Sample records for high-fidelity roadway modeling

  1. High-Fidelity Roadway Modeling and Simulation (United States)

    Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit


    Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.

  2. High-Fidelity Flash Lidar Model Development (United States)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin


    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  3. High-Fidelity Micromechanics Model Enhanced for Multiphase Particulate Materials (United States)

    Pindera, Marek-Jerzy; Arnold, Steven M.


    This 3-year effort involves the development of a comprehensive micromechanics model and a related computer code, capable of accurately estimating both the average response and the local stress and strain fields in the individual phases, assuming both elastic and inelastic behavior. During the first year (fiscal year 2001) of the investigation, a version of the model called the High-Fidelity Generalized Method of Cells (HFGMC) was successfully completed for the thermo-inelastic response of continuously reinforced multiphased materials with arbitrary periodic microstructures (refs. 1 and 2). The model s excellent predictive capability for both the macroscopic response and the microlevel stress and strain fields was demonstrated through comparison with exact analytical and finite element solutions. This year, HFGMC was further extended in two technologically significant ways. The first enhancement entailed the incorporation of fiber/matrix debonding capability into the two-dimensional version of HFGMC for modeling the response of unidirectionally reinforced composites such as titanium matrix composites, which exhibit poor fiber/matrix bond. Comparison with experimental data validated the model s predictive capability. The second enhancement entailed further generalization of HFGMC to three dimensions to enable modeling the response of particulate-reinforced (discontinuous) composites in the elastic material behavior domain. Next year, the three-dimensional version will be generalized to encompass inelastic effects due to plasticity, viscoplasticity, and damage, as well as coupled electromagnetothermomechanical (including piezoelectric) effects.

  4. Comparative performance of high-fidelity training models for flexible ureteroscopy: Are all models effective?

    Directory of Open Access Journals (Sweden)

    Shashikant Mishra


    Full Text Available Objective: We performed a comparative study of high-fidelity training models for flexible ureteroscopy (URS. Our objective was to determine whether high-fidelity non-virtual reality (VR models are as effective as the VR model in teaching flexible URS skills. Materials and Methods: Twenty-one trained urologists without clinical experience of flexible URS underwent dry lab simulation practice. After a warm-up period of 2 h, tasks were performed on a high-fidelity non-VR (Uro-scopic Trainer TM ; Endo-Urologie-Modell TM and a high-fidelity VR model (URO Mentor TM . The participants were divided equally into three batches with rotation on each of the three stations for 30 min. Performance of the trainees was evaluated by an expert ureteroscopist using pass rating and global rating score (GRS. The participants rated a face validity questionnaire at the end of each session. Results: The GRS improved statistically at evaluation performed after second rotation (P<0.001 for batches 1, 2 and 3. Pass ratings also improved significantly for all training models when the third and first rotations were compared (P<0.05. The batch that was trained on the VR-based model had more improvement on pass ratings on second rotation but could not achieve statistical significance. Most of the realistic domains were higher for a VR model as compared with the non-VR model, except the realism of the flexible endoscope. Conclusions: All the models used for training flexible URS were effective in increasing the GRS and pass ratings irrespective of the VR status.

  5. The Need for High-Fidelity Robotics Sensor Models

    Directory of Open Access Journals (Sweden)

    Phillip J. Durst


    Full Text Available Simulations provide a safe, controlled setting for testing and are therefore ideal for rapidly developing and testing autonomous mobile robot behaviors. However, algorithms for mobile robots are notorious for transitioning poorly from simulations to fielded platforms. The difficulty can in part be attributed to the use of simplistic sensor models that do not recreate important phenomena that affect autonomous navigation. The differences between the output of simple sensor models and true sensors are highlighted using results from a field test exercise with the National Robotics Engineering Center's Crusher vehicle. The Crusher was manually driven through an area consisting of a mix of small vegetation, rocks, and hay bales. LIDAR sensor data was collected along the path traveled and used to construct a model of the area. LIDAR data were simulated using a simple point-intersection model for a second, independent path. Cost maps were generated by the Crusher autonomy system using both the real-world and simulated sensor data. The comparison of these cost maps shows consistencies on most solid, large geometry surfaces such as the ground, but discrepancies around vegetation indicate that higher fidelity models are required to truly capture the complex interactions of the sensors with complex objects.

  6. Efficient High-Fidelity, Geometrically Exact, Multiphysics Structural Models (United States)


    surface (surface analysis) without invoking any apriori assumptions. The thickness analysis will provide a multiphysics constitutive model for the... apriori assumptions, which are commonly invoked in other approaches, providing the most mathematical rigor and the best engineering gen- erality. • Decouple... apriori assumptions might fail. Also, each existing approach presents a range of applicability and when the hypotheses used to formulate the theory

  7. A2e High Fidelity Modeling: Strategic Planning Meetings

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Steven W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sprague, Michael A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Womble, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Atmosphere to electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through whole wind farms. Better insight into the flow physics of large multi-turbine arrays will address the plant-level energy losses, is likely to reduce annual operational costs by hundreds of millions of dollars, and will improve project financing terms to more closely resemble traditional capital projects. In support of this initiative, two planning meetings were convened, bringing together professionals from universities, national laboratories, and industry to discuss wind plant modeling challenges, requirements, best practices, and priorities. This report documents the combined work of the two meetings and serves as a key part of the foundation for the A2e/HFM effort for predictive modeling of whole wind plant physics.

  8. Single High Fidelity Geometric Data Sets for LCM - Model Requirements (United States)


    la sécurité des navires et plus de certitude dans ce domaine. Les travaux proposés en vertu de ce contrat constitueront les premières étapes vers le... contrat constituent les premières étapes vers le développement d’une passerelle entre les outils d’analyse de GCVM et les données stockées dans une base...defects. Modification of a FEM would be an automatic procedure using information in the SID to adjust the model. The definition of the defect in the

  9. Low-cost PC-based high-fidelity infrared signature modelling and simulation


    Baqar, S.


    In the light of the increasing terrorist SAMs threat to civil and military aircraft, the need of a high-fidelity, low-cost, IR signature scene modelling and simulation capability that could be used for development, testing and evaluation of IRCM systems cannot be overlooked. The performance evaluation, training and testing of IR missiles or other IR based weapon systems, is very expensive and is also dependent upon atmospheric factors. Whereas, the computer based non-destruc...

  10. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling (United States)

    Wang, Jie; Shen, Yuzhong


    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  11. Advances in coupled safety modeling using systems analysis and high-fidelity methods.

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H.; Thomas, J. W.; Nuclear Engineering Division


    The potential for a sodium-cooled fast reactor to survive severe accident initiators with no damage has been demonstrated through whole-plant testing in EBR-II and FFTF. Analysis of the observed natural protective mechanisms suggests that they would be characteristic of a broad range of sodium-cooled fast reactors utilizing metal fuel. However, in order to demonstrate the degree to which new, advanced sodium-cooled fast reactor designs will possess these desired safety features, accurate, high-fidelity, whole-plant dynamics safety simulations will be required. One of the objectives of the advanced safety-modeling component of the Reactor IPSC is to develop a science-based advanced safety simulation capability by utilizing existing safety simulation tools coupled with emerging high-fidelity modeling capabilities in a multi-resolution approach. As part of this integration, an existing whole-plant systems analysis code has been coupled with a high-fidelity computational fluid dynamics code to assess the impact of high-fidelity simulations on safety-related performance. With the coupled capabilities, it is possible to identify critical safety-related phenomenon in advanced reactor designs that cannot be resolved with existing tools. In this report, the impact of coupling is demonstrated by evaluating the conditions of outlet plenum thermal stratification during a protected loss of flow transient. Outlet plenum stratification was anticipated to alter core temperatures and flows predicted during natural circulation conditions. This effect was observed during the simulations. What was not anticipated, however, is the far-reaching impact that resolving thermal stratification has on the whole plant. The high temperatures predicted at the IHX inlet due to thermal stratification in the outlet plenum forces heat into the intermediate system to the point that it eventually becomes a source of heat for the primary system. The results also suggest that flow stagnation in the

  12. Automatic 3D high-fidelity traffic interchange modeling using 2D road GIS data (United States)

    Wang, Jie; Shen, Yuzhong


    3D road models are widely used in many computer applications such as racing games and driving simulations. However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially for those existing in the real world. Real road network contains various elements such as road segments, road intersections and traffic interchanges. Among them, traffic interchanges present the most challenges to model due to their complexity and the lack of height information (vertical position) of traffic interchanges in existing road GIS data. This paper proposes a novel approach that can automatically produce 3D high-fidelity road network models, including traffic interchange models, from real 2D road GIS data that mainly contain road centerline information. The proposed method consists of several steps. The raw road GIS data are first preprocessed to extract road network topology, merge redundant links, and classify road types. Then overlapped points in the interchanges are detected and their elevations are determined based on a set of level estimation rules. Parametric representations of the road centerlines are then generated through link segmentation and fitting, and they have the advantages of arbitrary levels of detail with reduced memory usage. Finally a set of civil engineering rules for road design (e.g., cross slope, superelevation) are selected and used to generate realistic road surfaces. In addition to traffic interchange modeling, the proposed method also applies to other more general road elements. Preliminary results show that the proposed method is highly effective and useful in many applications.


    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.


    Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is the inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.

  14. High-Fidelity Modeling for Health Monitoring in Honeycomb Sandwich Structures (United States)

    Luchinsky, Dimitry G.; Hafiychuk, Vasyl; Smelyanskiy, Vadim; Tyson, Richard W.; Walker, James L.; Miller, Jimmy L.


    High-Fidelity Model of the sandwich composite structure with real geometry is reported. The model includes two composite facesheets, honeycomb core, piezoelectric actuator/sensors, adhesive layers, and the impactor. The novel feature of the model is that it includes modeling of the impact and wave propagation in the structure before and after the impact. Results of modeling of the wave propagation, impact, and damage detection in sandwich honeycomb plates using piezoelectric actuator/sensor scheme are reported. The results of the simulations are compared with the experimental results. It is shown that the model is suitable for analysis of the physics of failure due to the impact and for testing structural health monitoring schemes based on guided wave propagation.

  15. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation. (United States)

    Breton, S-P; Sumner, J; Sørensen, J N; Hansen, K S; Sarmast, S; Ivanell, S


    Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  16. The centricity of presence in scenario-based high fidelity human patient simulation: a model. (United States)

    Dunnington, Renee M


    Enhancing immersive presence has been shown to have influence on learning outcomes in virtual types of simulation. Scenario-based human patient simulation, a mixed reality form, may pose unique challenges for inducing the centricity of presence among participants in simulation. A model for enhancing the centricity of presence in scenario-based human patient simulation is presented here. The model represents a theoretical linkage among the interaction of pedagogical, individual, and group factors that influence the centricity of presence among participants in simulation. Presence may have an important influence on the learning experiences and learning outcomes in scenario-based high fidelity human patient simulation. This report is a follow-up to an article published in 2014 by the author where connections were made to the theoretical basis of presence as articulated by nurse scholars. © The Author(s) 2014.

  17. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation (United States)

    Breton, S.-P.; Sumner, J.; Sørensen, J. N.; Hansen, K. S.; Sarmast, S.; Ivanell, S.


    Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions. This article is part of the themed issue 'Wind energy in complex terrains'.

  18. Annual Report 2015: High Fidelity Modeling of Field-Reversed Configuration (FRC) Thrusters (United States)


    Field-Reversed Configuration ( FRC ) Thrusters 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Justin Koo 5d...simultaneously. The low‐fidelity simulation capability for the formation process in RMF  FRC  thrusters (based on  the Hugrass model) and a multifluid capability for both theta‐pinch and RMF  FRCs  provides us with  both an extremely rapid engineering‐level code to quickly simulate

  19. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model (United States)

    Shaw, Amelia R.; Smith Sawyer, Heather; LeBoeuf, Eugene J.; McDonald, Mark P.; Hadjerioua, Boualem


    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2 is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. The reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.

  20. DSMC study of oxygen shockwaves based on high-fidelity vibrational relaxation and dissociation models (United States)

    Borges Sebastião, Israel; Kulakhmetov, Marat; Alexeenko, Alina


    This work evaluates high-fidelity vibrational-translational (VT) energy relaxation and dissociation models for pure O2 normal shockwave simulations with the direct simulation Monte Carlo (DSMC) method. The O2-O collisions are described using ab initio state-specific relaxation and dissociation models. The Macheret-Fridman (MF) dissociation model is adapted to the DSMC framework by modifying the standard implementation of the total collision energy (TCE) model. The O2-O2 dissociation is modeled with this TCE+MF approach, which is calibrated with O2-O ab initio data and experimental equilibrium dissociation rates. The O2-O2 vibrational relaxation is modeled via the Larsen-Borgnakke model, calibrated to experimental VT rates. All the present results are compared to experimental data and previous calculations available in the literature. It is found that, in general, the ab initio dissociation model is better than the TCE model at matching the shock experiments. Therefore, when available, efficient ab initio models are preferred over phenomenological models. We also show that the proposed TCE + MF formulation can be used to improve the standard TCE model results when ab initio data are not available or limited.

  1. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number (United States)

    Klewicki, J. C.; Chini, G. P.; Gibson, J. F.


    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.

  2. High fidelity quasi steady-state aerodynamic model effects on race vehicle performance predictions using multi-body simulation (United States)

    Mohrfeld-Halterman, J. A.; Uddin, M.


    We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.

  3. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,


    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  4. High fidelity system modeling for high quality image reconstruction in clinical CT.

    Directory of Open Access Journals (Sweden)

    Synho Do

    Full Text Available Today, while many researchers focus on the improvement of the regularization term in IR algorithms, they pay less concern to the improvement of the fidelity term. In this paper, we hypothesize that improving the fidelity term will further improve IR image quality in low-dose scanning, which typically causes more noise. The purpose of this paper is to systematically test and examine the role of high-fidelity system models using raw data in the performance of iterative image reconstruction approach minimizing energy functional. We first isolated the fidelity term and analyzed the importance of using focal spot area modeling, flying focal spot location modeling, and active detector area modeling as opposed to just flying focal spot motion. We then compared images using different permutations of all three factors. Next, we tested the ability of the fidelity terms to retain signals upon application of the regularization term with all three factors. We then compared the differences between images generated by the proposed method and Filtered-Back-Projection. Lastly, we compared images of low-dose in vivo data using Filtered-Back-Projection, Iterative Reconstruction in Image Space, and the proposed method using raw data. The initial comparison of difference maps of images constructed showed that the focal spot area model and the active detector area model also have significant impacts on the quality of images produced. Upon application of the regularization term, images generated using all three factors were able to substantially decrease model mismatch error, artifacts, and noise. When the images generated by the proposed method were tested, conspicuity greatly increased, noise standard deviation decreased by 90% in homogeneous regions, and resolution also greatly improved. In conclusion, the improvement of the fidelity term to model clinical scanners is essential to generating higher quality images in low-dose imaging.

  5. Thermophysical properties of Almahata Sitta meteorites (asteroid 2008 TC3) for high-fidelity entry modeling (United States)

    Loehle, Stefan; Jenniskens, Peter; Böhrk, Hannah; Bauer, Thomas; Elsäßer, Henning; Sears, Derek W.; Zolensky, Michael E.; Shaddad, Muawia H.


    Asteroid 2008 TC3 was characterized in a unique manner prior to impacting Earth's atmosphere, making its October 7, 2008, impact a suitable field test for or validating the application of high-fidelity re-entry modeling to asteroid entry. The accurate modeling of the behavior of 2008 TC3 during its entry in Earth's atmosphere requires detailed information about the thermophysical properties of the asteroid's meteoritic materials at temperatures ranging from room temperature up to the point of ablation (T 1400 K). Here, we present measurements of the thermophysical properties up to these temperatures (in a 1 atm. pressure of argon) for two samples of the Almahata Sitta meteorites from asteroid 2008 TC3: a thick flat-faced ureilite suitably shaped for emissivity measurements and a thin flat-faced EL6 enstatite chondrite suitable for diffusivity measurements. Heat capacity was determined from the elemental composition and density from a 3-D laser scan of the sample. We find that the thermal conductivity of the enstatite chondrite material decreases more gradually as a function of temperature than expected, while the emissivity of the ureilitic material decreases at a rate of 9.5 × 10-5 K-1 above 770 K. The entry scenario is the result of the actual flight path being the boundary to the load the meteorite will be affected with when entering. An accurate heat load prediction depends on the thermophysical properties. Finally, based on these data, the breakup can be calculated accurately leading to a risk assessment for ground damage.

  6. Teaching elliptical excision skills to novice medical students: A randomized controlled study comparing low- and high-fidelity bench models

    Directory of Open Access Journals (Sweden)

    Rafael Denadai


    Full Text Available Background: The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. Aims : To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Materials and Methods: Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills′ training (n = 8: didactic materials (control; organic bench model (low-fidelity; ethylene-vinyl acetate bench model (low-fidelity; chicken legs′ skin bench model (high-fidelity; or pig foot skin bench model (high-fidelity. Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. Results : The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P 0.05 between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills′ training was considered large (>0.80 in all measurements. Conclusion : The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials.

  7. Teaching elliptical excision skills to novice medical students: a randomized controlled study comparing low- and high-fidelity bench models. (United States)

    Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério


    The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills' training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs' skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills' training) was considered large (>0.80) in all measurements. The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials.

  8. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel


    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  9. High-fidelity simulation as an experiential model for teaching root cause analysis. (United States)

    Quraishi, Sadeq A; Kimatian, Stephen J; Murray, W Bosseau; Sinz, Elizabeth H


    The purpose of this study was to assess the effectiveness of high-fidelity simulation for teaching root cause analysis (RCA) in graduate medical education. Thirty clinical anesthesiology-1 through clinical anesthesiology-3 residents were randomly assigned to 2 groups: group A participants received a 10-minute lecture on RCA and participated in a simulation exercise where a medical error occurs, and group B participants received the 10-minute lecture on RCA only. Participants completed baseline, postintervention, and 6-month follow-up assessments, and they were evaluated on their attitude toward as well as understanding of RCA and "systems-based" care. All 30 residents completed the surveys. Baseline attitudes and knowledge scores were similar between groups. Postintervention knowledge scores were also similar between groups; however, group B was significantly more skeptical (P strategies. Six months later, group A demonstrated retained knowledge scores and unchanged attitude, whereas group B demonstrated significantly worse knowledge scores (P  =  .001) as well as continued skepticism toward a systems-based approach (P didactics is an effective strategy for teaching RCA and systems theory in graduate medical education. Our findings also suggest that there is greater retention of knowledge and increased positive attitude toward systems improvement when focused didactics are coupled with a high-fidelity simulation exercise.

  10. High Fidelity Computational and Wind Tunnel Models in Support of Certification Airworthiness of Control Surfaces with Freeplay and Other Nonlinear Features Project (United States)

    National Aeronautics and Space Administration — The proposed work will establish high fidelity computational methods and wind tunnel test model in support of new freeplay criteria for the design, construction and...

  11. Application of a High-Fidelity Icing Analysis Method to a Model-Scale Rotor in Forward Flight (United States)

    Narducci, Robert; Orr, Stanley; Kreeger, Richard E.


    An icing analysis process involving the loose coupling of OVERFLOW-RCAS for rotor performance prediction and with LEWICE3D for thermal analysis and ice accretion is applied to a model-scale rotor for validation. The process offers high-fidelity rotor analysis for the noniced and iced rotor performance evaluation that accounts for the interaction of nonlinear aerodynamics with blade elastic deformations. Ice accumulation prediction also involves loosely coupled data exchanges between OVERFLOW and LEWICE3D to produce accurate ice shapes. Validation of the process uses data collected in the 1993 icing test involving Sikorsky's Powered Force Model. Non-iced and iced rotor performance predictions are compared to experimental measurements as are predicted ice shapes.

  12. Reduced-order LPV model of flexible wind turbines from high fidelity aeroelastic codes

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sønderby, Ivan Bergquist; Hansen, Morten Hartvig


    Linear aeroelastic models used for stability analysis of wind turbines are commonly of very high order. These high-order models are generally not suitable for control analysis and synthesis. This paper presents a methodology to obtain a reduced-order linear parameter varying (LPV) model from a se...

  13. Multiple High-Fidelity Modeling Tools for Metal Additive Manufacturing Process Development Project (United States)

    National Aeronautics and Space Administration — Despite the rapid commercialization of additive manufacturing technology such as selective laser melting, SLM, there are gaps in process modeling and material...

  14. High-Fidelity Geometric Modeling and Mesh Generation for Mechanics Characterization of Polycrystalline Materials (United States)


    and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline surface modeling. Archival publications (published...Geometric Modeling and Mesh Generation. Springer Publisher. Editor: Yongjie (Jessica) Zhang, 2013. (Review Article ) 4. J. Leng, G. Xu, Y. Zhang, J. Qian...anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based method is developed to improve the T-mesh quality

  15. High-Fidelity Modelling Methodology of Light-Limited Photosynthetic Production in Microalgae.

    Directory of Open Access Journals (Sweden)

    Andrea Bernardi

    Full Text Available Reliable quantitative description of light-limited growth in microalgae is key to improving the design and operation of industrial production systems. This article shows how the capability to predict photosynthetic processes can benefit from a synergy between mathematical modelling and lab-scale experiments using systematic design of experiment techniques. A model of chlorophyll fluorescence developed by the authors [Nikolaou et al., J Biotechnol 194:91-99, 2015] is used as starting point, whereby the representation of non-photochemical-quenching (NPQ process is refined for biological consistency. This model spans multiple time scales ranging from milliseconds to hours, thus calling for a combination of various experimental techniques in order to arrive at a sufficiently rich data set and determine statistically meaningful estimates for the model parameters. The methodology is demonstrated for the microalga Nannochloropsis gaditana by combining pulse amplitude modulation (PAM fluorescence, photosynthesis rate and antenna size measurements. The results show that the calibrated model is capable of accurate quantitative predictions under a wide range of transient light conditions. Moreover, this work provides an experimental validation of the link between fluorescence and photosynthesis-irradiance (PI curves which had been theoricized.

  16. High-Fidelity Modelling Methodology of Light-Limited Photosynthetic Production in Microalgae (United States)

    Meneghesso, Andrea; Morosinotto, Tomas; Chachuat, Benoît; Bezzo, Fabrizio


    Reliable quantitative description of light-limited growth in microalgae is key to improving the design and operation of industrial production systems. This article shows how the capability to predict photosynthetic processes can benefit from a synergy between mathematical modelling and lab-scale experiments using systematic design of experiment techniques. A model of chlorophyll fluorescence developed by the authors [Nikolaou et al., J Biotechnol 194:91–99, 2015] is used as starting point, whereby the representation of non-photochemical-quenching (NPQ) process is refined for biological consistency. This model spans multiple time scales ranging from milliseconds to hours, thus calling for a combination of various experimental techniques in order to arrive at a sufficiently rich data set and determine statistically meaningful estimates for the model parameters. The methodology is demonstrated for the microalga Nannochloropsis gaditana by combining pulse amplitude modulation (PAM) fluorescence, photosynthesis rate and antenna size measurements. The results show that the calibrated model is capable of accurate quantitative predictions under a wide range of transient light conditions. Moreover, this work provides an experimental validation of the link between fluorescence and photosynthesis-irradiance (PI) curves which had been theoricized. PMID:27055271

  17. A New Design for Airway Management Training with Mixed Reality and High Fidelity Modeling. (United States)

    Shen, Yunhe; Hananel, David; Zhao, Zichen; Burke, Daniel; Ballas, Crist; Norfleet, Jack; Reihsen, Troy; Sweet, Robert


    Restoring airway function is a vital task in many medical scenarios. Although various simulation tools have been available for learning such skills, recent research indicated that fidelity in simulating airway management deserves further improvements. In this study, we designed and implemented a new prototype for practicing relevant tasks including laryngoscopy, intubation and cricothyrotomy. A large amount of anatomical details or landmarks were meticulously selected and reconstructed from medical scans, and 3D-printed or molded to the airway intervention model. This training model was augmented by virtually and physically presented interactive modules, which are interoperable with motion tracking and sensor data feedback. Implementation results showed that this design is a feasible approach to develop higher fidelity airway models that can be integrated with mixed reality interfaces.

  18. High-fidelity modelling of an exciplex pumped alkali laser with radiative transport

    Energy Technology Data Exchange (ETDEWEB)

    Palla, Andrew D; Carroll, David L; Verdeyen, Joseph T [CU Aerospace, Champaign, IL 61820 (United States); Heaven, Michael C, E-mail: [Department of Chemistry, Emory University, Atlanta, GA 30322 (United States)


    The exciplex-pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapour, Ar, and ethane by pumping Cs-Ar atomic collision pairs and subsequent dissociation of diatomic, electronically excited CsAr molecules (exciplexes or excimers). Because of the addition of atomic collision pairs and exciplex states, modelling of the XPAL system is far more complicated than the modelling of the classic diode-pumped alkali laser (DPAL). In this paper, we discuss BLAZE-V time-dependent multi-dimensional modelling of this new laser system including radiative transport and parasitic loss effects. A two-dimensional, time-dependent baseline simulation of a pulsed XPAL is presented and compared to data. Good agreement is achieved on a laser pulse full width at half-maximum and laser pulse rise time. Parametric simulations of pulsed XPAL system configurations similar to that of the baseline case, given both four- and five-level laser operation, are presented in which good agreement is obtained with outcoupled laser energy as a function of absorbed pump energy data. The potential impact of parasitic losses on modelled system configurations is discussed.

  19. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation

    DEFF Research Database (Denmark)

    Breton, Simon-Philippe; Sumner, J.; Sørensen, Jens Nørkær


    surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple...

  20. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. (United States)

    Turner, Sean W D; Ng, Jia Yi; Galelli, Stefano


    An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction of change in globally aggregated hydropower production (~-5 to +5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~5-20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~5-15%) without investing in new power generation facilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition (United States)

    Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis


    We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.

  2. Hybrid High Fidelity Modeling of Radar Scenarios Using Atemporal, Discrete Event, and Time Step Simulation (United States)


    McDonald, who gave me guidance on using the data analysis application created by JMP Pro software. A special thank you is owed to NPS Hamming the "Referee". Figure 2.18 shows the event graph of the cookie-cutter sensor mediator. The mediator determines tD , the time to schedule the...model, the "Detect" event gets scheduled with time delay tD = 0. The "UnDetect" event gets scheduled when the "ExitRange" event is scheduled by the

  3. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure

    KAUST Repository

    Roy, Subrata P.


    The method of moments with interpolative closure (MOMIC) for soot formation and growth provides a detailed modeling framework maintaining a good balance in generality, accuracy, robustness, and computational efficiency. This study presents several computational issues in the development and implementation of the MOMIC-based soot modeling for direct numerical simulations (DNS). The issues of concern include a wide dynamic range of numbers, choice of normalization, high effective Schmidt number of soot particles, and realizability of the soot particle size distribution function (PSDF). These problems are not unique to DNS, but they are often exacerbated by the high-order numerical schemes used in DNS. Four specific issues are discussed in this article: the treatment of soot diffusion, choice of interpolation scheme for MOMIC, an approach to deal with strongly oxidizing environments, and realizability of the PSDF. General, robust, and stable approaches are sought to address these issues, minimizing the use of ad hoc treatments such as clipping. The solutions proposed and demonstrated here are being applied to generate new physical insight into complex turbulence-chemistry-soot-radiation interactions in turbulent reacting flows using DNS. © 2014 Copyright Taylor and Francis Group, LLC.

  4. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors. (United States)

    Allen, John M; Elbasiouny, Sherif M


    Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: 1) Generic cell models to simulate different motoneuron types, 2) discrete property ranges for different motoneuron types, and 3) biological homogeneity of cell properties within motoneuron types. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are

  5. A Secure and High-Fidelity Live Animal Model for Off-Pump Coronary Bypass Surgery Training. (United States)

    Liu, Xiaopeng; Yang, Yan; Meng, Qiang; Sun, Jiakang; Luo, Fuliang; Cui, Yongchun; Zhang, Hong; Zhang, Dong; Tang, Yue


    Existing simulators for off-pump coronary artery (CA) bypass grafting training are unable to provide cardiac surgery residents all necessary skills they need entering the operation room. In this study, we introduced a secure and high-fidelity live animal model to supplement the in vitro simulators for off-pump CA bypass grafting training. The left internal thoracic artery (ITA) of 3 Chinese miniature pigs was grafted to the left anterior descending CA using an end-to-side anastomosis. The free segment of the ITA was fixed on the ventricle surface, making it a simulative CA beating in synchrony with the heart. A total of 6 to 8 training anastomoses were made on each ITA. Animal Experiment Center in Fuwai Hospital. In total, 19 resident surgeons with at least 3 years of cardiac surgery work experience were trained using the new model. Their performances were recorded and reviewed. Simulative coronary arteries were successfully constructed in all 3 animals with no adverse event observed. A total of 19 anastomoses were then completed, 1 pig of 7 anastomoses and the other 2 animals of 6 anastomoses. Time consumption for the anastomosis was 782 ± 107 seconds. Anastomotic leakage was observed in 10/19 procedures. The most frequency site (7/10) was at the toe of the anastomosis. Further, the most common cause was uneven spacing or small margin of the stitches or both. Emergencies occurred during the training process included hypotension (7 procedures), tachyarrhythmia (4 procedures), and low blood oxygen saturation (1 procedure). This study demonstrated the safety and feasibility of our new live pig model in training resident surgeons. The simulative arteries can be easily accomplished and were long enough to place at least 6 anastomoses. Both on lumen diameter and motion status, they were proven to be a good substitution of the CA. Copyright © 2016. Published by Elsevier Inc.

  6. High Fidelity BWR Fuel Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fraction and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.

  7. Nursing students' perceptions of learning after high fidelity simulation: Effects of a Three-step Post-simulation Reflection Model. (United States)

    Lestander, Örjan; Lehto, Niklas; Engström, Åsa


    High-fidelity simulation (HFS) has become a bridge between theoretical knowledge and practical skills. A safe and realistic environment is commonly used in nursing education to improve cognitive, affective and psychomotor abilities. Debriefing following a simulation experience provides opportunities for students to analyze and begin to reflect upon their decisions, actions and results. The nursing literature highlights the need to promote the concept of reflective practice and to assist students in reflection, and research indicates the need to refine and develop debriefing strategies, which is the focus of the current paper. To explore the value of reflections after HFS by investigating nursing students' perceptions of their learning when a Three-step Post-simulation Reflection Model is used. A qualitative descriptive research approach was applied. A Three-step Post-simulation Reflection Model that combined written and verbal reflections was used after an HFS experience in a second-year course in the Bachelor Program in Nursing at Luleå University of Technology, Sweden. Reflective texts written before and after a verbal group reflection were subjected to qualitative content analysis. The main theme in the first written reflections was identified as "Starting to act as a nurse", with the following categories: feeling stressed, inadequate and inexperienced; developing an awareness of the importance of never compromising patient safety; planning the work and prioritizing; and beginning to understand and implement nursing knowledge. The main theme in the second written reflections was identified to be "Maturing in the profession", with the following categories: appreciating colleagues, good communication and thoughtfulness; gaining increased self-awareness and confidence; and beginning to understand the profession. The Three-step Post-simulation Reflection Model fostered an appreciation of clear and effective communication. Having time for thoughtfulness and

  8. Geodetic Inversion Analysis Method of Coseismic Slip Distribution Using a Three-dimensional Finite Element High-fidelity Model (United States)

    Agata, R.; Ichimura, T.; Hirahara, K.; Hori, T.; Hyodo, M.; Hori, M.


    -spline function is used (Yabuki and Matu'ura, 1992). However in our method, if the trench axis and unit fault slip overlap each other, the value of unit slip displacement whose location is beyond the trench axis are made 0. This method enables estimation of coseismic slip distribution which is discontinuous in the location of the trench axis. The proposed method is applied to Tohoku region. We perform two comparisons between the proposed method and conventional methods; comparison between the case with a high-fidelity model and a simplified model; comparison between the case with discontinuous unit slip and without it. Both of the comparisons show a large difference in the estimation results. It indicates the importance of using higher fidelity models and considering fault slip near the trench axis by using the proposed method. For future work, we are planning to improve the regularization method of the kernel matrix in the inversion method to enhance the estimation result. Also, more complex material heterogeneity will be introduced in the shallower layers of crustal structure.

  9. Effect of High-Fidelity Ice Accretion Simulations on the Performance of a Full-Scale Airfoil Model (United States)

    Broeren, Andy P.; Bragg, Michael B.; Addy, Harold E., Jr.; Lee, Sam; Moens, Frederic; Guffond, Didier


    The simulation of ice accretion on a wing or other surface is often required for aerodynamic evaluation, particularly at small scale or low-Reynolds number. While there are commonly accepted practices for ice simulation, there are no established and validated guidelines. The purpose of this article is to report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database. This research was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils. Airfoil performance testing was carried out at the ONERA F1 pressurized wind tunnel using a 72-in. (1828.8-mm) chord NACA 23012 airfoil over a Reynolds number range of 4.5x10(exp 6) to 16.0 10(exp 6) and a Mach number range of 0.10 to 0.28. The high-fidelity, ice-casting simulations had a significant impact on the aerodynamic performance. A spanwise-ridge ice shape resulted in a maximum lift coefficient of 0.56 compared to the clean value of 1.85 at Re = 15.9x10(exp 6) and M = 0.20. Two roughness and streamwise shapes yielded maximum lift values in the range of 1.09 to 1.28, which was a relatively small variation compared to the differences in the ice geometry. The stalling characteristics of the two roughness and one streamwise ice simulation maintained the abrupt leading-edge stall type of the clean NACA 23012 airfoil, despite the significant decrease in maximum lift. Changes in Reynolds and Mach number over the large range tested had little effect on the iced-airfoil performance.

  10. Finding the Needles in the Haystacks: High-fidelity Models of the Modern and Archean Solar System for Simulating Exoplanet Observations (United States)

    Roberge, Aki; Rizzo, Maxime J.; Lincowski, Andrew P.; Arney, Giada N.; Stark, Christopher C.; Robinson, Tyler D.; Snyder, Gregory F.; Pueyo, Laurent; Zimmerman, Neil T.; Jansen, Tiffany; Nesvold, Erika R.; Meadows, Victoria S.; Turnbull, Margaret C.


    We present two state-of-the-art models of the solar system, one corresponding to the present day and one to the Archean Eon 3.5 billion years ago. Each model contains spatial and spectral information for the star, the planets, and the interplanetary dust, extending to 50 au from the Sun and covering the wavelength range 0.3-2.5 μm. In addition, we created a spectral image cube representative of the astronomical backgrounds that will be seen behind deep observations of extrasolar planetary systems, including galaxies and Milky Way stars. These models are intended as inputs to high-fidelity simulations of direct observations of exoplanetary systems using telescopes equipped with high-contrast capability. They will help improve the realism of observation and instrument parameters that are required inputs to statistical observatory yield calculations, as well as guide development of post-processing algorithms for telescopes capable of directly imaging Earth-like planets.

  11. High-fidelity linear time-invariant model of a smart rotor with adaptive trailing edge flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Hansen, Morten Hartvig


    aero-servo-elastic model support the design, systematic tuning and model synthesis of smart rotor control systems. As an example application, the gains of an individual flap controller are tuned using the Ziegler-Nichols method for the full-order poles. The flap controller is based on feedback...... of inverse Coleman transformed and low-pass filtered flapwise blade root moments to the cyclic flap angles through two proportional-integral controllers. The load alleviation potential of the active flap control, anticipated by the frequency response of the linear closed-loop model, is also confirmed by non...

  12. High-Fidelity Gas and Granular Flow Physics Models for Rocket Exhaust Interaction with Lunar Soil Project (United States)

    National Aeronautics and Space Administration — Current modeling of Lunar and Martian soil erosion and debris transport caused by rocket plume impingement lacks essential physics from the peculiar granular...

  13. Validation of High-Fidelity CFD/CAA Framework for Launch Vehicle Acoustic Environment Simulation against Scale Model Test Data (United States)

    Liever, Peter A.; West, Jeffrey S.; Harris, Robert E.


    A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed for launch vehicle liftoff acoustic environment predictions. The framework couples the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate Discontinuous Galerkin solver developed in the same production framework, Loci/THRUST, to accurately resolve and propagate acoustic physics across the entire launch environment. Time-accurate, Hybrid RANS/LES CFD modeling is applied for predicting the acoustic generation physics at the plume source, and a high-order accurate unstructured mesh Discontinuous Galerkin (DG) method is employed to propagate acoustic waves away from the source across large distances using high-order accurate schemes. The DG solver is capable of solving 2nd, 3rd, and 4th order Euler solutions for non-linear, conservative acoustic field propagation. Initial application testing and validation has been carried out against high resolution acoustic data from the Ares Scale Model Acoustic Test (ASMAT) series to evaluate the capabilities and production readiness of the CFD/CAA system to resolve the observed spectrum of acoustic frequency content. This paper presents results from this validation and outlines efforts to mature and improve the computational simulation framework.

  14. Delivering Prolonged Intensive Care to a Non-human Primate: A High Fidelity Animal Model of Critical Illness. (United States)

    Poliquin, P Guillaume; Biondi, Mia; Ranadheera, Charlene; Hagan, Mable; Bello, Alexander; Racine, Trina; Allan, Mark; Funk, Duane; Hansen, Gregory; Hancock, B J; Kesselman, Murray; Mortimer, Todd; Kumar, Anand; Jones, Shane; Leung, Anders; Grolla, Allen; Tran, Kaylie N; Tierney, Kevin; Qiu, Xiangguo; Kobasa, Darwyn; Strong, James E


    Critical care needs have been rising in recent decades as populations age and comorbidities increase. Sepsis-related admissions to critical care contribute up to 50% of volume and septic shock carries a 35-54% fatality rate. Improvements in sepsis-related care and mortality would have a significant impact of a resource-intensive area of health care delivery. Unfortunately, research has been hampered by the lack of an animal model that replicates the complex care provided to humans in an intensive care unit (ICU). We developed a protocol to provide full ICU type supportive care to Rhesus macaques. This included mechanical ventilation, continuous sedation, fluid and electrolyte management and vasopressor support in response to Ebolavirus-induced septic shock. The animals accurately recapitulated human responses to a full range of ICU interventions (e.g. fluid resuscitation). This model can overcome current animal model limitations by accurately emulating the complexity of ICU care and thereby provide a platform for testing new interventions in critical care and sepsis without placing patients at risk.

  15. Federal Highway Administration (FHWA) Roadway Construction Noise Model (RCNM) (United States)

    Rochat, Judith L.; Reherman, Clay N.


    Roadway construction is often conducted in close proximity to residences and businesses and should be controlled and monitored in order to avoid excessive noise impacts. To aid in this process, the Volpe Center Acoustics Facility, in support of the Federal Highway Administration (FHWA), has developed a construction noise screening tool. The FHWA Roadway Construction Noise Model (RCNM) is a newly developed national model for the prediction of construction noise. The model is based on the construction noise prediction spreadsheet developed for the Central Artery/Tunnel Project in Boston, MA (CA/T Project or ``Big Dig'') by Erich Thalheimer of Parsons Brinckerhoff Quade & Douglas, Inc. The CA/T Project is the largest urban construction project ever conducted in the United States and has the most comprehensive noise control specification ever developed in the United States. RCNM incorporates the CA/T Project's noise limit criteria and extensive construction equipment noise database, where these parameters can be modified according to each user's needs. Users can also activate and analyze multiple pieces of equipment simultaneously and define multiple receptor locations, including land-use type and baseline noise levels, where RCNM will calculate sound level results for multiple metrics.

  16. Simulation of Pedestrian Crossing Behaviors at Unmarked Roadways Based on Social Force Model

    Directory of Open Access Journals (Sweden)

    Cao Ningbo


    Full Text Available Limited pedestrian microcosmic simulation models focus on the interactions between pedestrians and vehicles at unmarked roadways. Pedestrians tend to head to the destinations directly through the shortest path. So, pedestrians have inclined trajectories pointing destinations. Few simulation models have been established to describe the mechanisms underlying the inclined trajectories when pedestrians cross unmarked roadways. To overcome these shortcomings, achieve solutions for optimal design features before implementation, and help to make the design more rational, the paper establishes a modified social force model for interactions between pedestrians and vehicles at unmarked roadways. To achieve this goal, stop/go decision-making model based on gap acceptance theory and conflict avoidance models were developed to make social force model more appropriate in simulating pedestrian crossing behaviors at unmarked roadways. The extended model enables the understanding and judgment ability of pedestrians about the traffic environment and guides pedestrians to take the best behavior to avoid conflict and keep themselves safe. The comparison results of observed pedestrians’ trajectories and simulated pedestrians’ trajectories at one unmarked roadway indicate that the proposed model can be used to simulate pedestrian crossing behaviors at unmarked roadways effectively. The proposed model can be used to explore pedestrians’ trajectories variation at unmarked roadways and improve pedestrian safety facilities.

  17. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng


    needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

  18. Hybrid High-Fidelity Auscultation Scope Project (United States)

    National Aeronautics and Space Administration — To address the NASA Johnson Space Center's need for a space auscultation capability, Physical Optics Corporation proposes to develop a Hybrid High-Fidelity...

  19. The High Fidelity Plasma Speaker (United States)

    McGall, James


    A plasma speaker is a device that uses ionized gas as the driving source of sound production, rather than the traditional magnetic coil and membrane setup found on a standard speaker. Similar to how lightning produces sound, or even a small static shock, a plasma speaker uses a modulating electric arc between two electrodes to produce sound. An electric circuit is built that allows the variance of the high voltage electric potential to be controlled by a 3.5 mm standard audio headphone jack, allowing sound energy to be transferred from the plasma to the air by means of pulse width modulation. For my summer project I have built two different models of plasma speakers and am working on a third. The speaker benefits from having a nearly massless driver, and I hypothesize that it should show a response rate faster than that of a traditional speaker and a decreased impulse response while having the drawbacks of inefficiency and a low maximum decibel output. The speakers are currently being optimized with magnetic stabilization of the plasma and will be tested soon for impulse response, frequency generation, efficiency, and audio coloration. Bridges for SUCCESS Grant at Salisbury University under Ph.D. Matthew Bailey.

  20. Community-LINE Source Model (C-LINE) to estimate roadway emissions (United States)

    C-LINE is a web-based model that estimates emissions and dispersion of toxic air pollutants for roadways in the U.S. This reduced-form air quality model examines what-if scenarios for changes in emissions such as traffic volume fleet mix and vehicle speed.

  1. High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations (United States)

    Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.


    To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1

  2. A probability-based approach for assessment of roadway safety hardware. (United States)


    This report presents a general probability-based approach for assessment of roadway safety hardware (RSH). It was achieved using a reliability : analysis method and computational techniques. With the development of high-fidelity finite element (FE) m...

  3. Aerosol-CFD modelling of ultrafine and black carbon particle emission, dilution, and growth near roadways


    L. Huang; S. L. Gong; M. Gordon; J. Liggio; R. M. Staebler; C. A. Stroud; G. Lu; C. Mihele; J. R. Brook; C. Q. Jia


    Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFP; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion and dynamics of UFPs, an aerosol dynamics-CFD coupled model is developed and validated against field measurements. A unique approach of applying periodic boundary condition...

  4. Validation and application of a high-fidelity, computational model of acute respiratory distress syndrome to the examination of the indices of oxygenation at constant lung-state. (United States)

    McCahon, R A; Columb, M O; Mahajan, R P; Hardman, J G


    Calculated venous admixture (Qs/Qt) is considered the best index of oxygenation; surrogates have been developed (Pa(O(2))/Fi(O(2)), respiratory index, and arterioalveolar PO(2) difference), but these vary with Fi(O(2)), falsely indicating a change in lung-state. Using a novel model, we aimed to quantify the behaviour of the indices of oxygenation listed above during physiological and treatment factor variation. The study is the first step in developing an accurate and non-invasive tool to quantify oxygenation defects. We present the static and dynamic validation of a novel computational model of gas exchange in acute respiratory distress syndrome (ARDS) based upon the Nottingham Physiology Simulator. Arterial gas tension predictions were compared with data derived from ARDS patients. The subsequent study examined the indices' susceptibility to variation induced by independent changes in Fi(O(2)) (0.3-1.0), haemoglobin concentration (Hb: 6-14 g dl(-1)), oxygen consumption (VO(2): 250-350 ml min(-1)), and Pa(CO(2)) (4-8 kPa). Static validation produced a mean error of -0.3%, a 10-fold improvement over previous models. Dynamic validation produced a mean prediction error of -0.05 kPa for Pa(O(2)) and 0.09 kPa for Pa(CO(2)). Every parameter, especially Fi(O(2)), induced variation in all indices. The least Fi(O(2))-dependent index was Qs/Qt (variation: 5.1%). In contrast, Pa(O(2))/Fi(O(2)) varied by 77% through the range of Fi(O(2)). We have improved simulation of gas exchange in ARDS by using a sophisticated respiratory model. Using the validated model, we have demonstrated that the current indices of oxygenation vary with alteration in Hb, Pa(CO(2)), and VO(2) in addition to their previously well-documented dependence on Fi(O(2)).

  5. Developments and Validations of Fully Coupled CFD and Practical Vortex Transport Method for High-Fidelity Wake Modeling in Fixed and Rotary Wing Applications (United States)

    Anusonti-Inthra, Phuriwat


    A novel Computational Fluid Dynamics (CFD) coupling framework using a conventional Reynolds-Averaged Navier-Stokes (BANS) solver to resolve the near-body flow field and a Particle-based Vorticity Transport Method (PVTM) to predict the evolution of the far field wake is developed, refined, and evaluated for fixed and rotary wing cases. For the rotary wing case, the RANS/PVTM modules are loosely coupled to a Computational Structural Dynamics (CSD) module that provides blade motion and vehicle trim information. The PVTM module is refined by the addition of vortex diffusion, stretching, and reorientation models as well as an efficient memory model. Results from the coupled framework are compared with several experimental data sets (a fixed-wing wind tunnel test and a rotary-wing hover test).

  6. Broad bandwidth or high fidelity? Evidence from the structure of genetic and environmental effects on the facets of the five factor model. (United States)

    Briley, Daniel A; Tucker-Drob, Elliot M


    The Five Factor Model of personality is well-established at the phenotypic level, but much less is known about the coherence of the genetic and environmental influences within each personality domain. Univariate behavioral genetic analyses have consistently found the influence of additive genes and nonshared environment on multiple personality facets, but the extent to which genetic and environmental influences on specific facets reflect more general influences on higher order factors is less clear. We applied a multivariate quantitative-genetic approach to scores on the CPI-Big Five facets for 490 monozygotic and 317 dizygotic twins who took part in the National Merit Twin Study. Our results revealed a complex genetic structure for facets composing all five factors, with both domain-general and facet-specific genetic and environmental influences. For three of the Big Five domains, models that required common genetic and environmental influences on each facet to occur by way of effects on a higher order trait did not fit as well as models allowing for common genetic and environmental effects to act directly on the facets. These results add to the growing body of literature indicating that important variation in personality occurs at the facet level which may be overshadowed by aggregating to the trait level. Research at the facet level, rather than the factor level, is likely to have pragmatic advantages in future research on the genetics of personality.

  7. Broad Bandwidth or High Fidelity? Evidence from the Structure of Genetic and Environmental Effects on the Facets of the Five Factor Model (United States)

    Briley, Daniel A.; Tucker-Drob, Elliot M.


    The Five Factor Model (FFM) of personality is well-established at the phenotypic level, but much less is known about the coherence of the genetic and environmental influences within each personality domain. Univariate behavioral genetic analyses have consistently found the influence of additive genes and nonshared environment on multiple personality facets, but the extent to which genetic and environmental influences on specific facets reflect more general influences on higher order factors is less clear. We applied a multivariate quantitative-genetic approach to scores on the CPI-Big Five facets for 490 monozygotic and 317 dizygotic twins who took part in the National Merit Twin Study. Our results revealed a complex genetic structure for facets composing all five factors, with both domain-general and facet-specific genetic and environmental influences. Models that required common genetic and environmental influences on each facet to occur by way of effects on a higher order trait did not fit as well as models allowing for common genetic and environmental effects to act directly on the facets for three of the Big Five domains. These results add to the growing body of literature indicating that important variation in personality occurs at the facet level which may be overshadowed by aggregating to the trait level. Research at the facet level, rather than the factor level, is likely to have pragmatic advantages in future research on the genetics of personality. PMID:22695681

  8. Atmospheric dispersion modeling near a roadway under calm meteorological conditions


    Fallah Shorshani, Masoud; Seigneur, Christian; POLO REHN, Lucie; CHANUT, Hervé; PELLAN, Yann; Jaffrezo, Jean-Luc; CHARRON, Aurélie; Andre, Michel


    Atmospheric pollutant dispersion near sources is typically simulated by Gaussian models because of their efficient compromise between reasonable accuracy and manageable com- putational time. However, the standard Gaussian dispersion formula applies downwind of a source under advective conditions with a well-defined wind direction and cannot calculate air pollutant concentrations under calm conditions with fluctuating wind direction and/or upwind of the emission source. Attempts have been made...

  9. Modelling the Small Throw Fault Effect on the Stability of a Mining Roadway and Its Verification by In Situ Investigation

    Directory of Open Access Journals (Sweden)

    Małkowski Piotr


    Full Text Available The small throw fault zones cause serious problems for mining engineers. The knowledge about the range of fractured zone around the roadway and about roadway’s contour deformations helps a lot with the right support design or its reinforcement. The paper presents the results of numerical analysis of the effect of a small throw fault zone on the convergence of the mining roadway and the extent of the fracturing induced around the roadway. The computations were performed on a dozen physical models featuring various parameters of rock mass and support for the purpose to select the settings that reflects most suitably the behavior of tectonically disturbed and undisturbed rocks around the roadway. Finally, the results of the calculations were verified by comparing them with in situ convergence measurements carried out in the maingate D-2 in the “Borynia-Zofiówka-Jastrzębie” coal mine. Based on the results of measurements it may be concluded that the rock mass displacements around a roadway section within a fault zone during a year were four times in average greater than in the section tectonically unaffected. The results of numerical calculations show that extent of the yielding zone in the roof reaches two times the throw of the fault, in the floor 3 times the throw, and horizontally approx. 1.5 to 1.8 times the width of modelled fault zone. Only a few elasto-plastic models or models with joints between the rock beds can be recommended for predicting the performance of a roadway which is within a fault zone. It is possible, using these models, to design the roadway support of sufficient load bearing capacity at the tectonically disturbed section.

  10. High-Fidelity Piezoelectric Audio Device (United States)

    Woodward, Stanley E.; Fox, Robert L.; Bryant, Robert G.


    ModalMax is a very innovative means of harnessing the vibration of a piezoelectric actuator to produce an energy efficient low-profile device with high-bandwidth high-fidelity audio response. The piezoelectric audio device outperforms many commercially available speakers made using speaker cones. The piezoelectric device weighs substantially less (4 g) than the speaker cones which use magnets (10 g). ModalMax devices have extreme fabrication simplicity. The entire audio device is fabricated by lamination. The simplicity of the design lends itself to lower cost. The piezoelectric audio device can be used without its acoustic chambers and thereby resulting in a very low thickness of 0.023 in. (0.58 mm). The piezoelectric audio device can be completely encapsulated, which makes it very attractive for use in wet environments. Encapsulation does not significantly alter the audio response. Its small size (see Figure 1) is applicable to many consumer electronic products, such as pagers, portable radios, headphones, laptop computers, computer monitors, toys, and electronic games. The audio device can also be used in automobile or aircraft sound systems.

  11. Status report on high fidelity reactor simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere,M.; Siegel, A.; Fischer, P.; Kaushik, D.; Ragusa, J.; Lottes, J.; Smith, B.


    This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to nonobtrusively and efficiently integrate the individual physics modules into a unified simulation tool.

  12. Automating Initial Guess Generation for High Fidelity Trajectory Optimization Tools (United States)

    Villa, Benjamin; Lantoine, Gregory; Sims, Jon; Whiffen, Gregory


    Many academic studies in spaceflight dynamics rely on simplified dynamical models, such as restricted three-body models or averaged forms of the equations of motion of an orbiter. In practice, the end result of these preliminary orbit studies needs to be transformed into more realistic models, in particular to generate good initial guesses for high-fidelity trajectory optimization tools like Mystic. This paper reviews and extends some of the approaches used in the literature to perform such a task, and explores the inherent trade-offs of such a transformation with a view toward automating it for the case of ballistic arcs. Sample test cases in the libration point regimes and small body orbiter transfers are presented.

  13. High-fidelity simulation enhances ACLS training. (United States)

    Langdorf, Mark I; Strom, Suzanne L; Yang, Luanna; Canales, Cecilia; Anderson, Craig L; Amin, Alpesh; Lotfipour, Shahram


    Medical student training and experience in cardiac arrest situations is limited. Traditional Advanced Cardiac Life Support (ACLS) teaching methods are largely unrealistic with rare personal experience as team leader. Yet Postgraduate Year 1 residents may perform this role shortly after graduation. We expanded our ACLS teaching to a "Resuscitation Boot Camp" where we taught 2010 ACLS to 19 pregraduation students in didactic (12 hours) and experiential (8 hours) format. Immediately before the course, we recorded students performing an acute coronary syndrome/ventricular fibrillation (VF) scenario. As a final test, we recorded the same scenario for each student. Primary outcomes were time to cardiopulmonary resuscitation (CPR) and defibrillation (DF). Secondary measures were total scenario score, dangerous actions, proportion of students voicing "ventricular fibrillation," 12-lead ST-elevation myocardial infarction (STEMI) interpretation, and care necessary for return of spontaneous circulation (ROSC). Two expert ACLS instructors scored both performances on a 121-point scale, with each student serving as their own control. We used t tests and McNemar tests for paired data with statistical significance at pmask ventilation before DF. After instruction, students scored 97±4/121 points (p<.0001) with no dangerous actions. Before training, only 4 of 19 (21%) students performed both CPR and DF within 2 minutes, and 3 of these had ROSC. After training, 14 of 19 (74%) achieved CPR+DF≤2 minutes (p=.002), and all had ROSC. Before training, 5 of 19 (26%) students said "VF" and 4 of 19 obtained an ECG, but none identified STEMI. After training, corresponding performance was 13 of 19 "VF" (68%, p=021) and 100% ECG and STEMI identification (p<.05). This course significantly improved knowledge and psychomotor skills. Critical actions required for resuscitation were much more common after training. ACLS training including high-fidelity simulation decreases time to CPR and DF and

  14. Economical Unsteady High-Fidelity Aerodynamics for Structural Optimization with a Flutter Constraint (United States)

    Bartels, Robert E.; Stanford, Bret K.


    Structural optimization with a flutter constraint for a vehicle designed to fly in the transonic regime is a particularly difficult task. In this speed range, the flutter boundary is very sensitive to aerodynamic nonlinearities, typically requiring high-fidelity Navier-Stokes simulations. However, the repeated application of unsteady computational fluid dynamics to guide an aeroelastic optimization process is very computationally expensive. This expense has motivated the development of methods that incorporate aspects of the aerodynamic nonlinearity, classical tools of flutter analysis, and more recent methods of optimization. While it is possible to use doublet lattice method aerodynamics, this paper focuses on the use of an unsteady high-fidelity aerodynamic reduced order model combined with successive transformations that allows for an economical way of utilizing high-fidelity aerodynamics in the optimization process. This approach is applied to the common research model wing structural design. As might be expected, the high-fidelity aerodynamics produces a heavier wing than that optimized with doublet lattice aerodynamics. It is found that the optimized lower skin of the wing using high-fidelity aerodynamics differs significantly from that using doublet lattice aerodynamics.

  15. Derivation Of Probabilistic Damage Definitions From High Fidelity Deterministic Computations

    Energy Technology Data Exchange (ETDEWEB)

    Leininger, L D


    This paper summarizes a methodology used by the Underground Analysis and Planning System (UGAPS) at Lawrence Livermore National Laboratory (LLNL) for the derivation of probabilistic damage curves for US Strategic Command (USSTRATCOM). UGAPS uses high fidelity finite element and discrete element codes on the massively parallel supercomputers to predict damage to underground structures from military interdiction scenarios. These deterministic calculations can be riddled with uncertainty, especially when intelligence, the basis for this modeling, is uncertain. The technique presented here attempts to account for this uncertainty by bounding the problem with reasonable cases and using those bounding cases as a statistical sample. Probability of damage curves are computed and represented that account for uncertainty within the sample and enable the war planner to make informed decisions. This work is flexible enough to incorporate any desired damage mechanism and can utilize the variety of finite element and discrete element codes within the national laboratory and government contractor community.

  16. Long-Distance High-Fidelity Teleportation Using Singlet States


    Shapiro, Jeffrey H.


    A quantum communication system is proposed that uses polarization-entangled photons and trapped-atom quantum memories. This system is capable of long-distance, high-fidelity teleportation, and long-duration quantum storage.

  17. Body-Sized Wideband High Fidelity Invisibility Cloak (United States)

    Cohen, Nathan


    A human-sized microwave invisibility cloak has been realized. The invisibility cloak uses fractal metamaterials with two cloaking layers to achieve a high fidelity re-attainment of the intensity of an unobstructed direct path over a better than 50% bandwidth. A human subject was cloaked demonstrating a new milestone in diverted imaging capabilities: electrically large; high fidelity; and broad bandwidth. Transformational optics must now be considered less limiting in the guidance of practical applications.

  18. High Fidelity Simulation of Atomization in Diesel Engine Sprays (United States)


    ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D

  19. Real-time High-fidelity Surface Flow Simulation. (United States)

    Ren, Bo; Yuan, Tailing; Li, Chenfeng; Xu, Kun; Hu, Shi-Min


    Surface flow phenomena, such as rain water flowing down a tree trunk and progressive water front in a shower room, are common in real life. However, compared with the 3D spatial fluid flow, these surface flow problems have been much less studied in the graphics community. To tackle this research gap, we present an efficient, robust and high-fidelity simulation approach based on the shallow-water equations. Specifically, the standard shallow-water flow model is extended to general triangle meshes with a feature-based bottom friction model, and a series of coherent mathematical formulations are derived to represent the full range of physical effects that are important for real-world surface flow phenomena. In addition, by achieving compatibility with existing 3D fluid simulators and by supporting physically realistic interactions with multiple fluids and solid surfaces, the new model is flexible and readily extensible for coupled phenomena. A wide range of simulation examples are presented to demonstrate the performance of the new approach.

  20. LED roadway luminaires evaluation. (United States)


    This research explores whether LED roadway luminaire technologies are a viable future solution to providing roadway lighting. Roadway lighting : enhances highway safety and traffic flow during limited lighting conditions. The purpose of this evaluati...

  1. High-fidelity quantum state preparation using neighboring optimal control (United States)

    Peng, Yuchen; Gaitan, Frank


    We present an approach to single-shot high-fidelity preparation of an n-qubit state based on neighboring optimal control theory. This represents a new application of the neighboring optimal control formalism which was originally developed to produce single-shot high-fidelity quantum gates. To illustrate the approach, and to provide a proof-of-principle, we use it to prepare the two-qubit Bell state |β _{01}\\rangle = (1/√{2})[ |01\\rangle + |10\\rangle ] with an error probability ɛ ˜ 10^{-6} (10^{-5}) for ideal (non-ideal) control. Using standard methods in the literature, these high-fidelity Bell states can be leveraged to fault-tolerantly prepare the logical state |\\overline{β }_{01}\\rangle.

  2. High fidelity imager emulator of measured systems (United States)

    Haefner, David P.; Teaney, Brian P.


    Characterizing an imaging system through the use of linear transfer functions allows prediction of the output for an arbitrary input. Through careful measurement of the systems transfer function, imaging effects can then be applied to desired imagery in order to conduct subjective comparison, image based analysis, or evaluate algorithm performance. The Night Vision Integrated Performance Model (NV-IPM) currently utilizes a two-dimensional linear model of the systems transfer function to emulate the systems response and additive signal independent noise. In this correspondence, we describe how a two-dimensional MTF can be obtained through correct interpolation of one-dimensional measurements. We also present a model for the signal dependent noise (additive and multiplicative) and the details of its calculation from measurement. Through modeling of the experimental setup, we demonstrate how the emulated sensor replicates the observed objective performance in resolution, sampling, and noise. In support of the reproducible research effort, many of the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  3. Aerosol–computational fluid dynamics modeling of ultrafine and black carbon particle emission, dilution, and growth near roadways


    Huang, L.; Gong, S. L.; Gordon, M.; Liggio, J.; Staebler, R.; Stroud, C. A.; Lu, G.; Mihele, C.; Brook, J. R.; Jia, C. Q.


    Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFPs; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion, and dynamics of UFPs, an aerosol dynamics–computational fluid dynamics (CFD) coupled model is developed and validated against field measurements. A unique approach of applying periodic bo...

  4. An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Allison, E-mail: [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Smith, Ralph [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Williams, Brian [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Figueroa, Victor [Sandia National Laboratories, Albuquerque, NM 87185 (United States)


    For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is to employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.

  5. Low vs. high fidelity: the importance of 'realism' in the simulation of a stone treatment procedure. (United States)

    Sarmah, Piyush; Voss, Jim; Ho, Adrian; Veneziano, Domenico; Somani, Bhaskar


    Simulation training for stone surgery is now increasingly used as part of training curricula worldwide. A combination of low and high fidelity simulators has been used with varying degrees of 'realism' provided by them. In this review, we discuss low and high fidelity simulators used for ureteroscopy (URS) and percutaneous nephrolithotomy (PCNL) stone procedures with their advantages, disadvantages and future direction for endourological simulation surgery. The final goal will be to understand whether or not 'realism' has to be considered as a critical element in simulation for this field. There is a wide range of simulators available for URS and PCNL training ranging from basic bench-type model to advanced virtual reality and cadaveric models, all providing various levels of realism. Although basic models might be more useful to novices, advanced models allow for complex and more realistic simulation training. With a wide variety of simulators now available and given the latest novelties in modular training curriculums, combination of low and high fidelity simulators that provide a realistic and cost-effective option seems to be the way forward. It is unavoidable that simulators will play an increasing role in endourological training.

  6. A Method to Achieve High Fidelity in Internet-Distributed Hardware-in-the-Loop Simulation (United States)


    considered as the reference signal changing as a result of the ILC action. Thus, designing the learning function ( ),m mi if u e properly is...the advantage of not requiring a model of the system as part of the design process [45-54], which is particularly suitable for the ID-HIL paradigm...sequential turbochargers , and exhaust gas recirculation. A high-fidelity, AC electric dynamometer couples the physical engine with the simulation

  7. An Automatic Medium to High Fidelity Low-Thrust Global Trajectory Toolchain; EMTG-GMAT (United States)

    Beeson, Ryne T.; Englander, Jacob A.; Hughes, Steven P.; Schadegg, Maximillian


    Solving the global optimization, low-thrust, multiple-flyby interplanetary trajectory problem with high-fidelity dynamical models requires an unreasonable amount of computational resources. A better approach, and one that is demonstrated in this paper, is a multi-step process whereby the solution of the aforementioned problem is solved at a lower-fidelity and this solution is used as an initial guess for a higher-fidelity solver. The framework presented in this work uses two tools developed by NASA Goddard Space Flight Center: the Evolutionary Mission Trajectory Generator (EMTG) and the General Mission Analysis Tool (GMAT). EMTG is a medium to medium-high fidelity low-thrust interplanetary global optimization solver, which now has the capability to automatically generate GMAT script files for seeding a high-fidelity solution using GMAT's local optimization capabilities. A discussion of the dynamical models as well as thruster and power modeling for both EMTG and GMAT are given in this paper. Current capabilities are demonstrated with examples that highlight the toolchains ability to efficiently solve the difficult low-thrust global optimization problem with little human intervention.

  8. High-fidelity quantum state evolution in imperfect photonic integrated circuits (United States)

    Mower, Jacob; Harris, Nicholas C.; Steinbrecher, Gregory R.; Lahini, Yoav; Englund, Dirk


    We propose and analyze the design of a programmable photonic integrated circuit for high-fidelity quantum computation and simulation. We demonstrate that the reconfigurability of our design allows us to overcome two major impediments to quantum optics on a chip: it removes the need for a full fabrication cycle for each experiment and allows for compensation of fabrication errors using numerical optimization techniques. Under a pessimistic fabrication model for the silicon-on-insulator process, we demonstrate a dramatic fidelity improvement for the linear optics controlled-not and controlled-phase gates and, showing the scalability of this approach, the iterative phase estimation algorithm built from individually optimized gates. We also propose and simulate an experiment that the programmability of our system would enable: a statistically robust study of the evolution of entangled photons in disordered quantum walks. Overall, our results suggest that existing fabrication processes are sufficient to build a quantum photonic processor capable of high-fidelity operation.

  9. Interprofessional education in pharmacology using high-fidelity simulation. (United States)

    Meyer, Brittney A; Seefeldt, Teresa M; Ngorsuraches, Surachat; Hendrickx, Lori D; Lubeck, Paula M; Farver, Debra K; Heins, Jodi R


    This study examined the feasibility of an interprofessional high-fidelity pharmacology simulation and its impact on pharmacy and nursing students' perceptions of interprofessionalism and pharmacology knowledge. Pharmacy and nursing students participated in a pharmacology simulation using a high-fidelity patient simulator. Faculty-facilitated debriefing included discussion of the case and collaboration. To determine the impact of the activity on students' perceptions of interprofessionalism and their ability to apply pharmacology knowledge, surveys were administered to students before and after the simulation. Attitudes Toward Health Care Teams scale (ATHCT) scores improved from 4.55 to 4.72 on a scale of 1-6 (p = 0.005). Almost all (over 90%) of the students stated their pharmacology knowledge and their ability to apply that knowledge improved following the simulation. A simulation in pharmacology is feasible and favorably affected students' interprofessionalism and pharmacology knowledge perceptions. Pharmacology is a core science course required by multiple health professions in early program curricula, making it favorable for incorporation of interprofessional learning experiences. However, reports of high-fidelity interprofessional simulation in pharmacology courses are limited. This manuscript contributes to the literature in the field of interprofessional education by demonstrating that an interprofessional simulation in pharmacology is feasible and can favorably affect students' perceptions of interprofessionalism. This manuscript provides an example of a pharmacology interprofessional simulation that faculty in other programs can use to build similar educational activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code (United States)

    Hilburger, Mark W.


    Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.

  11. Principal considerations for the contemporary high-fidelity endovascular simulator design used in training and evaluation. (United States)

    Eslahpazir, Benjamin A; Goldstone, Jerry; Allemang, Matthew T; Wang, John C; Kashyap, Vikram S


    The simulation and rehearsal of virtual endovascular procedures are anticipated to improve the outcomes of actual procedures. Contemporary, high-fidelity simulation is based on feedback systems that combine concepts of mechanical, electrical, computer, and control systems engineering to reproduce an interactive endovascular case. These sophisticated devices also include psychometric instruments for objective surgical skill assessment. The goal of this report is to identify the design characteristics of commercially available simulators for endovascular procedures and to provide a cross-section comparison across all devices to aid in the simulator selection process. Data were obtained (1) by a standard questionnaire issued to four simulator companies prompting for relevant design details of each model for the expressed purpose of publication, (2) from each manufacturer's respective website including appended sales brochures and specification sheets, and (3) by an evaluation of peer-reviewed literature. Focus topics include haptic technology, vessel segmentation, physiologic feedback, performance feedback, and physical logistics (ie, weight, dimensions, and portability). All data sources were surveyed between January 1, 2012, and June 30, 2013. All of the commercially available, high-fidelity endovascular simulators use interactive virtual environments with preprogrammed physics and physiology models for accurate reproduction of surgical reality. The principal differences between devices are the number of access sites and haptic devices, the ability to reconstruct patient-specific anatomy for preprocedural rehearsal, and the available peripheral training modalities. Hardware and software options can also vary within the same device in comparing patient-specific with generic cases. Despite our limited knowledge about the potential of high-fidelity simulation within the endovascular world, today's currently available simulators successfully provide high-fidelity

  12. High fidelity wireless network evaluation for heterogeneous cognitive radio networks (United States)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso


    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal

  13. Simulation Basics: How to Conduct a High-Fidelity Simulation. (United States)

    Willhaus, Janet


    Well-planned and conducted health care simulation scenarios provide opportunities for staff development in areas such as communication, patient care, and teamwork. Consideration of resources, the location for the training, preparation of learners, and use of either a high-fidelity mannequin or a trained actor (eg, a standardized patient) are all part of the operational attentions needed to conduct a simulation training scenario. In order for participants to meet training objectives, the execution of the simulation session must be both planned and purposeful.

  14. Patterns of communication in high-fidelity simulation. (United States)

    Anderson, Judy K; Nelson, Kimberly


    High-fidelity simulation is commonplace in nursing education. However, critical thinking, decision making, and psychomotor skills scenarios are emphasized. Scenarios involving communication occur in interprofessional or intraprofessional settings. The importance of effective nurse-patient communication is reflected in statements from the American Nurses Association and Quality and Safety Education for Nurses, and in the graduate outcomes of most nursing programs. This qualitative study examined the patterns of communication observed in video recordings of a medical-surgical scenario with 71 senior students in a baccalaureate program. Thematic analysis revealed patterns of (a) focusing on tasks, (b) communicating-in-action, and (c) being therapeutic. Additional categories under the patterns included missing opportunities, viewing the "small picture," relying on informing, speaking in "medical tongues," offering choices…okay?, feeling uncomfortable, and using therapeutic techniques. The findings suggest the importance of using high-fidelity simulation to develop expertise in communication. In addition, the findings reinforce the recommendation to prioritize communication aspects of scenarios and debriefing for all simulations. Copyright 2015, SLACK Incorporated.

  15. Enhancing pediatric clinical competency with high-fidelity simulation. (United States)

    Birkhoff, Susan D; Donner, Carol


    In today's tertiary pediatric hospital setting, the increased complexity of patient care demands seamless coordination and collaboration among multidisciplinary team members. In an effort to enhance patient safety, clinical competence, and teamwork, simulation-based learning has become increasingly integrated into pediatric clinical practice as an innovative educational strategy. The simulated setting provides a risk-free environment where learners can incorporate cognitive, psychomotor, and affective skill acquisition without fear of harming patients. One pediatric university hospital in Southeastern Pennsylvania has enhanced the traditional American Heart Association (AHA) Pediatric Advanced Life Support (PALS) course by integrating high-fidelity simulation into skill acquisition, while still functioning within the guidelines and framework of the AHA educational standards. However, very little research with reliable standardized testing methods has been done to measure the effect of simulation-based learning. This article discusses the AHA guidelines for PALS, evaluation of PALS and nursing clinical competencies, communication among a multidisciplinary team, advantages and disadvantages of simulation, incorporation of high-fidelity simulation into pediatric practice, and suggestions for future practice. Copyright 2010, SLACK Incorporated.

  16. Importance of debriefing in high-fidelity simulations

    Directory of Open Access Journals (Sweden)

    Igor Karnjuš


    Full Text Available Debriefing has been identified as one of the most important parts of a high-fidelity simulation learning process. During debriefing, the mentor invites learners to critically assess the knowledge and skills used during the execution of a scenario. Regardless of the abundance of studies that have examined simulation-based education, debriefing is still poorly defined.The present article examines the essential features of debriefing, its phases, techniques and methods with a systematic review of recent publications. It emphasizes the mentor’s role, since the effectiveness of debriefing largely depends on the mentor’s skills to conduct it. The guidelines that allow the mentor to evaluate his performance in conducting debriefing are also presented. We underline the importance of debriefing in clinical settings as part of continuous learning process. Debriefing allows the medical teams to assess their performance and develop new strategies to achieve higher competencies.Although the debriefing is the cornerstone of high-fidelity simulation learning process, it also represents an important learning strategy in the clinical setting. Many important aspects of debriefing are still poorly explored and understood, therefore this part of the learning process should be given greater attention in the future.

  17. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)


    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  18. The theatre of high-fidelity simulation education. (United States)

    Roberts, Debbie; Greene, Leah


    High-fidelity simulation is a useful mechanism to aid progression, development and skill acquisition in nurse education. However, nurse lecturers are daunted by sophisticated simulation technology. This paper presents a new method of introducing human patient simulation to students and educators, whilst seeking to demystify the roles, responsibilities and underpinning pedagogy. The analogy of simulation as theatre outlines the concepts of the theatre and stage (simulation laboratory); the play itself (Simulated Clinical Experience, SCE); the actors (nursing students); audience (peer review panel); director (session facilitator); and the production team (technical coordinators). Performing in front of people in a safe environment, repeated practice and taking on a new role teaches students to act, think and be like a nurse. This in turn supports student learning and enhances self confidence. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. High fidelity, radiation tolerant analog-to-digital converters (United States)

    Wang, Charles Chang-I (Inventor); Linscott, Ivan Richard (Inventor); Inan, Umran S. (Inventor)


    Techniques for an analog-to-digital converter (ADC) using pipeline architecture includes a linearization technique for a spurious-free dynamic range (SFDR) over 80 deciBels. In some embodiments, sampling rates exceed a megahertz. According to a second approach, a switched-capacitor circuit is configured for correct operation in a high radiation environment. In one embodiment, the combination yields high fidelity ADC (>88 deciBel SFDR) while sampling at 5 megahertz sampling rates and consuming ADC displays no latchup up to a highest tested linear energy transfer of 63 million electron Volts square centimeters per milligram at elevated temperature (131 degrees C.) and supply (2.7 Volts, versus 2.5 Volts nominal).

  20. Collaboratively Adaptive Vibration Sensing System for High-fidelity Monitoring of Structural Responses Induced by Pedestrians

    Directory of Open Access Journals (Sweden)

    Shijia Pan


    Full Text Available This paper presents a collaboratively adaptive vibration monitoring system that captures high-fidelity structural vibration signals induced by pedestrians. These signals can be used for various human activities’ monitoring by inferring information about the impact sources, such as pedestrian footsteps, door opening and closing, and dragging objects. Such applications often require high-fidelity (high resolution and low distortion signals. Traditionally, expensive high resolution and high dynamic range sensors are adopted to ensure sufficient resolution. However, for sensing systems that use low-cost sensing devices, the resolution and dynamic range are often limited; hence this type of sensing methods is not well explored ubiquitously. We propose a low-cost sensing system that utilizes (1 a heuristic model of the investigating excitations and (2 shared information through networked devices to adapt hardware configurations and obtain high-fidelity structural vibration signals. To further explain the system, we use indoor pedestrian footstep sensing through ambient structural vibration as an example to demonstrate the system performance. We evaluate the application with three metrics that measure the signal quality from different aspects: the sufficient resolution rate to present signal resolution improvement without clipping, the clipping rate to measure the distortion of the footstep signal, and the signal magnitude to quantify the detailed resolution of the detected footstep signal. In experiments conducted in a school building, our system demonstrated up to 2× increase on the sufficient resolution rate and 2× less error rate when used to locate the pedestrians as they walk along the hallway, compared to a fixed sensing setting.

  1. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene


    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  2. Research on characteristic spectrum extracting and matching for high-fidelity reproduction. (United States)

    Yang, Sheng-wei; Liu, Zhen; Wu, Ming-guang; Zhang, Zhen-jie


    Reconstructing the spectrum rapidly and accurately is the key to the research on high-fidelity reproduction. A characteristic spectrum extracting and matching method for high-fidelity printing is proposed aiming at the problem of complex conversion between spectrum and ink combination caused by multi-color. The method filters and extracts feature bands of primary ink through derivative spectrum, and a characteristic spectrum multi-threshold coding method is proposed. Considering the problem of subarea judgment in hi-fi printing, an average derivative spectrum is taken as characteristic spectrum of each subarea and a spectrum matching method between target spectrum and average derivative spectrum of sub-spaces is proposed. The results show that the feature bands extracted can represent spectral characteristic of primary color significantly and the precision of color conversion model based on feature bands is higher than the model based on full bands. The spectrum matching method can achieve a high accuracy in sub-space judgments and greatly improve the efficiency of color convention. The spectrum extracting and matching method has the high practicability.

  3. Development and Application of a Three-Dimensional Taylor-Galerkin Numerical Model for Air Quality Simulation near Roadway Tunnel Portals. (United States)

    Okamoto, Shin'ichi; Sakai, Kazuhiro; Matsumoto, Koichi; Horiuchi, Kenji; Kobayashi, Keizo


    Since highway traffic has become one of the major emission sources of air pollution, air pollution prediction near roadway tunnel portals is a very important subject. Although many models have been suggested to predict pollutant concentrations near roadways, almost all models can be applied to only at-grade or cutoff straight highways. Therefore, a numerical model applicable to the site near roadway tunnels in complex terrain has been developed.The first stage of this study is to make a database of air quality and meteorological conditions near roadway tunnel portals. The second stage is a screening of several wind field models. The third stage is an evaluation of the numerical schemes for the advection equation, mainly carried out based on the results of the rotating cone problem.In this limited comparative study, the most accurate and high-speed computing scheme was the Taylor-Galerkin scheme. Next, a three-dimensional model based on this scheme was developed by operator splitting of locally one-dimensional calculations.The final stage is a validation study of the proposed model. The composite model consists of a wind field model, a model for the jet stream from a tunnel portal, and a model for the diffusion and advection of pollutants. The calculated concentrations near a tunnel portal have been compared to air tracer experimental data for two actual tunnels: the Ninomiya and the Hitachi Tunnels. Good evaluation scores were obtained for the Ninomiya Tunnel. Since predictive performance for the Hitachi Tunnel was not sufficient, some additional refinements of the model may be necessary.

  4. The Creation of a CPU Timer for High Fidelity Programs (United States)

    Dick, Aidan A.


    Using C and C++ programming languages, a tool was developed that measures the efficiency of a program by recording the amount of CPU time that various functions consume. By inserting the tool between lines of code in the program, one can receive a detailed report of the absolute and relative time consumption associated with each section. After adapting the generic tool for a high-fidelity launch vehicle simulation program called MAVERIC, the components of a frequently used function called "derivatives ( )" were measured. Out of the 34 sub-functions in "derivatives ( )", it was found that the top 8 sub-functions made up 83.1% of the total time spent. In order to decrease the overall run time of MAVERIC, a launch vehicle simulation program, a change was implemented in the sub-function "Event_Controller ( )". Reformatting "Event_Controller ( )" led to a 36.9% decrease in the total CPU time spent by that sub-function, and a 3.2% decrease in the total CPU time spent by the overarching function "derivatives ( )".

  5. Supporting the lecturer to deliver high-fidelity simulation. (United States)

    Dowie, Iwan; Phillips, Cheryl

    In response to a shortage of clinical practice placements for pre-registration nurses and midwives, nursing faculties have been examining alternative ways to support students to develop their clinical skills, with simulation being one of the more popular methods. In a nursing context, simulation is often used to replicate a clinical setting, such as a hospital ward or the patient's home. Some universities have introduced clinical suites that enable replication of clinical environments and offer the use of human patient simulators to mimic patient-focused scenarios. This article describes a small informal review that aimed to identify how lecturers felt about simulation in one faculty using high-fidelity simulated scenarios to inform the development of a subsequent research study. The results indicate that although many staff use simulation and believe it is a beneficial approach to learning, many also lack confidence and do not feel sufficiently prepared in its use. Most participants felt that the development of a simulation module for lecturers would increase their confidence.

  6. Numerical simulation of roadway support clamping

    Energy Technology Data Exchange (ETDEWEB)

    Dobrocinski, S. (Akademia Marynarki Wojennej, Gdynia (Poland))


    Evaluates interaction of arched steel roadway supports and surrounding strata in stratified coal-bearing strata. A combination of the finite element method and boundary element method is used. A numerical model that describes interaction of supports and surrounding strata is discussed. Advantages of the calculation method developed by the authors compared to the finite element method are analyzed. The method is especially useful for description of support interaction at the junction of mine roadways or at junctions of mine roadways and mine shafts. 2 refs.

  7. High Fidelity Models for Near-Earth Object Dynamics


    Urrutxua Cereijo, Hodei


    Motivado por los últimos hallazgos realizados gracias a los recientes avances tecnológicos y misiones espaciales, el estudio de los asteroides ha despertado el interés de la comunidad científica. Tal es así que las misiones a asteroides han proliferado en los últimos años (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) incentivadas por su enorme interés científico. Los asteroides son constituyentes fundamentales en la evolución del Sistema Solar, son además grandes concentraciones de valios...

  8. High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters (United States)


    expedited through the hiring of two new employees, Dr. Eder Sousa (recent graduate of U. of Washington) and Dr. Artan Qerushi (formerly at Tri- Alpha ...Effect on Field-Reversed Configuration Thruster Efficiency, Journal of Propulsion and Power, Vol 30, No. 6, Nov- Dec 2014. - Qerushi, A, “Overview of

  9. High-Fidelity Numerical Modeling of Compressible Flow (United States)


    source of much of the aero-thermo- acoustic load that a high-speed vehicle must resist. In recent work, we have addressed several aspects of the...region is tiled with boxes of size r, and the number of boxes N that contain the boundary is counted. For a self-similar fractal, this number is N(r...resolution outside the boundary layer to accommodate acoustic disturbances as they travelled through the inviscid core flow and where reflected back into

  10. High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters (United States)


    interactions with the FRC and trajectories in the near-spacecraft environment. Each phase of FRC operation is associated with a set of technical challenges...sectional shape of the current density and Bz eld, respectively, becomes elliptical , which points to the development of an n=2 (where n is the azimuthal mode...observations resulting from this investigation will make a major impact on the trajectory of the Thermophysics Universal Research Framework as it is

  11. Concept Maps: A Tool to Prepare for High Fidelity Simulation in Nursing (United States)

    Daley, Barbara J.; Beman, Sarah Black; Morgan, Sarah; Kennedy, Linda; Sheriff, Mandy


    In this study, the use of concept mapping as a method to prepare for high fidelity simulated learning experiences was investigated. Fourth year baccalaureate nursing students were taught how to use concept maps as a way to prepare for high fidelity simulated nursing experiences. Students prepared concept maps for two simulated experiences…

  12. Design of High-Fidelity Testing Framework for Secure Electric Grid Control

    Energy Technology Data Exchange (ETDEWEB)

    Yoginath, Srikanth B [ORNL; Perumalla, Kalyan S [ORNL


    A solution methodology and implementation components are presented that can uncover unwanted, unintentional or unanticipated effects on electric grids from changes to actual electric grid control software. A new design is presented to leapfrog over the limitations of current modeling and testing techniques for cyber technologies in electric grids. We design a fully virtualized approach in which actual, unmodified operational software under test is enabled to interact with simulated surrogates of electric grids. It enables the software to influence the (simulated) grid operation and vice versa in a controlled, high fidelity environment. Challenges in achieving such capability include achieving low-overhead time control mechanisms in hypervisor schedulers, network capture and time-stamping, translation of network packets emanating from grid software into discrete events of virtual grid models, translation back from virtual sensors/actuators into data packets to control software, and transplanting the entire system onto an accurately and efficiently maintained virtual-time plane.

  13. Sustainable roadway lighting seminar. (United States)


    The objective of this project was to develop and conduct a half-day educational seminar on sustainable : roadway lighting at three locations within New York State: Rochester, New York City, and Albany. : Primary attendees were engineers from the New ...

  14. Numerical simulation of seismic survey in coal mine roadway

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, G.; Li, G.; Cheng, J. [Chang' an University, Xi' an (China). College of Geological Engineering and Geomatics


    With the staggered-grid high order finite difference wave field simulation method, the elastic wave field caused by explosives with a point source in a coal mine roadway was simulated and different type of waves in the wave field were distinguished. Comparing all three spatial components of the propagation of the waves caused by explosives on or under the roadway at different depths, this indicates that: on the roadway base, the reverberation caused by the top and bottom of the roadway (multiple reflection on the top and bottom of the roadway) is the main disturbing wave in the roadway seismic survey which will seriously disturb the reflection of the deep place coal bed underneath the roadway; at a depth of several metres under the roadway basal bottom boundary, the reverberation disturbing wave is greatly reduced and the reflection caused by deeper coal bed can be clearly detected; high signal-to-noise ratio data can be found with the Y component detector because of the propagation of SH waves; high resolution of seismic data is possible in a roadway. In the model, a cavity 3 metres high and 4 metres wide can be detected underneath the roadway. 5 refs., 7 figs.

  15. High-fidelity hybrid simulation of allergic emergencies demonstrates improved preparedness for office emergencies in pediatric allergy clinics. (United States)

    Kennedy, Joshua L; Jones, Stacie M; Porter, Nicholas; White, Marjorie L; Gephardt, Grace; Hill, Travis; Cantrell, Mary; Nick, Todd G; Melguizo, Maria; Smith, Chris; Boateng, Beatrice A; Perry, Tamara T; Scurlock, Amy M; Thompson, Tonya M


    Simulation models that used high-fidelity mannequins have shown promise in medical education, particularly for cases in which the event is uncommon. Allergy physicians encounter emergencies in their offices, and these can be the source of much trepidation. To determine if case-based simulations with high-fidelity mannequins are effective in teaching and retention of emergency management team skills. Allergy clinics were invited to Arkansas Children's Hospital Pediatric Understanding and Learning through Simulation Education center for a 1-day workshop to evaluate skills concerning the management of allergic emergencies. A Clinical Emergency Preparedness Team Performance Evaluation was developed to evaluate the competence of teams in several areas: leadership and/or role clarity, closed-loop communication, team support, situational awareness, and scenario-specific skills. Four cases, which focus on common allergic emergencies, were simulated by using high-fidelity mannequins and standardized patients. Teams were evaluated by multiple reviewers by using video recording and standardized scoring. Ten to 12 months after initial training, an unannounced in situ case was performed to determine retention of the skills training. Clinics showed significant improvements for role clarity, teamwork, situational awareness, and scenario-specific skills during the 1-day workshop (all P Immunology. Published by Elsevier Inc. All rights reserved.

  16. High-Fidelity Simulation for Neonatal Nursing Education: An Integrative Review of the Literature. (United States)

    Cooper, Allyson


    The lack of safe avenues to develop neonatal nursing competencies using human subjects leads to the notion that simulation education for neonatal nurses might be an ideal form of education. This integrative literature review compares traditional, teacher-centered education with high-fidelity simulation education for neonatal nurses. It examines the theoretical frameworks used in neonatal nursing education and outlines the advantages of this type of training, including improving communication and teamwork; providing an innovative pedagogical approach; and aiding in skill acquisition, confidence, and participant satisfaction. The importance of debriefing is also examined. High-fidelity simulation is not without disadvantages, including its significant cost, the time associated with training, the need for very complex technical equipment, and increased faculty resource requirements. Innovative uses of high-fidelity simulation in neonatal nursing education are suggested. High-fidelity simulation has great potential but requires additional research to fully prove its efficacy.

  17. Physics and Psychophysics of High-Fidelity Sound. Part 1: Perception of Sound and Music. (United States)

    Rossing, Thomas D.


    Presents the first of a series of articles that discuss the perception of sound and music. This series of articles is intended to provide an introduction to the broad subject of high-fidelity sound recording and reproduction. (HM)

  18. Creation of a Rapid High-Fidelity Aerodynamics Module for a Multidisciplinary Design Environment (United States)

    Srinivasan, Muktha; Whittecar, William; Edwards, Stephen; Mavris, Dimitri N.


    In the traditional aerospace vehicle design process, each successive design phase is accompanied by an increment in the modeling fidelity of the disciplinary analyses being performed. This trend follows a corresponding shrinking of the design space as more and more design decisions are locked in. The correlated increase in knowledge about the design and decrease in design freedom occurs partly because increases in modeling fidelity are usually accompanied by significant increases in the computational expense of performing the analyses. When running high fidelity analyses, it is not usually feasible to explore a large number of variations, and so design space exploration is reserved for conceptual design, and higher fidelity analyses are run only once a specific point design has been selected to carry forward. The designs produced by this traditional process have been recognized as being limited by the uncertainty that is present early on due to the use of lower fidelity analyses. For example, uncertainty in aerodynamics predictions produces uncertainty in trajectory optimization, which can impact overall vehicle sizing. This effect can become more significant when trajectories are being shaped by active constraints. For example, if an optimal trajectory is running up against a normal load factor constraint, inaccuracies in the aerodynamic coefficient predictions can cause a feasible trajectory to be considered infeasible, or vice versa. For this reason, a trade must always be performed between the desired fidelity and the resources available. Apart from this trade between fidelity and computational expense, it is very desirable to use higher fidelity analyses earlier in the design process. A large body of work has been performed to this end, led by efforts in the area of surrogate modeling. In surrogate modeling, an up-front investment is made by running a high fidelity code over a Design of Experiments (DOE); once completed, the DOE data is used to create a

  19. Using high-fidelity simulation as a learning strategy in an undergraduate intensive care course. (United States)

    Badir, Aysel; Zeybekoğlu, Zuhal; Karacay, Pelin; Göktepe, Nilgün; Topcu, Serpil; Yalcin, Begüm; Kebapci, Ayda; Oban, Gül


    Using high-fidelity simulations to facilitate student learning is an uncommon practice in Turkish nursing programs. The aim of the present study was to understand students' perceptions of the use of simulation in nursing courses. Subjects included 36 senior nursing students taking an intensive care course. This study revealed that high-fidelity simulation is an ideal method of promoting learning by helping students transfer theory into practice, build confidence and teamwork, and raise professional awareness.

  20. High fidelity analysis of BWR fuel assembly with COBRA-TF/PARCS and trace codes

    Energy Technology Data Exchange (ETDEWEB)

    Abarca, A.; Miro, R.; Barrachina, T.; Verdu, G., E-mail:, E-mail:, E-mail:, E-mail: [Universitat Politecnica de Valencia, (ISIRYM/UPV), (Spain). Institute for Industrial, Radiophysical and Environmental Safety; Concejal, A.; Melara, J.; Albendea, M., E-mail:, E-mail:, E-mail: [Iberdrola, Madrid (Spain); Soler, A., E-mail: [SEA Propulsion SL, Madrid (Spain)


    The growing importance of detailed reactor core and fuel assembly description for light water reactors (LWRs) as well as the sub-channel safety analysis requires high fidelity models and coupled neutronic/thermalhydraulic codes. Hand in hand with advances in the computer technology, the nuclear safety analysis is beginning to use a more detailed thermal hydraulics and neutronics. Previously, a PWR core and a 16 by 16 fuel assembly models were developed to test and validate our COBRA-TF/PARCS v2.7 (CTF/PARCS) coupled code. In this work, a comparison of the modeling and simulation advantages and disadvantages of modern 10 by 10 BWR fuel assembly with CTF/PARCS and TRACE codes has been done. The objective of the comparison is making known the main advantages of using the sub-channel codes to perform high resolution nuclear safety analysis. The sub-channel codes, like CTF, permits obtain accurate predictions, in two flow regime, of the thermalhydraulic parameters important to safety with high local resolution. The modeled BWR fuel assembly has 91 fuel rods (81 full length and 10 partial length fuel rods) and a big square central water rod. This assembly has been modeled with high level of detail with CTF code and using the BWR modeling parameters provided by TRACE. The same neutronic PARCS's model has been used for the simulation with both codes. To compare the codes a coupled steady state has be performed. (author)

  1. Creation and Validation of a Novel Mobile Simulation Laboratory for High Fidelity, Prehospital, Difficult Airway Simulation. (United States)

    Bischof, Jason J; Panchal, Ashish R; Finnegan, Geoffrey I; Terndrup, Thomas E


    Introduction Endotracheal intubation (ETI) is a complex clinical skill complicated by the inherent challenge of providing care in the prehospital setting. Literature reports a low success rate of prehospital ETI attempts, partly due to the care environment and partly to the lack of consistent standardized training opportunities of prehospital providers in ETI. Hypothesis/Problem The availability of a mobile simulation laboratory (MSL) to study clinically critical interventions is needed in the prehospital setting to enhance instruction and maintain proficiency. This report is on the development and validation of a prehospital airway simulator and MSL that mimics in situ care provided in an ambulance. The MSL was a Type 3 ambulance with four cameras allowing audio-video recordings of observable behaviors. The prehospital airway simulator is a modified airway mannequin with increased static tongue pressure and a rigid cervical collar. Airway experts validated the model in a static setting through ETI at varying tongue pressures with a goal of a Grade 3 Cormack-Lehane (CL) laryngeal view. Following completion of this development, the MSL was launched with the prehospital airway simulator to distant communities utilizing a single facilitator/driver. Paramedics were recruited to perform ETI in the MSL, and the detailed airway management observations were stored for further analysis. Nineteen airway experts performed 57 ETI attempts at varying tongue pressures demonstrating increased CL views at higher tongue pressures. Tongue pressure of 60 mm Hg generated 31% Grade 3/4 CL view and was chosen for the prehospital trials. The MSL was launched and tested by 18 paramedics. First pass success was 33% with another 33% failing to intubate within three attempts. The MSL created was configured to deliver, record, and assess intubator behaviors with a difficult airway simulation. The MSL created a reproducible, high fidelity, mobile learning environment for assessment of

  2. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Im, Hong G [University of Michigan; Trouve, Arnaud [University of Maryland; Rutland, Christopher J [University of Wisconsin; Chen, Jacqueline H [Sandia National Laboratories


    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  3. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis (United States)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.


    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  4. High-fidelity simulation effects on CPR knowledge, skills, acquisition, and retention in nursing students. (United States)

    Aqel, Ahmad A; Ahmad, Muayyad M


    There is a gap in the literature regarding learning outcomes linked to the use of high-fidelity simulators compared to that of traditional teaching methods. To examine the effect of using high-fidelity simulators on knowledge and skills acquisition and retention with university students. A randomized two-arm trial using two different educational approaches on 90 nursing students assigned randomly to two groups was used at two points of time. The results showed significant differences in favor of the participants in the high-fidelity simulator group on both the acquisition and retention of knowledge and skills over time. However, a significant loss of cardiopulmonary resuscitation knowledge and skills occurred at 3 months after training in both groups. The findings of this study may assist educators in integrating high-fidelity simulators in education and training. In addition, the findings may help nursing educators to arrange additional cardiopulmonary resuscitation training sessions in order to improve cardiac arrested patients' outcomes. High-fidelity simulation (HFS) provides students with interactive learning experiences in a safe controlled environment. HFS enables teachers to implement critical clinical scenarios, such as cardiac arrest, without risk to patients. Integrating the simulation training into nursing curricula will help to overcome the challenges that face many courses, specifically the shortage of clinical areas for training and the increase in numbers of nursing students. © 2014 Sigma Theta Tau International.

  5. The Numerical Nuclear Reactor for High-Fidelity Integrated Simulation of Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S.; Ju, H. G.; Jeon, T. H. and others


    A comprehensive high fidelity reactor core modeling capability has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. High fidelity was accomplished by integrating highly refined solution modules for the coupled neutronic, thermal-hydraulic, and thermo-mechanical phenomena. Each solution module employs methods and models that are formulated faithfully to the first-principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are whole-core neutron transport solution, ultra-fine-mesh computational fluid dynamics/heat transfer solution, and finite-element-based thermo-mechanics solution, all obtained with explicit (fuel pin cell level) heterogeneous representations of the components of the core. The vast computational problem resulting from such highly refined modeling is solved on massively parallel computers, and serves as the 'numerical nuclear reactor'. Relaxation of modeling parameters were also pursued to make problems run on clusters of workstations and PCs for smaller scale applications as well.

  6. Comparison of High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion Aircraft (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.


    A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.

  7. High-fidelity simulation in Neonatology and the Italian experience of Nina

    Directory of Open Access Journals (Sweden)

    Armando Cuttano


    Full Text Available The modern methodology of simulation was born in the aeronautical field. In medicine, anesthetists showed great attention for technological advances and simulation, closely followed by surgeons with minimally invasive surgery. In Neonatology training in simulation is actually useful in order to face unexpected dramatic events, to minimize clinical risk preventing errors and to optimize team work. Critical issues in simulation are: teachers-learners relationship, focus on technical and non-technical skills, training coordination, adequate scenarios, effective debriefing. Therefore, the quality of a simulation training center is multi-factorial and is not only related to the mannequin equipment. High-fidelity simulation is the most effective method in education. In Italy simulation for education in Medicine has been used for a few years only. In Pisa we founded Nina (that is the acronymous for the Italian name of the Center, CeNtro di FormazIone e SimulazioNe NeonAtale, the first neonatal simulation center dedicated but integrated within a Hospital Unit in Italy. This paper describes how we manage education in Nina Center, in order to offer a model for other similar experiences.

  8. High Fidelity Aeroelasticity Simulations of Aircraft and Turbomachinery with Fully-Coupled Fluid-Structure Interaction (United States)

    Gan, Jiaye

    The purpose of this research is to develop high fidelity numerical methods to investigate the complex aeroelasticity fluid-structural problems of aircraft and aircraft engine turbomachinery. Unsteady 3D compressible Navier-Stokes equations in generalized coordinates are solved to simulate the complex fluid dynamic problems in aeroelasticity. An efficient and low diffusion E-CUSP (LDE) scheme designed to minimize numerical dissipation is used as a Riemann solver to capture shock waves in transonic and supersonic flows. An improved hybrid turbulence modeling, delayed detached eddy simulation (DDES), is implemented to simulate shock induced separation and rotating stall flows. High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. To resolve the nonlinear interaction between flow and vibrating blade structures, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. A rotor/stator sliding interpolation technique is developed to accurately capture the blade rows interaction at the interface with general grid distribution. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are applied to consider the effect of phase difference for a sector of annulus simulation. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI methodology. The accuracy and robustness of RANS, URANS and DDES turbulence models with high order schemes for predicting the lift and drag of the DLR-F6 configuration are verified. The DDES predicts the drag very well whereas the URANS model significantly over predicts the drag. DDES of a finned projectile base flows is conducted to further validate the high fidelity methods with vortical flow. The

  9. Advances in High-Fidelity Multi-Physics Simulation Techniques (United States)


    kinetic, multitranslational temperature model for a monoatomic gas has been developed by solving equations derived from the Boltzmann equation with a first...Diatomic Molecules in a Monoatomic Inert Gas,” Combustion, Explosion and Shock Waves, Translated from Fizika Goreniya i Vzryva, Vol. 10, No. 3, 1974, pp

  10. Using High-Fidelity Simulation to Assess Knowledge, Skills, and Attitudes in Nurses Performing CRRT. (United States)

    Przybyl, Heather; Androwich, Ida; Evans, Jill


    Continuous renal replacement therapy (CRRT) is an acute therapy for critically ill patients. There are many life-threatening complications that can occur; therefore, it is imperative that nurses are highly trained in the use and troubleshooting of CRRT. A structured simulation exercise was added to an existing CRRT education program by developing and implementing an annual assessment of knowledge, skills, and attitudes (KSAs) using high-fidelity simulation. The use of high-fidelity simulation as an intervention during annual evaluation of KSAs was shown to be effective in increasing nurse satisfaction, understanding of CRRT principles, and critical thinking skills with the operation of CRRT.

  11. High fidelity probing of chemical moieties present in detonation plasmas (United States)

    Johnson, Stephanie; Glumac, Nick

    The intersection of multiple shock waves offers new extreme conditions of pressure, temperature, and shear flow that would not be seen under normal planar detonation conditions. A significant gap in knowledge exists between the computationally modeled and actual physicochemical cascades occurring in the initial stages of the conversion/coupling of energy released during detonation. Experimental results show intensified temperatures and pressures where multiple shocks merge and exhibit a reactive behavior varying from the classical detonation theory based on C-J or ZND models. A newly-developed technique enables the collection of simultaneous imaging and spectra as detonation evolves. The HSFC data is gated to timescales fast enough to avoid the obscuring carbon soot associated with the detonation fireball and maps UV/VIS/NIR emission spectra in a 50 ?m line across the surface. This technique is able to provide information on molecular species present in and the rotational and vibrational molecular energies occurring within the ionized plasma. Extensive studies have been done on plasmas from reacting energetic materials but their role in the formation and self-propagation of the shock waves is unclear.

  12. Development of a High Fidelity System Analysis Code for Generation IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hongbin Zhang; Vincent Mousseau; Haihua Zhao


    Traditional nuclear reactor system analysis codes such as RELAP and TRAC employ an operator split methodology. In this approach, each of the physics (fluid flow, heat conduction and neutron diffusion) is solved separately and the coupling terms are done explicitly. This approach limits accuracy (first order in time at best) and makes the codes slow in running since the explicit coupling imposes stability restrictions on the time step size. These codes have been extensively tested and validated for the existing LWRs. However, for GEN IV nuclear reactor designs which tend to have long lasting transients resulting from passive safety systems, the performance is questionable and modern high fidelity simulation tools will be required. The requirement for accurate predictability is the motivation for a large scale overhaul of all of the models and assumptions in transient nuclear reactor safety simulation software. At INL we have launched an effort with the long term goal of developing a high fidelity system analysis code that employs modern physical models, numerical methods, and computer science for transient safety analysis of GEN IV nuclear reactors. Modern parallel solution algorithms will be employed through utilizing the nonlinear solution software package PETSc developed by Argonne National Laboratory. The physical models to be developed will have physically realistic length scales and time scales. The solution algorithm will be based on the physics-based preconditioned Jacobian-free Newton-Krylov solution methods. In this approach all of the physical models are solved implicitly and simultaneously in a single nonlinear system. This includes the coolant flow, nonlinear heat conduction, neutron kinetics, and thermal radiation, etc. Including modern physical models and accurate space and time discretizations will allow the simulation capability to be second order accurate in space and in time. This paper presents the current status of the development efforts as

  13. A high-fidelity approach towards simulation of pool boiling (United States)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A.


    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.

  14. Debriefing after High-Fidelity Simulation and Knowledge Retention: A Quasi-Experimental Study (United States)

    Olson, Susan L.


    High-fidelity simulation (HFS) use in nursing education has been a frequent research topic in recent years. Previous research included studies on the use of HFS with nursing students, focusing on their feelings of self-confidence and anxiety. However, research focused specifically on the debriefing portion of HFS was limited. This quantitative,…

  15. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers. (United States)

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver


    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  16. High fidelity simulation of non-synchronous vibration for aircraft engine fan/compressor (United States)

    Im, Hong-Sik

    The objectives of this research are to develop a high fidelity simulation methodology for turbomachinery aeromechanical problems and to investigate the mechanism of non-synchronous vibration (NSV) of an aircraft engine axial compressor. A fully conservative rotor/stator sliding technique is developed to accurately capture the unsteadiness and interaction between adjacent blade rows. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are implemented to take into account the effect of phase difference for a sector of annulus simulation. To resolve the nonlinear interaction between flow and vibrating blade structure, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. An advanced mesh deformation method that generates the blade tip block mesh moving with the blade displacement is developed to ensure the mesh quality. An efficient and low diffusion E-CUSP (LDE) scheme as a Riemann solver designed to minimize numerical dissipation is used with an improved hybrid RANS/LES turbulence strategy, delayed detached eddy simulation (DDES). High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI simulation methodology. The validated cases include: (1) DDES of NACA 0012 airfoil at high angle of attack with massive separation. The DDES accurately predicts the drag whereas the URANS model significantly over predicts the drag. (2) The AGARD Wing 445.6 flutter boundary is accurately predicted including the point at supersonic incoming flow. (3) NASA Rotor 67 validation for steady state speed line and radial profiles at peak efficiency point and near stall point. The

  17. Support design and practice for floor heave of deeply buried roadway (United States)

    Liu, Chaoke; Ren, Jianxi; Gao, Bingli; Song, Yongjun


    Aiming at the severe floor heave of auxiliary haulage roadway in Jianzhuang Coal Mine, the paper analysed mechanical environment and failure characteristics of auxiliary haulage roadway surrounding rock with the combination of mechanical test, theoretical analysis, industrial test, etc. The mechanical mechanism for deformation and failure of weak rock roadway in Jianzhuang Coal Mine was disclosed by establishing a roadway mechanical model under the effect of even-distributed load, which provided a basis for the design of inverted concrete arch. Based on complex failure mechanism of the roadway, a support method with combined inverted concrete arch and anchor in floor was proposed. The result shows that the ground stress environment has extremely adverse influence on the roadway, and the practice indicates that the floor heave countermeasures can effectively control the floor heave. The obtained conclusion provides a reference for the research and design on control technology of roadway floor heave in the future.

  18. High-speed and high-fidelity system and method for collecting network traffic (United States)

    Weigle, Eric H [Los Alamos, NM


    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  19. Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits. (United States)

    Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J


    This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

  20. Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing (United States)

    Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.; Odele, Ogaga D.; Leaird, Daniel E.; Weiner, Andrew M.; Lougovski, Pavel


    We report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.999 98 ±0.000 03 ), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530-1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3 ×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelity 0.9989 ±0.0004 . These gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.

  1. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. (United States)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho


    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  2. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene


    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub-models

  3. A New European High Fidelity Solar Array Simulator for Near Earth and Deep Space Applications

    Directory of Open Access Journals (Sweden)

    Thorvardarson Hjalti Pall


    Full Text Available Following an intensive design, development, and testing effort of almost 3 years, Rovsing with ESA assistance succeeded in the development of a new European high fidelity Solar Array Simulator (SAS for near Earth and deep space applications. ESA now has a versatile, highly modular and efficient SAS at its disposition that serves at simulating modern high power solar arrays for Earth observation, science or telecom satellites as well as for future deep space missions.

  4. High-Fidelity Simulations of Electromagnetic Propagation and RF Communication Systems (United States)


    ER D C TR -1 7- 2 Military Engineering Applied Research High-Fidelity Simulations of Electromagnetic Propagation and RF Communication ...Propagation and RF Communication Systems T53 Final Report Samuel S. Streeter, Daniel J. Breton, and Michele L. Maxson U.S. Army Engineer Research...output in terms of received RF power, which is related to the likelihood of successful communication . Because the API is thread safe, multiple Tx-Rx

  5. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools (United States)

    Orr, Stanley A.; Narducci, Robert P.


    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  6. A Novel Low Temperature PCR Assured High-Fidelity DNA Amplification

    Directory of Open Access Journals (Sweden)

    Shaoxia Zhou


    Full Text Available As previously reported, a novel low temperature (LoTemp polymerase chain reaction (PCR catalyzed by a moderately heat-resistant (MHR DNA polymerase with a chemical-assisted denaturation temperature set at 85 °C instead of the conventional 94–96 °C can achieve high-fidelity DNA amplification of a target DNA, even after up to 120 PCR thermal cycles. Furthermore, such accurate amplification is not achievable with conventional PCR. Now, using a well-recognized L1 gene segment of the human papillomavirus (HPV type 52 (HPV-52 as the template for experiments, we demonstrate that the LoTemp high-fidelity DNA amplification is attributed to an unusually high processivity and stability of the MHR DNA polymerase whose high fidelity in template-directed DNA synthesis is independent of non-existent 3'–5' exonuclease activity. Further studies and understanding of the characteristics of the LoTemp PCR technology may facilitate implementation of DNA sequencing-based diagnostics at the point of care in community hospital laboratories.

  7. Comparison of fresh-frozen cadaver and high-fidelity virtual reality simulator as methods of laparoscopic training. (United States)

    Sharma, Mitesh; Horgan, Alan


    The aim of this study was to compare fresh-frozen cadavers (FFC) with a high-fidelity virtual reality simulator (VRS) as training tools in minimal access surgery for complex and relatively simple procedures. A prospective comparative face validity study between FFC and VRS (LAP Mentor(™)) was performed. Surgeons were recruited to perform tasks on both FFC and VRS appropriately paired to their experience level. Group A (senior) performed a laparoscopic sigmoid colectomy, Group B (intermediate) performed a laparoscopic incisional hernia repair, and Group C (junior) performed basic laparoscopic tasks (BLT) (camera manipulation, hand-eye coordination, tissue dissection and hand-transferring skills). Each subject completed a 5-point Likert-type questionnaire rating the training modalities in nine domains. Data were analysed using nonparametric tests. Forty-five surgeons were recruited to participate (15 per skill group). Median scores for subjects in Group A were significantly higher for evaluation of FFC in all nine domains compared to VRS (p < 0.01). Group B scored FFC significantly better (p < 0.05) in all domains except task replication (p = 0.06). Group C scored FFC significantly better (p < 0.01) in eight domains but not on performance feedback (p = 0.09). When compared across groups, juniors accepted VRS as a training model more than did intermediate and senior groups on most domains (p < 0.01) except team work. Fresh-frozen cadaver is perceived as a significantly overall better model for laparoscopic training than the high-fidelity VRS by all training grades, irrespective of the complexity of the operative procedure performed. VRS is still useful when training junior trainees in BLT.

  8. High-Fidelity Multi-Rotor Unmanned Aircraft System Simulation Development for Trajectory Prediction Under Off-Nominal Flight Dynamics (United States)

    Foster, John V.; Hartman, David C.


    The NASA Unmanned Aircraft System (UAS) Traffic Management (UTM) project is conducting research to enable civilian low-altitude airspace and UAS operations. A goal of this project is to develop probabilistic methods to quantify risk during failures and off nominal flight conditions. An important part of this effort is the reliable prediction of feasible trajectories during off-nominal events such as control failure, atmospheric upsets, or navigation anomalies that can cause large deviations from the intended flight path or extreme vehicle upsets beyond the normal flight envelope. Few examples of high-fidelity modeling and prediction of off-nominal behavior for small UAS (sUAS) vehicles exist, and modeling requirements for accurately predicting flight dynamics for out-of-envelope or failure conditions are essentially undefined. In addition, the broad range of sUAS aircraft configurations already being fielded presents a significant modeling challenge, as these vehicles are often very different from one another and are likely to possess dramatically different flight dynamics and resultant trajectories and may require different modeling approaches to capture off-nominal behavior. NASA has undertaken an extensive research effort to define sUAS flight dynamics modeling requirements and develop preliminary high fidelity six degree-of-freedom (6-DOF) simulations capable of more closely predicting off-nominal flight dynamics and trajectories. This research has included a literature review of existing sUAS modeling and simulation work as well as development of experimental testing methods to measure and model key components of propulsion, airframe and control characteristics. The ultimate objective of these efforts is to develop tools to support UTM risk analyses and for the real-time prediction of off-nominal trajectories for use in the UTM Risk Assessment Framework (URAF). This paper focuses on modeling and simulation efforts for a generic quad-rotor configuration typical

  9. High Fidelity Tool for Turbulent Combustion in Liquid Launch Propulsion Systems Based on Spray-Flamelet Methodology Project (United States)

    National Aeronautics and Space Administration — The innovation proposed here is a high-performance, high-fidelity simulation capability for simulating liquid rocket spray combustion based on a novel spray-flamelet...

  10. Development of high-fidelity multiphysics system for light water reactor analysis (United States)

    Magedanz, Jeffrey W.

    There has been a tendency in recent years toward greater heterogeneity in reactor cores, due to the use of mixed-oxide (MOX) fuel, burnable absorbers, and longer cycles with consequently higher fuel burnup. The resulting asymmetry of the neutron flux and energy spectrum between regions with different compositions causes a need to account for the directional dependence of the neutron flux, instead of the traditional diffusion approximation. Furthermore, the presence of both MOX and high-burnup fuel in the core increases the complexity of the heat conduction. The heat transfer properties of the fuel pellet change with irradiation, and the thermal and mechanical expansion of the pellet and cladding strongly affect the size of the gap between them, and its consequent thermal resistance. These operational tendencies require higher fidelity multi-physics modeling capabilities, and this need is addressed by the developments performed within this PhD research. The dissertation describes the development of a High-Fidelity Multi-Physics System for Light Water Reactor Analysis. It consists of three coupled codes -- CTF for Thermal Hydraulics, TORT-TD for Neutron Kinetics, and FRAPTRAN for Fuel Performance. It is meant to address these modeling challenges in three ways: (1) by resolving the state of the system at the level of each fuel pin, rather than homogenizing entire fuel assemblies, (2) by using the multi-group Discrete Ordinates method to account for the directional dependence of the neutron flux, and (3) by using a fuel-performance code, rather than a Thermal Hydraulics code's simplified fuel model, to account for the material behavior of the fuel and its feedback to the hydraulic and neutronic behavior of the system. While the first two are improvements, the third, the use of a fuel-performance code for feedback, constitutes an innovation in this PhD project. Also important to this work is the manner in which such coupling is written. While coupling involves combining

  11. High-fidelity simulation in the nonmedical domain: practices and potential transferable competencies for the medical field

    Directory of Open Access Journals (Sweden)

    Carron PN


    Full Text Available Pierre-Nicolas Carron, Lionel Trueb, Bertrand YersinEmergency Service, University Hospital Center, Lausanne, SwitzerlandAbstract: Simulation is a promising pedagogical tool in the area of medical education. High-fidelity simulators can reproduce realistic environments or clinical situations. This allows for the practice of teamwork and communication skills, thereby enhancing reflective reasoning and experiential learning. Use of high-fidelity simulators is not limited to the medical and aeronautical fields, but has developed in a large number of nonmedical organizations as well. The techniques and pedagogical tools which have evolved through the use of nonmedical simulations serve not only as teaching examples but also as avenues which can help further the evolution of the concept of high-fidelity simulation in the field of medicine. This paper presents examples of high-fidelity simulations in the military, maritime, and aeronautical fields. We compare the implementation of high-fidelity simulation in the medical and nonmedical domains, and discuss the possibilities and limitations of simulators in medicine, based on recent nonmedical applications.Keywords: high-fidelity simulation, crew resource management, experiential learning

  12. High Fidelity Simulations of Large-Scale Wireless Networks (Plus-Up)

    Energy Technology Data Exchange (ETDEWEB)

    Onunkwo, Uzoma [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Sandia has built a strong reputation in scalable network simulation and emulation for cyber security studies to protect our nation’s critical information infrastructures. Georgia Tech has preeminent reputation in academia for excellence in scalable discrete event simulations, with strong emphasis on simulating cyber networks. Many of the experts in this field, such as Dr. Richard Fujimoto, Dr. George Riley, and Dr. Chris Carothers, have strong affiliations with Georgia Tech. The collaborative relationship that we intend to immediately pursue is in high fidelity simulations of practical large-scale wireless networks using ns-3 simulator via Dr. George Riley. This project will have mutual benefits in bolstering both institutions’ expertise and reputation in the field of scalable simulation for cyber-security studies. This project promises to address high fidelity simulations of large-scale wireless networks. This proposed collaboration is directly in line with Georgia Tech’s goals for developing and expanding the Communications Systems Center, the Georgia Tech Broadband Institute, and Georgia Tech Information Security Center along with its yearly Emerging Cyber Threats Report. At Sandia, this work benefits the defense systems and assessment area with promise for large-scale assessment of cyber security needs and vulnerabilities of our nation’s critical cyber infrastructures exposed to wireless communications.

  13. Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits (United States)

    Walter, T.; Kurpiers, P.; Gasparinetti, S.; Magnard, P.; Potočnik, A.; Salathé, Y.; Pechal, M.; Mondal, M.; Oppliger, M.; Eichler, C.; Wallraff, A.


    The speed of quantum gates and measurements is a decisive factor for the overall fidelity of quantum protocols when performed on physical qubits with a finite coherence time. Reducing the time required to distinguish qubit states with high fidelity is, therefore, a critical goal in quantum-information science. The state-of-the-art readout of superconducting qubits is based on the dispersive interaction with a readout resonator. Here, we bring this technique to its current limit and demonstrate how the careful design of system parameters leads to fast and high-fidelity measurements without affecting qubit coherence. We achieve this result by increasing the dispersive-interaction strength, by choosing an optimal linewidth of the readout resonator, by employing a Purcell filter, and by utilizing phase-sensitive parametric amplification. In our experiment, we measure 98.25% readout fidelity in only 48 ns, when minimizing readout time, and 99.2% in 88 ns, when maximizing the fidelity, limited predominantly by the qubit lifetime of 7.6 μ s . The presented scheme is also expected to be suitable for integration into a multiplexed readout architecture.

  14. A study on the usefulness of high fidelity patient simulation in undergraduate medical education

    Directory of Open Access Journals (Sweden)

    Bikramjit Pal


    Full Text Available Introduction: Simulation is the imitation of the operation of a real-world process or system over time. Innovative simulation training solutions are now being used to train medical professionals in an attempt to reduce the number of safety concerns that have adverse effects on the patients. Objectives: (a To determine its usefulness as a teaching or learning tool for management of surgical emergencies, both in the short term and medium term by students’ perception. (b To plan future teaching methodology regarding hi-fidelity simulation based on the study outcomes and re-assessment of the current training modules. Methods: Quasi-experimental time series design with pretest-posttest interventional study. Quantitative data was analysed in terms of Mean, Standard Deviation and standard error of Mean. Statistical tests of significance like Repeated Measure of Analysis of Variance (ANOVA were used for comparisons. P value < 0.001 was considered to be statistically significant. Results: The students opined that the simulated sessions on high fidelity simulators had encouraged their active participation which was appropriate to their current level of learning. It helped them to think fast and the training sessions resembled a real life situation. The study showed that learning had progressively improved with each session of simulation with corresponding decrease in stress. Conclusion: Implementation of high fidelity simulation based learning in our Institute had been perceived favourably by a large number of students in enhancing their knowledge over time in management of trauma and surgical emergencies.

  15. High-fidelity spin measurement on the nitrogen-vacancy center (United States)

    Hanks, Michael; Trupke, Michael; Schmiedmayer, Jörg; Munro, William J.; Nemoto, Kae


    Nitrogen-vacancy (NV) centers in diamond are versatile candidates for many quantum information processing tasks, ranging from quantum imaging and sensing through to quantum communication and fault-tolerant quantum computers. Critical to almost every potential application is an efficient mechanism for the high fidelity readout of the state of the electronic and nuclear spins. Typically such readout has been achieved through an optically resonant fluorescence measurement, but the presence of decay through a meta-stable state will limit its efficiency to the order of 99%. While this is good enough for many applications, it is insufficient for large scale quantum networks and fault-tolerant computational tasks. Here we explore an alternative approach based on dipole induced transparency (state-dependent reflection) in an NV center cavity QED system, using the most recent knowledge of the NV center’s parameters to determine its feasibility, including the decay channels through the meta-stable subspace and photon ionization. We find that single-shot measurements above fault-tolerant thresholds should be available in the strong coupling regime for a wide range of cavity-center cooperativities, using a majority voting approach utilizing single photon detection. Furthermore, extremely high fidelity measurements are possible using weak optical pulses.

  16. High-fidelity multiactor emergency preparedness training for patient care providers. (United States)

    Scott, Lancer A; Maddux, P Tim; Schnellmann, Jennifer; Hayes, Lauren; Tolley, Jessica; Wahlquist, Amy E


    Providing comprehensive emergency preparedness training (EPT) for patient care providers is important to the future success of emergency preparedness operations in the United States. Disasters are rare, complex events involving many patients and environmental factors that are difficult to reproduce in a training environment. Few EPT programs possess both competency-driven goals and metrics to measure life-saving performance during a multiactor simulated disaster. The development of an EPT curriculum for patient care providers-provided first to medical students, then to a group of experienced disaster medical providers-that recreates a simulated clinical disaster using a combination of up to 15 live actors and six high-fidelity human simulators is described. Specifically, the authors detail the Center for Health Professional Training and Emergency Response's (CHPTER's) 1-day clinical EPT course including its organization, core competency development, medical student self-evaluation, and course assessment. Two 1-day courses hosted by CHPTER were conducted in a university simulation center. Students who completed the course improved their overall knowledge and comfort level with EPT skills. The authors believe this is the first published description of a curriculum method that combines high-fidelity, multiactor scenarios to measure the life-saving performance of patient care providers utilizing a clinical disaster scenario with > 10 patients at once. A larger scale study, or preferably a multicenter trial, is needed to further study the impact of this curriculum and its potential to protect provider and patient lives.

  17. A High-Fidelity Virtual Environment for the Study of Paranoia

    Directory of Open Access Journals (Sweden)

    Matthew R. Broome


    Full Text Available Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n=32 entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists.

  18. A High-Fidelity Virtual Environment for the Study of Paranoia (United States)

    Broome, Matthew R.; Zányi, Eva; Selmanovic, Elmedin; Czanner, Silvester; Birchwood, Max; Chalmers, Alan; Singh, Swaran P.


    Psychotic disorders carry social and economic costs for sufferers and society. Recent evidence highlights the risk posed by urban upbringing and social deprivation in the genesis of paranoia and psychosis. Evidence based psychological interventions are often not offered because of a lack of therapists. Virtual reality (VR) environments have been used to treat mental health problems. VR may be a way of understanding the aetiological processes in psychosis and increasing psychotherapeutic resources for its treatment. We developed a high-fidelity virtual reality scenario of an urban street scene to test the hypothesis that virtual urban exposure is able to generate paranoia to a comparable or greater extent than scenarios using indoor scenes. Participants (n = 32) entered the VR scenario for four minutes, after which time their degree of paranoid ideation was assessed. We demonstrated that the virtual reality scenario was able to elicit paranoia in a nonclinical, healthy group and that an urban scene was more likely to lead to higher levels of paranoia than a virtual indoor environment. We suggest that this study offers evidence to support the role of exposure to factors in the urban environment in the genesis and maintenance of psychotic experiences and symptoms. The realistic high-fidelity street scene scenario may offer a useful tool for therapists. PMID:24455255

  19. Improving the self-confidence level of medical undergraduates during emergencies using high fidelity simulation. (United States)

    Muniandy, R K; Nyein, K K; Felly, M


    Medical practice involves routinely making critical decisions regarding patient care and management. Many factors influence the decision-making process, and self-confidence has been found to be an important factor in effective decision-making. With the proper transfer of knowledge during their undergraduate studies, selfconfidence levels can be improved. The purpose of this study was to evaluate the use of High Fidelity Simulation as a component of medical education to improve the confidence levels of medical undergraduates during emergencies. Study participants included a total of 60 final year medical undergraduates during their rotation in Medical Senior Posting. They participated in a simulation exercise using a high fidelity simulator, and their confidence level measured using a self-administered questionnaire. The results found that the confidence levels of 'Assessment of an Emergency Patient', 'Diagnosing Arrhythmias', 'Emergency Airway Management', 'Performing Cardio-pulmonary Resuscitation', 'Using the Defibrillator' and 'Using Emergency Drugs' showed a statistically significant increase in confidence levels after the simulation exercise. The mean confidence levels also rose from 2.85 to 3.83 (pundergraduates.

  20. High-fidelity DNA replication in Mycobacterium tuberculosis relies on a trinuclear zinc center. (United States)

    Baños-Mateos, Soledad; van Roon, Anne-Marie M; Lang, Ulla F; Maslen, Sarah L; Skehel, J Mark; Lamers, Meindert H


    High-fidelity DNA replication depends on a proofreading 3'-5' exonuclease that is associated with the replicative DNA polymerase. The replicative DNA polymerase DnaE1 from the major pathogen Mycobacterium tuberculosis (Mtb) uses its intrinsic PHP-exonuclease that is distinct from the canonical DEDD exonucleases found in the Escherichia coli and eukaryotic replisomes. The mechanism of the PHP-exonuclease is not known. Here, we present the crystal structure of the Mtb DnaE1 polymerase. The PHP-exonuclease has a trinuclear zinc center, coordinated by nine conserved residues. Cryo-EM analysis reveals the entry path of the primer strand in the PHP-exonuclease active site. Furthermore, the PHP-exonuclease shows a striking similarity to E. coli endonuclease IV, which provides clues regarding the mechanism of action. Altogether, this work provides important insights into the PHP-exonuclease and reveals unique properties that make it an attractive target for novel anti-mycobacterial drugs.The polymerase and histidinol phosphatase (PHP) domain in the DNA polymerase DnaE1 is essential for mycobacterial high-fidelity DNA replication. Here, the authors determine the DnaE1 crystal structure, which reveals the PHP-exonuclease mechanism that can be exploited for antibiotic development.

  1. 32 CFR 636.24 - Driving on right side of roadway; use of roadway. (United States)


    ... 32 National Defense 4 2010-07-01 2010-07-01 true Driving on right side of roadway; use of roadway... (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort Stewart, Georgia § 636.24 Driving on right side of roadway; use of roadway. (a) All drivers...

  2. High-Fidelity Simulation and Analysis of Ignition Regimes and Mixing Characteristics for Low Temperature Combustion Engine Application (United States)

    Gupta, Saurabh

    Computational singular perturbation (CSP) technique is applied as an automated diagnostic tool to classify ignition regimes, especially spontaneous ignition front and deflagration in low temperature combustion (LTC) engine environments. Various model problems representing LTC are simulated using high-fidelity computation with detailed chemistry for hydrogen-air, and the simulation data are then analyzed by CSP. The active reaction zones are first identified by the locus of minimum number of fast exhausted time scales. Subsequently, the relative importance of transport and chemistry is determined in the region ahead of the reaction zone. A new index IT, defined as the sum of the absolute values of the importance indices of diffusion and convection of temperature to the slow dynamics of temperature, serves as a criterion to differentiate spontaneous ignition from deflagration regimes. The same strategy is then used to gain insights into classification of ignition regimes in n-heptane air mixtures. Parametric studies are conducted using high-fidelity simulations with detailed chemistry and transport. The mixture at non-NTC conditions shows initially a deflagration front which is subsequently transitioned into a spontaneous ignition front. For the mixtures at the NTC conditions which exhibit two-stage ignition behavior, the 1 st stage ignition front is found to be more likely in the deflagration regime. On the other hand, the 2nd stage ignition front occurs almost always in the spontaneous regime because the upstream mixture contains active radical species produced by the preceding 1st stage ignition front. The effects of differently correlated equivalence ratio stratification are also considered and the results are shown to be consistent with previous findings. 2D turbulent auto-ignition problems corresponding to NTC and non-NTC chemistry yield similar qualitative results. Finally, we look into the modeling of turbulent mixing, in particular, the scalar dissipation

  3. High Fidelity, “Faster than Real-Time” Simulator for Predicting Power System Dynamic Behavior - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Alex [Illinois Inst. of Technology, Chicago, IL (United States)


    The “High Fidelity, Faster than Real­Time Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of large­scale power system dynamics simulation, including (1) a validated faster than real­ time simulation of both stable and unstable transient dynamics in a large­scale positive sequence transmission grid model, (2) a three­phase unbalanced simulation platform for modeling new grid devices, such as independently controlled single­phase static var compensators (SVCs), (3) the world’s first high fidelity three­phase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a first­of­its­ kind implementation of a single­phase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the long­term, the simulator will form the backbone of the newly conceived hybrid real­time protection and control architecture that will coordinate local controls, wide­area measurements, wide­area controls and advanced real­time prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the faster­than­real­time simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three­ phase unbalanced simulator’s ability to

  4. 30 CFR 57.9313 - Roadway maintenance. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roadway maintenance. 57.9313 Section 57.9313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... § 57.9313 Roadway maintenance. Water, debris, or spilled material on roadways which creates hazards to...

  5. 30 CFR 56.9313 - Roadway maintenance. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roadway maintenance. 56.9313 Section 56.9313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... § 56.9313 Roadway maintenance. Water, debris, or spilled material on roadways which creates hazards to...

  6. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation (United States)

    Goodrich, Kenneth H.


    A batch air combat simulation environment, the tactical maneuvering simulator (TMS), is presented. The TMS is a tool for developing and evaluating tactical maneuvering logics, but it can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS can simulate air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics, and propulsive characteristics equivalent to those used in high-fidelity piloted simulations. Data bases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system, the tactical autopilot (TA), is implemented in the aircraft simulation model. The TA converts guidance commands by computerized maneuvering logics from desired angle of attack and wind-axis bank-angle inputs to the inner loop control augmentation system of the aircraft. The capabilities and operation of the TMS and the TA are described.

  7. Reducing Aviation Weather-Related Accidents Through High-Fidelity Weather Information Distribution and Presentation (United States)

    Stough, H. Paul, III; Shafer, Daniel B.; Schaffner, Philip R.; Martzaklis, Konstantinos S.


    In February 1997, the US President announced a national goal to reduce the fatal accident rate for aviation by 80% within ten years. The National Aeronautics and Space Administration established the Aviation Safety Program to develop technologies needed to meet this aggressive goal. Because weather has been identified (is a causal factor in approximately 30% of all aviation accidents, a project was established for the development of technologies that will provide accurate, time and intuitive information to pilots, dispatchers, and air traffic controllers to enable the detection and avoidance of atmospheric hazards. This project addresses the weather information needs of general, corporate, regional, and transport aircraft operators. An overview and status of research and development efforts for high-fidelity weather information distribution and presentation is discussed with emphasis on weather information in the cockpit.

  8. Superlocalization of single molecules and nanoparticles in high-fidelity optical imaging microfluidic devices. (United States)

    Luo, Yong; Sun, Wei; Liu, Chang; Wang, Gufeng; Fang, Ning


    Superlocalization of single molecules and nanoparticles with a precision of subnanometer to a few tens of nanometers is crucial for elucidating nanoscale structures and movements in biological and chemical systems. A novel design of ultraflat and ultrathin glass/polydimethylsiloxane (PDMS) hybrid microdevices is introduced to provide almost uncompromised optical imaging quality for on-chip superlocalization and super-resolution imaging of single molecules and nanoparticles under a variety of microscopy modes. The performance of the high-fidelity (Hi-Fi) optical imaging microfluidic device was validated by precisely mapping micronecklaces made of fluorescent microtubules and 40 nm gold nanoparticles and by demonstrating the activation and excitation cycles of single Alexa Fluor 647 dyes for direct stochastic optical reconstruction microscopy in PDMS-based microchannels for the first time. Furthermore, the microdevice's feasibility for multimodality microscopy imaging was demonstrated by a vertical scan of live cells in epi-fluorescence and differential interference contrast (DIC) microscopy modes simultaneously.

  9. Examining driver injury severity outcomes in rural non-interstate roadway crashes using a hierarchical ordered logit model. (United States)

    Chen, Cong; Zhang, Guohui; Huang, Helai; Wang, Jiangfeng; Tarefder, Rafiqul A


    Rural non-interstate crashes induce a significant amount of severe injuries and fatalities. Examination of such injury patterns and the associated contributing factors is of practical importance. Taking into account the ordinal nature of injury severity levels and the hierarchical feature of crash data, this study employs a hierarchical ordered logit model to examine the significant factors in predicting driver injury severities in rural non-interstate crashes based on two-year New Mexico crash records. Bayesian inference is utilized in model estimation procedure and 95% Bayesian Credible Interval (BCI) is applied to testing variable significance. An ordinary ordered logit model omitting the between-crash variance effect is evaluated as well for model performance comparison. Results indicate that the model employed in this study outperforms ordinary ordered logit model in model fit and parameter estimation. Variables regarding crash features, environment conditions, and driver and vehicle characteristics are found to have significant influence on the predictions of driver injury severities in rural non-interstate crashes. Factors such as road segments far from intersection, wet road surface condition, collision with animals, heavy vehicle drivers, male drivers and driver seatbelt used tend to induce less severe driver injury outcomes than the factors such as multiple-vehicle crashes, severe vehicle damage in a crash, motorcyclists, females, senior drivers, driver with alcohol or drug impairment, and other major collision types. Research limitations regarding crash data and model assumptions are also discussed. Overall, this research provides reasonable results and insight in developing effective road safety measures for crash injury severity reduction and prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Pillarless protection of main haulage roadways

    Energy Technology Data Exchange (ETDEWEB)

    Martyushev, V.S.; Shmigol' , A.V.; Losev, G.F. (Obedinenie Pavlogradugol' (USSR))


    Presents a case study of a main conveyor roadway and main haulage roadways protected by a pillar-pillar system, the state of repair of which worsened significantly over 1983-1988 as the roadways were situated in a zone of elevated abutment pressure and the decision was made to provide relaxation by overworking. Geological and mining conditions are described. Twelve benchmarks were stabilized to monitor the effect of the longwall on the overworked roadways. Maximum convergence rate between roof and floor of the roadways was 77.8 mm/d as the longwall was 34 m away. Then the convergence decreased quickly to about 5 mm/month. Maintenance methods of main haulage roadways are discussed and the conclusion is reached that the experiment confirmed the possibility of extracting reserves at existing main roadways.

  11. A novel silicon patch-clamp chip permits high-fidelity recording of ion channel activity from functionally defined neurons. (United States)

    Py, Christophe; Denhoff, Mike W; Martina, Marzia; Monette, Robert; Comas, Tanya; Ahuja, Tarun; Martinez, Dolores; Wingar, Simon; Caballero, Juan; Laframboise, Sylvain; Mielke, John; Bogdanov, Alexei; Luk, Collin; Syed, Naweed; Mealing, Geoff


    We report on a simple and high-yield manufacturing process for silicon planar patch-clamp chips, which allow low capacitance and series resistance from individually identified cultured neurons. Apertures are etched in a high-quality silicon nitride film on a silicon wafer; wells are opened on the backside of the wafer by wet etching and passivated by a thick deposited silicon dioxide film to reduce the capacitance of the chip and to facilitate the formation of a high-impedance cell to aperture seal. The chip surface is suitable for culture of neurons over a small orifice in the substrate with minimal leak current. Collectively, these features enable high-fidelity electrophysiological recording of transmembrane currents resulting from ion channel activity in cultured neurons. Using cultured Lymnaea neurons we demonstrate whole-cell current recordings obtained from a voltage-clamp stimulation protocol, and in current-clamp mode we report action potentials stimulated by membrane depolarization steps. Despite the relatively large size of these neurons, good temporal and spatial control of cell membrane voltage was evident. To our knowledge this is the first report of recording of ion channel activity and action potentials from neurons cultured directly on a planar patch-clamp chip. This interrogation platform has enormous potential as a novel tool to readily provide high-information content during pharmaceutical assays to investigate in vitro models of disease, as well as neuronal physiology and synaptic plasticity. © 2010 Wiley Periodicals, Inc.

  12. Roadway management plan based on rockfall modelling calibration and validation. Application along the Ma-10 road in Mallorca (Spain) (United States)

    Mateos, Rosa Maria; Garcia, Inmaculada; Reichenbach, Paola; Herrera, Gerardo; Sarro, Roberto; Rius, Joan; Aguilo, Raul


    The Tramuntana range, in the northwestern sector of the island of Mallorca (Spain), is frequently affected by rockfalls which have caused significant damage, mainly along the road network. The Ma-10 road constitutes the main transportation corridor on the range with a heavy traffic estimated at 7,200 vehicles per day on average. With a length of 111 km and a tortuous path, the road is the connecting track for 12 municipalities and constitutes a strategic road on the island for many tourist resorts. For the period spanning from 1995 to current times, 63 rockfalls have affected the Ma-10 road with volumes ranging from 0.3m3 to 30,000 m3. Fortunately, no fatalities occurred but numerous blockages on the road took place which caused significant economic losses, valued of around 11 MEuro (Mateos el al., 2013). In this work we present the procedure we have applied to calibrate and validate rockfall modelling in the Tramuntana region, using 103 cases of the available detailed rockfall inventory (Mateos, 2006). We have exploited STONE (Guzzetti et al. 2002), a GIS based rockfall simulation software which computes 2D and 3D rockfall trajectories starting from a DTM and maps of the dynamic rolling friction coefficient and of the normal and tangential energy restitution coefficients. The appropriate identification of these parameters determines the accuracy of the simulation. To calibrate them, we have selected 40 rockfalls along the range which include a wide variety of outcropping lithologies. Coefficients values have been changed in numerous attempts in order to select those where the extent and shape of the simulation matched the field mapping. Best results were summarized with the average statistical values for each parameter and for each geotechnical unit, determining that mode values represent more precisely the data. Initially, for the validation stage, 10 well- known rockfalls exploited in the calibration phase have been selected. Confidence tests have been applied

  13. Generation of a Genetically Stable High-Fidelity Influenza Vaccine Strain. (United States)

    Naito, Tadasuke; Mori, Kotaro; Ushirogawa, Hiroshi; Takizawa, Naoki; Nobusawa, Eri; Odagiri, Takato; Tashiro, Masato; Ohniwa, Ryosuke L; Nagata, Kyosuke; Saito, Mineki


    Vaccination is considered the most effective preventive means for influenza control. The development of a master virus with high growth and genetic stability, which may be used for the preparation of vaccine viruses by gene reassortment, is crucial for the enhancement of vaccine performance and efficiency of production. Here, we describe the generation of a high-fidelity and high-growth influenza vaccine master virus strain with a single V43I amino acid change in the PB1 polymerase of the high-growth A/Puerto Rico/8/1934 (PR8) master virus. The PB1-V43I mutation was introduced to increase replication fidelity in order to design an H1N1 vaccine strain with a low error rate. The PR8-PB1-V43I virus exhibited good replication compared with that of the parent PR8 virus. In order to compare the efficiency of egg adaptation and the occurrence of gene mutations leading to antigenic alterations, we constructed 6:2 genetic reassortant viruses between the A(H1N1)pdm09 and the PR8-PB1-V43I viruses; hemagglutinin (HA) and neuraminidase (NA) were from the A(H1N1)pdm09 virus, and the other genes were from the PR8 virus. Mutations responsible for egg adaptation mutations occurred in the HA of the PB1-V43I reassortant virus during serial egg passages; however, in contrast, antigenic mutations were introduced into the HA gene of the 6:2 reassortant virus possessing the wild-type PB1. This study shows that the mutant PR8 virus possessing the PB1 polymerase with the V43I substitution may be utilized as a master virus for the generation of high-growth vaccine viruses with high polymerase fidelity, low error rates of gene replication, and reduced antigenic diversity during virus propagation in eggs for vaccine production. IMPORTANCE Vaccination represents the most effective prophylactic option against influenza. The threat of emergence of influenza pandemics necessitates the ability to generate vaccine viruses rapidly. However, as the influenza virus exhibits a high mutation rate

  14. Influence of a Large Pillar on the Optimum Roadway Position in an Extremely Close Coal Seam

    Directory of Open Access Journals (Sweden)

    Li Yang


    Full Text Available Based on the mining practice in an extremely close coal seam, theoretical analysis was conducted on the vertical stress distribution of the floor strata under a large coal pillar. The vertical stress distribution regulation of a No. 5 coal seam was revealed. To obtain the optimum position of the roadway that bears the supporting pressure of a large coal pillar, numerical modeling was applied to analyze the relation among the stress distribution of the roadway surrounding the rock that bears the supporting pressure of a large coal pillar, the plastic zone distribution of the roadway surrounding the rock, the surrounding rock deformation, and the roadway layout position. The theoretical calculation results of the stress value, stress variation rate, and influencing range of the stress influencing angle showed that the reasonable malposition of the No. 5 coal seam roadway was an inner malposition of 4 m. The mining practice showed the following: the layout of No. 25301 panel belt roadway at the position of the inner malposition of 4 m was reasonable, the roadway support performance was favourable without deformation, and ground pressure was not obvious. The research achievement of this study is the provision of a reference for roadway layouts under similar conditions.

  15. The Lived Experience of Nursing Students Participating in High-Fidelity Simulation at a School Grounded in Caring (United States)

    Ward, Gail Dove


    The education of nursing students in traditional clinical settings has become increasing challenging because of a multitude of factors affecting healthcare delivery. A decreasing number of clinical sites has precipitated a corresponding increase in the use of high-fidelity simulation-based learning experiences (HFSLEs). Because HFSLEs are being…

  16. The Effect of High-Fidelity Cardiopulmonary Resuscitation (CPR) Simulation on Athletic Training Student Knowledge, Confidence, Emotions, and Experiences (United States)

    Tivener, Kristin Ann; Gloe, Donna Sue


    Context: High-fidelity simulation is widely used in healthcare for the training and professional education of students though literature of its application to athletic training education remains sparse. Objective: This research attempts to address a wide-range of data. This includes athletic training student knowledge acquisition from…

  17. The effect of task load on the occurrence of cognitive lockup in a high-fidelity flight simulator

    NARCIS (Netherlands)

    Looije, R.; Mioch, T.


    Motivation To analyse human errors and determine the underlying reason for these errors, in particular by investigating the error production mechanism cognitive lockup. Research approach A within subjects experiment has been conducted with 16 pilots in a high-fidelity and realistic environment. The

  18. The Effects of Moderate- and High-Fidelity Patient Simulator Use on Critical Thinking in Associate Degree Nursing Students (United States)

    Vieck, Jana


    The purpose of this study was to examine the impact of moderate- and high-fidelity patient simulator use on the critical thinking skills of associate degree nursing students. This quantitative study used a quasi-experimental design and the Health Sciences Reasoning Test (HSRT) to evaluate the critical thinking skills of third semester nursing…

  19. Faculty and Student Perceptions of Preparation for and Implementation of High Fidelity Simulation Experiences in Associate Degree Nursing Programs (United States)

    Conejo, Patricia E.


    High fidelity simulation technology is being used as an alternative way to expose students to complex patient care. Research has shown that simulation experiences can improve critical thinking skills and increase students' self-confidence (Jeffries & Rizzolo, 2006). The purpose of this study was to examine nurse educator and nursing student…

  20. Apparatus, System, And Method For Roadway Monitoring

    KAUST Repository

    Claudel, Christian G.


    An apparatus, system, and method for monitoring traffic and roadway water conditions. Traffic flow and roadway flooding is monitored concurrently through a wireless sensor network. The apparatus and system comprises ultrasound rangefinders monitoring traffic flow, flood water conditions, or both. Routing information may be calculated from the traffic conditions, such that routes are calculated to avoid roadways that are impassable or are slow due to traffic conditions.

  1. A High-Fidelity Haze Removal Method Based on HOT for Visible Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Hou Jiang


    Full Text Available Spatially varying haze is a common feature of most satellite images currently used for land cover classification and mapping and can significantly affect image quality. In this paper, we present a high-fidelity haze removal method based on Haze Optimized Transformation (HOT, comprising of three steps: semi-automatic HOT transform, HOT perfection and percentile based dark object subtraction (DOS. Since digital numbers (DNs of band red and blue are highly correlated in clear sky, the R-squared criterion is utilized to search the relative clearest regions of the whole scene automatically. After HOT transform, spurious HOT responses are first masked out and filled by means of four-direction scan and dynamic interpolation, and then homomorphic filter is performed to compensate for loss of HOT of masked-out regions with large areas. To avoid patches and halo artifacts, a procedure called percentile DOS is implemented to eliminate the influence of haze. Scenes including various land cover types are selected to validate the proposed method, and a comparison analysis with HOT and Background Suppressed Haze Thickness Index (BSHTI is performed. Three quality assessment indicators are selected to evaluate the haze removed effect on image quality from different perspective and band profiles are utilized to analyze the spectral consistency. Experiment results verify the effectiveness of the proposed method for haze removal and the superiority of it in preserving the natural color of object itself, enhancing local contrast, and maintaining structural information of original image.

  2. High-Fidelity Simulation Use in Preparation of Physician Assistant Students for Neonatal and Obstetric Care. (United States)

    Donkers, Kelly; Truscott, Judy; Garrubba, Carl; DeLong, Deborah


    The study attempts to determine whether a simulation experience would increase physician assistant (PA) students' comfort level in caring for obstetric patients and assessing a neonate with an Apgar score. First-year PA students who are in the didactic phase of their education were asked to complete a questionnaire before and after a hybrid simulation scenario, in which they aided in estimating cervical dilation, delivering a neonate, and assessing the Apgar score of a neonate. The simulation included high-fidelity simulation for 2 portions of the experience and task-trainer simulation for the remaining portion of the experience. The questionnaire asked students to rate their comfort level before and after the simulation and provide information regarding their clinical experience level with obstetrics, gynecology, or pediatrics. Comfort levels were significantly increased according to presession and postsession scores for each of the 3 portions of the simulation experience. Prior experience level did not affect the results of this group. Results indicate that regardless of experience, there was a statistically significant increase between presession and postsession comfort levels. Simulation training in obstetric and neonatal assessment increases students' comfort level to perform these difficult tasks. Physician assistant programs that are not performing simulation currently, or have not used it to train in these specialty areas should consider doing so as part of their curriculum.

  3. Towards developing high-fidelity simulated learning environment training modules in audiology. (United States)

    Dzulkarnain, A A; Rahmat, S; Mohd Puzi, N A F; Badzis, M


    This discussion paper reviews and synthesises the literature on simulated learning environment (SLE) from allied health sciences, medical and nursing in general and audiology specifically. The focus of the paper is on discussing the use of high-fidelity (HF) SLE and describing the challenges for developing a HF SLE for clinical audiology training. Through the review of the literature, this paper discusses seven questions, (i) What is SLE? (ii) What are the types of SLEs? (iii) How is SLE classified? (iv) What is HF SLE? (v) What types of SLEs are available in audiology and their level of fidelity? (vi) What are the components needed for developing HF SLE? (vii) What are the possible types of HF SLEs that are suitable for audiology training? Publications were identified by structured searches from three major databases PubMed, Web of Knowledge and PsychInfo and from the reference lists of relevant articles. The authors discussed and mapped the levels of fidelity of SLE audiology training modules from the literature and the learning domains involved in the clinical audiology courses. The discussion paper has highlighted that most of the existing SLE audiology training modules consist of either low- or medium-fidelity types of simulators. Those components needed to achieve a HF SLE for audiology training are also highlighted. Overall, this review recommends that the combined approach of different levels and types of SLE could be used to obtain a HF SLE training module in audiology training.

  4. Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics (United States)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.


    A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.

  5. A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase. (United States)

    Dasari, Anvesh; Deodhar, Tejal; Berdis, Anthony J


    Translesion DNA synthesis (TLS) is the ability of DNA polymerases to incorporate nucleotides opposite and beyond damaged DNA. TLS activity is an important risk factor for the initiation and progression of genetic diseases such as cancer. In this study, we evaluate the ability of a high-fidelity DNA polymerase to perform TLS with 8-oxo-guanine (8-oxo-G), a highly pro-mutagenic DNA lesion formed by reactive oxygen species. Results of kinetic studies monitoring the incorporation of modified nucleotide analogs demonstrate that the binding affinity of the incoming dNTP is controlled by the overall hydrophobicity of the nucleobase. However, the rate constant for the polymerization step is regulated by hydrogen-bonding interactions made between the incoming nucleotide with 8-oxo-G. Results generated here for replicating the miscoding 8-oxo-G are compared to those published for the replication of the non-instructional abasic site. During the replication of both lesions, binding of the nucleotide substrate is controlled by energetics associated with nucleobase desolvation, whereas the rate constant for the polymerization step is influenced by the physical nature of the DNA lesion, that is, miscoding versus non-instructional. Collectively, these studies highlight the importance of nucleobase desolvation as a key physical feature that enhances the misreplication of structurally diverse DNA lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. High Fidelity Solar and Heliospheric Imaging at Low Radio Frequencies: Progress and Future Prospects (United States)

    Lonsdale, C.; Oberoi, D.; Kozarev, K. A.; Morgan, J.; Benkevitch, L. V.; Erickson, P. J.; Crowley, M.; McCauley, P.; Cairns, I.


    The latest generation of low frequency interferometric arrays is revolutionizing solar and heliospheric imaging capabilities. Via a combination of large numbers of independent antennas and greatly increased computing capacity, sufficient information can now be gathered and processed to generate high fidelity images at high time and frequency resolution. For the first time, it is possible to reconstruct spatially, temporally and spectrally complex solar emissions in detail, to measure interplanetary scintillation for many sources simultaneously over wide fields of view, and to track heliospheric disturbances via rapidly evolving propagation effects. These new and rapidly improving capabilities will help to address a range of long-standing scientific questions in the field. We review the current state of the art of low frequency imaging instruments, with particular emphasis on, and examples from, the Murchison Widefield Array (MWA). The limitations and challenges of such arrays are explored, and the prospects for next-generation ground and space based arrays yielding additional major advances in capability are reviewed.

  7. A Scalable Gene Synthesis Platform Using High-Fidelity DNA Microchips (United States)

    Kosuri, Sriram; Eroshenko, Nikolai; LeProust, Emily; Super, Michael; Way, Jeffrey; Li, Jin Billy; Church, George M.


    Development of cheap, high-throughput, and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology1. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis2. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude3,4,5, yet efforts to scale their use have been largely unsuccessful due to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols, and enzymatic error correction to develop a highly parallel gene synthesis platform. We tested our platform by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ~35 kilo-basepairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ~2.5 megabases of DNA, which is at least 50 times larger than previously published attempts. PMID:21113165

  8. High Fidelity Simulation of Liquid Jet in Cross-flow Using High Performance Computing (United States)

    Soteriou, Marios; Li, Xiaoyi


    High fidelity, first principles simulation of atomization of a liquid jet by a fast cross-flowing gas can help reveal the controlling physics of this complicated two-phase flow of engineering interest. The turn-around execution time of such a simulation is prohibitively long using typically available computational resources today (i.e. parallel systems with ~O(100) CPUs). This is due to multiscale nature of the problem which requires the use of fine grids and time steps. In this work we present results from such a simulation performed on a state of the art massively parallel system available at Oakridge Leadership Computing Facility (OLCF). Scalability of the computational algorithm to ~2000 CPUs is demonstrated on grids of up to 200 million nodes. As a result, a simulation at intermediate Weber number becomes possible on this system. Results are in agreement with detailed experiment measurements of liquid column trajectory, breakup location, surface wavelength, onset of surface stripping as well as droplet size and velocity after primary breakup. Moreover, this uniform grid simulation is used as a base case for further code enhancement by evaluating the feasibility of employing Adaptive Mesh Refinement (AMR) near the liquid-gas interface as a means of mitigating computational cost.

  9. High-fidelity simulation among bachelor students in simulation groups and use of different roles. (United States)

    Thidemann, Inger-Johanne; Söderhamn, Olle


    Cost limitations might challenge the use of high-fidelity simulation as a teaching-learning method. This article presents the results of a Norwegian project including two simulation studies in which simulation teaching and learning were studied among students in the second year of a three-year bachelor nursing programme. The students were organised into small simulation groups with different roles; nurse, physician, family member and observer. Based on experiences in different roles, the students evaluated the simulation design characteristics and educational practices used in the simulation. In addition, three simulation outcomes were measured; knowledge (learning), Student Satisfaction and Self-confidence in Learning. The simulation was evaluated to be a valuable teaching-learning method to develop professional understanding and insight independent of roles. Overall, the students rated the Student Satisfaction and Self-confidence in Learning as high. Knowledge about the specific patient focus increased after the simulation activity. Students can develop practical, communication and collaboration skills, through experiencing the nurse's role. Assuming the observer role, students have the potential for vicarious learning, which could increase the learning value. Both methods of learning (practical experience or vicarious learning) may bridge the gap between theory and practice and contribute to the development of skills in reflective and critical thinking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Effective gene editing by high-fidelity base editor 2 in mouse zygotes

    Directory of Open Access Journals (Sweden)

    Puping Liang


    Full Text Available ABSTRACT Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease-causing mutations in patients. However, problems such as mosaicism and low mutagenesis efficiency continue to pose challenges to clinical application of such approaches. Recently, a base editor (BE system built on cytidine (C deaminase and CRISPR/Cas9 technology was developed as an alternative method for targeted point mutagenesis in plant, yeast, and human cells. Base editors convert C in the deamination window to thymidine (T efficiently, however, it remains unclear whether targeted base editing in mouse embryos is feasible. In this report, we generated a modified high-fidelity version of base editor 2 (HF2-BE2, and investigated its base editing efficacy in mouse embryos. We found that HF2-BE2 could convert C to T efficiently, with up to 100% biallelic mutation efficiency in mouse embryos. Unlike BE3, HF2-BE2 could convert C to T on both the target and non-target strand, expanding the editing scope of base editors. Surprisingly, we found HF2-BE2 could also deaminate C that was proximal to the gRNA-binding region. Taken together, our work demonstrates the feasibility of generating point mutations in mouse by base editing, and underscores the need to carefully optimize base editing systems in order to eliminate proximal-site deamination.

  11. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy

    CERN Document Server

    Xu, Zhongxiao; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi


    Receiving a photonic qubit, storing it with long lifetime and retrieving it with high fidelity are crucial for constructing quantum networks. Photonic polarization qubits (PPQs) are extensively used for encoding and transmitting quantum information since they are easily manipulated and analyzed. Dynamic Electromagnetically induced transparency (EIT) in atoms is an efficient process to store PPQs which has been studied. However, due to the decoherence induced by magnetic field fluctuations, the lifetime of the qubit memory is limited and the achieved longest lifetime in EIT based system is only about 470us, so far. Here we present an EIT based millisecond storage in which a moderate magnetic field is applied on a cold atom cloud to lift Zeeman degeneracy. PPQ states can be stored as two magnetic field insensitive spin waves and the influence of magnetic field sensitive spin waves on the storage is almost totally avoided. The measured average fidelity of polarization states is 0.986 at 200us and 0.784 at 4.5ms.

  12. Client predictors of employment outcomes in high-fidelity supported employment: a regression analysis. (United States)

    Campbell, Kikuko; Bond, Gary R; Drake, Robert E; McHugo, Gregory J; Xie, Haiyi


    Research on vocational rehabilitation for clients with severe mental illness over the past 2 decades has yielded inconsistent findings regarding client factors statistically related to employment. The present study aimed to elucidate the relationship between baseline client characteristics and competitive employment outcomes-job acquisition and total weeks worked during an 18-month follow-up-in Individual Placement and Support (IPS). Data from 4 recent randomized controlled trials of IPS were aggregated for within-group regression analyses. In the IPS sample (N = 307), work history was the only significant predictor for job acquisition, but receiving Supplemental Security Income-with or without Social Security Disability Insurance-was associated with fewer total weeks worked (2.0%-2.8% of the variance). In the comparison sample (N = 374), clients with a diagnosis of mood disorder or with less severe thought disorder symptoms were more likely to obtain competitive employment. The findings confirm that clients with severe mental illness interested in competitive work best benefit from high-fidelity supported employment regardless of their work history and sociodemographic and clinical background, and highlight the needs for changes in federal policies for disability income support and insurance regulations.

  13. Embedding Microethical Dilemmas in High-Fidelity Simulation Scenarios: Preparing Nursing Students for Ethical Practice. (United States)

    Krautscheid, Lorretta C


    Despite the inclusion of ethics education in the formal curriculum, students felt ill-prepared to manage ethical issues and protect patients' health and well-being. Nursing students reported knowing what should be done to promote optimal patient care; however, they also reported an inability to act on their convictions due to fear of reprisal, powerlessness, and low confidence. Bloom's Taxonomy guided the development and implementation of experiential-applied ethics education via microethical dilemmas embedded in existing high-fidelity simulation (HFS) scenarios. Students were unaware that ethical dilemmas would be presented, replicating complex and spontaneous practice environments. Students reported that the educational strategy was powerful, increasing ethical decision-making confidence, empowering effective advocacy, and building courage to overcome fears and defend ethical practice. Simulation extends ethics education beyond the cognitive domain, ensuring the purposeful integration of affective and psychomotor learning, which promotes congruence between knowing what to do and acting on one's convictions. [J Nurs Educ. 2017;56(1):55-58.]. Copyright 2017, SLACK Incorporated.

  14. Assessment of a high-fidelity mobile simulator for intrauterine contraception training in ambulatory reproductive health centres

    Directory of Open Access Journals (Sweden)

    Laura E. Dodge


    Full Text Available Objectives. Little is known about the utility of simulation-based training in office gynaecology. The objective of this cross-sectional study was to evaluate the self-reported effectiveness and acceptability of the PelvicSim™ (VirtaMed, a high-fidelity mobile simulator, to train clinicians in intrauterine device (IUD insertion. Methods. Clinicians at ambulatory healthcare centres participated in a PelvicSim IUD training programme and completed a self-administered survey. The survey assessed prior experience with IUD insertion, pre- and post-training competency and comfort and opinions regarding the acceptability of the PelvicSim. Results. The 237 participants were primarily female (97.5% nurse practitioners (71.3%. Most had experience inserting the levonorgestrel LNG20 IUD and the copper T380A device, but only 4.1% had ever inserted the LNG14 IUD. For all three devices, participants felt more competent following training, with the most striking change reported for insertion of the LNG14 IUD. The majority of participants reported increased comfort with uterine sounding (57.7%, IUD insertion on a live patient (69.8%, and minimizing patient pain (72.8% following training. Of the respondents, 89.6% reported the PelvicSim IUD insertion activities as “valuable” or “very valuable.” All participants would recommend the PelvicSim for IUD training, and nearly all (97.2% reported that the PelvicSim was a better method to teach IUD insertion than the simple plastic models supplied by IUD manufacturers. Conclusions. These findings support the use of the PelvicSim for IUD training, though whether it is superior to traditional methods and improves patient outcomes requires evaluation.

  15. The Importance of Water for High Fidelity Information Processing and for Life (United States)

    Hoehler, Tori M.; Pohorille, Andrew


    Is water an absolute prerequisite for life? Life depends on a variety of non-covalent interactions among molecules, the nature of which is determined as much by the solvent in which they occur as by the molecules themselves. Catalysis and information processing, two essential functions of life, require non-covalent molecular recognition with very high specificity. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g ., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity > 107 : 1 for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in non-polar solvents, but the resulting complexes are too stable to be "unmade" with sufficient frequency to confer thermodynamic control on the system. An electrostatic molecular complex representing 3 units of information (e.g., 3 base pairs) with specificity > 107 per unit has a stability in non-polar solvent comparable to that of a carbon-carbon bond at room temperature. These considerations suggest that water, or a solvent with properties very like water, is necessary to support high-fidelity information processing, and can therefore be considered a critical prerequisite for life.

  16. Advancing interprofessional education through the use of high fidelity human patient simulators

    Directory of Open Access Journals (Sweden)

    Kane-Gill SL


    Full Text Available Background: Modern medical care increasingly requires coordinated teamwork and communication between healthcare professionals of different disciplines. Unfortunately, healthcare professional students are rarely afforded the opportunity to learn effective methods of interprofessional (IP communication and teamwork strategies during their education. The question of how to best incorporate IP interactions in the curricula of the schools of health professions remains unanswered.Objective: We aim to solve the lack of IP education in the pharmacy curricula through the use of high fidelity simulation (HFS to allow teams of medical, pharmacy, nursing, physician assistant, and social work students to work together in a controlled environment to solve cases of complex medical and social issues.Methods: Once weekly for a 4-week time period, students worked together to complete complex simulation scenarios in small IP teams consisting of pharmacy, medical, nursing, social work, and physician assistant students. Student perception of the use of HFS was evaluated by a survey given at the conclusion of the HFS sessions. Team communication was evaluated through the use of Communication and Teamwork Skills (CATS Assessment by 2 independent evaluators external to the project.Results: The CATS scores improved from the HFS sessions 1 to 2 (p = 0.01, 2 to 3 (p = 0.035, and overall from 1 to 4 (p = 0.001. The inter-rater reliability between evaluators was high (0.85, 95% CI 0.71, 0.99. Students perceived the HFS improved: their ability to communicate with other professionals (median =4; confidence in patient care in an IP team (median=4. It also stimulated student interest in IP work (median=4.5, and was an efficient use of student time (median=4.5Conclusion: The use of HFS improved student teamwork and communication and was an accepted teaching modality. This method of exposing students of the health sciences to IP care should be incorporated throughout the

  17. High fidelity numerical simulation of airfoil thickness and kinematics effects on flapping airfoil propulsion (United States)

    Yu, Meilin; Wang, Z. J.; Hu, Hui


    High-fidelity numerical simulations with the spectral difference (SD) method are carried out to investigate the unsteady flow over a series of oscillating NACA 4-digit airfoils. Airfoil thickness and kinematics effects on the flapping airfoil propulsion are highlighted. It is confirmed that the aerodynamic performance of airfoils with different thickness can be very different under the same kinematics. Distinct evolutionary patterns of vortical structures are analyzed to unveil the underlying flow physics behind the diverse flow phenomena associated with different airfoil thickness and kinematics and reveal the synthetic effects of airfoil thickness and kinematics on the propulsive performance. Thickness effects at various reduced frequencies and Strouhal numbers for the same chord length based Reynolds number (=1200) are then discussed in detail. It is found that at relatively small Strouhal number (=0.3), for all types of airfoils with the combined pitching and plunging motion (pitch angle 20°, the pitch axis located at one third of chord length from the leading edge, pitch leading plunge by 75°), low reduced frequency (=1) is conducive for both the thrust production and propulsive efficiency. Moreover, relatively thin airfoils (e.g. NACA0006) can generate larger thrust and maintain higher propulsive efficiency than thick airfoils (e.g. NACA0030). However, with the same kinematics but at relatively large Strouhal number (=0.45), it is found that airfoils with different thickness exhibit diverse trend on thrust production and propulsive efficiency, especially at large reduced frequency (=3.5). Results on effects of airfoil thickness based Reynolds numbers indicate that relative thin airfoils show superior propulsion performance in the tested Reynolds number range. The evolution of leading edge vortices and the interaction between the leading and trailing edge vortices play key roles in flapping airfoil propulsive performance.

  18. Numerical Simulation of Squeezing Failure in a Coal Mine Roadway due to Mining-Induced Stresses (United States)

    Gao, Fuqiang; Stead, Doug; Kang, Hongpu


    Squeezing failure is a common failure mechanism experienced in underground coal mine roadways due mainly to mining-induced stresses, which are much higher than the strength of rock mass surrounding an entry. In this study, numerical simulation was carried out to investigate the mechanisms of roadway squeezing using a novel UDEC Trigon approach. A numerical roadway model was created based on a case study at the Zhangcun coal mine in China. Coal extraction using the longwall mining method was simulated in the model with calculation of the mining-induced stresses. The process of roadway squeezing under severe mining-induced stresses was realistically captured in the model. Deformation phenomena observed in field, including roof sag, wall convexity and failed rock bolts are realistically produced in the UDEC Trigon model.

  19. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen [Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492 (Japan); Fujiwara, Mikio; Sasaki, Masahide [Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795 (Japan); Koashi, Masato [Photon Science Center, The University of Tokyo, Bunkyo-ku, 113-8656 (Japan)


    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.

  20. A High Fidelity Computational Tool for Modeling Thermal Vent Systems in Cryogenic Tanks Project (United States)

    National Aeronautics and Space Administration — Control and management of cryogenic propellant tank pressures in low gravity is an important technical challenge to overcome for future long duration space missions....

  1. Acceleration of PIC and CR algorithms for High Fidelity In-Space Propulsion Modeling (Briefing Charts) (United States)


    Lederman , J.-L. Cambier 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q0AE 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...Accelerated PIC ( Lederman /Gimelsheins/Martin/TBD) *Note: Former Co-op Student Work to be Integrated into Framework R.S. MARTIN (AFRL/RQRS) DISTRIBUTION A

  2. High Fidelity Modeling of SRP and Its Effect on the Relative Motion of Starshade and WFIRST (United States)

    Farres, Ariadna; Webster, Cassandra; Folta, Dave


    In this paper we perform a detailed analysis of how Solar Radiation Pressure (SRP) affects the relative motion of two spacecrafts, the Wide-Field Infrared Survey Telescope (WFIRST) and Starshade, orbiting in the vicinity of the Sun-Earth L2. While WFIRST orbits about its own Libration Point Orbit (LPO), Starshade will fly a specific trajectory to align with WFIRST and observe a Design Reference Mission of pre-determined target stars. In this analysis, we focus on the transfer orbit for Starshade from one observation to the other. We will describe how SRP affects the dynamics of the Starshade relative to WFIRSTand how relevant this effect is in order to get an accurate estimate of the total difference in velocity (delta v).

  3. Development, Verification and Experimental Analysis of High-Fidelity Mathematical Models for Control Moment Gyros (United States)


    S. Oh and S. R. Vadali, "Maneuvering Strategies using CMGs" (Goddard Flight Mechanics/Estimation Theory Symposium, Space Flight Center, Greenbelt...Gyroscope Damping for Geocentric Attitude Control." Air Force Office of Scientific Research Report PIBMRI-1147-63, (May, 1963). Morine, L. A. and B. J...Technical Note D-5829, (1970). Oh, H. S. and S. R. Vadali. "Maneuvering Strategies using CMGs." Flight Mechanics/Estimation Theory Symposium, Goddard

  4. High Fidelity Modeling of Field-Reversed Configuration (FRC) Thrusters (Briefing Charts) (United States)


    New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia “PLoS ONE”. 4 (7), ss. e6190 (2009). doi:10.1371/journal.pone.0006190...White, TR Tischler, AG Cook et al. New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia “PLoS ONE”. 4 (7), ss. e6190 (2009... Dinosaur or Snake?) Fluids Example SA Hocknull, MA White, TR Tischler, AG Cook et al. New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton

  5. Automated discrete electron tomography – Towards routine high-fidelity reconstruction of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhuge, Xiaodong [Computational Imaging, Centrum Wiskunde & Informatica, Science park 123, 1098XG Amsterdam (Netherlands); Jinnai, Hiroshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Dunin-Borkowski, Rafal E.; Migunov, Vadim [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Bals, Sara [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Cool, Pegie [Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Bons, Anton-Jan [European Technology Center, ExxonMobil Chemical Europe Inc., Hermeslaan 2, B-1831 Machelen (Belgium); Batenburg, Kees Joost [Computational Imaging, Centrum Wiskunde & Informatica, Science park 123, 1098XG Amsterdam (Netherlands)


    Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials. - Highlights: • Automated discrete electron tomography capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts and requires significantly

  6. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu; Xiao-Bi Xie


    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  7. Are Simulation Stethoscopes a Useful Adjunct for Emergency Residents' Training on High-Fidelity Mannequins?

    Directory of Open Access Journals (Sweden)

    Steven J Warrington


    Full Text Available Introduction: Emergency medicine residents use simulation training for many reasons, such as gaining experience with critically ill patients and becoming familiar with disease processes. Residents frequently criticize simulation training using current high-fidelity mannequins due to the poor quality of physical exam findings present, such as auscultatory findings, as it may lead them down an alternate diagnostic or therapeutic pathway. Recently wireless remote programmed stethoscopes (simulation stethoscopes have been developed that allow wireless transmission of any sound to a stethoscope receiver, which improves the fidelity of a physical examination and the simulation case. Methods: Following institutional review committee approval, 14 PGY1-3 emergency medicine residents were assessed during 2 simulation-based cases using pre-defined scoring anchors on multiple actions, such as communication skills and treatment decisions (Appendix 1. Each case involved a patient presenting with dyspnea requiring management based off physical examination findings. One case was a patient with exacerbation of heart failure, while the other was a patient with a tension pneumothorax. Each resident was randomized into a case associated with the simulation stethoscope. Following the cases residents were asked to fill out an evaluation questionnaire. Results: Residents perceived the most realistic physical exam findings on those associated with the case using the simulation stethoscope (13/14, 93%. Residents also preferred the simulation stethoscope as an adjunct to the case (13/14, 93%, and they rated the simulation stethoscope case to have significantly more realistic auscultatory findings (4.4/5 vs. 3.0/5 difference of means 1.4, P = 0.0007. Average scores of residents were significantly better in the simulation stethoscope-associated case (2.5/3 vs. 2.3/3 difference of means 0.2, P = 0.04. There was no considerable difference in the total time taken per case

  8. Evaluation of Heart Rate Assessment Timing, Communication, Accuracy, and Clinical Decision-Making during High Fidelity Simulation of Neonatal Resuscitation

    Directory of Open Access Journals (Sweden)

    Win Boon


    Full Text Available Objective. Accurate heart rate (HR determination during neonatal resuscitation (NR informs subsequent NR actions. This study’s objective was to evaluate HR determination timeliness, communication, and accuracy during high fidelity NR simulations that house officers completed during neonatal intensive care unit (NICU rotations. Methods. In 2010, house officers in NICU rotations completed high fidelity NR simulation. We reviewed 80 house officers’ videotaped performance on their initial high fidelity simulation session, prior to training and performance debriefing. We calculated the proportion of cases congruent with NR guidelines, using chi square analysis to evaluate performance across HR ranges relevant to NR decision-making: <60, 60–99, and ≥100 beats per minute (bpm. Results. 87% used umbilical cord palpation, 57% initiated HR assessment within 30 seconds, 70% were accurate, and 74% were communicated appropriately. HR determination accuracy varied significantly across HR ranges, with 87%, 57%, and 68% for HR <60, 60–99, and ≥100 bpm, respectively (P<0.001. Conclusions. Timeliness, communication, and accuracy of house officers’ HR determination are suboptimal, particularly for HR 60–100 bpm, which might lead to inappropriate decision-making and NR care. Training implications include emphasizing more accurate HR determination methods, better communication, and improved HR interpretation during NR.

  9. 49 CFR 214.313 - Responsibility of individual roadway workers. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Responsibility of individual roadway workers. 214... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.313 Responsibility of individual roadway workers. (a) Each roadway worker is responsible for...

  10. 49 CFR 214.345 - Training for all roadway workers. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Training for all roadway workers. 214.345 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.345 Training for all roadway workers. The training of all roadway workers shall include, as a minimum, the...

  11. 49 CFR 236.1049 - Training specific to roadway workers. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Training specific to roadway workers. 236.1049... Train Control Systems § 236.1049 Training specific to roadway workers. (a) Roadway worker training. Training required under this subpart for a roadway worker shall be integrated into the program of...

  12. Autodesk Roadway Design for Infraworks 360 essentials

    CERN Document Server

    Chappell, Eric


    Quickly master InfraWorks Roadway Design with hands-on tutorials Autodesk Roadway Design for InfraWorks 360 Essentials, 2nd Edition allows you to begin designing immediately as you learn the ins and outs of the roadway-specific InfraWorks module. Detailed explanations coupled with hands-on exercises help you get up to speed and quickly and become productive with the module's core features and functions. Compelling screenshots illustrate step-by-step tutorials, and the companion website provides downloadable starting and ending files so you can jump in at any point and compare your work to the

  13. Influence of roadway geometric elements on driver behavior when overtaking bicycles on rural roads

    Directory of Open Access Journals (Sweden)

    Jeremy R. Chapman


    Full Text Available The objective of this research was to determine what influence geometric design elements of roadway may have on driver behavior during the overtaking maneuver. This was part of a larger research effort to eliminate crashes (and the resulting fatalities and injuries between bicycles and motorized vehicles. The data collection process produced 1151 observations with approximately 40 different independent variables for each data point through direct observation, sensor logging, or derivation from other independent variables. Prior research by the authors developed a means to collect real-time field data through the use of a bicycle-mounted data collection system. The collected data was then used to model lateral clearance distance between vehicles and bicycles. The developed model confirmed field observations that the lateral clearance distance provided by drivers changes with vehicle speed and oncoming vehicle presence. These observations were presented by the authors previously. The model shows that driver behavior can be adjusted by the inclusion, or exclusion, of geometric elements. Evaluating roadways (or roadway designs based on this model will enable stakeholders to identify those roadway segments where a paved shoulder would prove an effective safety countermeasure. This research will also enable roadway designers to better identify during the design phase those roadway segments that should be constructed with a paved shoulder.

  14. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Visbal, Miguel R.; Gordnier, Raymond E.; Galbraith, Marshall C. [Air Force Research Laboratory, Computational Sciences Branch, Air Vehicles Directorate, Wright-Patterson AFB, OH (United States)


    The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re{sub c} = 10 {sup 4}), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re{sub c}=10 {sup 4

  15. An exact and consistent adjoint method for high-fidelity discretization of the compressible flow equations (United States)

    Subramanian, Ramanathan Vishnampet Ganapathi

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme

  16. Calculation of the Chilling Requirement for Air Conditioning in the Excavation Roadway

    Directory of Open Access Journals (Sweden)

    Yueping Qin


    Full Text Available To effectively improve the climate conditions of the excavation roadway in coal mine, the calculation of the chilling requirement taking air conditioning measures is extremely necessary. The temperature field of the surrounding rock with moving boundary in the excavation roadway was numerically simulated by using finite volume method. The unstable heat transfer coefficient between the surrounding rock and air flow was obtained via the previous calculation. According to the coupling effects of the air flow inside and outside air duct, the differential calculation mathematical model of air flow temperature in the excavation roadway was established. The chilling requirement was calculated with the selfdeveloped computer program for forecasting the required cooling capacity of the excavation roadway. A good air conditioning effect had been observed after applying the calculated results to field trial, which indicated that the prediction method and calculation procedure were reliable.

  17. The use of high-fidelity manikins for advanced life support training--A systematic review and meta-analysis. (United States)

    Cheng, Adam; Lockey, Andrew; Bhanji, Farhan; Lin, Yiqun; Hunt, Elizabeth A; Lang, Eddy


    The objective of this study was to evaluate the effectiveness of high versus low fidelity manikins in the context of advanced life support training for improving knowledge, skill performance at course conclusion, skill performance between course conclusion and one year, skill performance at one year, skill performance in actual resuscitations, and patient outcomes. A systematic search of Pubmed, Embase and Cochrane databases was conducted through January 31, 2014. We included two-group non-randomized and randomized studies in any language comparing high versus low fidelity manikins for advanced life support training. Reviewers worked in duplicate to extract data on learners, study design, and outcomes. The GRADE (Grades of Recommendation, Assessment, Development and Evaluation) approach was used to evaluate the overall quality of evidence for each outcome. 3840 papers were identified from the literature search of which 14 were included (13 randomized controlled trials; 1 non-randomized controlled trial). Meta-analysis of studies reporting skill performance at course conclusion demonstrated a moderate benefit for high fidelity manikins when compared with low fidelity manikins [Standardized Mean Difference 0.59; 95% CI 0.13-1.05]. Studies measuring skill performance at one year, skill performance between course conclusion and one year, and knowledge demonstrated no significant benefit for high fidelity manikins. The use of high fidelity manikins for advanced life support training is associated with moderate benefits for improving skills performance at course conclusion. Future research should define the optimal means of tailoring fidelity to enhance short and long term educational goals and clinical outcomes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. The effectiveness of high fidelity simulation on medical-surgical registered nurses' ability to recognise and respond to clinical emergencies. (United States)

    Buckley, Thomas; Gordon, Christopher


    There is a paucity of evidence regarding the efficacy in preparing medical-surgical nurses to respond to patients with acutely deteriorating conditions. The aim of this study was to evaluate registered nurses' ability to respond to the deteriorating patient in clinical practise following training using immersive simulation and use of a high fidelity simulator. This study was a follow-up survey of medical-surgical graduate nurses following immersive high fidelity simulation training. Thirty eight registered nurses practising in medical-surgical areas completed the simulation as part of university graduate study. A follow-up survey of the graduate medical-surgical registered nurses conducted three months following completion of a high fidelity simulation-based learning experience. Outcomes consisted of the number of times skills were used in practise and the usefulness of simulation in preparing for actual emergency events. Participants reported a total of 164 clinical patient emergencies in the follow-up time period including: 46% cardiac, 32% respiratory, 10% neurological, 7% cardiac arrest and 5% related to electrolyte disturbances. The ability to respond in a systematic way, handover to the emergency team and airway management were identified as the skills most improved during patient emergencies following simulation. The most useful aspects of the simulation experience identified were scenario debriefing and assertiveness training. Participants with less years of clinical experience were more likely to report practising the team leader role and debriefing as the most useful aspects of simulation. The skills practised in simulation were highly relevant to participants practise in medical-surgical areas. Non-technical skills, including assertiveness skills should be considered in future emergency training courses for nurses. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The effect of high-fidelity patient simulation on the critical thinking and clinical decision-making skills of new graduate nurses. (United States)

    Maneval, Rhonda; Fowler, Kimberly A; Kays, John A; Boyd, Tiffany M; Shuey, Jennifer; Harne-Britner, Sarah; Mastrine, Cynthia


    This study was conducted to determine whether the addition of high-fidelity patient simulation to new nurse orientation enhanced critical thinking and clinical decision-making skills. A pretest-posttest design was used to assess critical thinking and clinical decision-making skills in two groups of graduate nurses. Compared with the control group, the high-fidelity patient simulation group did not show significant improvement in mean critical thinking or clinical decision-making scores. When mean scores were analyzed, both groups showed an increase in critical thinking scores from pretest to posttest, with the high-fidelity patient simulation group showing greater gains in overall scores. However, neither group showed a statistically significant increase in mean test scores. The effect of high-fidelity patient simulation on critical thinking and clinical decision-making skills remains unclear. Copyright 2012, SLACK Incorporated.

  20. Deformation mechanisms in a coal mine roadway in extremely swelling soft rock. (United States)

    Li, Qinghai; Shi, Weiping; Yang, Renshu


    The problem of roadway support in swelling soft rock was one of the challenging problems during mining. For most geological conditions, combinations of two or more supporting approaches could meet the requirements of most roadways; however, in extremely swelling soft rock, combined approaches even could not control large deformations. The purpose of this work was to probe the roadway deformation mechanisms in extremely swelling soft rock. Based on the main return air-way in a coal mine, deformation monitoring and geomechanical analysis were conducted, as well as plastic zone mechanical model was analysed. Results indicated that this soft rock was potentially very swelling. When the ground stress acted alone, the support strength needed in situ was not too large and combined supporting approaches could meet this requirement; however, when this potential released, the roadway would undergo permanent deformation. When the loose zone reached 3 m within surrounding rock, remote stress p ∞ and supporting stress P presented a linear relationship. Namely, the greater the swelling stress, the more difficult it would be in roadway supporting. So in this extremely swelling soft rock, a better way to control roadway deformation was to control the releasing of surrounding rock's swelling potential.

  1. Impact of high-fidelity simulation on the development of clinical judgment and motivation among Lebanese nursing students. (United States)

    Fawaz, Mirna A; Hamdan-Mansour, Ayman M


    High-fidelity simulation (HFS) offers a strategy to facilitate cognitive, affective, and psychomotor outcomes and motivate the new generation of students. The purpose of this study was to examine the impact of using high-fidelity simulation on the development of clinical judgment and motivation among Lebanese nursing students. A post-test, quasi-experimental design was used. Two private universities in Lebanon were targeted to implement the intervention. A convenience sample of 56 nursing students from two private universities in Lebanon were recruited. Data were collected using the Lasater Clinical Judgment Rubric and the Motivated Strategies for Learning questionnaires. Nursing students exhibited significant improvement in clinical judgment and motivation due to exposure to HFS. There was a significant difference post HFS between the intervention group and the control group in clinical judgment intervention (t=5.23, pmotivation for academic achievement (t=-6.71, pmotivation (198.6, SD=10.5) in the intervention group than in the control group (161.6, SD=20). The analysis related to differences between the intervention and control groups in motivation and clinical judgment; controlling for previous experience in health care services, the analysis showed no significant difference (Wilk's lambda =0.77, F=1.09, p=0.374). There is a need for nursing educators to implement HFS in nursing curricula, where its integration can bridge the gap between theoretical knowledge and nursing practice and enhance critical thinking and motivation among nursing students. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Evaluation of Life Cycle Assessment (LCA) for Roadway Drainage Systems. (United States)

    Byrne, Diana M; Grabowski, Marta K; Benitez, Amy C B; Schmidt, Arthur R; Guest, Jeremy S


    Roadway drainage design has traditionally focused on cost-effectively managing water quantity; however, runoff carries pollutants, posing risks to the local environment and public health. Additionally, construction and maintenance incur costs and contribute to global environmental impacts. While life cycle assessment (LCA) can potentially capture local and global environmental impacts of roadway drainage and other stormwater systems, LCA methodology must be evaluated because stormwater systems differ from wastewater and drinking water systems to which LCA is more frequently applied. To this end, this research developed a comprehensive model linking roadway drainage design parameters to LCA and life cycle costing (LCC) under uncertainty. This framework was applied to 10 highway drainage projects to evaluate LCA methodological choices by characterizing environmental and economic impacts of drainage projects and individual components (basin, bioswale, culvert, grass swale, storm sewer, and pipe underdrain). The relative impacts of drainage components varied based on functional unit choice. LCA inventory cutoff criteria evaluation showed the potential for cost-based criteria, which performed better than mass-based criteria. Finally, the local aquatic benefits of grass swales and bioswales offset global environmental impacts for four impact categories, highlighting the need to explicitly consider local impacts (i.e., direct emissions) when evaluating drainage technologies.

  3. Sensitivity Analysis of Mechanical Parameters of Different Rock Layers to the Stability of Coal Roadway in Soft Rock Strata (United States)

    Zhao, Zeng-hui; Wang, Wei-ming; Gao, Xin; Yan, Ji-xing


    According to the geological characteristics of Xinjiang Ili mine in western area of China, a physical model of interstratified strata composed of soft rock and hard coal seam was established. Selecting the tunnel position, deformation modulus, and strength parameters of each layer as influencing factors, the sensitivity coefficient of roadway deformation to each parameter was firstly analyzed based on a Mohr-Columb strain softening model and nonlinear elastic-plastic finite element analysis. Then the effect laws of influencing factors which showed high sensitivity were further discussed. Finally, a regression model for the relationship between roadway displacements and multifactors was obtained by equivalent linear regression under multiple factors. The results show that the roadway deformation is highly sensitive to the depth of coal seam under the floor which should be considered in the layout of coal roadway; deformation modulus and strength of coal seam and floor have a great influence on the global stability of tunnel; on the contrary, roadway deformation is not sensitive to the mechanical parameters of soft roof; roadway deformation under random combinations of multi-factors can be deduced by the regression model. These conclusions provide theoretical significance to the arrangement and stability maintenance of coal roadway. PMID:24459447

  4. Creating a highway information system for safety roadway features. (United States)


    Roadway departures are the leading cause of roadside fatalities. The Kentucky Transportation Cabinet (KYTC) has : undertaken a number of roadside safety measures to reduce roadway departures. Specifically, KYTC has installed : several low-cost, syste...

  5. Roadway weather information system and automatic vehicle location (AVL) coordination. (United States)


    Roadway Weather Information System and Automatic Vehicle Location Coordination involves the : development of an Inclement Weather Console that provides a new capability for the state of Oklahoma : to monitor weather-related roadway conditions. The go...

  6. Influence of cantilevered sheet pile deflection on adjacent roadways. (United States)


    Cantilevered sheet pile walls are often used adjacent roadways as temporary support during construction. Excess movement of these walls has led to excessive roadway distress causing additional repairs to be necessary. This study assessed the effects ...

  7. High fidelity medical simulation in the difficult environment of a helicopter: feasibility, self-efficacy and cost

    Directory of Open Access Journals (Sweden)

    Holland Carolyn


    Full Text Available Abstract Background This study assessed the feasibility, self-efficacy and cost of providing a high fidelity medical simulation experience in the difficult environment of an air ambulance helicopter. Methods Seven of 12 EM residents in their first postgraduate year participated in an EMS flight simulation as the flight physician. The simulation used the Laerdal SimMan™ to present a cardiac and a trauma case in an EMS helicopter while running at flight idle. Before and after the simulation, subjects completed visual analog scales and a semi-structured interview to measure their self-efficacy, i.e. comfort with their ability to treat patients in the helicopter, and recognition of obstacles to care in the helicopter environment. After all 12 residents had completed their first non-simulated flight as the flight physician; they were surveyed about self-assessed comfort and perceived value of the simulation. Continuous data were compared between pre- and post-simulation using a paired samples t-test, and between residents participating in the simulation and those who did not using an independent samples t-test. Categorical data were compared using Fisher's exact test. Cost data for the simulation experience were estimated by the investigators. Results The simulations functioned correctly 5 out of 7 times; suggesting some refinement is necessary. Cost data indicated a monetary cost of $440 and a time cost of 22 hours of skilled instructor time. The simulation and non-simulation groups were similar in their demographics and pre-hospital experiences. The simulation did not improve residents' self-assessed comfort prior to their first flight (p > 0.234, but did improve understanding of the obstacles to patient care in the helicopter (p = 0.029. Every resident undertaking the simulation agreed it was educational and it should be included in their training. Qualitative data suggested residents would benefit from high fidelity simulation in other

  8. [Evaluation of the impact and efficiency of high-fidelity simulation for neonatal resuscitation in midwifery education]. (United States)

    Coyer, C; Gascoin, G; Sentilhes, L; Savagner, C; Berton, J; Beringue, F


    Prompt initiation of appropriate neonatal resuscitation skills is critical for the neonate experiencing difficulty transitioning to extra-uterine life. Expertise in neonatal resuscitation is essential for personnel involved in the care of newborns, above all for midwives who are sometimes alone to initiate the first resuscitation. The use of simulation training is considered to be an indispensable tool to address these challenges, not only in continuing education but also in midwifery education. The aim of this study was to evaluate the impact and efficiency of high-fidelity simulation for neonatal resuscitation in midwifery education. This was a prospective monocentric study conducted in the Angers university hospital between October and December 2012 and included two groups of midwifery students (n=40) who received high-fidelity simulation as part of their basic midwifery education. Participants' perceptions of the knowledge, skills, and confidence gained following training in high-fidelity simulation for neonatal resuscitation were determined using a pre-/post-test questionnaire design completed during the training and also several months after the course, as well as after the students had begun working. A satisfaction survey to evaluate this training was also completed at the same time. With a good participation rate (67.5%), the survey showed a high degree of satisfaction among the participants. This training was described as facilitating their hire in one third of cases. A significant increase in self-assessment of skills scores was observed between the pre-test and post-test (Phigher than that obtained on the pre-test (P=0.03). The significant improvement in knowledge during the session and its preservation after a few months confirmed the efficacy of this teaching method. The simulation training increased the participants' perceptions of their knowledge, skills, and confidence in conducting neonatal resuscitation. These preliminary results are very

  9. High-fidelity medical simulation training improves medical students' knowledge and confidence levels in septic shock resuscitation

    Directory of Open Access Journals (Sweden)

    Vattanavanit V


    Full Text Available Veerapong Vattanavanit, Jarernporn Kawla-ied, Rungsun Bhurayanontachai Division of Critical Care Medicine, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand Background: Septic shock resuscitation bundles have poor compliance worldwide partly due to a lack of knowledge and clinical skills. High-fidelity simulation-based training is a new teaching technology in our faculty which may improve the performance of medical students in the resuscitation process. However, since the efficacy of this training method in our institute is limited, we organized an extra class for this evaluation.Purpose: The aim was to evaluate the effect on medical students’ knowledge and confidence levels after the high-fidelity medical simulation training in septic shock management.Methods: A retrospective study was performed in sixth year medical students during an internal medicine rotation between November 2015 and March 2016. The simulation class was a 2-hour session of a septic shock management scenario and post-training debriefing. Knowledge assessment was determined by a five-question pre-test and post-test examination. At the end of the class, the students completed their confidence evaluation questionnaire.Results: Of the 79 medical students, the mean percentage score ± standard deviation (SD of the post-test examination was statistically significantly higher than the pre-test (66.83%±19.7% vs 47.59%±19.7%, p<0.001. In addition, the student mean percentage confidence level ± SD in management of septic shock was significantly better after the simulation class (68.10%±12.2% vs 51.64%±13.1%, p<0.001. They also strongly suggested applying this simulation class to the current curriculum.Conclusion: High-fidelity medical simulation improved the students’ knowledge and confidence in septic shock resuscitation. This simulation class should be included in the curriculum of the sixth year medical students

  10. Teaching childbirth with high-fidelity simulation. Is it better observing the scenario during the briefing session? (United States)

    Cuerva, Marcos J; Piñel, Carlos S; Martin, Lourdes; Espinosa, Jose A; Corral, Octavio J; Mendoza, Nicolás


    The design of optimal courses for obstetric undergraduate teaching is a relevant question. This study evaluates two different designs of simulator-based learning activity on childbirth with regard to respect to the patient, obstetric manoeuvres, interpretation of cardiotocography tracings (CTG) and infection prevention. This randomised experimental study which differs in the content of their briefing sessions consisted of two groups of undergraduate students, who performed two simulator-based learning activities on childbirth. The first briefing session included the observations of a properly performed scenario according to Spanish clinical practice guidelines on care in normal childbirth by the teachers whereas the second group did not include the observations of a properly performed scenario, and the students observed it only after the simulation process. The group that observed a properly performed scenario after the simulation obtained worse grades during the simulation, but better grades during the debriefing and evaluation. Simulator use in childbirth may be more fruitful when the medical students observe correct performance at the completion of the scenario compared to that at the start of the scenario. Impact statement What is already known on this subject? There is a scarcity of literature about the design of optimal high-fidelity simulation training in childbirth. It is known that preparing simulator-based learning activities is a complex process. Simulator-based learning includes the following steps: briefing, simulation, debriefing and evaluation. The most important part of high-fidelity simulations is the debriefing. A good briefing and simulation are of high relevance in order to have a fruitful debriefing session. What do the results of this study add? Our study describes a full simulator-based learning activity on childbirth that can be reproduced in similar facilities. The findings of this study add that high-fidelity simulation training in

  11. Use of reflective surfaces on roadway embankment

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Doré, Guy


    Temperature measurements have been used to study the effect of two reflective surfaces on a roadway embankment in Forêt Montmorency, Québec, Canada. Both tested materials, Mapelastic (from MAPEI) and Colored Slurry (from Tech-Mix), have lead to a reduction in n-factor and proved to have very good...... adherence characteristics for roadway use. In Kangerlussuaq Airport, western Greenland, ground-penetrating radar (GPR) has been used to compare the variation of the frost table underneath a normal black asphalt surface and a more reflective surface (white paint). The GPR results have shown a clear...

  12. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation (United States)

    Bowman, D.; Harte, T. L.; Chardonnet, V.; De Groot, C.; Denny, S. J.; Le Goc, G.; Anderson, M.; Ireland, P.; Cassettari, D.; Bruce, G. D.


    We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function which incorporates the inner product of the light field with a chosen target field within a defined measure region is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of $F=0.999997$ is achieved for a pattern resembling an $LG^{0}_{1}$ mode with a calculated light-usage efficiency of $41.5\\%$. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with $F = 0.97$ and $7.8\\%$ light efficiency.

  13. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong-Peng [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Shao, Bin, E-mail: [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Hu, Shuai; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain)


    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that the scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.

  14. Mapping high-fidelity volume rendering for medical imaging to CPU, GPU and many-core architectures. (United States)

    Smelyanskiy, Mikhail; Holmes, David; Chhugani, Jatin; Larson, Alan; Carmean, Douglas M; Hanson, Dennis; Dubey, Pradeep; Augustine, Kurt; Kim, Daehyun; Kyker, Alan; Lee, Victor W; Nguyen, Anthony D; Seiler, Larry; Robb, Richard


    Medical volumetric imaging requires high fidelity, high performance rendering algorithms. We motivate and analyze new volumetric rendering algorithms that are suited to modern parallel processing architectures. First, we describe the three major categories of volume rendering algorithms and confirm through an imaging scientist-guided evaluation that ray-casting is the most acceptable. We describe a thread- and data-parallel implementation of ray-casting that makes it amenable to key architectural trends of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel architecture code-named Larrabee. We achieve more than an order of magnitude performance improvement on a number of large 3D medical datasets. We further describe a data compression scheme that significantly reduces data-transfer overhead. This allows our approach to scale well to large numbers of Larrabee cores.

  15. From High Fidelity (1995 to Funny Girl (2014 or What Makes Nick Hornby’s Novels so Popular

    Directory of Open Access Journals (Sweden)

    Cristina Chifane


    Full Text Available From High Fidelity (1995 to Funny Girl (2014 or What Makes Nick Hornby’s Novels so Popular Abstract  The common and perhaps the most fascinating characteristic of all Nick Hornby’s novels is that they tackle contemporary problems of ordinary people. As a consequence, the readers will plunge into a world of failed relationships; fear of commitment; depression; lack of emotional stability; teenage anger and imbalance; frustration and obsession; invented maladies, sons or parties; disappointment and self-pity as well as useless single or group therapies. In spite of their dark problematic, Hornby’s novels have enjoyed popularity and continue to exert the sort of fascination that only brilliant literary pieces may produce. From such a point of view, this paper will try to solve the puzzle called Nick Hornby constructing and deconstructing the elements that make up his unique writing style.

  16. Realism in paediatric emergency simulations: A prospective comparison of in situ, low fidelity and centre-based, high fidelity scenarios. (United States)

    O'Leary, Fenton; Pegiazoglou, Ioannis; McGarvey, Kathryn; Novakov, Ruza; Wolfsberger, Ingrid; Peat, Jennifer


    To measure scenario participant and faculty self-reported realism, engagement and learning for the low fidelity, in situ simulations and compare this to high fidelity, centre-based simulations. A prospective survey of scenario participants and faculty completing in situ and centre-based paediatric simulations. There were 382 responses, 276 from scenario participants and 106 from faculty with 241 responses from in situ and 141 from centre-based simulations. Scenario participant responses showed significantly higher ratings for the centre-based simulations for respiratory rate (P = 0.007), pulse (P = 0.036), breath sounds (P = 0.002), heart sounds (P realism for engagement and learning. © 2017 The Authors Emergency Medicine Australasia published by John Wiley & Sons Australia, Ltd on behalf of Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  17. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation. (United States)

    Bowman, D; Harte, T L; Chardonnet, V; De Groot, C; Denny, S J; Le Goc, G; Anderson, M; Ireland, P; Cassettari, D; Bruce, G D


    We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function, which incorporates the inner product of the light field with a chosen target field within a defined measure region, is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of F = 0.999997 is achieved for a pattern resembling an LG10 mode with a calculated light-usage efficiency of 41.5%. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with F = 0.97 and 7.8% light efficiency.

  18. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns. (United States)

    Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E


    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  19. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns (United States)

    Czaplewski, David A.; Holt, Martin V.; Ocola, Leonidas E.


    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  20. Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design (United States)

    Whiffen, Gregory J.


    Mystic software is designed to compute, analyze, and visualize optimal high-fidelity, low-thrust trajectories, The software can be used to analyze inter-planetary, planetocentric, and combination trajectories, Mystic also provides utilities to assist in the operation and navigation of low-thrust spacecraft. Mystic will be used to design and navigate the NASA's Dawn Discovery mission to orbit the two largest asteroids, The underlying optimization algorithm used in the Mystic software is called Static/Dynamic Optimal Control (SDC). SDC is a nonlinear optimal control method designed to optimize both 'static variables' (parameters) and dynamic variables (functions of time) simultaneously. SDC is a general nonlinear optimal control algorithm based on Bellman's principal.

  1. Fusion of psychiatric and medical high fidelity patient simulation scenarios: effect on nursing student knowledge, retention of knowledge, and perception. (United States)

    Kameg, Kirstyn M; Englert, Nadine Cozzo; Howard, Valerie M; Perozzi, Katherine J


    High fidelity patient simulation (HFPS) has become an increasingly popular teaching methodology in nursing education. To date, there have not been any published studies investigating HFPS scenarios incorporating medical and psychiatric nursing content. This study utilized a quasi-experimental design to assess if HFPS improved student knowledge and retention of knowledge utilizing three parallel 30-item Elsevier HESI(TM) Custom Exams. A convenience sample of 37 senior level nursing students participated in the study. The results of the study revealed the mean HESI test scores decreased following the simulation intervention although an analysis of variance (ANOVA) determined the difference was not statistically significant (p = .297). Although this study did not reveal improved student knowledge following the HFPS experiences, the findings did provide preliminary evidence that HFPS may improve knowledge in students who are identified as "at-risk." Additionally, students responded favorably to the simulations and viewed them as a positive learning experience.

  2. Perceived benefits and challenges of repeated exposure to high fidelity simulation experiences of first degree accelerated bachelor nursing students. (United States)

    Kaddoura, Mahmoud; Vandyke, Olga; Smallwood, Christopher; Gonzalez, Kristen Mathieu


    This study explored perceptions of first-degree entry-level accelerated bachelor nursing students regarding benefits and challenges of exposure to multiple high fidelity simulation (HFS) scenarios, which has not been studied to date. These perceptions conformed to some research findings among Associate Degree, traditional non-accelerated, and second-degree accelerated Bachelor of Science in Nursing (BSN) students faced with one to two simulations. However, first-degree accelerated BSN students faced with multiple complex simulations perceived improvements on all outcomes, including critical thinking, confidence, competence, and theory-practice integration. On the negative side, some reported feeling overwhelmed by the multiple HFS scenarios. Evidence from this study supports HFS as an effective teaching and learning method for nursing students, along with valuable implications for many other fields. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Innovative, energy-efficient lighting for New York state roadways : opportunities for incorporating mesopic visibility considerations into roadway lighting practice (United States)


    The present report outlines activities undertaken to assess the potential for implementing research on visibility at mesopic light levels into lighting practices for roadways in New York State. Through measurements of light levels at several roadway ...

  4. 49 CFR 236.526 - Roadway element not functioning properly. (United States)


    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION... Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.526 Roadway... roadway element shall be caused manually to display its most restrictive aspect until such element has...

  5. 49 CFR 236.929 - Training specific to roadway workers. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Training specific to roadway workers. 236.929... for Processor-Based Signal and Train Control Systems § 236.929 Training specific to roadway workers. (a) How is training for roadway workers to be coordinated with part 214? Training required under this...

  6. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics (United States)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim


    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  7. High-Fidelity Kinetics and Radiation Transport for NLTE Hypersonic Flows Project (United States)

    National Aeronautics and Space Administration — The modeling of NLTE hypersonic flows combines several disciplines: chemistry, kinetics, radiation transport, fluid mechanics, and surface science. No single code or...

  8. Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations (United States)

    Li, Xiaoyi; Gao, Hui; Soteriou, Marios C.


    Atomization of extremely high viscosity liquid can be of interest for many applications in aerospace, automotive, pharmaceutical, and food industries. While detailed atomization measurements usually face grand challenges, high-fidelity numerical simulations offer the advantage to comprehensively explore the atomization details. In this work, a previously validated high-fidelity first-principle simulation code HiMIST is utilized to simulate high-viscosity liquid jet atomization in crossflow. The code is used to perform a parametric study of the atomization process in a wide range of Ohnesorge numbers (Oh = 0.004-2) and Weber numbers (We = 10-160). Direct comparisons between the present study and previously published low-viscosity jet in crossflow results are performed. The effects of viscous damping and slowing on jet penetration, liquid surface instabilities, ligament formation/breakup, and subsequent droplet formation are investigated. Complex variations in near-field and far-field jet penetrations with increasing Oh at different We are observed and linked with the underlying jet deformation and breakup physics. Transition in breakup regimes and increase in droplet size with increasing Oh are observed, mostly consistent with the literature reports. The detailed simulations elucidate a distinctive edge-ligament-breakup dominated process with long surviving ligaments for the higher Oh cases, as opposed to a two-stage edge-stripping/column-fracture process for the lower Oh counterparts. The trend of decreasing column deflection with increasing We is reversed as Oh increases. A predominantly unimodal droplet size distribution is predicted at higher Oh, in contrast to the bimodal distribution at lower Oh. It has been found that both Rayleigh-Taylor and Kelvin-Helmholtz linear stability theories cannot be easily applied to interpret the distinct edge breakup process and further study of the underlying physics is needed.

  9. Diagnostic accuracy of GPs when using an early-intervention decision support system: a high-fidelity simulation. (United States)

    Kostopoulou, Olga; Porat, Talya; Corrigan, Derek; Mahmoud, Samhar; Delaney, Brendan C


    Observational and experimental studies of the diagnostic task have demonstrated the importance of the first hypotheses that come to mind for accurate diagnosis. A prototype decision support system (DSS) designed to support GPs' first impressions has been integrated with a commercial electronic health record (EHR) system. To evaluate the prototype DSS in a high-fidelity simulation. Within-participant design: 34 GPs consulted with six standardised patients (actors) using their usual EHR. On a different day, GPs used the EHR with the integrated DSS to consult with six other patients, matched for difficulty and counterbalanced. Entering the reason for encounter triggered the DSS, which provided a patient-specific list of potential diagnoses, and supported coding of symptoms during the consultation. At each consultation, GPs recorded their diagnosis and management. At the end, they completed a usability questionnaire. The actors completed a satisfaction questionnaire after each consultation. There was an 8-9% absolute improvement in diagnostic accuracy when the DSS was used. This improvement was significant (odds ratio [OR] 1.41, 95% confidence interval [CI] = 1.13 to 1.77, P<0.01). There was no associated increase of investigations ordered or consultation length. GPs coded significantly more data when using the DSS (mean 12.35 with the DSS versus 1.64 without), and were generally satisfied with its usability. Patient satisfaction ratings were the same for consultations with and without the DSS. The DSS prototype was successfully employed in simulated consultations of high fidelity, with no measurable influences on patient satisfaction. The substantially increased data coding can operate as motivation for future DSS adoption. © British Journal of General Practice 2017.

  10. High Fidelity Simulation of Jet Noise Emissions from Rectangular Nozzles Project (United States)

    National Aeronautics and Space Administration — The proposed SBIR Phase II program will lead to the validation of a state-of-the-art Large Eddy Simulation (LES) model, coupled with a Ffowcs-Williams-Hawkings...

  11. An Airplane Calculator Featuring a High- Fidelity Methodology for Tailplane Sizing


    Mattos, Bento Silva de; Secco, Ney Rafael


    ABSTRACT: The present work is concerned with the accurate modeling of transport airplanes. This is of primary importance to reduce aircraft development risks and because multi-disciplinary design and optimization (MDO) frameworks require an accurate airplane modeling to carry out realistic optimization tasks. However, most of them still make use of tail volume coefficients approach for sizing horizontal and vertical tail areas. The tail-volume coefficient method is based on historical aircraf...

  12. Design of high-fidelity haptic display for one-dimensional force reflection applications (United States)

    Gillespie, Brent; Rosenberg, Louis B.


    This paper discusses the development of a virtual reality platform for the simulation of medical procedures which involve needle insertion into human tissue. The paper's focus is the hardware and software requirements for haptic display of a particular medical procedure known as epidural analgesia. To perform this delicate manual procedure, an anesthesiologist must carefully guide a needle through various layers of tissue using only haptic cues for guidance. As a simplifying aspect for the simulator design, all motions and forces involved in the task occur along a fixed line once insertion begins. To create a haptic representation of this procedure, we have explored both physical modeling and perceptual modeling techniques. A preliminary physical model was built based on CT-scan data of the operative site. A preliminary perceptual model was built based on current training techniques for the procedure provided by a skilled instructor. We compare and contrast these two modeling methods and discuss the implications of each. We select and defend the perceptual model as a superior approach for the epidural analgesia simulator.

  13. High-fidelity simulation of a standing-wave thermoacoustic-piezoelectric engine

    CERN Document Server

    Lin, Jeffrey; Hesselink, Lambertus


    We have carried out wall-resolved fully unstructured Navier--Stokes simulations of a complete standing-wave thermoacoustic piezoelectric (TAP) engine model inspired by the experimental work of Smoker et al. (2012). The computational model is axisymmetric and comprises a 51 cm long cylindrical resonator divided into two sections: one of 19.5 mm in diameter, enclosing a thermoacoustic stack where a linear temperature distribution is imposed via isothermal boundary conditions; the other of 71 mm in diameter, capped by a piezoelectric diaphragm modelled via multi-oscillator broadband time-domain impedance boundary conditions (TDIBCs) matching the measured electromechanical impedance of a PZT-5A diaphragm tuned to the thermoacoustically amplified mode (388 Hz) for maximization of acoustic energy extraction. Simulations were first carried out without energy extraction from quiescent conditions to a limit cycle, for hot-to-cold temperature differences in the range $\\Delta T = 340 - 490\\textrm{ K}$, achieving acousti...

  14. High fidelity computational characterization of the mechanical response of thermally aged polycarbonate (United States)

    Zhang, Zesheng; Zhang, Lili; Jasa, John; Li, Wenlong; Gazonas, George; Negahban, Mehrdad


    A representative all-atom molecular dynamics (MD) system of polycarbonate (PC) is built and conditioned to capture and predict the behaviours of PC in response to a broad range of thermo-mechanical loadings for various thermal aging. The PC system is constructed to have a distribution of molecular weights comparable to a widely used commercial PC (LEXAN 9034), and thermally conditioned to produce models for aged and unaged PC. The MD responses of these models are evaluated through comparisons to existing experimental results carried out at much lower loading rates, but done over a broad range of temperatures and loading modes. These experiments include monotonic extension/compression/shear, unilaterally and bilaterally confined compression, and load-reversal during shear. It is shown that the MD simulations show both qualitative and quantitative similarity with the experimental response. The quantitative similarity is evaluated by comparing the dilatational response under bilaterally confined compression, the shear flow viscosity and the equivalent yield stress. The consistency of the in silico response to real laboratory experiments strongly suggests that the current PC models are physically and mechanically relevant and potentially can be used to investigate thermo-mechanical response to loading conditions that would not easily be possible. These MD models may provide valuable insight into the molecular sources of certain observations, and could possibly offer new perspectives on how to develop constitutive models that are based on better understanding the response of PC under complex loadings. To this latter end, the models are used to predict the response of PC to complex loading modes that would normally be difficult to do or that include characteristics that would be difficult to measure. These include the responses of unaged and aged PC to unilaterally confined extension/compression, cyclic uniaxial/shear loadings, and saw-tooth extension/compression/shear.

  15. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay


    In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator

  16. Severe Trauma Stress Inoculation Training for Combat Medics using High Fidelity Simulation (United States)


    Interservice/Jndustry Training, Simulation, and Education Conference (/1/ TSEC ) 20/3 responding to lED victims. He has led the development of several...environment. The course is based 13067 Paper No. Page 4 of 12 lnterservicellndustry Training, Simulation, and Education Conference (/1/ TSEC ) 2013 on known...Simulation, and Education Conference (1/! TSEC ) 2013 positive made from it, which a sculptor used to finalize the final casting model. From this positive, a

  17. Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bochev, Pavel Blagoveston [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kramer, Richard Michael Jack [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voth, Thomas Eugene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cox, James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these models can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.

  18. A high-fidelity approach towards heat transfer prediction of pool boiling (United States)

    Yazdani, Miad; Alahyari, Abbas; Radcliff, Thomas


    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change with an unprecedented fidelity and cost. The particular focus is to predict the heat transfer coefficient of pool-boiling regime and its transition to critical heat flux on surfaces of arbitrary shape and roughness distribution. The large-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf methods for interface tracking and interphase mass and energy transfer. The small-scale of the microlayer which forms at early stage of bubble nucleation is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the surface roughness and its role in bubble nucleation and growth is represented based on thermodynamics of nucleation process which allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the model's prediction of pool-boiling heat transfer coefficient is verified against reputable correlations for various roughness distributions and different surface alignment. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement features on thermal and hydrodynamic characteristics of these surfaces.

  19. Predicting growth of graphene nanostructures using high-fidelity atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Keven F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zhou, Xiaowang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, Donald K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schultz, Peter A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foster, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bartelt, Norman Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    In this project we developed t he atomistic models needed to predict how graphene grows when carbon is deposited on metal and semiconductor surfaces. We first calculated energies of many carbon configurations using first principles electronic structure calculations and then used these energies to construct an empirical bond order potentials that enable s comprehensive molecular dynamics simulation of growth. We validated our approach by comparing our predictions to experiments of graphene growth on Ir, Cu and Ge. The robustness of ou r understanding of graphene growth will enable high quality graphene to be grown on novel substrates which will expand the number of potential types of graphene electronic devices.

  20. High Fidelity Multi-Objective Design Optimization of a Downscaled Cusped Field Thruster

    Directory of Open Access Journals (Sweden)

    Thomas Fahey


    Full Text Available The Cusped Field Thruster (CFT concept has demonstrated significantly improved performance over the Hall Effect Thruster and the Gridded Ion Thruster; however, little is understood about the complexities of the interactions and interdependencies of the geometrical, magnetic and ion beam properties of the thruster. This study applies an advanced design methodology combining a modified power distribution calculation and evolutionary algorithms assisted by surrogate modeling to a multi-objective design optimization for the performance optimization and characterization of the CFT. Optimization is performed for maximization of performance defined by five design parameters (i.e., anode voltage, anode current, mass flow rate, and magnet radii, simultaneously aiming to maximize three objectives; that is, thrust, efficiency and specific impulse. Statistical methods based on global sensitivity analysis are employed to assess the optimization results in conjunction with surrogate models to identify key design factors with respect to the three design objectives and additional performance measures. The research indicates that the anode current and the Outer Magnet Radius have the greatest effect on the performance parameters. An optimal value for the anode current is determined, and a trend towards maximizing anode potential and mass flow rate is observed.

  1. Design and Optimization of Large Accelerator Systems through High-Fidelity Electromagnetic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Cho; Akcelik, Volkan; Candel, Arno; Chen, Sheng; Ge, Lixin; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Prudencio, Ernesto; Schussman, Greg; Uplenchwar1, Ravi; Xiao1, Liling; Ko1, Kwok; Austin, T.; Cary, J.R.; Ovtchinnikov, S.; Smith, D.N.; Werner, G.R.; Bellantoni, L.; /SLAC /TechX Corp. /Fermilab


    SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES).

  2. [High fidelity simulation : a new tool for learning and research in pediatrics]. (United States)

    Bragard, I; Farhat, N; Seghaye, M-C; Schumacher, K


    Caring for a sick child represents a high risk activity that requires technical and non-technical skills related to several factors such as the rarity of certain events or the stress of caring for a child. As regard these conditions, medi¬cal simulation provides a learning environment without risk, the control of variables, the reproducibility of situations, and the confrontation with rare events. In this article, we des¬cribe the steps of a simulation session and outline the current knowledge of the use of simulation in paediatrics. A session of simulation includes seven phases following the model of Peter Dieckmann, particularly the scenario and the debriefing that form the heart of the learning experience. Several studies have shown the advantages of simulation for paediatric trai¬ning in terms of changes in attitudes, skills and knowledge. Some studies have demonstrated a beneficial transfer to prac¬tice. In conclusion, simulation provides great potential for training and research in paediatrics. The establishment of a collaborative research program by the whole simulation com¬munity would help ensure that this type of training improves the quality of care.

  3. Three-dimensional Finite Element Formulation and Scalable Domain Decomposition for High Fidelity Rotor Dynamic Analysis (United States)

    Datta, Anubhav; Johnson, Wayne R.


    This paper has two objectives. The first objective is to formulate a 3-dimensional Finite Element Model for the dynamic analysis of helicopter rotor blades. The second objective is to implement and analyze a dual-primal iterative substructuring based Krylov solver, that is parallel and scalable, for the solution of the 3-D FEM analysis. The numerical and parallel scalability of the solver is studied using two prototype problems - one for ideal hover (symmetric) and one for a transient forward flight (non-symmetric) - both carried out on up to 48 processors. In both hover and forward flight conditions, a perfect linear speed-up is observed, for a given problem size, up to the point of substructure optimality. Substructure optimality and the linear parallel speed-up range are both shown to depend on the problem size as well as on the selection of the coarse problem. With a larger problem size, linear speed-up is restored up to the new substructure optimality. The solver also scales with problem size - even though this conclusion is premature given the small prototype grids considered in this study.

  4. High Fidelity Computational Analysis of CO2 Trapping at Pore Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod


    With an alarming rise in carbon dioxide (CO2) emission from anthropogenic sources, CO2 sequestration has become an attractive choice to mitigate the emission. Some popular storage media for CO{sub 2} are oil reservoirs, deep coal-bed, and deep oceanic-beds. These have been used for the long term CO{sub 2} storage. Due to special lowering viscosity and surface tension property of CO{sub 2}, it has been widely used for enhanced oil recovery. The sites for CO{sub 2} sequestration or enhanced oil recovery mostly consist of porous rocks. Lack of knowledge of molecular mobility under confinement and molecule-surface interactions between CO2 and natural porous media results in generally governed by unpredictable absorption kinetics and total absorption capacity for injected fluids, and therefore, constitutes barriers to the deployment of this technology. Therefore, it is important to understand the flow dynamics of CO{sub 2} through the porous microstructures at the finest scale (pore-scale) to accurately predict the storage potential and long-term dynamics of the sequestered CO{sub 2}. This report discusses about pore-network flow modeling approach using variational method and analyzes simulated results this method simulations at pore-scales for idealized network and using Berea Sandstone CT scanned images. Variational method provides a promising way to study the kinetic behavior and storage potential at the pore scale in the presence of other phases. The current study validates variational solutions for single and two-phase Newtonian and single phase non-Newtonian flow through angular pores for special geometries whose analytical and/or empirical solutions are known. The hydraulic conductance for single phase flow through a triangular duct was also validated against empirical results derived from lubricant theory.

  5. Comparison of Satisfaction, Self-Confidence, and Engagement of Baccalaureate Nursing Students Using Defined Observational Roles and Expectations versus Traditional Role Assignments in High Fidelity Simulation and Debriefing (United States)

    Howard, Sheri


    The purpose of this study is to compare satisfaction, self-confidence, and engagement of baccalaureate nursing students using defined observational roles and expectations versus traditional observer role assignments in high fidelity simulation and debriefing and to evaluate student perceptions of these constructs. The NLN/Jeffries Simulation…

  6. Web-Based versus High-Fidelity Simulation Training for Certified Registered Nurse Anesthetists in the Management of High Risk/Low Occurrence Anesthesia Events (United States)

    Kimemia, Judy


    Purpose: The purpose of this project was to compare web-based to high-fidelity simulation training in the management of high risk/low occurrence anesthesia related events, to enhance knowledge acquisition for Certified Registered Nurse Anesthetists (CRNAs). This project was designed to answer the question: Is web-based training as effective as…

  7. Physics and Psychophysics of High-Fidelity Sound. Part III: The Components of a Sound-Reproducing System: Amplifiers and Loudspeakers. (United States)

    Rossing, Thomas D.


    Described are the components for a high-fidelity sound-reproducing system which focuses on various program sources, the amplifier, and loudspeakers. Discussed in detail are amplifier power and distortion, air suspension, loudspeaker baffles and enclosures, bass-reflex enclosure, drone cones, rear horn and acoustic labyrinth enclosures, horn…

  8. Rectification of artificial molecular recombination with the use of high fidelity enzyme in the amplification of 16S rDNA sequences from Stool sample

    Directory of Open Access Journals (Sweden)

    Vijay Nema


    Full Text Available Reliance on routinely used taq polymerases for amplification may generate spurious sequences, especially in metagenomic studies utilizing complex mixtures of various DNA templates. Use of high fidelity enzymes and verification of the sequences using various software tools before submission to the databases ensures better quality and confidence.

  9. Learning advanced cardiac life support: a comparison study of the effects of low- and high-fidelity simulation. (United States)

    Hoadley, Theresa A


    To increase cardiopulmonary arrest survival, the American Heart Association developed basic and advanced cardiac life support (ACLS) courses that expose participants to realistic learning situations. This experimental study compared results of two ACLS classes on measures of knowledge (content exam) and resuscitation skills (performance exam). Both the control and experimental groups consisted of physicians, nurses, emergency medical technicians, respiratory therapists, and advanced health care providers. The control group used low-fidelity simulation (LFS); the experimental group was exposed to enhanced realism via high-fidelity simulation (HFS). The findings showed a positive correlation between enhanced practice and learning but no significant correlation between posttest and skills test scores for the LFS and HFS groups. The HFS group did score higher on both cognitive and behavioral tests, but the difference was not statistically significant. Participants from both groups indicated satisfaction with their forms of simulation experience and course design. In addition, participants' self-confidence to care for a victim of cardiopulmonary arrest was increased after completing their course; profession and work experience had no effect on responses. The largest difference noted was in verbal responses to course satisfaction. The experimental group stated that learning using HFS was enjoyable and adamantly recommended that ACLS should only be taught using HFS. Further study is required to assess if practicing beyond the course enhances short- and long-term retention of ACLS techniques.

  10. About the prediction of Organic Rankine Cycles performances integrating local high-fidelity turbines simulation and uncertainties (United States)

    Congedo, Pietro; de Santis, Dante; Geraci, Gianluca


    Organic Rankine Cycles (ORCs) are of key-importance when exploiting energy systems with a high efficiency. The variability of renewable heat sources makes more complex the global performance prediction of a cycle. The thermodynamic properties of the complex fluids used in the process are another source of uncertainty. The need for a predictive and robust simulation tool of ORCs remains strong. A high-order accurate Residual Distribution scheme has been recently developed for efficiently computing a turbine stage on unstructured grids, including advanced equations of state in order to take into account the complex fluids used in ORCs. Advantages in using high-order methods have been highlighted, in terms of number of degrees of freedom and computational time used, for computing the numerical solution with a greater accuracy compared to lower-order methods, even for shocked flows. The objective of this work is to quantify the numerical error with respect to the various sources of uncertainty of the ORC turbine, thus providing a very high-fidelity prediction in the coupled physical/stochastic space.

  11. Using High-Fidelity Simulation and Video-Assisted Debriefing to Enhance Obstetrical Hemorrhage Mock Code Training. (United States)

    Jacobs, Peggy J

    The purpose of this descriptive, one-group posttest study was to explore the nursing staff's perception of the benefits of using high-fidelity simulation during mandated obstetrical hemorrhage mock code training. In addition, the use of video-assisted debriefing was used to enhance the nursing staff's evaluation of their communication and teamwork processes during a simulated obstetrical crisis. The convenience sample of 84 members of the nursing staff consented to completing data collection forms and being videotaped during the simulation. Quantitative results for the postsimulation survey showed that 93% of participants agreed or totally agreed that the use of SimMan made the simulation more realistic and enhanced learning and that debriefing and the use of videotaped playback improved their evaluation of team communication. Participants derived greatest benefit from reviewing their performance on videotape and discussing it during postsimulation debriefing. Simulation with video-assisted debriefing offers hospital educators the ability to evaluate team processes and offer support to improve teamwork with the ultimate goal of improving patient outcomes during obstetrical hemorrhage.

  12. A New Coupled CFD/Neutron Kinetics System for High Fidelity Simulations of LWR Core Phenomena: Proof of Concept

    Directory of Open Access Journals (Sweden)

    Jorge Pérez Mañes


    Full Text Available The Institute for Neutron Physics and Reactor Technology (INR at the Karlsruhe Institute of Technology (KIT is investigating the application of the meso- and microscale analysis for the prediction of local safety parameters for light water reactors (LWR. By applying codes like CFD (computational fluid dynamics and SP3 (simplified transport reactor dynamics it is possible to describe the underlying phenomena in a more accurate manner than by the nodal/coarse 1D thermal hydraulic coupled codes. By coupling the transport (SP3 based neutron kinetics (NK code DYN3D with NEPTUNE-CFD, within a parallel MPI-environment, the NHESDYN platform is created. The newly developed system will allow high fidelity simulations of LWR fuel assemblies and cores. In NHESDYN, a heat conduction solver, SYRTHES, is coupled to NEPTUNE-CFD. The driver module of NHESDYN controls the sequence of execution of the solvers as well as the communication between the solvers based on MPI. In this paper, the main features of NHESDYN are discussed and the proof of the concept is done by solving a single pin problem. The prediction capability of NHESDYN is demonstrated by a code-to-code comparison with the DYNSUB code. Finally, the future developments and validation efforts are highlighted.

  13. Effects of the Use of High-Fidelity Human Simulation in Nursing Education: A Meta-Analysis. (United States)

    Lee, Jin; Oh, Pok-Ja


    This study was conducted to evaluate the effects of high-fidelity human simulation (HFHS) on cognitive, affective, and psychomotor outcomes of learning. PubMed, Cochrane Library, EMBASE, CINAHL, and Korean databases were searched. The RevMan program was used for analysis. A meta-analysis was conducted of 26 controlled trials, with a total of 2,031 nursing students. The use of HFHS tended to have beneficial effects on cognitive and psychomotor domains of learning. In analysis of cognitive outcomes, the weighted average effect size across studies was -0.97 for problem-solving competency, -0.67 for critical thinking, and -2.15 for clinical judgment. The effect size for clinical competence of the psychomotor domain was -0.81. Use of HFHS might positively impact a high level of cognitive skill and clinical skill acquisition. Further research is required to determine the effectiveness of use of HFHS as an educational strategy to improve knowledge acquisition and communication skills. Copyright 2015, SLACK Incorporated.

  14. The Effects of High-Fidelity Simulation on Salivary Cortisol Levels in SRNA Students: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Terri Jones


    Full Text Available The use of clinical simulation in graduate level nursing education provides the opportunity for students to learn and apply theoretical practices of nursing care in a safe and controlled environment. It was postulated that laboratory simulation would mimic the stress levels of a real clinical situation as measured by the stress hormone cortisol. The purpose of this study was to determine whether high-fidelity simulation approximates the stress experienced by nurse anesthesia students in the operating room. Participants (n = 21 were recruited from an accredited nurse anesthesia program in the southern U.S. Saliva was collected for 3 days under controlled conditions for baseline data. Next, saliva was collected for 3 days: the day before, the day of, and the day after simulation. The same process was repeated for the first clinical day in the operating room. The participants acted as their own control. There was a significant (p 0.05, and levels were lower than levels during simulation. Laboratory simulation of patient scenarios raised the stress hormone cortisol level threefold above baseline levels in nurse anesthesia students, while actual clinical experience did not.

  15. Development of a High-Fidelity Simulation Environment for Shadow-Mode Assessments of Air Traffic Concepts (United States)

    Robinson, John E., III; Lee, Alan; Lai, Chok Fung


    This paper describes the Shadow-Mode Assessment Using Realistic Technologies for the National Airspace System (SMART-NAS) Test Bed. The SMART-NAS Test Bed is an air traffic simulation platform being developed by the National Aeronautics and Space Administration (NASA). The SMART-NAS Test Bed's core purpose is to conduct high-fidelity, real-time, human-in-the-loop and automation-in-the-loop simulations of current and proposed future air traffic concepts for the United States' Next Generation Air Transportation System called NextGen. The setup, configuration, coordination, and execution of realtime, human-in-the-loop air traffic management simulations are complex, tedious, time intensive, and expensive. The SMART-NAS Test Bed framework is an alternative to the current approach and will provide services throughout the simulation workflow pipeline to help alleviate these shortcomings. The principle concepts to be simulated include advanced gate-to-gate, trajectory-based operations, widespread integration of novel aircraft such as unmanned vehicles, and real-time safety assurance technologies to enable autonomous operations. To make this possible, SNTB will utilize Web-based technologies, cloud resources, and real-time, scalable, communication middleware. This paper describes the SMART-NAS Test Bed's vision, purpose, its concept of use, and the potential benefits, key capabilities, high-level requirements, architecture, software design, and usage.

  16. Developing and Testing a High-Fidelity Simulation Scenario for an Uncommon Life-Threatening Disease: Severe Malaria

    Directory of Open Access Journals (Sweden)

    Andrew Kestler


    Full Text Available Background. Severe malaria is prevalent globally, yet it is an uncommon disease posing a challenge to education in nonendemic countries. High-fidelity simulation (sim may be well suited to teaching its management. Objective. To develop and evaluate a teaching tool for severe malaria, using sim. Methods. A severe malaria sim scenario was developed based on 5 learning objectives. Sim sessions, conducted at an academic center, utilized METI ECS mannequin. After sim, participants received standardized debriefing and completed a test assessing learning and a survey assessing views on sim efficacy. Results. 29 participants included 3rd year medical students (65%, 3rd year EM residents (28%, and EM nurses (7%. Participants scored average 85% on questions related to learning objectives. 93% felt that sim was effective or very effective in teaching severe malaria, and 83% rated it most effective. All respondents felt that sim increased their knowledge on malaria. Conclusion. Sim is an effective tool for teaching severe malaria in and may be superior to other modalities.

  17. [Team dynamics and clinical performance of medical students in web-based and high-fidelity simulations]. (United States)

    Bang, Jae Beum; Yoon, Yoo Sang; Lee, Young Hwan; Lee, Sam Beom


    The importance of team dynamics with regard to clinical performance is being emphasized to improve patient safety and the quality of health care. The aim of this study was to examine the correlation and differences in team dynamics and team clinical performance in a web-based simulation (WS) and high-fidelity simulation (HS) in the medical students. The simulations were held for 15 teams of fourth year medical students (n=52). They were given two clinical cases, dyspnea (case 1) and chest pain (case 2) by WS and then HS. The scores on the team dynamics and the team's clinical performance were analyzed by paired t-test and multiple regression using SPSS version 21.0 (IBM Corp.). The teamwork scores on case 2 (22.67 ± 6.58) were higher than for case 1 in the HS (20.47 ± 7.22). Team clinical performance scores were the same the WS and HS. Team clinical performances were significantly associated with team dynamics in both cases by HS. Teamwork scores of team dynamics were each explanation on case 1 (74.9%), case 2 (63.4%) in the HS. The team dynamics and clinical performance can improve if undergraduate medical students have more opportunities. They should be trained in these endeavors to become future doctors for which scenario-based simulations could be valuable.

  18. High Fidelity Haptic Rendering

    CERN Document Server

    Otaduy, Miguel A


    The human haptic system, among all senses, provides unique and bidirectional communication between humans and their physical environment. Yet, to date, most human-computer interactive systems have focused primarily on the graphical rendering of visual information and, to a lesser extent, on the display of auditory information. Extending the frontier of visual computing, haptic interfaces, or force feedback devices, have the potential to increase the quality of human-computer interaction by accommodating the sense of touch. They provide an attractive augmentation to visual display and enhance t

  19. Water drainage in mine roadways with swelling floors

    Energy Technology Data Exchange (ETDEWEB)

    Martyushev, V.S.; Losev, G.F.; Danilov, B.G. (Shakhta imeni Leninskogo Komsomola Ukrainy (USSR))


    Describes the situation at a Pavlograd mine (W. Donbass) where the water influx into mine roadways is 70 m{sup 3}/h. Over a period of years, zones of large and small cracks have appeared around the main roadways (480 m level) through support replacement and dinting work. Some of the water entering the roadway flows away along these cracks parallel to the roadway. The flow rate by this means can reach 5 m{sup 3}/h. Water flowing in this way damages shaft linings and causes additional floor swelling. It may also escape into water conducting strata (coal, sandstone) and flood lower lying roadways. The problem is difficult to control, but sometimes the crack systems in roadway floors may be used to advantage to drain water out of influx hazard zones.

  20. Basic critical care echocardiography: How many studies equate to competence? A pilot study using high fidelity echocardiography simulation. (United States)

    Bowcock, Emma M; Morris, Idunn S; Mclean, Anthony S; Orde, Sam R


    Assessment of competence in basic critical care echocardiography is complex. Competence relies on not only imaging accuracy but also interpretation and appropriate management decisions. The experience to achieve these skills, real-time, is likely more than required for imaging accuracy alone. We aimed to assess the feasibility of using simulation to assess number of studies required to attain competence in basic critical care echocardiography. This is a prospective pilot study recruiting trainees at various degrees of experience in basic critical care echocardiography using experts as reference standard. We used high fidelity simulation to assess speed and accuracy using total time taken, total position difference and total angle difference across the basic acoustic windows. Interpretation and clinical application skills were assessed using a clinical scenario. 'Cut-off' values for number of studies required for competence were estimated. Twenty-seven trainees and eight experts were included. The subcostal view was achieved quickest by trainees (median 23 s, IQR 19-37). Eighty-seven percent of trainees did not achieve accuracy across all views; 81% achieved accuracy with the parasternal long axis and the least accurate was the parasternal short axis (44% of trainees). Fewer studies were required to be considered competent with imaging acquisition compared with competence in correct interpretation and integration (15 vs. 40 vs. 50, respectively). The use of echocardiography simulation to determine competence in basic critical care echocardiography is feasible. Competence in image acquisition appears to be achieved with less experience than correct interpretation and correct management decisions. Further studies are required.

  1. Comparison of recidivism rates for a teenage trauma prevention program after the addition of high-fidelity patient simulation. (United States)

    White, Marjorie Lee; Zinkan, J Lynn; Smith, Geni; Peterson, Dawn Taylor; Youngblood, Amber Q; Dodd, Ashley; Parker, Walter; Strachan, Samuel; Sloane, Peter; Tofil, Nancy


    We evaluated the benefits of adding high-fidelity simulation to a teenage trauma prevention program to decrease recidivism rates and encourage teens to discuss actionable steps toward safe driving. A simulated pediatric trauma scenario was integrated into an established trauma prevention program. Participants were recruited because they were court-ordered to attend this program after misdemeanor convictions for moving violations. The teenage participants viewed this simulation from the emergency medical services (EMS) handoff to complete trauma care. Participants completed a postsimulation knowledge assessment and care evaluation, which included narrative data about the experience. Qualitative analysis of color-coded responses identified common themes and experiences in participants' answers. Court records were reviewed 6 years after course completion to determine short- and long-term recidivism rates, which were then compared to our program's historical rate. One hundred twenty-four students aged 16-20 years participated over a 2-year study period. Narrative responses included general reflection, impressions, and thoughts about what they might change as a result of the course. Participants reported that they would decrease speed (30%), wear seat belts (15%), decrease cell phone use (11%), and increase caution (28%). The recidivism rate was 55% within 6 years. At 6 months it was 8.4%, at 1 year it was 20%, and it increased approximately 5-8% per year after the first year. Compared with our programs, for historical 6-month and 2-year recidivism rates, no significant difference was seen with or without simulation. Adding simulation is well received by participants and leads to positive reflections regarding changes in risk-taking behaviors but resulted in no changes to the high recidivism rates This may be due to the often ineffectiveness of fear appeals.

  2. Implementation and outcome evaluation of high-fidelity simulation scenarios to integrate cognitive and psychomotor skills for Korean nursing students. (United States)

    Ahn, Heejung; Kim, Hyun-Young


    This study is involved in designing high-fidelity simulations reflecting the Korean nursing education environment. In addition, it evaluated the simulations by nursing students' learning outcomes and perceptions of the simulation design features. A quantitative design was used in two separate phases. For the first phase, five nursing experts participated in verifying the appropriateness of two simulation scenarios that reflected the intended learning objectives. For the second phase, 69 nursing students in the third year of a bachelor's degree at a nursing school participated in evaluating the simulations and were randomized according to their previous course grades. The first phase verified the two simulation scenarios using a questionnaire. The second phase evaluated students' perceptions of the simulation design, self-confidence, and critical thinking skills using a quasi-experimental post-test design. ANCOVA was used to compare the experimental and control groups, and correlation coefficient analysis was used to determine the correlation among them. We created 2 simulation scenarios to integrate cognitive and psychomotor skills according to the learning objectives and clinical environment in Korea. The experimental group had significantly higher scores on self-confidence in the first scenario. The positive correlations between perceptions of the simulation design features, self-confidence, and critical thinking skill scores were statistically significant. Students with a more positive perception of the design features of the simulations had better learning outcomes. Based on this result, simulations need to be designed and implemented with more differentiation in order to be perceived more appropriately by students. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. 49 CFR 214.353 - Training and qualification of roadway workers who provide on-track safety for roadway work groups. (United States)


    ... territory of the railroad upon which the roadway worker is qualified. (b) Initial and periodic qualification... 49 Transportation 4 2010-10-01 2010-10-01 false Training and qualification of roadway workers who... RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.353 Training and qualification of roadway workers...

  4. Influence of horizontally curved roadway section characteristics on motorcycle-to-barrier crash frequency. (United States)

    Gabauer, Douglas J; Li, Xiaolong


    The purpose of this study was to investigate motorcycle-to-barrier crash frequency on horizontally curved roadway sections in Washington State using police-reported crash data linked with roadway data and augmented with barrier presence information. Data included 4915 horizontal curved roadway sections with 252 of these sections experiencing 329 motorcycle-to-barrier crashes between 2002 and 2011. Negative binomial regression was used to predict motorcycle-to-barrier crash frequency using horizontal curvature and other roadway characteristics. Based on the model results, the strongest predictor of crash frequency was found to be curve radius. This supports a motorcycle-to-barrier crash countermeasure placement criterion based, at the very least, on horizontal curve radius. With respect to the existing horizontal curve criterion of 820 feet or less, curves meeting this criterion were found to increase motorcycle-to-barrier crash frequency rate by a factor of 10 compared to curves not meeting this criterion. Other statistically significant predictors were curve length, traffic volume and the location of adjacent curves. Assuming curves of identical radius, the model results suggest that longer curves, those with higher traffic volume, and those that have no adjacent curved sections within 300 feet of either curve end would likely be better candidates for a motorcycle-to-barrier crash countermeasure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of two different high-fidelity DNA polymerases on genetic analysis of the cyanobacterial community structure in a subtropical deep freshwater reservoir

    DEFF Research Database (Denmark)

    Zhen, Zhuo; Liu, Jingwen; Rensing, Christopher Günther T


    The use of molecular methods to investigate the community structure and diversity of microalgae has largely replaced the previous morphological methods that were routinely carried out by microscopy. Different DNA polymerases can lead to bias in PCR amplification and affect the downstream community...... and diversity analysis. In this study, two clone libraries were constructed with two different DNA polymerases, Q5 high-fidelity DNA polymerase and exTaq polymerase, to compare the differences in their capability to accurately reflect the cyanobacterial community structure and diversity in a subtropical deep......-fidelity DNA polymerase. It is noteworthy that so far Q5 high-fidelity DNA polymerase was the first time to be employed in the genetic analysis of cyanobacterial community. And it is for the first time that the cyanobacterial community structure in Dongzhen reservoir was analyzed using molecular methods...

  6. Using High-Fidelity Analysis Methods and Experimental Results to Account for the Effects of Imperfections on the Buckling Response of Composite Shell Structures (United States)

    Starnes, James H., Jr.; Hilburger, Mark W.


    The results of an experimental and analytical study of the effects of initial imperfections on the buckling response of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The analytical results include the effects of traditional and nontraditional initial imperfections and uncertainties in the values of selected shell parameters on the buckling loads of the shells. The nonlinear structural analysis results correlate very well with the experimental results. The high-fidelity nonlinear analysis procedure used to generate the analytical results can also be used to form the basis of a new shell design procedure that could reduce the traditional dependence on empirical results in the shell design process. KEYWORDS: high-fidelity nonlinear structural analysis, composite shells, shell stability, initial imperfections

  7. Geometry Control System for Exploratory Shape Optimization Applied to High-Fidelity Aerodynamic Design of Unconventional Aircraft (United States)

    Gagnon, Hugo

    This thesis represents a step forward to bring geometry parameterization and control on par with the disciplinary analyses involved in shape optimization, particularly high-fidelity aerodynamic shape optimization. Central to the proposed methodology is the non-uniform rational B-spline, used here to develop a new geometry generator and geometry control system applicable to the aerodynamic design of both conventional and unconventional aircraft. The geometry generator adopts a component-based approach, where any number of predefined but modifiable (parametric) wing, fuselage, junction, etc., components can be arbitrarily assembled to generate the outer mold line of aircraft geometry. A unique Python-based user interface incorporating an interactive OpenGL windowing system is proposed. Together, these tools allow for the generation of high-quality, C2 continuous (or higher), and customized aircraft geometry with fast turnaround. The geometry control system tightly integrates shape parameterization with volume mesh movement using a two-level free-form deformation approach. The framework is augmented with axial curves, which are shown to be flexible and efficient at parameterizing wing systems of arbitrary topology. A key aspect of this methodology is that very large shape deformations can be achieved with only a few, intuitive control parameters. Shape deformation consumes a few tenths of a second on a single processor and surface sensitivities are machine accurate. The geometry control system is implemented within an existing aerodynamic optimizer comprising a flow solver for the Euler equations and a sequential quadratic programming optimizer. Gradients are evaluated exactly with discrete-adjoint variables. The algorithm is first validated by recovering an elliptical lift distribution on a rectangular wing, and then demonstrated through the exploratory shape optimization of a three-pronged feathered winglet leading to a span efficiency of 1.22 under a height

  8. Effect of High-Fidelity Simulation on Medical Students' Knowledge about Advanced Life Support: A Randomized Study.

    Directory of Open Access Journals (Sweden)

    Andrea Cortegiani

    Full Text Available High-fidelity simulation (HFS is a learning method which has proven effective in medical education for technical and non-technical skills. However, its effectiveness for knowledge acquisition is less validated. We performed a randomized study with the primary aim of investigating whether HFS, in association with frontal lessons, would improve knowledge about advanced life support (ALS, in comparison to frontal lessons only among medical students. The secondary aims were to evaluate the effect of HFS on knowledge acquisition of different sections of ALS and personal knowledge perception. Participants answered a pre-test questionnaire consisting of a subjective (evaluating personal perception of knowledge and an objective section (measuring level of knowledge containing 100 questions about algorithms, technical skills, team working/early warning scores/communication strategies according to ALS guidelines. All students participated in 3 frontal lessons before being randomized in group S, undergoing a HFS session, and group C, receiving no further interventions. After 10 days from the end of each intervention, both groups answered a questionnaire (post-test with the same subjective section but a different objective one. The overall number of correct answers of the post-test was significantly higher in group S (mean 74.1, SD 11.2 than in group C (mean 65.5, SD 14.3, p = 0.0017, 95% C.I. 3.34 - 13.9. A significantly higher number of correct answers was reported in group S than in group C for questions investigating knowledge of algorithms (p = 0.0001; 95% C.I 2.22-5.99 and team working/early warning scores/communication strategies (p = 0.0060; 95% C.I 1.13-6.53. Students in group S showed a significantly higher score in the post-test subjective section (p = 0.0074. A lower proportion of students in group S confirmed their perception of knowledge compared to group C (p = 0.0079. HFS showed a beneficial effect on knowledge of ALS among medical students

  9. Behavioural adaption and roadway ITS: the forgotten chapter

    NARCIS (Netherlands)

    Martens, Marieke Hendrikje


    Although quite some attention is paid to behavioural adaptation issues for driver support systems, BA to roadway ITS is less well documented. Roadway ITS is introduced for its beneficial effects on throughput, safety and emissions. However, negative effects are often neglected. This paper

  10. 49 CFR 220.11 - Requirements for roadway workers. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Requirements for roadway workers. 220.11 Section... workers. (a) On and after July 1, 1999, the following requirements apply to a railroad that has 400,000 or... to provide on-track safety for a roadway work group or groups, and each lone worker, shall be...

  11. LED roadway lighting, volume 2 : field evaluations and software comparisons. (United States)


    The use of light-emitting diodes (LEDs) for roadway lighting can potentially save energy costs and reduce the frequency of maintenance. The objective of this study is to explore the current state of the art in LED roadway lighting technology. Three s...

  12. 49 CFR 236.527 - Roadway element insulation resistance. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Roadway element insulation resistance. 236.527 Section 236.527 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... element insulation resistance. Insulation resistance between roadway inductor and ground shall be...

  13. High-fidelity simulation-based team training in urology: evaluation of technical and nontechnical skills of urology residents during laparoscopic partial nephrectomy. (United States)

    Abdelshehid, Corollos S; Quach, Stephen; Nelson, Corey; Graversen, Joseph; Lusch, Achim; Zarraga, Jerome; Alipanah, Reza; Landman, Jaime; McDougall, Elspeth M


    The use of low-risk simulation training for resident education is rapidly expanding as teaching centers integrate simulation-based team training (SBTT) sessions into their education curriculum. SBTT is a valuable tool in technical and communication skills training and assessment for residents. We created a unique SBTT scenario for urology residents involving a laparoscopic partial nephrectomy procedure. Urology residents were randomly paired with a certified registered nurse anesthetists or an anesthesia resident. The scenario incorporated a laparoscopic right partial nephrectomy utilizing a unique polyvinyl alcohol kidney model with an embedded 3cm lower pole exophytic tumor and the high-fidelity SimMan3G mannequin. The Urology residents were instructed to pay particular attention to the patient's identifying information provided at the beginning of the case. Two scripted events occurred, the patient had an anaphylactic reaction to a drug and, after tumor specimen was sent for a frozen section, the confederate pathologist called into the operating room (OR) twice, first with the wrong patient name and subsequently with the wrong specimen. After the scenario was complete, technical performance and nontechnical performance were evaluated and assessed. A debriefing session followed the scenario to discuss and assess technical performance and interdisciplinary nontechnical communication between the team. All Urology residents (n = 9) rated the SBTT scenario as a useful tool in developing communication skills among the OR team and 88% rated the model as useful for technical skills training. Despite cuing to note patient identification, only 3 of 9 (33%) participants identified that the wrong patient information was presented when the confederate "pathologist" called in to report pathology results. All urology residents rated SBTT sessions as useful for the development of communication skills between different team members and making residents aware of unlikely but

  14. Randomized Crossover Study of Training Benefits of High Fidelity ECMO Simulation versus Porcine Animal Model An Interim Report (United States)



  15. Validation of High-Fidelity Reactor Physics Models for Support of the KJRR Experimental Campaign in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nielsen, Joseph W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Norman, Daren R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The Korea Atomic Energy Research Institute is currently in the process of qualifying a Low-Enriched Uranium fuel element design for the new Ki-Jang Research Reactor (KJRR). As part of this effort, a prototype KJRR fuel element was irradiated for several operating cycles in the Northeast Flux Trap of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The KJRR fuel element contained a very large quantity of fissile material (618g 235U) in comparison with historical ATR experiment standards (<1g 235U), and its presence in the ATR flux trap was expected to create a neutronic configuration that would be well outside of the approved validation envelope for the reactor physics analysis methods used to support ATR operations. Accordingly it was necessary, prior to high-power irradiation of the KJRR fuel element in the ATR, to conduct an extensive set of new low-power physics measurements with the KJRR fuel element installed in the ATR Critical Facility (ATRC), a companion facility to the ATR that is located in an immediately adjacent building, sharing the same fuel handling and storage canal. The new measurements had the objective of expanding the validation envelope for the computational reactor physics tools used to support ATR operations and safety analysis to include the planned KJRR irradiation in the ATR and similar experiments that are anticipated in the future. The computational and experimental results demonstrated that the neutronic behavior of the KJRR fuel element in the ATRC is well-understood, both in terms of its general effects on core excess reactivity and fission power distributions, its effects on the calibration of the core lobe power measurement system, as well as in terms of its own internal fission rate distribution and total fission power per unit ATRC core power. Taken as a whole, these results have significantly extended the ATR physics validation envelope, thereby enabling an entire new class of irradiation experiments.

  16. Hybrid High-Fidelity Modeling of Radar Scenarios Using Atemporal, Discrete-Event, and Time-Step Simulation (United States)


    Surveillance, and Reconnaissance CI Confidence Interval CPA Closest Point of Approach CV Cross Validation DES Discrete-Event Simulation DoE Design of...cox-power-transformation/ [72] Cross- validation . (n.d.). Perception Sensing Instrumentation Lab, Texas A&M University. [Online]. Available: http...Operation Research , Naval Postgraduate School, Monterey, CA, spring 2016. [74] Using validation . (n.d.). jmp SAS online support. [Online]. Available

  17. High-Fidelity Gas and Granular Flow Physics Models for Rocket Exhaust Interaction with Lunar Soil Project (United States)

    National Aeronautics and Space Administration — Soil debris liberated by spacecraft landing on the lunar surface may damage and contaminate surrounding spacecraft and habitat structures. Current numerical...

  18. High Fidelity Measurement and Modeling of Interactions between Acoustics and Heat Release in Highly-Compact, High-Pressure Flames (United States)


    systematic and rigorous means for comparison. Introduction The issue of combustion instability is a common recurring problem for bi- propellant rocket...the combustion of propellants to the acoustic energy field is the primary mechanism that creates acoustically coupled combustion instability. Chamber...T. and Sattelmayer, T., “On the Use of OH Radiation as a Marker for the Heat Release Rate in High- Pressure Hydrogen-Oxygen Liquid Rocket Combustion

  19. Predicting admissions for childhood asthma based on proximity to major roadways. (United States)

    Newcomb, Patricia; Li, Jianling


    This retrospective study is an investigation of the relationship between traffic exposure and childhood asthma exacerbations in a previously unstudied geographic area. We hypothesized that, controlling for selected demographic and social factors, exposure to traffic emissions would allow the prediction of hospital utilization for children with asthma. Using hospital and emergency department (ED) records, we investigated the relationship between proximity to major roadways and admissions for asthma exacerbations in the Fort Worth metropolitan area, designated as not attaining federal air health standards. The sample included 2,357 children from 1 to 12 years of age admitted for emergency or inpatient treatment in a 288-bed, nonprofit children's medical center in Fort Worth, Texas from January 1, 2004 to December 31, 2005. Data were analyzed using GIS mapping and logistic regression. Deidentification data were collected from hospital databases after IRB approval and waiver of parental permission or patient consent. Student's t test was used to compare groups with and without primary asthma diagnosis on admission in respect to distance from major roadways. Logistic regression was used to model relationships between asthma admission and patients' characteristics, exposure to traffic, and social environment. Controlling for several demographic factors, asthma occurrences were positively related to traffic exposures. On average, patients with asthma lived closer to major roadways than did patients who did not have asthma. Patients with asthma also tended to live in neighborhoods with more roads than did those who did not have asthma; 3/4 of the children admitted for asthma during the study period and less than 1/3 of the children admitted for nonasthma diagnoses lived within 1,500 meters of a major roadway (p=.0001). Controlling for other factors, every meter increase in proximity to major roadways produced 0.1% increase in likelihood of admission. Knowledge of risk

  20. The effects of roadway characteristics on farm equipment crashes: A GIS approach (United States)

    Greenan, Mitchell Joseph

    for every 5 foot increase in shoulder width, the odds of a crash decreased by 8 percent. (CI: 0.86-0.98). Although not statically significant, unpaved roads increased the odds of a crash by 17 percent. (CI: 0.91-1.50) Lastly, it was found that Farm to Market routes increased the odds of a crash by two fold compared to local roads (which make up roughly 67 percent of Iowa public roads). (CI: 1.72-2.43) When the same model was stratified by rurality (urban/rural), it was found that high traffic density leads to a higher risk of a crash in rural areas. Iowa routes and Farm to Market routes had a greater odds of a crash in urban than rural areas, and road and shoulder width were more protective in rural than urban areas. When only using roads with a crash involving an injury versus all other roads as the outcome, Iowa routes and roads with increased speed limits had higher odds for an injury-involved crash, while increased road width were more protective against crashes involving injuries. Findings from the study suggest that several roadway characteristics were associated with farm-equipment crashes. Through administrative and engineering controls, the six static explanatory variables used in this study may be modified to decrease the risk of a farm equipment crash. Speed limit can be modified through administrative controls while traffic density, road and shoulder width, road type, and surface type can be modified through engineering controls. Results from this study provide information that will aid policy-makers in developing safer roads for farm equipment.

  1. Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. S.; Lee, C. H. (Nuclear Engineering Division)


    Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies

  2. Landscaping of highway medians and roadway safety at unsignalized intersections. (United States)

    Chen, Hongyun; Fabregas, Aldo; Lin, Pei-Sung


    Well-planted and maintained landscaping can help reduce driving stress, provide better visual quality, and decrease over speeding, thus improving roadway safety. Florida Department of Transportation (FDOT) Standard Index (SI-546) is one of the more demanding standards in the U.S. for landscaping design criteria at highway medians near intersections. The purposes of this study were to (1) empirically evaluate the safety results of SI-546 at unsignalized intersections and (2) quantify the impacts of geometrics, traffic, and landscaping design features on total crashes and injury plus fatal crashes. The studied unsignalized intersections were divided into (1) those without median trees near intersections, (2) those with median trees near intersections that were compliant with SI-546, and (3) those with median trees near intersections that were non-compliant with SI-546. A total of 72 intersections were selected, for which five-year crash data from 2006-2010 were collected. The sites that were compliant with SI-546 showed the best safety performance in terms of the lowest crash counts and crash rates. Four crash predictive models-two for total crashes and two for injury crashes-were developed. The results indicated that improperly planted and maintained median trees near highway intersections can increase the total number of crashes and injury plus fatal crashes at a 90% confidence level; no significant difference could be found in crash rates between sites that were compliant with SI-546 and sites without trees. All other conditions remaining the same, an intersection with trees that was not compliant with SI-546 had 63% more crashes and almost doubled injury plus fatal crashes than those at intersections without trees. The study indicates that appropriate landscaping in highway medians near intersections can be an engineering technology that not only improves roadway environmental quality but also maintains intersection safety. Copyright © 2016. Published by

  3. Proximity of US Schools to Major Roadways: a Nationwide Assessment (United States)

    Kingsley, Samantha L.; Eliot, Melissa; Carlson, Lynn; Finn, Jennifer; MacIntosh, David L.; Suh, Helen H.; Wellenius, Gregory A.


    Long-term exposure to traffic pollution has been associated with adverse health outcomes in children and adolescents. A significant number of schools may be located near major roadways, potentially exposing millions of children to high levels of traffic pollution, but this hypothesis has not been evaluated nationally. We obtained data on the location and characteristics of 114,644 US public and private schools, grades pre-kindergarten through 12, and calculated their distance to nearest major roadway. In 2005–2006, 3.2 million students (6.2%) attended 8,424 schools (7.3%) located within 100 meters of a major roadway, and an additional 3.2 million (6.3%) students attended 8,555 (7.5%) schools located 100 to 250 m from a major roadway. Schools serving predominantly black students were 18% (95% CI, 13% – 23%) more likely to be located within 250 m of a major roadway. Public schools eligible for Title I programs and those with a majority of students eligible for free/reduced price meals were also more likely to be near major roadways. In conclusion, 6.4 million US children attended schools within 250 m of a major roadway and were likely exposed to high levels of traffic pollution. Minority and underprivileged children were disproportionately affected, although some results varied regionally. PMID:24496217

  4. 49 CFR 214.335 - On-track safety procedures for roadway work groups. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false On-track safety procedures for roadway work groups... Protection § 214.335 On-track safety procedures for roadway work groups. (a) No employer subject to the...-track safety of the roadway work group that on-track safety is provided. (c) Roadway work groups engaged...

  5. 76 FR 74585 - Railroad Workplace Safety; Adjacent-Track On-Track Safety for Roadway Workers (United States)


    ... performing work on the field side of the occupied track. ``Catenary maintenance tower cars with roadway... to further reduce the risk of serious injury or death to roadway workers performing work with... required for each adjacent controlled track when a roadway work group with at least one of the roadway...


    Directory of Open Access Journals (Sweden)

    G. Gill


    Full Text Available Traffic safety is a major concern in the transportation industry due to immense monetary and emotional burden caused by crashes of various severity levels, especially the injury and fatality ones. To reduce such crashes on all public roads, the safety management processes are commonly implemented which include network screening, problem diagnosis, countermeasure identification, and project prioritization. The selection of countermeasures for potential mitigation of crashes is governed by the influential factors which impact roadway crashes. Crash prediction model is the tool widely adopted by safety practitioners or researchers to link various influential factors to crash occurrences. Many different approaches have been used in the past studies to develop better fitting models which also exhibit prediction accuracy. In this study, a crash prediction model is developed to investigate the vehicular crashes occurring at roadway segments. The spatial and temporal nature of crash data is exploited to form a spatiotemporal model which accounts for the different types of heterogeneities among crash data and geometric or traffic flow variables. This study utilizes the Poisson lognormal model with random effects, which can accommodate the yearly variations in explanatory variables and the spatial correlations among segments. The dependency of different factors linked with roadway geometric, traffic flow, and road surface type on vehicular crashes occurring at segments was established as the width of lanes, posted speed limit, nature of pavement, and AADT were found to be correlated with vehicle crashes.

  7. Investigation of Roadway Geometric and Traffic Flow Factors for Vehicle Crashes Using Spatiotemporal Interaction (United States)

    Gill, G.; Sakrani, T.; Cheng, W.; Zhou, J.


    Traffic safety is a major concern in the transportation industry due to immense monetary and emotional burden caused by crashes of various severity levels, especially the injury and fatality ones. To reduce such crashes on all public roads, the safety management processes are commonly implemented which include network screening, problem diagnosis, countermeasure identification, and project prioritization. The selection of countermeasures for potential mitigation of crashes is governed by the influential factors which impact roadway crashes. Crash prediction model is the tool widely adopted by safety practitioners or researchers to link various influential factors to crash occurrences. Many different approaches have been used in the past studies to develop better fitting models which also exhibit prediction accuracy. In this study, a crash prediction model is developed to investigate the vehicular crashes occurring at roadway segments. The spatial and temporal nature of crash data is exploited to form a spatiotemporal model which accounts for the different types of heterogeneities among crash data and geometric or traffic flow variables. This study utilizes the Poisson lognormal model with random effects, which can accommodate the yearly variations in explanatory variables and the spatial correlations among segments. The dependency of different factors linked with roadway geometric, traffic flow, and road surface type on vehicular crashes occurring at segments was established as the width of lanes, posted speed limit, nature of pavement, and AADT were found to be correlated with vehicle crashes.

  8. The effects of using high-fidelity simulators and standardized patients on the thorax, lung, and cardiac examination skills of undergraduate nursing students. (United States)

    Tuzer, Hilal; Dinc, Leyla; Elcin, Melih


    Existing research literature indicates that the use of various simulation techniques in the training of physical examination skills develops students' cognitive and psychomotor abilities in a realistic learning environment while improving patient safety. The study aimed to compare the effects of the use of a high-fidelity simulator and standardized patients on the knowledge and skills of students conducting thorax-lungs and cardiac examinations, and to explore the students' views and learning experiences. A mixed-method explanatory sequential design. The study was conducted in the Simulation Laboratory of a Nursing School, the Training Center at the Faculty of Medicine, and in the inpatient clinics of the Education and Research Hospital. Fifty-two fourth-year nursing students. Students were randomly assigned to Group I and Group II. The students in Group 1 attended the thorax-lungs and cardiac examination training using a high-fidelity simulator, while the students in Group 2 using standardized patients. After the training sessions, all students practiced their skills on real patients in the clinical setting under the supervision of the investigator. Knowledge and performance scores of all students increased following the simulation activities; however, the students that worked with standardized patients achieved significantly higher knowledge scores than those that worked with the high-fidelity simulator; however, there was no significant difference in performance scores between the groups. The mean performance scores of students on real patients were significantly higher compared to the post-simulation assessment scores (pthorax-lungs and cardiac examinations; however, practice on real patients increased performance scores of all students without any significant difference in two groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Greenroads : a sustainability performance metric for roadway design and construction. (United States)


    Greenroads is a performance metric for quantifying sustainable practices associated with roadway design and construction. Sustainability is defined as having seven key components: ecology, equity, economy, extent, expectations, experience and exposur...

  10. Finite Element Evaluation of Pervious Concrete Pavement for Roadway Shoulders (United States)


    Stormwater quantity control is an important issue that needs to be addressed in roadway and ancillary transportation facility design. : Pervious concrete has provided an effective solution for storm runoff for parking lots, sidewalks, bike trails, an...

  11. Roadway departure warning indicators : synthesis of noise and bicycle research (United States)


    The United States National Park Service has voiced concern about roadway departure : warning indicators (rumble strips) being installed in locations that affect the natural : sound environment inside the park. Rumble strips can effectively alert erra...

  12. 40 CFR 61.143 - Standard for roadways. (United States)


    ... area of asbestos ore deposits (asbestos mine): or (b) It is a temporary roadway at an active asbestos mill site and is encapsulated with a resinous or bituminous binder. The encapsulated road surface must...

  13. AHMCT Intelligent Roadway Information System (IRIS) technical support and testing (United States)


    This report documents the research project AHMCT IRIS Technical Support and Testing, : performed under contract 65A0275, Task ID 1777. It presents an overview of the Intelligent : Roadway Information System (IRIS), and its design and function. ...

  14. Placement Design of Changeable Message Signs on Curved Roadways

    Directory of Open Access Journals (Sweden)

    Zhongren Wang, Ph.D. P.E. T.E.


    Full Text Available This paper presented a fundamental framework for Changeable Message Sign (CMS placement design along roadways with horizontal curves. This analytical framework determines the available distance for motorists to read and react to CMS messages based on CMS character height, driver's cone of vision, CMS pixel's cone of legibility, roadway horizontal curve radius, and CMS lateral and vertical placement. Sample design charts were developed to illustrate how the analytical framework may facilitate CMS placement design.

  15. Seismic activity during approach of working faces to roadways

    Energy Technology Data Exchange (ETDEWEB)

    Syrek, B.; Graca, L.


    Hazards of rock bursts during longwall mining with hydraulic stowing are discussed. Two coal seams from 5.5 to 9.0 m at 600 to 750 m depth in the Wujek mine were mined by slicing. Rock burst hazards at 10 working faces approaching mine roadways (used for mine haulage) were analyzed. Rock burst energy was evaluated. Analyses showed that there was no correlation between increase in rock burst hazards and length of a working face, angle formed by the face and a mine roadway to which the face was approaching, or surface of the coal block between the face and the roadway. Formulae used for forecasting increase in rock burst hazards are derived. The average distance from the face to a mine roadway to which the face was approaching was the main factor influencing rock burst hazards. Under conditions of the Wujek mine, rock burst hazards were greatest at 31 m from a working face to a mine roadway. Increase in rock burst hazards started at 44 m and declined to the initial level at 15 m from the face to the roadway. 3 references.

  16. Supporting railroad roadway work communications with a wireless handheld computer. Volume 1 : usability for the roadway worker (United States)


    Communications in current railroad operations rely heavily on voice communications. Radio congestion impairs roadway workers ability to communicate effectively with dispatchers at the Central Traffic Control Center and has adverse consequences for...

  17. Observed improvements in an intern's ability to initiate critical emergency skills in different cardiac arrest scenarios using high-fidelity simulation. (United States)

    Starmer, David J; Duquette, Sean A; Guiliano, Dominic; Tibbles, Anthony; Miners, Andrew; Finn, Kevin; Stainsby, Brynne E


    Objective : The objective of this study was to report observed changes in an intern's ability to initiate critical emergency skills in different cardiac arrest scenarios with high-fidelity simulation over a 10-month period. Methods : One intern's performance was retrospectively analyzed using video recordings of 4 simulations at different stages in the training program. The key outcome was the duration of time expired for 4 critical skills, including activating the emergency response system, initiating cardiopulmonary resuscitation (CPR), using an automated external defibrillator (AED), and passively administrating oxygen. Results : The intern became more efficient in each subsequent simulation for activating the emergency response system and initiating CPR. The time to use the AED stayed relatively constant. The administration of oxygen was inconsistent. Conclusion : An improvement in the speed of applying emergency critical skills was observed with this intern. These improvements in skill may improve patient outcomes and survival rates. We propose further educational research with high-fidelity simulation in the area of assessing emergency skills.

  18. Comparing the effectiveness of video-assisted oral debriefing and oral debriefing alone on behaviors by undergraduate nursing students during high-fidelity simulation. (United States)

    Grant, Joan S; Dawkins, Denise; Molhook, Lori; Keltner, Norman L; Vance, David E


    Complex healthcare, less resources, high-level medical equipment, and fewer available clinical settings have led many health professionals to use simulation as a method to further augment educational experiences for nursing students. While debriefing is recommended in the literature as a key component of simulation, the optimal format in which to conduct debriefing is unknown. This pre- and posttest two-group randomized quasi-experimental design compared the effectiveness of video-assisted oral debriefing (VAOD) and oral debriefing alone (ODA) on behaviors of 48 undergraduate nursing students during high-fidelity simulation. Further, this study examined whether roles (e.g., team leader, medication nurse), type of scenarios (i.e., pulmonary and cardiac scenarios), and student simulation team membership (i.e., VAOD and ODA groups) influenced these behaviors. Behaviors observed in this study related to patient safety, communication among team members, basic- and problem-focused assessment, prioritization of care, appropriate interventions, and delegation to healthcare team members. Both human patient simulator practice and guidance using video-assisted oral debriefing and oral debriefing alone appeared to be comparable regarding behaviors, regardless of roles, type of scenarios, and student simulation team membership. These findings suggest that nurse educators may use either video-assisted oral debriefing or oral debriefing alone to debrief undergraduate nursing students during high-fidelity simulation. Copyright © 2014. Published by Elsevier Ltd.

  19. Spatially- and Temporally-Resolved Measurements of Roadway Air Pollution Using a Zero-Emission Electric Vehicle (United States)

    Vehicle-related air pollution has an intrinsically dynamic nature. Recent field measurements and modeling work have demonstrated that near-road topography may modify levels of air pollutants reaching populations residing and working in close proximity to roadways. However, the ma...

  20. Control Mechanism of Rock Burst in the Floor of Roadway Driven along Next Goaf in Thick Coal Seam with Large Obliquity Angle in Deep Well

    Directory of Open Access Journals (Sweden)

    Yunhai Cheng


    Full Text Available This paper deals with the theoretical aspects combined with stress analysis over the floor strata of coal seam and the calculation model for the stress on the coal floor. Basically, this research presents the relevant results obtained for the rock burst prevention in the floor of roadway driven along next goaf in the exploitation of thick coal seam with large obliquity in deep well and rock burst tendency. The control mechanism of rock burst in the roadway driven along next goaf is revealed in the present work. That is, the danger of rock burst can be removed by changing the stress environment for the energy accumulation of the floor and by reducing the impact on the roadway floor from the strong dynamic pressure. This result can be profitable being used at the design stage of appropriate position of roadway undergoing rock burst tendency in similar conditions. Based on the analysis regarding the control mechanism, this paper presents a novel approach to the prevention of rock burst in roadway floor under the above conditions. That is, the return airway is placed within the goaf of the upper working face that can prevent the rock burst effectively. And in this way, mining without coal pillar in the thick coal seam with large obliquity and large burial depth (over a thousand meters is realized. Practice also proves that the rock burst in the floor of roadway driven along next goaf is controlled and solved.

  1. Incorporating Realistic Acoustic Propagation Models in Simulation of Underwater Acoustic Networks: A Statistical Approach

    National Research Council Canada - National Science Library

    Xie, Geoffrey; Gibson, John; Diaz-Gonzalez, Leopoldo


    .... The validity of the simulation results becomes questionable. There are, though, very high fidelity models developed by acoustic engineers and physicists for predicting acoustic propagation characteristics...

  2. Residential Proximity to Roadways and Ischemic Placental Disease in a Cape Cod Family Health Study. (United States)

    Wesselink, Amelia K; Carwile, Jenny L; Fabian, María Patricia; Winter, Michael R; Butler, Lindsey J; Mahalingaiah, Shruthi; Aschengrau, Ann


    Exposure to air pollution may adversely impact placental function through a variety of mechanisms; however, epidemiologic studies have found mixed results. We examined the association between traffic exposure and placental-related obstetric conditions in a retrospective cohort study on Cape Cod, MA, USA. We assessed exposure to traffic using proximity metrics (distance of residence to major roadways and length of major roadways within a buffer around the residence). The outcomes included self-reported ischemic placental disease (the presence of at least one of the following conditions: preeclampsia, placental abruption, small-for-gestational-age), stillbirth, and vaginal bleeding. We used log-binomial regression models to estimate risk ratios (RR) and 95% confidence intervals (CI), adjusting for potential confounders. We found no substantial association between traffic exposure and ischemic placental disease, small-for-gestational-age, preeclampsia, or vaginal bleeding. We found some evidence of an increased risk of stillbirth and placental abruption among women living the closest to major roadways (RRs comparing living <100 m vs. ≥200 m = 1.75 (95% CI: 0.82-3.76) and 1.71 (95% CI: 0.56-5.23), respectively). This study provides some support for the hypothesis that air pollution exposure adversely affects the risk of placental abruption and stillbirth; however, the results were imprecise due to the small number of cases, and may be impacted by non-differential exposure misclassification and selection bias.

  3. Influence of fault slip on mining-induced pressure and optimization of roadway support design in fault-influenced zone

    Directory of Open Access Journals (Sweden)

    Hongwei Wang


    Full Text Available This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The precursory information of fault slip during the underground mining activities is studied as well. Based on the physical modeling, the optimization of roadway support design and the field verification in fault-influenced zone are conducted. Physical modeling results show that, due to the combined effect of mining activities and fault slip, the mining-induced pressure and the extent of damaged rock masses in the fault-influenced zone are greater than those in the uninfluenced zone. The sharp increase and the succeeding stabilization of stress or steady increase in displacement can be identified as the precursory information of fault slip. Considering the larger mining-induced pressure in the fault-influenced zone, the new support design utilizing cables is proposed. The optimization of roadway support design suggests that the cables can be anchored in the stable surrounding rocks and can effectively mobilize the load bearing capacity of the stable surrounding rocks. The field observation indicates that the roadway is in good condition with the optimized roadway support design.

  4. Near-roadway monitoring of vehicle emissions as a function of mode of operation for light-duty vehicles. (United States)

    Wen, Dongqi; Zhai, Wenjuan; Xiang, Sheng; Hu, Zhice; Wei, Tongchuan; Noll, Kenneth E


    Determination of the effect of vehicle emissions on air quality near roadways is important because vehicles are a major source of air pollution. A near-roadway monitoring program was undertaken in Chicago between August 4 and October 30, 2014, to measure ultrafine particles, carbon dioxide, carbon monoxide, traffic volume and speed, and wind direction and speed. The objective of this study was to develop a method to relate short-term changes in traffic mode of operation to air quality near roadways using data averaged over 5-min intervals to provide a better understanding of the processes controlling air pollution concentrations near roadways. Three different types of data analysis are provided to demonstrate the type of results that can be obtained from a near-roadway sampling program based on 5-min measurements: (1) development of vehicle emission factors (EFs) for ultrafine particles as a function of vehicle mode of operation, (2) comparison of measured and modeled CO2 concentrations, and (3) application of dispersion models to determine concentrations near roadways. EFs for ultrafine particles are developed that are a function of traffic volume and mode of operation (free flow and congestion) for light-duty vehicles (LDVs) under real-world conditions. Two air quality models-CALINE4 (California Line Source Dispersion Model, version 4) and AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model)-are used to predict the ultrafine particulate concentrations near roadways for comparison with measured concentrations. When using CALINE4 to predict air quality levels in the mixing cell, changes in surface roughness and stability class have no effect on the predicted concentrations. However, when using AERMOD to predict air quality in the mixing cell, changes in surface roughness have a significant impact on the predicted concentrations. The paper provides emission factors (EFs) that are a function of traffic volume and mode of

  5. The effect of clinical experience, judgment task difficulty and time pressure on nurses’ confidence calibration in a high fidelity clinical simulation

    Directory of Open Access Journals (Sweden)

    Yang Huiqin


    Full Text Available Abstract Background Misplaced or poorly calibrated confidence in healthcare professionals’ judgments compromises the quality of health care. Using higher fidelity clinical simulations to elicit clinicians’ confidence 'calibration' (i.e. overconfidence or underconfidence in more realistic settings is a promising but underutilized tactic. In this study we examine nurses’ calibration of confidence with judgment accuracy for critical event risk assessment judgments in a high fidelity simulated clinical environment. The study also explores the effects of clinical experience, task difficulty and time pressure on the relationship between confidence and accuracy. Methods 63 student and 34 experienced nurses made dichotomous risk assessments on 25 scenarios simulated in a high fidelity clinical environment. Each nurse also assigned a score (0–100 reflecting the level of confidence in their judgments. Scenarios were derived from real patient cases and classified as easy or difficult judgment tasks. Nurses made half of their judgments under time pressure. Confidence calibration statistics were calculated and calibration curves generated. Results Nurse students were underconfident (mean over/underconfidence score −1.05 and experienced nurses overconfident (mean over/underconfidence score 6.56, P = 0.01. No significant differences in calibration and resolution were found between the two groups (P = 0.80 and P = 0.51, respectively. There was a significant interaction between time pressure and task difficulty on confidence (P = 0.008; time pressure increased confidence in easy cases but reduced confidence in difficult cases. Time pressure had no effect on confidence or accuracy. Judgment task difficulty impacted significantly on nurses’ judgmental accuracy and confidence. A 'hard-easy' effect was observed: nurses were overconfident in difficult judgments and underconfident in easy judgments. Conclusion Nurses were poorly calibrated

  6. The Complex Function Method Roadway Section Design of the Soft Coal Seam

    Directory of Open Access Journals (Sweden)

    Shihao Tu


    Full Text Available As for the sophisticated advanced support technique of vertical wall semicircle arch roadway in the three-soft coal seam, a design of flat top U-shape roadway section was put forward. Based on the complex function method, the surrounding rock displacement and stress distribution laws both of vertical wall semicircle arch roadway and of flat top U-shape roadway were obtained. The results showed that the displacement distribution laws in the edge of roadway surrounding rock were similar between the two different roadways and the area of plasticity proportion of flat top U-shape roadway approximately equals that of vertical wall semicircle arch roadway. Based on finite element method, the bearing behaviors of the U-type steel support under the interaction of surrounding rock in vertical wall semicircle arch roadway and flat top U-shape roadway were analyzed. The results showed that, from a mechanics perspective, U-type steel support can fulfill the requirement of surrounding rock supporting in flat top U-shape roadway and vertical wall semicircle arch roadway. The field measurement of mining roadway surrounding rock displacement in Zouzhuang coal mine working face 3204 verified the accuracy of theoretical analysis and numerical simulation.

  7. An exploration of the relationship between knowledge and performance-related variables in high-fidelity simulation: designing instruction that promotes expertise in practice. (United States)

    Hauber, Roxanne P; Cormier, Eileen; Whyte, James


    Increasingly, high-fidelity patient simulation (HFPS) is becoming essential to nursing education. Much remains unknown about how classroom learning is connected to student decision-making in simulation scenarios and the degree to which transference takes place between the classroom setting and actual practice. The present study was part of a larger pilot study aimed at determining the relationship between nursing students' clinical ability to prioritize their actions and the associated cognitions and physiologic outcomes of care using HFPS. In an effort to better explain the knowledge base being used by nursing students in HFPS, the investigators explored the relationship between common measures of knowledge and performance-related variables. Findings are discussed within the context of the expert performance approach and concepts from cognitive psychology, such as cognitive architecture, cognitive load, memory, and transference.

  8. A metric-based analysis of structure and content of telephone consultations of final-year medical students in a high-fidelity emergency medicine simulation. (United States)

    Henn, Patrick; Power, David; Smith, Simon D; Power, Theresa; Hynes, Helen; Gaffney, Robert; McAdoo, John D


    In this study we aimed to analyse the structure and content of telephone consultations of final-year medical students in a high-fidelity emergency medicine simulation. The purpose was to identify any areas of deficiency within structure and content in the effective transfer of clinical information via the telephone of final-year medical students. An educational study. Simulation centre in a medical school. 113 final-year medical students. The primary outcome was to analyse the structure and content of telephone consultations of final-year medical students in a high-fidelity emergency medicine simulation. The secondary outcome was to identify any areas of deficiency within structure and content in the effective transfer of clinical information via the telephone of final-year medical students. During phone calls to a senior colleague 30% of students did not positively identify themselves, 29% did not identify their role, 32% did not positively identify the recipient of the phone call, 59% failed to positively identify the patient, 49% did not read back the recommendations of their senior colleague and 97% did not write down the recommendations of their senior colleague. We identified a deficiency in our students skills to communicate relevant information via the telephone, particularly failure to repeat back and write down instructions. We suggest that this reflects a paucity of opportunities to practice this skill in context during the undergraduate years. The assumption that this skill will be acquired following qualification constitutes a latent error within the healthcare system. The function of undergraduate medical education is to produce graduates who are fit for purpose at the point of graduation.

  9. Comparison of standardized patients with high-fidelity simulators for managing stress and improving performance in clinical deterioration: A mixed methods study. (United States)

    Ignacio, Jeanette; Dolmans, Diana; Scherpbier, Albert; Rethans, Jan-Joost; Chan, Sally; Liaw, Sok Ying


    The use of standardized patients in deteriorating patient simulations adds realism that can be valuable for preparing nurse trainees for stress and enhancing their performance during actual patient deterioration. Emotional engagement resulting from increased fidelity can provide additional stress for student nurses with limited exposure to real patients. To determine the presence of increased stress with the standardized patient modality, this study compared the use of standardized patients (SP) with the use of high-fidelity simulators (HFS) during deteriorating patient simulations. Performance in managing deteriorating patients was also compared. It also explored student nurses' insights on the use of standardized patients and patient simulators in deteriorating patient simulations as preparation for clinical placement. Fifty-seven student nurses participated in a randomized controlled design study with pre- and post-tests to evaluate stress and performance in deteriorating patient simulations. Performance was assessed using the Rescuing A Patient in Deteriorating Situations (RAPIDS) rating tool. Stress was measured using salivary alpha-amylase levels. Fourteen participants who joined the randomized controlled component then participated in focus group discussions that elicited their insights on SP use in patient deterioration simulations. Analysis of covariance (ANCOVA) results showed no significant difference (p=0.744) between the performance scores of the SP and HFS groups in managing deteriorating patients. Amylase levels were also not significantly different (p=0.317) between the two groups. Stress in simulation, awareness of patient interactions, and realism were the main themes that resulted from the thematic analysis. Performance and stress in deteriorating patient simulations with standardized patients did not vary from similar simulations using high-fidelity patient simulators. Data from focus group interviews, however, suggested that the use of

  10. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration (United States)

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.


    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  11. Innovative roadway light source and dye combinations to improve visibility and reduce environmental impacts. (United States)


    Sky glow light pollution is caused largely by reflected light off of roadway and other surfaces. The : authors investigated the feasibility of a system consisting of a specialized LED streetlight and a dyebased : roadway surface coating that would re...

  12. Development of a High-fidelity Experimental Substructure Test Rig for Grid-scored Sandwich Panels in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Laustsen, Steffen; Lund, Erik; Kühlmeier, L.


    . The development of a full-scale numerical model is detailed, and the necessary experimental set-up is described. Further, the numerical and experimental results obtained are compared, and an idealised set of boundary conditions for a chosen blade substructure is presented. Fromthis, the development of a test rig...

  13. 49 CFR 236.529 - Roadway element inductor; height and distance from rail. (United States)


    ... rail. 236.529 Section 236.529 Transportation Other Regulations Relating to Transportation (Continued...; Roadway § 236.529 Roadway element inductor; height and distance from rail. Inductor of the inert roadway... the rails, and with its inner edge at a hmrizontal distance from the gage side of the nearest running...

  14. Influence of fault slip on mining-induced pressure and optimization of roadway support design in fault-influenced zone


    Wang, Hongwei; Jiang, Yaodong; Xue, Sheng; Mao, Lingtao; Lin, Zhinan; Deng, Daixin; Zhang, Dengqiang


    This paper presents an investigation on the characteristics of overlying strata collapse and mining-induced pressure in fault-influenced zone by employing the physical modeling in consideration of fault structure. The precursory information of fault slip during the underground mining activities is studied as well. Based on the physical modeling, the optimization of roadway support design and the field verification in fault-influenced zone are conducted. Physical modeling results show that, du...

  15. High Fidelity CFD Analysis and Validation of Rotorcraft Gearbox Aerodynamics Under Operational and Oil-Out Conditions (United States)

    Kunz, Robert F.


    This document represents the evolving formal documentation of the NPHASE-PSU computer code. Version 3.15 is being delivered along with the software to NASA in 2013.Significant upgrades to the NPHASE-PSU have been made since the first delivery of draft documentation to DARPA and USNRC in 2006. These include a much lighter, faster and memory efficient face based front end, support for arbitrary polyhedra in front end, flow-solver and back-end, a generalized homogeneous multiphase capability, and several two-fluid modelling and algorithmic elements. Specific capability installed for the NASA Gearbox Windage Aerodynamics NRA are included in this version: Hybrid Immersed Overset Boundary Method (HOIBM) [Noack et. al (2009)] Periodic boundary conditions for multiple frames of reference, Fully generalized immersed boundary method, Fully generalized conjugate heat transfer, Droplet deposition, bouncing, splashing models, and, Film transport and breakup.

  16. A comparison of live tissue training and high-fidelity patient simulator: A pilot study in battlefield trauma training. (United States)

    Savage, Erin C; Tenn, Catherine; Vartanian, Oshin; Blackler, Kristen; Sullivan-Kwantes, Wendy; Garrett, Michelle; Blais, Ann-Renee; Jarmasz, Jerzy; Peng, Henry; Pannell, Dylan; Tien, Homer C


    Trauma procedural and management skills are often learned on live tissue. However, there is increasing pressure to use simulators because their fidelity improves and as ethical concerns increase. We randomized military medical technicians (medics) to training on either simulators or live tissue to learn combat casualty care skills to determine if the choice of modality was associated with differences in skill uptake. Twenty medics were randomized to trauma training using either simulators or live tissue. Medics were trained to perform five combat casualty care tasks (surgical airway, needle decompression, tourniquet application, wound packing, and intraosseous line insertion). We measured skill uptake using a structured assessment tool. The medics also completed exit questionnaires and interviews to determine which modality they preferred. We found no difference between groups trained with live tissue versus simulators in how they completed each combat casualty care skill. However, we did find that the modality of assessment affected the assessment score. Finally, we found that medics preferred trauma training on live tissue because of the fidelity of tissue handling in live tissue models. However, they also felt that training on simulators also provided additional training value. We found no difference in performance between medics trained on simulators versus live tissue models. Even so, medics preferred live tissue training over simulation. However, more studies are required, and future studies need to address the measurement bias of measuring outcomes in the same model on which the study participants are trained. Therapeutic/care management study, level II.

  17. VarSim: a high-fidelity simulation and validation framework for high-throughput genome sequencing with cancer applications. (United States)

    Mu, John C; Mohiyuddin, Marghoob; Li, Jian; Bani Asadi, Narges; Gerstein, Mark B; Abyzov, Alexej; Wong, Wing H; Lam, Hugo Y K


    VarSim is a framework for assessing alignment and variant calling accuracy in high-throughput genome sequencing through simulation or real data. In contrast to simulating a random mutation spectrum, it synthesizes diploid genomes with germline and somatic mutations based on a realistic model. This model leverages information such as previously reported mutations to make the synthetic genomes biologically relevant. VarSim simulates and validates a wide range of variants, including single nucleotide variants, small indels and large structural variants. It is an automated, comprehensive compute framework supporting parallel computation and multiple read simulators. Furthermore, we developed a novel map data structure to validate read alignments, a strategy to compare variants binned in size ranges and a lightweight, interactive, graphical report to visualize validation results with detailed statistics. Thus far, it is the most comprehensive validation tool for secondary analysis in next generation sequencing. Code in Java and Python along with instructions to download the reads and variants is at Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  18. High fidelity computational simulation of thrombus formation in Thoratec HeartMate II continuous flow ventricular assist device. (United States)

    Wu, Wei-Tao; Yang, Fang; Wu, Jingchun; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James F


    Continuous flow ventricular assist devices (cfVADs) provide a life-saving therapy for severe heart failure. However, in recent years, the incidence of device-related thrombosis (resulting in stroke, device-exchange surgery or premature death) has been increasing dramatically, which has alarmed both the medical community and the FDA. The objective of this study was to gain improved understanding of the initiation and progression of thrombosis in one of the most commonly used cfVADs, the Thoratec HeartMate II. A computational fluid dynamics simulation (CFD) was performed using our recently updated mathematical model of thrombosis. The patterns of deposition predicted by simulation agreed well with clinical observations. Furthermore, thrombus accumulation was found to increase with decreased flow rate, and can be completely suppressed by the application of anticoagulants and/or improvement of surface chemistry. To our knowledge, this is the first simulation to explicitly model the processes of platelet deposition and thrombus growth in a continuous flow blood pump and thereby replicate patterns of deposition observed clinically. The use of this simulation tool over a range of hemodynamic, hematological, and anticoagulation conditions could assist physicians to personalize clinical management to mitigate the risk of thrombosis. It may also contribute to the design of future VADs that are less thrombogenic.

  19. On the required complexity of vehicle dynamic models for use in simulation-based highway design. (United States)

    Brown, Alexander; Brennan, Sean


    This paper presents the results of a comprehensive project whose goal is to identify roadway design practices that maximize the margin of safety between the friction supply and friction demand. This study is motivated by the concern for increased accident rates on curves with steep downgrades, geometries that contain features that interact in all three dimensions - planar curves, grade, and superelevation. This complexity makes the prediction of vehicle skidding quite difficult, particularly for simple simulation models that have historically been used for road geometry design guidance. To obtain estimates of friction margin, this study considers a range of vehicle models, including: a point-mass model used by the American Association of State Highway Transportation Officials (AASHTO) design policy, a steady-state "bicycle model" formulation that considers only per-axle forces, a transient formulation of the bicycle model commonly used in vehicle stability control systems, and finally, a full multi-body simulation (CarSim and TruckSim) regularly used in the automotive industry for high-fidelity vehicle behavior prediction. The presence of skidding--the friction demand exceeding supply--was calculated for each model considering a wide range of vehicles and road situations. The results indicate that the most complicated vehicle models are generally unnecessary for predicting skidding events. However, there are specific maneuvers, namely braking events within lane changes and curves, which consistently predict the worst-case friction margins across all models. This suggests that any vehicle model used for roadway safety analysis should include the effects of combined cornering and braking. The point-mass model typically used by highway design professionals may not be appropriate to predict vehicle behavior on high-speed curves during braking in low-friction situations. However, engineers can use the results of this study to help select the appropriate vehicle dynamic


    Directory of Open Access Journals (Sweden)

    R. I. Polyuga


    Full Text Available In the article the description of structural bearing types for roadway bridges and their classification is given. Special attention is paid to effective bearings with elastomeric materials – rubber, pot, spherical ones. Characteristic defects of structural bearings and demands of serviceability are noticed.

  1. High fidelity remote sensing of snow properties from MODIS and the Airborne Snow Observatory: Snowflakes to Terabytes (United States)

    Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.


    The response of the cryosphere to climate forcings largely determines Earth's climate sensitivity. However, our understanding of the strength of the simulated snow albedo feedback varies by a factor of three in the GCMs used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, mainly caused by uncertainties in snow extent and the albedo of snow-covered areas from imprecise remote sensing retrievals. Additionally, the Western US and other regions of the globe depend predominantly on snowmelt for their water supply to agriculture, industry and cities, hydroelectric power, and recreation, against rising demand from increasing population. In the mountains of the Upper Colorado River Basin, dust radiative forcing in snow shortens snow cover duration by 3-7 weeks. Extended to the entire upper basin, the 5-fold increase in dust load since the late-1800s results in a 3-week earlier peak runoff and a 5% annual loss of total runoff. The remotely sensed dynamics of snow cover duration and melt however have not been factored into hydrological modeling, operational forecasting, and policymaking. To address these deficiencies in our understanding of snow properties, we have developed and validated a suite of MODIS snow products that provide accurate fractional snow covered area and radiative forcing of dust and carbonaceous aerosols in snow. The MODIS Snow Covered Area and Grain size (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithms, developed and transferred from imaging spectroscopy techniques, leverage the complete MODIS surface reflectance spectrum. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. We have created the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties, and provide complete

  2. Louisiana Speaks Transportation Option C Roadway Improvements, UTM Zone 15N NAD 83, Louisiana Recovery Authority (2007), [louisiana_speaks_transportation_option_c_roadway_improvements (United States)

    Louisiana Geographic Information Center — This GIS shapefile data illustrates the regional roadways included in the Louisiana Speaks community growth option of compact development (Option C). This network...

  3. Louisiana Speaks Transportation Option B Roadway Improvements, UTM Zone 15N NAD 83, Louisiana Recovery Authority (2007), [louisiana_speaks_transportation_option_b_roadway_improvements (United States)

    Louisiana Geographic Information Center — This GIS shapefile data illustrates the regional roadways included in the Louisiana Speaks community growth option of compact and dispersed development (Option B)....

  4. Louisiana Speaks Transportation Option A Roadway Improvements, UTM Zone 15N NAD 83, Louisiana Recovery Authority (2007), [louisiana_speaks_transportation_option_a_roadway_improvements (United States)

    Louisiana Geographic Information Center — This GIS shapefile data illustrates the regional roadways included in the Louisiana Speaks Regional Plan community growth option of dispersed development (Option A)....

  5. Coal mining with Triple-section extraction process in stagger arrangement roadway layout method (United States)

    Cui, Zimo; Liu, Baozhu; Zhao, Jingli; Chanda, Emmanuel


    This paper introduces the Triple-section extraction process in the three-dimensional roadway layout of stagger arrangement method for longwall top-coal caving mining. This 3-D roadway layout of stagger arrangement method without coal pillars, which arranged the air intake roadway and air return roadway in different horizons, realizing the design theory transformation of roadway layout from 2D system to 3D system. And the paper makes systematic analysis to the geological, technical and economic factors, applies this new mining roadway layout technology for raising coal recovery ratio and solving the problems about full-seam mining in thick coal seam synthetically according to theoretical study and mining practice. Furthermore, the paper presents a physical simulation about inner staggered roadway layout of this particular longwall top-coal caving method.

  6. High Fidelity, Efficiency and Functionalization of Ds-Px Unnatural Base Pairs in PCR Amplification for a Genetic Alphabet Expansion System. (United States)

    Okamoto, Itaru; Miyatake, Yuya; Kimoto, Michiko; Hirao, Ichiro


    Genetic alphabet expansion of DNA using an artificial extra base pair (unnatural base pair) could augment nucleic acid and protein functionalities by increasing their components. We previously developed an unnatural base pair between 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px), which exhibits high fidelity as a third base pair in PCR amplification. Here, the fidelity and efficiency of Ds-Px pairing using modified Px bases with functional groups, such as diol, azide, ethynyl and biotin, were evaluated by an improved method with optimized PCR conditions. The results revealed that all of the base pairs between Ds and either one of the modified Px bases functioned with high amplification efficiency (0.76-0.81), high selectivity (≥99.96% per doubling), and less sequence dependency, in PCR using 3'-exonuclease-proficient Deep Vent DNA polymerase. We also demonstrated that the azide-Px in PCR-amplified DNA was efficiently modified with any functional groups by copper-free click reaction. This genetic alphabet expansion system could endow nucleic acids with a wide variety of increased functionalities by the site-specific incorporation of modified Px bases at desired positions in DNA.

  7. Developing a tool for observing group critical thinking skills in first-year medical students: a pilot study using physiology-based, high-fidelity patient simulations. (United States)

    Nguyen, Khoa; Ben Khallouq, Bertha; Schuster, Amanda; Beevers, Christopher; Dil, Nyla; Kay, Denise; Kibble, Jonathan D; Harris, David M


    Most assessments of physiology in medical school use multiple choice tests that may not provide information about a student's critical thinking (CT) process. There are limited performance assessments, but high-fidelity patient simulations (HFPS) may be a feasible platform. The purpose of this pilot study was to determine whether a group's CT process could be observed over a series of HFPS. An instrument [Critical Thinking Skills Rating Instrument CTSRI)] was designed with the IDEAS framework. Fifteen groups of students participated in three HFPS that consisted of a basic knowledge quiz and introduction, HFPS session, and debriefing. HFPS were video recorded, and two raters reviewed and scored all HFPS encounters with the CTSRI independently. Interrater analysis suggested good reliability. There was a correlation between basic knowledge scores and three of the six observations on the CTSRI providing support for construct validity. The median CT ratings significantly increased for all observations between the groups' first and last simulation. However, there were still large percentages of video ratings that indicated students needed substantial prompting during the HFPS. The data from this pilot study suggest that it is feasible to observe CT skills in HFPS using the CTSRI. Based on the findings from this study, we strongly recommend that first-year medical students be competent in basic knowledge of the relevant physiology of the HFPS before participating, to minimize the risk of a poor learning experience. Copyright © 2017 the American Physiological Society.

  8. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    Energy Technology Data Exchange (ETDEWEB)

    Deymier, Martin J., E-mail: [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Claiborne, Daniel T., E-mail: [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ende, Zachary, E-mail: [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ratner, Hannah K., E-mail: [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Kilembe, William, E-mail: [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Allen, Susan, E-mail: [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States); Hunter, Eric, E-mail: [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States)


    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  9. Effects of high-fidelity patient simulation led clinical reasoning course: Focused on nursing core competencies, problem solving, and academic self-efficacy. (United States)

    Lee, JuHee; Lee, Yoonju; Lee, Senah; Bae, Juyeon


    To examine the effects of high-fidelity patient simulation (HFPS) led clinical reasoning course among undergraduate nursing students. A quasi-experimental study of non-equivalent control group pretest-post test design was applied. A total of 49 senior nursing students participated in this study. The experimental group consisted of the students who took the "clinical reasoning" course (n = 23) while the control group consisted of students who did not (n = 26). Self-administered scales including the nursing core competencies, problem solving, academic self-efficacy, and Kolb learning style inventory were analyzed quantitatively using SPSS version 20.0. Data analysis was conducted using one-way ancova due to a significant difference in nursing core competencies between the experimental group and control group. There was a significant improvement in nursing core competencies in the experimental group (F = 7.747, P = 0.008). The scores of problem solving and academic self-efficacy were higher in the experimental group after the HFPS led clinical reasoning course without statistical difference. There is a need for the development of effective instructional methods to improve learning outcomes in nursing education. Future research is needed related to simulation education as well as management strategies so that learning outcomes can be achieved within different students' learning style. © 2015 The Authors. Japan Journal of Nursing Science © 2015 Japan Academy of Nursing Science.

  10. Communication during handover in the pre-hospital/hospital interface in Italy: from evaluation to implementation of multidisciplinary training through high-fidelity simulation. (United States)

    Dojmi Di Delupis, Francesco; Pisanelli, Paolo; Di Luccio, Giovanni; Kennedy, Maura; Tellini, Sabrina; Nenci, Nadia; Guerrini, Elisa; Pini, Riccardo; Franco Gensini, Gian


    Communication failures in the pre-hospital/hospital interface have been identified as a major preventable cause of patient harm. This interface has not adequately been studied in Italy. In this study, we: (1) evaluated the communication of pre-hospital and hospital providers during handover through the analysis of simulation sessions; (2) identified the critical information that should be routinely communicated during handover with a survey administered to emergency triage nurses; (3) measured communication within this interface through the adaptation of an existing tool from a multidisciplinary focus group; (4) validated the adapted tool with the inter-rater agreement of physicians who reviewed video recordings from multidisciplinary simulations sessions; and (5) developed a handover training for pre-hospital providers and evaluated the communication improvement between pre- and post-training. In our simulations we found an absence of standardization of the handover communication process, marked variability in information communicated, and a lack of formal transfer of responsibility of patient care. We adapted existing handover communication tools for local use and developed a checklist for the evaluation of handover communication that had good inter-rater reliability. Lectures coupled with high-fidelity simulation exercises on handover did result in a statistically significant improvement in handover communication.

  11. High-fidelity quantum driving

    DEFF Research Database (Denmark)

    Bason, Mark George; Viteau, Matthieu; Malossi, Nicola


    Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources and the experi......Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources...... with the Heisenberg uncertainty principle. In the opposite limit, we realize the recently proposed transitionless superadiabatic protocols in which the system follows the instantaneous adiabatic ground state nearly perfectly. We demonstrate that superadiabatic protocols are extremely robust against control parameter...

  12. Filtration effectiveness of HVAC systems at near-roadway schools. (United States)

    McCarthy, M C; Ludwig, J F; Brown, S G; Vaughn, D L; Roberts, P T


    Concern for the exposure of children attending schools located near busy roadways to toxic, traffic-related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air-conditioning (HVAC) filtration systems for near-road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31-66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74-97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49-96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention. Recent literature has demonstrated adverse health effects in subjects exposed to ambient air near major roadways. Current smart growth planning and infill development often require that buildings such as schools are built near major roadways. Improving the filtration systems of a school's HVAC system was shown to decrease children's exposure to near-roadway diesel particulate matter. However, reducing exposure to the gas-phase air toxics, which primarily originated from indoor sources, may require multiple filter passes on recirculated air. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  13. Towards a social psychology-based microscopic model of driver behavior and decision-making : modifying Lewin's field theory (United States)


    Central to effective roadway design is the ability to understand how drivers behave as they traverse a segment of : roadway. While simple and complex microscopic models have been used over the years to analyse driver behaviour, : most models: 1.) inc...

  14. Relaxation before Debriefing during High-fidelity Simulation Improves Memory Retention of Residents at Three Months: A Prospective Randomized Controlled Study. (United States)

    Lilot, Marc; Evain, Jean-Noel; Bauer, Christian; Cejka, Jean-Christophe; Faure, Alexandre; Balança, Baptiste; Vassal, Olivia; Payet, Cécile; Bui Xuan, Bernard; Duclos, Antoine; Lehot, Jean-Jacques; Rimmelé, Thomas


    High-fidelity simulation is known to improve participant learning and behavioral performance. Simulation scenarios generate stress that affects memory retention and may impact future performance. The authors hypothesized that more participants would recall three or more critical key messages at three months when a relaxation break was performed before debriefing of critical event scenarios. Each resident actively participated in one scenario and observed another. Residents were randomized in two parallel-arms. The intervention was a 5-min standardized relaxation break immediately before debriefing; controls had no break before debriefing. Five scenario-specific messages were read aloud by instructors during debriefings. Residents were asked by telephone three months later to recall the five messages from their two scenarios, and were scored for each scenario by blinded investigators. The primary endpoint was the number of residents participating actively who recalled three or more messages. Secondary endpoints included: number of residents observing who recalled three or more messages, anxiety level, and debriefing quality. In total, 149 residents were randomized and included. There were 52 of 73 (71%) residents participating actively who recalled three or more messages at three months in the intervention group versus 35 of 76 (46%) among controls (difference: 25% [95% CI, 10 to 40%], P = 0.004). No significant difference was found between groups for observers, anxiety or debriefing quality. There was an additional 25% of active participants who recalled the critical messages at three months when a relaxation break was performed before debriefing of scenarios. Benefits of relaxation to enhance learning should be considered for medical education.

  15. Base Flow Model Validation Project (United States)

    National Aeronautics and Space Administration — The program focuses on turbulence modeling enhancements for predicting high-speed rocket base flows. A key component of the effort is the collection of high-fidelity...

  16. Numerical studies on surrounding rock deformation controlled by pressure relief groove in deep roadway (United States)

    Liu, Chaoke; Ren, Jianxi; Zhang, Kun; Chen, Shaojie


    After entering deep mining, the roadway is in a high stress state, the deformation of surrounding rock becomes larger, and the roadway floor is particularly significant under unsupported state, which brings great difficulty to the safe production and support of the coal mine. Pressure relief method can change the stress field of surrounding rocks so that the surrounding rock can be in stress-reducing area. The present paper studied the deformation law of the roadway and the changes in the stress state and plastic zone of the surrounding rocks around the roadway before and after the excavation of pressure relief groove on the bottom floor of the high-stress roadway by using FLAC under the engineering background of one mine in Binchang, analyzed the influence of different groove depths and widths on the floor heave, convergence on both sides and roof subsidence. The simulation results show that: after the roadway floor was grooved in the high stress roadway, a larger stress-relaxed area will be formed near the roadway floor, the stress will be transferred to the deep roadway floor, and the pressure relief groove plays a better control effect on the deformation of the high-stress roadway. With the increase of the width and depth of the pressure relief groove, the convergence of the top and bottom of the roadway will be decreased accordingly, but the effect is not significant, while its influence on the convergence on both sides is relatively significant. After applying the simulation results to the engineering practice, the practice shows that: the combined support of anchor rod, anchor rope plus pressure relief groove can control the deformation of the roadway well and the conclusion obtained can provide some reference values for the study and design of the grooving pressure relief control technology.

  17. Analyzing Potential Grid Impacts from Future In-Motion Roadway Wireless Power Transfer Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, Andrew; Gonder, Jeffrey; Jorgenson, Jennie; Brooker, Aaron


    This work examines the grid impact of in-motion roadway wireless power transfer through the examination of the electrification of high-capacity roadways inside a metropolitan area. The work uses data from a regional travel study and the Federal Highway Administration's Highway Performance Monitoring System to estimate the electrified roadway's hourly power use throughout a week. The data are then combined with hourly grid load estimates for the same metropolitan area to determine the overlay of traditional grid load with additional load from a future electrified roadway.

  18. Analyzing Potential Grid Impacts from Future In-Motion Roadway Wireless Power Transfer Scenarios: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, Andrew; Gonder, Jeffrey; Jorgenson, Jennie; Brooker, Aaron


    This work examines the grid impact of in-motion roadway wireless power transfer through the examination of the electrification of high-capacity roadways inside a metropolitan area. The work uses data from a regional travel study and the Federal Highway Administration's Highway Performance Monitoring System to estimate the electrified roadway's hourly power use throughout a week. The data are then combined with hourly grid load estimates for the same metropolitan area to determine the overlay of traditional grid load with additional load from a future electrified roadway.

  19. Focus State Roadway Departure Safety Plans and High Friction Surface Treatments Peer Exchange : an RPSCB Peer Exchange (United States)


    This report summarizes the Focus State Roadway Departure Safety Plans and High Friction Surface Treatments Peer Exchange, held in Birmingham, Alabama, sponsored by the Federal Highway Administration (FHWA) Office of Safetys Roadway Safety Professi...

  20. Louisiana Speaks Regional Plan Vision New or Improved Roadways, UTM Zone 15N NAD 83, Louisiana Recovery Authority (2007), [louisiana_speaks_vision_roadway_improvements (United States)

    Louisiana Geographic Information Center — This GIS shapefile data illustrates new or improved roadways included in the Louisiana Speaks Regional Plan Vision. This network accommodates a land use pattern that...

  1. 49 CFR 236.505 - Proper operative relation between parts along roadway and parts on locomotive. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Proper operative relation between parts along... § 236.505 Proper operative relation between parts along roadway and parts on locomotive. Proper operative relation between the parts along the roadway and the parts on the locomotive shall obtain under...

  2. 49 CFR 214.519 - Floors, decks, stairs, and ladders of on-track roadway maintenance machines. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Floors, decks, stairs, and ladders of on-track... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.519 Floors, decks, stairs, and ladders of on-track roadway maintenance machines. Floors, decks, stairs, and ladders of on-track roadway...

  3. 49 CFR 214.521 - Flagging equipment for on-track roadway maintenance machines and hi-rail vehicles. (United States)


    ... maintenance machines and hi-rail vehicles. 214.521 Section 214.521 Transportation Other Regulations Relating... WORKPLACE SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.521 Flagging equipment for on-track roadway maintenance machines and hi-rail vehicles. Each on-track roadway maintenance machine...

  4. Impact of Roadway Stormwater Runoff on Microbial Contamination in the Receiving Stream. (United States)

    Wyckoff, Kristen N; Chen, Si; Steinman, Andrew J; He, Qiang


    Stormwater runoff from roadways has increasingly become a regulatory concern for water pollution control. Recent work has suggested roadway stormwater runoff as a potential source of microbial pollutants. The objective of this study was to determine the impact of roadway runoff on the microbiological quality of receiving streams. Microbiological quality of roadway stormwater runoff and the receiving stream was monitored during storm events with both cultivation-dependent fecal bacteria enumeration and cultivation-independent high-throughput sequencing techniques. Enumeration of total coliforms as a measure of fecal microbial pollution found consistently lower total coliform counts in roadway runoff than those in the stream water, suggesting that roadway runoff was not a major contributor of microbial pollutants to the receiving stream. Further characterization of the microbial community in the stormwater samples by 16S ribosomal RNA gene-based high-throughput amplicon sequencing revealed significant differences in the microbial composition of stormwater runoff from the roadways and the receiving stream. The differences in microbial composition between the roadway runoff and stream water demonstrate that roadway runoff did not appear to have a major influence on the stream in terms of microbiological quality. Thus, results from both fecal bacteria enumeration and high-throughput amplicon sequencing techniques were consistent that roadway stormwater runoff was not the primary contributor of microbial loading to the stream. Further studies of additional watersheds with distinct characteristics are needed to validate these findings. Understanding gained in this study could support the development of more effective strategies for stormwater management in sensitive watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Developing crash modification functions to assess safety effects of adding bike lanes for urban arterials with different roadway and socio-economic characteristics. (United States)

    Park, Juneyoung; Abdel-Aty, Mohamed; Lee, Jaeyoung; Lee, Chris


    affect the variation in safety effects of adding a bike lane. Some socio-economic characteristics such as bike commuter rate and population density also have significant effect on the variation in CMFs. The findings suggest that full CMFunctions showed better model fit than simple CMFuncttions since they account for the heterogeneous effects of multiple roadway and socio-economic characteristics. The proposed CMFunctions provide insights into bike lane design and selection of sites for bike lane installation for reducing crashes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Framework and implementation of a continuous network-wide health monitoring system for roadways (United States)

    Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar


    According to the 2013 ASCE report card America's infrastructure scores only a D+. There are more than four million miles of roads (grade D) in the U.S. requiring a broad range of maintenance activities. The nation faces a monumental problem of infrastructure management in the scheduling and implementation of maintenance and repair operations, and in the prioritization of expenditures within budgetary constraints. The efficient and effective performance of these operations however is crucial to ensuring roadway safety, preventing catastrophic failures, and promoting economic growth. There is a critical need for technology that can cost-effectively monitor the condition of a network-wide road system and provide accurate, up-to-date information for maintenance activity prioritization. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project provides a framework and the sensing capability to complement periodical localized inspections to continuous network-wide health monitoring. Research focused on the development of a cost-effective, lightweight package of multi-modal sensor systems compatible with this framework. An innovative software infrastructure is created that collects, processes, and evaluates these large time-lapse multi-modal data streams. A GIS-based control center manages multiple inspection vehicles and the data for further analysis, visualization, and decision making. VOTERS' technology can monitor road conditions at both the surface and sub-surface levels while the vehicle is navigating through daily traffic going about its normal business, thereby allowing for network-wide frequent assessment of roadways. This deterioration process monitoring at unprecedented time and spatial scales provides unique experimental data that can be used to improve life-cycle cost analysis models.

  7. Development of operating mode distributions for different types of roadways under different congestion levels for vehicle emission assessment using MOVES. (United States)

    Qi, Yi; Padiath, Ameena; Zhao, Qun; Yu, Lei


    The Motor Vehicle Emission Simulator (MOVES) quantifies emissions as a function of vehicle modal activities. Hence, the vehicle operating mode distribution is the most vital input for running MOVES at the project level. The preparation of operating mode distributions requires significant efforts with respect to data collection and processing. This study is to develop operating mode distributions for both freeway and arterial facilities under different traffic conditions. For this purpose, in this study, we (1) collected/processed geographic information system (GIS) data, (2) developed a model of CO2 emissions and congestion from observations, (3) implemented the model to evaluate potential emission changes from a hypothetical roadway accident scenario. This study presents a framework by which practitioners can assess emission levels in the development of different strategies for traffic management and congestion mitigation. This paper prepared the primary input, that is, the operating mode ID distribution, required for running MOVES and developed models for estimating emissions for different types of roadways under different congestion levels. The results of this study will provide transportation planners or environmental analysts with the methods for qualitatively assessing the air quality impacts of different transportation operation and demand management strategies.

  8. Roadway Toll Areas for New York City [NYCBASEMAP.Billboard_Toll (United States)

    U.S. Environmental Protection Agency — The "Billboard_Toll" dataset is a polygon representation of New York City's roadway Toll Areas, Signs Gantried, Large Billboards and Signs. The data is comprised of...

  9. Development of test scenarios for off-roadway crash countermeasures based on crash statistics (United States)


    This report presents the results from an analysis of off-roadway crashes and proposes a set of crash-imminent scenarios to objectively test countermeasure systems for light vehicles (passenger cars, sport utility vehicles, vans, and pickup trucks) ba...

  10. US Fish and Wildlife Service Roadway Design Guidelines; dated July 2017 (United States)

    US Fish and Wildlife Service, Department of the Interior — The updated FWS Roadway Design Guidelines present state-of-the- art ecological, planning, design and engineering concepts for project teams to consider for...

  11. Pilot study : rolling wheel deflectometer, falling weight deflectometer, and ground penetrating radar on New Hampshire roadways. (United States)


    The New Hampshire Department of Transportation Pavement Management Sections scope of work includes monitoring, evaluating, and : sometimes forecasting the condition of New Hampshires 4,560 miles of roadway network in order to provide guidance o...

  12. Applying instructional design practices to evaluate and improve the roadway characteristics inventory (RCI) training curriculum. (United States)


    The Transportation Statistics Office (TranStat) of the Florida Department of Transportation (FDOT) provides training for district data collection technicians in both office- and field-based Roadway Characteristics Inventory (RCI) methods. The current...

  13. Applying instructional design practices to evaluate and improve the roadway characteristics inventory (RCI) training curriculum : [summary]. (United States)


    The Roadway Characteristics Inventory (RCI) is one of FDOTs largest databases, including over 2 million records. The RCI contains data for several hundred features and characteristics representing geometric, operational, and administrative data re...

  14. The effects of roadway characteristics on farm equipment crashes: a geographic information systems approach


    Greenan, Mitchell; Toussaint, Maisha; Peek-Asa, Corinne; Rohlman, Diane; Ramirez, Marizen R.


    Background Tractors and other slow-moving self-propelled farm equipment are often used on public roadway to transfer goods from the farm to a market or distributer. Increased roadway exposure has led to a growing concern on the occurrence of farm equipment crashes. This study aims to compare characteristics of road segments with farm equipment crashes to road segments without farm equipment crashes in the state of Iowa. Methods Data were obtained from the Iowa Department of Transportation fro...

  15. Deformation and Failure Mechanism of Roadway Sensitive to Stress Disturbance and Its Zonal Support Technology

    Directory of Open Access Journals (Sweden)

    Qiangling Yao


    Full Text Available The 6163 haulage roadway in the Qidong coal mine passes through a fault zone, which causes severe deformation in the surrounding rock, requiring repeated roadway repairs. Based on geological features in the fault area, we analyze the factors affecting roadway deformation and failure and propose the concept of roadway sensitive to stress disturbance (RSSD. We investigate the deformation and failure mechanism of the surrounding rocks of RSSD using field monitoring, theoretical analysis, and numerical simulation. The deformation of the surrounding rocks involves dilatation of shallow rocks and separation of deep rocks. Horizontal and longitudinal fissures evolve to bed separation and fracture zones; alternatively, fissures can evolve into fracture zones with new fissures extending to deeper rock. The fault affects the stress field of the surrounding rock to ~27 m radius. Its maximum impact is on the vertical stress of the rib rock mass and its minimum impact is on the vertical stress of the floor rock mass. Based on our results, we propose a zonal support system for a roadway passing through a fault. Engineering practice shows that the deformation of the surrounding rocks of the roadway can be effectively controlled to ensure normal and safe production in the mine.

  16. Assessing tire forces due to roadway unevenness by the pothole dynamic amplification factor method (United States)

    Pesterev, A. V.; Bergman, L. A.; Tan, C. A.; Yang, B.


    A technique is developed to assess the dynamic contact forces arising after passing road surface irregularities by a vehicle modelled as a general linear MDOF system. The equations governing vibration of a vehicle moving along an uneven profile are, first, transformed to the state-space form and, then, to a system of uncoupled first order complex differential equations. For a local roadway irregularity described functionally, solutions of all equations are found analytically and expressed in terms of a unique function of one complex variable, the so-called pothole dynamic amplification factor, which is specific to the irregularity shape. The solutions obtained are combined to give dependencies of the harmonic components of the contact forces arising after the passage of the irregularity on the vehicle speed and irregularity dimensions. The problem is shown to be decomposed into separate calculation of vehicle and pothole-specific data. The technique developed is not specific to a particular vehicle model or an irregularity shape: the vehicle model is represented by its mass, stiffness, and damping matrices, and the replacement of one irregularity by another simply requires replacement of one dynamic amplification factor function by another. The latter are derived in Appendix A for several pothole configurations. The discussion is amply illustrated by examples of the application of the technique to the calculation of the tire forces for two simple vehicle models and several potholes of different shape.

  17. First-Order Model Management With Variable-Fidelity Physics Applied to Multi-Element Airfoil Optimization (United States)

    Alexandrov, N. M.; Nielsen, E. J.; Lewis, R. M.; Anderson, W. K.


    First-order approximation and model management is a methodology for a systematic use of variable-fidelity models or approximations in optimization. The intent of model management is to attain convergence to high-fidelity solutions with minimal expense in high-fidelity computations. The savings in terms of computationally intensive evaluations depends on the ability of the available lower-fidelity model or a suite of models to predict the improvement trends for the high-fidelity problem, Variable-fidelity models can be represented by data-fitting approximations, variable-resolution models. variable-convergence models. or variable physical fidelity models. The present work considers the use of variable-fidelity physics models. We demonstrate the performance of model management on an aerodynamic optimization of a multi-element airfoil designed to operate in the transonic regime. Reynolds-averaged Navier-Stokes equations represent the high-fidelity model, while the Euler equations represent the low-fidelity model. An unstructured mesh-based analysis code FUN2D evaluates functions and sensitivity derivatives for both models. Model management for the present demonstration problem yields fivefold savings in terms of high-fidelity evaluations compared to optimization done with high-fidelity computations alone.

  18. Effects of Low- Versus High-Fidelity Simulations on the Cognitive Burden and Performance of Entry-Level Paramedicine Students: A Mixed-Methods Comparison Trial Using Eye-Tracking, Continuous Heart Rate, Difficulty Rating Scales, Video Observation and Interviews. (United States)

    Mills, Brennen W; Carter, Owen B-J; Rudd, Cobie J; Claxton, Louise A; Ross, Nathan P; Strobel, Natalie A


    High-fidelity simulation-based training is often avoided for early-stage students because of the assumption that while practicing newly learned skills, they are ill suited to processing multiple demands, which can lead to "cognitive overload" and poorer learning outcomes. We tested this assumption using a mixed-methods experimental design manipulating psychological immersion. Thirty-nine randomly assigned first-year paramedicine students completed low- or high-environmental fidelity simulations [low-environmental fidelity simulations (LF(en)S) vs. high-environmental fidelity simulation (HF(en)S)] involving a manikin with obstructed airway (SimMan3G). Psychological immersion and cognitive burden were determined via continuous heart rate, eye tracking, self-report questionnaire (National Aeronautics and Space Administration Task Load Index), independent observation, and postsimulation interviews. Performance was assessed by successful location of obstruction and time-to-termination. Eye tracking confirmed that students attended to multiple, concurrent stimuli in HF(en)S and interviews consistently suggested that they experienced greater psychological immersion and cognitive burden than their LF(en)S counterparts. This was confirmed by significantly higher mean heart rate (P students who ultimately revived the patient (58% vs. 30%, P students did so significantly more quickly (P students had low immersion resulting in greater assessment anxiety. High-environmental fidelity simulation engendered immersion and a sense of urgency in students, whereas LF(en)S created assessment anxiety and slower performance. We conclude that once early-stage students have learned the basics of a clinical skill, throwing them in the "deep end" of high-fidelity simulation creates significant additional cognitive burden but this has considerable educational merit.

  19. Sustainability assessment of roadway projects under uncertainty using Green Proforma: An index-based approach

    Directory of Open Access Journals (Sweden)

    Adil Umer


    Full Text Available Growing environmental and socioeconomic concerns due to rapid urbanization, population growth and climate change impacts have motivated decision-makers to incorporate sustainable best practices for transportation infrastructure development and management. A “sustainable” transportation infrastructure implies that all the sustainability objectives (i.e., mobility, safety, resource efficiency, economy, ecological protection, environmental quality are adequately met during the infrastructure life cycle. State-of-the-art sustainability rating tools contain the best practices for the sustainability assessment of infrastructure projects. Generally, the existing rating tools are not well equipped to handle uncertainties associated with data limitations and expert opinion and cannot effectively adapt to site specific constraints for reliable sustainability assessment. This paper presents the development of a customizable tool, called “Green Proforma” for the sustainability assessment of roadway projects under uncertainties. For evaluating how well the project meets sustainability objectives, a hierarchical framework is used to develop the sustainability objective indices by aggregating the selected indicators with the help of fuzzy synthetic evaluation technique. These indices are further aggregated to attain an overall sustainability index for a roadway project. To facilitate the decision makers, a “Roadway Project Sustainometer” has been developed to illustrate how well the roadway project is meeting its sustainability objectives. By linking the sustainability objectives to measurable indicators, the “Green Proforma” paves the way for a practical approach in sustainable planning and management of roadway projects.

  20. AOI 1— COMPUTATIONAL ENERGY SCIENCES:MULTIPHASE FLOW RESEARCH High-fidelity multi-phase radiation module for modern coal combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Modest, Michael


    The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particles scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.

  1. Low-power 24.1-GHz propagation effects on roadways (United States)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Simas de Oliveria, Marcelo G.


    This paper discusses the experimental design and analysis of low power 24.1 GHz propagation effects on roadways around the Atlanta, Georgia metropolitan area. The transmitter used was a 24.1 GHz Safety Warning System (SWS) transmitter operating in the continuous wave (CW) mode. The Federal Communications Commission (FCC) has licensed the Safety Warning System for Part 90 operation. A Part 90-compliant transmitter was used during the tests. The receiver was a modified Bel 855Sti radar detector that was calibrated in an anechoic chamber. The receiver was placed in a Ford F-150 truck and driven toward the transmitter. Three distinct propagation environments are characterized including a rural road, state route, and interstate highway. Shadowing effects from terrain features such as hills are examined as well as the effects of other vehicles, including large tractor-trailers. Signal strength is analyzed as a function of distance to the transmitter and using probability distribution function (pdf) modeling. It was found that the Weibull distribution provided the best statistical description for both the line of sight and shadowing cases. In many instances, the statistics of the received signal would change rapidly depending on the terrain features and interaction with surrounding traffic. The results provide insight into how the unlicensed 24.1 GHz band in the United States might be used for low power, intelligent transportation system (ITS) applications.

  2. 2009 Human Factors and Roadway Safety Workshop : Opening Session [SD .WMV (720x480/29fps/546.0 MB) (United States)


    Iowa Department of Transportation Research and Technology Bureau video presentation from the 2009 human factors and roadway safety workshop session titled: 2009 Human Factors and Roadway Safety Workshop Opening Session : Sandra Larson, director, Iowa...

  3. Residential Proximity to Major Roadways and Risk of Type 2 Diabetes Mellitus: A Meta-Analysis. (United States)

    Zhao, Zhiqing; Lin, Faying; Wang, Bennett; Cao, Yihai; Hou, Xu; Wang, Yangang


    Research indicates that higher levels of traffic-related pollution exposure increase the risk of diabetes, but the association between road proximity and diabetes risk remains unclear. To assess and quantify the association between residential proximity to major roadways and type 2 diabetes, a systematic review and meta-analysis was performed. Embase, Medline, and Web of Science were searched for eligible studies. Using a random-effects meta-analysis, the summary relative risks (RRs) were calculated. Bayesian meta-analysis was also performed. Eight studies (6 cohort and 2 cross-sectional) with 158,576 participants were finally included. The summary unadjusted RR for type 2 diabetes associated with residential proximity to major roadways was 1.24 (95% confidence interval [CI]: 1.07-1.44, p = 0.001, I² = 48.1%). The summary adjusted RR of type 2 diabetes associated with residential proximity to major roadways was 1.12 (95% CI: 1.03-1.22, p = 0.01, I² = 17.9%). After excluding two cross-sectional studies, the summary results suggested that residential proximity to major roadways could increase type 2 diabetes risk (Adjusted RR = 1.13; 95% CI: 1.02-1.27, p = 0.025, I² = 36.6%). Bayesian meta-analysis showed that the unadjusted RR and adjusted RR of type 2 diabetes associated with residential proximity to major roadways were 1.22 (95% credibility interval: 1.06-1.55) and 1.13 (95% credibility interval: 1.01-1.31), respectively. The meta-analysis suggested that residential proximity to major roadways could significantly increase risk of type 2 diabetes, and it is an independent risk factor of type 2 diabetes. More well-designed studies are needed to further strengthen the evidence.

  4. 49 CFR 1242.15 - Roadway, tunnels and subways, bridges and culverts, ties, rails, other track material, ballast... (United States)


    ... 49 Transportation 9 2010-10-01 2010-10-01 false Roadway, tunnels and subways, bridges and culverts, ties, rails, other track material, ballast, track laying and surfacing, and road property damaged... RAILROADS 1 Operating Expenses-Way and Structures § 1242.15 Roadway, tunnels and subways, bridges and...

  5. 49 CFR 214.525 - Towing with on-track roadway maintenance machines or hi-rail vehicles. (United States)


    ... or hi-rail vehicles. 214.525 Section 214.525 Transportation Other Regulations Relating to... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.525 Towing with on-track roadway maintenance machines or hi-rail vehicles. (a) When used to tow pushcars or other maintenance-of-way equipment...

  6. 23 CFR 661.51 - Can IRRBP funds be used for the approach roadway to a bridge? (United States)


    ... bridge? 661.51 Section 661.51 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.51 Can IRRBP funds be used for the approach roadway to a bridge? (a) Yes, costs associated with approach roadway work, as defined in...

  7. Identifying traditional and nontraditional predictors of crash injury severity on major urban roadways. (United States)

    Haleem, Kirolos; Gan, Albert


    This study identifies and compares the factors that contribute to injury severity on urban freeways and arterials and recommends potential countermeasures to enhance the safety of both facilities. The study makes use of an extensive data set from the State of Florida in the United States. To obtain a more complete picture, this study explores both traditional and nontraditional severity predictors. Some traditional predictors include traffic volume, speed limit, and road surface condition. The nontraditional predictors are comprised of those rarely explored in previous severity studies, including crash distance to the nearest ramp location, detailed vehicle types, and lighting and weather conditions. The analysis was conducted using the ordered and binary probit models, which are well suited for the inherently ordered property of injury severity. An important finding is the significance of the distance of crash to the nearest ramp junction/access point, for which the increase in the distance yielded a severity increase at both facilities. Other significant factors included traffic volume, speed limit, at-fault driver's age, road surface condition, alcohol and drug involvement, and left and right shoulder widths. In comparing both facilities, sport utility vehicles (SUVs) and pickup trucks showed a fatality/severity increase on freeways and a decrease on arterials. Furthermore, the detailed list of variables such as crash time provided pertinent severity trend information that showed that, compared to the other periods, the afternoon peak period had the highest reduction in fatality/severity. Both probit models succeeded in identifying significant severity predictors for each facility. The binary probit model outperformed the ordered probit model based on the higher elasticities (marginal effects) for the fatality/severity probability change, as well as the goodness of fit. As such, this study provides the guidelines for assessing the impact of important roadway and

  8. Traffic & safety statewide model and GIS modeling. (United States)


    Several steps have been taken over the past two years to advance the Utah Department of Transportation (UDOT) safety initiative. Previous research projects began the development of a hierarchical Bayesian model to analyze crashes on Utah roadways. De...

  9. Manufacturing High-Fidelity Lunar Agglutinate Simulants (United States)

    Gutafson, R. J.; Edmunson, J. E.; Rickman, D. L.


    The lunar regolith is very different from many naturally occurring material on Earth because it forms in the unique, impact-dominated environment of the lunar surface. Lunar regolith is composed of five basic particle types: mineral fragments, pristine crystalline rock fragments, breccia fragments, glasses of various kinds, and agglutinates (glass-bonded aggregates). Agglutinates are abundant in the lunar regolith, especially in mature regoliths where they can be the dominant component.This presentation will discuss the technical feasibility of manufacturing-simulated agglutinate particles that match many of the unique properties of lunar agglutinates.

  10. High Fidelity Simulations of Littoral Environments

    National Research Council Canada - National Science Library

    Allard, Richard


    .... With the end of the cold war, DoD's focus has shifted from a land/sea battle scenario with a monolithic global adversary to dealing with low-intensity conflicts in the near-coastal or littoral regions...

  11. High-Fidelity Lunar Dust Simulant Project (United States)

    National Aeronautics and Space Administration — The severity of the lunar dust problems encountered during the Apollo missions were consistently underestimated by ground tests, illustrating the need to develop...

  12. Bridging communication gaps with High Fidelity prototypes

    DEFF Research Database (Denmark)

    Kramp, Gunnar


    As computer technology becomes more and more integrated in our daily life, the interface moves from the screen back into our physical surroundings. Also, design teams become more and more complex regarding professions and the cultural backgrounds of the people participating. This poses great...

  13. Multi-pollutant mobile platform measurements of air pollutants adjacent to a major roadway (United States)

    Riley, Erin A.; Banks, Lyndsey; Fintzi, Jonathan; Gould, Timothy R.; Hartin, Kris; Schaal, LaNae; Davey, Mark; Sheppard, Lianne; Larson, Timothy; Yost, Michael G.; Simpson, Christopher D.


    A mobile monitoring platform developed at the University of Washington Center for Clean Air Research (CCAR) measured 10 pollutant metrics (10 s measurements at an average speed of 22 km/h) in two neighborhoods bordering a major interstate in Albuquerque, NM, USA from April 18-24 2012. 5 days of data sharing a common downwind orientation with respect to the roadway were analyzed. The aggregate results show a three-fold increase in black carbon (BC) concentrations within 10 m of the edge of roadway, in addition to elevated nanoparticle concentration and particulate matter with aerodynamic diameter pollutants measured have been expanded to include polycyclic aromatic hydrocarbons (PAH), particle size distribution (0.25-32 μm), and ultra-violet absorbing particulate matter (UVPM). The raster sampling scheme combined with spatial and temporal measurement alignment provide a measure of variability in the near roadway concentrations, and allow us to use a principal component analysis to identify multi-pollutant features and analyze their roadway influences.

  14. Research and application on the horizontal tectonic stress influence on the stability of deep roadway (United States)

    CAO, Jian-jun; YAO, Zhuang-zhuang


    According to the test result of ground stress of -817.0m Horizontal shaft station in Huainan mine area, the stress field distribution characteristic of mainly with horizontal tectonic stress was analyzed, the deep roadway surrounding rock deformation and failure regularity under the situation of the maximum horizontal stress and roadway axis in the different angle were studied by using the FLAC3D simulation software, and then specific way of supporting and its parameters were designed combined with the shaft station layout conditions. The result shows that: the roadway stability is relatively good when its tunnel axis the maximum horizontal stress direction within 30° angle, surrounding rock deformation and the plastic zone at the top and bottom are significantly increasing along with the angle increased from 30° to 90°, the major form of deep soft rock deformation and failure is the floor heave. According to the simulation results, the conditions under the layout condition of the shaft station roadway, support methods and support parameters have been designed and determined. The supporting method can be referenced by the similar mines.

  15. Dust captures effectiveness of scrubber systems on mechanical miners operating in larger roadways.

    CSIR Research Space (South Africa)

    Hole, BJ


    Full Text Available The project was directed towards bord and pillar working by mechanised miners operating in larger section roadways, where the problem of scrubber capture tends to be greatest owing to the limited size of the zone of influence around exhaust...

  16. Residential Proximity to Major Roadways and Lung Cancer Mortality. Italy, 1990–2010: An Observational Study

    Directory of Open Access Journals (Sweden)

    Ettore Bidoli


    Full Text Available Background: Air pollution from road traffic has been associated to an increased risk of lung cancer. Herein, we investigated the association between lung cancer mortality and residence near Italian highways or national major roads. Methods: Information on deaths for lung cancer registered from 1990 to 2010 and stratified by age, gender, and urban or rural municipality of residence at death were obtained from the National Institute of Statistics. Distance between the centroid of the municipality of residence and closest major roadways was considered as a proxy of pollution exposure. Relative Risks (RR and 95% confidence intervals (CI were computed using Poisson log-linear models adjusted for age, calendar period, deprivation index, North/South gradient, and urban/rural status. Results: A gradient in risk for lung cancer mortality was seen for residents within 50 meters (m of national major roads. In particular, in rural municipalities a statistically significant increased risk for lung cancer death was observed in both sexes (RR = 1.27 for distance <25 m vs. 500–1999 m, 95% CI 1.17–1.42, in men; RR = 1.97, 95% CI 1.64–2.39, in women. In urban municipalities, weak risks of borderline significance were documented in both sexes (RR = 1.06, 95% CI 0.99–1.15 in men; and RR = 1.09, 95% CI 0.97–1.22 in women. No statistically significant association emerged between residence within 100 to 500 m from highways and RRs of death for lung cancer. Conclusions: In Italy, residing near national major roads, in particular in rural municipalities, was related to elevated risks of death for lung cancer.

  17. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, Oscar [ORNL; Davidson, Diane [ORNL


    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel

  18. Right ventricular diastolic performance in children with pulmonary arterial hypertension associated with congenital heart disease: correlation of echocardiographic parameters with invasive reference standards by high-fidelity micromanometer catheter. (United States)

    Okumura, Kenichi; Slorach, Cameron; Mroczek, Dariusz; Dragulescu, Andreea; Mertens, Luc; Redington, Andrew N; Friedberg, Mark K


    Right ventricular diastolic dysfunction influences outcomes in pulmonary arterial hypertension (PAH), but echocardiographic parameters have not been investigated in relation to invasive reference standards in pediatric PAH. We investigated echocardiographic parameters of right ventricular diastolic function in children with PAH in relation to simultaneously measured invasive reference measures. We prospectively recruited children undergoing a clinically indicated cardiac catheterization for evaluation of PAH and pulmonary vasoreactivity testing. Echocardiography was performed simultaneously with invasive reference measurements by high-fidelity micromanometer catheter. For analysis, patients were divided into shunt and nonshunt groups. Sixteen children were studied. In the group as a whole, significant correlations were found among τ and tricuspid deceleration time, E', E/E', TimeE-E', A wave velocity, and global early and late diastolic strain rate. dp/dt minimum correlated significantly with late diastolic tricuspid annular velocity (A'), tissue Doppler imaging-derived systolic:diastolic duration ratio, and global late diastolic strain rate. End-diastolic pressure correlated significantly with tissue Doppler imaging-derived systolic:diastolic duration ratio. On multivariate analysis, tricuspid deceleration time, TimeE-E', and global early diastolic strain rate were independent predictors of τ, whereas tissue Doppler imaging-derived systolic:diastolic duration ratio was an independent predictor of dp/dt minimum. In general, correlations between echocardiographic and invasive parameters were better in the shunt group than in the nonshunt group. Echocardiography correlates with invasive reference measures of right ventricular diastolic function in children with PAH, although it does not differentiate between early versus late diastolic abnormalities. Newer echocardiographic techniques may have added value to assess right ventricular diastolic dysfunction in this

  19. 49 CFR 214.509 - Required visual illumination and reflective devices for new on-track roadway maintenance machines. (United States)


    ... TRANSPORTATION RAILROAD WORKPLACE SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.509... lighting is otherwise provided; (c) An operative 360-degree intermittent warning light or beacon mounted on...

  20. An analysis of the direct and indirect costs of utility and right-of-way conflicts on construction roadway projects. (United States)


    Utility conflicts are unfortunately a common occurrence on many roadway projects. This report examines the frequency and severity of utility conflicts both within and outside of Kentucky. Understanding which type of utility conflicts most likely occu...

  1. The Impact of the Low Throw Fault on the Stability of Roadways in a Hard Coal Mine

    Directory of Open Access Journals (Sweden)

    Małkowski Piotr


    Full Text Available Ensuring roadways stability in hard coal mines is one of the main challenges faced by engineers. A changeable geological structure have caused the roadway’s conditions to vary, thus influencing its stability. One of the causes of those changes is the presence of a previously undiscovered fault zone (small faults crossed the roadway within which a significant convergence or support deformation may occur.

  2. Failure Mechanism Analysis and Support Design for Deep Composite Soft Rock Roadway: A Case Study of the Yangcheng Coal Mine in China

    Directory of Open Access Journals (Sweden)

    Bangyou Jiang


    Full Text Available This paper presented a case study of the failure mechanisms and support design for deep composite soft rock roadway in the Yangcheng Coal Mine of China. Many experiments and field tests were performed to reveal the failure mechanisms of the roadway. It was found that the surrounding rock of the roadway was HJS complex soft rock that was characterized by poor rock quality, widespread development of joint fissures, and an unstable creep property. The major horizontal stress, which was almost perpendicular to the roadway, was 1.59 times larger than the vertical stress. The weak surrounding rock and high tectonic stress were the main internal causes of roadway instabilities, and the inadequate support was the external cause. Based on the failure mechanism, a new support design was proposed that consisted of bolting, cable, metal mesh, shotcrete, and grouting. A field experiment using the new design was performed in a roadway section approximately 100 m long. Detailed deformation monitoring was conducted in the experimental roadway sections and sections of the previous roadway. The monitoring results showed that deformations of the roadway with the new support design were reduced by 85–90% compared with those of the old design. This successful case provides an important reference for similar soft rock roadway projects.

  3. Study on the collision detection method between the 2-arm drill rig arms and the roadway

    Directory of Open Access Journals (Sweden)

    Fuxiang ZHANG


    Full Text Available In order to achieve the automation drilling of the improved CMJ2-27 drill, kinematic analysis of the drill rig is conducted aiming the collision between the arms and the roadway during the operation process. By suing the Denavit-Hartenberg (D-H method, the transformation matrix of coordinate system is obtained, then the coordinates of each joint and the ends are derived. The collision detection approach between the arm and the roadway is given. Theoretical calculation and the motion simulation experiment are conducted by using the detection method for a 88-hole drilling program for a mine. The research results show that the method is feasible and has the characteristics of simple procedures and high efficiency.

  4. Influence of ventilation on hearing of speech in an underground roadway

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, H.; Isei, T.; Kunimatsu, S.; Tanaka, A. [National Inst. for Resources and Environment, Tsukuba (Japan); Kinoshita, M.; Tanaka, M. [Coal Mine Research Center, Kyushu, Fukuoka (Japan)


    The influence of ventilation on hearing of speech was studied experimentally in an underground roadway. The noise generated by interaction between a human pinna and wind was measured at two different wind velocities using the dummy head equipped with an ear simulator, and articulation tests were also conducted on test subjects in both a roadway and connected adit. Speech transmitted was measured through the dummy head and a microphone, and its syllables were analyzed by wavelet transform. The influence of a wind velocity on the articulation test results was studied by arranging the analytical results based on the relative relation among a sound source, wind direction and ear. The articulation test results were finally rearranged from the viewpoint of the influence of the noise generated by interaction between a human pinna and wind on speech obtained, and the relation between formants with ending vowels composing each syllable and the frequency components of the noise. 9 refs., 11 figs.

  5. A positioning-tolerant wireless charging system for roadway-powered electric vehicles (United States)

    Zhang, Zhen; Chau, K. T.; Liu, Chunhua; Qiu, Chun; Ching, T. W.


    This paper proposes a positioning-tolerant wireless power transfer technique to compensate the impact of misalignment on the power transmission performance, which is used to implement the wireless charging functionality in a free-positioning manner, thus significantly improving the practicality for roadway-powered electric vehicles (EVs). The key of the proposed wireless power transfer technique is to adopt the gapless alternate-winding topology for the power supply unit to produce an evenly distributed electromagnetic field and the vertical-and-horizontal coil design for the pickup unit to enhance the capability of acquiring energy. Hence, the power transmission can be effectively improved in spite of an offset between the centers of the primary and secondary coils. In this paper, both the computational simulation and experimentation are carried out to verify the feasibility of the proposed positioning-tolerant wireless charging system for roadway-powered EVs.

  6. Study on Load-displacement Test of Rubber Pads of Coal Mine Roadway Constructed by Shield (United States)

    Yang, Yue; Chen, Xiaoguo; Yang, Liyun


    Shield method construction of coal mine roadway is the future trend of the development of deep coal mining. The main shaft supporting is the segment. There is rubber pads between segment and segment. The performance of compression deformation of rubber pad is essential for the overall stability of lining. Through load test, displacement of the rubber pad under load, the thrust force law of the rubber pad deformation, and provide a theoretical basis for the stability analysis of coal mine tunnel shield construction.

  7. A novel technique to measure chronic levels of corticosterone in turtles living around a major roadway


    Baxter-Gilbert, James H.; Riley, Julia L.; Mastromonaco, Gabriela F.; Jacqueline D Litzgus; Lesbarr?res, David


    Conservation biology integrates multiple disciplines to expand the ability to identify threats to populations and develop mitigation for these threats. Road ecology is a branch of conservation biology that examines interactions between wildlife and roadways. Although the direct threats of road mortality and habitat fragmentation posed by roads have received much attention, a clear understanding of the indirect physiological effects of roads on wildlife is lacking. Chronic physiological stress...

  8. Minimising the fire hazard from the use of belt conveyors in intake roadways

    Energy Technology Data Exchange (ETDEWEB)

    Leeming, J.R. [Health and Safety Executive, Sheffield, S. Yorkshire (United Kingdom)


    The fire that occurred a the Creswell underground coal mine in Derbyshire in 1950 in which 90 miners lost their lives was caused by a damaged rubber conveyor belt that ignited after being friction heated. The fire propagated along the intake trunk roadway by the burning belt itself, which ignited the timber roadway supports and hampered fire-fighting efforts. This paper demonstrated that operating conveyors in intake trunk roadways presents a risk that products of combustion can be carried to the working areas of a mine via ventilation pathways, thus creating a hazard to the underground miners. In North America, the use of belt air is not commonly used to ventilate working areas. However, these arrangements are common in the United Kingdom. As such, installation, inspection and maintenance standards have been created to minimize the risk of fire in underground, remotely operated belt conveyors in underground mines. Monitoring systems are also in place for early detection of any fire. A review of recent underground fires in the United Kingdom has shown that the measures adopted have been successful in avoiding uncontrollable fires. 13 refs., 5 figs.

  9. Contamination assessment of mercury and arsenic in roadway dust from Baoji, China (United States)

    Lu, Xinwei; Li, Loretta Y.; Wang, Lijun; Lei, Kai; Huang, Jing; Zhai, Yuxiang

    The physicochemical properties and the contamination levels of mercury and arsenic in roadway dust from Baoji, NW China were investigated using an Atomic Fluorescence Spectrophotometer. Contamination levels were assessed based on the geoaccumulation index and the enrichment factor. The results show that magnetic susceptibilities of roadway dust were higher than Holocene loess-soil of central Shaanxi Loess Plateau. The mean contents of organic matter, PM10 and PM100 were 8.8%, 21.8% and 98.6%, respectively. Mercury concentration ranged from 0.48 to 2.32 μg g -1, with a mean value of 1.11 μg g -1, 17.1 times the Chinese soil mercury background value and 37 times the Shaanxi soil mercury background value. Arsenic concentration ranged from 9.0 to 42.8 μg g -1, with a mean value of 19.8 μg g -1, 1.8 times the Chinese and Shaanxi soil arsenic background values. The geoaccumlation index and enrichment factor indicate that mercury in the dust mainly originated from anthropogenic sources with ratings of "strongly polluted" and "strongly to extremely polluted", whereas arsenic in dust originated from both natural and anthropogenic sources, with a ratings of "moderately to strongly polluted" and "strongly polluted". Industrial activities, such as a coal-fired power station, coke-oven plant, and cement manufacturing plant, augmented by vehicular traffic, are the anthropogenic sources of mercury and arsenic in the roadway dust.

  10. Characterizing and predicting coarse and fine particulates in classrooms located close to an urban roadway. (United States)

    Chithra, V S; Nagendra, S M Shiva


    The PM10, PM2.5, and PM1 (particulate matter with aerodynamic diameters school building located at roadside in Chennai City. The 24-hr average PM10, PM2.5, and PM1 concentrations at indoor and outdoor environments were found to be 136 +/- 60, 36 +/- 15, and 20 +/- 12 and 76 +/- 42, 33 +/- 16, and 23 +/- 14 microg/m3, respectively. The size distribution of PM in the classroom indicated that coarse mode was dominant during working hours (08:00 a.m. to 04:00 p.m.), whereas fine mode was dominant during nonworking hours (04:00 p.m. to 08:00 a.m.). The increase in coarser particles coincided with occupant activities in the classrooms and finer particles were correlated with outdoor traffic. Analysis of indoor PM10, PM2.5, and PM1 concentrations monitored at another school, which is located at urban reserved forest area (background site) indicated 3-4 times lower PM10 concentration than the school located at roadside. Also, the indoor PM1 and PM2.5 concentrations were 1.3-1.5 times lower at background site. Further, a mass balance indoor air quality (IAQ) model was modified to predict the indoor PM concentration in the classroom. Results indicated good agreement between the predicted and measured indoor PM2.5 (R2 = 0.72-0.81) and PM1 (R2 = 0.81-0.87) concentrations. But, the measured and predicted PM10 concentrations showed poor correlation (R2 = 0.17-0.23), which may be because the IAQ model could not take into account the sudden increase in PM10 concentration (resuspension of large size particles) due to human activities. Implications: The present study discusses characteristics of the indoor coarse and fine PM concentrations of a naturally ventilated school building located close to an urban roadway and at a background site in Chennai City, India. The study results will be useful to engineers and policymakers to prepare strategies for improving the IAQ inside classrooms. Further, this study may help in the development of IAQ standards and guidelines in India.

  11. Multi-fidelity wake modelling based on Co-Kriging method

    DEFF Research Database (Denmark)

    Wang, Y. M.; Réthoré, Pierre-Elouan; van der Laan, Paul


    The article presents an approach to combine wake models of multiple levels of fidelity, which is capable of giving accurate predictions with only a small number of high fidelity samples. The G. C. Larsen and k-ε-fP based RANS models are adopted as ensemble members of low fidelity and high fidelity...... models, respectively. Both the univariate and multivariate based surrogate models are established by taking the local wind speed and wind direction as variables of the wind farm power efficiency function. Various multi-fidelity surrogate models are compared and different sampling schemes are discussed....... The analysis shows that the multi-fidelity wake models could tremendously reduce the high fidelity model evaluations needed in building an accurate surrogate....

  12. Near-roadway pollution and childhood asthma: implications for developing "win-win" compact urban development and clean vehicle strategies. (United States)

    Perez, Laura; Lurmann, Fred; Wilson, John; Pastor, Manuel; Brandt, Sylvia J; Künzli, Nino; McConnell, Rob


    The emerging consensus that exposure to near-roadway traffic-related pollution causes asthma has implications for compact urban development policies designed to reduce driving and greenhouse gases. We estimated the current burden of childhood asthma-related disease attributable to near-roadway and regional air pollution in Los Angeles County (LAC) and the potential health impact of regional pollution reduction associated with changes in population along major traffic corridors. The burden of asthma attributable to the dual effects of near-roadway and regional air pollution was estimated, using nitrogen dioxide and ozone as markers of urban combustion-related and secondary oxidant pollution, respectively. We also estimated the impact of alternative scenarios that assumed a 20% reduction in regional pollution in combination with a 3.6% reduction or 3.6% increase in the proportion of the total population living near major roads, a proxy for near-roadway exposure. We estimated that 27,100 cases of childhood asthma (8% of total) in LAC were at least partly attributable to pollution associated with residential location within 75 m of a major road. As a result, a substantial proportion of asthma-related morbidity is a consequence of near-roadway pollution, even if symptoms are triggered by other factors. Benefits resulting from a 20% regional pollution reduction varied markedly depending on the associated change in near-roadway proximity. Our findings suggest that there are large and previously unappreciated public health consequences of air pollution in LAC and probably in other metropolitan areas with dense traffic corridors. To maximize health benefits, compact urban development strategies should be coupled with policies to reduce near-roadway pollution exposure.

  13. Effect of exposure to aggressive stimuli on aggressive driving behavior at pedestrian crossings at unmarked roadways. (United States)

    Chai, Jing; Zhao, Guozhen


    Aggressive driving, influenced by the proneness of driving aggression, angry state and provoking situation, is adversely affecting traffic safety especially in developing countries where pedestrians frequently cross an unmarked crosswalk. Exposure to aggressive stimuli causes driving anger and aggressive driving behaviors, but the exposure effect on higher and lower aggression drivers and their cumulative changes under successive exposures need more investigation. An experiment was conducted to examine (1) driving behaviors of individuals with higher and lower aggressive driving traits when approaching pedestrian crossings at unmarked roadways with and without aggressive provocation; and (2) cumulative changes of driving performance under repeated provocations. We conducted a driving simulator study with 50 participants. Trait of aggressive driving served as a between-subjects variable: participants with an Aggressive Driving Scale (ADS) total score of 30 or more (for men) or 23 or more (for women) were regarded as higher aggressive drivers; lower aggressive drivers were those individuals whose ADS total scores were 21 or less (for men) or 13 or less (for women). Exposure to aggressive stimuli (provoked vs. non-provoked condition) served as a within-subjects variable. Several aspects of the participants' minimum driving speed, lateral distance from a simulated pedestrian, lateral deviation, and subjective measures were collected. We found that drivers with higher aggressive driving traits were more likely to feel irritated and fail to give way for pedestrians and drove closer to pedestrians when exposed to sustained honking and improper passing compared to the non-provoked condition. This trait×state interaction only occurred when pedestrians crossed the street from the right roadway edge line. In addition, we observed an accumulation effect of exposure to aggressive stimuli on driver's aggressive behaviors at pedestrian crossings. Environmental design, law

  14. Costs of coronary heart disease and mortality associated with near-roadway air pollution. (United States)

    Brandt, Sylvia; Dickinson, Brenton; Ghosh, Rakesh; Lurmann, Frederick; Perez, Laura; Penfold, Bryan; Wilson, John; Künzli, Nino; McConnell, Rob


    Emerging evidence indicates that the near-roadway air pollution (NRAP) mixture contributes to CHD, yet few studies have evaluated the associated costs. We integrated an assessment of NRAP-attributable CHD in Southern California with new methods to value the associated mortality and hospitalizations. Based on population-weighted residential exposure to NRAP (traffic density, proximity to a major roadway and elemental carbon), we estimated the inflation-adjusted value of NRAP-attributable mortality and costs of hospitalizations that occurred in 2008. We also estimated anticipated costs in 2035 based on projected changes in population and in NRAP exposure associated with California's plans to reduce greenhouse gas emissions. For comparison, we estimated the value of CHD mortality attributable to PM less than 2.5μm in diameter (PM2.5) in both 2008 and 2035. The value of CHD mortality attributable to NRAP in 2008 was between $3.8 and $11.5 billion, 23% (major roadway proximity) to 68% (traffic density) of the $16.8 billion attributable to regulated regional PM2.5. NRAP-attributable costs were projected to increase to $10.6 to $22 billion in 2035, depending on the NRAP metric. Cost of NRAP-attributable hospitalizations for CHD in 2008 was $48.6 million and was projected to increase to $51.4 million in 2035. We developed an economic framework that can be used to estimate the benefits of regulations to improve air quality. CHD attributable to NRAP has a large economic impact that is expected to increase by 2035, largely due to an aging population. PM2.5-attributable costs may underestimate total value of air pollution-attributable CHD. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Technical Feasibility Assessment of LED Roadway Lighting on the Golden Gate Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.


    Subsequent to preliminary investigations by the Golden Gate Bridge Highway & Transportation District (GGB), in coordination with Pacific Gas & Electric (PG&E), the GATEWAY Demonstration program was asked to evaluate the technical feasibility of replacing existing roadway lighting on the bridge with products utilizing LED technology. GGB and PG&E also indicated interest in induction (i.e., electrodeless fluorescent) technology, since both light source types feature rated lifetimes significantly exceeding those of the existing high-pressure sodium (HPS) and low-pressure sodium (LPS) products. The goal of the study was to identify any solutions which would reduce energy use and maintenance without compromising the quantity or quality of existing illumination. Products used for roadway lighting on the historic bridge must be installed within the existing amber-lensed shoebox-style luminaire housings. It was determined that induction technology does not appear to represent a viable alternative for the roadway luminaires in this application; any energy savings would be attributable to a reduction in light levels. Although no suitable LED retrofit kits were identified for installation within existing luminaire housings, several complete LED luminaires were found to offer energy savings of 6-18%, suggesting custom LED retrofit kits could be developed to match or exceed the performance of the existing shoeboxes. Luminaires utilizing ceramic metal halide (CMH) were also evaluated, and some were found to offer 28% energy savings, but these products might actually increase maintenance due to the shorter rated lamp life. Plasma technology was evaluated, as well, but no suitable products were identified. Analysis provided in this report was completed in May 2012. Although LED technologies are expected to become increasingly viable over time, and product mock-ups may reveal near-term solutions, some options not currently considered by GGB may ultimately merit evaluation. For

  16. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis (United States)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo


    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  17. Resistance of mine roadway supports to dynamic loads under conditions of rock burst hazards in the Katowice Mine Union

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, M.; Syrek, B.; Sarnek, R. (Katowickie Gwarectwo Weglowe, Katowice (Poland))


    Analyzes 77 seismic events (rock bursts) that occurred in mine roadways in areas not directly influenced by working faces. The roadways were supported by V or LP yielding arched supports spaced at 0.8 to 1.0 m. Rock burst energy is analyzed. Indices used in describing rock burst energy are comparatively evaluated. Support failures caused by rock bursts are described. Rock bursts in coal seams, in the floor and in the roof are analyzed. Formulae used to describe the forecast effects of a rock burst are derived. 7 refs.

  18. Fuel cells and the roadway-powered electric vehicles; Les piles a combustible visent l`auto electrique

    Energy Technology Data Exchange (ETDEWEB)



    Being yet not very well known in France, the fuel cell technique improves regularly. Its principle is given in this work. The current researches are centred on the study of the different possible electrolytes. Its main future uses will be the roadway-powered electric vehicles and the small fuel cell power plants. The fuel cell size is at the present time too big for a possible use in roadway-powered electric vehicles. The current cost of membranes and of a platinum catalyst use are too high too. A hydrogen production chain, inoffensive for the environment, will have to be developed too. (O.M.)

  19. Impacts of Fog Characteristics, Forward Illumination, and Warning Beacon Intensity Distribution on Roadway Hazard Visibility

    Directory of Open Access Journals (Sweden)

    John D. Bullough


    Full Text Available Warning beacons are critical for the safety of transportation, construction, and utility workers. These devices need to produce sufficient luminous intensity to be visible without creating glare to drivers. Published standards for the photometric performance of warning beacons do not address their performance in conditions of reduced visibility such as fog. Under such conditions light emitted in directions other than toward approaching drivers can create scattered light that makes workers and other hazards less visible. Simulations of visibility of hazards under varying conditions of fog density, forward vehicle lighting, warning beacon luminous intensity, and intensity distribution were performed to assess their impacts on visual performance by drivers. Each of these factors can influence the ability of drivers to detect and identify workers and hazards along the roadway in work zones. Based on the results, it would be reasonable to specify maximum limits on the luminous intensity of warning beacons in directions that are unlikely to be seen by drivers along the roadway, limits which are not included in published performance specifications.

  20. Optimization of roadways support on El Bierzo (Spain); Optimizacion del Sostenimiento de Galerias en el Bierzo

    Energy Technology Data Exchange (ETDEWEB)



    The aim of this project, carried out between 1993 and 1996, is based on the research of the possibilities for roadways support optimisation in EL BIERZO coal field, which is the carboniferous coal field in Spain where it is the most widespread the use of rock bolting combined with yielding arches as gates support system. This project has been carried out in the GRUPO ESCANDAL of Antracitas de Gaiztarro, at present integrated in Coto Minero del SIL and it has been focused on BIENHALLADA and PERDIZ layers, with the following tasks: I.- Taking of geomechanical data. II.- Setting up of a support calculation system III.- Validation of the calculation system in real situations. IV.- development of a friendly computer programme that can be used by technicians, without any special knowledge on computers, for the design of roadways support in EL BIERZO. This programme, in a very friendly manner, permits to establish the geometrical characteristics of a gate to be excavated in a certain seam and, once defined the geometry of the gate, this programme is able to select the support to be used, by combining fully grouted bolts, wooden chocks and steel arches. (Author)

  1. A high-fidelity model for coupling flow and mechanical deformation of the porous paper web - a key to improved understanding of dewatering and rewet at the press section in paper making

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trebotich, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Xu, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Turpin, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The U.S. pulp and paper industry is the third-largest manufacturing user of energy, with an energy demand of 2,540 trillion Btu in 2010. Within the papermaking process, drying consumes over 400 trillion Btu annually which makes it one of the largest energy saving opportunities. In the 2014 Forest Products Industry Technology Roadmap, it is concluded that increasing the paper web solid content entering the dryer section from the current 45- 55 percent to approaching 65 percent, which would save 1.0 MMBtu per ton or 20 percent of the energy used in drying, is one of the most needed technology breakthroughs to achieve a more sustainable approach for manufacturing pulp and paper products. Achieving such significant energy savings highly depends on understanding the fundamental dynamics of the wet press process and then developing optimized solutions for design of more energy-efficient press processes and equipment. The objective of this project is to develop reliable computational capabilities to accurately simulate the flow of water from/to the porous pulp medium (dewatering/rewetting) during the pressing process in paper making.

  2. Predictive Eco-Cruise Control (ECC) system : model development, modeling and potential benefits. (United States)


    The research develops a reference model of a predictive eco-cruise control (ECC) system that intelligently modulates vehicle speed within a pre-set speed range to minimize vehicle fuel consumption levels using roadway topographic information. The stu...

  3. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, B. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Myer, M. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase I report provides an overview of initial project results including lighting performance, economic performance, and potential energy savings.

  4. Modeling and numerical techniques for high-speed digital simulation of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.


    Conventional computing methods are contrasted with newly developed high-speed and low-cost computing techniques for simulating normal and accidental transients in nuclear power plants. Six principles are formulated for cost-effective high-fidelity simulation with emphasis on modeling of transient two-phase flow coolant dynamics in nuclear reactors. Available computing architectures are characterized. It is shown that the combination of the newly developed modeling and computing principles with the use of existing special-purpose peripheral processors is capable of achieving low-cost and high-speed simulation with high-fidelity and outstanding user convenience, suitable for detailed reactor plant response analyses.

  5. An Analysis of the Educational Value of Low-Fidelity Anatomy Models as External Representations (United States)

    Chan, Lap Ki; Cheng, Maurice M. W.


    Although high-fidelity digital models of human anatomy based on actual cross-sectional images of the human body have been developed, reports on the use of physical models in anatomy teaching continue to appear. This article aims to examine the common features shared by these physical models and analyze their educational value based on the…

  6. Stress analysis of three-dimensional roadway layout of stagger arrangement with field observation (United States)

    Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe


    Longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method for extracting thick (> 5 m) to ultra-thick coal seams in recent years. However, low-level recovery ratio of coal resources and top-coal loss above the supports at both ends of working face are long-term problems. Geological factors, such as large dip angle, soft rock, mining depth further complicate the problems. This paper proposes addressing this issue by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress environment surrounding head entry in the replacing working face based on the stress distribution characteristics at the triangular coal-pillar side in gob and the stress slip line field theory. In the second step, filed observation was conducted. Finally, an economic evaluation of the 3-D RLSA for extracting thick to ultra-thick seams was conducted.

  7. Numerical Investigation of Rockburst Effect of Shock Wave on Underground Roadway

    Directory of Open Access Journals (Sweden)

    Cai-Ping Lu


    Full Text Available Using UDEC discrete element numerical simulation software and a cosine wave as vibration source, the whole process of rockburst failure and the propagation and attenuation characteristics of shock wave in coal-rock medium were investigated in detail based on the geological and mining conditions of 1111(1 working face at Zhuji coal mine. Simultaneously, by changing the thickness and strength of immediate roof overlying the mining coal seam, the whole process of rockburst failure of roadway and the attenuation properties of shock wave were understood clearly. The presented conclusions can provide some important references to prevent and control rockburst hazards triggered by shock wave interferences in deep coal mines.

  8. Temporal Variation of Carbon Monoxide Concentration at Congested Urban Roadways Intersection

    Directory of Open Access Journals (Sweden)



    Full Text Available The carbon monoxide (CO is dominant among major traffic emitted pollutants such as respirable suspended particulate matter (RSPM, oxides of nitrogen (NOx, volatile organic carbons(VOCs and ozone (O3 etc. It is generated by automobiles due to incomplete combustion of the fuel. The vehicles that queue up at an intersection spend more time in idle driving mode generating more pollutant leading to higher pollutant concentrations. Therefore, the trends of average hourly CO concentrations at various locations of congested roadways intersection have been investigated. The four approach roads making intersection have been selected for the present study. CO monitoring has been carried out at 2 selected locations of each approach road. The CO concentration has been monitored from 8:00 AM to 8:00 PM at each location using portable online CO monitor. The average hourly CO concentrations data have been analyzed using MS excel spread sheet for each approach road. The average hourly concentration of monitored CO concentration at all receptors locations shows two peak CO concentration values (i.e., the morning peak and evening peak throughout the monitoring programme (March to May, 2011. The comparison of monitored values of average 1 hourly CO concentration levels as well as 8 hourly average concentration levels of CO showed non compliance with the prescribed standards (4000 µg/m3 average hourly and 2000 µg/m3 average 8 hourly CO concentration. The temporal CO concentration at various approach roads making roadway intersection shows non-uniform. The highest CO concentration has been observed to be towards high rise building and vice-versa. The least CO concentration has been observed towards either low rise building or open area.

  9. Procedures and models for estimating preconstruction costs of highway projects. (United States)


    This study presents data driven and component based PE cost prediction models by utilizing critical factors retrieved from ten years of historical project data obtained from ODOT roadway division. The study used factor analysis of covariance and corr...

  10. BALCO 6/7-DoF trajectory model

    NARCIS (Netherlands)

    Wey, P.; Corriveau, D.; Saitz, T.A.; Ruijter, W. de; Strömbäck, P.


    BALCO is a six- and seven-degree-of-freedom trajectory simulation program based on the mathematical model defined by the NATO Standardization Recommendation 4618. The primary goal of BALCO is to compute high-fidelity trajectories for both conventional and precision-guided projectiles. The 6-DoF

  11. Evaluation of origin-destination matrix estimation techniques to support aspects of traffic modeling. (United States)


    Travel demand forecasting models are used to predict future traffic volumes to evaluate : roadway improvement alternatives. Each of the metropolitan planning organizations (MPO) in : Alabama maintains a travel demand model to support planning efforts...

  12. Modeling the Space Debris Environment with MASTER-2009 and ORDEM2010 (United States)

    Flegel, S.; Gelhaus, J.; Wiedemann, C.; Mockel, M.; Vorsmann, P.; Krisko, P.; Xu, Y. -L.; Horstman, M. F.; Opiela, J. N.; Matney, M.; hide


    Spacecraft analysis using ORDEM2010 uses a high-fidelity population model to compute risk to on-orbit assets. The ORDEM2010 GUI allows visualization of spacecraft flux in 2-D and 1-D. The population was produced using a Bayesian statistical approach with measured and modeled environment data. Validation of sizes 1mm is on-going.

  13. A new beating-heart off-pump coronary artery bypass grafting training model

    NARCIS (Netherlands)

    Bouma, Wobbe; Kuijpers, Michiel; Bijleveld, Aanke; De Maat, Gijs E.; Koene, Bart M.; Erasmus, Michiel E.; Natour, Ehsan; Mariani, Massimo A.

    OBJECTIVES: Training models are essential in mastering the skills required for off-pump coronary artery bypass grafting (OPCAB). We describe a new, high-fidelity, effective and reproducible beating-heart OPCAB training model in human cadavers. METHODS: Human cadavers were embalmed according to the

  14. 2009 Human Factors and Roadway Safety Workshop : Context and Objectives [SD .WMV (720x480/29fps/37.3 MB) (United States)


    Iowa Department of Transportation Research and Technology Bureau video presentation from the 2009 human factors and roadway safety workshop session titled: Context and Objectives : Mark Lowe, director, Iowa DOT Motor Vehicle Division, speaks on the d...

  15. 2009 Human Factors and Roadway Safety Workshop : National Perspectives on Safety [SD .WMV (720x480/29fps/227.0 MB) (United States)


    Iowa Department of Transportation Research and Technology Bureau video presentation from the 2009 human factors and roadway safety workshop session titled: National Perspectives on Safety : Essie Wagner, program analyst, National Highway Traffic Safe...

  16. Road and Street Centerlines - FUNCTIONAL_CLASS_INDOTMODEL_IN: Functional Classification of Roadways in Indiana, 2015 (Indiana Department of Transportation, Line Shapefile) (United States)

    NSGIC State | GIS Inventory — FUNCTIONAL_CLASS_INDOTMODEL_IN is a line shapefile that shows the Federal Highway Administration functional classification of roadways from the Road Inventory of the...

  17. Modeling near-road air quality using a computational fluid dynamics model, CFD-VIT-RIT. (United States)

    Wang, Y Jason; Zhang, K Max


    It is well recognized that dilution is an important mechanism governing the near-road air pollutant concentrations. In this paper, we aim to advance our understanding of turbulent mixing mechanisms on and near roadways using computation fluid dynamics. Turbulent mixing mechanisms can be classified into three categories according to their origins: vehicle-induced turbulence (VIT), road-induced turbulence (RIT), and atmospheric boundary layer turbulence. RIT includes the turbulence generated by road embankment, road surface thermal effects, and roadside structures. Both VIT and RIT are affected by the roadway designs. We incorporate the detailed treatment of VIT and RIT into the CFD (namely CFD-VIT-RIT) and apply the model in simulating the spatial gradients of carbon monoxide near two major highways with different traffic mix and roadway configurations. The modeling results are compared to the field measurements and those from CALINE4 and CFD without considering VIT and RIT. We demonstrate that the incorporation of VIT and RIT considerably improves the modeling predictions, especially on vertical gradients and seasonal variations of carbon monoxide. Our study implies that roadway design can significantly influence the near-road air pollution. Thus we recommend that mitigating near-road air pollution through roadway designs be considered in the air quality and transportation management In addition, thanks to the rigorous representation of turbulent mixing mechanisms, CFD-VIT-RIT can become valuable tools in the roadway designs process.

  18. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase II Report

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, B. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, R. G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase II report documents longer-term performance of the LED lighting system that was installed in 2008, and is the first report on the longer-term performance of LED lighting in the field.

  19. Application of synchrotron methods to assess the uptake of roadway-derived Zn by earthworms in an urban soil (United States)

    Lev, S.M.; Landa, E.R.; Szlavecz, K.; Casey, R.; Snodgrass, J.


    The impact of human activities on biogeochemical cycles in terrestrial environments is nowhere more apparent than in urban landscapes. Trace metals, collected on roadways and transported by storm water, may contaminate soils and sediments associated with storm water management systems. These systems will accumulate metals and associated sediments may reach toxic levels for terrestrial and aquatic organisms using the retention basins as habitat. The fate and bioavailability of these metals once deposited is poorly understood. Here we present results from a dose-response experiment that examines the application of synchrotron X-ray fluorescence methods (??-SXRF) to test the hypothesis that earthworms will bio-accumulate Zn in a roadway-dust contaminated soil system providing a potential pathway for roadway contaminants into the terrestrial food web, and that the storage and distribution of Zn will change with the level of exposure reflecting the micronutrient status of Zn. Lumbricus friendi was exposed to Zn-bearing roadway dust amended to a field soil at six target concentrations ranging from background levels (45 mg/kg Zn) to highly contaminated levels (460 mg/kg Zn) designed to replicate the observed concentration range in storm-water retention basin soils. After a 30 day exposure, Zn storage in the intestine is positively correlated with dose and there is a change in the pattern of Zn storage within the intestine. This relationship is only clear when ??-SXRF Zn map data is coupled with a traditional toxicological approach, and suggests that the gut concentration in L. friendi is a better indicator of Zn bioaccumulation and storage than the total body burden. ?? 2008 The Mineralogical Society.

  20. "Bicycles May Use Full Lane" Signage Communicates U.S. Roadway Rules and Increases Perception of Safety.

    Directory of Open Access Journals (Sweden)

    George Hess

    Full Text Available Many global challenges, including obesity, health care costs, and climate change, could be addressed in part by increasing the use of bicycles for transportation. Concern about the safety of bicycling on roadways is frequently cited as a deterrent to increasing bicycle use in the USA. The use of effective signage along roadways might help alleviate these concerns by increasing knowledge about the rights and duties of bicyclists and motorists, ideally reducing crashes. We administered a web-based survey, using Twitter for recruitment, to examine how well three US traffic control devices communicated the message that bicyclists are permitted in the center of the travel lane and do not have to "get out of the way" to allow motorists to pass without changing lanes: "Bicycles May Use Full Lane" and "Share the Road" signage, and Shared Lane Markings on the pavement. Each was compared to an unsigned roadway. We also asked respondents whether it was safe for a bicyclist to occupy the center of the travel lane. "Bicycles May Use Full Lane" signage was the most consistently comprehended device for communicating the message that bicyclists may occupy the travel lane and also increased perceptions of safety. "Share the Road" signage did not increase comprehension or perceptions of safety. Shared Lane Markings fell somewhere between. "Bicycles May Use Full Lane" signage showed notable increases in comprehension among novice bicyclists and private motor vehicle commuters, critical target audiences for efforts to promote bicycling in the USA. Although limited in scope, our survey results are indicative and suggest that Departments of Transportation consider replacing "Share the Road" with "Bicycles May Use Full Lane" signage, possibly combined with Shared Lane Markings, if the intent is to increase awareness of roadway rights and responsibilities. Further evaluation through virtual reality simulations and on-road experiments is merited.

  1. Association of Roadway Proximity with Indoor Air Pollution in a Peri-Urban Community in Lima, Peru


    Underhill, Lindsay J.; Sonali Bose; Williams, D’Ann L.; Romero, Karina M.; Gary Malpartida; Breysse, Patrick N.; Klasen, Elizabeth M; Combe, Juan M.; William Checkley; Hansel, Nadia N.


    The influence of traffic-related air pollution on indoor residential exposure is not well characterized in homes with high natural ventilation in low-income countries. Additionally, domestic allergen exposure is unknown in such populations. We conducted a pilot study of 25 homes in peri-urban Lima, Peru to estimate the effects of roadway proximity and season on residential concentrations. Indoor and outdoor concentrations of particulate matter (PM2.5), nitrogen dioxide (NO2), and black carbon...

  2. Sizing Dynamic Wireless Charging for Light-Duty Electric Vehicles in Roadway Applications

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Andrew P [ORNL; Ozpineci, Burak [ORNL; Chinthavali, Madhu Sudhan [ORNL; Li, Jan-Mou [ORNL


    Dynamic wireless charging is a possible cure for the range limitations seen in electric vehicles (EVs) once implemented in highways or city streets. The contribution of this paper is the use of experimental data to show that the expected energy gain from a dynamic wireless power transfer (WPT) system is largely a function of average speed, which allows the power level and number of coils per mile of a dynamic WPT system to be sized for the sustained operation of an EV. First, data from dynamometer testing is used to determine the instantaneous energy requirements of a light-duty EV. Then, experimental data is applied to determine the theoretical energy gained by passing over a coil as a function of velocity and power level. Related simulations are performed to explore possible methods of placing WPT coils within roadways with comparisons to the constant velocity case. Analyses with these cases demonstrate what system ratings are needed to meet the energy requirements of the EV. The simulations are also used to determine onboard energy storage requirements for each driving cycle.

  3. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material. (United States)

    Gürü, Metin; Çubuk, M Kürşat; Arslan, Deniz; Farzanian, S Ali; Bilici, İbrahim


    This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, A.; Markel, T.; Burton, E.; Wang, L.; Gonder, J.; Brooker, A.


    Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by these seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.

  5. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material

    Energy Technology Data Exchange (ETDEWEB)

    Gürü, Metin, E-mail: [Gazi University, Eng. Fac., Chem. Eng. Depart., 06570 Maltepe-Ankara (Turkey); Çubuk, M. Kürşat; Arslan, Deniz; Farzanian, S. Ali [Gazi University, Eng. Fac., Civil Eng. Depart., 06570 Maltepe-Ankara (Turkey); Bilici, İbrahim [Hitit University, Eng. Fac., Chem. Eng. Depart., 19100 Çorum (Turkey)


    Graphical abstract: - Highlights: • We derived two novel additive materials from PET bottle waste: TLPP and VPP. • We used them to modify the base asphalt separately. • The additives improved both the asphalt and the asphalt mixture performance. • TLPP, VPP offer a beneficial way about disposal of ecologically hazardous PET waste. - Abstract: This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material.

  6. Maintaining mine roadway using rock bolts. Rock bolt ni yoru kodo iji

    Energy Technology Data Exchange (ETDEWEB)

    Fujino, T. (Taiheiyo Coal Mining Co. Ltd., Tokyo (Japan))


    This paper describes the rock bolt method, devices and construction experiences in maintaining mine roadway drilling with Wombat-type rock bolt drilling and driving machines. Keeping the pace with coal mining zones reaching increasingly greater depths, timbering arch frames have grown larger and heavier, with frame intervals decreased. The described method was adopted to improve work efficiency and save manpowers. The Wombat, 1200-90 machine uses a driving air pressure at 7 kgf/cm[sup 2] a torque at 170 N/m to 180 N/m, and a free rotation at 800 rpm, consumes a r at 60 L/S, weighs 38 kg., and measures 1,370 mm to 3,420 mm in length. The machine is scheduled for use with three gates placed at a depth below sea level as deep as about 600 m, with gate diameters from about 5.0 m to 5.5 m and a length of about 8000 m. Effectiveness and safety of the rock bolts were verified using an extensometer made in the U.S.A. Roof subsidence after a working face has been drilled to 20 m to 30 m was about one third of that when no rock bolts were used, thus the adaptability of the method was verified. Although the drilling technique using the Wombat machine has taken roots at this particular coal mine, problems still remain such as in workability, for which further efficiency improvement and manpower saving are desired. 4 figs., 3 tabs.

  7. Development and Validation of EPH Material Model for Engineered Roadway Soil (United States)


    this document shall be addressed to Technology Management Division (CSTE- DTC -TT-M)], US Army Developmental Test Command , 314 Longs Corner Road...providing the funding which made this project possible. This material is based on R&D work supported by the U.S. Army TACOM Life Cycle Command under...necessarily reflect the views of the U.S. Army TACOM Life Cycle Command . ACRONYMS AFV Air Filled Void ALE Arbitrary Lagrangian Eulerian ARL

  8. If they come, will you build it? Urban transportation growth models (United States)


    This report develops several models of historical roadway improvements in the Twin Cities metro area. Planners respond to, and try to shape, demand by recommending investments in new infrastructure and changes in public policy. Sometimes capacity is ...

  9. Development of a prototype land use model for statewide transportation planning activities : summary. (United States)


    Developing computer models of land use and : integrated transportation-land use are high : priorities for Florida transportation planners. : Land use information is fundamental to siting : roadways, signaling, setting maintenance : priorities, routin...


    NARCIS (Netherlands)

    Noorishad, Parisa; Yatawatta, Sarod


    The application of orthonormal basis functions such as Prolate Spheroidal Wave Functions (PSWF) for accurate source modeling in radio astronomy has been comprehensively studied. They are of great importance for high fidelity, high dynamic range imaging with new radio telescopes as well as

  11. Increasing the efficiency of roadway drivages through the application of advanced information, automation and maintenance technologies

    Energy Technology Data Exchange (ETDEWEB)

    A. Rodriguez; M. Schmid; T. Winkler (and others) [Asociacion para la Investigacion y el Desarrollo Industrial de los Recursos Naturales, Leganes (Spain)


    The main goal of the IAMTECH project was increasing the efficiency of road-heading by applying advanced information, automation and maintenance technologies. Some of its results will allow for increasing the availability of the machinery through the decrease of both programmed maintenance time and medium time to repair. Other results are related to the adoption of new types (in coal mining) of support considered promising from a productivity increase perspective, such as concrete spraying. Research topics addressed in the project could be classified roughly in two groups: horizontal (underlying common technologies) and vertical (related to the actual implementation of devices, software and systems). Among the results for horizontal activities, those that deserve special mention are the development of an Atex 3D laser scanner, Atex WLAN (WiFi) access points, cameras and PDA, as well as methods for storing and representing in 3D machinery components, subassemblies and complete machines. Amid results of vertical activities is the implementation of a central maintenance control mining machinery is concentrated. Engineers in charge of CMCR have online access to all machinery-related information, including direct access to manufacturers' databases. Images, voice and data flowing from the underground, and diagrams and advice flowing from the surface are transmitted and displayed using the technologies developed during horizontal activities. Other important results are the development of methods for assessing the quality of execution of roadway support when using sprayed concrete for this purpose, also using technologies (such as laser scanning) developed within the horizontal activities. 10 refs., 162 figs., 7 tabs.

  12. A novel technique to measure chronic levels of corticosterone in turtles living around a major roadway. (United States)

    Baxter-Gilbert, James H; Riley, Julia L; Mastromonaco, Gabriela F; Litzgus, Jacqueline D; Lesbarrères, David


    Conservation biology integrates multiple disciplines to expand the ability to identify threats to populations and develop mitigation for these threats. Road ecology is a branch of conservation biology that examines interactions between wildlife and roadways. Although the direct threats of road mortality and habitat fragmentation posed by roads have received much attention, a clear understanding of the indirect physiological effects of roads on wildlife is lacking. Chronic physiological stress can lower immune function, affect reproductive rates and reduce life expectancy; thus, it has the potential to induce long-lasting effects on populations. Reptiles are globally in decline, and roads are known to have negative effects on reptile populations; however, it is unknown whether individual responses to roads and traffic result in chronic stress that creates an additional threat to population viability. We successfully extracted reliable measures of corticosterone (CORT), a known, commonly used biomarker for physiological stress, from claw trimmings from painted turtles (Chrysemys picta) captured at three study sites (road-impacted site, control site and validation site). Corticosterone levels in claws were evaluated as a measure of chronic stress in turtles because CORT is deposited during growth of the claw and could provide an opportunity to examine past long-term stress levels. While male turtles had higher CORT levels on average than females, there was no difference in the level of CORT between the road-impacted and control site, nor was there a relationship between CORT and turtle body condition. In validating a novel approach for non-invasive measurement of long-term CORT levels in a keratinized tissue in wild reptiles, our study provides a new avenue for research in the field of stress physiology.

  13. Effect of Stresses and Strains of Roadway Surrounding Rocks on Borehole Airtightness

    Directory of Open Access Journals (Sweden)

    WU Wei


    Full Text Available At present, many high gas and outburst mines have poor gas drainage effects. An important reason influencing the gas drainage effect is a poor hole-sealing effect. Most studies on gas drainage borehole sealing focus on local and foreign borehole sealing methods, borehole sealing equipment, and borehole sealing materials. Numerical simulations of initial drilling sealing depth are insufficient because studies on this subject are few. However, when the initial sealing depth of the borehole is not chosen reasonably, air can enter the gas drainage drill hole through the circumferential crack of roadway surrounding rocks under the influence of suction pressure of the drainage system. This phenomenon ultimately affects the hole-sealing effect. To improve the drilling hole sealing of gas drainage boring, we deduced the expression formulas of the crushing zone, plastic zone, and elastic zone around the coal-seam floor stone drift and conducted a stress–strain analysis of the coal-seam floor stone drift of the 2145 working surfaces of the Sixth Coal Mine of Hebi Coal Mine Group Company by using theoretical analysis, numerical simulation, and on-scene verification. Finally, we obtain the initial drilling sealing depth, which is a main contribution of this study. The results prove the following. The performed hole-sealing process with an initial drilling sealing depth of 8 m has a gas drainage efficiency of 55%. Compared with the previous 6.8 m initial drilling sealing depth with a gas drainage efficiency of less than 30%, which was adopted by the mine, the initial sealing depth of 8 m chosen in the numerical simulation is reasonable and conforms to the actual situation on the spot. Therefore, the initial drilling sealing depth chosen in the numerical simulation will produce practical and effective guidance to study the field hole-sealing depth.

  14. Photoactive roadways: Determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete (United States)

    Toro, C.; Jobson, B. T.; Haselbach, L.; Shen, S.; Chung, S. H.


    This work reports uptake coefficients and by-product yields of ozone precursors onto two photocatalytic paving materials (asphalt and concrete) treated with a commercial TiO2 surface application product. The experimental approach used a continuously stirred tank reactor (CSTR) and allowed for testing large samples with the same surface morphology encountered with real urban surfaces. The measured uptake coefficient (γgeo) and surface resistances are useful for parametrizing dry deposition velocities in air quality model evaluation of the impact of photoactive surfaces on urban air chemistry. At 46% relative humidity, the surface resistance to NO uptake was ∼1 s cm-1 for concrete and ∼2 s cm-1 for a freshly coated older roadway asphalt sample. HONO and NO2 were detected as side products from NO uptake to asphalt, with NO2 molar yields on the order of 20% and HONO molar yields ranging between 14 and 33%. For concrete samples, the NO2 molar yields increased with the increase of water vapor, ranging from 1% to 35% and HONO was not detected as a by-product. Uptake of monoaromatic VOCs to the asphalt sample set displayed a dependence on the compound vapor pressure, and was influenced by competitive adsorption from less volatile VOCs. Formaldehyde and acetaldehyde were detected as byproducts, with molar yields ranging from 5 to 32%.

  15. Near-Roadway Emission of Reactive Nitrogen Compounds and Other Non-Criteria Pollutants at a Southern California Freeway Site (United States)

    Moss, J. A.; Baum, M.; Castonguay, A. E.; Aguirre, V., Jr.; Pesta, A.; Fanter, R. K.; Anderson, M.


    Emission control systems in light-duty motor vehicles (LDMVs) have played an important role in improving regional air quality by dramatically reducing the concentration of criteria pollutants (carbon monoxide, hydrocarbons, and nitrogen oxides) in exhaust emissions. Unintended side-reactions occurring on the surface of three-way catalysts may lead to emission of a number of non-criteria pollutants whose identity and emission rates are poorly understood. A series of near-roadway field studies conducted between 2009-2015 has investigated LDMV emissions of these pollutants with unprecedented depth of coverage, including reactive nitrogen compounds (NH3, amines, HCN, HONO, and HNO3), organic peroxides, and carbonyl compounds (aldehydes, ketones, and carboxylic acids). Methods to collect these pollutants using mist chambers, annular denuders, impingers, and solid-phase cartridges and quantify their concentration using GC-MS, LC-MS/MS, IC, and colorimetry were developed and validated in the laboratory and field. These methods were subsequently used in near-roadway field studies where the concentrations of the target compounds integrated over 1-4 hour blocks were measured at the edge of a freeway and at a background site 140 m from the roadway. Concentrations followed a steep decreasing gradient from the freeway to the background site. Emission factors (pollutant mass emitted per mass fuel consumed) were calculated by carbon mass balance using the difference in concentration measured between the freeway and background sites for the emitted pollutant and CO2 as a measure of carbon mass in the vehicle exhaust. The significance of these results will be discussed in terms of emissions inventories in the South Coast Air Basin of California, emission trends at this site over the period of 2009-2015, and for NH3, emission measurements conducted by our group and others over the period 2000-2015.

  16. A multi-model incremental adaptive strategy to accelerate partitioned fluid-structure algorithms using space-mapping

    NARCIS (Netherlands)

    Scholcz, T.P.; Van Zuijlen, A.H.; Bijl, H.


    High fidelity analysis of fluid-structure interaction systems is often too timeconsuming when a large number of model evaluations are required. The choice for a solution procedure depends often on the efficiency of the method and the possibility of reusing existing field solvers. Aggressive

  17. Increase of a Roadway Covering Durability by Using the Cement-Concrete Base Fragmented with the Geogrid

    Directory of Open Access Journals (Sweden)

    Sannikov Sergey


    Full Text Available Presents the results of studies of innovative materials in the field of in road construction. The paper presents an alternative method of increasing the cracking resistance of the roads asphalt-concrete pavement, constructed on the cement-concrete base, due to its fragmentation with the volumetric plastic geogrid while constructing. Theoretical, laboratory and field experimental studies of this design were conducted, as well as the effectiveness of the proposed solution was proved. The use of this design can improve the durability of the roadway coverings and reduce the costs for the roads repair and maintenance.

  18. A Community-Academic Partnership to Reduce Lead Exposure From an Elevated Roadway Demolition, Cincinnati, Ohio, 2012. (United States)

    Newman, Nicholas C; Elam, Sarah; Igoe, Carol; Jones, Camille; Menrath, William; Porter, Denisha; Haynes, Erin N


    Disseminating public health recommendations to community members is an important step in protecting the public's health. We describe a community-academic partnership comprising health-based organizations, community groups, academia, and government organizations. This partnership undertook an iterative process to develop an outreach plan, educational materials, and activities to bring lead-poisoning prevention recommendations from a health impact assessment of a roadway demolition/construction project to the residents of an affected neighborhood in Cincinnati, Ohio, in 2012. Community partners played a key role in developing outreach and prevention activities. As a result of this project, activities among members of the partnership continue.

  19. Demonstration Assessment of LED Roadway Lighting: NE Cully Boulevard Portland, OR

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P.; Poplawski, Michael E.; Tuenge, Jason R.


    A new roadway lighting demonstration project was initiated in late 2010, which was planned in conjunction with other upgrades to NE Cully Boulevard, a residential collector road in the northeast area of Portland, OR. With the NE Cully Boulevard project, the Portland Bureau of Transportation hoped to demonstrate different light source technologies and different luminaires side-by-side. This report documents the initial performance of six different newly installed luminaires, including three LED products, one induction product, one ceramic metal halide product, and one high-pressure sodium (HPS) product that represented the baseline solution. It includes reported, calculated, and measured performance; evaluates the economic feasibility of each of the alternative luminaires; and documents user feedback collected from a group of local Illuminating Engineering Society (IES) members that toured the site. This report does not contain any long-term performance evaluations or laboratory measurements of luminaire performance. Although not all of the installed products performed equally, the alternative luminaires generally offered higher efficacy, more appropriate luminous intensity distributions, and favorable color quality when compared to the baseline HPS luminaire. However, some products did not provide sufficient illumination to all areas—vehicular drive lanes, bicycle lanes, and sidewalks—or would likely fail to meet design criteria over the life of the installation due to expected depreciation in lumen output. While the overall performance of the alternative luminaires was generally better than the baseline HPS luminaire, cost remains a significant barrier to widespread adoption. Based on the cost of the small quantity of luminaires purchased for this demonstration, the shortest calculated payback period for one of the alternative luminaire types was 17.3 years. The luminaire prices were notably higher than typical prices for currently available luminaires

  20. High beam headlamp use rates: Effects of rurality, proximity of other traffic, and roadway curvature. (United States)

    Reagan, Ian J; Brumbelow, Matthew L; Flannagan, Michael J; Sullivan, John M


    The few observational studies of the prevalence of high beam use indicate the rate of high beam use is about 25% when vehicles are isolated from other vehicles on unlit roads. Recent studies were limited to 2-lane rural roads and used measurement methods that likely overestimated use. The current study examined factors associated with the rate of high beam use of isolated vehicles on a variety of roadways in the Ann Arbor, Michigan area. Twenty observation sites were categorized as urban, rural, or on a rural/urban boundary and selected to estimate the effects of street lighting, road curvature, and direction of travel relative to the city on high beam use. Sites were selected in pairs so that a majority of traffic passing one site also passed through the other. Measurement of high beams relied on video data recorded for 2 nights at each site, and the video data also were used to derive a precise measure of the proximity of other traffic. Nearly 3,200 isolated vehicles (10 s or longer from other vehicles) were observed, representing 1,500-plus vehicle pairs. Across the sample, 18% of the vehicles used high beams. Seventy-three percent of the 1,500-plus vehicle pairs used low beams at each paired site, whereas 9% used high beams at both sites. Vehicles at rural sites and sites at the boundaries of Ann Arbor were more likely to use high beams than vehicles at urban sites, but use in rural areas compared with rural/urban boundary areas did not vary significantly. Rates at all sites were much lower than expected, ranging from 0.9 to 52.9%. High beam use generally increased with greater time between subject vehicles and leading vehicles and vehicles in the opposing lane. There were mixed findings associated with street lighting, road curvature, and direction of travel relative to the city. Maximizing visibility available to drivers from headlights includes addressing the substantial underuse of high beam headlamps. Advanced technologies such as high beam assist, which

  1. High-Fidelity Aerodynamic Design with Transition Prediction Project (United States)

    National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to significantly improve upon the integration (performed in Phase 1) of a new sweep/taper...

  2. High-Fidelity Aerodynamic Design with Transition Prediction Project (United States)

    National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to combine a new sweep/taper integrated-boundary-layer (IBL) code that includes transition...

  3. High Fidelity Simulations of Large-Scale Wireless Networks

    Energy Technology Data Exchange (ETDEWEB)

    Onunkwo, Uzoma [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benz, Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  4. Demonstration of deterministic and high fidelity squeezing of quantum information

    DEFF Research Database (Denmark)

    Yoshikawa, J-I.; Hayashi, T-; Akiyama, T.


    , and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum...

  5. Restless Tuneup of High-Fidelity Qubit Gates (United States)

    Rol, M. A.; Bultink, C. C.; O'Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; DiCarlo, L.


    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate-set tomography. The adjustable sensitivity of the cost function allows the detection of fractional changes in the gate error with a nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.

  6. Simulation Learning PC Screen-Based vs. High Fidelity (United States)


    Post-test questions Attachment D. Data Collection Sheet Tripler Army Medical Center Judy Carlson, EdD, FNP -BC, Kristine Qureshi, RN, CEN, DNSc, and...INFORMATION: For questions about the study, contact the principal investigator: Dr. Judy Carlson, EdD, FNP -BC Nursing Research, Pacific Regional

  7. Physics and Psychophysics of High-Fidelity Sound. Part V. (United States)

    Rossing, Thomas D.


    Discusses the psychophysics of sound localization and the spatial attributes of sound, attempting to explain some of the methods used to produce more realistic sound images. Topics include: direct and indirect sound; localization and sound images; precedence effect; and techniques for creating spaciousness and for sonic image enhancement. (JM)

  8. High Fidelity Regolith Simulation Tool for ISRU Applications Project (United States)

    National Aeronautics and Space Administration — NASA has serious unmet needs for simulation tools capable of predicting the behavior of lunar regolith in proposed excavation, transport and handling systems....

  9. High Fidelity Quantum Gates via Analytically Solvable Pulses (United States)


    show that the second order differential equation for the probability amplitude of state |n〉 is the hypergeometric equation, for which the solutions are...induces a phase to the state, i.e., the probability amplitude acquires a phase factor. Using the analytically solvable dynamics outlined above, I

  10. High Fidelity, High Volume Agglutinate Manufacturing Process Project (United States)

    National Aeronautics and Space Administration — Up to 65% of the lunar soils are comprised of agglutinates. Although the importance of agglutinate in simulants is often debated, the fact is that agglutinates...

  11. High Fidelity Drug Repurposing, Molecular Profiling, and Cell Reprogramming (United States)


    applied to the molecular profiles derived from a series of pten mutant tumors from engineered mice and predicted drugs will be tested on conditionally...studies, the animal colony has been expanded as required and the analyses by MRI have begun. The goals are to identify animals with prostate tumors. Once

  12. High-Fidelity Simulation of Turbofan Noise Project (United States)

    National Aeronautics and Space Administration — Broadband fan noise ? closely tied to turbulent flow on and around the fan blades ? represents a key challenge to the noise reduction community due to the...

  13. Exploration of high-fidelity simulation: Nurse educators' perceptions ...

    African Journals Online (AJOL)

    Four themes emerged from the educators' experiences and perceptions. The use and benefits of HFS were generally accepted by educators. They valued its positive impact on learning outcomes in learners and the ability to simulate more complex scenarios during training. Lack of prior planning, inadequate training and ...

  14. Impact assessment and remediation strategies for roadway construction in acid-bearing media: case study from Mid-Appalachia

    Energy Technology Data Exchange (ETDEWEB)

    Viadero, R.C.; Fortney, R.H.; Creel, A.T. [Western Illinois University, Macomb, IL (United States)


    The likelihood of encountering land impacted by current and/or historic coal mining activities is high when constructing roadways in the Mid-Appalachian region. Through additional disturbance of these lands, environmental impacts such as acid and dissolved metals loading and subsequent impacts to aquatic flora and fauna will ensue. Consequently, it is necessary to affect a paradigm shift in roadway design and construction to account for the presence of factors that compound the already difficult task of working in a region characterized by steep topography and aggressive geochemistry. In this study, assessments of the water chemistry and biological impacts of a waste pile containing spoils from previous mining and the presence of an exposed coal mine bench were made as representative microcosmic examples of typical conditions found in the region. Based on quantitative measurements of water quality and biological conditions, recommendations are presented for the assessment and avoidance of impacts prior to construction through acid-bearing materials and suggestions are offered for postconstruction remediation at previously impacted sites.

  15. Assessment of Bearing Capacity and Stiffness in New Steel Sets Used for Roadway Support in Coal Mines

    Directory of Open Access Journals (Sweden)

    Renshu Yang


    Full Text Available There is high demand for roadway support in coal mines for the swelling soft rocks. As high strength steel sets can be taken as an effective alternative to control large deformation in this type of rocks, based on an original set, three new sets, including a floor beam set, a roof and floor beams set, and a roof and floor beams and braces set, are proposed in this research. In order to examine the strengths of new sets, four scaled sets of one original set, and three new sets, have been manufactured and tested in loading experiments. Results indicated that three new sets all exhibited higher strength than the original set. In experiments, the roof beam in set plays a significant effect on top arch strengthening, while the floor beam plays significant effect on bottom arch strengthening. The maximum bearing capacity and stiffness of the top arch with roof beam are increased to 1.63 times and 3.06 times of those in the original set, and the maximum bearing capacity and stiffness of the bottom arch with floor beam are increased to 1.44 times and 3.55 times of those in original set. Based on the roof and floor beams, two more braces in the bottom arch also play a significant effect in bottom corners strengthening, but extra braces play little role in top arch strengthening. These new sets provide more choices for roadway support in swelling soft rocks.

  16. Association of Roadway Proximity with Indoor Air Pollution in a Peri-Urban Community in Lima, Peru. (United States)

    Underhill, Lindsay J; Bose, Sonali; Williams, D'Ann L; Romero, Karina M; Malpartida, Gary; Breysse, Patrick N; Klasen, Elizabeth M; Combe, Juan M; Checkley, William; Hansel, Nadia N


    The influence of traffic-related air pollution on indoor residential exposure is not well characterized in homes with high natural ventilation in low-income countries. Additionally, domestic allergen exposure is unknown in such populations. We conducted a pilot study of 25 homes in peri-urban Lima, Peru to estimate the effects of roadway proximity and season on residential concentrations. Indoor and outdoor concentrations of particulate matter (PM₂.₅), nitrogen dioxide (NO₂), and black carbon (BC) were measured during two seasons, and allergens were measured in bedroom dust. Allergen levels were highest for dust mite and mouse allergens, with concentrations above clinically relevant thresholds in over a quarter and half of all homes, respectively. Mean indoor and outdoor pollutant concentrations were similar (PM₂.₅: 20.0 vs. 16.9 μg/m³, BC: 7.6 vs. 8.1 μg/m³, NO₂: 7.3 vs. 7.5 ppb), and tended to be higher in the summer compared to the winter. Road proximity was significantly correlated with overall concentrations of outdoor PM₂.₅ (rs = -0.42, p = 0.01) and NO₂ (rs = -0.36, p = 0.03), and outdoor BC concentrations in the winter (rs = -0.51, p = 0.03). Our results suggest that outdoor-sourced pollutants significantly influence indoor air quality in peri-urban Peruvian communities, and homes closer to roadways are particularly vulnerable.

  17. Detecting subsurface features and distresses of roadways and bridge decks with ground penetrating radar at traffic speed (United States)

    Liu, Hao; Birken, Ralf; Wang, Ming L.


    This paper presents the detections of the subsurface features and distresses in roadways and bridge decks from ground penetrating radar (GPR) data collected at traffic speed. This GPR system is operated at 2 GHz with a penetration depth of 60 cm in common road materials. The system can collect 1000 traces a second, has a large dynamic range and compact packaging. Using a four channel GPR array, dense spatial coverage can be achieved in both longitudinal and transversal directions. The GPR data contains significant information about subsurface features and distresses resulting from dielectric difference, such as distinguishing new and old asphalt, identification of the asphalt-reinforced concrete (RC) interface, and detection of rebar in bridge decks. For roadways, the new and old asphalt layers are distinguished from the dielectric and thickness discontinuities. The results are complemented by surface images of the roads taken by a video camera. For bridge decks, the asphalt-RC interface is automatically detected by a cross correlation and Hilbert transform algorithms, and the layer properties (e.g., dielectric constant and thickness) can be identified. Moreover, the rebar hyperbolas can be visualized from the GPR B-scan images. In addition, the reflection amplitude from steel rebar can be extracted. It is possible to estimate the rebar corrosion level in concrete from the distribution of the rebar reflection amplitudes.

  18. Numerical modelling of 3D woven preform deformations


    Green, S D; Long, A.C.; El Said, B. S. F.; Hallett, S.R.


    In order to accurately predict the performance of 3D woven composites, it is necessary that realistic textile geometry is considered, since failure typically initiates at regions of high deformation or resin pockets. This paper presents the development of a finite element model based on the multi-chain digital element technique, as applied to simulate weaving and compaction of an orthogonal 3D woven composite. The model was reduced to the scale of the unit cell facilitating high fidelity resu...

  19. Electrokinetics Models for Micro and Nano Fluidic Impedance Sensors (United States)


    1 ELECTROKINETICS MODELS FOR MICRO AND NANO FLUIDIC IMPEDANCE SENSORS Yi Wang*, Hongjun Song, Ketan Bhatt, Kapil Pant CFD Research continues to be a challenge. This paper presents high-fidelity models to resolve the electrokinetic transport process at the micro- and...nano-scale and capture the critical effects of various design parameters on the electrokinetic transport and sensor performance such as medium

  20. Rear-seat seatbelt laws and restraint use in rear-seated teen passengers traveling in passenger vehicles involved in a fatal collision on a US roadway. (United States)

    Pressley, Joyce C; Gatollari, Hajere J; Liu, Chang


    There is widespread belief that after childhood rear-seated motor vehicle occupants do not need to wear-seat seatbelts to travel safely. This belief is reflected in the fact that, in many states, teen passengers can ride legally unbelted in the rear seat of a passenger vehicle. The Fatality Analysis Reporting System for 2010-2011 was used to examine factors associated with teen use of rear-seat seatbelts (n = 3,655) and with injury outcomes of belted and unbelted rear-seated teen passengers traveling in a passenger vehicle on a US roadway. Multilevel models controlled for nonindependence of cases using SAS Glimmix. Odds ratio (OR) is reported with 95% confidence interval (CI). Slightly more than half (50.8%) of rear-seated teens were restrained, but this declined linearly with age from 65.8% of 13- to 14-year-olds to 43.3% of 18- to 19-year-olds. Overall, 77.0% of rear-seat mortality occurred in unbelted teens. Passengers of belted drivers were more frequently belted (64.1% vs. 19.0%, χ = 586.2, p < 0.0001). Nearly one-fifth (18.5%) of rear-seated teens were ejected, with 95.8% of ejections in unrestrained teens. Presence of a rear-seat seatbelt law was associated with higher restraint use (55.9% vs. 40.0%, χ = 89.0, p < 0.0001). However, in adjusted multilevel, multivariable models, belt status varied by whether the seatbelt law was primary (OR, 1.60; 95% CI, 1.29-1.99) or secondary enforcement (OR, 1.33; 95% CI, 0.98-1.78). Presence of a primary enforced rear-seat seatbelt law was associated with significantly higher belt use. Ejection was associated with higher mortality and being unrestrained. More than three quarters of rear-seated teens who died were unrestrained. Epidemiologic study, level III.

  1. Association of Roadway Proximity with Fasting Plasma Glucose and Metabolic Risk Factors for Cardiovascular Disease in a Cross-Sectional Study of Cardiac Catheterization Patients (United States)

    Background: The relationship between traffic-related air pollution (TRAP) and risk factors for cardiovascular disease needs to be better understood in order to address the adverse impact o.f air pollution on human health.Objective: We examined associations between roadway proximi...

  2. The Supporting a Teen's Effective Entry to the Roadway (STEER) Program: Feasibility and Preliminary Support for a Psychosocial Intervention for Teenage Drivers with ADHD (United States)

    Fabiano, Gregory A.; Hulme, Kevin; Linke, Stuart; Nelson-Tuttle, Chris; Pariseau, Meaghan; Gangloff, Brian; Lewis, Kemper; Pelham, William E.; Waschbusch, Daniel A.; Waxmonsky, James G.; Gormley, Matthew; Gera, Shradha; Buck, Melina


    Teenage drivers with attention-deficit/hyperactivity disorder (ADHD) are at considerable risk for negative driving outcomes, including traffic citations, accidents, and injuries. Presently, no efficacious psychosocial interventions exist for teenage drivers with ADHD. The Supporting a Teen's Effective Entry to the Roadway (STEER) program is a…

  3. Exploring background risk factors for fatigue crashes involving truck drivers on regional roadway networks: a case control study in Jiangxi and Shaanxi, China. (United States)

    Chen, Changkun; Zhang, Jun


    Fatigue driving is a leading cause of traffic fatalities and injuries in China, especially among heavy truck drivers. The present study tried to examine which and how factors within the human-vehicle-roadway-environment system contribute to the occurrence of crashes involving fatigued truck drivers. To reduce such risk on the road, a total of 9168 crashes which occurred in Jiangxi and Shaanxi between 2003 and 2014 were selected to measure the effects of potential factors on fatigue related truck crashes using a case control study. Pearson Chi-square test was used to determine the relationship between crash risk and independent factors, and a stepwise logistic regression model was developed to determine the significant risk factors. According to the data analysis results, driver's gender, age, driving experience, and overspeeding behavior, vehicle's commercial status, overloading conditions and brake performance, road's type, slippery pavement and existence of sharp curve and long steep grade, and time of day, season, weather and visibility conditions, etc. were identified to be significantly associated with fatigue related truck crashes on Jiangxi and Shaanxi highways. Moreover, it is found that (a) in Jiangxi, an employed truck driver has a higher risk of crash involving multi-vehicles or a passenger car at bridge locations, and (b) in Shaanxi, the adult, tunnel location, summer and winter days prohibit statistically significant association with the occurrence of multi-vehicle and single-vehicle run-off-road/rollover crashes. Young employed male truck drivers with less experience are at high risk, especially while driving across sharp curves, down long steep grades, over bridge or through tunnels, during the midnight period, on rainy, snowy or foggy days in rural areas. All these help recommend potential policy initiatives as well as effective safety promotion strategies at the public health scale for professional truck drivers.

  4. Association of Roadway Proximity with Indoor Air Pollution in a Peri-Urban Community in Lima, Peru

    Directory of Open Access Journals (Sweden)

    Lindsay J. Underhill


    Full Text Available The influence of traffic-related air pollution on indoor residential exposure is not well characterized in homes with high natural ventilation in low-income countries. Additionally, domestic allergen exposure is unknown in such populations. We conducted a pilot study of 25 homes in peri-urban Lima, Peru to estimate the effects of roadway proximity and season on residential concentrations. Indoor and outdoor concentrations of particulate matter (PM2.5, nitrogen dioxide (NO2, and black carbon (BC were measured OPEN ACCESS Int. J. Environ. Res. Public Health 2015, 12 13467 during two seasons, and allergens were measured in bedroom dust. Allergen levels were highest for dust mite and mouse allergens, with concentrations above clinically relevant thresholds in over a quarter and half of all homes, respectively. Mean indoor and outdoor pollutant concentrations were similar (PM2.5: 20.0 vs. 16.9 μg/m3, BC: 7.6 vs. 8.1 μg/m3, NO2: 7.3 vs. 7.5 ppb, and tended to be higher in the summer compared to the winter. Road proximity was significantly correlated with overall concentrations of outdoor PM2.5 (rs = −0.42, p = 0.01 and NO2 (rs = −0.36, p = 0.03, and outdoor BC concentrations in the winter (rs = −0.51, p = 0.03. Our results suggest that outdoor-sourced pollutants significantly influence indoor air quality in peri-urban Peruvian communities, and homes closer to roadways are particularly vulnerable.


    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderrafi M. Ougouag


    A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.

  6. Numerical Modeling of a Ducted Rocket Combustor With Experimental Validation


    Hewitt, Patrick


    The present work was conducted with the intent of developing a high-fidelity numerical model of a unique combustion flow problem combining multi-phase fuel injection with substantial momentum and temperature into a highly complex turbulent flow. This important problem is very different from typical and more widely known liquid fuel combustion problems and is found in practice in pulverized coal combustors and ducted rocket ramjets. As the ducted rocket engine cycle is only now finding wides...

  7. Comparison of Multiscale Method of Cells-Based Models for Predicting Elastic Properties of Filament Wound C/C-SiC (United States)

    Pineda, Evan J.; Fassin, Marek; Bednarcyk, Brett A.; Reese, Stefanie; Simon, Jaan-Willem


    Three different multiscale models, based on the method of cells (generalized and high fidelity) micromechanics models were developed and used to predict the elastic properties of C/C-SiC composites. In particular, the following multiscale modeling strategies were employed: Concurrent multiscale modeling of all phases using the generalized method of cells, synergistic (two-way coupling in space) multiscale modeling with the generalized method of cells, and hierarchical (one-way coupling in space) multiscale modeling with the high fidelity generalized method of cells. The three models are validated against data from a hierarchical multiscale finite element model in the literature for a repeating unit cell of C/C-SiC. Furthermore, the multiscale models are used in conjunction with classical lamination theory to predict the stiffness of C/C-SiC plates manufactured via a wet filament winding and liquid silicon infiltration process recently developed by the German Aerospace Institute.

  8. Modeling the Dynamic Failure of Railroad Tank Cars Using a Physically Motivated Internal State Variable Plasticity/Damage Nonlocal Model


    Fazle R. Ahad; Koffi Enakoutsa; Solanki, Kiran N.; Yustianto Tjiptowidjojo; Bammann, Douglas J.


    We used a physically motivated internal state variable plasticity/damage model containing a mathematical length scale to idealize the material response in finite element simulations of a large-scale boundary value problem. The problem consists of a moving striker colliding against a stationary hazmat tank car. The motivations are (1) to reproduce with high fidelity finite deformation and temperature histories, damage, and high rate phenomena that may arise during the impact accident and (2) t...

  9. Reducing fatalities and severe injuries on Florida's high-speed multi-lane arterial corridors : part III, county level and roadway level GIS safety analysis of state multilane corridors in Florida, final report, April 2009 (United States)


    This part of the study examines the locations of high trends of severe crashes (incapacitating and fatal crashes) on multilane corridors in the state of Florida at two levels, county level and roadway level. The Geographic Information System (GIS) to...

  10. Simulation and Modeling of a New Medium Access Control Scheme for Multi-Beam Directional Networking (United States)


    implement our protocol in both simula- tion and a new Extendable Mobile Ad -hoc Network Emula- tor (EMANE) model that allows for real-time, high fidelity...issues, where the amount of data passed between the servers is too high, and 2) computation issues, where calculating the interference on the packets...developed a custom discrete event simulator in C++, and a new Ex- tendable Mobile Ad -hoc Network Emulator (EMANE) [10] model. These tools are used to both

  11. Community-based education and public awareness for all-terrain vehicle (ATV) and side-by-side (SxS) safety to reduce roadway deaths and injuries : preventing roadway deaths and injuries from off-road vehicle crashes : research report summary. (United States)


    ATVs and SxSs are designed for off-road use only. Vehicle design, lack of operator training, and other factors, like roadway speeds, all contribute to the risk of a crash. In fact, more than half of all ATV and SxS fatalities occur on public roads. A...

  12. Quantifying the total cost of infrastructure to enable environmentally preferable decisions: the case of urban roadway design (United States)

    Gosse, Conrad A.; Clarens, Andres F.


    Efforts to reduce the environmental impacts of transportation infrastructure have generally overlooked many of the efficiencies that can be obtained by considering the relevant engineering and economic aspects as a system. Here, we present a framework for quantifying the burdens of ground transportation in urban settings that incorporates travel time, vehicle fuel and pavement maintenance costs. A Pareto set of bi-directional lane configurations for two-lane roadways yields non-dominated combinations of lane width, bicycle lanes and curb parking. Probabilistic analysis and microsimulation both show dramatic mobility reductions on road segments of insufficient width for heavy vehicles to pass bicycles without encroaching on oncoming traffic. This delay is positively correlated with uphill grades and increasing traffic volumes and inversely proportional to total pavement width. The response is nonlinear with grade and yields mixed uphill/downhill optimal lane configurations. Increasing bicycle mode share is negatively correlated with total costs and emissions for lane configurations allowing motor vehicles to safely pass bicycles, while the opposite is true for configurations that fail to facilitate passing. Spatial impacts on mobility also dictate that curb parking exhibits significant spatial opportunity costs related to the total cost Pareto curve. The proposed framework provides a means to evaluate relatively inexpensive lane reconfiguration options in response to changing modal share and priorities. These results provide quantitative evidence that efforts to reallocate limited pavement space to bicycles, like those being adopted in several US cities, could appreciably reduce costs for all users.

  13. Fiberoptic oral intubation: the effect of model fidelity on training for transfer to patient care. (United States)

    Chandra, Deven B; Savoldelli, Georges L; Joo, Hwan S; Weiss, Israel D; Naik, Viren N


    Previous studies have indicated that fiberoptic orotracheal intubation (FOI) skills can be learned outside the operating room. The purpose of this study was to determine which of two educational interventions allows learners to gain greater capacity for performing the procedure. Respiratory therapists were randomly assigned to a low-fidelity or high-fidelity training model group. The low-fidelity group was guided by experts, on a nonanatomic model designed to refine fiberoptic manipulation skills. The high-fidelity group practiced their skills on a computerized virtual reality bronchoscopy simulator. After training, subjects performed two consecutive FOIs on healthy, anesthetized patients with predicted "easy" intubations. Each subject's FOI was evaluated by blinded examiners, using a validated global rating scale and checklist. Success and time were also measured. Data were analyzed using a two-way mixed design analysis of variance. There was no significant difference between the low-fidelity (n = 14) and high-fidelity (n = 14) model groups when compared with the global rating scale, checklist, time, and success at achieving tracheal intubation (all P = not significant). Second attempts in both groups were significantly better than first attempts (P reality model with respect to transfer of FOI skills to intraoperative patient care. Second attempts in both groups were significantly better than first attempts. Low-fidelity models for FOI training outside the operating room are an alternative for programs with budgetary constraints.

  14. Model-free optimal anti-slug control of a well-pipeline-riser in the K-Spice/LedaFlow simulator

    Directory of Open Access Journals (Sweden)

    Christer Dalen


    Full Text Available Simplified models are developed for a 3-phase well-pipeline-riser and tested together with a high fidelity dynamic model built in K-Spice and LedaFlow. These models are developed from a subspace algorithm, i.e. Deterministic and Stochastic system identification and Realization (DSR, and implemented in a Linear Quadratic optimal Regulator (LQR for stabilizing the slugging regime. We are comparing LQR with PI controller using different performance measures.

  15. Improving traffic noise simulations using space syntax: preliminary results from two roadway systems. (United States)

    M Dzhambov, Angel; D Dimitrova, Donka; H Turnovska, Tanya


    Noise pollution is one of the four major pollutions in the world. In order to implement adequate strategies for noise control, assessment of traffic-generated noise is essential in city planning and management. The aim of this study was to determine whether space syntax could improve the predictive power of noise simulation. This paper reports a record linkage study which combined a documentary method with space syntax analysis. It analyses data about traffic flow as well as field-measured and computer-simulated traffic noise in two Bulgarian agglomerations. Our findings suggest that space syntax might have a potential in predicting traffic noise exposure by improving models for noise simulations using specialised software or actual traffic counts. The scientific attention might need to be directed towards space syntax in order to study its further application in current models and algorithms for noise prediction.

  16. Impacts of Roadway Emissions on Urban Fine Particle Exposures: the Nairobi Area Traffic Contribution to Air Pollution (NATCAP) Study (United States)

    Gatari, Michael; Ngo, Nicole; Ndiba, Peter; Kinney, Patrick


    Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA), due to rapid urbanization, growing vehicle fleets, changing life styles, limited road infrastructure and land use planning, and high per-vehicle emissions. However, the absence of ambient monitoring data, and particularly urban roadside concentrations of particulate matter in SSA cities, severely limits our ability to assess the real extent of air quality problems. Emitted fine particles by on-road vehicles may be particularly important in SSA cities because large concentrations of poorly maintained vehicles operate in close proximity to commercial and other activities of low-income urban residents. This scenario provokes major air quality concerns and its investigation should be of priority interest to policy makers, city planners and managers, and the affected population. As part of collaboration between Columbia University and the University of Nairobi, a PM2.5 air monitoring study was carried out over two weeks in July 2009. The objectives of the study were 1) to assess average daytime PM2.5 concentrations on a range of Nairobi streets that represent important hot-spots in terms of the joint distribution of traffic, commercial, and resident pedestrian activities, 2) to relate those concentrations to motor vehicle counts, 3) to compare urban street concentrations to urban and rural background levels, and 4) to assess vertical and horizontal dispersion of PM2.5 near roadways. Portable, battery-operated PM2.5 samplers were carried by field teams at each of the five sites (three urban, one commuter highway, and one rural site), each of which operated from 7 AM to 7 PM during 10 weekdays in July 2009. Urban background monitoring took place on a rooftop at the University of Nairobi. Preliminary findings suggest highly elevated PM2.5 concentrations at the urban sites where the greatest pedestrian traffic was observed. These findings underscore the need for air

  17. Three-dimensional fuel pin model validation by prediction of hydrogen distribution in cladding and comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aly, A. [North Carolina State Univ., Raleigh, NC (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States); Ivanov, Kostadin [Pennsylvania State Univ., University Park, PA (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Lacroix, E. [Pennsylvania State Univ., University Park, PA (United States); Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Walter, D. [Univ. of Michigan, Ann Arbor, MI (United States); Williamson, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gamble, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    To correctly describe and predict this hydrogen distribution there is a need for multi-physics coupling to provide accurate three-dimensional azimuthal, radial, and axial temperature distributions in the cladding. Coupled high-fidelity reactor-physics codes with a sub-channel code as well as with a computational fluid dynamics (CFD) tool have been used to calculate detailed temperature distributions. These high-fidelity coupled neutronics/thermal-hydraulics code systems are coupled further with the fuel-performance BISON code with a kernel (module) for hydrogen. Both hydrogen migration and precipitation/dissolution are included in the model. Results from this multi-physics analysis is validated utilizing calculations of hydrogen distribution using models informed by data from hydrogen experiments and PIE data.


    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Donald D. Dudenhoeffer; Bruce P. Hallbert; Brian F. Gore


    This paper summarizes an emerging collaboration between Idaho National Laboratory and NASA Ames Research Center regarding the utilization of high-fidelity MIDAS simulations for modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error with novel control room equipment and configurations, (ii) the investigative determination of risk significance in recreating past event scenarios involving control room operating crews, and (iii) the certification of novel staffing levels in control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of risk in next generation control rooms.

  19. Receptor modeling of near-roadway aerosol mass spectrometer data in Las Vegas, Nevada, with EPA PMF

    Directory of Open Access Journals (Sweden)

    S. G. Brown


    Full Text Available Ambient non-refractory PM1 aerosol particles were measured with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS at an elementary school 18 m from the US 95 freeway soundwall in Las Vegas, Nevada, during January 2008. Additional collocated continuous measurements of black carbon (BC, carbon monoxide (CO, nitrogen oxides (NOx, and meteorological data were collected. The US~Environmental Protection Agency's (EPA positive matrix factorization (PMF data analysis tool was used to apportion organic matter (OM as measured by HR-AMS, and rotational tools in EPA PMF were used to better characterize the solution space and pull resolved factors toward known source profiles. Three- to six-factor solutions were resolved. The four-factor solution was the most interpretable, with the typical AMS PMF factors of hydrocarbon-like organic aerosol (HOA, low-volatility oxygenated organic aerosol (LV-OOA, biomass burning organic aerosol (BBOA, and semi-volatile oxygenated organic aerosol (SV-OOA. When the measurement site was downwind of the freeway, HOA composed about half the OM, with SV-OOA and LV-OOA accounting for the rest. Attempts to pull the PMF factor profiles toward source profiles were successful but did not qualitatively change the results, indicating that these factors are very stable. Oblique edges were present in G-space plots, suggesting that the obtained rotation may not be the most plausible one. Since solutions found by pulling the profiles or using Fpeak retained these oblique edges, there appears to be little rotational freedom in the base solution. On average, HOA made up 26% of the OM, while LV-OOA was highest in the afternoon and accounted for 26% of the OM. BBOA occurred in the evening hours, was predominantly from the residential area to the north, and on average constituted 12% of the OM; SV-OOA accounted for the remaining third of the OM. Use of the pulling techniques available in EPA PMF and ME-2 suggested that the four-factor solution was very stable.

  20. Process optimization of friction stir welding based on thermal models

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup


    This thesis investigates how to apply optimization methods to numerical models of a friction stir welding process. The work is intended as a proof-of-concept using different methods that are applicable to models of high complexity, possibly with high computational cost, and without the possibility...... information of the high-fidelity model. The optimization schemes are applied to stationary thermal models of differing complexity of the friction stir welding process. The optimization problems considered are based on optimizing the temperature field in the workpiece by finding optimal translational speed...