and/or immobilization of magnetic nanoparticles, or of magnetically tagged biological entities. Third, the magnetic nanoparticles can be made to resonantly respond to a time-varying magnetic field, with advantageous results related to the transfer of energy from the exciting field to the nanoparticle. In this paper, we will address the underlying chemical and physics of the biomedical applications of magnetic nanoparticles including radioisotope delivery and a magnetic radiolabeled fluid. We will consider four particular applications: magnetic separation for radio labeled proteins, drug radiolabeled delivery, hyperthermia treatments, and magnetic resonance imaging (MRI) contrast enhancement. There will be included some results obtained in our laboratory in the obtention of these magnetic (author)

  12. Qualifying tests for TRIAM-1M superconducting toroidal magnetic field coil

    Energy Technology Data Exchange (ETDEWEB)

    Nakanura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Tanaka, Masayoshi; Nagao, Akihiro; Kawasaki, Shoji; Itoh, Satoshi

    1984-09-01

    In the strong toroidal magnetic field experimental facility ''TRIAM-1M'' currently under construction, construction of the superconducting toroidal magnetic field coil and the following qualifying tests conducted on the full-scale superconducting toroidal magnetic field coil actually fabricated are described: (1) coil excitation test, (2) superconducting stability test, (3) external magnetic field application test, and (4) high-speed excitation test. On the basis of these test results, stability was evaluated of the superconducting coil being operated in the tokamak device. In normal tokamak operation, there occurs no normal conduction transition. At the time of plasma disruption, though this transition takes place in part of the coil, the superconducting state is immediately restored. By its electromagnetic force analysis, the superconducting coil is also stable in structure.

  13. Comparison Between Nb3Al and Nb3Sn Strands and Cables for High Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Kikuchi, A.; Barzi, E.; Chlachidze, G.; Rusy, A.; Takeuchi, T.; Tartaglia, M.; Turrioni, D.; Velev, V.; Wake, M.; Zlobin, A.V.; /Fermilab

    2010-01-01

    The Nb{sub 3}Al small racetrack magnet, SR07, has been successfully built and tested to its short sample limit beyond 10 Tesla without any training. Thus the practical application of Nb{sub 3}Al strands for high field accelerator magnets is established. The characteristics of the representative F4 strand and cable, are compared with the typical Nb{sub 3}Sn strand and cable. It is represented by the OST high current RRP Nb{sub 3}Sn strand with 108/127 configuration. The effects of Rutherford cabling to both type strands are explained and the inherent problem of the Nb{sub 3}Sn strand is discussed. Also the test results of two representative small racetrack magnets are compared from the stand point of Ic values, and training. The maximum current density of the Nb{sub 3}Al strands is still smaller than that of the Nb{sub 3}Sn strands, but if we take into account of the stress-strain characteristics, Nb{sub 3}Al strands become somewhat favorable in some applications.

  14. A dynamic model of the eye nystagmus response to high magnetic fields.

    Science.gov (United States)

    Glover, Paul M; Li, Yan; Antunes, Andre; Mian, Omar S; Day, Brian L

    2014-02-07

    It was recently shown that high magnetic fields evoke nystagmus in human subjects with functioning vestibular systems. The proposed mechanism involves interaction between ionic currents in the endolymph of the vestibular labyrinth and the static magnetic field. This results in a Lorentz force that causes endolymph flow to deflect the cupulae of the semi-circular canals to evoke a vestibular-ocular reflex (VOR). This should be analogous to stimulation by angular acceleration or caloric irrigation. We made measurements of nystagmus slow-phase velocities in healthy adults experiencing variable magnetic field profiles of up to 7 T while supine on a bed that could be moved smoothly into the bore of an MRI machine. The horizontal slow-phase velocity data were reliably modelled by a linear transfer function incorporating a low-pass term and a high-pass adaptation term. The adaptation time constant was estimated at 39.3 s from long exposure trials. When constrained to this value, the low-pass time constant was estimated at 13.6 ± 3.6 s (to 95% confidence) from both short and long exposure trials. This confidence interval overlaps with values obtained previously using angular acceleration and caloric stimulation. Hence it is compatible with endolymph flow causing a cupular deflection and therefore supports the hypothesis that the Lorentz force is a likely transduction mechanism of the magnetic field-evoked VOR.

  15. A dynamic model of the eye nystagmus response to high magnetic fields

    International Nuclear Information System (INIS)

    Glover, Paul M; Li, Yan; Antunes, Andre; Mian, Omar S; Day, Brian L

    2014-01-01

    It was recently shown that high magnetic fields evoke nystagmus in human subjects with functioning vestibular systems. The proposed mechanism involves interaction between ionic currents in the endolymph of the vestibular labyrinth and the static magnetic field. This results in a Lorentz force that causes endolymph flow to deflect the cupulae of the semi-circular canals to evoke a vestibular–ocular reflex (VOR). This should be analogous to stimulation by angular acceleration or caloric irrigation. We made measurements of nystagmus slow-phase velocities in healthy adults experiencing variable magnetic field profiles of up to 7 T while supine on a bed that could be moved smoothly into the bore of an MRI machine. The horizontal slow-phase velocity data were reliably modelled by a linear transfer function incorporating a low-pass term and a high-pass adaptation term. The adaptation time constant was estimated at 39.3 s from long exposure trials. When constrained to this value, the low-pass time constant was estimated at 13.6 ± 3.6 s (to 95% confidence) from both short and long exposure trials. This confidence interval overlaps with values obtained previously using angular acceleration and caloric stimulation. Hence it is compatible with endolymph flow causing a cupular deflection and therefore supports the hypothesis that the Lorentz force is a likely transduction mechanism of the magnetic field-evoked VOR. (paper)

  16. Proton beam transport experiments with pulsed high-field magnets at the Dresden laser acceleration source Draco

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden, Dresden (Germany); Kraft, Stephan; Metzkes, Josefine; Schlenvoigt, Hans-Peter; Zeil, Karl [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)

    2016-07-01

    Compact laser-driven ion accelerators are a potential alternative to large and expensive conventional accelerators. High-power short-pulse lasers, impinging on e.g. thin metal foils, enable multi-MeV ion acceleration on μm length and fs to ps time scale. The generated ion bunches (typically protons) show unique beam properties, like ultra-high pulse dose. Nevertheless, laser accelerators still require substantial development in reliable beam generation and transport. Recently developed pulsed magnets meet the demands of laser acceleration and open up new research opportunities: We present a pulsed solenoid for effective collection and focusing of laser-accelerated protons that acts as link between fundamental research and application. The solenoid is powered by a capacitor-based pulse generator and can reach a maximum magnetic field of 20 T. It was installed in the target chamber of the Draco laser at HZDR. The transported beam was detected by means of radiochromic film, scintillator and Thomson parabola spectrometer. We present the characterization of the solenoid with regard to future application in radiobiological irradiation studies. Furthermore, a detailed comparison to previous experiments with a similar magnet at the PHELIX laser at GSI, Darmstadt is provided.

  17. Voltage spike detection in high field superconducting accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.; /Fermilab

    2004-12-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are {approx}15mV in magnitude and lasts for {approx}30 {micro}sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb{sub 3}Sn magnets at currents up to {approx}20KA will also be shown.

  18. Voltage spike detection in high field superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.

    2004-01-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are ∼15mV in magnitude and lasts for ∼30(micro)sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb3Sn magnets at currents up to ∼20KA will also be shown

  19. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  20. Relaxed plasmas in external magnetic fields

    International Nuclear Information System (INIS)

    Spies, G.O.; Li, J.

    1991-08-01

    The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)

  1. High Temperature Superconducting Magnets with Active Control for Attraction Levitation Transport Applications

    Science.gov (United States)

    Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.

    1996-01-01

    A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.

  2. Measurements of crossed-field demagnetisation rate of trapped field magnets at high frequencies and below 77 K

    Science.gov (United States)

    Baskys, A.; Patel, A.; Glowacki, B. A.

    2018-06-01

    Design requirements of the next generation of electric aircraft place stringent requirements on the power density required from electric motors. A future prototype planned in the scope of the European project ‘Advanced Superconducting Motor Experimental Demonstrator’ (ASuMED) considers a permanent magnet synchronous motor, where the conventional ferromagnets are replaced with superconducting trapped field magnets, which promise higher flux densities and thus higher output power without adding weight. Previous work has indicated that stacks of tape show lower cross-field demagnetisation rates to bulk (RE)BCO whilst retaining similar performance for their size, however the crossed-field demagnetisation rate has not been studied in the temperature, the magnetic field and frequency range that are relevant for the operational prototype motor. This work investigates crossed-field demagnetisation in 2G high temperature superconducting stacks at temperatures below 77 K and a frequency range above 10 Hz. This information is crucial in developing designs and determining operational time before re-magnetisation could be required.

  3. Magnetic cusp and electric nested- or single-well configurations for high density antihydrogen and fusion nonneutral plasma applications

    International Nuclear Information System (INIS)

    Ordonez, C. A.

    1999-01-01

    Malmberg-Penning traps have had limited uses for applications that require high density nonneutral plasma confinement. For such traps, the density is severely limited because a magnetic field is used to provide a radially inward force to balance both self-electric and centrifugal radially outward forces. A possible way to confine higher density nonneutral plasmas is to use a magnetic cusp configuration. An annular nonneutral plasma would be confined in the radial magnetic field of a magnetic cusp such that radial confinement is provided by an externally produced electric potential well while axial confinement is provided by the magnetic field. In addition, a radial electric potential profile having a nested-well configuration can be used to simultaneously confine two oppositely signed plasma species (e.g., positrons and antiprotons) that overlap. In the work reported, various aspects of using magnetic cusp configurations and electric nested-well configurations are considered. Plasma confinement with these configurations may be useful for obtaining fast antihydrogen recombination and trapping rates and for achieving practical fusion power production

  4. Magnetic Cusp and Electric Nested- or Single-Well Configurations for High Density Antihydrogen and Fusion Nonneutral Plasma Applications

    International Nuclear Information System (INIS)

    C.A. Ordonez

    1999-01-01

    Malmberg-Penning traps have had limited uses for applications that require high density nonneutral plasma confinement. For such traps, the density is severely limited because a magnetic field is used to provide a radially inward force to balance both self-electric and centrifugal radially outward forces. A possible way to confine higher density nonneutral plasmas is to use a magnetic cusp configuration. An annular nonneutral plasma would be confined in the radial magnetic field of a magnetic cusp such that radial confinement is provided by an externally produced electric potential well while axial confinement is provided by the magnetic field. In addition, a radial electric potential profile having a nested-well configuration can be used to simultaneously confine two oppositely signed plasma species (e.g., positrons and antiprotons) that overlap. In the work reported, various aspects of using magnetic cusp configurations and electric nested-well configurations are considered. Plasma confinement with these configurations may be useful for obtaining fast antihydrogen recombination and trapping rates and for achieving practical fusion power production

  5. Submillimetre wave spectroscopy of semiconductors in high magnetic fields

    International Nuclear Information System (INIS)

    Maan, J.C.

    1979-01-01

    Two types of cyclotron resonance studies with far infrared radiation and at high magnetic fields in semiconductors are discussed. Firstly, the phenomenon of the change in the static conductivity at cyclotron resonance conditions in pure semiconductors, in this case n-GaAs, is investigated. Secondly, the results of cyclotron resonance experiments in an n-InAs-GaSb superlattice are discussed. (Auth.)

  6. How a high-gradient magnetic field could affect cell life

    Czech Academy of Sciences Publication Activity Database

    Zablotskyy, Vitaliy A.; Polyakova, Tetyana; Lunov, Oleg; Dejneka, Alexandr

    2016-01-01

    Roč. 6, Nov (2016), 1-12, č. článku 37407. ISSN 2045-2322 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : high-gradient magnetic field * cell Subject RIV: BO - Biophysics Impact factor: 4.259, year: 2016

  7. Orienting Paramecium with intense static magnetic fields

    Science.gov (United States)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  8. Micromachined silicon cantilevers with integrated high-frequency magnetoimpedance sensors for simultaneous strain and magnetic field detection

    Science.gov (United States)

    Buettel, G.; Joppich, J.; Hartmann, U.

    2017-12-01

    Giant magnetoimpedance (GMI) measurements in the high-frequency regime utilizing a coplanar waveguide with an integrated Permalloy multilayer and micromachined on a silicon cantilever are reported. The fabrication process is described in detail. The aspect ratio of the magnetic multilayer in the magnetoresistive and magnetostrictive device was varied. Tensile strain and compressive strain were applied. Vector network analyzer measurements in the range from the skin effect to ferromagnetic resonance confirm the technological potential of GMI-based micro-electro-mechanical devices for strain and magnetic field sensing applications. The strain-impedance gauge factor was quantified by finite element strain calculations and reaches a maximum value of almost 200.

  9. Carrier tunneling in high magnetic fields

    NARCIS (Netherlands)

    Christianen, P.C.M.; Bruggink, I.E.M.; Maan, J.C.; Vleuten, van der W.C.

    1995-01-01

    Proceedings of the XXIV International School of Semiconducting Coinpounds, Jaszowiec 1995. A magnetic field induced coupling is observed between the Landau levels with different quantum number of two GaAs quantum wells separated by a thin (Ga,Al)As tunnel barrier using

  10. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  11. Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetization

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Ujiie, T.; Zou, J.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.

    2014-06-01

    The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of

  12. High magnetic field multipoles generated by superconductor magnetization within a set of nested superconducting correction coils

    International Nuclear Information System (INIS)

    Green, M.A.

    1990-04-01

    Correction elements in colliding beam accelerators such as the SSC can be the source of undesirable higher magnetic field multipoles due to magnetization of the superconductor within the corrector. Quadrupole and sextupole correctors located within the main dipole will produce sextupole and decapole due to magnetization of the superconductor within the correction coils. Lumped nested correction coils can produce a large number of skew and normal magnetization multipoles which may have an adverse effect on a stored beam at injection into a high energy colliding beam machine such as the SSC. 6 refs., 2 figs., 2 tabs

  13. Orthodontic brackets in high field MR imaging: experimental evaluation of magnetic field interactions at 3.0 tesla

    International Nuclear Information System (INIS)

    Kemper, J.; Adam, G.; Klocke, A.; Kahl-Nieke, B.

    2005-01-01

    Purpose: To evaluate static magnetic field interactions for 32 commonly used orthodontic brackets in a 3.0 T magnetic resonance imaging (MRI) system. Materials and methods: 32 orthodontic brackets consisting of a steel alloy (n=27), a cobalt-chromium alloy (n=2), ceramic (n=1), ceramic with a steel slot (n=1), and titanium (n=1) from 13 different manufacturers were tested for magnetic field interactions in a static magnetic field at 3.0 T (Gyroscan Intera 3.0 T, Philips Medical Systems, Best, Netherlands). The magnetic deflection force F Z [mN] was evaluated by determining the deflection angle β[ ] using the established deflection angle test according to the ASTM guidelines. The magnetic-field-induced rotational force F rot or torque was qualitatively determined using a 5-point grading scale (0: no torque; +4: very strong torque). Results: In 18 of the 32 brackets, the deflection angle β was found to be > 45 and the translational force exceeded the gravitational force F G on the particular bracket (F Z : 1.2-45.7 mN). The translational force F Z was found to be up to 68.5 times greater than the gravitational force F G (F Z /F G : 1.4-68.5). The rotational force F rot was correspondingly high (+3/+4) for those brackets. For the remaining 14 objects, the deflection angles were < 45 and the torque measurements ranged from 0 to +2. The static magnetic field did not affect the titanium bracket and the ceramic bracket. No measurable translational and rotational forces were found. (orig.)

  14. Magnetic nanoparticles: surface effects and properties related to biomedicine applications.

    Science.gov (United States)

    Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

    2013-10-25

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 μm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  15. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  16. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  17. Highly controllable near-surface swimming of magnetic Janus nanorods: application to payload capture and manipulation

    International Nuclear Information System (INIS)

    Mair, Lamar O; Carpenter, Jerome; Evans, Benjamin; Hall, Adam R; Shields, Adam; Superfine, Richard; Ford, Kris; Millard, Michael

    2011-01-01

    Directed manipulation of nanomaterials has significant implications in the field of nanorobotics, nanobiotechnology, microfluidics and directed assembly. With the goal of highly controllable nanomaterial manipulation in mind, we present a technique for the near-surface manoeuvering of magnetic nanorod swimmers and its application to controlled micromanipulation. We fabricate magnetic Janus nanorods and show that the magnetic rotation of these nanorods near a floor results in predictable translational motion. The nanorod plane of rotation is nearly parallel to the floor, the angle between rod tilt and floor being expressed by θ, where 0 0 0 . Orthogonal magnetic fields control in-plane motion arbitrarily. Our model for translation incorporates symmetry breaking through increased drag at the no-slip surface boundary. Using this method we demonstrate considerable rod steerability. Additionally, we approach, capture, and manipulate a polystyrene microbead as proof of principle. We attach Janus nanorods to the surfaces of cells and utilize these rods to manipulate individual cells, proving the ability to manoeuver payloads with a wide range of sizes.

  18. Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics

    Science.gov (United States)

    Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham

    Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.

  19. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review.

    Science.gov (United States)

    Henning, Anke

    2018-03-01

    Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei ( 1 H, 31 P, 13 C). Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field.

    Science.gov (United States)

    Sladkov, Maksym; Bakker, M P; Chaubal, A U; Reuter, D; Wieck, A D; van der Wal, C H

    2011-04-01

    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film. © 2011 American Institute of Physics

  1. Calculation of magnetic fields for engineering devices

    International Nuclear Information System (INIS)

    Colonias, J.S.

    1976-06-01

    The methodology of magnet technology and its application to various engineering devices are discussed. Magnet technology has experienced a rigid growth in the past few years as a result of the advances made in superconductivity, numerical methods and computational techniques. Included are discussions on: (1) mathematical models for solving magnetic field problems; (2) the applicability, usefulness, and limitations of computer programs that utilize these models; (3) examples of application in various engineering disciplines; and (4) areas where further contributions are needed

  2. High resolution studies of the effects of magnetic fields on chemical reactions

    OpenAIRE

    Hamilton, C. A.; Hewitt, J. P.; McLauchlan, Keith A.; Steiner, Ulrich

    1988-01-01

    A simple and inexpensive experiment is described which detects magnetic field effects on chemical reactions with high signal-to-noise ratio and high resolution. It consists in applying a small modulation field to the sample, whilst the main field it experiences is varied, with optical detection at the modulation frequency. It consequently measures the derivative of the normal MARY spectrum. It is shown by theoretical analysis that when using this method it is better to monitor reaction interm...

  3. Magnetic Nanoparticles From Fabrication to Clinical Applications

    CERN Document Server

    Thanh, Nguyen TK

    2012-01-01

    Offering the latest information in magnetic nanoparticle (MNP) research, Magnetic Nanoparticles: From Fabrication to Clinical Applications provides a comprehensive review, from synthesis, characterization, and biofunctionalization to clinical applications of MNPs, including the diagnosis and treatment of cancers. This book, written by some of the most qualified experts in the field, not only fills a hole in the literature, but also bridges the gaps between all the different areas in this field. Translational research on tailored magnetic nanoparticles for biomedical applications spans a variet

  4. Production and detection of atomic hexadecapole at Earth's magnetic field.

    Science.gov (United States)

    Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D

    2008-07-21

    Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.

  5. High-field torque magnetometry for investigating magnetic anisotropy in Mn12-acetate nanomagnets

    International Nuclear Information System (INIS)

    Cornia, Andrea; Affronte, Marco; Gatteschi, Dante; Jansen, Aloysius G.M.; Caneschi, Andrea; Sessoli, Roberta

    2001-01-01

    The single-molecule superparamagnet [Mn 12 O 12 (OAc) 16 (H 2 O) 4 ]·2AcOH·4H 2 O (Mn 12 -acetate) has attracted considerable attention because it shows exceedingly slow paramagnetic relaxation at low temperature. The cluster has S 4 symmetry in the solid state and comprises four Mn(IV) ions (S=((3)/(2))) and eight Mn(III) ions (S=2) which are magnetically coupled to give an S=10 ground state. The ground manifold is largely split in zero magnetic field and many efforts have been spent to determine the zero-field splitting (zfs) parameters α, β and γ appearing in the fourth-order spin-Hamiltonian H=αS z 2 +βS z 4 +γ(S + 4 +S - 4 )+μ B B·g·S. These are of paramount importance for defining the magnetic anisotropy of the cluster, which in turn determines the slow relaxation of the magnetization and quantum tunneling effects at low temperatures. We want to show that cantilever torque magnetometry in high fields is a suitable technique for determining second- and fourth-order anisotropic contributions in high-spin molecules, such as Mn 12 -acetate. The main advantage of the method lies in its high sensitivity which allows to use very small single crystals. Torque curves have been recorded at 4.2 K by applying the magnetic field (0-28 T) very close to the ab-plane of the tetragonal unit cell. The zfs parameters obtained by this procedure [α=-0.389(5) cm -1 and β=-8.4(5)x10 -4 cm -1 ] are in excellent agreement with those determined by spectroscopic techniques, such as high-frequency EPR and inelastic neutron scattering

  6. The approximation of anomalous magnetic field by array of magnetized rods

    Science.gov (United States)

    Denis, Byzov; Lev, Muravyev; Natalia, Fedorova

    2017-07-01

    The method for calculation the vertical component of an anomalous magnetic field from its absolute value is presented. Conversion is based on the approximation of magnetic induction module anomalies by the set of singular sources and the subsequent calculation for the vertical component of the field with the chosen distribution. The rods that are uniformly magnetized along their axis were used as a set of singular sources. Applicability analysis of different methods of nonlinear optimization for solving the given task was carried out. The algorithm is implemented using the parallel computing technology on the NVidia GPU. The approximation and calculation of vertical component is demonstrated for regional magnetic field of North Eurasia territories.

  7. Magnetic superelevation design of Halbach permanent magnet guideway for high-temperature superconducting maglev

    Science.gov (United States)

    Lei, Wuyang; Qian, Nan; Zheng, Jun; Huang, Huan; Zhang, Ya; Deng, Zigang

    2017-07-01

    To improve the curve negotiating ability of high-temperature superconducting (HTS) maglev system, a special structure of magnetic superelevation for double-pole Halbach permanent magnet guideway (PMG) was designed. The most significant feature of this design is the asymmetrical PMG that forms a slanting magnetic field without affecting the smoothness of the PMG surface. When HTS maglev vehicle runs through curves with magnetic superelevation, the vehicle will slant due to asymmetry in magnetic field and the flux-pinning effect of onboard HTS bulks. At the same time, one component of the levitation force provides a part of the centripetal force that reduces lateral acceleration of the vehicle and thus enhances its curve negotiating ability. Furthermore, the slant angle of magnetic superelevation can be adjusted by changing the materials and the thickness of the added permanent magnets. This magnetic superelevation method, together with orographic uplift, can be applied to different requirements of PMG designs. Besides, the applicability of this method would benefit future development of high-speed HTS maglev system.

  8. Ultra-High Field NMR and MRI—The Role of Magnet Technology to Increase Sensitivity and Specificity

    Directory of Open Access Journals (Sweden)

    Ewald Moser

    2017-08-01

    Full Text Available “History, of course, is difficult to write, if for no other reason, than that it has so many players and so many authors.” – P. J. Keating (former Australian Prime MinisterStarting with post-war developments in nuclear magnetic resonance (NMR a race for stronger and stronger magnetic fields has begun in the 1950s to overcome the inherently low sensitivity of this promising method. Further challenges were larger magnet bores to accommodate small animals and eventually humans. Initially, resistive electromagnets with small pole distances, or sample volumes, and field strengths up to 2.35 T (or 100 MHz 1H frequency were used in applications in physics, chemistry, and material science. This was followed by stronger and more stable (Nb-Ti based superconducting magnet technology typically implemented first for small-bore systems in analytical chemistry, biochemistry and structural biology, and eventually allowing larger horizontal-bore magnets with diameters large enough to fit small laboratory animals. By the end of the 1970s, first low-field resistive magnets big enough to accommodate humans were developed and superconducting whole-body systems followed. Currently, cutting-edge analytical NMR systems are available at proton frequencies up to 1 GHz (23.5 T based on Nb3Sn at 1.9 K. A new 1.2 GHz system (28 T at 1.9 K, operating in persistent mode but using a combination of low and high temperature multi-filament superconductors is to be released. Preclinical instruments range from small-bore animal systems with typically 600–800 MHz (14.1–18.8 T up to 900 MHz (21 T at 1.9 K. Human whole-body MRI systems currently operate up to 10.5 T. Hybrid combined superconducting and resistive electromagnets with even higher field strength of 45 T dc and 100 T pulsed, are available for material research, of course with smaller free bore diameters. This rather costly development toward higher and higher field strength is a consequence of the inherently low

  9. Pulsed-High Field/High-Frequency EPR Spectroscopy

    Science.gov (United States)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  10. Low frequency electric and magnetic fields

    Science.gov (United States)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  11. Error field generation of solenoid magnets

    International Nuclear Information System (INIS)

    Saunders, J.L.

    1982-01-01

    Many applications for large solenoids and solenoidal arrays depend on the high precision of the axial field profile. In cases where requirements of ΔB/B for nonaxial fields are on the order of 10 -4 , the actual winding techniques of the solenoid need to be considered. Whereas an ideal solenoid consisting of current loops would generate no radial fields along the axis, in reality, the actual current-carrying conductors must follow spiral or helical paths. A straightforward method for determining the radial error fields generated by coils wound with actual techniques employed in magnet fabrication has been developed. The method devised uses a computer code which models a magnet by sending a single, current-carrying filament along the same path taken by the conductor during coil winding. Helical and spiral paths are simulated using small, straight-line current segments. This technique, whose results are presented in this paper, was used to predict radial field errors for the Elmo Bumpy Torus-Proof of Principle magnet. These results include effects due to various winding methods, not only spiral/helical and layer-to-layer transitions, but also the effects caused by worst-case tolerance conditions both from the conductor and the winding form (bobbin). Contributions made by extraneous circuitry (e.g., overhead buswork and incoming leads) are also mentioned

  12. Characterization of magnetically impelled arc butt welded T11 tubes for high pressure applications

    Directory of Open Access Journals (Sweden)

    R. Sivasankari

    2015-09-01

    Full Text Available Magnetically impelled arc butt (MIAB welding is a pressure welding process used for joining of pipes and tubes with an external magnetic field affecting arc rotation along the tube circumference. In this work, MIAB welding of low alloy steel (T11 tubes were carried out to study the microstructural changes occurring in thermo-mechanically affected zone (TMAZ. To qualify the process for the welding applications where pressure could be up to 300 bar, the MIAB welds are studied with variations of arc current and arc rotation time. It is found that TMAZ shows higher hardness than that in base metal and displays higher weld tensile strength and ductility due to bainitic transformation. The effect of arc current on the weld interface is also detailed and is found to be defect free at higher values of arc currents. The results reveal that MIAB welded samples exhibits good structural property correlation for high pressure applications with an added benefit of enhanced productivity at lower cost. The study will enable the use of MIAB welding for high pressure applications in power and defence sectors.

  13. Working in the magnetic field of ultrahigh field MRI

    International Nuclear Information System (INIS)

    Leitgeb, N.; Gombotz, H.

    2013-01-01

    Development of magnetic resonance imaging (MRI) device technology continues to increase the static magnetic flux densities applied and consequently leads to considerably increased occupational exposure. This has already made it necessary to review limits of occupational exposure and to postpone European legal regulations for occupational exposure to electromagnetic fields. This raises the question whether and if so which adverse health effects and health risks might be associated with occupational exposure to MRI ultra-high static magnetic fields. Based on a survey on interaction mechanisms recommendations and safety rules are presented to help minimize adverse health effects of emerging ultra-high field MRI. (orig.) [de

  14. Field measurement for large bending magnets

    International Nuclear Information System (INIS)

    Lazzaro, A.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Foti, A.; Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S.

    2008-01-01

    The results of magnetic field measurements of the large bending magnet of the MAGNEX spectrometer are presented. The experimental values are used to build an Enge function by the least-squares method. The resulting field is compared to the measured one, showing too large deviation for application to ray reconstruction techniques. Similarly, the experimental values are compared with results from a three-dimensional finite elements calculation. Again the deviations between measured and calculated field are too large for a direct application of the latter to ray reconstruction, while its reliability is sufficient for analysis purposes. In particular, it has been applied to study the effect of the inaccuracies in the probe location and orientation on the precision of field reconstruction, and to establish the requirements for the field interpolation. These inaccuracies are found to be rather important, especially for the transversal components of the field, with the consequence that their effect on the reconstructed field should be minimized by special interpolation algorithms

  15. Irreversible magnetization deep in the vortex-liquid state of a 2D superconductor at high magnetic fields

    International Nuclear Information System (INIS)

    Maniv, T; Zhuravlev, V; Wosnitza, J; Hagel, J

    2004-01-01

    The remarkable phenomenon of weak magnetization hysteresis loops, observed recently deep in the vortex-liquid state of a nearly two-dimensional (2D) superconductor at low temperatures and high magnetic fields, is shown to reflect the existence of an unusual vortex-liquid state, consisting of collectively pinned crystallites of easily sliding vortex chains. (letter to the editor)

  16. Superconducting magnet development capability of the LLNL [Lawrence Livermore National Laboratory] High Field Test Facility

    International Nuclear Information System (INIS)

    Miller, J.R.; Shen, S.; Summers, L.T.

    1990-02-01

    This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility

  17. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  18. The dynamic behavior of magnetic fluid adsorbed to small permanent magnet in alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.j [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Asano, Daisaku [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Takana, Hidemasa; Nishiyama, Hideya [Institute of Fluid Science, Tohoku University, Katahira 2-1-1, Aobaku, Sendai 980-8577 (Japan)

    2011-05-15

    The dynamic behavior of a magnetic fluid adsorbed to a small NdFeB permanent magnet subjected to an alternating magnetic field was studied with a high speed video camera system. The directions of alternating magnetic field are parallel and opposite to that of the permanent magnet. It was found that the surface of magnetic fluid responds to the external alternating magnetic field in elongation and contraction with a lot of spikes. Generation of a capillary magnetic fluid jet was observed in the neighbourhood of a specific frequency of alternating field. The effect of gravitational force on surface phenomena of magnetic fluid adsorbed to the permanent magnet was revealed. - Research Highlights: Magnetic fluid of the system responds to alternating magnetic field with higher frequencies. Large-amplitude surface motions of magnetic fluid occur at the specific frequencies of the external field. Capillary jets of magnetic fluid are generated at the natural frequency of the system.

  19. Extension of the Nambu-Jona-Lasinio model predictions at high temperatures and strong external magnetic field

    International Nuclear Information System (INIS)

    Gomes, Karina P.; Farias, R.L.S.; Pinto, M.B.; Krein, G.

    2013-01-01

    Full text: Recently much attention is dedicated to understand the effects of an external magnetic field on the QCD phase diagram. Actually there is a contradiction in the literature: while effective models of QCD like the Nambu-Jona- Lasinio model (NJL) and linear sigma model predict an increase of the critical temperature of chiral symmetry restoration a function of the magnetic field, recent lattice results shows the opposite behavior. The NJL model is nonrenormalizable; then the high momentum part of the model has to be regularized in a phenomenological way. The common practice is to regularize the divergent loop amplitudes with a three-dimensional momentum cutoff, which also sets the energy-momentum scale for the validity of the model. That is, the model cannot be used for studying phenomena involving momenta running in loops larger than the cutoff. In particular, the model cannot be used to study quark matter at high densities. One of the symptoms of this problem is the prediction of vanishing superconducting gaps at high baryon densities, a feature of the model that is solely caused by the use of a regularizing momentum cutoff of the divergent vacuum and also in finite loop integrals. In a renormalizable theory all the dependence on the cutoff can be removed in favor of running physical parameters, like the coupling constants of QED and QCD. The running is given by the renormalization group equations of the theory and is controlled by an energy scale that is adjusted to the scale of the experimental conditions under consideration. In a recent publication, Casalbuoni et al. have introduced the concept of a running coupling constant for the NJL model to extend the applicability of the model to high density. Their arguments are based on making the cutoff density dependent, using an analogy with the natural cutoff of the Debye frequency of phonon oscillations in an ordinary solid. In the present work we follow such an approach introducing a magnetic field

  20. Effect of oxygen deficiency on the magnetic field-dependent entropy ...

    Indian Academy of Sciences (India)

    Moreover, to account for the applicability of the theory at high field, we have incorporated the effect of vortex overlapping in the London theory done by Nanda (1995). Here, we have presented the variation of change in entropy (S) with magnetic field for different oxygen deficiencies = 0, 0.04, and 0.06. On comparison ...

  1. Manitoba Hydro long-term high-voltage transmission line magnetic field monitoring project

    International Nuclear Information System (INIS)

    Wong, P.S.; Ng, C.K.

    2008-01-01

    As part of the licensing process to construct a new 230 kV transmission line on an existing right-of-way in Manitoba, an electrical effects study was conducted in 1998. The study was part of the environmental assessment program crucial in obtaining government approval to construct the line. Some residents living adjacent to the new transmission circuit expressed concerns about alleged adverse health effects associated with long-term exposure to magnetic fields from high voltage transmission lines. In order to verify the accuracy of the predicted magnetic field levels submitted to the regulatory body in the the electrical effects study and to instill confidence in the residents of the affected communities, a three-year magnetic monitoring project was conducted between 2003 and 2005 along the right-of-way after the new 230kV transmission line was energized by Manitoba Hydro. This paper described the monitoring program, with reference to location; equipment; data analysis; and discussion of results. It was concluded that the long-term monitoring project demonstrated that the magnetic field prediction methodology was well understood and accurate, and provided valuable long-term magnetic field characteristics at the edge of the right-of-way. In addition, when there is opposition to a transmission line, public consultation and education were found to be the best options to arrive at a solution. 3 refs., 1 tab., 12 figs

  2. Oscillatory magneto-convection under magnetic field modulation

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2018-03-01

    Full Text Available In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is used to derive an amplitude of oscillatory convection for weakly nonlinear mode. Heat transfer is quantified in terms of the Nusselt number, which is governed by the Landau equation. The variation of the modulation excitation of the magnetic field alternates heat transfer in the layer. The modulation excitation of the magnetic field is used either to enhance or diminish the heat transfer in the system. Further, it is found that, oscillatory mode of convection enhances the heat transfer and than stationary convection. The results have possible technological applications in magnetic fluid based systems involving energy transmission. Keywords: Weakly nonlinear theory, Oscillatory convection, Complex Ginzburg Landau model, Magnetic modulation

  3. Charged particles scattering in the presence of an homogeneous magnetic field

    International Nuclear Information System (INIS)

    Brandi, J.S.; Koiller, B.; Barros, H.G.P.L. de; Miranda, L.C.M.

    1977-01-01

    The scattering of charged particles in the presence of an homogeneous magnetic field, is studied. Using the Green's function formalism, an appropriate transition amplitude for the scattering process is defined, and an application is done for the scattering by a Coulomb potential in the high energy approximation. For this case, the transition amplitude is obtained in a closed form; its behavior with the magnetic field intensity and initial translational energy is qualitatively discussed. In the ultra-strong field limit, the total transition probability presents periodic resonances with increasing values of the initial translational energy [pt

  4. Principles of power frequency magnetic field management

    International Nuclear Information System (INIS)

    Fugate, D.; Feero, W.

    1995-01-01

    At the most general level, magnetic field management is the creation, elimination, or modification of sources in order to alter the spatial distribution of magnetic fields over some region of space. The two main options for magnetic field management are source modification (elimination or modification of original sources) and cancellation (creation of new sources). Source modification includes any changes in the layout or location of field sources, elimination of ground paths, or any options that increase the distance between sources and regions of interest. Cancellation involves the creation of new magnetic field sources, passive and/or active that produce magnetic fields that are opposite to the original fields in the region of interest. Shielding using materials of high conductivity and/or high permeability falls under the cancellation option. Strategies for magnetic field management, whether they are source modification or cancellation, typically vary on a case to case basis depending on the regions of interest, the types of sources and resulting complexity of the field structure, the field levels, and the attenuation requirements. This paper gives an overview of magnetic field management based on fundamental concepts. Low field design principles are described, followed by a structured discussion of cancellation and shielding. The two basic material shielding mechanisms, induced current shielding, and flux-shunting are discussed

  5. Design of the EuCARD high field model dipole magnet FRESCA2

    CERN Document Server

    Milanese, A; Durante, M; Manil, P; Perez, J-C; Rifflet, J-M; de Rijk, G; Rondeaux, F

    2011-01-01

    This paper reports on the design of FRESCA2, a dipole magnet model wound with Nb$_{3}$Sn Rutherford cable. This magnet is one of the deliverables of the High Field Magnets work package of the European FP7-EuCARD project. The nominal magnetic flux density of 13 Tesla in a 100 mm bore will make it suitable for upgrading the FRESCA cable test facility at CERN. The magnetic layout is based on a block coil, with four layers per pole. The mechanical structure is designed to provide adequate pre-stress, through the use of bladders, keys and an aluminum alloy shrinking cylinder.

  6. Design of the EuCARD High-Field Model Dipole Magnet FRESCA2

    CERN Document Server

    Milanese, A; Durante, M; Manil, P; Perez, J C; Rifflet, J M; de Rijk, G; Rondeaux, F

    2012-01-01

    This paper reports on the design of FRESCA2, a dipole magnet model wound with Nb$_{3}$Sn Rutherford cable. This magnet is one of the deliverables of the High Field Magnets work package of the European FP7-EuCARD project. The nominal magnetic flux density of 13 Tesla in a 100 mm bore will make it suitable for upgrading the FRESCA cable test facility at CERN. The magnetic layout is based on a block coil, with four layers per pole. The mechanical structure is designed to provide adequate pre-stress, through the use of bladders, keys and an aluminum alloy shrinking cylinder.

  7. Using axial magnetized permanent rings to build axial gradient magnetic field

    International Nuclear Information System (INIS)

    Peng Quanling

    2003-01-01

    Axial field produced by an axially magnetized permanent ring was studied. For two permanent magnet rings, if they are magnetized in the same direction, a nearly uniform axial field can be produced; if they are magnetized in opposite direction, an axial gradient field can be produced in the region between the two permanent rings, with the field strength changing from -B 0 to B 0 . A high gradient axial magnetic field has been built by using two axially magnetized permanent rings, the measured field results agree with the PANDIRA calculation very well. It is desirable that the field gradient can be varied to match various requirements. A method to produce the variable gradient field is presented. Axial gradient field can also be used as a beam focusing facility for linear accelerator if axial periodic field can be produced. Its magnetic field is similar to that of a solenoid, in which, large stray field will leak to the outside environment. A method for shielding the outside stray field is discussed

  8. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Deng Wei; Zhang Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Li Hui [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stone, James M., E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hli@lanl.gov, E-mail: jstone@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States)

    2017-08-10

    The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.

  9. PREFACE: 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3)

    Science.gov (United States)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-07-01

    The 3rd International Workshop on Materials Analysis and Processing in Materials Fields (MAP3) was held on 14-16 May 2008 at the University of Tokyo, Japan. The first was held in March 2004 at the National High Magnetic Field Laboratory in Tallahassee, USA. Two years later the second took place in Grenoble, France. MAP3 was held at The University of Tokyo International Symposium, and jointly with MANA Workshop on Materials Processing by External Stimulation, and JSPS CORE Program of Construction of the World Center on Electromagnetic Processing of Materials. At the end of MAP3 it was decided that the next MAP4 will be held in Atlanta, USA in 2010. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. MAP3 focused on the magnetic field interactions involved in the study and processing of materials in all disciplines ranging from physics to chemistry and biology: Magnetic field effects on chemical, physical, and biological phenomena Magnetic field effects on electrochemical phenomena Magnetic field effects on thermodynamic phenomena Magnetic field effects on hydrodynamic phenomena Magnetic field effects on crystal growth Magnetic processing of materials Diamagnetic levitation Magneto-Archimedes effect Spin chemistry Application of magnetic fields to analytical chemistry Magnetic orientation Control of structure by magnetic fields Magnetic separation and purification Magnetic field-induced phase transitions Materials properties in high magnetic fields Development of NMR and MRI Medical application of magnetic fields Novel magnetic phenomena Physical property measurement by Magnetic fields High magnetic field generation> MAP3 consisted of 84 presentations including 16 invited talks. This volume of Journal of Physics: Conference Series contains the proceeding of MAP3 with 34 papers that provide a scientific record of the topics covered by the conference with the special topics (13 papers) in

  10. Parallel heat transport in integrable and chaotic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Negrete, D. del; Chacon, L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)

    2012-05-15

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  11. Tracing Magnetic Fields With The Polarization Of Submillimeter Lines

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong

    2017-10-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimeter fine-structure lines are polarized due to atomic alignment by Ultraviolet (UV) photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. The method is applicable to all radiative-excitation dominant region, e.g., H II Regions, PDRs. The polarization of the submillimeter fine-structure lines induced by atomic alignment could be substantial and the applicability of using the spectro-polarimetry of atomic lines to trace magnetic fields has been supported by synthetic observations of simulated ISM in our recent paper. Our results demonstrate that the polarization of submillimeter atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimeter astronomy.

  12. A variable-field permanent-magnet dipole for accelerators

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.; Barlow, D.B.; Meyer, R.

    1992-01-01

    A new concept for a variable-field permanent-magnet dipole has been developed and fabricated at Los Alamos. The application requires an extremely uniform dipole field in the magnet aperture and precision variability over a large operating range. An iron-core permanent- magnet design using a shunt that was specially shaped to vary the field in a precise and reproducible fashion with shunt position. The key to this design is in the shape of the shunt. The field as a function of shunt position is very linear from 90% of the maximum field to 20% of the minimum field. The shaped shunt also results in a small maximum magnetic force attracting the shunt to the yoke allowing a simple mechanical design. Calculated and measured results agree well for the magnet

  13. Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry.

    Science.gov (United States)

    Iranmanesh, M; Hulliger, J

    2017-10-02

    The use of strong magnetic field gradients and high magnetic fields generated by permanent magnets or superconducting coils has found applications in many fields such as mining, solid state chemistry, biochemistry and medical research. Lab scale or industrial implementations involve separation of macro- and nanoparticles, cells, proteins, and macromolecules down to small molecules and ions. Most promising are those attempts where the object to be separated is attached to a strong magnetic nanoparticle. Here, all kinds of specific affinity interactions are used to attach magnetic carrier particles to mainly objects of biological interest. Other attempts use a strong paramagnetic suspension for the separation of purely diamagnetic objects, such as bio-macromolecules or heavy metals. The application of magnetic separation to superconducting inorganic phases is of particular interest in combination with ceramic combinatorial chemistry to generate a library of e.g. cuprate superconductors.

  14. Fractional dynamics of charged particles in magnetic fields

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  15. Reconnection of magnetic field lines

    International Nuclear Information System (INIS)

    Heyn, M.F.; Gratton, F.T.; Gnavi, G.; Heindler, M.

    1990-01-01

    Magnetic field line diffusion in a plasma is studied on the basis of the non-linear boundary layer equations of dissipative, incompressible magnetohydrodynamics. Non-linear steady state solutions for a class of plasma parameters have been obtained which are consistent with the boundary conditions appropriate for reconnection. The solutions are self-consistent in connecting a stagnation point flow of a plasma with reconnecting magnetic field lines. The range of the validity of the solutions, their relation to other fluid models of reconnection, and their possible applications to space plasma configurations are pointed out. (Author)

  16. Magnetic field control of fluorescent polymer nanorods

    International Nuclear Information System (INIS)

    Kim, Taehyung; He, Le; Bardeen, Christopher J; Morales, Jason R; Beyermann, W P

    2011-01-01

    Nanoscale objects that combine high luminescence output with a magnetic response may be useful for probing local environments or manipulating objects on small scales. Ideally, these two properties would not interfere with each other. In this paper, we show that a fluorescent polymer host material can be doped with high concentrations of 20–30 nm diameter magnetic γ-Fe 2 O 3 particles and then formed into 200 nm diameter nanorods using porous anodic alumina oxide templates. Two different polymer hosts are used: the conjugated polymer polydioctylfluorene and also polystyrene doped with the fluorescent dye Lumogen Red. Fluorescence decay measurements show that 14% by weight loading of the γ-Fe 2 O 3 nanoparticles quenches the fluorescence of the polydioctylfluorene by approximately 33%, but the polystyrene/Lumogen Red fluorescence is almost unaffected. The three-dimensional orientation of both types of nanorods can be precisely controlled by the application of a moderate strength (∼0.1 T) external field with sub-second response times. Transmission electron microscope images reveal that the nanoparticles cluster in the polymer matrix, and these clusters may serve both to prevent fluorescence quenching and to generate the magnetic moment that rotates in response to the applied magnetic field.

  17. Ultra-high field NMR and MRI - the role of magnet technology to increase sensitivity and specificity

    Science.gov (United States)

    Moser, Ewald; Laistler, Elmar; Schmitt, Franz; Kontaxis, Georg

    2017-08-01

    "History, of course, is difficult to write, if for no other reason, than that it has so many players and so many authors." - P. J. Keating (former Australian Prime Minister) Starting with post-war developments in nuclear magnetic resonance (NMR) a race for stronger and stronger magnetic fields has begun in the 1950s to overcome the inherently low sensitivity of this promising method. Further challenges were larger magnet bores to accommodate small animals and eventually humans. Initially, resistive electromagnets with small pole distances, or sample volumes, and field strengths up to 2.35 T (or 100 MHz 1H frequency) were used in applications in physics, chemistry, and material science. This was followed by stronger and more stable (NbTi based) superconducting magnet technology typically implemented first for small-bore systems in analytical chemistry, biochemistry and structural biology, and eventually allowing larger horizontal-bore magnets with diameters large enough to fit small laboratory animals. By the end of the 1970s, first low-field resistive magnets big enough to accommodate humans were developed and superconducting whole-body systems followed. Currently, cutting-edge analytical NMR systems are available at proton frequencies up to 1 GHz (23.5 T) based on Nb3Sn at 1.9 K. A new 1.2 GHz system (28 T) at 1.9 K, operating in persistent mode but using a combination of low and high temperature multi-filament superconductors is to be released. Preclinical instruments range from small-bore animal systems with typically 600 - 800 MHz (14.1 - 18.8 T) up to 900 MHz (21 T) at 1.9 K. Human whole-body MRI systems currently operate up to 10.5 T. Hybrid combined superconducting and resistive electromagnets with even higher field strength of 45 T dc and 100 T pulsed, are available for material research, of course with smaller free bore diameters. This rather costly development towards higher and higher field strength is a consequence of the inherently low and, thus

  18. High-energy scattering of particles with anomalous magnetic moments in quantum field theory

    International Nuclear Information System (INIS)

    Nguen Suan Khan; Pervushin, V.N.

    1976-01-01

    Eikonal type representations taking into account the anomalous magnetic moments of nucleons are obtained for the amplitude of pion-nucleon and nucleon-nucleon scattering in the asymptotic region s → infinity, (t) (<<) s in the framework of nonrenormalizable quantum field theory. The anomalous magnetic moment leads to additional terms in the amplitude which describe the spin flips in the scattering process. It is shown that the renormalization problem does not arise in the asymptotics s → infinity. As an application the Coulomb interference is considered

  19. The low-field permanent magnet electrostatic plasma lens

    International Nuclear Information System (INIS)

    Goncharov, A.; Gorshkov, V.; Maslov, V.; Zadorozhny, V.; Brown, I.

    2004-01-01

    We describe the status of ongoing research and development of the electrostatic plasma lens as used for the manipulation of high current broad beams of heavy ions of moderate energy. In some collaborative work at Lawrence Berkeley National Laboratory the lens was used to good effect for carrying out high dose ion implantation processing. In the process of this work a very narrow range of low magnetic field was found for which the ion-optical characteristics of the lens improved markedly. Subsequent theoretical analysis and computer modeling has led to an understanding of this phenomenon. These serendipitous results open up some attractive possibilities for the development of a new compact and low cost plasma lens based on permanent magnets rather than on current-driven field coils surrounding the lens volume. The development of this kind of lens, including both very low noise and minimal spherical aberration effects, may lead to a tool suitable for use in the injection beam lines of high current heavy ion linear accelerators. Here we briefly review the lens fundamentals, some characteristics of focusing heavy ion beams at low magnetic fields, and summarize recent theoretical and experimental developments, with emphasis on the relevance and suitability of the lens for accelerator injection application

  20. Multi-pole magnetization of NdFeB magnets for magnetic micro-actuators and its characterization with a magnetic field mapping device

    International Nuclear Information System (INIS)

    Toepfer, J.; Pawlowski, B.; Beer, H.; Ploetner, K.; Hofmann, P.; Herrfurth, J.

    2004-01-01

    Multi-pole magnetization of NdFeB plate magnets of thickness between 0.25 and 2 mm with a stripe pattern and a pole pitch of 2 or 1 mm was performed by pulse magnetization. The experimental conditions of the magnetization process were optimized to give a maximum surface flux density at the poles. The magnetic field distribution above the magnets was measured with a field mapping device that automatically scans the surface of the magnet with a Hall probe. It is demonstrated for different magnet geometries that the field mapping system is a useful device to study the magnetic surface pole structure. The characterization of the pole flux density of multi-pole NdFeB flat magnets is an important prerequisite for the application of these magnets in miniature actuators

  1. High-field magnetization of a DyFe.sub.5./sub.Al.sub.7./sub. single crystal

    Czech Academy of Sciences Publication Activity Database

    Gorbunov, Denis; Andreev, Alexander V.; Skourski, Y.; Kuz'min, M.D.

    2013-01-01

    Roč. 553, MAR (2013), s. 358-363 ISSN 0925-8388 R&D Projects: GA ČR GAP204/12/0150 Grant - others:AVČR(CZ) M100101203 Institutional support: RVO:68378271 Keywords : rare- earth intermetallics * magnetic anisotropy * ferrimagnetism * high magnetic field s * field -induced transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.726, year: 2013

  2. Magnetic materials fundamentals, products, properties, applications

    CERN Document Server

    Hilzinger, Rainer

    2013-01-01

    At a practical level, this compendium reviews the basics of soft and hard magnetic materials, discusses the advantages of the different processing routes for the exploitation of the magnetic properties and hence assists in proper, fail-safe and economic application of magnetic materials. Essential guidelines and formulas for the calculation of the magnetic and electrical properties, temperature and long-term stability of permanent magnets, of inductive components and magnetic shielding are compiled. Selected fields of application and case studies illustrate the large diversity of technical applications. Application engineers will appreciate the comprehensive compilation of the properties and detailed characteristic curves of modern soft and hard magnetic materials. Materials scientists will enjoy the presentation of the different processing routes and their impact on the magnetic properties and students will profit from the survey from the basics of magnetism down to the applications in inductive components, ...

  3. Rare-earth magnet applications in energy conversion

    International Nuclear Information System (INIS)

    Tripathi, K.C.

    1998-01-01

    In recent years there has been considerable progress in the field of development and variety of new applications of rare-earth and rare-earth transition metal magnets. High energy content Nd-Fe-B magnet system which competes with superconducting magnets is very promising for the use in energy conversion machines, levitation systems, magnetic resonance investigation and other magnetic applications. Energy conversion machines such as motors and generators are of interest in this context. Motor converts electrical energy into mechanical energy using permanent magnets and ferromagnetic materials as its components. Electric generator converts mechanical energy into electricity using permanent magnets and ferromagnetic material. In both cases symmetry and symmetry breaking play an important role. Symmetry exists above curie temperature, as temperature is lowered symmetry is broken due to spontaneous magnetisation. Author and coworkers developed some new and highest efficiency, permanent magnet based, electronically controlled, dynamically synchronised pulsed dc linear and rotational motors which are briefly described here. Based on such experience and considering field interactions inside material under dynamical conditions and special geometrical situations, order-disorder processes, symmetry breaking and energy transfer on the basis of manifold aspects as a cooperative many body interaction, thermal fluctuations, zero-point energy, dissipation of energy, entropy exchange are discussed in context of conversion of environmental heat into electricity as suggested by Tripathi earlier. (orig.)

  4. SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES

    International Nuclear Information System (INIS)

    Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H.; Dolag, K.; Stasyszyn, F. A.

    2010-01-01

    We present self-consistent high-resolution simulations of NGC 4038/4039 (the A ntennae galaxies ) including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10 -9 to 10 -4 G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of ∼10 μG, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

  5. Magnetostriction of some cubic rare earth-Co2 compounds in high magnetic fields

    International Nuclear Information System (INIS)

    Moral, A. del; Melville, D.

    1975-01-01

    Magnetostriction measurements have been carried out in the cubic Laves phase compounds DyCo 2 , HoCo 2 and ErCo 2 from 10 K to well above their respective Neel temperatures Tsub(N). Pulsed magnetic fields up to 15 T (150kOe) were applied. The observed magnetostrictions are very large (approximately 10 -3 ) being similar to those found in the RFe 2 compounds. The measurements confirm the extremely high anisotropy of these materials. At the highest fields the polycrystalline samples are still undergoing rotational magnetization processes. The expected values of the saturation magnetostriction at O K are similar in sign and magnitude to those found in the corresponding rare earth metals. This fact and the scaling of magnetostriction with rare earth sublattice magnetization indicates that the rare earth ion is the main source of the magnetostriction. The metamagnetic transition above Tsub(N) has been studied, the relation between critical field and temperature being nonlinear for HoCo 2 and ErCo 2 . The compounds are highly anisotropic above Tsub(N) and all the features indicate that the field-induced phases are likely to be ferrimagnetic. (author)

  6. Magnetic quantum tunneling: key insights from multi-dimensional high-field EPR.

    Science.gov (United States)

    Lawrence, J; Yang, E-C; Hendrickson, D N; Hill, S

    2009-08-21

    Multi-dimensional high-field/frequency electron paramagnetic resonance (HFEPR) spectroscopy is performed on single-crystals of the high-symmetry spin S = 4 tetranuclear single-molecule magnet (SMM) [Ni(hmp)(dmb)Cl](4), where hmp(-) is the anion of 2-hydroxymethylpyridine and dmb is 3,3-dimethyl-1-butanol. Measurements performed as a function of the applied magnetic field strength and its orientation within the hard-plane reveal the four-fold behavior associated with the fourth order transverse zero-field splitting (ZFS) interaction, (1/2)B(S + S), within the framework of a rigid spin approximation (with S = 4). This ZFS interaction mixes the m(s) = +/-4 ground states in second order of perturbation, generating a sizeable (12 MHz) tunnel splitting, which explains the fast magnetic quantum tunneling in this SMM. Meanwhile, multi-frequency measurements performed with the field parallel to the easy-axis reveal HFEPR transitions associated with excited spin multiplets (S spin s = 1 Ni(II) ions within the cluster, as well as a characterization of the ZFS within excited states. The combined experimental studies support recent work indicating that the fourth order anisotropy associated with the S = 4 state originates from second order ZFS interactions associated with the individual Ni(II) centers, but only as a result of higher-order processes that occur via S-mixing between the ground state and higher-lying (S spin multiplets. We argue that this S-mixing plays an important role in the low-temperature quantum dynamics associated with many other well known SMMs.

  7. Generation of uniform magnetic field using a spheroidal helical coil structure

    International Nuclear Information System (INIS)

    Öztürk, Yavuz; Aktaş, Bekir

    2016-01-01

    Uniformity of magnetic fields are of great importance especially in magnetic resonance studies, namely in magnetic resonance spectroscopy applications (NMR, FMR, ESR, EPR etc.) and magnetic resonance imaging applications (MRI, FMRI). Field uniformity is also required in some other applications such as eddy current probes, magnetometers, magnetic traps, particle counters etc. Here we proposed a coil winding regime, which follows the surface of a spheroid (an ellipsoid of rotation); in light of previous theoretical studies suggesting perfect uniformity for a constant ampere per turn in the axial direction thereof. We demonstrated our theoretical results from finite element calculations suggesting 0.15% of field uniformity for the proposed structure, which we called a Spheroidal Helical Coil. (paper)

  8. New type of fluxgate magnetometer for the heart’s magnetic fields detection

    Directory of Open Access Journals (Sweden)

    Rybalko Ruslan

    2015-09-01

    Full Text Available The application area of fluxgate sensors is limited by their sensitivity. Medical researches create high demand on the magnetometers with the characteristics of high accuracy and sensibility for measuring weak magnetic fields produced by the human body, such as the heart‘s magnetic field. Due to the insufficient sensitivity of fluxgate sensors, superconducting magnetometers (SQUID take the dominant position for the cardiomagnetic measurements. They have to be cooled by liquefied gases and it leads to high service costs. Therefore an idea of creating a high sensitive sensor based on fluxgate principles and known methods of measurement is attractive and up to date. This paper is dedicated to the modified flux-gate sensors based on Racetrack technology with a new approach of signal demodulation. The improved fluxgate sensor system provides detection of the heart‘s magnetic field without additional expenditures for use.

  9. Wave propagation downstream of a high power helicon in a dipolelike magnetic field

    International Nuclear Information System (INIS)

    Prager, James; Winglee, Robert; Roberson, B. Race; Ziemba, Timothy

    2010-01-01

    The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.

  10. Nanomagnets with high shape anisotropy and strong crystalline anisotropy: perspectives on magnetic force microscopy

    International Nuclear Information System (INIS)

    Campanella, H; Llobet, J; Esteve, J; Plaza, J A; Jaafar, M; Vázquez, M; Asenjo, A; Del Real, R P

    2011-01-01

    We report on a new approach for magnetic imaging, highly sensitive even in the presence of external, strong magnetic fields. Based on FIB-assisted fabricated high-aspect-ratio rare-earth nanomagnets, we produce groundbreaking magnetic force tips with hard magnetic character where we combine a high aspect ratio (shape anisotropy) together with strong crystalline anisotropy (rare-earth-based alloys). Rare-earth hard nanomagnets are then FIB-integrated to silicon microcantilevers as highly sharpened tips for high-field magnetic imaging applications. Force resolution and domain reversing and recovery capabilities are at least one order of magnitude better than for conventional magnetic tips. This work opens new, pioneering research fields on the surface magnetization process of nanostructures based either on relatively hard magnetic materials—used in magnetic storage media—or on materials like superparamagnetic particles, ferro/antiferromagnetic structures or paramagnetic materials.

  11. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    International Nuclear Information System (INIS)

    Parker, E.N.

    1987-01-01

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case the phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references

  12. Benefits of GMR sensors for high spatial resolution NDT applications

    Science.gov (United States)

    Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.

    2018-04-01

    Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.

  13. Z a Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

    Science.gov (United States)

    Spielman, R. B.; Stygar, W. A.; Struve, K. W.; Asay, J. R.; Hall, C. A.; Bernard, M. A.; Bailey, J. E.; McDaniel, D. H.

    2004-11-01

    Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times ~100 ns. The largest such pulsed power driver today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z can deliver more than 20 MA with a time-to-peak of 105 ns to low inductance (~1 nH) loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 cm3 volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression schemes are not new and are, in fact, the basis of all explosive flux-compression generators, but we propose the use of plasma armatures rather than solid, conducting armatures. We present experimental results from the Z accelerator in which magnetic fields of ~2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields are reviewed in context with Z experiments. We describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

  14. Ternary superconductor ''NbTiTa'' for high field superfluid magnets

    International Nuclear Information System (INIS)

    McInturff, A.D.; Carson, J.; Larbalestier, D.; Lee, P.; McKinnel, J.; Kanithi, H.; McDonald, W.; O'Larey, P.

    1990-06-01

    The possibility exists to obtain a higher 'Hc 2 ' upper critical field in the NbTi system which is normally limited by a spin-orbit coupling term. The introduction of scattering reduces this coupling. The spin-orbit scattering rate is proportional to Z 4 and therefore leads logically to the introduction of a high atomic number element which is more or less similar with respect to all of the other properties, i.e., Tc. Previous studies have shown Tantalum to be an excellent choice. The present work represents an attempt to obtain a high current density, high field ternary magnet conductor (Jc (10T, 2K, ρeff = 10 -12 Ω-cm)) > 2000A/mm 2 . This goal was met, but the conductor was clearly not optimized

  15. AN OVERVIEW OF HIGH VOLTAGE DIELECTRIC MATERIAL FOR TRAVELING WAVE KICKER MAGNET APPLICATION

    International Nuclear Information System (INIS)

    ZHANG, W.; SANDBERG, J.; TUOZZOLO, J.; CASSEL, R.; DUCIMETIERE, L.; JENSEN, C.; BARNES, M.; WAIT, G.; WANG, J.

    2002-01-01

    Pulsed high power fast kickers are being used to change beam trajectories in particle accelerators. The fast rise and fall time of pulse waveform demands a transmission line structure for the kicker deflector design. The ideal design will be parallel metal plates. However, it uses very long straight sections to achieve the required deflection. In accelerators with constrained straight sections, high permeability materials such as ferrite have to be used to gain deflection efficiency. The transmission line kicker magnet is also referred as traveling wave kicker magnet. Its construction is based on distributed 1-C cells along the longitudinal direction. The magnetic cells and capacitive cells are interleaved to simulate the characteristic impedance of a transmission line to minimize pulse reflection, and provide adequate frequency bandwidth to transmit the kicker pulse with fast rise and fall time. The magnetic cells are usually made of ferrite ceramics, but the capacitive cells have been made with different materials. For traveling wave kickers with higher impedance, the parallel plate vacuum capacitor has been used in CERN and KEK design. Others have used ceramic capacitors, printed circuit boards, and high permittivity ceramics as the capacitive cell. The high dielectric material has the advantage of compactness for low impedance kicker magnet construction. It continues to be very attractive for future kicker magnet applications. The high voltage phenomena associated with high dielectric ceramic materials have been widely reported in many industrial application areas. Their implication in the traveling wave magnet application has to be well understood. In this presentation, the areas requiring further quantitative study will be outlined

  16. High-field proton MRS of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Di Costanzo, Alfonso E-mail: alfonso.dicostanzo@unina2.it; Trojsi, F.; Tosetti, M.; Giannatempo, G.M.; Nemore, F.; Piccirillo, M.; Bonavita, S.; Tedeschi, G.; Scarabino, T

    2003-11-01

    Proton magnetic resonance spectroscopy ({sup 1}H-MRS) of the brain reveals specific biochemical information about cerebral metabolites, which may support clinical diagnoses and enhance the understanding of neurological disorders. The advantages of performing {sup 1}H-MRS at higher field strengths include better signal to noise ratio (SNR) and increased spectral, spatial and temporal resolution, allowing the acquisition of high quality, easily quantifiable spectra in acceptable imaging times. In addition to improved measurement precision of N-acetylaspartate, choline, creatine and myo-inositol, high-field systems allow the high-resolution measurement of other metabolites, such as glutamate, glutamine, {gamma}-aminobutyric acid, scyllo-inositol, aspartate, taurine, N-acetylaspartylglutamate, glucose and branched amino acids, thus extending the range of metabolic information. However, these advantages may be hampered by intrinsic field-dependent technical difficulties, such as decreased T2 signal, chemical shift dispersion errors, J-modulation anomalies, increased magnetic susceptibility, eddy current artifacts, limitations in the design of homogeneous and sensitive radiofrequency (RF) coils, magnetic field instability and safety issues. Several studies demonstrated that these limitations could be overcome, suggesting that the appropriate optimization of high-field {sup 1}H-MRS would expand the application in the fields of clinical research and diagnostic routine.

  17. Development of Prototype HTS Components for Magnetic Suspension Applications

    Science.gov (United States)

    Haldar, P.; Hoehn, J., Jr.; Selvamanickam, V.; Farrell, R. A.; Balachandran, U.; Iyer, A. N.; Peterson, E.; Salazar, K.

    1996-01-01

    We have concentrated on developing prototype lengths of bismuth and thallium based silver sheathed superconductors by the powder-in-tube approach to fabricate high temperature superconducting (HTS) components for magnetic suspension applications. Long lengths of mono and multi filament tapes are presently being fabricated with critical current densities useful for maglev and many other applications. We have recently demonstrated the prototype manufacture of lengths exceeding 1 km of Bi-2223 multi filament conductor. Long lengths of thallium based multi-filament conductor have also been fabricated with practical levels of critical current density and improved field dependence behavior. Test coils and magnets have been built from these lengths and characterized over a range of temperatures and background fields to determine their performance. Work is in progress to develop, fabricate and test HTS windings that will be suitable for magnetic suspension, levitation and other electric power related applications.

  18. Vector optical fields with polarization distributions similar to electric and magnetic field lines.

    Science.gov (United States)

    Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian

    2013-07-01

    We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.

  19. The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid

    International Nuclear Information System (INIS)

    Parekh, Kinnari; Upadhyay, R.V.

    2017-01-01

    Ultrasonic wave propagation in the aqueous magnetic fluid is investigated for different particle concentrations. The sound velocity decreases while acoustic impedance increases with increasing concentrations. The velocity anisotropy is observed upon application of magnetic field. The velocity anisotropy fits with Tarapov’s theory suggests the presence of aggregates in the system. We report that these aggregates are thermodynamically unstable and the length of aggregate changes continuously with increasing concentration and, or magnetic field and resulted in a decrease in effective magnetic moment. The Taketomi's theory fits well with the experimental data suggesting that the particle clusters are aligned in the direction of the magnetic field. The radius of cluster found to increase with increasing concentration, and then decreases whereas the elastic force constant increases and then becomes constant. The increase in cluster radius indicates elongation of aggregate length due to tip-to-tip interaction of aggregates whereas for higher concentration, the lateral alignment is more favorable than tip-to-tip alignment of aggregates which reduces the cluster radius making elastic force constant to raise. Optical images show that the chains are fluctuating and confirming the lateral alignment of chains at higher fields. - Highlights: • Magnetic field induced aggregates investigated using ultrasonic wave in aqueous magnetic fluid. • Velocity anisotropy induces upon applications of magnetic field. • Tarapov’s theory fit shows reduction in effective magnetic moment as concentration increases. • Taketomi's theory shows alignment of clusters in field direction. • Cluster radius increases and then decreases with increasing volume fractions. • Optical images show that fluctuating chains and lateral alignment of chains at higher fields.

  20. The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, Kinnari, E-mail: kinnariparekh.rnd@charusat.ac.in [Dr. KC Patel R& D Center, Charotar University of Science & Technology, Changa, 388421 Dist. Anand, Gujarat (India); Upadhyay, R.V. [PD Patel Institute of Applied Sciences, Charotar University of Science & Technology, Changa, 388421 Dist. Anand, Gujarat (India)

    2017-06-01

    Ultrasonic wave propagation in the aqueous magnetic fluid is investigated for different particle concentrations. The sound velocity decreases while acoustic impedance increases with increasing concentrations. The velocity anisotropy is observed upon application of magnetic field. The velocity anisotropy fits with Tarapov’s theory suggests the presence of aggregates in the system. We report that these aggregates are thermodynamically unstable and the length of aggregate changes continuously with increasing concentration and, or magnetic field and resulted in a decrease in effective magnetic moment. The Taketomi's theory fits well with the experimental data suggesting that the particle clusters are aligned in the direction of the magnetic field. The radius of cluster found to increase with increasing concentration, and then decreases whereas the elastic force constant increases and then becomes constant. The increase in cluster radius indicates elongation of aggregate length due to tip-to-tip interaction of aggregates whereas for higher concentration, the lateral alignment is more favorable than tip-to-tip alignment of aggregates which reduces the cluster radius making elastic force constant to raise. Optical images show that the chains are fluctuating and confirming the lateral alignment of chains at higher fields. - Highlights: • Magnetic field induced aggregates investigated using ultrasonic wave in aqueous magnetic fluid. • Velocity anisotropy induces upon applications of magnetic field. • Tarapov’s theory fit shows reduction in effective magnetic moment as concentration increases. • Taketomi's theory shows alignment of clusters in field direction. • Cluster radius increases and then decreases with increasing volume fractions. • Optical images show that fluctuating chains and lateral alignment of chains at higher fields.

  1. High and tunable spin current induced by magnetic-electric fields in a single-mode spintronic device

    International Nuclear Information System (INIS)

    Bala Kumar, S; Jalil, M B A; Tan, S G; Liang, G-C

    2009-01-01

    We proposed that a viable form of spin current transistor is one to be made from a single-mode device which passes electrons through a series of magnetic-electric barriers built into the device. The barriers assume a wavy spatial profile across the conduction path due to the inevitable broadening of the magnetic fields. Field broadening results in a linearly increasing vector potential across the conduction channel, which increases spin polarization. We have identified that the important factors for generating high spin polarization and conductance modulation are the low source-drain bias, the broadened magnetic fields, and the high number of FM gates within a fixed channel length.

  2. Magneto-optical and cyclotron resonance studies of semiconductors and their nanostructures in pulsed high magnetic fields

    International Nuclear Information System (INIS)

    Miura, N.

    1999-01-01

    Full text: We present a review on the recent advances in physics of magneto-optical spectroscopy in the visible range and of infrared cyclotron resonance in pulsed high magnetic fields, which are produced by electromagnetic flux compression up to 500T, by the single-turn coil technique up to 200T or by conventional non-destructive long pulse magnets up to 50T. We discuss the recent results on the spectroscopy of low dimensional excitons in quantum wells and short period superlattices. In very high fields up to 500T, we observed anomalous field dependence of the exciton absorption lines and the 2D - 3D cross-over effects in GaAs/AlAs quantum wells. In GaP/AlP short period superlattices, it was found that the exciton photoluminescence intensity shows a dramatic decrease and the diamagnetic shift was negative when high magnetic fields were applied parallel to the growth direction. We observed also remarkable effects of uniaxial stress, which are ascribed to the cross-over effect between the two inequivalent valleys at the X points. Cyclotron resonance was measured by using various molecular gas lasers as radiation sources in the range 5 - 119 m . We present the results of cyclotron resonance in GaAs/AlGaAs quantum wells with tilted magnetic fields from the growth direction. It was found that the resonant field and the peak intensity show many different features depending on the extent of the Landau level-subband coupling and on the relation between the photon energy and the barrier height. A large hysteresis was observed between the rising and the falling sweeps of the magnetic field, when the cyclotron resonance energy became comparable with the subband spacing. In a diluted magnetic semiconductor CdFeS, we observed anomalous temperature dependence of the effective mass, suggestive of the magnetic polaron effect

  3. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

    Science.gov (United States)

    Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.

    2015-10-01

    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  4. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia.

    Science.gov (United States)

    Wu, Zuhe; Zhuo, Zihang; Cai, Dongyang; Wu, Jian'an; Wang, Jie; Tang, Jintian

    2015-01-01

    Induction heating devices using the induction coil and magnetic nanoparticles (MNPs) are the way that the magnetic hyperthermia is heading. To facilitate the induction heating of in vivo magnetic nanoparticles in hyperthermia experiments on large animals. An induction heating device using a planar coil was designed with a magnetic field frequency of 328 kHz. The coil's magnetic field distribution and the device's induction heating performance on different concentrations of magnetic nanoparticles were measured. The alternating magnetic field produced in the axis position 165 mm away from the coil center is 40 Gs in amplitude; magnetic nanoparticles with a concentration higher than 80 mg. mL-1 can be heated up rapidly. Our results demonstrate that the device can be applied not only to in vitro and in small animal experiments of magnetic hyperthermia using MNPs, but also in large animal experiments.

  5. Neutrino oscillations in strong magnetic fields

    International Nuclear Information System (INIS)

    Likhachev, G.G.; Studenikin, A.I.

    1994-07-01

    Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs

  6. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  7. Response of Cultured Neuronal Network Activity After High-Intensity Power Frequency Magnetic Field Exposure

    Directory of Open Access Journals (Sweden)

    Atsushi Saito

    2018-03-01

    Full Text Available High-intensity and low frequency (1–100 kHz time-varying electromagnetic fields stimulate the human body through excitation of the nervous system. In power frequency range (50/60 Hz, a frequency-dependent threshold of the external electric field-induced neuronal modulation in cultured neuronal networks was used as one of the biological indicator in international guidelines; however, the threshold of the magnetic field-induced neuronal modulation has not been elucidated. In this study, we exposed rat brain-derived neuronal networks to a high-intensity power frequency magnetic field (hPF-MF, and evaluated the modulation of synchronized bursting activity using a multi-electrode array (MEA-based extracellular recording technique. As a result of short-term hPF-MF exposure (50–400 mT root-mean-square (rms, 50 Hz, sinusoidal wave, 6 s, the synchronized bursting activity was increased in the 400 mT-exposed group. On the other hand, no change was observed in the 50–200 mT-exposed groups. In order to clarify the mechanisms of the 400 mT hPF-MF exposure-induced neuronal response, we evaluated it after blocking inhibitory synapses using bicuculline methiodide (BMI; subsequently, increase in bursting activity was observed with BMI application, and the response of 400 mT hPF-MF exposure disappeared. Therefore, it was suggested that the response of hPF-MF exposure was involved in the inhibitory input. Next, we screened the inhibitory pacemaker-like neuronal activity which showed autonomous 4–10 Hz firing with CNQX and D-AP5 application, and it was confirmed that the activity was reduced after 400 mT hPF-MF exposure. Comparison of these experimental results with estimated values of the induced electric field (E-field in the culture medium revealed that the change in synchronized bursting activity occurred over 0.3 V/m, which was equivalent to the findings of a previous study that used the external electric fields. In addition, the results suggested that

  8. Field-dependent dynamic responses from dilute magnetic nanoparticle dispersions

    DEFF Research Database (Denmark)

    Fock, Jeppe; Balceris, Christoph; Costo, Rocio

    2018-01-01

    The response of magnetic nanoparticles (MNPs) to an oscillating magnetic field outside the linear response region is important for several applications including magnetic hyperthermia, magnetic resonance imaging and biodetection. The size and magnetic moment are two critical parameters for the pe...

  9. Thermodynamic and kinetic characteristics of the austenite-to-ferrite transformation under high magnetic field in medium carbon steel

    International Nuclear Information System (INIS)

    Zhang Yudong; He Changshu; Zhao Xiang; Zuo Liang; Esling, Claude

    2005-01-01

    The thermodynamic and kinetic characteristics of austenite-to-ferrite phase transformation in medium carbon steel in the high magnetic fields were investigated. Results showed that the magnetic field could obviously change the γ/α+γ phase equilibrium-by increasing the amount of ferrite obtained during cooling-and greatly accelerate the transformation. Thus the microstructure obtained under fast cooling with high magnetic field was still ferritic and pearlitic, while that obtained without the magnetic field under the same cooling conditions was bainitic. Exploration in this area contributes both to enriching the new theory on electromagnetic processing of materials (EPM) and in establishing new techniques for materials processing

  10. Characterizing the pseudogap in the high- Tc superconductors using very high magnetic fields: implications on the phase diagram

    Science.gov (United States)

    Zheng, Guo-qing; Ozaki, H.; Kitaoka, Y.; Clark, W. G.; Kodama, Y.; Kondo, T.; Shimakawa, Y.; Kubo, Y.; Kuhns, P.; Reyes, A. P.; Moulton, W. G.

    2001-11-01

    We find contrastive response of the pseudogap (PG) to high magnetic fields up to 28.5 T based on 63Cu NMR measurements. In the slightly overdoped TlSr 2CaCu 2O 6.8, the PG is strongly field dependent and shown to be due to the superconducting fluctuations. By contrast, the PG in the underdoped YBa 2Cu 4O 8 does not depend on magnetic fields up to 28.5 T. These results imply that there exists a field-insensitive PG up to a certain doping level beyond which it is taken over by the superconducting fluctuations-induced one.

  11. Magnetic polymer nanocomposites for sensing applications

    KAUST Repository

    Alfadhel, Ahmed

    2014-11-01

    We report the fabrication and characterization of magnetic polymer nanocomposites for a wide range of sensing applications. The composites are made of magnetic nanowires (NWs) incorporated into polymers such as polydimethylsiloxane (PDMS) or UV sensitive SU-S. The developed composites utilize the permanent magnetic behavior of the NWs, allowing remote operation without an additional magnetic field to magnetize the NWs, which simplifies miniaturization and integration in microsystems. In addition, the nanocomposite benefits from the easy patterning of the polymer leading to a corrosion resistant, highly elastic, and permanent magnetic material that can be used to develop highly sensitive systems. Nanocomposite pillars are realized and integrated on magnetic sensor elements to achieve highly sensitive and power efficient flow and tactile sensors. The developed flow sensor can detect air and water flow at a power consumption as little as SO nW and a resolution up to 15 μm/s with easily modifiable performance. A tactile sensor element prototype is realized using the same concept, where a pressure range of 0-169 kPa is detected with a resolution of up to 1.3 kPa. © 2014 IEEE.

  12. Magnetization reversal of Co-based amorphous wires induced by longitudinal AC magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Perov, N.S.; Antonov, A.S.; Buznikov, N.A.; Granovsky, A.B. E-mail: granov@magn.ru; Iakubov, I.T.; Kartashov, M.A.; Rakhmanov, A.A

    2004-05-01

    The remagnetization process in CoFeSiB amorphous wires under influence of a high-amplitude AC longitudinal magnetic field is studied. The frequency spectra of the voltage at the wire ends are measured as a function of a longitudinal DC magnetic field and the AC field amplitude. A high sensitivity of the voltage harmonics to the DC magnetic field is demonstrated. The experimental results are interpreted within a simple rotational model.

  13. Magnetization reversal of Co-based amorphous wires induced by longitudinal AC magnetic field

    International Nuclear Information System (INIS)

    Perov, N.S.; Antonov, A.S.; Buznikov, N.A.; Granovsky, A.B.; Iakubov, I.T.; Kartashov, M.A.; Rakhmanov, A.A.

    2004-01-01

    The remagnetization process in CoFeSiB amorphous wires under influence of a high-amplitude AC longitudinal magnetic field is studied. The frequency spectra of the voltage at the wire ends are measured as a function of a longitudinal DC magnetic field and the AC field amplitude. A high sensitivity of the voltage harmonics to the DC magnetic field is demonstrated. The experimental results are interpreted within a simple rotational model

  14. Effective magnetic moment of neutrinos in strong magnetic fields

    International Nuclear Information System (INIS)

    Perez M, A.; Perez R, H.; Masood, S.S.; Gaitan, R.; Rodriguez R, S.

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  15. Polymerization and processing of organic polymers in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, E.P. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The use of magnetic fields to affect the structure and properties of polymeric materials remains an area of great promise. Liquid crystalline polymers have been actively studied over the past 20 years for use in high performance structural applications. In particular, highly oriented fibers can exhibit remarkable increases in strength to weight performance compared to conventional materials. For example, the fibers marketed by DuPont under the tradename Kevlar are 20 times stronger than steel on an equivalent weight basis. However, larger bulk parts do not exhibit the same increases in strength due to a lack of orientation of the polymer molecules. Magnetic field processing of polymers remains an attractive solution to this problem.

  16. Fourier Transfrom Ion Cyclotron Resonance Mass Spectrometry at High Magnetic Field

    Science.gov (United States)

    Marshall, Alan G.

    1998-03-01

    At high magnetic field (9.4 tesla at NHMFL), Fourier transform ion cyclotron resonance mass spectrometry performance improves dramatically: mass resolving power, axialization efficiency, and scan speed (each proportional to B), maximum ion mass, dynamic range, ion trapping period, kinetic energy, and electron self-cooling rate for sympathetic cooling (each proportional to B^2), and ion coalescence tendency (proportional 1/B^2). These advantages may apply singly (e.g., unit mass resolution for proteins of >100,000 Da), or compound (e.g., 10-fold improvement in S/N ratio for 9.4 T vs. 6 T at the same resolving power). Examples range from direct determination of molecular formulas of diesel fuel components by accurate mass measurement (=B10.1 ppm) to protein structure and dynamics probed by H/D exchange. This work was supported by N.S.F. (CHE-93-22824; CHE-94-13008), N.I.H. (GM-31683), Florida State University, and the National High Magnetic Field Laboratory in Tallahassee, FL.

  17. Design of integral magnetic field sensor

    International Nuclear Information System (INIS)

    Ma Liang; Cheng Yinhui; Wu Wei; Li Baozhong; Zhou Hui; Li Jinxi; Zhu Meng

    2010-01-01

    Magnetic field is one of the important physical parameters in the measuring process of pulsed EMP. We researched on anti-interference and high-sensitivity measurement technique of magnetic field in this report. Semi rigid cables were to bent into ringed antenna so that the antenna was shielded from electric-field interference and had little inductance; In order to have high sensitivity, operational transconductance amplifier was used to produce an active integrator; We designed an optical-electronic transferring module to upgrade anti-interference capability of the magnetic-field measurement system. A measurement system of magnetic field was accomplished. The measurement system was composed of antenna, integrator, and optical-electric transferring module and so on. We calibrated the measurement system in coaxial TEM cell. It indicates that, the measurement system's respondence of rise time is up to 2.5 ns, and output width at 90%-maximum of the pulse is wider than 200 ns. (authors)

  18. Investigation and optimization of the magnetic field configuration in high-power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Yu, He; Meng, Liang; Szott, Matthew M; Meister, Jack T; Cho, Tae S; Ruzic, David N

    2013-01-01

    An effort to optimize the magnetic field configuration specifically for high-power impulse magnetron sputtering (HiPIMS) was made. Magnetic field configurations with different field strengths, race track widths and race track patterns were designed using COMSOL. Their influence on HiPIMS plasma properties was investigated using a 36 cm diameter copper target. The I–V discharge characteristics were measured. The temporal evolution of electron temperature (T e ) and density (n e ) was studied employing a triple Langmuir probe, which was also scanned in the whole discharge region to characterize the plasma distribution and transport. Based on the studies, a closed path for electrons to drift along was still essential in HiPIMS in order to efficiently confine electrons and achieve a high pulse current. Very dense plasmas (10 19 –10 20 m −3 ) were generated in front of the race tracks during the pulse, and expanded downstream afterwards. As the magnetic field strength increased from 200 to 800 G, the expansion became faster and less isotropic, i.e. more directional toward the substrate. The electric potential distribution accounted for these effects. Varied race track widths and patterns altered the plasma distribution from the target to the substrate. A spiral-shaped magnetic field design was able to produce superior plasma uniformity on the substrate in addition to improved target utilization. (paper)

  19. Specific heat of heavy-fermion CePd2Si2 in high magnetic fields

    International Nuclear Information System (INIS)

    Sheikin, I.; Wang, Y.; Bouquet, F.; Junod, A.; Lejay, P.

    2002-01-01

    We report specific heat measurements on the heavy-fermion compound CePd 2 Si 2 in magnetic fields up to 16 T and in the temperature range 1.4-16 K. A sharp peak in the specific heat signals the antiferromagnetic transition at T N ∼ 9.3 K in zero field. The transition is found to shift to lower temperatures when a magnetic field is applied along the crystallographic a-axis, while a field applied parallel to the tetragonal c-axis does not affect the transition. The magnetic contribution to the specific heat below T N is well described by a sum of a linear electronic term and an antiferromagnetic spin-wave contribution. Just below T N , an additional positive curvature, especially at high fields, arises most probably due to thermal fluctuations. The field dependence of the coefficient of the low-temperature linear term, γ 0 , extracted from the fits shows a maximum at about 6 T, at the point where an anomaly was detected in susceptibility measurements. The relative field dependences of both T N and the magnetic entropy at T N scale as [1-(B/B 0 ) 2 ] for B parallel a, suggesting the disappearance of antiferromagnetism at B 0 ∼42 T. The expected suppression of the antiferromagnetic transition temperature to zero makes the existence of a magnetic quantum critical point possible. (author). Letter-to-the-editor

  20. Vacuum arcing behavior between transverse magnetic field contacts subjected to variable axial magnetic field

    Science.gov (United States)

    Ma, Hui; Wang, Jianhua; Liu, Zhiyuan; Geng, Yingsan; Wang, Zhenxing; Yan, Jing

    2016-06-01

    The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density BAMF can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera was used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF-AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.

  1. Antimagnets: controlling magnetic fields with superconductor-metamaterial hybrids

    International Nuclear Information System (INIS)

    Sanchez, Alvaro; Navau, Carles; Prat-Camps, Jordi; Chen Duxing

    2011-01-01

    Magnetism is very important in various areas of science and technology, ranging from magnetic recording through energy generation to trapping cold atoms. Physicists have managed to master magnetism-to create and manipulate magnetic fields-almost at will. Surprisingly, there is at least one property that has been elusive until now: how to 'switch off' the magnetic interaction of a magnetic material with existing magnetic fields without modifying them. Here we introduce the antimagnet, a design that conceals the magnetic response of a given volume from its exterior, without altering the external magnetic fields, in some respects analogous to recent theoretical proposals for cloaking electromagnetic waves with metamaterials. However, unlike these devices, which require extreme material properties, our device is feasible and needs only two kinds of available materials: superconductors and isotropic magnetic materials. Antimagnets may have applications in magnetic-based medical techniques such as magnetic resonance imaging or in reducing the magnetic signature of vessels or planes.

  2. Magnetic and magnetoelastic anomalies of an Er.sub.2./sub.Co.sub.17./sub. single crystal in high magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Skourski, Y.; Kuz'min, M.D.; Yasin, S.; Zherlitsyn, S.; Daou, R.; Wosnitza, J.; Iwasa, A.; Kondo, A.; Matsuo, A.; Kindo, K.

    2011-01-01

    Roč. 83, č. 18 (2011), "184422-1"-"184422-9" ISSN 1098-0121 R&D Projects: GA ČR GA202/09/0339 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic and magnetoelastic anomalies * high magnetic fields * anisotropy constants Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  3. Magnetic properties of the Ce2Fe17-x Mn x helical magnets up to high magnetic fields

    International Nuclear Information System (INIS)

    Kuchin, A.G.; Mushnikov, N.V.; Bartashevich, M.I.; Prokhnenko, O.; Khrabrov, V.I.; Lapina, T.P.

    2007-01-01

    Magnetic properties of the Ce 2 Fe 17- x Mn x , x=0-2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5-1 are helical antiferromagnets and those with 1 B that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce 2 Fe 17- x Mn x compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce 2 Fe 17- x Mn x helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce 2 Fe 17- x Mn x , x=0.5-2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated

  4. Permanent-magnet material applications in particle accelerators

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.

    1992-01-01

    The modern charged particle accelerator has found application in a wide range of scientific research, industrial, medical, and defense fields. Researchers began to use permanent-magnet materials in particle accelerators soon after the invention of the alternating gradient principle, which showed that magnetic field could be used to control the transverse envelope of charged particle beams. The history of permanent-magnet use in accelerator physics and technology is outlined, current design methods and material properties of concern for particle accelerator applications are reviewed

  5. High gradient magnetic separation applied to environmental remediation

    International Nuclear Information System (INIS)

    Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Avens, L.R.; Worl, L.A.; Schake, A.; de Aguero, K.J.; Padilla, D.D.; Tolt, T.L.

    1993-01-01

    High Gradient Magnetic Separation (HGMS) is an application of superconducting magnet technology to the separation of magnetic solids from other solids, liquids, or gases. The production of both high magnetic fields (>4 T) and large field gradients using superconducting magnet technology has made it possible to separate a previously unreachable but large family of paramagnetic materials. This is a powerful technique that can be used to separate widely dispersed contaminants from a host material and may be the only technique available for separating material in the colloidal state. Because it is a physical separation process, no additional waste is generated. We are applying this technology to the treatment of radioactive wastes for environmental remediation. We have conducted tests examining slurries containing nonradioactive, magnetic surrogates. Results from these studies were used to verify our analytical model of the separation process. The model describes the rate process for magnetic separation and is based on a force balance on the paramagnetic species. This model was used to support bench scale experiments and prototype separator design

  6. Updated tokamak systems code and applications to high-field ignition devices

    International Nuclear Information System (INIS)

    Reid, R.L.; Galambos, J.D.; Peng, Y-K.M.; Strickler, D.J.; Selcow, E.C.

    1985-01-01

    This paper describes revisions made to the Tokamak Systems Code to more accurately model high-field copper ignition devices. The major areas of revision were in the plasma physics model, the toroidal field (TF) coil model, and the poloidal field (PF) coil/MHD model. Also included in this paper are results obtained from applying the revised code to a study for a high-field copper ignition device to determine the impact of magnetic field on axis, (at the major radius), on performance, and on cost

  7. The influence of inhomogeneous magnetic field over a NdFeB guideway on levitation force of the HTS bulk maglev system

    Science.gov (United States)

    Zhao, Lifeng; Deng, Jiangtao; Li, Linbo; Feng, Ning; Wei, Pu; Lei, Wei; Jiang, Jing; Wang, Xiqin; Zhang, Yong; Zhao, Yong

    2018-04-01

    Dynamic responses of high temperature superconducting bulk to inhomogeneous magnetic field distribution of permanent magnet guideway, as well as enlarged amplitude of magnetic field obtained by partially covering the permanent magnet guideway (PMG) with iron sheets in different thickness, are investigated. Experiments show that the instantaneous levitation force increases with the increase of the variation rate of magnetic field (dB/dt). Meanwhile, inhomogeneous magnetic field from PMG causes the decay of levitation force. The decay of levitation force almost increases linearly with the increase of alternating magnetic field amplitude. It should be very important for the application of high-speed maglev system.

  8. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization.

    Science.gov (United States)

    Chiba, D; Kawaguchi, M; Fukami, S; Ishiwata, N; Shimamura, K; Kobayashi, K; Ono, T

    2012-06-06

    Controlling the displacement of a magnetic domain wall is potentially useful for information processing in magnetic non-volatile memories and logic devices. A magnetic domain wall can be moved by applying an external magnetic field and/or electric current, and its velocity depends on their magnitudes. Here we show that the applying an electric field can change the velocity of a magnetic domain wall significantly. A field-effect device, consisting of a top-gate electrode, a dielectric insulator layer, and a wire-shaped ferromagnetic Co/Pt thin layer with perpendicular anisotropy, was used to observe it in a finite magnetic field. We found that the application of the electric fields in the range of ± 2-3 MV cm(-1) can change the magnetic domain wall velocity in its creep regime (10(6)-10(3) m s(-1)) by more than an order of magnitude. This significant change is due to electrical modulation of the energy barrier for the magnetic domain wall motion.

  9. High-field torque magnetometry for investigating magnetic anisotropy in Mn{sub 12}-acetate nanomagnets

    Energy Technology Data Exchange (ETDEWEB)

    Cornia, Andrea E-mail: acornia@unimo.it; Affronte, Marco; Gatteschi, Dante; Jansen, Aloysius G.M.; Caneschi, Andrea; Sessoli, Roberta

    2001-05-01

    The single-molecule superparamagnet [Mn{sub 12}O{sub 12}(OAc){sub 16}(H{sub 2}O){sub 4}]{center_dot}2AcOH{center_dot}4H{sub 2}O (Mn{sub 12}-acetate) has attracted considerable attention because it shows exceedingly slow paramagnetic relaxation at low temperature. The cluster has S{sub 4} symmetry in the solid state and comprises four Mn(IV) ions (S=((3)/(2))) and eight Mn(III) ions (S=2) which are magnetically coupled to give an S=10 ground state. The ground manifold is largely split in zero magnetic field and many efforts have been spent to determine the zero-field splitting (zfs) parameters {alpha}, {beta} and {gamma} appearing in the fourth-order spin-Hamiltonian H={alpha}S{sub z}{sup 2}+{beta}S{sub z}{sup 4}+{gamma}(S{sub +}{sup 4}+S{sub -}{sup 4})+{mu}{sub B}B{center_dot}g{center_dot}S. These are of paramount importance for defining the magnetic anisotropy of the cluster, which in turn determines the slow relaxation of the magnetization and quantum tunneling effects at low temperatures. We want to show that cantilever torque magnetometry in high fields is a suitable technique for determining second- and fourth-order anisotropic contributions in high-spin molecules, such as Mn{sub 12}-acetate. The main advantage of the method lies in its high sensitivity which allows to use very small single crystals. Torque curves have been recorded at 4.2 K by applying the magnetic field (0-28 T) very close to the ab-plane of the tetragonal unit cell. The zfs parameters obtained by this procedure [{alpha}=-0.389(5) cm{sup -1} and {beta}=-8.4(5)x10{sup -4} cm{sup -1}] are in excellent agreement with those determined by spectroscopic techniques, such as high-frequency EPR and inelastic neutron scattering.

  10. Shift of the eutectoid point in the Fe-C binary system by a high magnetic field

    International Nuclear Information System (INIS)

    Zhang, Y D; Esling, C; Calcagnotto, M; Gong, M L; Zhao, X; Zuo, L

    2007-01-01

    The purpose of this paper is to investigate experimentally the shift of the eutectoid point in the Fe-C binary system when applying a high magnetic field. The eutectoid carbon content is observed to shift from 0.77 wt% to 0.83 wt% under a 12 T magnetic field. A practical and complete calculation method is proposed-on the basis of the statistical thermodynamic model-to calculate the Gibbs free energy of the related phases and predict the shift of the eutectoid point due to a magnetic field in both composition and temperature coordinates. The composition values are seen to be in fair agreement with the experimental data. The calculation of both shifts shows that the rise in eutectoid temperature because of the 12 T field is 28.97 deg. C. The impact of the magnetic field on both eutectoid carbon content and eutectoid temperature is not linear. The rate of the shift of both carbon content and temperature decreases as the magnetic field rises

  11. Study of the magnetic field distribution in high-temperature superconductors using muon-spin-rotation

    International Nuclear Information System (INIS)

    Zimmermann, P.R.

    1994-01-01

    Detailed and systematic μ + SR experiments have been performed in order to (i) investigate the temperature dependence of the magnetic penetration depth in various cuprate high-T c superconductors and (ii) study the vortex structures and dynamics in the highly anisotropic Bi 2 Sr 2 CaCu 2 O 8 . The μ + SR method and its application to superconductivity has been discussed. The positive muon is a microscopic probe of the local magnetic field in the bulk of a sample. The μ + SR technique can therefore measure the magnetic field distribution p(B) which is determined by the flux structure in the superconductor. The second moment (ΔB 2 ) of p(B) is closely related to the magnetic penetration depth λ, a fundamental parameter of superconductivity. It has been shown that in high-quality sintered samples a good estimate of the in-plane penetration depth λ ab can be given in terms of the muon-depolarization rate σ. Since the penetration depth is related to the superconducting order parameter, the temperature dependence of the penetration depth is a potential probe of the pairing state. Systematic measurements of the temperature dependence of σ have been performed in sintered samples of high quality in various members of the Y123 family, Pb and Y doped Tl1212 family, and also in Y124 and Bi2212. It is found that the extracted temperature behaviour of λ ab -2 is characteristic of each compound. This can be interpreted as a varying coupling strength in these systems. In well oxygenated Y123, λ ab -2 (T) is well described by the two-fluid model indicating strong coupling. The rest of the cuprates investigated show a λ ab -2 (T) which points to weaker coupling, with λ ab -2 (T) of highly oxygen deficient Y123 being similar to the weak-coupling BCS prediction. In the Y123 family the decreasing coupling strength with decreasing oxygen content is related to the increasing anisotropy. Comparison with theoretical predictions of λ ab -2 (T) revealed that the observed

  12. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  13. Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars.

    Science.gov (United States)

    Murdin, B N; Li, Juerong; Pang, M L Y; Bowyer, E T; Litvinenko, K L; Clowes, S K; Engelkamp, H; Pidgeon, C R; Galbraith, I; Abrosimov, N V; Riemann, H; Pavlov, S G; Hübers, H-W; Murdin, P G

    2013-01-01

    Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 10(5) T (1 gigagauss), the maximum observed on high-field magnetic white dwarfs, is impossible because practically available fields are about a thousand times less. In this regime, the cyclotron and binding energies become equal. Here we demonstrate Lyman series spectra for phosphorus impurities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for experiments on He and H(2) analogues, and for investigation of He(2), a bound molecule predicted under extreme field conditions.

  14. Omnigenous magnetic fields

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1982-01-01

    In omnigenous magnetic fields particles' drift surfaces coincide with plasma magnetic surfaces. In this paper we formulate equations of omnigenous magnetic fields in natural curvilinear coordinates. An analysis of fields which are omnigenous only in the paraxial approximation is presented. (author)

  15. Effect of magnetic fields on the Kondo insulator CeRhSb: Magnetoresistance and high-field heat capacity measurements

    International Nuclear Information System (INIS)

    Malik, S.K.; Menon, L.; Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1997-01-01

    The compound CeRhSb is a mixed valent Ce-based compound which shows a gap in the electronic density of states at low temperatures. The gap manifests by a rise in electrical resistivity below about 8 K from which the gap energy is estimated to be about 4 K. We have carried out heat capacity measurements on this compound in various applied fields up to 9.85 T. The magnetic contribution to the heat capacity, ΔC, is found to have a maximum in ΔC/T vs T at 10 K, below which ΔC/T is linear with T. This is attributed to the fact that below this temperature, in the gapped state, the electronic density of states decreases linearly with decreasing temperature. On application of a magnetic field, the electronic specific heat coefficient γ in the gapped state increases by ∼4mJ/molK 2 . The maximum in ΔC/T vs T is observed in all fields, which shifts to lower temperatures ∼1K at 5.32 T and raises again at 9.85 T to about the same values as at H=0T. This suggests that the gap exists for all fields up to 9.85 T. Above 10 K, in the mixed-valent state, ΔC/T vs T decreases with increasing temperature in zero field. There is hardly any effect of application of field in the mixed-valent state. We have also carried out magnetoresistance measurements on CeRhSb up to fields of 5.5 T at 2, 4.5, 10, 20, and 30 K. The magnetoresistance in CeRhSb is positive at temperatures of 4.5 K and above, in applied fields up to 5.5 T. At 5.5 T, the magnetoresistance is maximum at 4.5 K (6%) and decreases with increasing temperature. The observation of the maximum is consistent with the observation of a maximum in ΔC/T vs T and is due to a change in the density of states. At a temperature of 2 K, a negative magnetoresistance is observed for magnetic fields greater than ∼3.5T which suggests reduction in the gap. copyright 1997 The American Physical Society

  16. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method

  17. Probing Black Hole Magnetic Fields with QED

    Directory of Open Access Journals (Sweden)

    Ilaria Caiazzo

    2018-05-01

    Full Text Available The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED: the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly magnetized astrophysical objects, such as accreting black holes. In the X-ray regime, the polarization of photons traveling in the magnetosphere of a black hole is not frozen at emission but is changed by the local magnetic field. We show that, for photons traveling along the plane of the disk, where the field is expected to be partially organized, this results in a depolarization of the X-ray radiation. Because the amount of depolarization depends on the strength of the magnetic field, this effect can provide a way to probe the magnetic field in black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  18. The strongest magnetic fields in the universe

    CERN Document Server

    Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA

    2016-01-01

    This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.

  19. Rare earth magnets with high energy products

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  20. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  1. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  2. Estimation of the Required Amount of Superconductors for High-field Accelerator Dipole Magnets

    CERN Document Server

    Schwerg, N

    2007-01-01

    The coil size and the corresponding amount of superconducting material that is used during the design process of a magnet cross-section have direct impacts on the overall magnet cost. It is therefore of interest to estimate the minimum amount of conductors needed to reach the defined field strength before a detailed design process starts. Equally, it is useful to evaluate the efficiency of a given design by calculating the amount of superconducting cables that are used to reach the envisaged main field by simple rule. To this purpose, the minimum amount of conductors for the construction of a dipole of given main field strength and aperture size is estimated taking the actual critical current density of the used strands into account. Characteristic curves applicable for the NED Nb$_{3}$Sn strand specification are given and some of the recently studied different dipole configurations are compared. Based on these results, it is shown how the required amount of conductors changes due to the iron yoke contributio...

  3. Electric and magnetic fields in medicine and biology

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Papers Include: The effects of low frequency (50 Hz) magnetic fields on neuro-chemical transmission in vitro; Morphological changes in E Coli subjected to DC electrical fields; An investigation of some claimed biological effects of electromagnetic fields; Electrical phenomena and bone healing - a comparison of contemporary techniques; Clinical evaluations of a portable module emitting pulsed RF energy; The design, construction and performance of a magnetic nerve stimulator; The principle of electric field tomography and its application to selective read-out of information from peripheral nerves; Applied potential tomography - clinical applications; Impendance imaging using a linear electrode array; Mathematics as an aid to experiment: human body currents induced by power frequency electric fields; Effects of electric field near 750KV transmission line and protection against their harmful consequences; Leukemia and electromagnetic fields: a case-control study; Overhead power lines and childhood cancer; Magnetic measurement of nerve action currents - a new intraoperative recording technique; The potential use of electron spin resonance or impedance measurement to image neuronal electrical activity in the human brain

  4. 2D/3D quench simulation using ANSYS for epoxy impregnated Nb3Sn high field magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ryuji Yamada et al.

    2002-09-19

    A quench program using ANSYS is developed for the high field collider magnet for three-dimensional analysis. Its computational procedure is explained. The quench program is applied to a one meter Nb{sub 3}Sn high field model magnet, which is epoxy impregnated. The quench simulation program is used to estimate the temperature and mechanical stress inside the coil as well as over the whole magnet. It is concluded that for the one meter magnet with the presented cross section and configuration, the thermal effects due to the quench is tolerable. But we need much more quench study and improvements in the design for longer magnets.

  5. Perspectives for high-performance permanent magnets: applications, coercivity, and new materials

    Science.gov (United States)

    Hirosawa, Satoshi; Nishino, Masamichi; Miyashita, Seiji

    2017-03-01

    High-performance permanent magnets are indispensable in the production of high-efficiency motors and generators and ultimately for sustaining the green earth. The central issue of modern permanent magnetism is to realize high coercivity near and above room temperature on marginally hard magnetic materials without relying upon the critical elements such as heavy rare earths by means of nanostructure engineering. Recent investigations based on advanced nanostructure analysis and large-scale first principles calculations have led to significant paradigm shifts in the understandings of coercivity mechanism in Nd-Fe-B permanent magnets, which includes the discovery of the ferromagnetism of the thin (2 nm) intergranular phase surrounding the Nd2Fe14B grains, the occurrence of negative (in-plane) magnetocrystalline anisotropy of Nd ions and some Fe atoms at the interface which degrades coercivity, and visualization of the stochastic behaviors of magnetization in the magnetization reversal process at high temperatures. A major change may occur also in the motor topologies, which is currently overwhelmed by the magnetic flux weakening interior permanent magnet motor type, to other types with variable flux permanent magnet type in some applications to open up a niche for new permanent magnet materials. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  6. Conductance of auroral magnetic field lines

    International Nuclear Information System (INIS)

    Weimer, D.R.; Gurnett, D.A.; Goertz, C.K.

    1986-01-01

    DE-1 high-resolution double-probe electric-field data and simultaneous magnetic-field measurements are reported for two 1981 events with large electric fields which reversed over short distances. The data are presented graphically and analyzed in detail. A field-line conductance of about 1 nmho/sq m is determined for both upward and downward currents, and the ionospheric conductivity is shown, in the short-wavelength limit, to have little effect on the relationship between the (N-S) electric and (E-W) magnetic fields above the potential drop parallel to the magnetic-field lines. The results are found to be consistent with a linear relationship between the field-aligned current density and the parallel potential drop. 14 references

  7. Split Field magnet at the I4 ISR intersection

    CERN Multimedia

    1974-01-01

    The Split-Field Magnet (SFM) at I4 had an unconventional topology, consisting of two dipole magnets of opposite polarity. It formed the heart of the first general facility at the ISR. It had a useful magnetic field volume of 28 m3 and a field in the median plane of 1.14 T. With a gap height of 1.1 m and length of 10.5 m, the magnet weighed about 1000 t. The SFM spectrometer featured the first large-scale application of MWPCs (about 70,000 wires), which filled the main magnet, visible here in 1974, and the two large compensator magnets.

  8. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    Science.gov (United States)

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  9. High-field magnetization study of a HoFe.sub.6./sub.Al.sub.6./sub. single crystal

    Czech Academy of Sciences Publication Activity Database

    Gorbunov, Denis; Andreev, Alexander V.; Skourski, Y.; Tereshina, Evgeniya

    2015-01-01

    Roč. 648, Nov (2015), s. 488-493 ISSN 0925-8388 R&D Projects: GA ČR GAP204/12/0150 Grant - others:AVČR(CZ) M100101203 Institutional support: RVO:68378271 Keywords : rare- earth intermetallics * magnetic anisotropy * ferrimagnetism * high magnetic fields * field-induced transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.014, year: 2015

  10. Magnetic field processing of inorganic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D.C.; Peterson, E.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  11. Static magnetic fields: A summary of biological interactions, potential health effects, and exposure guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1992-05-01

    Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result of recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.

  12. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  13. Magnetoelastic and magnetothermal properties of low-dimensional quantum spin systems in high magnetic fields-a case study

    International Nuclear Information System (INIS)

    Wolf, B.; Bruehl, A.; Magerkurth, J.; Zherlitsyn, S.; Pashchenko, V.; Brendel, B.; Margraf, G.; Lerner, H.-W.; Wagner, M.; Luethi, B.; Lang, M.

    2005-01-01

    We report measurements of magnetic, magnetothermal and magnetoelastic properties of a new Cu(II)-coordination polymer Cu(II)-2,5-bis(pyrazol-1-yl)-1,4-dihydroxybenzene (CuCCP). According to our results which cover wide ranges of temperatures 0.06K= B =21.5K, it was possible to study the system in its interesting high-field range, i.e., across the saturation field gμ B B s =2|J|, which, at T=0, marks the endpoint of a quantum critical line. Using pulse-field techniques the high-field magnetization and elastic constant have been measured. A comparison with calculated magnetization curves reveals a distinct magnetocaloric effect at high fields for T B , a pronounced acoustic anomaly has been found close to B s and identified as a generic property of the uniform antiferromagnetic Heisenberg chain with a finite spin-lattice interaction

  14. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    Science.gov (United States)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  15. Downhole Applications of Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Chinthaka P. Gooneratne

    2017-10-01

    Full Text Available In this paper we present a review of the application of two types of magnetic sensors—fluxgate magnetometers and nuclear magnetic resonance (NMR sensors—in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed.

  16. Downhole Applications of Magnetic Sensors.

    Science.gov (United States)

    Gooneratne, Chinthaka P; Li, Bodong; Moellendick, Timothy E

    2017-10-19

    In this paper we present a review of the application of two types of magnetic sensors-fluxgate magnetometers and nuclear magnetic resonance (NMR) sensors-in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed.

  17. Levitation of water and organic substances in high static magnetic fields

    Science.gov (United States)

    Beaugnon, E.; Tournier, R.

    1991-08-01

    The levitation of various diamagnetic liquid and solid substances such as water, ethanol, acetone, bismuth, antimony, graphite, wood and plastic has been achieved at room temperature in a strong inhomogeneous static magnetic field. These experiments were performed in the hybrid magnet at the Service National des Champs Intenses (CNRS, Grenoble). These findings show that high field superconducting magnets could be used to provide a contactless, low gravity environment for the elaboration of a wide range of materials. En utilisant les forts champs magnétiques produits par la bobine hybride du Service National des Champs Intenses (CNRS, Grenoble), nous avons obtenu àtempérature ambiante la lévitation de substances diamagnétiques solides ou liquides telles que l'eau, l'alcool, l'acétone, le bismuth, l'antimoine, le graphite, le bois et le plastique. Ces résultats montrent que les bobines supraconductrices peuvent être utilisées pour l'élaboration de nombreux matériaux en gravité réduite, sans contact avec un contenant.

  18. Development of Nb nanoSQUIDs based on SNS junctions for operation in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Morosh, Viacheslav; Kieler, Oliver; Weimann, Thomas; Zorin, Alexander [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Mueller, Benedikt; Martinez-Perez, Maria Jose; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany)

    2016-07-01

    Investigation of the magnetization reversal of single magnetic nanoparticles requires SQUIDs with high spatial resolution, high spin sensitivity (a few Bohr magneton μ{sub B}) and at the same time sufficient stability in high magnetic fields. We fabricated dc nanoSQUIDs comprising overdamped SNS sandwich-type (Nb/HfTi/Nb) Josephson junctions using optimized technology based on combination of electron beam lithography and chemical-mechanical polishing. Our nanoSQUIDs have Josephson junctions with lateral dimensions ≤ 150 nm x 150 nm, effective loop areas < 0.05 μm{sup 2} and the distance between the Josephson junctions ≤ 100 nm. The feeding strip lines of the width ≤ 200 nm have been realized. The nanoSQUIDs have shown stable operation in external magnetic fields at least up to 250 mT. Sufficiently low level of flux noise resulting in spin sensitivity of few tens μ{sub B}/Hz{sup 1/2} has been demonstrated. A further reduction of the nanoSQUID size using our technology is possible.

  19. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    Hamiltonian including isotropic exchange interactions, effective single-ion anisotropy and magnetoelastic contributions. The parameters of this Hamiltonian were determined by fitting the theoretical results for the spin wave dispersion and energy gap as a function of temperature and magnetic field to existing...... data on Tb. The conduction-electron polarization at zero field and temperature is (0.33+or-0.05) mu B/ion, and the susceptibility is greater than the Pauli susceptibility calculated from the band-structure....

  20. Magnetic Phase Transitions of CeSb. II: Effects of Applied Magnetic Fields

    DEFF Research Database (Denmark)

    Meier, G.; Fischer, P.; Hälg, W.

    1978-01-01

    For pt.I see ibid., vol.11, p.345 (1978). The metamagnetic phase transition and the associated phase diagram of the anomalous antiferromagnet CeSb were determined in a neutron diffraction study of the magnetic ordering of CeSb single crystals in applied magnetic fields parallel to the (001...... magnetic fields. The observed magnetic structures do not correspond to the stable configurations expected from the molecular field theory of the face-centred cubic lattice. The change from a first-order transition at the Neel temperature in zero field to second-order transition at high fields points...