WorldWideScience

Sample records for high-fat diet increased

  1. Moderate High Fat Diet Increases Sucrose Self-Administration In Young Rats

    OpenAIRE

    Figlewicz, Dianne P.; Jay, Jennifer L.; Acheson, Molly A.; Magrisso, Irwin J.; West, Constance H.; Zavosh, Aryana; Benoit, Stephen C.; Davis, Jon F.

    2012-01-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However...

  2. Non-fasting factor VII coagulant activity (FVII:C) increased by high-fat diet

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Marckmann, P; Sandström, B

    1994-01-01

    :Bt/FVII:Am (a measure of FVII activation) increased from fasting levels on both diets, but most markedly on the high-fat diet. In contrast, FVII:Am (a measure of FVII protein) tended to decrease from fasting levels on both diets. FVII:C rose from fasting levels on the high-fat diet, but not on the low-fat diet....... The findings suggest that high-fat diets increase non-fasting FVII:C, and consequently may be associated with increased risk of thrombosis. Udgivelsesdato: 1994-Jun......Preliminary observations have suggested that non-fasting factor VII coagulant activity (FVII:C) may be related to the dietary fat content. To confirm this, we performed a randomised cross-over study. Seventeen young volunteers were served 2 controlled isoenergetic diets differing in fat content (20...

  3. Moderate high fat diet increases sucrose self-administration in young rats.

    Science.gov (United States)

    Figlewicz, Dianne P; Jay, Jennifer L; Acheson, Molly A; Magrisso, Irwin J; West, Constance H; Zavosh, Aryana; Benoit, Stephen C; Davis, Jon F

    2013-02-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However, AGRP mRNA levels in the hypothalamus were significantly elevated. We demonstrated that increased activation of AGRP neurons is associated with motivated behavior, and that exogenous (third cerebroventricular) AGRP administration resulted in significantly increased motivation for sucrose. These observations suggest that increased expression and activity of AGRP in the medial hypothalamus may underlie the increased responding for sucrose caused by the high fat diet intervention. Finally, we compared motivation for sucrose in pubertal vs. adult rats and observed increased motivation for sucrose in the pubertal rats, which is consistent with previous reports that young animals and humans have an increased preference for sweet taste, compared with adults. Together, our studies suggest that background diet plays a strong modulatory role in motivation for sweet taste in adolescent animals. Published by Elsevier Ltd.

  4. Increased expression of PPARγ in high fat diet-induced liver steatosis in mice

    International Nuclear Information System (INIS)

    Inoue, Mitsutaka; Ohtake, Takaaki; Motomura, Wataru; Takahashi, Nobuhiko; Hosoki, Yayoi; Miyoshi, Shigeki; Suzuki, Yasuaki; Saito, Hiroyuki; Kohgo, Yutaka; Okumura, Toshikatsu

    2005-01-01

    The present study was performed to examine a hypothesis that peroxisome proliferator-activated receptor γ (PPARγ) is implicated in high fat diet-induced liver steatosis. Mice were fed with control or high fat diet containing approximately 10% or 80% cholesterol, respectively. Macroscopic and microscopic findings demonstrated that lipid accumulation in the liver was observed as early as 2 weeks after high fat diet and that high fat diet for 12 weeks developed a fatty liver phenotype, establishing a novel model of diet-induced liver steatosis. Gene profiling with microarray and real-time PCR studies demonstrated that among genes involved in lipid metabolism, adipogenesis-related genes, PPARγ and its targeted gene, CD36 mRNA expression was specifically up-regulated in the liver by high fat diet for 2 weeks. Immunohistochemical study revealed that PPARγ protein expression is increased in the nuclei of hepatocytes by high fat diet. It was also shown that protein expression of cAMP response element-binding protein (CREB), an upstream molecule of PPARγ, in the liver was drastically suppressed by high fat diet. All these results suggest for the first time that the CREB-PPARγ signaling pathway may be involved in the high fat diet-induced liver steatosis

  5. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Hong Sheng Cheng

    2017-11-01

    Full Text Available The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets and two different developmental stages (post-weaning and young adult on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively Sprague Dawley rats were given control, high-fat (60% kcal, and high-fat-high-sucrose (60% kcal fat + 30% sucrose water diets for eight weeks (n = 6 to 7 per group. Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR α and γ in the liver and receptor for advanced glycation end products (RAGE in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.

  6. Fat Quality Influences the Obesogenic Effect of High Fat Diets

    Directory of Open Access Journals (Sweden)

    Raffaella Crescenzo

    2015-11-01

    Full Text Available High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids.

  7. Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet.

    Science.gov (United States)

    Hadri, Zouheyr; Rasoamanana, Rojo; Fromentin, Gilles; Azzout-Marniche, Dalila; Even, Patrick C; Gaudichon, Claire; Darcel, Nicolas; Bouras, Abdelkader Dilmi; Tomé, Daniel; Chaumontet, Catherine

    2017-12-01

    The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity. Published by Elsevier Inc.

  8. Haloperidol and Rimonabant Increase Delay Discounting in Rats Fed High-Fat and Standard-Chow Diets

    Science.gov (United States)

    Boomhower, Steven R.; Rasmussen, Erin B.

    2016-01-01

    The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for three months. Then, operant sessions began in which rats (n = 9 standard chow; n = 10 high-fat) chose between one sucrose pellet delivered immediately vs. three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered i.p. before some choice sessions in both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve (AUC) values. Rats in the high-fat diet condition demonstrated increased sensitivity to haloperidol compared to chow-fed controls: haloperidol increased discounting in both dietary groups in the sucrose condition,, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking D2 and CB1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task. PMID:25000488

  9. Antioxidative Diet Supplementation Reverses High-Fat Diet-Induced Increases of Cardiovascular Risk Factors in Mice

    Directory of Open Access Journals (Sweden)

    Hilda Vargas-Robles

    2015-01-01

    Full Text Available Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD. Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications.

  10. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.

    Science.gov (United States)

    Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2017-01-01

    The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.

  11. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    Science.gov (United States)

    Betz, Matthias J; Bielohuby, Maximilian; Mauracher, Brigitte; Abplanalp, William; Müller, Hans-Helge; Pieper, Korbinian; Ramisch, Juliane; Tschöp, Matthias H; Beuschlein, Felix; Bidlingmaier, Martin; Slawik, Marc

    2012-01-01

    Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets. Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein): control (64.3/16.7/19), LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5), LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1), and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7). Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience) and measurement of inducible thermogenesis in vivo (primary endpoint), explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by increased adaptive thermogenesis in BAT.

  12. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    Directory of Open Access Journals (Sweden)

    Matthias J Betz

    Full Text Available UNLABELLED: Low-carbohydrate, high-fat (LC-HF diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT morphology and function following exposure to different LC-HF diets. METHODS: Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein: control (64.3/16.7/19, LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5, LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1, and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7. RESULTS: Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience and measurement of inducible thermogenesis in vivo (primary endpoint, explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. CONCLUSION: All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by

  13. Increased adipose tissue lipolysis after a 2-week high-fat diet in sedentary overweight/obese men.

    Science.gov (United States)

    Howe, Harold R; Heidal, Kimberly; Choi, Myung Dong; Kraus, Ray M; Boyle, Kristen; Hickner, Robert C

    2011-07-01

    The purpose of this study was to determine if a high-fat diet would result in a higher lipolytic rate in subcutaneous adipose tissue than a lower-fat diet in sedentary nonlean men. Six participants (healthy males; 18-40 years old; body mass index, 25-37 kg/m(2)) underwent 2 weeks on a high-fat or well-balanced diet of similar energy content (approximately 6695 kJ) in randomized order with a 10-day washout period between diets. Subcutaneous abdominal adipose tissue lipolysis was determined over the course of a day using microdialysis after both 2-week diet sessions. Average interstitial glycerol concentrations (index of lipolysis) as determined using microdialysis were higher after the high-fat diet (210.8 ± 27.9 μmol/L) than after a well-balanced diet (175.6 ± 23.3 μmol/L; P = .026). There was no difference in adipose tissue microvascular blood flow as determined using the microdialysis ethanol technique. These results demonstrate that healthy nonlean men who diet on the high-fat plan have a higher lipolytic rate in subcutaneous abdominal adipose tissue than when they diet on a well-balanced diet plan. This higher rate of lipolysis may result in a higher rate of fat mass loss on the high-fat diet; however, it remains to be determined if this higher lipolytic rate in men on the high-fat diet results in a more rapid net loss of triglyceride from the abdominal adipose depots, or if the higher lipolytic rate is counteracted by an increased rate of lipid storage. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Liver protein expression in young pigs in response to a high-fat diet and diet restriction

    DEFF Research Database (Denmark)

    Sejersen, Henrik; Sørensen, Martin Tang; Larsen, Torben

    2013-01-01

    We investigated the liver response in young pigs to a high-fat diet (containing 25% animal fat) and diet restriction (equivalent to 60% of maintenance) using differential proteome analysis. The objective was to investigate whether young pigs can be used to model the liver response in adolescents...... to a high-fat diet and diet restriction-induced BW loss. The high-fat diet increased (P high-fat diet had normal glucose tolerance and liver lipid content despite a general increase (P ...-density lipoprotein decreased (P high-fat diet in young pigs is similar to that of humans in terms of increased fatty acid oxidation whereas the liver response to diet restriction is similar to humans...

  15. Increased physical activity ameliorates high fat diet-induced bone resorption in mice

    Science.gov (United States)

    It has been recognized that mechanical stresses associated with physical activity (PA) have beneficial effects on increasing bone mineral density (BMD) and improving bone quality. On the other hand, high fat diet (HFD) and obesity increase bone marrow adiposity leading to increased excretion of pro-...

  16. A maternal high-protein diet predisposes female offspring to increased fat mass in adulthood whereas a prebiotic fibre diet decreases fat mass in rats.

    Science.gov (United States)

    Hallam, Megan C; Reimer, Raylene A

    2013-11-14

    The negative effects of malnourishment in utero have been widely explored; the effects of increased maternal macronutrient intake are not known in relation to high fibre, and have been inconclusive with regard to high protein. In the present study, virgin Wistar dams were fed either a control (C), high-protein (40 %, w/w; HP) or high-prebiotic fibre (21·6 %, w/w; HF) diet throughout pregnancy and lactation. Pups consumed the C diet from 3 to 14·5 weeks of age, and then switched to a high-fat/sucrose diet for 8 weeks. A dual-energy X-ray absorptiometry scan and an oral glucose tolerance test were performed and plasma satiety hormones measured. The final body weight and the percentage of body fat were significantly affected by the interaction between maternal diet and offspring sex: weight and fat mass were higher in the female offspring of the HP v. HF dams. No differences in body weight or fat mass were seen in the male offspring. There was a significant sex effect for fasting and total AUC for ghrelin and fasting GIP, with females having higher levels than males. Liver TAG content and plasma NEFA were lower in the offspring of high-prebiotic fibre dams (HF1) than in those of high-protein dams (HP1) and control dams (C1). Intestinal expression of GLUT2 was decreased in HF1 and HP1 v. C1. The maternal HP and HF diets had lasting effects on body fat and hepatic TAG accumulation in the offspring, particularly in females. Whereas the HP diet predisposes to an obese phenotype, the maternal HF diet appears to reduce the susceptibility to obesity following a high-energy diet challenge in adulthood.

  17. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle.

    Science.gov (United States)

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-04-06

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.

  18. Low carbohydrate, high fat diet increases C-reactive protein during weight loss.

    Science.gov (United States)

    Rankin, Janet W; Turpyn, Abigail D

    2007-04-01

    Chronic inflammation is associated with elevated risk of heart disease and may be linked to oxidative stress in obesity. Our objective was to evaluate the effect of weight loss diet composition (low carbohydrate, high fat, LC or high carbohydrate, low fat, HC) on inflammation and to determine whether this was related to oxidative stress. Twenty nine overweight women, BMI 32.1 +/- 5.4 kg/m(2), were randomly assigned to a self-selected LC or HC diet for 4 wks. Weekly group sessions and diet record collections helped enhance compliance. Body weight, markers of inflammation (serum interleukin-6, IL-6; C-reactive protein, CRP) oxidative stress (urinary 8-epi-prostaglandin F2alpha, 8-epi) and fasting blood glucose and free fatty acids were measured weekly. The diets were similar in caloric intake (1357 kcal/d LC vs. 1361 HC, p=0.94), but differed in macronutrients (58, 12, 30 and 24, 59, 18 for percent of energy as fat, carbohydrate, and protein for LC and HC, respectively). Although LC lost more weight (3.8 +/- 1.2 kg LC vs. 2.6 +/- 1.7 HC, p=0.04), CRP increased 25%; this factor was reduced 43% in HC (p=0.02). For both groups, glucose decreased with weight loss (85.4 vs. 82.1 mg/dl for baseline and wk 4, p<0.01), while IL-6 increased (1.39 to 1.62 pg/mL, p=0.04). Urinary 8-epi varied differently over time between groups (p<0.05) with no consistent pattern. Diet composition of the weight loss diet influenced a key marker of inflammation in that LC increased while HC reduced serum CRP but evidence did not support that this was related to oxidative stress.

  19. Hepatic mitochondrial energetics during catch-up fat with high-fat diets rich in lard or safflower oil.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Falcone, Italia; Tsalouhidou, Sofia; Yepuri, Gayathri; Mougios, Vassilis; Dulloo, Abdul G; Liverini, Giovanna; Iossa, Susanna

    2012-09-01

    We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling.

  20. Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat

    DEFF Research Database (Denmark)

    Hidalgo, Juan; Florit, Sergi; Giralt, Mercedes

    2010-01-01

    Interleukin-6 (IL-6) is a major cytokine involved in both normal physiological brain functions and underlying significant neuropathology. IL-6 has been suggested to play a role in the control of body weight but the results are somewhat controversial. In this study we have challenged transgenic mice...... with astrocyte-targeted IL-6 expression (GFAP-IL6 mice) with a high-fat diet (55% kcal from fat) versus a control diet (10%). The results demonstrate that the GFAP-IL6 mice are resistant to high-fat diet-induced increases in body weight and body fat, apparently without altering food intake and with no evidences...... of increased sympathetic tone. The high-fat diet-induced impaired responses to an insulin tolerance test (ITT), and to an oral glucose tolerance test (OGTT) in both genotypes. The GFAP-IL6 mice did not differ from littermate wild-type (WT) mice in ITT, but they were more glucose intolerant following the high...

  1. Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoke Wang

    2012-01-01

    Full Text Available Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO and obesity resistant (DIO-R rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.

  2. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  3. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-01-01

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  4. Increasing protein intake modulates lipid metabolism in healthy young men and women consuming a high-fat hypercaloric diet.

    Science.gov (United States)

    Rietman, Annemarie; Schwarz, Jessica; Blokker, Britt A; Siebelink, Els; Kok, Frans J; Afman, Lydia A; Tomé, Daniel; Mensink, Marco

    2014-08-01

    The objective of this study was to evaluate the effect of increasing protein intake, at the expense of carbohydrates, on intrahepatic lipids (IHLs), circulating triglycerides (TGs), and body composition in healthy humans consuming a high-fat, hypercaloric diet. A crossover randomized trial with a parallel control group was performed. After a 2-wk run-in period, participants were assigned to either the control diet [n = 10; 27.8 energy percent (en%) fat, 16.9 en% protein, 55.3 en% carbohydrates] for 4 wk or a high-fat, hypercaloric diet (n = 17; >2 MJ/d) crossover trial with 2 periods of 2 wk, with either high-protein (HP) (37.7 en% fat, 25.7 en% protein, 36.6 en% carbohydrates) or normal-protein (NP) (39.4 en% fat, 15.4 en% protein, 45.2 en% carbohydrates) content. Measurements were performed after 2 wk of run-in (baseline), 2 wk of intervention (period 1), and 4 wk of intervention (period 2). A trend toward lower IHL and plasma TG concentrations during the HP condition compared with the NP condition was observed (IHL: 0.35 ± 0.04% vs. 0.51 ± 0.08%, P = 0.08; TG: 0.65 ± 0.03 vs. 0.77 ± 0.05 mmol/L, P = 0.07, for HP and NP, respectively). Fat mass was significantly lower (10.6 ± 1.72 vs. 10.9 ± 1.73 kg; P = 0.02) with the HP diet than with the NP diet, whereas fat-free mass was higher (55.7 ± 2.79 vs. 55.2 ± 2.80 kg; P = 0.003). This study indicated that an HP, high-fat, hypercaloric diet affects lipid metabolism. It tends to lower the IHL and circulating TG concentrations and significantly lowers fat mass and increases fat-free mass compared with an NP, high-fat, hypercaloric diet. This trail was registered at www.clinicaltrials.gov as NCT01354626. © 2014 American Society for Nutrition.

  5. Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge.

    Science.gov (United States)

    Hua, Ning; Takahashi, Hirokazu; Yee, Grace M; Kitajima, Yoichiro; Katagiri, Sayaka; Kojima, Motoyasu; Anzai, Keizo; Eguchi, Yuichiro; Hamilton, James A

    2017-01-01

    To investigate whether differences in muscle fiber types affect early-stage fat accumulation, under high fat diet challenge in mice. Twelve healthy male C57BL/6 mice experienced with short-term (6 weeks) diet treatment for the evaluation of early pattern changes in muscular fat. The mice were randomly divided into two groups: high fat diet (n = 8) and normal control diet (n = 4). Extra- and intra-myocellular lipid (EMCL and IMCL) in lumbar muscles (type I fiber predominant) and tibialis anterior (TA) muscle (type II fiber predominant) were determined using magnetic resonance spectroscopy (MRS). Correlation of EMCL, IMCL and their ratio between TA and lumbar muscles was evaluated. EMCL increased greatly in both muscle types after high fat diet. IMCL in TA and lumbar muscles increased to a much lower extent, with a slightly greater increase in TA muscles. EMCLs in the 2 muscles were positively correlated (r = 0.84, p = 0.01), but IMCLs showed a negative relationship (r = -0.84, p = 0.01). In lumbar muscles, high fat diet significantly decreased type I fiber while it increased type II fiber (all p≤0.001). In TA muscle, there was no significant fiber type shifting (p>0.05). Under short-time high fat diet challenge, lipid tends to initially accumulate extra-cellularly. In addition, compared to type II dominant muscle, Type I dominant muscle was less susceptible to IMCL accumulation but more to fiber type shifting. These phenomena might reflect compensative responses of skeletal muscle to dietary lipid overload in order to regulate metabolic homeostasis.

  6. Maternal low protein diet and postnatal high fat diet increases adipose imprinted gene expression

    Science.gov (United States)

    Maternal and postnatal diet can alter Igf2 gene expression and DNA methylation. To test whether maternal low protein and postnatal high fat (HF) diet result in alteration in Igf2 expression and obesity, we fed obese-prone Sprague-Dawley rats 8% (LP) or 20% (NP) protein for 3 wk prior to breeding and...

  7. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects.

    Directory of Open Access Journals (Sweden)

    Greta Jakobsdottir

    Full Text Available Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs, particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation.To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks.Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin - acetic acid; guar gum - propionic acid; or a mixture - butyric acid. At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks.Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet.

  8. Swimming exercise increases serum irisin level and reduces body fat mass in high-fat-diet fed Wistar rats.

    Science.gov (United States)

    Lu, Yun; Li, Hongwei; Shen, Shi-Wei; Shen, Zhen-Hai; Xu, Ming; Yang, Cheng-Jian; Li, Feng; Feng, Yin-Bo; Yun, Jing-Ting; Wang, Ling; Qi, Hua-Jin

    2016-05-13

    It has been shown that irisin levels are reduced in skeletal muscle and plasma of obese rats; however, the effect of exercise training on irisin level remains controversial. We aim to evaluate the association of swimming exercise with serum irisin level and other obesity-associated parameters. Forty healthy male Wistar rats were randomly assigned to 4 groups: a normal diet and sedentary group (ND group), normal diet and exercise group (NDE group), high-fat diet and sedentary group (HFD group), and high-fat diet and exercise group (HFDE group. After 8 consecutive weeks of swimming exercise, fat mass and serum irisin level was determined. Higher serum irisin levels were detected in the HFDE group (1.15 ± 0.28 μg/L) and NDE group (1.76 ± 0.17 μg/L) than in the HFD group (0.84 ± 0.23 μg/L) or the ND group (1.24 ± 0.29 μg/L), respectively (HFDE group vs. HFD group, P mass (r = -0.68, P mass (r = -0.576, P mass (r = -0.439, P mass, visceral fat mass and percentage fat mass were lower in the HFDE group than the HFD group (all P values mass in high-fat-fed Wistar rats, which may be attributable to elevated irisin levels induced by swimming exercise.

  9. High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats

    NARCIS (Netherlands)

    Chaumontet, C.; Even, P.C.; Schwarz, Jessica; Simonin-Foucault, A.; Piedcoq, J.; Fromentin, G.; Tomé, D.; Azzout-Marniche, D.

    2015-01-01

    High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the

  10. Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Damiano, Fabrizio; Siculella, Luisa; Zara, Vincenzo

    2014-06-01

    Hepatic fatty acid synthesis is influenced by several nutritional and hormonal factors. In this study, we have investigated the effects of distinct experimental diets enriched in carbohydrate or in fat on hepatic lipogenesis. Male Wistar rats were divided into four groups and fed distinct experimental diets enriched in carbohydrates (70% w/w) or in fat (20 and 35% w/w). Activity and expression of the mitochondrial citrate carrier and of the cytosolic enzymes acetyl-CoA carboxylase and fatty acid synthetase were analyzed through the study with assessments at 0, 1, 2, 4, and 6 weeks. Liver lipids and plasma levels of lipids, glucose, and insulin were assayed in parallel. Whereas the high-carbohydrate diet moderately stimulated hepatic lipogenesis, a strong inhibition of this anabolic pathway was found in animals fed high-fat diets. This inhibition was time-dependent and concentration-dependent. Moreover, whereas the high-carbohydrate diet induced an increase in plasma triglycerides, the high-fat diets determined an accumulation of triglycerides in liver. An increase in the plasmatic levels of glucose and insulin was observed in all cases. The excess of sucrose in the diet is converted into fat that is distributed by bloodstream in the organism in the form of circulating triglycerides. On the other hand, a high amount of dietary fat caused a strong inhibition of lipogenesis and a concomitant increase in the level of hepatic lipids, thereby highlighting, in these conditions, the role of liver as a reservoir of exogenous fat.

  11. High-fat diet-induced insulin resistance does not increase plasma anandamide levels or potentiate anandamide insulinotropic effect in isolated canine islets.

    Science.gov (United States)

    Woolcott, Orison O; Richey, Joyce M; Kabir, Morvarid; Chow, Robert H; Iyer, Malini S; Kirkman, Erlinda L; Stefanovski, Darko; Lottati, Maya; Kim, Stella P; Harrison, L Nicole; Ionut, Viorica; Zheng, Dan; Hsu, Isabel R; Catalano, Karyn J; Chiu, Jenny D; Bradshaw, Heather; Wu, Qiang; Kolka, Cathryn M; Bergman, Richard N

    2015-01-01

    Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia. To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets. Dogs were fed a high-fat diet (n = 9) for 22 weeks. Abdominal fat depot was quantified by MRI. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp. Fasting plasma endocannabinoid levels were analyzed by liquid chromatography-mass spectrometry. All metabolic assessments were performed before and after fat diet regimen. At the end of the study, pancreatic islets were isolated prior to euthanasia to test the in vitro effect of anandamide on islet hormones. mRNA expression of cannabinoid receptors was determined in intact islets. The findings in vitro were compared with those from animals fed a control diet (n = 7). Prolonged fat feeding increased abdominal fat content by 81.3±21.6% (mean±S.E.M, Pcanines, high-fat diet-induced insulin resistance does not alter plasma anandamide levels or further potentiate the insulinotropic effect of anandamide in vitro.

  12. RNA-Sequencing of Drosophila melanogaster Head Tissue on High-Sugar and High-Fat Diets

    Directory of Open Access Journals (Sweden)

    Wayne Hemphill

    2018-01-01

    Full Text Available Obesity has been shown to increase risk for cardiovascular disease and type-2 diabetes. In addition, it has been implicated in aggravation of neurological conditions such as Alzheimer’s. In the model organism Drosophila melanogaster, a physiological state mimicking diet-induced obesity can be induced by subjecting fruit flies to a solid medium disproportionately higher in sugar than protein, or that has been supplemented with a rich source of saturated fat. These flies can exhibit increased circulating glucose levels, increased triglyceride content, insulin-like peptide resistance, and behavior indicative of neurological decline. We subjected flies to variants of the high-sugar diet, high-fat diet, or normal (control diet, followed by a total RNA extraction from fly heads of each diet group for the purpose of Poly-A selected RNA-Sequencing. Our objective was to identify the effects of obesogenic diets on transcriptome patterns, how they differed between obesogenic diets, and identify genes that may relate to pathogenesis accompanying an obesity-like state. Gene ontology analysis indicated an overrepresentation of affected genes associated with immunity, metabolism, and hemocyanin in the high-fat diet group, and CHK, cell cycle activity, and DNA binding and transcription in the high-sugar diet group. Our results also indicate differences in the effects of the high-fat diet and high-sugar diet on expression profiles in head tissue of flies, despite the reportedly similar phenotypic impacts of the diets. The impacted genes, and how they may relate to pathogenesis in the Drosophila obesity-like state, warrant further experimental investigation.

  13. Rapamycin-ameliorated diabetic symptoms involved in increasing adiponectin expression in diabetic mice on a high-fat diet.

    Science.gov (United States)

    Gong, Fang-Hua; Ye, Yan-Na; Li, Jin-Meng; Zhao, Hai-Yang; Li, Xiao-Kun

    2017-07-01

    Recent studies showed that rapamycin improved diabetic complications. Here, we investigated the metabolic effects of rapamycin in type 2 diabetes model (T2DM) mice. Mice were treated with a daily intraperitoneal injection of rapamycin at 2 mg/kg or vehicle only for 3 weeks and were maintained on a high-fat diet. The treated diabetic mice exhibited decreased body weight, blood glucose levels, and fat mass. FGF21 expression was suppressed in C57B/L6 mice, but adiponectin expression increased both in FGF21 KO and C57B/L6 mice. These results suggest that rapamycin may alleviate FGF21 resistance in mice on a high-fat diet. The reduction of adipose tissue mass of the diabetic mice may be due to the increased adiponectin. Copyright © 2017. Published by Elsevier Taiwan.

  14. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  15. High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver.

    Science.gov (United States)

    Wires, Emily S; Trychta, Kathleen A; Bäck, Susanne; Sulima, Agnieszka; Rice, Kenner C; Harvey, Brandon K

    2017-11-01

    Disruption to endoplasmic reticulum (ER) calcium homeostasis has been implicated in obesity, however, the ability to longitudinally monitor ER calcium fluctuations has been challenging with prior methodologies. We recently described the development of a Gaussia luciferase (GLuc)-based reporter protein responsive to ER calcium depletion (GLuc-SERCaMP) and investigated the effect of a high fat diet on ER calcium homeostasis. A GLuc-based reporter cell line was treated with palmitate, a free fatty acid. Rats intrahepatically injected with GLuc-SERCaMP reporter were fed a cafeteria diet or high fat diet. The liver and plasma were examined for established markers of steatosis and compared to plasma levels of SERCaMP activity. Palmitate induced GLuc-SERCaMP release in vitro, indicating ER calcium depletion. Consumption of a cafeteria diet or high fat pellets correlated with alterations to hepatic ER calcium homeostasis in rats, shown by increased GLuc-SERCaMP release. Access to ad lib high fat pellets also led to a corresponding decrease in microsomal calcium ATPase activity and an increase in markers of hepatic steatosis. In addition to GLuc-SERCaMP, we have also identified endogenous proteins (endogenous SERCaMPs) with a similar response to ER calcium depletion. We demonstrated the release of an endogenous SERCaMP, thought to be a liver esterase, during access to a high fat diet. Attenuation of both GLuc-SERCaMP and endogenous SERCaMP was observed during dantrolene administration. Here we describe the use of a reporter for in vitro and in vivo models of high fat diet. Our results support the theory that dietary fat intake correlates with a decrease in ER calcium levels in the liver and suggest a high fat diet alters the ER proteome. Lay summary: ER calcium dysregulation was observed in rats fed a cafeteria diet or high fat pellets, with fluctuations in sensor release correlating with fat intake. Attenuation of sensor release, as well as food intake was observed during

  16. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets

    Directory of Open Access Journals (Sweden)

    Cariou Bertrand

    2013-01-01

    Full Text Available Abstract Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9 is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2 and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D patients that are more prone to develop insulin resistance, including: i acute post-prandial hyperlipidemic challenge (n=10, ii 4 days of high-fat (HF or high-fat/high-protein (HFHP (n=10, iii 7 (HFruc1, n=16 or 6 (HFruc2, n=9 days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1. Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05 in healthy volunteers and by 34% (p=0.001 in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p Conclusions Plasma PCSK9 concentrations vary

  17. A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of 'faecal water'

    DEFF Research Database (Denmark)

    Rieger, Martin A.; Parlesak, Alexandr; Pool-Zobel, Beatrice

    1999-01-01

    To determine the effects of different diets on the genotoxicity of human faecal water, a diet rich in fat, meat and sugar but poor in vegetables and free of wholemeal products (diet 1) was consumed by seven healthy volunteers over a period of 12 days. One week after the end of this period......, the volunteers started to consume a diet enriched with vegetables and wholemeal products but poor in fat and meat (diet 2) over a second period of 12 days. The genotoxic effect of faecal waters obtained after both diets was assessed with the single cell gel electrophoresis (Comet assay) using the human colon...... and purine bases revealed no differences after pretreatment with both types of faecal water. The results indicate that diets high in fat and meat but low in dietary fibre increase the genotoxicity of faecal water to colonic cells and may contribute to an enhanced risk of colorectal cancer....

  18. Effects of high-fat diet exposure on learning & memory.

    Science.gov (United States)

    Cordner, Zachary A; Tamashiro, Kellie L K

    2015-12-01

    The associations between consumption of a high-fat or 'Western' diet and metabolic disorders such as obesity, diabetes, and cardiovascular disease have long been recognized and a great deal of evidence now suggests that diets high in fat can also have a profound impact on the brain, behavior, and cognition. Here, we will review the techniques most often used to assess learning and memory in rodent models and discuss findings from studies assessing the cognitive effects of high-fat diet consumption. The review will then consider potential underlying mechanisms in the brain and conclude by reviewing emerging literature suggesting that maternal consumption of a high-fat diet may have effects on the learning and memory of offspring. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effects of Dietary Fibre (Pectin) and/or Increased Protein (Casein or Pea) on Satiety, Body Weight, Adiposity and Caecal Fermentation in High Fat Diet-Induced Obese Rats.

    Science.gov (United States)

    Adam, Clare L; Gratz, Silvia W; Peinado, Diana I; Thomson, Lynn M; Garden, Karen E; Williams, Patricia A; Richardson, Anthony J; Ross, Alexander W

    2016-01-01

    Dietary constituents that suppress appetite, such as dietary fibre and protein, may aid weight loss in obesity. The soluble fermentable dietary fibre pectin promotes satiety and decreases adiposity in diet-induced obese rats but effects of increased protein are unknown. Adult diet-induced obese rats reared on high fat diet (45% energy from fat) were given experimental diets ad libitum for 4 weeks (n = 8/group): high fat control, high fat with high protein (40% energy) as casein or pea protein, or these diets with added 10% w/w pectin. Dietary pectin, but not high protein, decreased food intake by 23% and induced 23% body fat loss, leading to 12% lower final body weight and 44% lower total body fat mass than controls. Plasma concentrations of satiety hormones PYY and total GLP-1 were increased by dietary pectin (168% and 151%, respectively) but not by high protein. Plasma leptin was decreased by 62% on pectin diets and 38% on high pea (but not casein) protein, while plasma insulin was decreased by 44% on pectin, 38% on high pea and 18% on high casein protein diets. Caecal weight and short-chain fatty acid concentrations in the caecum were increased in pectin-fed and high pea protein groups: caecal succinate was increased by pectin (900%), acetate and propionate by pectin (123% and 118%, respectively) and pea protein (147% and 144%, respectively), and butyrate only by pea protein (309%). Caecal branched-chain fatty acid concentrations were decreased by pectin (down 78%) but increased by pea protein (164%). Therefore, the soluble fermentable fibre pectin appeared more effective than high protein for increasing satiety and decreasing caloric intake and adiposity while on high fat diet, and produced a fermentation environment more likely to promote hindgut health. Altogether these data indicate that high fibre may be better than high protein for weight (fat) loss in obesity.

  20. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    Science.gov (United States)

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  1. Role of high-fat diet in stress response of Drosophila.

    Directory of Open Access Journals (Sweden)

    Erilynn T Heinrichsen

    Full Text Available Obesity is associated with many diseases, one of the most common being obstructive sleep apnea (OSA, which in turn leads to blood gas disturbances, including intermittent hypoxia (IH. Obesity, OSA and IH are associated with metabolic changes, and while much mammalian work has been done, mechanisms underlying the response to IH, the role of obesity and the interaction of obesity and hypoxia remain unknown. As a model organism, Drosophila offers tremendous power to study a specific phenotype and, at a subsequent stage, to uncover and study fundamental mechanisms, given the conservation of molecular pathways. Herein, we characterize the phenotype of Drosophila on a high-fat diet in normoxia, IH and constant hypoxia (CH using triglyceride and glucose levels, response to stress and lifespan. We found that female flies on a high-fat diet show increased triglyceride levels (p<0.001 and a shortened lifespan in normoxia, IH and CH. Furthermore, flies on a high-fat diet in normoxia and CH show diminished tolerance to stress, with decreased survival after exposure to extreme cold or anoxia (p<0.001. Of interest, IH seems to rescue this decreased cold tolerance, as flies on a high-fat diet almost completely recovered from cold stress following IH. We conclude that the cross talk between hypoxia and a high-fat diet can be either deleterious or compensatory, depending on the nature of the hypoxic treatment.

  2. Role of glycogen-lowering exercise in the change of fat oxidation in response to a high-fat diet.

    NARCIS (Netherlands)

    Schrauwen, P.; van Marken Lichtenbelt, W.D.; Saris, W.H.M.; Westerterp, K.R.

    1997-01-01

    Department of Human Biology, Maastricht University, The Netherlands. One of the candidate factors for determining the increase of fat oxidation after a switch from a reduced-fat diet to a high-fat diet is the size of the glycogen storage. Therefore, we studied the effect of low glycogen stores on

  3. Impact of maternal high fat diet on hypothalamic transcriptome in neonatal Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Sanna Barrand

    Full Text Available Maternal consumption of a high fat diet during early development has been shown to impact the formation of hypothalamic neurocircuitry, thereby contributing to imbalances in appetite and energy homeostasis and increasing the risk of obesity in subsequent generations. Early in postnatal life, the neuronal projections responsible for energy homeostasis develop in response to appetite-related peptides such as leptin. To date, no study characterises the genome-wide transcriptional changes that occur in response to exposure to high fat diet during this critical window. We explored the effects of maternal high fat diet consumption on hypothalamic gene expression in Sprague Dawley rat offspring at postnatal day 10. RNA-sequencing enabled discovery of differentially expressed genes between offspring of dams fed a high fat diet and offspring of control diet fed dams. Female high fat diet offspring displayed altered expression of 86 genes (adjusted P-value<0.05, including genes coding for proteins of the extra cellular matrix, particularly Collagen 1a1 (Col1a1, Col1a2, Col3a1, and the imprinted Insulin-like growth factor 2 (Igf2 gene. Male high fat diet offspring showed significant changes in collagen genes (Col1a1 and Col3a1 and significant upregulation of two genes involved in regulation of dopamine availability in the brain, tyrosine hydroxylase (Th and dopamine reuptake transporter Slc6a3 (also known as Dat1. Transcriptional changes were accompanied by increased body weight, body fat and body length in the high fat diet offspring, as well as altered blood glucose and plasma leptin. Transcriptional changes identified in the hypothalamus of offspring of high fat diet mothers could alter neuronal projection formation during early development leading to abnormalities in the neuronal circuitry controlling appetite in later life, hence priming offspring to the development of obesity.

  4. Prior exercise training blunts short-term high-fat diet-induced weight gain.

    Science.gov (United States)

    Snook, Laelie A; MacPherson, Rebecca E K; Monaco, Cynthia M F; Frendo-Cumbo, Scott; Castellani, Laura; Peppler, Willem T; Anderson, Zachary G; Buzelle, Samyra L; LeBlanc, Paul J; Holloway, Graham P; Wright, David C

    2016-08-01

    High-fat diets rapidly cause weight gain and glucose intolerance. We sought to determine whether these changes could be mitigated with prior exercise training. Male C57BL/6J mice were exercise-trained by treadmill running (1 h/day, 5 days/wk) for 4 wk. Twenty-four hours after the final bout of exercise, mice were provided with a high-fat diet (HFD; 60% kcal from lard) for 4 days, with no further exercise. In mice fed the HFD prior to exercise training, the results were blunted weight gain, reduced fat mass, and a slight attenuation in glucose intolerance that was mirrored by greater insulin-induced Akt phosphorylation in skeletal muscle compared with sedentary mice fed the HFD. When ad libitum-fed sedentary mice were compared with sedentary high-fat fed mice that were calorie restricted (-30%) to match the weight gain of the previously trained high-fat fed mice, the same attenuated impairments in glucose tolerance were found. Blunted weight gain was associated with a greater capacity to increase energy expenditure in trained compared with sedentary mice when challenged with a HFD. Although mitochondrial enzymes in white adipose tissue and UCP-1 protein content in brown adipose tissue were increased in previously exercised compared with sedentary mice fed a HFD, ex vivo mitochondrial respiration was not increased in either tissue. Our data suggest that prior exercise training attenuates high-fat diet-induced weight gain and glucose intolerance and is associated with a greater ability to increase energy expenditure in response to a high-fat diet. Copyright © 2016 the American Physiological Society.

  5. Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Desiree Wanders

    Full Text Available To determine the effects of niacin on adiponectin and markers of adipose tissue inflammation in a mouse model of obesity.Male C57BL/6 mice were placed on a control or high-fat diet (HFD and were maintained on such diets for the duration of the study. After 6 weeks on the control or high fat diets, vehicle or niacin treatments were initiated and maintained for 5 weeks. Identical studies were conducted concurrently in HCA2 (-/- (niacin receptor(-/- mice.Niacin increased serum concentrations of the anti-inflammatory adipokine, adiponectin by 21% in HFD-fed wild-type mice, but had no effect on lean wild-type or lean or HFD-fed HCA2 (-/- mice. Niacin increased adiponectin gene and protein expression in the HFD-fed wild-type mice only. The increases in adiponectin serum concentrations, gene and protein expression occurred independently of changes in expression of PPARγ C/EBPα or SREBP-1c (key transcription factors known to positively regulate adiponectin gene transcription in the adipose tissue. Further, niacin had no effect on adipose tissue expression of ERp44, Ero1-Lα, or DsbA-L (key ER chaperones involved in adiponectin production and secretion. However, niacin treatment attenuated HFD-induced increases in adipose tissue gene expression of MCP-1 and IL-1β in the wild-type HFD-fed mice. Niacin also reduced the expression of the pro-inflammatory M1 macrophage marker CD11c in HFD-fed wild-type mice.Niacin treatment attenuates obesity-induced adipose tissue inflammation through increased adiponectin and anti-inflammatory cytokine expression and reduced pro-inflammatory cytokine expression in a niacin receptor-dependent manner.

  6. Tissue Specific Expression Of Sprouty1 In Mice Protects Against High Fat Diet Induced Fat Accumulation, Bone Loss, And Metabolic Dysfunction

    Science.gov (United States)

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J.; Liaw, Lucy

    2012-01-01

    We recently characterized Sprouty1 (Spry1), a growth factor signaling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue specific Spry1 expression in mice resulted in increased bone mass and reduced body fat while conditional knockout of Spry1 had the opposite effect with decreased bone and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high fat diet-induced obesity, bone loss, and associated lipid abnormalities and demonstrate that Spry1 has a long-term protective effect on mice fed a high caloric diet. We studied diet-induced obesity in mice with fatty acid binding promoter (aP2)-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1 null mice, high fat diet increased body fat by 40%, impaired glucose regulation, and led to liver steatosis. However, over-expression of Spry1 led to 35% lower body fat, reduced bone loss, and normal metabolic function compared to single transgenics. This protective phenotype was associated with decreased circulating insulin (70%) and leptin (54%) compared to controls on a high fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45%. We show that conditional Spry1 expression in adipose tissue protects against high fat diet-induced obesity and associated bone loss. PMID:22142492

  7. High-fat diet-induced insulin resistance does not increase plasma anandamide levels or potentiate anandamide insulinotropic effect in isolated canine islets.

    Directory of Open Access Journals (Sweden)

    Orison O Woolcott

    Full Text Available Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia.To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets.Dogs were fed a high-fat diet (n = 9 for 22 weeks. Abdominal fat depot was quantified by MRI. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp. Fasting plasma endocannabinoid levels were analyzed by liquid chromatography-mass spectrometry. All metabolic assessments were performed before and after fat diet regimen. At the end of the study, pancreatic islets were isolated prior to euthanasia to test the in vitro effect of anandamide on islet hormones. mRNA expression of cannabinoid receptors was determined in intact islets. The findings in vitro were compared with those from animals fed a control diet (n = 7.Prolonged fat feeding increased abdominal fat content by 81.3±21.6% (mean±S.E.M, P<0.01. In vivo insulin sensitivity decreased by 31.3±12.1% (P<0.05, concomitant with a decrease in plasma 2-arachidonoyl glycerol (from 39.1±5.2 to 15.7±2.0 nmol/L but not anandamide, oleoyl ethanolamide, linoleoyl ethanolamide, or palmitoyl ethanolamide. In control-diet animals (body weight: 28.8±1.0 kg, islets incubated with anandamide had a higher basal and glucose-stimulated insulin secretion as compared with no treatment. Islets from fat-fed animals (34.5±1.3 kg; P<0.05 versus control did not exhibit further potentiation of anandamide-induced insulin secretion as compared with control-diet animals. Glucagon but not somatostatin secretion in vitro was also increased in response to anandamide, but there was no difference between groups (P = 0.705. No differences in gene expression of CB1R or CB2R between groups were found.In canines, high-fat diet

  8. High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise.

    Science.gov (United States)

    Kohn, Julie C; Azar, Julian; Seta, Francesca; Reinhart-King, Cynthia A

    2018-03-01

    Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.

  9. Dietary creatine supplementation lowers hepatic triacylglycerol by increasing lipoprotein secretion in rats fed high-fat diet.

    Science.gov (United States)

    da Silva, Robin P; Leonard, Kelly-Ann; Jacobs, René L

    2017-12-01

    Recent studies have shown that dietary creatine supplementation can prevent lipid accumulation in the liver. Creatine is a small molecule that plays a large role in energy metabolism, but since the enzyme creatine kinase is not present in the liver, the classical role in energy metabolism does not hold in this tissue. Fat accumulation in the liver can lead to the development of nonalcoholic fatty liver disease (NAFLD), a progressive disease that is prevalent in humans. We have previously reported that creatine can directly influence lipid metabolism in cell culture to promote lipid secretion and oxidation. Our goal in the current study was to determine whether similar mechanisms that occur in cell culture were present in vivo. We also sought to determine whether dietary creatine supplementation could be effective in reversing steatosis. Sprague-Dawley rats were fed a high-fat diet or a high-fat diet supplemented with creatine for 5 weeks. We found that rats supplemented with creatine had significantly improved rates of lipoprotein secretion and alterations in mitochondrial function that were consistent with greater oxidative capacity. We also find that introducing creatine into a high-fat diet halted hepatic lipid accumulation in rats with fatty liver. Our results support our previous report that liver cells in culture with creatine secrete and oxidize more oleic acid, demonstrating that dietary creatine can effectively change hepatic lipid metabolism by increasing lipoprotein secretion and oxidation in vivo. Our data suggest that creatine might be an effective therapy for NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring

    Science.gov (United States)

    Zaidi, Rabab; Shah, Shyam; Oakley, M. Elsa; Pavlatos, Cassondra; El Idrissi, Samir; Xing, Xiaoyun; Li, Daofeng; Wang, Ting; Cheverud, James M.

    2018-01-01

    We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes. PMID:29447215

  11. Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring.

    Science.gov (United States)

    Keleher, Madeline Rose; Zaidi, Rabab; Shah, Shyam; Oakley, M Elsa; Pavlatos, Cassondra; El Idrissi, Samir; Xing, Xiaoyun; Li, Daofeng; Wang, Ting; Cheverud, James M

    2018-01-01

    We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes.

  12. Tissue-specific expression of Sprouty1 in mice protects against high-fat diet-induced fat accumulation, bone loss and metabolic dysfunction.

    Science.gov (United States)

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J; Liaw, Lucy

    2012-09-28

    We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.

  13. Effect of High-Fat Diet upon Inflammatory Markers and Aortic Stiffening in Mice

    Directory of Open Access Journals (Sweden)

    Andre Bento Chaves Santana

    2014-01-01

    Full Text Available Changes in lifestyle such as increase in high-fat food consumption are an important cause for vascular diseases. The present study aimed to investigate the involvement of ACE and TGF-β in the aorta stiffness induced by high-fat diet. C57BL/6 male mice were divided in two groups according to their diet for 8 weeks: standard diet (ST and high-fat diet (HF. At the end of the protocol, body weight gain, adipose tissue content, serum lipids and glucose levels, and aorta morphometric and biochemical measurements were performed. Analysis of collagen fibers by picrosirius staining of aorta slices showed that HF diet promoted increase of thin (55% and thick (100% collagen fibers deposition and concomitant disorganization of these fibers orientations in the aorta vascular wall (50%. To unravel the mechanism involved, myeloperoxidase (MPO and angiotensin I converting enzyme (ACE were evaluated by protein expression and enzyme activity. HF diet increased MPO (90% and ACE (28% activities, as well as protein expression of ACE. TGF-β was also increased in aorta tissue of HF diet mice after 8 weeks. Altogether, we have observed that the HF diet-induced aortic stiffening may be associated with increased oxidative stress damage and activation of the RAS in vascular tissue.

  14. Low-fat diet with omega-3 fatty acids increases plasma insulin-like growth factor concentration in healthy postmenopausal women.

    Science.gov (United States)

    Young, Lindsay R; Kurzer, Mindy S; Thomas, William; Redmon, J Bruce; Raatz, Susan K

    2013-07-01

    The insulin-like growth factor pathway plays a central role in the normal and abnormal growth of tissues; however, nutritional determinants of insulin-like growth factor I (IGF-I) and its binding proteins in healthy individuals are not well defined. Three test diets-high-fat diet (40% energy as fat), low-fat diet (LF; 20% energy as fat), and a diet with low fat and high omega-3 fatty acid (LFn3; 23% energy as fat)--were tested in a randomized crossover designed controlled feeding trial in healthy postmenopausal women. Plasma IGF-I, IGF binding protein-3 (IGFBP-3), insulin, glucose, and ratio of IGF-I/IGFBP-3 concentrations were measured in response to diets. Insulin sensitivity was calculated using the homeostatic model assessment of insulin resistance We hypothesized that IGF-I, insulin, and glucose concentrations would decrease and IGFBP-3 concentration would increase in response to the low-fat diets. Eight weeks of the LFn3 diet increased circulating IGF-I (P diet increased IGFBP-3 (P = .04), resulting in trends toward an increased IGF-I/IGFBP-3 ratio with the LFn3 diet and a decreased IGF-I/IGFBP-3 ratio with the LF diet (P = .13 for both comparisons). No statistically significant differences were detected between treatments at baseline or 8 weeks for IGF-1, IGFBP-3, or the ratio of IGF-1/IGFBP-3. Insulin, glucose, and the homeostatic model assessment of insulin resistance were not altered by the interventions. Low-fat diet with high n-3 fatty acids may increase circulating IGF-I concentrations without adversely affecting insulin sensitivity in healthy individuals. Published by Elsevier Inc.

  15. High-fat diet determines the composition of the murine gut microbiome independently of obesity.

    Science.gov (United States)

    Hildebrandt, Marie A; Hoffmann, Christian; Sherrill-Mix, Scott A; Keilbaugh, Sue A; Hamady, Micah; Chen, Ying-Yu; Knight, Rob; Ahima, Rexford S; Bushman, Frederic; Wu, Gary D

    2009-11-01

    The composition of the gut microbiome is affected by host phenotype, genotype, immune function, and diet. Here, we used the phenotype of RELMbeta knockout (KO) mice to assess the influence of these factors. Both wild-type and RELMbeta KO mice were lean on a standard chow diet, but, upon switching to a high-fat diet, wild-type mice became obese, whereas RELMbeta KO mice remained comparatively lean. To investigate the influence of diet, genotype, and obesity on microbiome composition, we used deep sequencing to characterize 25,790 16S rDNA sequences from uncultured bacterial communities from both genotypes on both diets. We found large alterations associated with switching to the high-fat diet, including a decrease in Bacteroidetes and an increase in both Firmicutes and Proteobacteria. This was seen for both genotypes (ie, in the presence and absence of obesity), indicating that the high-fat diet itself, and not the obese state, mainly accounted for the observed changes in the gut microbiota. The RELMbeta genotype also modestly influenced microbiome composition independently of diet. Metagenomic analysis of 537,604 sequence reads documented extensive changes in gene content because of a high-fat diet, including an increase in transporters and 2-component sensor responders as well as a general decrease in metabolic genes. Unexpectedly, we found a substantial amount of murine DNA in our samples that increased in proportion on a high-fat diet. These results demonstrate the importance of diet as a determinant of gut microbiome composition and suggest the need to control for dietary variation when evaluating the composition of the human gut microbiome.

  16. Hearts from mice fed a non-obesogenic high-fat diet exhibit changes in their oxidative state, calcium and mitochondria in parallel with increased susceptibility to reperfusion injury.

    Science.gov (United States)

    Littlejohns, Ben; Pasdois, Philippe; Duggan, Simon; Bond, Andrew R; Heesom, Kate; Jackson, Christopher L; Angelini, Gianni D; Halestrap, Andrew P; Suleiman, M-Saadeh

    2014-01-01

    High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown. To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury. Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet. This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults.

  17. A High-Fat Meal, or Intraperitoneal Administration of a Fat Emulsion, Increases Extracellular Dopamine in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Bartley G. Hoebel

    2012-06-01

    Full Text Available Evidence links dopamine (DA in the nucleus accumbens (NAc shell to the ingestion of palatable diets. Less is known, however, about the specific relation of DA to dietary fat and circulating triglycerides (TG, which are stimulated by fat intake and promote overeating. The present experiments tested in Sprague-Dawley rats whether extracellular levels of NAc DA increase in response to acute access to fat-rich food or peripheral injection of a fat emulsion and, if so, whether this is related to caloric intake or elevated circulating lipids. When rats consumed more calories of a high-fat meal compared with a low-fat meal, there was a significant increase in extracellular accumbens DA (155% vs. 119%. Systemic injection of a fat emulsion, which like a high-fat diet raises circulating TG but eliminates the factor of taste and allows for the control of caloric intake, also significantly increased extracellular levels of DA (127% compared to an equicaloric glucose solution (70% and saline (85%. Together, this suggests that a rise in circulating TG may contribute to the stimulatory effect of a high-fat diet on NAc DA.

  18. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet.

    Science.gov (United States)

    Estrada-Luna, D; Martínez-Hinojosa, E; Cancino-Diaz, J C; Belefant-Miller, H; López-Rodríguez, G; Betanzos-Cabrera, G

    2018-02-01

    Studies have found that pomegranate juice (PJ) consumption increases the binding of high-density lipoproteins (HDL) to paraoxonase 1 (PON1), thus increasing the catalytic activity of this enzyme. PON1 is an antioxidant arylesterase synthesized in the liver and transported in plasma in association with HDL. Decreased levels of PON1 are associated with higher levels of cholesterol. We determined the effects of PJ on body weight, cholesterol, and triacylglycerols through 5 months of supplementation. In addition, the effect of PJ on pon1 gene expression in the liver was also measured by RT-qPCR as well as the activity in serum by a semiautomated method using paraoxon as a substrate. CD-1 mice were either fed a control diet or were fed a high-fat diet 1.25% (wt/wt) cholesterol, 0.5% (wt/wt) sodium cholate, and 15% (wt/wt) saturated fat. 300 μL of PJ containing 0.35 mmol total polyphenols was administered by oral gavage to half of the high fat mice daily. The rest of the high fat mice and the control mice were administered with 300 μL of water. PJ-supplemented animals had significantly higher levels of expression of pon1 compared to the unsupplemented group. PJ-supplemented animals had twice the PON1 activity of the unsupplemented group. In addition, PJ-supplemented animals had the lowest body weight and significantly reduced cholesterol and triacylglycerol levels, although the tricylglycerol levels were not consistently decreased. These results suggest that PJ protects against the effects of a high-fat diet in body weight, and cholesterol levels.

  19. Gut microbiota are linked to increased susceptibility to hepatic steatosis in low aerobic capacity rats fed an acute high fat diet

    Science.gov (United States)

    Poor aerobic fitness is linked to nonalcoholic fatty liver disease and increased all-cause mortality. We previously found that low capacity running (LCR) rats fed acute high fat diet (HFD; 45% kcal from fat) for 3 days resulted in positive energy balance and increased hepatic steatosis compared with...

  20. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation.

    Science.gov (United States)

    Dhahri, Wahiba; Drolet, Marie-Claude; Roussel, Elise; Couet, Jacques; Arsenault, Marie

    2014-09-24

    The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.

  1. Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology.

    Directory of Open Access Journals (Sweden)

    Jesselea Carlin

    Full Text Available Maternal consumption of a high fat diet during pregnancy increases the offspring risk for obesity. Using a mouse model, we have previously shown that maternal consumption of a high fat (60% diet leads to global and gene specific decreases in DNA methylation in the brain of the offspring. The present experiments were designed to attempt to reverse this DNA hypomethylation through supplementation of the maternal diet with methyl donors, and to determine whether methyl donor supplementation could block or attenuate phenotypes associated with maternal consumption of a HF diet. Metabolic and behavioral (fat preference outcomes were assessed in male and female adult offspring. Expression of the mu-opioid receptor and dopamine transporter mRNA, as well as global DNA methylation were measured in the brain. Supplementation of the maternal diet with methyl donors attenuated the development of some of the adverse effects seen in offspring from dams fed a high fat diet; including weight gain, increased fat preference (males, changes in CNS gene expression and global hypomethylation in the prefrontal cortex. Notable sex differences were observed. These findings identify the importance of balanced methylation status during pregnancy, particularly in the context of a maternal high fat diet, for optimal offspring outcome.

  2. POMC and NPY mRNA expression during development is increased in rat offspring brain from mothers fed with a high fat diet.

    Science.gov (United States)

    Klein, Marianne Orlandini; MacKay, Harry; Edwards, Alexander; Park, Su-Bin; Kiss, Ana Carolina Inhasz; Felicio, Luciano Freitas; Abizaid, Alfonso

    2018-02-01

    Developmental programing is influenced by perinatal nutrition and it has long-lasting impacts on adult metabolism in the offspring. In particular, maternal high fat diet has been associated with increased risk of obesity and metabolic disorders during adulthood in the descendants. These effects may be due to the effects of the high fat diet on the development of the systems that regulate food intake and energy balance in the offspring hypothalamus. The arcuate nucleus (ARC) may be a particularly sensitive region to it as this nucleus contains the POMC and AgRP/NPY neurons that integrate the melanocortin system. Thus, the aim of this study was to investigate the effects of maternal high fat diet during pregnancy on the transcription factors that regulate hypothalamic development in the offspring as a potential mechanism that may result in altered neuronal expression of POMC, NPY and/or AgRP. To this end, pregnant females exposed to high fat diet (60% fat diet since day 0 of pregnancy) or standard rat chow were sacrificed on days 12, 14, 16 and 18 of gestation to obtain brains from their developing fetuses and examine the mRNA expression of transcription factors associated with the development of cells in the ARC. Results show that, while no changes in transcription factor expression between groups were observed, POMC and NPY mRNA expression were higher on embryonic day 18 in the high fat group. These results suggest that POMC and NPY expression are altered by in utero exposure to a high fat diet, but these changes in gene expression are not associated with changes in the expression of transcription factors known to determine the fate of ARC cells. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  3. High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress.

    Science.gov (United States)

    Balakumar, M; Raji, L; Prabhu, D; Sathishkumar, C; Prabu, P; Mohan, V; Balasubramanyam, M

    2016-12-01

    In the context of high human consumption of fructose diets, there is an imperative need to understand how dietary fructose intake influence cellular and molecular mechanisms and thereby affect β-cell dysfunction and insulin resistance. While evidence exists for a relationship between high-fat-induced insulin resistance and metabolic disorders, there is lack of studies in relation to high-fructose diet. Therefore, we attempted to study the effect of different diets viz., high-fat diet (HFD), high-fructose diet (HFS), and a combination (HFS + HFD) diet on glucose homeostasis and insulin sensitivity in male Wistar rats compared to control animals fed with normal pellet diet. Investigations include oral glucose tolerance test, insulin tolerance test, histopathology by H&E and Masson's trichrome staining, mRNA expression by real-time PCR, protein expression by Western blot, and caspase-3 activity by colorimetry. Rats subjected to high-fat/fructose diets became glucose intolerant, insulin-resistant, and dyslipidemic. Compared to control animals, rats subjected to different combination of fat/fructose diets showed increased mRNA and protein expression of a battery of ER stress markers both in pancreas and liver. Transcription factors of β-cell function (INSIG1, SREBP1c and PDX1) as well as hepatic gluconeogenesis (FOXO1 and PEPCK) were adversely affected in diet-induced insulin-resistant rats. The convergence of chronic ER stress towards apoptosis in pancreas/liver was also indicated by increased levels of CHOP mRNA & increased activity of both JNK and Caspase-3 in rats subjected to high-fat/fructose diets. Our study exposes the experimental support in that high-fructose diet is equally detrimental in causing metabolic disorders.

  4. A high-fat, high-saturated fat diet decreases insulin sensitivity without changing intra-abdominal fat in weight-stable overweight and obese adults.

    Science.gov (United States)

    von Frankenberg, Anize D; Marina, Anna; Song, Xiaoling; Callahan, Holly S; Kratz, Mario; Utzschneider, Kristina M

    2017-02-01

    We sought to determine the effects of dietary fat on insulin sensitivity and whether changes in insulin sensitivity were explained by changes in abdominal fat distribution or very low-density lipoprotein (VLDL) fatty acid composition. Overweight/obese adults with normal glucose tolerance consumed a control diet (35 % fat/12 % saturated fat/47 % carbohydrate) for 10 days, followed by a 4-week low-fat diet (LFD, n = 10: 20 % fat/8 % saturated fat/62 % carbohydrate) or high-fat diet (HFD, n = 10: 55 % fat/25 % saturated fat/27 % carbohydrate). All foods and their eucaloric energy content were provided. Insulin sensitivity was measured by labeled hyperinsulinemic-euglycemic clamps, abdominal fat distribution by MRI, and fasting VLDL fatty acids by gas chromatography. The rate of glucose disposal (Rd) during low- and high-dose insulin decreased on the HFD but remained unchanged on the LFD (Rd-low: LFD: 0.12 ± 0.11 vs. HFD: -0.37 ± 0.15 mmol/min, mean ± SE, p vs. HFD: -0.71 ± 0.26 mmol/min, p = 0.08). Hepatic insulin sensitivity did not change. Changes in subcutaneous fat were positively associated with changes in insulin sensitivity on the LFD (r = 0.78, p fat. The LFD led to an increase in VLDL palmitic (16:0), stearic (18:0), and palmitoleic (16:1n7c) acids, while no changes were observed on the HFD. Changes in VLDL n-6 docosapentaenoic acid (22:5n6) were strongly associated with changes in insulin sensitivity on both diets (LFD: r = -0.77; p fat and saturated fat adversely affects insulin sensitivity and thereby might contribute to the development of type 2 diabetes. CLINICALTRIALS. NCT00930371.

  5. Effect of high fat diet on pulmonary expression of parathyroid hormone-related protein and its downstream targets

    Directory of Open Access Journals (Sweden)

    Learta Oruqaj

    2016-10-01

    Full Text Available Aims: Parathyroid hormone-related protein (PTHrP is involved in lung development and surfactant production. The latter one requires a paracrine interaction between type II alveolar cells and lipofibroblasts in which leptin triggers PTHrP-induced effects. Whether increased plasma leptin levels, as they occur in high fat diet, modify the expression of PTHrP remains unclear. Furthermore, the effect of high fat diet under conditions of forced pulmonary remodelling such as response to post myocardial infarction remains to be defined. Materials and methods: C57 bl/6 mice were randomized to either normal diet or high fat diet at an age of 6 weeks. Seven months later, the mice were euthanized and the lung was removed and frozen in fluid nitrogen until use. Samples were analyzed by real-time RT-PCR and western blot. Leptin deficient mice were used to investigate the effect of leptin on pulmonary expression of PTHrP more directly. A subgroup of mice with and without high fat diet underwent in vivo ischemia (45 min and reperfusion (4 weeks. Finally, experiments were repeated with prolonged high-fat diet. Key findings: High fat diet increased plasma leptin levels by 30.4% and the pulmonary mRNA expression of PTHrP (1,447-fold, PTH-1 receptor (4.21-fold, and PTHrP-downstream targets ADRP (7.54-fold and PPARγ (5.27-fold. Pulmonary PTHrP expression was reduced in leptin deficient mice by 88% indicating leptin dependent regulation. High fat diet further improved changes in pulmonary adaptation caused by ischemia/reperfusion (1.48-fold increased PTH-1 receptor protein expression. These effects were lost during prolonged high fat diet. Significance: This study established that physiological regulation of leptin plasma levels by high fat diet affects the pulmonary PTHrP expression and of PTHrP downstream targets. Modification of pulmonary expression of PTH-1 receptors by high fat diet after myocardial infarction suggests that the identified interaction may

  6. Effect of bacterial or porcine lipase with low- or high-fat diets on nutrient absorption in pancreatic-insufficient dogs.

    Science.gov (United States)

    Suzuki, A; Mizumoto, A; Rerknimitr, R; Sarr, M G; DiMango, E P

    1999-02-01

    Treatment of human exocrine pancreatic insufficiency is suboptimal. This study assessed the effects of bacterial lipase, porcine lipase, and diets on carbohydrate, fat, and protein absorption in pancreatic-insufficient dogs. Dogs were given bacterial or porcine lipase and 3 diets: a 48% carbohydrate, 27% fat, and 25% protein standard diet; a high-carbohydrate, low-fat, and low-protein diet; or a low-carbohydrate, high-fat, and high-protein diet (66%/18%/16% and 21%/43%/36% calories). With the standard diet, coefficient of fat absorption increased dose-dependently with both lipases (P vs. low-fat and -protein diet). There were no interactions among carbohydrate, fat, and protein absorption. Correcting steatorrhea requires 75 times more porcine than bacterial lipase (18 vs. 240 mg). High-fat and high-protein diets optimize fat absorption with both enzymes. High-fat diets with bacterial or porcine lipase should be evaluated in humans with pancreatic steatorrhea.

  7. High fat, low carbohydrate diet limit fear and aggression in Göttingen minipigs

    DEFF Research Database (Denmark)

    Haagensen, Annika Maria Juul; Sørensen, Dorte Bratbo; Sandøe, Peter

    2014-01-01

    High fat, low carbohydrate diets have become popular, as short-term studies show that such diets are effective for reducing body weight, and lowering the risk of diabetes and cardiovascular disease. There is growing evidence from both humans and other animals that diet affects behaviour and intake...... of fat has been linked, positively and negatively, with traits such as exploration, social interaction, anxiety and fear. Animal models with high translational value can help provide relevant and important information in elucidating potential effects of high fat, low carbohydrate diets on human behaviour....... Twenty four young, male Göttingen minipigs were fed either a high fat/cholesterol, low carbohydrate diet or a low fat, high carbohydrate/sucrose diet in contrast to a standard low fat, high carbohydrate minipig diet. Spontaneous behaviour was observed through video recordings of home pens and test...

  8. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Alessandra Ferramosca

    2015-01-01

    Full Text Available In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group, a diet with 35% fat (HF group, or a high-fat diet supplemented with 2.5% krill oil (HF+KO group. The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  9. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo

    2015-01-01

    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  10. Milk Fat Globule Membrane Attenuates High-Fat Diet-Induced Obesity by Inhibiting Adipogenesis and Increasing Uncoupling Protein 1 Expression in White Adipose Tissue of Mice

    Directory of Open Access Journals (Sweden)

    Tiange Li

    2018-03-01

    Full Text Available Milk fat globule membrane (MFGM, a protein-lipid complex surrounding the fat globules in milk, has many health benefits. The aim of the current study was to investigate whether MFGM could prevent obesity through inhibiting adipogenesis and promoting brown remodeling of white adipose tissue (WAT in mice fed with high-fat diet. C57BL/6 mice were fed a normal diet (ND, high-fat diet (HFD, HFD plus MFGM at 100 mg/kg BW, 200 mg/kg BW or 400 mg/kg BW for 8 weeks. Results showed that MFGM suppressed body weight gain induced by HFD, reduced white adipose tissue (WAT mass accompanied with the decrease in adipocyte sizes. MFGM was found to have partially improved serum lipid profiles, as well as to have suppressed HFD-induced adipogenesis as shown by reduced expression of peroxisome proliferators-activator receptor-γ (PPARγ, CCAAT/enhancer-binding protein-α (C/EBPα and sterol regulatory element-binding protein-1c (SREBP-1c. MFGM also markedly increased the phosphorylation of AMP-activated protein kinase (AMPK and acetyl-CoA carboxylase (ACC, showing activation of AMPK pathway. Moreover, MFGM promoted browning of inguinal WAT by upregulation the protein expression of uncoupling protein 1 (UCP1 in HFD mice. Taken together, these findings provide evidence that MFGM may protect against diet-induced adiposity by suppressing adipogenesis and promoting brown-like transformation in WAT.

  11. Curcumin suppresses intestinal polyps in APC Min mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2011-06-01

    Full Text Available Colorectal cancer (CRC is a leading cause of cancer deaths in the United States. Various risk factors have been associated with CRC including increasing age and diet. Epidemiological and experimental studies have implicated a diet high in fat as an important risk factor for colon cancer. High fat diets can promote obesity resulting in insulin resistance and inflammation and the development of oxidative stress, increased cell proliferation, and suppression of apoptosis. Because of the high consumption of dietary fats, especially saturated fats, by Western countries, it is of interest to see if non-nutrient food factors might be effective in preventing or delaying CRC in the presence of high saturated fat intake. Curcumin (Curcuma longa, the main yellow pigment in turmeric, was selected to test because of its reported anti-tumor activity. APC Min mice, which develop intestinal polyps and have many molecular features of CRC, were fed a diet containing 35% pork fat, 33% sucrose, and a protein and vitamin mineral mixture (HFD with or without 0.5% curcumin. These cohorts were compared to APC Min mice receiving standard rodent chow (RC with 8% fat. APC Min mice fed the HFD for 3 months had a 23% increase in total number of polyps compared to APC Min mice on RC. Curcumin was able to significantly reverse the accelerated polyp development associated with the HFD suggesting it may be effective clinically in helping prevent colon cancer even when ingesting high amounts of fatty foods. The anti-tumor effect of curcumin was shown to be associated with enhanced apoptosis and increased efficiency of DNA repair. Since curcumin prevented the gain in body weight seen in APC Min mice ingesting the HFD, modulation of energy metabolism may also be a factor.

  12. Differential effect of weight loss with low-fat diet or high-fat diet restriction on inflammation in the liver and adipose tissue of mice with diet-induced obesity

    Science.gov (United States)

    We studied the effects of weight loss induced by either a low-fat normal diet or restriction of high-fat diet on hepatic steatosis, inflammation in the liver and adipose tissue, and blood monocytes of obese mice. In mice with high-fat diet-induced obesity, weight loss was achieved by switching from ...

  13. Exercise as a mean to reverse the detrimental effect of high-fat diet on bone’s fracture characteristics

    Directory of Open Access Journals (Sweden)

    Ilias Doulamis

    2017-04-01

    Full Text Available The aim of this study is to investigate whether exercise can reverse some of the adverse effects of high-fat-diet-induced obesity on lipid metabolism and bone biomechanical properties. A total of 26 adult male C57bl/6J mice were randomly assigned into three groups: (A Control group (n=6, (B High-fat diet group (n=10, (C High-fat diet and exercise group (n=10. Body mass and relevant biochemical parameters were measured for the duration of the experimental protocol (37 weeks. Mechanical strength of both femurs of each animal was assessed in-vitro based on three point bending tests. It was re¬vealed that exposure to high-fat diet led to significant increase of body mass and cholesterol levels and also to substantial changes in bone mor-phology and strength. Ultimate stress for the animals exposed to high-fat diet and those exposed to high-fat-diet and exercise was 25% and 24% lower compared to control, respectively. Exercise increased bone thickness by 15% compared to animals that were not exposed to exer¬cise. It was concluded that high-fat-diet ap¬pears to have a detrimental effect on bone biomechanics and strength. Exer¬cise reversed the reduction in bone thickness that appears to be induced by high-fat diet. However no statistically significant increase in bone strength was observed.

  14. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles

    DEFF Research Database (Denmark)

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne

    2009-01-01

    patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (Pobese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet,) 21.9+/-1.4 g (EPO, normal diet), 35.......3+/-3.3 g (control, high-fat diet) and 28.8+/-2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance......-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles....

  15. Effects of Persian leek (Allium ampeloprasum) on hepatic lipids and the expression of proinflammatory gene in hamsters fed a high-fat/ high-cholesterol diet.

    Science.gov (United States)

    Fatoorechi, Vahideh; Rismanchi, Marjan; Nasrollahzadeh, Javad

    2016-01-01

    Persian leek is one of the most widely used herbal foods among Iranians. In this study, effects of oral administration of Persian leek on plasma and liver lipids were examined in hamster. Male Syrian hamsters were randomly divided into three groups: control (standard diet), high fat control (high-fat/high-cholesterol diet), Persian leek (high-fat/high-cholesterol diet + 1% per weight of diet from dried powdered Persian leek) for 14 weeks. High fat diet increased plasma and liver lipids as compared to standard diet. Adding Persian leek to the high-fat/high-cholesterol diet resulted in no significant changes in the concentration of the plasma lipids or liver cholesterol. However, liver triglycerides (TG), plasma Alanine aminotransferase and gene expression of tumor necrosis factor- α were decreased in hamsters fed high-fat diet containing Persian leek as compared to high-fat diet only. Persian leek might be considered as a herbal food that can reduce liver TG accumulation induced by high fat diets.

  16. Effects of preoperative exposure to a high-fat versus a low-fat diet on ingestive behavior after gastric bypass surgery in rats.

    Science.gov (United States)

    Seyfried, Florian; Miras, Alexander D; Bueter, Marco; Prechtl, Christina G; Spector, Alan C; le Roux, Carel W

    2013-11-01

    The consumption of high fat and sugar diets is decreased after gastric bypass surgery (GB). The mechanisms remain unclear, with tests of motivated behavior toward fat and sugar producing conflicting results in a rat model. These discrepancies may be due to differences in presurgical maintenance diets. The authors used their GB rat model to determine whether the fat content of preoperative maintenance diets affects weight loss, calorie intake, and macronutrient selection after surgery. Male Wistar rats were either low-fat diet fed (LFDF) with normal chow or high-fat diet fed (HFDF) before randomization to GB or sham surgery. In food preference test 1, the animals were offered the choice of a vegetable drink (V8) or a high-calorie liquid (Ensure), and in food preference test 2, they could choose normal chow or a solid high-fat diet. The GB groups did not differ significantly in terms of body weight loss or caloric intake. In food preference test 1, both groups responded similarly by reducing their preference for Ensure and increasing their preference for V8. In food preference test 2, the HFDF-GB rats reduced their preference for a solid high-fat diet gradually compared with the immediate reduction observed in the LFDF-GB rats. The consumption of presurgical maintenance diets with different fat contents did not affect postoperative weight loss outcomes. Both the LFDF-GB and HFDF-GB rats exhibited behaviors consistent with the possible expression of a conditioned taste aversion to a high-fat stimulus. These results suggest that for some physiologic parameters, low-fat-induced obesity models can be used for the study of changes after GB and have relevance to many obese humans who consume high-calorie but low-fat diets.

  17. Intrauterine growth retardation increases the susceptibility of pigs to high-fat diet-induced mitochondrial dysfunction in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Jingbo Liu

    Full Text Available It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR increases the susceptibility of offspring to high-fat (HF diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW, and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA, and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH and glucose-6-phosphate dehydrogenase (G6PD. These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction.

  18. Intrauterine Growth Retardation Increases the Susceptibility of Pigs to High-Fat Diet-Induced Mitochondrial Dysfunction in Skeletal Muscle

    Science.gov (United States)

    Liu, Jingbo; Chen, Daiwen; Yao, Ying; Yu, Bing; Mao, Xiangbing; He, Jun; Huang, Zhiqing; Zheng, Ping

    2012-01-01

    It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. PMID:22523560

  19. Programming Effects of Prenatal Glucocorticoid Exposure with a Postnatal High-Fat Diet in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Jiunn-Ming Sheen

    2016-04-01

    Full Text Available Increasing evidence has shown that many chronic diseases originate from early life, even before birth, through what are termed as fetal programming effects. Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant Sprague-Dawley rats’ intraperitoneal dexamethasone (0.1 mg/kg body weight or vehicle at gestational days 14–20. Male offspring were administered a normal or high-fat diet starting from weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver, pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the dexamethasone plus high-fat diet (DHF group than the vehicle plus high-fat diet (VHF group in the intraperitoneal glucose tolerance test (IPGTT. Serum insulin levels at 15, 30 and 60 min were significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were lower in the epididymal adipose tissue in the VHF and DHF groups. “Programming” of liver or epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin resistance in animals fed a high-fat diet.

  20. Programming Effects of Prenatal Glucocorticoid Exposure with a Postnatal High-Fat Diet in Diabetes Mellitus.

    Science.gov (United States)

    Sheen, Jiunn-Ming; Hsieh, Chih-Sung; Tain, You-Lin; Li, Shih-Wen; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Miao-Meng; Chen, Yu-Chieh; Huang, Li-Tung

    2016-04-08

    Increasing evidence has shown that many chronic diseases originate from early life, even before birth, through what are termed as fetal programming effects. Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant Sprague-Dawley rats' intraperitoneal dexamethasone (0.1 mg/kg body weight) or vehicle at gestational days 14-20. Male offspring were administered a normal or high-fat diet starting from weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver, pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the dexamethasone plus high-fat diet (DHF) group than the vehicle plus high-fat diet (VHF) group in the intraperitoneal glucose tolerance test (IPGTT). Serum insulin levels at 15, 30 and 60 min were significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were lower in the epididymal adipose tissue in the VHF and DHF groups. "Programming" of liver or epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin resistance in animals fed a high-fat diet.

  1. Colonic aberrant crypt formation accompanies an increase of opportunistic pathogenic bacteria in C57BL/6 mice fed a high-fat diet.

    Science.gov (United States)

    Zeng, Huawei; Ishaq, Suzanne L; Liu, Zhenhua; Bukowski, Michael R

    2018-04-01

    The increasing worldwide incidence of colon cancer has been linked to obesity and consumption of a high-fat Western diet. To test the hypothesis that a high-fat diet (HFD) promotes colonic aberrant crypt (AC) formation in a manner associated with gut bacterial dysbiosis, we examined the susceptibility to azoxymethane (AOM)-induced colonic AC and microbiome composition in C57/BL6 mice fed a modified AIN93G diet (AIN, 16% fat, energy) or an HFD (45% fat, energy) for 14 weeks. Mice receiving the HFD exhibited increased plasma leptin, body weight, body fat composition and inflammatory cell infiltration in the ileum compared with those in the AIN group. Consistent with the gut inflammatory phenotype, we observed an increase in colonic AC, plasma interleukin-6, tumor necrosis factor-α, monocyte chemoattractant protein-1 and inducible nitric oxide synthase in the ileum of the HFD-AOM group compared with the AIN-AOM group. Although the HFD and AIN groups did not differ in bacterial species number, the HFD and AIN diets resulted in different bacterial community structures in the colon. The abundance of certain short-chain fatty acid (SCFA) producing bacteria (e.g., Barnesiella) and fecal SCFA (e.g., acetic acid) content were lower in the HFD-AOM group compared with the AIN and AIN-AOM groups. Furthermore, we identified a high abundance of Anaeroplasma bacteria, an opportunistic pathogen in the HFD-AOM group. Collectively, we demonstrate that an HFD promotes AC formation concurrent with an increase of opportunistic pathogenic bacteria in the colon of C57BL/6 mice. Published by Elsevier Inc.

  2. Guarana (Paullinia cupana Stimulates Mitochondrial Biogenesis in Mice Fed High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Natália da Silva Lima

    2018-01-01

    Full Text Available The aim of this study was to evaluate the effects of guarana on mitochondrial biogenesis in a high-fat diet (HFD-fed mice. C57BL6J mice were divided in two groups: high-fat diet HFD and high-fat diet + guarana (HFD-GUA. Both groups received HFD and water ad libitum and the HFD-GUA group also received a daily gavage of guarana (1 g/kg weight. Body weight and food intake was measured weekly. Glycemic, triglyceride, and cholesterol levels were determined. VO2 and energy expenditure (EE were determined by indirect calorimetry. Gene expression was evaluated by real-time PCR and protein content by western blotting. The HFD-GUA group presented lower body weight, subcutaneous, retroperitoneal, visceral, and epididyimal adipose tissue depots, and glycemic and triglyceride levels, with no change in food intake and cholesterol levels. Furthermore, the HFD-GUA group presented an increase in VO2 and basal energy expenditure (EE, as well as Pgc1α, Creb1, Ampka1, Nrf1, Nrf2, and Sirt1 expression in the muscle and brown adipose tissue. In addition, the HFD-GUA group presented an increase in mtDNA (mitochondrial deoxyribonucleic acid content in the muscle when compared to the HFD group. Thus, our data showed that guarana leads to an increase in energetic metabolism and stimulates mitochondrial biogenesis, contributing to control of weight gain, even when associated with high-fat diet.

  3. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats.

    Science.gov (United States)

    Steele, Catherine C; Pirkle, Jesseca R A; Kirkpatrick, Kimberly

    2017-01-01

    Impulsive choice is a common charactertistic among individuals with gambling problems, obesity, and substance abuse issues. Impulsive choice has been classified as a trans-disease process, and understanding the etiology of trait impulsivity could help to understand how diseases and disorders related to impulsive choice are manifested. The Western diet is a possible catalyst of impulsive choice as individuals who are obese and who eat diets high in fat and sugar are typically more impulsive. However, such correlational evidence is unable to discern the direction and causal nature of the relationship. The present study sought to determine how diet may directly contribute to impulsive choice. After 8 weeks of dietary exposure (high-fat, high-sugar, chow), the rats were tested on an impulsive choice task, which presented choices between a smaller-sooner reward (SS) and a larger-later reward (LL). Then, the rats were transferred to a chow diet and retested on the impulsive choice task. The high-sugar and high-fat groups made significantly more impulsive choices than the chow group. Both groups became more self-controlled when they were off the diet, but there were some residual effects of the diet on choice behavior. These results suggest that diet, specifically one high in processed fat or sugar, induces impulsive choice. This diet-induced impulsivity could be a precursor to other disorders that are characterized by impulsivity, such as diet-induced obesity, and could offer potential understanding of the trans-disease nature of impulsive choice.

  4. Effect of high fat and high sugar diet on insulin binding and insulin action in isolated rat adipocytes

    OpenAIRE

    岡﨑,悟

    1987-01-01

    To clarify on a cellular basis the mechanism of the diabetogenic effect of the westernized diet, insulin binding, insulin stimulated 3-o-methylglucose uptake and glucose oxidation were studied in isolated adipocytes from rats fed experimental diets : low fat-no sugar diet (energy ratio of 10% fat, 70% starch, a model of the traditional Japanese diet), high fat-high sugar diet (40% fat, 20% starch, 20% sugar, a model of the westernized diet), low fat-high sugar diet (10% fat, 50% starch, 20% s...

  5. Long term highly saturated fat diet does not induce NASH in Wistar rats

    Directory of Open Access Journals (Sweden)

    Filippi Céline

    2007-02-01

    Full Text Available Abstract Background Understanding of nonalcoholic steatohepatitis (NASH is hampered by the lack of a suitable model. Our aim was to investigate whether long term high saturated-fat feeding would induce NASH in rats. Methods 21 day-old rats fed high fat diets for 14 weeks, with either coconut oil or butter, and were compared with rats feeding a standard diet or a methionine choline-deficient (MCD diet, a non physiological model of NASH. Results MCDD fed rats rapidly lost weight and showed NASH features. Rats fed coconut (86% of saturated fatty acid or butter (51% of saturated fatty acid had an increased caloric intake (+143% and +30%. At the end of the study period, total lipid ingestion in term of percentage of energy intake was higher in both coconut (45% and butter (42% groups than in the standard (7% diet group. No change in body mass was observed as compared with standard rats at the end of the experiment. However, high fat fed rats were fattier with enlarged white and brown adipose tissue (BAT depots, but they showed no liver steatosis and no difference in triglyceride content in hepatocytes, as compared with standard rats. Absence of hepatic lipid accumulation with high fat diets was not related to a higher lipid oxidation by isolated hepatocytes (unchanged ketogenesis and oxygen consumption or hepatic mitochondrial respiration but was rather associated with a rise in BAT uncoupling protein UCP1 (+25–28% vs standard. Conclusion Long term high saturated fat feeding led to increased "peripheral" fat storage and BAT thermogenesis but did not induce hepatic steatosis and NASH.

  6. Gamma delta T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice

    Science.gov (United States)

    Gamma delta T cells are resident in adipose tissue and increase during diet-induced obesity. Their possible contribution to the inflammatory response that accompanies diet-induced obesity was investigated in mice after a 5-10 week high milk fat diet. The high milk fat diet resulted in significant in...

  7. Fatty liver accompanies an increase of Lactobacillus acidophilus in the hind gut of C57/BL mice fed a high-fat diet

    Science.gov (United States)

    High-fat diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease (NAFLD), which also induces changes in the gut microbiome. This study tested the hypothesis that high-fat feeding increases certain predominate hind gut bacteria in a C57BL/6 mouse model o...

  8. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles.

    Directory of Open Access Journals (Sweden)

    Pernille Hojman

    Full Text Available Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (P<0.01 in EPO transfected obese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet, 21.9+/-1.4 g (EPO, normal diet, 35.3+/-3.3 g (control, high-fat diet and 28.8+/-2.6 g (EPO, high-fat diet. Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles.In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles.

  9. Cardiac Hypertrophy and Brain Natriuretic Peptide Levels in an Ovariectomized Rat Model Fed a High-Fat Diet

    Science.gov (United States)

    Goncalves, Gleisy Kelly; de Oliveira, Thiago Henrique Caldeira; de Oliveira Belo, Najara

    2017-01-01

    Background Heart failure in women increases around the time of menopause when high-fat diets may result in obesity. The heart produces brain natriuretic peptide (BNP), also known as B-type natriuretic peptide. This aims of this study were to assess cardiac hypertrophy and BNP levels in ovariectomized rats fed a high-fat diet. Material/Methods Forty-eight female Wistar rats were divided into four groups: sham-operated rats fed a control diet (SC) (n=12); ovariectomized rats fed a control diet (OC) (n=12); sham-operated rats fed a high-fat diet (SF) (n=12); and ovariectomized rats fed a high-fat diet (OF) (n=12). Body weight and blood pressure were measured weekly for 24 weeks. Rats were then euthanized, and plasma samples and heart tissue were studied for gene expression, hydroxyproline levels, and histological examination. Results A high-fat diet and ovariectomy (group OF) increased the weight body and the systolic blood pressure after three months and five months, respectively. Cardiomyocyte hypertrophy was associated with increased expression of ventricular BNP, decreased natriuretic peptide receptor (NPR)-A and increased levels of hydroxyproline and transforming growth factor (TGF)-β. The plasma levels of BNP and estradiol were inversely correlated; expression of estrogen receptor (ER)β and ERα were reduced. Conclusions The findings of this study showed that, in the ovariectomized rats fed a high-fat diet, the BNP-NPR-A receptor complex was involved in cardiac remodeling. BNP may be a marker of cardiac hypertrophy in this animal model. PMID:29249795

  10. Coenzyme Q Metabolism Is Disturbed in High Fat Diet-Induced Non Alcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Kathleen M Botham

    2012-02-01

    Full Text Available Oxidative stress is believed to be a major contributory factor in the development of non alcoholic fatty liver disease (NAFLD, the most common liver disorder worldwide. In this study, the effects of high fat diet-induced NAFLD on Coenzyme Q (CoQ metabolism and plasma oxidative stress markers in rats were investigated. Rats were fed a standard low fat diet (control or a high fat diet (57% metabolizable energy as fat for 18 weeks. The concentrations of total (reduced + oxidized CoQ9 were increased by > 2 fold in the plasma of animals fed the high fat diet, while those of total CoQ10 were unchanged. Reduced CoQ levels were raised, but oxidized CoQ levels were not, thus the proportion in the reduced form was increased by about 75%. A higher percentage of plasma CoQ9 as compared to CoQ10 was in the reduced form in both control and high fat fed rats. Plasma protein thiol (SH levels were decreased in the high fat-fed rats as compared to the control group, but concentrations of lipid hydroperoxides and low density lipoprotein (LDL conjugated dienes were unchanged. These results indicate that high fat diet-induced NAFLD in rats is associated with altered CoQ metabolism and increased protein, but not lipid, oxidative stress.

  11. High fat, low carbohydrate diet limit fear and aggression in Göttingen minipigs.

    Directory of Open Access Journals (Sweden)

    Annika Maria Juul Haagensen

    Full Text Available High fat, low carbohydrate diets have become popular, as short-term studies show that such diets are effective for reducing body weight, and lowering the risk of diabetes and cardiovascular disease. There is growing evidence from both humans and other animals that diet affects behaviour and intake of fat has been linked, positively and negatively, with traits such as exploration, social interaction, anxiety and fear. Animal models with high translational value can help provide relevant and important information in elucidating potential effects of high fat, low carbohydrate diets on human behaviour. Twenty four young, male Göttingen minipigs were fed either a high fat/cholesterol, low carbohydrate diet or a low fat, high carbohydrate/sucrose diet in contrast to a standard low fat, high carbohydrate minipig diet. Spontaneous behaviour was observed through video recordings of home pens and test-related behaviours were recorded during tests involving animal-human contact and reaction towards a novel object. We showed that the minipigs fed a high fat/cholesterol, low carbohydrate diet were less aggressive, showed more non-agonistic social contact and had fewer and less severe skin lesions and were less fearful of a novel object than minipigs fed low fat, high carbohydrate diets. These results found in a porcine model could have important implications for general health and wellbeing of humans and show the potential for using dietary manipulations to reduce aggression in human society.

  12. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization.

    Science.gov (United States)

    Blevins, James E; Thompson, Benjamin W; Anekonda, Vishwanath T; Ho, Jacqueline M; Graham, James L; Roberts, Zachary S; Hwang, Bang H; Ogimoto, Kayoko; Wolden-Hanson, Tami; Nelson, Jarrell; Kaiyala, Karl J; Havel, Peter J; Bales, Karen L; Morton, Gregory J; Schwartz, Michael W; Baskin, Denis G

    2016-04-01

    Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.

  13. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    Directory of Open Access Journals (Sweden)

    Yang Ching-Hsiu

    2008-09-01

    Full Text Available Abstract Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2 and DNA glycosylase (Ogg1, MutY. Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease.

  14. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    Science.gov (United States)

    Hsiao, Pi-Jung; Hsieh, Tusty-Jiuan; Kuo, Kung-Kai; Hung, Wei-Wen; Tsai, Kun-Bow; Yang, Ching-Hsiu; Yu, Ming-Lung; Shin, Shyi-Jang

    2008-01-01

    Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2) and DNA glycosylase (Ogg1, MutY). Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease. PMID:18822121

  15. Lessons from Mouse Models of High-Fat Diet-Induced NAFLD

    Directory of Open Access Journals (Sweden)

    Yasuo Terauchi

    2013-10-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD encompasses a clinicopathologic spectrum of diseases ranging from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH, the more aggressive form of fatty liver disease that may progress to cirrhosis and cirrhosis-related complications, including hepatocellular carcinoma. The prevalence of NAFLD, including NASH, is also increasing in parallel with the growing epidemics of obesity and diabetes. However, the causal relationships between obesity and/or diabetes and NASH or liver tumorigenesis have not yet been clearly elucidated. Animal models of NAFLD/NASH provide crucial information, not only for elucidating the pathogenesis of NAFLD/NASH, but also for examining therapeutic effects of various agents. A high-fat diet is widely used to produce hepatic steatosis and NASH in experimental animals. Several studies, including our own, have shown that long-term high-fat diet loading, which can induce obesity and insulin resistance, can also induce NASH and liver tumorigenesis in C57BL/6J mice. In this article, we discuss the pathophysiology of and treatment strategies for NAFLD and subsequent NAFLD-related complications such as NASH and liver tumorigenesis, mainly based on lessons learned from mouse models of high-fat diet-induced NAFLD/NASH.

  16. Effect of short-term low- and high-fat diets on low-density lipoprotein particle size in normolipidemic subjects.

    Science.gov (United States)

    Guay, Valérie; Lamarche, Benoît; Charest, Amélie; Tremblay, André J; Couture, Patrick

    2012-01-01

    High-fat, low-carbohydrate diets have been shown to raise plasma cholesterol levels, an effect associated with the formation of large low-density lipoprotein (LDL) particles. However, the impact of dietary intervention on time-course changes in LDL particle size has not been investigated. To test whether a short-term dietary intervention affects LDL particle size, we conducted a randomized, double-blind, crossover study using an intensive dietary modification in 12 nonobese healthy men with normal plasma lipid profile. Participants were subjected to 2 isocaloric 3-day diets: high-fat diet (37% energy from fat and 50% from carbohydrates) and low-fat diet (25% energy from fat and 62% from carbohydrates). Plasma lipid levels and LDL particle size were assessed on fasting blood samples after 3 days of feeding on each diet. The LDL particles were characterized by polyacrylamide gradient gel electrophoresis. Compared with the low-fat diet, plasma cholesterol, LDL cholesterol, and high-density lipoprotein cholesterol were significantly increased (4.45 vs 4.78 mmol/L, P = .04; 2.48 vs 2.90 mmol/L, P = .005; and 1.29 vs 1.41 mmol/L, P = .005, respectively) following the 3-day high-fat diet. Plasma triglycerides and fasting apolipoprotein B-48 levels were significantly decreased after the high-fat diet compared with the low-fat diet (1.48 vs 1.01 mmol/L, P = .0003 and 9.6 vs 5.5 mg/L, P = .008, respectively). The high-fat diet was also associated with a significant increase in LDL particle size (255.0 vs 255.9 Å;P = .01) and a significant decrease in the proportion of small LDL particle (vs 44.6%, P = .01). As compared with a low-fat diet, the cholesterol-raising effect of a high-fat diet is associated with the formation of large LDL particles after only 3 days of feeding. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Maternal High-Fat Diet Programming of the Neuroendocrine System and Behavior

    Science.gov (United States)

    Sullivan, Elinor L.; Riper, Kellie M.; Lockard, Rachel; Valleau, Jeanette C.

    2015-01-01

    Maternal obesity, metabolic state, and diet during gestation have profound effects on offspring development. The prevalence of neurodevelopmental and mental health disorders has risen rapidly in the last several decades in parallel with the rise in obesity rates. Evidence from epidemiological studies indicates that maternal obesity and metabolic complications increase the risk of offspring developing behavioral disorders such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASD), and schizophrenia. Animal models show that a maternal diet high in fat similarly disrupts behavioral programming of offspring, with animals showing social impairments, increased anxiety and depressive behaviors, reduced cognitive development, and hyperactivity. Maternal obesity, metabolic conditions, and high fat diet consumption increase maternal leptin, insulin, glucose, triglycerides, and inflammatory cytokines. This leads to increased risk of placental dysfunction, and altered fetal neuroendocrine development. Changes in brain development that likely contribute to the increased risk of behavioral and mental health disorders include increased inflammation in the brain, as well as alterations in the serotonergic system, dopaminergic system and hypothalamic pituitary adrenal (HPA) axis. PMID:25913366

  18. Hypothyroidism Exacerbates Thrombophilia in Female Rats Fed with a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Harald Mangge

    2015-07-01

    Full Text Available Clotting abnormalities are discussed both in the context with thyroid dysfunctions and obesity caused by a high fat diet. This study aimed to investigate the impact of hypo-, or hyperthyroidism on the endogenous thrombin potential (ETP, a master indicator of clotting activation, on Sprague Dawley rats fed a normal or high fat diet. Female Sprague Dawley rats (n = 66 were grouped into normal diet (ND; n = 30 and high-fat diet (HFD; n = 36 groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3 treatment, respectively. After 12 weeks of treatment ETP, body weight and food intake were analyzed. Successfully induced thyroid dysfunction was shown by T3 levels, both under normal and high fat diet. Thyroid dysfunction was accompanied by changes in calorie intake and body weight. In detail, compared to euthyroid controls, hypothyroid rats showed significantly increased—and hyperthyroid animals significantly decreased—ETP levels. High fat diet potentiated these effects in both directions. In summary, we are the first to show that hypothyroidism and high fat diet potentiate the thrombotic capacity of the clotting system in Sprague Dawley rats. This effect may be relevant for cardiovascular disease where thyroid function is poorly understood as a pathological contributor in the context of clotting activity and obesogenic nutrition.

  19. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ayumi, E-mail: akanno@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Asahara, Shun-ichiro, E-mail: asahara@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Masuda, Katsuhisa, E-mail: katsuhisa.m.0707@gmail.com [Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan); Matsuda, Tomokazu, E-mail: tomokazu@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kimura-Koyanagi, Maki, E-mail: koyanagi@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Seino, Susumu, E-mail: seino@med.kobe-u.ac.jp [Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047 (Japan); Ogawa, Wataru, E-mail: ogawa@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kido, Yoshiaki, E-mail: kido@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan)

    2015-03-13

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets.

  20. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    International Nuclear Information System (INIS)

    Kanno, Ayumi; Asahara, Shun-ichiro; Masuda, Katsuhisa; Matsuda, Tomokazu; Kimura-Koyanagi, Maki; Seino, Susumu; Ogawa, Wataru; Kido, Yoshiaki

    2015-01-01

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets

  1. Maternal High-Fat and High-Salt Diets Have Differential Programming Effects on Metabolism in Adult Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    Stephanie A. Segovia

    2018-03-01

    Full Text Available Maternal high-fat or high-salt diets can independently program adverse cardiometabolic outcomes in offspring. However, there is a paucity of evidence examining their effects in combination on metabolic function in adult offspring. Female Sprague Dawley rats were randomly assigned to either: control (CD; 10% kcal from fat, 1% NaCl, high-salt (SD; 10% kcal from fat, 4% NaCl, high-fat (HF; 45% kcal from fat, 1% NaCl or high-fat and salt (HFSD; 45% kcal from fat, 4% NaCl diets 21 days prior to mating and throughout pregnancy and lactation. Male offspring were weaned onto a standard chow diet and were culled on postnatal day 130 for plasma and tissue collection. Adipocyte histology and adipose tissue, liver, and gut gene expression were examined in adult male offspring. HF offspring had significantly greater body weight, impaired insulin sensitivity and hyperleptinemia compared to CD offspring, but these increases were blunted in HFSD offspring. HF offspring had moderate adipocyte hypertrophy and increased expression of the pre-adipocyte marker Dlk1. There was a significant effect of maternal salt with increased hepatic expression of Dgat1 and Igfb2. Gut expression of inflammatory (Il1r1, Tnfα, Il6, and Il6r and renin–angiotensin system (Agtr1a, Agtr1b markers was significantly reduced in HFSD offspring compared to HF offspring. Therefore, salt mitigates some adverse offspring outcomes associated with a maternal HF diet, which may be mediated by altered adipose tissue morphology and gut inflammatory and renin–angiotensin regulation.

  2. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet.

    Science.gov (United States)

    Sampey, Brante P; Vanhoose, Amanda M; Winfield, Helena M; Freemerman, Alex J; Muehlbauer, Michael J; Fueger, Patrick T; Newgard, Christopher B; Makowski, Liza

    2011-06-01

    Obesity has reached epidemic proportions worldwide and reports estimate that American children consume up to 25% of calories from snacks. Several animal models of obesity exist, but studies are lacking that compare high-fat diets (HFD) traditionally used in rodent models of diet-induced obesity (DIO) to diets consisting of food regularly consumed by humans, including high-salt, high-fat, low-fiber, energy dense foods such as cookies, chips, and processed meats. To investigate the obesogenic and inflammatory consequences of a cafeteria diet (CAF) compared to a lard-based 45% HFD in rodent models, male Wistar rats were fed HFD, CAF or chow control diets for 15 weeks. Body weight increased dramatically and remained significantly elevated in CAF-fed rats compared to all other diets. Glucose- and insulin-tolerance tests revealed that hyperinsulinemia, hyperglycemia, and glucose intolerance were exaggerated in the CAF-fed rats compared to controls and HFD-fed rats. It is well-established that macrophages infiltrate metabolic tissues at the onset of weight gain and directly contribute to inflammation, insulin resistance, and obesity. Although both high fat diets resulted in increased adiposity and hepatosteatosis, CAF-fed rats displayed remarkable inflammation in white fat, brown fat and liver compared to HFD and controls. In sum, the CAF provided a robust model of human metabolic syndrome compared to traditional lard-based HFD, creating a phenotype of exaggerated obesity with glucose intolerance and inflammation. This model provides a unique platform to study the biochemical, genomic and physiological mechanisms of obesity and obesity-related disease states that are pandemic in western civilization today.

  3. Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice.

    Science.gov (United States)

    Yan, Lin; Graef, George L; Nielsen, Forrest H; Johnson, LuAnn K; Cao, Jay

    2015-06-01

    Physical activity and soy protein isolate (SPI) augmentation have been reported to be beneficial for bone health. We hypothesized that combining voluntary running and SPI intake would alleviate detrimental changes in bone induced by a high-fat diet. A 2 × 2 × 2 experiment was designed with diets containing 16% or 45% of energy as corn oil and 20% SPI or casein fed to sedentary or running male C57BL/6 mice for 14 weeks. Distal femurs were assessed for microstructural changes. The high-fat diet significantly decreased trabecular number (Tb.N) and bone mineral density (BMD) and increased trabecular separation (Tb.Sp). Soy protein instead of casein, regardless of fat content, in the diet significantly increased bone volume fraction, Tb.N, connectivity density, and BMD and decreased Tb.Sp. Voluntary running, regardless of fat content, significantly decreased bone volume fraction, Tb.N, connectivity density, and BMD and increased Tb.Sp. The high-fat diet significantly decreased osteocalcin and increased tartrate-resistant acid phosphatase 5b (TRAP 5b) concentrations in plasma. Plasma concentrations of osteocalcin were increased by both SPI and running. Running alleviated the increase in TRAP 5b induced by the high-fat diet. These findings demonstrate that a high-fat diet is deleterious, and SPI is beneficial to trabecular bone properties. The deleterious effect of voluntary running on trabecular structural characteristics indicates that there may be a maximal threshold of running beyond which beneficial effects cease and detrimental effects occur. Increases in plasma osteocalcin and decreases in plasma TRAP 5b in running mice suggest that a compensatory response occurs to counteract the detrimental effects of excessive running. Published by Elsevier Inc.

  4. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance

    OpenAIRE

    Bosse, John D.; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E. Dale; Pereira, Troy J.; Dolinsky, Vernon W.; Symons, J. David; Jalili, Thunder

    2013-01-01

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-...

  5. Effect of a high monounsaturated vs high polyunsaturated fat hypocaloric diets in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Aller, R; de Luis, D A; Izaola, O; de la Fuente, B; Bachiller, R

    2014-01-01

    Hyperaminotransferasemia is an important problem in obese patients. We decide to examine the changes in hyperaminotransferasemia after weight reduction in obese patients with and without NAFLD secondary to a high monounsaturated fat vs. a high polyunsaturated fat hypocaloric diets. A population of 306 obese patients was randomly allocated to two groups: Diet M (high monounsaturated fat hypocaloric diet) and Diet P (high polyunsaturated fat hypocaloric diet). Patients were classified as group I (obese subjects; n=262) when serum ALT activity was normal or group II (NAFLD patients; n=44) when serum ALT activity was (≥ 43 UI/L). In NAFLD group with diet M, BMI, weight, fat mass, waist circumference, systolic blood pressure, total cholesterol, LDL cholesterol), insulin and HOMA-R decreased. In NAFLD group with diet P, BMI, weight, fat mass, waist circumference, systolic blood pressure, total cholesterol, LDL cholesterol), insulin and HOMA-R decreased, too. In NAFLD group, alanine aminotransferase [(diet M) -20.3±19.2 UI/L vs. (diet P) -14.2±20.1 UI/L], aspartate aminotransferase [(diet M) -11.3±12.2 UI/L vs. (diet P) -11.1±10.1 UI/L], and gammaglutamyl transferase [(diet M) -18.1±12.2 UI/L vs. (diet P) -10.9±20.1 UI/L] improved with both diets. We showed that weight reduction secondary to two hypocaloric diets was associated with improvement in hypertransaminasemia and insulin resistance in NAFLD patients.

  6. Maternal high-fat diet and offspring expression levels of vitamin K-dependent proteins.

    Science.gov (United States)

    Lanham, S A; Cagampang, F R; Oreffo, R O C

    2014-12-01

    Studies suggest that bone growth and development and susceptibility to vascular disease in later life are influenced by maternal nutrition during intrauterine and early postnatal life. There is evidence for a role of vitamin K-dependent proteins (VKDPs) including osteocalcin, matrix Gla protein, periostin, and growth-arrest specific- protein 6, in both bone and vascular development. We have examined whether there are alterations in these VKDPs in bone and vascular tissue from offspring of mothers subjected to a nutritional challenge: a high-fat diet during pregnancy and postnatally, using 6-week-old mouse offspring. Bone site-specific and sex-specific differences across femoral and vertebral bone in male and female offspring were observed. Overall a high-fat maternal diet and offspring diet exacerbated the bone changes observed. Sex-specific differences and tissue-specific differences were observed in VKDP levels in aorta tissue from high-fat diet-fed female offspring from high-fat diet-fed mothers displaying increased levels of Gas6 and Ggcx compared with those of female controls. In contrast, differences were seen in VKDP levels in femoral bone of female offspring with lower expression levels of Mgp in offspring of mothers fed a high-fat diet compared with those of controls. We observed a significant correlation in Mgp expression levels within the femur to measures of bone structure of the femur and vertebra, particularly in the male offspring cohort. In summary, the current study has highlighted the importance of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure.

  7. Myostatin expression, lymphocyte population, and potential cytokine production correlate with predisposition to high-fat diet induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    Jeri-Anne Lyons

    2010-09-01

    Full Text Available A strong relationship exists between increased inflammatory cytokines and muscle insulin resistance in obesity. This study focused on identifying a relationship between metabolic propensity and myostatin expression in muscle and spleen cells in response to high-fat diet intake. Using a comparative approach, we analyzed the effects of high-fat diet intake on myostatin and follistatin expression, spleen cell composition, and potential cytokine expression in high-fat diet induced obesity (HFDIO resistant (SWR/J and susceptible (C57BL/6 mice models. Results demonstrated overall increased myostatin expression in muscle following high-fat diet intake in HFDIO-susceptible mice, while myostatin expression levels decreased initially in muscle from high-fat diet fed resistant mice. In HFDIO-resistant mice, myostatin expression decreased in spleen, while myostatin increased in spleen tissue from HFDIO-susceptible mice. Proinflammatory cytokine (IL-17, IL-1β, and IFNγ potential increased in splenocytes from HFDIO-susceptible mice. In comparison, C57BL/6 mice fed a high-fat diet exhibited higher frequencies of CD4(+/CD44(hi and CD8(+/CD44(hi cells in the spleen compared to control fed mice. Together, these results suggest that susceptibility to high-fat diet induced obesity could be influenced by local myostatin activity in a tissue-specific manner and that splenocytes exhibit differential cytokine production in a strain-dependent manner. This study sets the stage for future investigations into the interactions between growth, inflammation, and metabolism.

  8. One-year high fat diet affects muscle-but not brain mitochondria

    DEFF Research Database (Denmark)

    Joergensen, Tenna; Grunnet, Niels; Quistorff, Bjørn

    2015-01-01

    It is well known that few weeks of high fat (HF) diet may induce metabolic disturbances and mitochondrial dysfunction in skeletalmuscle. However, little is known about the effects of long-term HF exposure and effects on brain mitochondria are unknown. Wistarrats were fed either chow (13E% fat......) or HF diet (60E% fat) for 1 year. The HF animals developed obesity, dyslipidemia, insulinresistance, and dysfunction of isolated skeletal muscle mitochondria: state 3 and state 4 were 30% to 50% increased (P .... Adding also succinate in state 3 resulted in ahigher substrate control ratio (SCR) with PC, but a lower SCR with pyruvate (P mitochondria from the same animal showed no changes with the substrates relevant...

  9. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity

    OpenAIRE

    Rauckhorst, Adam J.; Gray, Lawrence R.; Sheldon, Ryan D.; Fu, Xiaorong; Pewa, Alvin D.; Feddersen, Charlotte R.; Dupuy, Adam J.; Gibson-Corley, Katherine N.; Cox, James E.; Burgess, Shawn C.; Taylor, Eric B.

    2017-01-01

    Objective: Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. T...

  10. High Caloric Diet for ALS Patients: High Fat, High Carbohydrate or High Protein

    Directory of Open Access Journals (Sweden)

    Sarvin Sanaie

    2015-01-01

    Full Text Available ALS is a fatal motor neurodegenerative disease characterized by muscle atrophy and weakness, dysarthria, and dysphagia. The mean survival of ALS patients is three to five years, with 50% of those diagnosed dying within three years of onset (1. A multidisciplinary approach is crucial to set an appropriate plan for metabolic and nutritional support in ALS. Nutritional management incorporates a continuous assessment and implementation of dietary modifications throughout the duration of the disease. The nutritional and metabolic approaches to ALS should start when the diagnosis of ALS is made and should become an integral part of the continuous care to the patient, including nutritional surveillance, dietary counseling, management of dysphagia, and enteral nutrition when needed. Malnutrition and lean body mass loss are frequent findings in ALS patients necessitating comprehensive energy requirement assessment for these patients. Malnutrition is an independent prognostic factor for survival in ALS with a 7.7 fold increase in risk of death. Malnutrition is estimated to develop in one quarter to half of people with ALS (2. Adequate calorie and protein provision would diminish muscle loss in this vulnerable group of patients. Although appropriate amount of energy to be administered is yet to be established, high calorie diet is expected to be effective for potential improvement of survival; ALS patients do not normally receive adequate  intake of energy. A growing number of clinicians suspect that a high calorie diet implemented early in their disease may help people with ALS meet their increased energy needs and extend their survival. Certain high calorie supplements appear to be safe and well tolerated by people with ALS according to studies led by Universitäts klinikum Ulm's and, appear to stabilize body weight within 3 months. In a recent study by Wills et al., intake of high-carbohydrate low-fat supplements has been recommended in ALS patients (3

  11. The effects of high-fat diets composed of different animal and vegetable fat sources on the health status and tissue lipid profiles of male Japanese quail (

    Directory of Open Access Journals (Sweden)

    Janine Donaldson

    2017-05-01

    Full Text Available Objective The current study aimed to investigate the impact of high-fat diets composed of different animal and vegetable fat sources on serum metabolic health markers in Japanese quail, as well as the overall lipid content and fatty acid profiles of the edible bird tissues following significantly increased dietary lipid supplementation. Methods Fifty seven male quail were divided into six groups and fed either a standard diet or a diet enriched with one of five different fats (22% coconut oil, lard, palm oil, soybean oil, or sunflower oil for 12 weeks. The birds were subjected to an oral glucose tolerance test following the feeding period, after which they were euthanized and blood, liver, breast, and thigh muscle samples collected. Total fat content and fatty acid profiles of the tissue samples, as well as serum uric acid, triglyceride, cholesterol, total protein, albumin, aspartate transaminase, and total bilirubin concentrations were assessed. Results High-fat diet feeding had no significant effects on the glucose tolerance of the birds. Dietary fatty acid profiles of the added fats were reflected in the lipid profiles of both the liver and breast and thigh muscle tissues, indicating successful transfer of dietary fatty acids to the edible bird tissues. The significantly increased level of lipid inclusion in the diets of the quail used in the present study was unsuccessful in increasing the overall lipid content of the edible bird tissues. Serum metabolic health markers in birds on the high-fat diets were not significantly different from those observed in birds on the standard diet. Conclusion Thus, despite the various high-fat diets modifying the fatty acid profile of the birds’ tissues, unlike in most mammals, the birds maintained a normal health status following consumption of the various high-fat diets.

  12. Effects of angiotensin (1-7 on nephrosis of the mice with metabolic syndrome induced by high-salt and high-fat diet

    Directory of Open Access Journals (Sweden)

    Nan ZHU

    2013-11-01

    Full Text Available Objective  To establish a metabolic syndrome model of C57BL/6 mice by high-salt and high-fat diet, and investigate the effects of angiotensin converting enzyme 2 (ACE 2 and angiotensin (1-7 on renal damage in mice. Methods Fifty-six male C57BL/6 mice were randomly divided into 7 groups (8 each, and fed with normal diet (0.3% NaCl, 10% fat, high-salt diet (8% NaCl, 10% fat, high-fat diet (0.3% NaCl, 60% fat, high-salt and high-fat diet (8% NaCl, 60% fat, high-salt and high-fat diet with enalapril 20mg/(kg•d, with valsartan 50mg/(kg•d, and with valsartan 50mg/(kg•d plus Mas receptor antagonist (A-779 150ng/(kg•d, respectively for 16 weeks. Basal metabolic index including blood pressure, body weight, blood glucose and urinary albumin excretion rate (UAER were tested. After intraperitoneal anesthesia with chloral hydrate, the blood was collected from the carotid artery. Serum angiotensin Ⅱ and angiotensin (1-7 levels were detected by ELISA; Western blotting was performed to evaluate the expression of ACE 2 protein and collagen Ⅲ in renal tissue; renal pathological changes were observed by HE and Masson staining. Results The blood pressure, ratio of visceral fat weight/body weight, blood lipid, blood glucose and UAER increased significantly in the C57BL/6 mice fed with high-salt and high-fat diet for 16 weeks, and the renal fibrosis change was obvious, serum angiotensin Ⅱ level increased, expressions of ACE 2 and angiotensin (1-7 decreased significantly in the renal tissue. In different intervention groups, valsartan obviously alleviated the abnormal metabolism, ameliorated renal injury, promoted the expression of ACE2 and angiotensin (1-7 in the kidney and serum. However, no significant change was observed in the groups with intervention of enalapril or valsartan+A-779 compared with non-intervention group. Conclusions High-salt and high-fat diet can be used to successfully establish the model of metabolic syndrome in C57BL/6

  13. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.

    Science.gov (United States)

    Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian

    2017-11-10

    Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Development of hepatocellular cancer induced by long term low fat-high carbohydrate diet in a NAFLD/NASH mouse model.

    Science.gov (United States)

    Tessitore, Alessandra; Mastroiaco, Valentina; Vetuschi, Antonella; Sferra, Roberta; Pompili, Simona; Cicciarelli, Germana; Barnabei, Remo; Capece, Daria; Zazzeroni, Francesca; Capalbo, Carlo; Alesse, Edoardo

    2017-08-08

    Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease. It can progress to nonalcoholic steatohepatitis (NASH) and, in a percentage of cases, to hepatocarcinogenesis. The strong incidence in western countries of obesity and metabolic syndrome, whose NAFLD is the hepatic expression, is thought to be correlated to consumption of diets characterized by processed food and sweet beverages. Previous studies described high-fat diet-induced liver tumors. Conversely, the involvement of low-fat/high-carbohydrate diet in the progression of liver disease or cancer initiation has not been described yet. Here we show for the first time hepatic cancer formation in low-fat/high-carbohydrate diet fed NAFLD/NASH mouse model. Animals were long term high-fat, low-fat/high-carbohydrate or standard diet fed. We observed progressive liver damage in low-fat/high-carbohydrate and high-fat animals after 12 and, more, 18 months. Tumors were detected in 20% and 50% of high-fat diet fed mice after 12 and 18 months and, interestingly, in 30% of low-fat/high-carbohydrate fed animals after 18 months. No tumors were detected in standard diet fed mice. Global increase of hepatic interleukin-1β, interleukin-6, tumor necrosis factor-α and hepatocyte growth factor was detected in low-fat/high-carbohydrate and high-fat with respect to standard diet fed mice as well as in tumor with respect to non-tumor bearing mice. A panel of 15 microRNAs was analyzed: some of them revealed differential expression in low-fat/high-carbohydrate with respect to high-fat diet fed groups and in tumors. Data here shown provide the first evidence of the involvement of low-fat/high-carbohydrate diet in hepatic damage leading to tumorigenesis.

  15. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats.

    Science.gov (United States)

    Touati, Sabeur; Meziri, Fayçal; Devaux, Sylvie; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-03-01

    Chronic consumption of a high-fat diet induces obesity. We investigated whether exercise would reverse the cardiometabolic disorders associated with obesity without it being necessary to change from a high- to normal-fat diet. Sprague-Dawley rats were placed on a high-fat (HFD) or control diet (CD) for 12 wk. HFD rats were then divided into four groups: sedentary HFD (HFD-S), exercise trained (motor treadmill for 12 wk) HFD (HFD-Ex), modified diet (HFD to CD; HF/CD-S), and exercise trained with modified diet (HF/CD-Ex). Cardiovascular risk parameters associated with metabolic syndrome were measured, and contents of aortic Akt, phospho-Akt at Ser (473), total endothelial nitric oxide synthase (eNOS), and phospho-eNOS at Ser (1177) were determined by Western blotting. Chronic consumption of HFD induced a metabolic syndrome. Exercise and dietary modifications reduced adiposity, improved glucose and insulin levels and plasma lipid profile, and exerted an antihypertensive effect. Exercise was more effective than dietary modification in improving plasma levels of thiobarbituric acid-reacting substance and in correcting the endothelium-dependent relaxation to acetylcholine and insulin. Furthermore, independent of the diet used, exercise increased Akt and eNOS phosphorylation. Metabolic syndrome induced by HFD is reversed by exercise and diet modification. It is demonstrated that exercise training induces these beneficial effects without the requirement for dietary modification, and these beneficial effects may be mediated by shear stress-induced Akt/eNOS pathway activation. Thus, exercise may be an effective strategy to reverse almost all the atherosclerotic risk factors linked to obesity, particularly in the vasculature.

  16. Activation of hindbrain neurons in response to gastrointestinal lipid is attenuated by high fat, high energy diets in mice prone to diet-induced obesity.

    Science.gov (United States)

    Donovan, Michael J; Paulino, Gabriel; Raybould, Helen E

    2009-01-12

    Food intake is controlled by peripheral signals from the gastrointestinal tract and adipocytes, which are integrated within the central nervous system. There is evidence that signals from the GI tract are modulated by long term changes in diet, possibly leading to hyperphagia and increased body weight. We tested the hypothesis that diet-induced obese-prone (DIO-P) and obese-resistant (DIO-R) mice strains differ in the long term adaptive response of the gut-brain pathway to a high fat diet. Immunochemical detection of Fos protein was used as a measure of neuronal activation in the nucleus of the solitary tract (NTS) in response to intragastric administration of lipid in DIO-P (C57Bl6) and DIO-R (129sv) mouse strains maintained on chow or high fat, high energy diets (45% or 60% kcal from fat). Intragastric lipid administration activated neurons in the NTS in both DIO-P and DIO-R mice; the number of activated neurons was significantly greater in DIO-P than in DIO-R mice (Pdiet, for 4 or 8 weeks, compared to chow fed controls (Pdiet (45% or 60%) had no effect on lipid-induced activation of NTS neurons. These results demonstrate that DIO-P and DIO-R mice strains differ in the adaptation of the pathway to long term ingestion of high fat diets, which may contribute to decrease satiation and increased food intake.

  17. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    Science.gov (United States)

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  18. Dietary D-psicose reduced visceral fat mass in high-fat diet-induced obese rats.

    Science.gov (United States)

    Chung, Young-Mee; Hyun Lee, Joo; Youl Kim, Deuk; Hwang, Se-Hee; Hong, Young-Ho; Kim, Seong-Bo; Jin Lee, Song; Hye Park, Chi

    2012-02-01

    D-Psicose, a C-3 epimer of D-fructose, has shown promise in reducing body fat accumulation in normal rats and plasma glucose level in genetic diabetic mice. Effects of D-psicose on diet-induced obesity are not clearly elucidated, and we investigated food intake, body weight, and fat accumulation in rats fed high-fat (HF) diet. Sprague-Dawley rats became obese by feeding HF diet for 4 wk, and were assigned either to normal or HF diet supplemented with or without D-psicose, sucrose, or erythritol for 8 wk. Changing HF to normal diet gained less body weight and adipose tissue due to different energy intake. D-psicose-fed rats exhibited lower weight gain, food efficiency ratio, and fat accumulation than erythritol- and sucrose-fed rats. This effect was more prominent in D-psicose-fed rats with normal diet than with HF diet, suggesting combination of psicose and calorie restriction further reduced obesity. There was no difference in serum cholesterol/high-density lipoprotein (HDL)-C and low-density lipoprotein (LDL)-C/HDL-C ratios between D-psicose group and other groups. Liver weight in 5% psicose group with normal diet was higher than in other groups, but histopathological examination did not reveal any psicose-related change. D-Psicose inhibited the differentiation of mesenchymal stem cell (MSC) to adipose tissue in a concentration-dependent manner. These results demonstrate that D-psicose produces a marked decrease, greater than erythritol, in weight gain and visceral fat in an established obesity model by inhibiting MSC differentiation to adipocyte. Thus, D-psicose can be useful in preventing and reducing obesity as a sugar substitute and food ingredient. We can develop D-psicose as a sugar substitute and food ingredient since it can prevent obesity in normal people, but also suppress adiposity as a sugar substitute or food ingredients with antiobesity effect in obese people. D-psicose can be unique functional sweetener because of its function of reducing visceral

  19. High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia.

    Science.gov (United States)

    Baufeld, Caroline; Osterloh, Anja; Prokop, Stefan; Miller, Kelly R; Heppner, Frank L

    2016-09-01

    Diets high in fat (HFD) are known to cause an immune response in the periphery as well as the central nervous system. In peripheral adipose tissue, this immune response is primarily mediated by macrophages that are recruited to the tissue. Similarly, reactivity of microglia, the innate immune cells of the brain, has been shown to occur in the hypothalamus of mice fed a high-fat diet. To characterize the nature of the microglial response to diets high in fat in a temporal fashion, we studied the phenotypic spectrum of hypothalamic microglia of mice fed high-fat diet for 3 days and 8 weeks by assessing their tissue reaction and inflammatory signature. While we observed a significant increase in Iba1+ myeloid cells and a reaction of GFAP+ astrocytes in the hypothalamus after 8 weeks of HFD feeding, we found the hypothalamic myeloid cell reaction to be limited to endogenous microglia and not mediated by infiltrating myeloid cells. Moreover, obese humans were found to present with signs of hypothalamic gliosis and exacerbated microglia dystrophy, suggesting a targeted microglia response to diet in humans as well. Notably, the glial reaction occurring in the mouse hypothalamus was not accompanied by an increase in pro-inflammatory cytokines, but rather by an anti-inflammatory reaction. Gene expression analyses of isolated microglia not only confirmed this observation, but also revealed a downregulation of microglia genes important for sensing signals in the microenvironment. Finally, we demonstrate that long-term exposure of microglia to HFD in vivo does not impair the cell's ability to respond to additional stimuli, like lipopolysaccharide. Taken together, our findings support the notion that microglia react to diets high in fat in a region-specific manner in rodents as well as in humans; however, this response changes over time as it is not exclusively pro-inflammatory nor does exposure to HFD prime microglia in the hypothalamus.

  20. High maysin corn silk extract reduces body weight and fat deposition in C57BL/6J mice fed high-fat diets.

    Science.gov (United States)

    Lee, Eun Young; Kim, Sun Lim; Kang, Hyeon Jung; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung

    2016-12-01

    The study was performed to investigate the effects and mechanisms of action of high maysin corn silk extract on body weight and fat deposition in experimental animals. A total of 30 male C57BL/6J mice, 4-weeks-old, were purchased and divided into three groups by weight using a randomized block design. The normal-fat (NF) group received 7% fat (diet weight basis), the high-fat (HF) group received 25% fat and 0.5% cholesterol, and the high-fat corn silk (HFCS) group received high-fat diet and high maysin corn silk extract at 100 mg/kg body weight through daily oral administration. Body weight and body fat were measured, and mRNA expression levels of proteins involved in adipocyte differentiation, fat accumulation, fat synthesis, lipolysis, and fat oxidation in adipose tissue and the liver were measured. After experimental diet intake for 8 weeks, body weight was significantly lower in the HFCS group compared to the HF group ( P corn silk extract inhibits expression of genes involved in adipocyte differentiation, fat accumulation, and fat synthesis as well as promotes expression of genes involved in lipolysis and fat oxidation, further inhibiting body fat accumulation and body weight elevation in experimental animals.

  1. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  2. Effects of overfeeding and high-fat diet on cardiosomatic parameters and cardiac structures in young and adult zebrafish.

    Science.gov (United States)

    Vargas, Rafael; Vásquez, Isabel Cristina

    2017-12-01

    Obesity is a complex global health problem because it is a risk factor for multiple chronic pathologies such as cardiovascular, endocrine, metabolic, and neoplastic diseases. It is considered a multicausal disease, and one of the determining factors is nutritional imbalances, which include high-fat diets. In this paper, we use the zebrafish model to assess the impact of overfeeding and a high-fat diet in somatic and cardiac parameters in young and adult zebrafish. The results show that fish receiving a high-fat diet showed greater weight gain compared to fish receiving a standard fat diet. Additionally, changes in the heart, including increases in size, a change in the triangular shape of the ventricle to a globular shape, and an increase in the thickness of the trabeculae of the spongy myocardium were observed. These changes could be indicators of cardiovascular overload. The results show that there is a direct relationship between the intake of a high-fat diet and obesity, which in turn can induce cardiac changes, supporting the hypothesis of the relationship between high-fat diets and cardiovascular risk factors. Given the genetic similarity between zebrafish and humans, these results could be extrapolated to human beings, and the findings similarly highlight the importance of incorporating a balanced diet from the early life stages to reduce the risk of cardiovascular disease.

  3. Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change.

    Science.gov (United States)

    Rinnankoski-Tuikka, Rita; Hulmi, Juha J; Torvinen, Sira; Silvennoinen, Mika; Lehti, Maarit; Kivelä, Riikka; Reunanen, Hilkka; Kujala, Urho M; Kainulainen, Heikki

    2014-08-01

    The relation between lipid accumulation and influence of exercise on insulin sensitivity is not straightforward. A proper balance between lipid droplet synthesis, lipolysis, and oxidative metabolism would ensure low local intramyocellular fatty acid levels, thereby possibly protecting against lipotoxicity-associated insulin resistance. This study investigated whether the accumulation of triglycerides and lipid droplets in response to high availability of fatty acids after high-fat feeding would parallel the abundance of intramyocellular perilipin proteins, especially PLIN5. The effects on these variables after diet change or voluntary running exercise intervention in skeletal muscle were also investigated. During a 19-week experiment, C57BL/6J mice were studied in six different groups: low-fat diet sedentary, low-fat diet active, high-fat diet sedentary, high-fat diet active and two groups which were high-fat sedentary for nine weeks, after which divided into low-fat sedentary or low-fat active groups. Myocellular triglyceride concentration and perilipin protein expression levels were assessed. We show that, concurrently with impaired insulin sensitivity, the expression level of PLIN5 and muscular triglyceride concentration increased dramatically after high-fat diet. These adaptations were reversible after the diet change intervention with no additional effect of exercise. After high-fat diet, lipid droplets become larger providing more surface area for PLIN5. We suggest that PLIN5 is an important regulator of lipid droplet turnover in altered conditions of fatty acid supply and consumption. Imbalances in lipid droplet metabolism and turnover might lead to lipotoxicity-related insulin resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    Science.gov (United States)

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways. © 2016 Society for Endocrinology.

  5. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice.

    Science.gov (United States)

    Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning

    2015-05-01

    Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Prenatal stress increases the obesogenic effects of a high-fat-sucrose diet in adult rats in a sex-specific manner.

    Science.gov (United States)

    Paternain, L; de la Garza, A L; Batlle, M A; Milagro, F I; Martínez, J A; Campión, J

    2013-03-01

    Stress during pregnancy can induce metabolic disorders in adult offspring. To analyze the possible differential response to a high-fat-sucrose (HFS) diet in offspring affected by prenatal stress (PNS) or not, pregnant Wistar rats (n = 11) were exposed to a chronic mild stress during the third week of gestation. The aim of this study was to model a chronic depressive-like state that develops over time in response to exposure of rats to a series of mild and unpredictable stressors. Control dams (n = 11) remained undisturbed. Adult offspring were fed chow or HFS diet (20% protein, 35% carbohydrate, 45% fat) for 10 weeks. Changes in adiposity, biochemical profile, and retroperitoneal adipose tissue gene expression by real-time polymerase chain reaction were analyzed. An interaction was observed between HFS and PNS concerning visceral adiposity, with higher fat mass in HFS-fed stressed rats, statistically significant only in females. HFS modified lipid profile and increased insulin resistance biomarkers, while PNS reduced insulin concentrations and the homeostasis model assessment index. HFS diet increased gene (mRNA) expression for leptin and apelin and decreased cyclin-dependent kinase inhibitor 1A and fatty acid synthase (Fasn), whereas PNS increased Fasn and stearoyl-CoA desaturase1. An interaction between diet and PNS was observed for adiponutrin (Adpn) and peroxisome proliferator-activated receptor-γ coactivator1-α (Ppargc1a) gene expression: Adpn was increased by the PNS only in HFS-fed rats, whereas Ppargc1a was increased by the PNS only in chow-fed rats. From these results, it can be concluded that experience of maternal stress during intrauterine development can enhance predisposition to obesity induced by a HFS diet intake.

  7. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    Science.gov (United States)

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (Pinsulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  8. Effect of different exercise protocols on metabolic profiles and fatty acid metabolism in skeletal muscle in high-fat diet-fed rats.

    Science.gov (United States)

    Shen, Youqing; Xu, Xiangfeng; Yue, Kai; Xu, Guodong

    2015-05-01

    To evaluate the efficacy of mild-intensity endurance, high-intensity interval, and concurrent exercise on preventing high-fat diet-induced obesity. Male rats were divided into five groups, control diet/sedentary group, high-fat diet/sedentary, high-fat diet/endurance exercise, high-fat diet/interval exercise (HI), and high-fat diet/concurrent exercise. All exercise groups were made to exercise for 10 weeks, with matched running distances. Body weight, fat content, blood metabolites, quantitative insulin sensitivity check index (QUICKI), and adipocyte and liver lipid droplet size were assessed, and the expression of fatty acid metabolism-related genes was quantified. All exercise protocols reduced body weight, adiposity, serum triglycerides, and fasting glucose and also improved QUICKI to some extent. However, only HI prevented obesity and its associated pathologies completely. The expression of stearoyl-coenzyme A desaturase-1 was elevated in all rats fed a high-fat diet whereas carnitine palmitoyltransferase 1 (CPT1) expression was increased with exercise. Rev-erbα expression was elevated only in the HI group, which also had the highest level of CPT1 expression. The HI-induced increase in Rev-erbα and CPT1 expression was associated with the complete prevention of diet-induced obesity. Moreover, the increased caloric expenditure achieved with this protocol was preferential over other exercise regimens, and might be used to improve lipid metabolism. © 2015 The Obesity Society.

  9. Diets with high-fat cheese, high-fat meat, or carbohydrate on cardiovascular risk markers in overweight postmenopausal women

    DEFF Research Database (Denmark)

    Thorning, Tanja Kongerslev; Raziani, Farinaz; Bendsen, Nathalie Tommerup

    2015-01-01

    BACKGROUND: Heart associations recommend limited intake of saturated fat. However, effects of saturated fat on low-density lipoprotein (LDL)-cholesterol concentrations and cardiovascular disease risk might depend on nutrients and specific saturated fatty acids (SFAs) in food. OBJECTIVE: We explored...... the effects of cheese and meat as sources of SFAs or isocaloric replacement with carbohydrates on blood lipids, lipoproteins, and fecal excretion of fat and bile acids. DESIGN: The study was a randomized, crossover, open-label intervention in 14 overweight postmenopausal women. Three full-diet periods of 2-wk...... duration were provided separated by 2-wk washout periods. The isocaloric diets were as follows: 1) a high-cheese (96-120-g) intervention [i.e., intervention containing cheese (CHEESE)], 2) a macronutrient-matched nondairy, high-meat control [i.e., nondairy control with a high content of high-fat processed...

  10. Exercise Ameliorates High Fat Diet Induced Cardiac Dysfunction by Increasing Interleukin 10

    Directory of Open Access Journals (Sweden)

    Varun eKesherwani

    2015-04-01

    Full Text Available Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α and attenuation of anti-inflammatory cytokine such as interleukin10 (IL-10 contributes to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, eight week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1hr/day for 5 days/week for eight weeks. The four treatment groups: normal diet (ND, HFD, HFD + exercise (HFD + Ex and ND + Ex were analyzed for mean body weight, blood glucose level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by echocardiography. Mean body weights were increased in HFD but comparatively less in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated by exercise in the HFD + Ex group. The percentage ejection fraction and fractional shortening were decreased in HFD but comparatively increased in HFD + Ex. There was no difference between ND and ND + Ex for the above parameters except an increase in IL-10 level following exercise. Based on these results, we conclude that exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10, and reducing TNF-α in mice.

  11. Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wu, Yimeng; He, Zheng; Zhang, Li; Guo, Yu [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology & Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-NancyUniversité, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Chen, Liaobin [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2015-05-01

    Prenatal caffeine exposure (PCE) alters the hypothalamic–pituitary–adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats. High-fat diet (HFD) is one of the main environmental factors accounting for the incidence of MS. In this study, we aimed to clarify the gender-specific increase in susceptibility to MS in offspring rats after PCE with post-weaning HFD. Maternal Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. The offspring rats with normal diet or HFD were euthanized at postnatal week 24, and blood samples were collected. Results showed that PCE not only reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels, but also enhanced serum glucose, triglyceride and total cholesterol (TCH) concentrations in the offspring rats. Moreover, several interactions among PCE, HFD and gender were observed by a three-way ANOVA analysis. In PCE offspring, HFD could aggravate the degree of increased serum triglyceride level. Meanwhile, serum corticosterone levels of females were decreased more obviously than those of males in PCE offspring. The results also revealed interactions between HFD and gender in the levels of serum ACTH, triglyceride and TCH, which were changed more evidently in female HFD offspring. These results indicate that HFD could exacerbate the dysfunction of lipid metabolism and the susceptibility to MS induced by PCE, and the female offspring are more sensitive to HFD-induced neuroendocrine metabolic dysfunction than their male counterparts. - Highlights: • Caffeine induced HPA axis dysfunction in offspring rats fed by high-fat diet (HFD). • Caffeine induced an increased susceptibility to metabolic syndrome. • HFD aggravated susceptibility to metabolic syndrome induced by caffeine. • Female was more sensitive to HFD-induced neuroendocrine

  12. Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet

    International Nuclear Information System (INIS)

    Li, Jing; Luo, Hanwen; Wu, Yimeng; He, Zheng; Zhang, Li; Guo, Yu; Ma, Lu; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-01-01

    Prenatal caffeine exposure (PCE) alters the hypothalamic–pituitary–adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats. High-fat diet (HFD) is one of the main environmental factors accounting for the incidence of MS. In this study, we aimed to clarify the gender-specific increase in susceptibility to MS in offspring rats after PCE with post-weaning HFD. Maternal Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. The offspring rats with normal diet or HFD were euthanized at postnatal week 24, and blood samples were collected. Results showed that PCE not only reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels, but also enhanced serum glucose, triglyceride and total cholesterol (TCH) concentrations in the offspring rats. Moreover, several interactions among PCE, HFD and gender were observed by a three-way ANOVA analysis. In PCE offspring, HFD could aggravate the degree of increased serum triglyceride level. Meanwhile, serum corticosterone levels of females were decreased more obviously than those of males in PCE offspring. The results also revealed interactions between HFD and gender in the levels of serum ACTH, triglyceride and TCH, which were changed more evidently in female HFD offspring. These results indicate that HFD could exacerbate the dysfunction of lipid metabolism and the susceptibility to MS induced by PCE, and the female offspring are more sensitive to HFD-induced neuroendocrine metabolic dysfunction than their male counterparts. - Highlights: • Caffeine induced HPA axis dysfunction in offspring rats fed by high-fat diet (HFD). • Caffeine induced an increased susceptibility to metabolic syndrome. • HFD aggravated susceptibility to metabolic syndrome induced by caffeine. • Female was more sensitive to HFD-induced neuroendocrine

  13. High fat diet prevents over-crowding induced decrease of sex ratio in mice.

    Directory of Open Access Journals (Sweden)

    Madhukar Shivajirao Dama

    Full Text Available Adaptive theory predicts that mothers would be advantaged by adjusting the sex ratio of their offspring in relation to their offspring's future reproductive success. In the present study, we tested the effect of housing mice under crowded condition on the sex ratio and whether the fat content of the diet has any influence on the outcome of pregnancies. Three-week-old mice were placed on the control diet (NFD for 3 weeks. Thereafter the mice were allotted randomly to two groups of 7 cages each with 4, 6, 8, 10, 12, 14, and 16 mice in every cage to create increasing crowding gradient and fed either NFD or high fat diet (HFD. After 4 weeks, dams were bred and outcomes of pregnancy were analyzed. The average dam body weight (DBW at conception, litter size (LS and SR were significantly higher in HFD fed dams. Further, male biased litters declined with increasing crowding in NFD group but not in HFD. The LS and SR in NFD declined significantly with increasing crowding, whereas only LS was reduced in HFD group. We conclude that female mice housed under overcrowding conditions shift offspring SR in favor of daughters in consistent with the TW hypothesis and high fat diet reduces this influence of overcrowding.

  14. Functional Deficits Precede Structural Lesions in Mice With High-Fat Diet-Induced Diabetic Retinopathy.

    Science.gov (United States)

    Rajagopal, Rithwick; Bligard, Gregory W; Zhang, Sheng; Yin, Li; Lukasiewicz, Peter; Semenkovich, Clay F

    2016-04-01

    Obesity predisposes to human type 2 diabetes, the most common cause of diabetic retinopathy. To determine if high-fat diet-induced diabetes in mice can model retinal disease, we weaned mice to chow or a high-fat diet and tested the hypothesis that diet-induced metabolic disease promotes retinopathy. Compared with controls, mice fed a diet providing 42% of energy as fat developed obesity-related glucose intolerance by 6 months. There was no evidence of microvascular disease until 12 months, when trypsin digests and dye leakage assays showed high fat-fed mice had greater atrophic capillaries, pericyte ghosts, and permeability than controls. However, electroretinographic dysfunction began at 6 months in high fat-fed mice, manifested by increased latencies and reduced amplitudes of oscillatory potentials compared with controls. These electroretinographic abnormalities were correlated with glucose intolerance. Unexpectedly, retinas from high fat-fed mice manifested striking induction of stress kinase and neural inflammasome activation at 3 months, before the development of systemic glucose intolerance, electroretinographic defects, or microvascular disease. These results suggest that retinal disease in the diabetic milieu may progress through inflammatory and neuroretinal stages long before the development of vascular lesions representing the classic hallmark of diabetic retinopathy, establishing a model for assessing novel interventions to treat eye disease. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. A comparison of effects of lard and hydrogenated vegetable shortening on the development of high-fat diet-induced obesity in rats.

    Science.gov (United States)

    Kubant, R; Poon, A N; Sánchez-Hernández, D; Domenichiello, A F; Huot, P S P; Pannia, E; Cho, C E; Hunschede, S; Bazinet, R P; Anderson, G H

    2015-12-14

    Obesity is associated with increased consumption and preference for dietary fat. Experimental models of fat-induced obesity use either lard or vegetable shortening. Yet, there are no direct comparisons of these commonly used fat sources, or the influence of their fatty acid composition, on the development of diet-induced obesity. To compare the effects of lard and hydrogenated vegetable-shortening diets, which differ in their fatty acid composition, on weight gain and the development of obesity and insulin resistance in rats. Male Wistar rats were fed ad libitum for 14 weeks high-fat diets containing either (1) high vegetable fat (HVF, 60 kcal% from vegetable shortening) or (2) high lard fat (HLF, 60 kcal% from lard). Rats fed normal-fat (NF, 16 kcal% from vegetable shortening) diet served as control. Body weight, food intake, adipose tissue mass, serum 25[OH]D3, glucose, insulin and fatty acid composition of diets were measured. Rats fed either of the two high-fat diets had higher energy intake, weight gain and fat accretion than rats fed normal-fat diet. However, rats fed the HLF diet consumed more calories and gained more weight and body fat with greater increases of 32% in total (158.5±8.2 vs 120.2±6.6 g, P<0.05), 30% in visceral (104.4±5.2 vs 80.3±4.2 g, P<0.05) and 36% in subcutaneous fat mass (54.1±3.6 vs 39.9±3.1 g, P<0.05), compared with rats fed the HVF diet. Higher visceral adiposity was positively correlated with serum insulin (r=0.376, P<0.05) and homeostatic model assessment insulin resistance (r=0.391, P<0.05). We conclude that lard-based high-fat diets accentuate the increase in weight gain and the development of obesity and insulin resistance more than hydrogenated vegetable-shortening diets. These results further point to the importance of standardizing fatty acid composition and type of fat used in determining outcomes of consuming high-fat diets.

  16. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice.

    Science.gov (United States)

    Hsieh, You-Liang; Shibu, Marthandam Asokan; Lii, Chong-Kuei; Viswanadha, Vijaya Padma; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Lin, Kuan-Ho; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-11-04

    Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Protein carbonylation associated to high-fat, high-sucrose diet and its metabolic effects.

    Science.gov (United States)

    Méndez, Lucía; Pazos, Manuel; Molinar-Toribio, Eunice; Sánchez-Martos, Vanesa; Gallardo, José M; Rosa Nogués, M; Torres, Josep L; Medina, Isabel

    2014-12-01

    The present research draws a map of the characteristic carbonylation of proteins in rats fed high-caloric diets with the aim of providing a new insight of the pathogenesis of metabolic diseases derived from the high consumption of fat and refined carbohydrates. Protein carbonylation was analyzed in plasma, liver and skeletal muscle of Sprague-Dawley rats fed a high-fat, high-sucrose (HFHS) diet by a proteomics approach based on carbonyl-specific fluorescence-labeling, gel electrophoresis and mass spectrometry. Oxidized proteins along with specific sites of oxidative damage were identified and discussed to illustrate the consequences of protein oxidation. The results indicated that long-term HFHS consumption increased protein oxidation in plasma and liver; meanwhile, protein carbonyls from skeletal muscle did not change. The increment of carbonylation by HFHS diet was singularly selective on specific target proteins: albumin from plasma and liver, and hepatic proteins such as mitochondrial carbamoyl-phosphate synthase (ammonia), mitochondrial aldehyde dehydrogenase, argininosuccinate synthetase, regucalcin, mitochondrial adenosine triphosphate synthase subunit beta, actin cytoplasmic 1 and mitochondrial glutamate dehydrogenase 1. The possible consequences that these specific protein carbonylations have on the excessive weight gain, insulin resistance and nonalcoholic fatty liver disease resulting from HFHS diet consumption are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A short-term high fat diet increases exposure to midazolam and omeprazole in healthy subjects

    NARCIS (Netherlands)

    Achterbergh, Roos; Lammers, Laureen A.; van Nierop, Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R.; Mathôt, Ron A. A.; Romijn, Johannes A.

    2016-01-01

    Knowledge of factors contributing to variation in drug metabolism is of vital importance to optimize drug treatment. This study assesses the effects of a short-term hypercaloric high fat diet on metabolism of five oral drugs, which are each specific for a single P450 isoform: midazolam (CYP3A4),

  19. Effect of One Month Duration Ketogenic and non-Ketogenic High Fat Diets on Mouse Brain Bioenergetic Infrastructure

    Science.gov (United States)

    Selfridge, J. Eva; Wilkins, Heather M.; Lezi, E; Carl, Steven M.; Koppel, Scott; Funk, Eric; Fields, Timothy; Lu, Jianghua; Tang, Ee Phie; Slawson, Chad; Wang, WenFang; Zhu, Hao; Swerdlow, Russell H.

    2014-01-01

    Diet composition may affect energy metabolism in a tissue-specific manner. Using C57Bl/6J mice, we tested the effect of ketosis-inducing and non-inducing high fat diets on genes relevant to brain bioenergetic infrastructures, and on proteins that constitute and regulate that infrastructure. At the end of a one-month study period the two high fat diets appeared to differentially affect peripheral insulin signaling, but brain insulin signaling was not obviously altered. Some bioenergetic infrastructure parameters were similarly impacted by both high fat diets, while other parameters were only impacted by the ketogenic diet. For both diets, mRNA levels for CREB, PGC1α, and NRF2 increased while NRF1, TFAM, and COX4I1 mRNA levels decreased. PGC1β mRNA increased and TNFα mRNA decreased only with the ketogenic diet. Brain mtDNA levels fell in both the ketogenic and non-ketogenic high fat diet groups, although TOMM20 and COX4I1 protein levels were maintained, and mRNA and protein levels of the mtDNA-encoded COX2 subunit were also preserved. Overall, the pattern of changes observed in mice fed ketogenic and non-ketogenic high fat diets over a one month time period suggests these interventions enhance some aspects of the brain’s aerobic infrastructure, and may enhance mtDNA transcription efficiency. Further studies to determine which diet effects are due to changes in brain ketone body levels, fatty acid levels, glucose levels, altered brain insulin signaling, or other factors such as adipose tissue-associated hormones are indicated. PMID:25104046

  20. Mori Folium and Mori Fructus Mixture Attenuates High-Fat Diet-Induced Cognitive Deficits in Mice

    Directory of Open Access Journals (Sweden)

    Hyo Geun Kim

    2015-01-01

    Full Text Available Obesity has become a global health problem, contributing to various diseases including diabetes, hypertension, cancer, and dementia. Increasing evidence suggests that obesity can also cause neuronal damage, long-term memory loss, and cognitive impairment. The leaves and the fruits of Morus alba L., containing active phytochemicals, have been shown to possess antiobesity and hypolipidemic properties. Thus, in the present study, we assessed their effects on cognitive functioning in mice fed a high-fat diet by performing immunohistochemistry, using antibodies against c-Fos, synaptophysin, and postsynaptic density protein 95 and a behavioral test. C57BL/6 mice fed a high-fat diet for 21 weeks exhibited increased body weight, but mice coadministered an optimized Mori Folium and Mori Fructus extract mixture (2 : 1; MFE for the final 12 weeks exhibited significant body weight loss. Additionally, obese mice exhibited not only reduced neural activity, but also decreased presynaptic and postsynaptic activities, while MFE-treated mice exhibited recovery of these activities. Finally, cognitive deficits induced by the high-fat diet were recovered by cotreatment with MFE in the novel object recognition test. Our findings suggest that the antiobesity effects of MFE resulted in recovery of the cognitive deficits induced by the high-fat diet by regulation of neural and synaptic activities.

  1. Dietary Shiitake Mushroom (Lentinus edodes Prevents Fat Deposition and Lowers Triglyceride in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    D. Handayani

    2011-01-01

    Full Text Available High-fat diet (HFD induces obesity. This study examined the effects of Shiitake mushroom on the prevention of alterations of plasma lipid profiles, fat deposition, energy efficiency, and body fat index induced by HFD. Rats were given a low, medium, and high (7, 20, 60 g/kg = LD-M, MD-M, HD-M Shiitake mushroom powder in their high-fat (50% in kcal diets for 6 weeks. The results showed that the rats on the HD-M diet had the lowest body weight gain compared to MD-M and LD-M groups (P<0.05. The total fat deposition was significantly lower (−35%, P<0.05 in rats fed an HD-M diet than that of HFD group. Interestingly, plasma triacylglycerol (TAG level was significantly lower (−55%, P<0.05 in rats on HD-M than HFD. This study also revealed the existence of negative correlations between the amount of Shiitake mushroom supplementation and body weight gain, plasma TAG, and total fat masses.

  2. Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet.

    Science.gov (United States)

    Monteiro, Naice E S; Roquetto, Aline R; de Pace, Fernanda; Moura, Carolina S; Santos, Andrey Dos; Yamada, Aureo T; Saad, Mário José A; Amaya-Farfan, Jaime

    2016-07-01

    High-fat diets are used to induce adverse alterations in the intestinal microbiota, or dysbiosis, generalized inflammation and metabolic stress, which ultimately may lead to obesity. The influence of dietary whey proteins, whether intact or hydrolyzed, has been reported to improve glucose homeostasis and reduce stress. Therefore, the purpose of this work was to test if dietary milk-whey proteins, both in the intact form and hydrolyzed, could have an effect on the compositional changes of the cecal microbiota that can be induced in mice when receiving a high-fat diet in combination with the standard casein. Male C57BL/6 mice were fed a control casein diet (AIN 93-G); high-fat-casein (HFCAS); high-fat-whey protein concentrate (HFWPC) and high-fat whey-protein hydrolysate (HFWPH) for 9weeks. The intestinal microbiota composition was analyzed by 16S-rRNA of the invariant (V1-V3) gene, potentially endotoxemic lipopolysaccharide (LPS) release was determined colorimetrically, and liver fat infiltration assessed by light microscopy. The high-fat diet proved to induce dysbiosis in the animals by inverting the dominance of the phylum Firmicutes over Bacteroidetes, promoted the increase of LPS and resulted in liver fat infiltration. The whey proteins, whether intact or hydrolyzed, resisted the installation of dysbiosis, prevented the surge of circulating LPS and prevented fat infiltration in the liver. It is concluded that dietary whey proteins exert metabolic actions that tend to preserve the normal microbiota profile, while mitigating liver fat deposition in mice consuming a high-fat diet for nine weeks. Such beneficial effects were not seen when casein was the dietary protein. The hydrolyzed whey protein still differed from the normal whey protein by selectively protecting the Bacteroidetes phylum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Maternal obesity and high-fat diet program offspring metabolic syndrome.

    Science.gov (United States)

    Desai, Mina; Jellyman, Juanita K; Han, Guang; Beall, Marie; Lane, Robert H; Ross, Michael G

    2014-09-01

    We determined the potential programming effects of maternal obesity and high-fat (HF) diet during pregnancy and/or lactation on offspring metabolic syndrome. A rat model of maternal obesity was created using an HF diet prior to and throughout pregnancy and lactation. At birth, pups were cross-fostered, thereby generating 4 paradigms of maternal diets during pregnancy/lactation: (1) control (Con) diet during pregnancy and lactation (Con/Con), (2) HF during pregnancy and lactation (HF/HF), (3) HF during pregnancy alone (HF/Con), and (4) HF during lactation alone (Con/HF). Maternal phenotype during pregnancy and the end of lactation evidenced markedly elevated body fat and plasma corticosterone levels in HF dams. In the offspring, the maternal HF diet during pregnancy alone programmed increased offspring adiposity, although with normal body weight, whereas the maternal HF diet during lactation increased both body weight and adiposity. Metabolic disturbances, particularly that of hyperglycemia, were apparent in all groups exposed to the maternal HF diet (during pregnancy and/or lactation), although differences were apparent in the manifestation of insulin resistant vs insulin-deficient phenotypes. Elevated systolic blood pressure was manifest in all groups, implying that exposure to an obese/HF environment is disadvantageous for offspring health, regardless of pregnancy or lactation periods. Nonetheless, the underlying mechanism may differ because offspring that experienced in utero HF exposure had increased corticosterone levels. Maternal obesity/HF diet has a marked impact on offspring body composition and the risk of metabolic syndrome was dependent on the period of exposure during pregnancy and/or lactation. Copyright © 2014 Mosby, Inc. All rights reserved.

  4. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    Science.gov (United States)

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  5. Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice.

    Science.gov (United States)

    Geng, Shanshan; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Liang, Zhaofeng; Xie, Wei; Zhu, Jianyun; Huang, Cong; Zhu, Mingming; Wu, Rui; Zhong, Caiyun

    2016-04-01

    The aim of the present study was to investigate the in vivo effects of dietary medium-chain triglyceride (MCT) on inflammation and insulin resistance as well as the underlying potential molecular mechanisms in high fat diet-induced obese mice. Male C57BL/6J mice (n = 24) were fed one of the following three diets for a period of 12 weeks: (1) a modified AIN-76 diet with 5 % corn oil (normal diet); (2) a high-fat control diet (17 % w/w lard and 3 % w/w corn oil, HFC); (3) an isocaloric high-fat diet supplemented with MCT (17 % w/w MCT and 3 % w/w corn oil, HF-MCT). Glucose metabolism was evaluated by fasting blood glucose levels and intraperitoneal glucose tolerance test. Insulin sensitivity was evaluated by fasting serum insulin levels and the index of homeostasis model assessment-insulin resistance. The levels of serum interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α were measured by ELISA, and hepatic activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was determined using western blot analysis. Compared to HFC diet, consumption of HF-MCT did not induce body weight gain and white adipose tissue accumulation in mice. HFC-induced increases in serum fasting glucose and insulin levels as well as glucose intolerance were prevented by HF-MCT diet. Meanwhile, HF-MCT resulted in significantly lower serum IL-6 level and higher IL-10 level, and lower expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein in liver tissues when compared to HFC. In addition, HF-MCT attenuated HFC-triggered hepatic activation of NF-κB and p38 MAPK. Our study demonstrated that MCT was efficacious in suppressing body fat accumulation, insulin resistance, inflammatory response, and NF-κB and p38 MAPK activation in high fat diet-fed mice. These data suggest that MCT may exert beneficial effects against high fat diet-induced insulin resistance and inflammation.

  6. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet.

    Science.gov (United States)

    Raubenheimer, Peter J; Nyirenda, Moffat J; Walker, Brian R

    2006-07-01

    Liver fat accumulation is proposed to link obesity and insulin resistance. To dissect the role of liver fat in the insulin resistance of diet-induced obesity, we altered liver fat using a choline-deficient diet. C57Bl/6 mice were fed a low-fat (10% of calories) or high-fat (45% of calories) diet for 8 weeks; during the final 4 weeks, diets were either choline deficient or choline supplemented. In choline replete animals, high-fat feeding induced weight gain, elevated liver triglycerides (171%), hyperinsulinemia, and glucose intolerance. Choline deficiency did not affect body or adipose depot weights but amplified liver fat accumulation with high-fat diet (281%, P insulin (from 983 +/- 175 to 433 +/- 36 pmol/l, P phosphatidylcholine synthesis and of enzymes involved in free fatty acid esterification, without affecting those of de novo lipogenesis or fatty acid oxidation. We conclude that liver fat accumulation per se does not cause insulin resistance during high-fat feeding and that choline deficiency may shunt potentially toxic free fatty acids toward innocuous storage triglyceride in the liver.

  7. Long-term fat diet adaptation effects on performance, training capacity, and fat utilization

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff

    2002-01-01

    It is well known that adaptation to a fat-rich carbohydrate-poor diet results in lower resting muscle glycogen content and a higher rate of fat oxidation during exercise when compared with a carbohydrate-rich diet. The net effect of such an adaptation could potentially be a sparing of muscle...... glycogen, and because muscle glycogen storage is coupled to endurance performance, it is possible that adaptation to a high-fat diet potentially could enhance endurance performance. Therefore, the first issue in this review is to critically evaluate the available evidence for a potential endurance...... performance enhancement after long-term fat-rich diet adaptation. Attainment of optimal performance is among other factors dependent also on the quality and quantity of the training performed. When exercise intensity is increased, there is an increased need for carbohydrates. On the other hand, consumption...

  8. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13 C-lactate/ 13 C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring.

    Science.gov (United States)

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    The mother's consumption of high-fat food can affect glucose metabolism and the hypothalamic-pituitary-adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Female rats were randomly divided into normal and high-fat diet groups and were fed in accordance with their given diets from pre-pregnancy to the end of lactation. The offspring were divided into control (NC and HFC) and stress (NS and HFS) groups based on their mothers' diet and exposure to stress in adulthood. After the two-week stress induction period was over, an intraperitoneal glucose tolerance test (IPGTT) was performed and plasma glucose and insulin levels were assessed. The pancreas was then removed for measuring insulin secretion from the isolated islets as well as glucose transporter 2 mRNA expression and protein levels. According to the results obtained, plasma corticosterone concentrations increased significantly on days 1 and 14 of the stress induction period and were lower on the last day compared to on the first day. In both the NS and HFS groups, stress reduced plasma insulin concentration in the IPGTT without changing the plasma glucose concentration, suggesting an increased insulin sensitivity in the NS and HFS groups, although more markedly in the latter. Stress reduced insulin secretion (at high glucose concentrations) and increased glucose transporter 2 mRNA and protein expression, especially in the HFS group. Mothers' high-fat diet appears to intensify the stress response by changing the programming of the neuroendocrine system in the offspring.

  10. High fat diet aggravates arsenic induced oxidative stress in rat heart and liver.

    Science.gov (United States)

    Dutta, Mousumi; Ghosh, Debosree; Ghosh, Arnab Kumar; Bose, Gargi; Chattopadhyay, Aindrila; Rudra, Smita; Dey, Monalisa; Bandyopadhyay, Arkita; Pattari, Sanjib K; Mallick, Sanjaya; Bandyopadhyay, Debasish

    2014-04-01

    Arsenic is a well known global groundwater contaminant. Exposure of human body to arsenic causes various hazardous effects via oxidative stress. Nutrition is an important susceptible factor which can affect arsenic toxicity by several plausible mechanisms. Development of modern civilization led to alteration in the lifestyle as well as food habits of the people both in urban and rural areas which led to increased use of junk food containing high level of fat. The present study was aimed at investigating the effect of high fat diet on heart and liver tissues of rats when they were co-treated with arsenic. This study was established by elucidating heart weight to body weight ratio as well as analysis of the various functional markers, oxidative stress biomarkers and also the activity of the antioxidant enzymes. Histological analysis confirmed the biochemical investigations. From this study it can be concluded that high fat diet increased arsenic induced oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    Science.gov (United States)

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparison of effects of long-term low-fat vs high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-analysis.

    Science.gov (United States)

    Schwingshackl, Lukas; Hoffmann, Georg

    2013-12-01

    Dietary fat plays an important role in the primary prevention of cardiovascular disease, but long-term (≥12 months) effects of different percentages of fat in the diet on blood lipid levels remain to be established. Our systematic review and meta-analysis focused on randomized controlled trials assessing the long-term effects of low-fat diets compared with diets with high amounts of fat on blood lipid levels. Relevant randomized controlled trials were identified searching MEDLINE, EMBASE, and the Cochrane Trial Register until March 2013. Thirty-two studies were included in the meta-analysis. Decreases in total cholesterol (weighted mean difference -4.55 mg/dL [-0.12 mmol/L], 95% CI -8.03 to -1.07; P=0.01) and low-density lipoprotein (LDL) cholesterol (weighted mean difference -3.11 mg/dL [-0.08 mmol/L], 95% CI -4.51 to -1.71; Plow-fat diets, whereas rise in high-density lipoprotein (HDL) cholesterol (weighted mean difference 2.35 mg/dL [0.06 mmol/L], 95% CI 1.29 to 3.42; Pfat diet groups. Including only hypocaloric diets, the effects of low-fat vs high-fat diets on total cholesterol and LDL cholesterol levels were abolished. Meta-regression revealed that lower total cholesterol level was associated with lower intakes of saturated fat and higher intakes of polyunsaturated fat, and increases in HDL cholesterol levels were related to higher amounts of total fat largely derived from monounsaturated fat (of either plant or animal origin) in high-fat diets (composition of which was ~17% of total energy content in the form of monounsaturated fatty acids, ~8% of total energy content in the form of polyunsaturated fatty acids), whereas increases in triglyceride levels were associated with higher intakes of carbohydrates. In addition, lower LDL cholesterol level was marginally associated with lower saturated fat intake. The results of our meta-analysis do not allow for an unequivocal recommendation of either low-fat or high-fat diets in the primary prevention of

  13. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota...

  14. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    Science.gov (United States)

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  15. Western High-Fat Diet Consumption during Adolescence Increases Susceptibility to Traumatic Stress while Selectively Disrupting Hippocampal and Ventricular Volumes

    Science.gov (United States)

    Kalyan-Masih, Priya; Vega-Torres, Julio David; Haddad, Elizabeth; Rainsbury, Sabrina; Baghchechi, Mohsen

    2016-01-01

    Abstract Psychological trauma and obesity co-occur frequently and have been identified as major risk factors for psychiatric disorders. Surprisingly, preclinical studies examining how obesity disrupts the ability of the brain to cope with psychological trauma are lacking. The objective of this study was to determine whether an obesogenic Western-like high-fat diet (WD) predisposes rats to post-traumatic stress responsivity. Adolescent Lewis rats (postnatal day 28) were fed ad libitum for 8 weeks with either the experimental WD diet (41.4% kcal from fat) or the control diet (16.5% kcal from fat). We modeled psychological trauma by exposing young adult rats to a cat odor threat. The elevated plus maze and the open field test revealed increased psychological trauma-induced anxiety-like behaviors in the rats that consumed the WD when compared with control animals 1 week after undergoing traumatic stress (p < 0.05). Magnetic resonance imaging showed significant hippocampal atrophy (20% reduction) and lateral ventricular enlargement (50% increase) in the animals fed the WD when compared with controls. These volumetric abnormalities were associated with behavioral indices of anxiety, increased leptin and FK506-binding protein 51 (FKBP51) levels, and reduced hippocampal blood vessel density. We found asymmetric structural vulnerabilities to the WD, particularly the ventral and left hippocampus and lateral ventricle. This study highlights how WD consumption during adolescence impacts key substrates implicated in post-traumatic stress disorder. Understanding how consumption of a WD affects the developmental trajectories of the stress neurocircuitry is critical, as stress susceptibility imposes a marked vulnerability to neuropsychiatric disorders. PMID:27844058

  16. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Rahman, Md Mizanur; Alam, Mohammad Nazmul; Ulla, Anayt; Sumi, Farzana Akther; Subhan, Nusrat; Khan, Trisha; Sikder, Bishwajit; Hossain, Hemayet; Reza, Hasan Mahmud; Alam, Md Ashraful

    2017-08-14

    Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by

  17. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.

  18. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    Science.gov (United States)

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  19. Carbohydrate-restricted diets high in either monounsaturated fat or protein are equally effective at promoting fat loss and improving blood lipids.

    Science.gov (United States)

    Luscombe-Marsh, Natalie D; Noakes, Manny; Wittert, Gary A; Keogh, Jennifer B; Foster, Paul; Clifton, Peter M

    2005-04-01

    When substituted for carbohydrate in an energy-reduced diet, dietary protein enhances fat loss in women. It is unknown whether the effect is due to increased protein or reduced carbohydrate. We compared the effects of 2 isocaloric diets that differed in protein and fat content on weight loss, lipids, appetite regulation, and energy expenditure after test meals. This was a parallel, randomized study in which subjects received either a low-fat, high-protein (LF-HP) diet (29 +/- 1% fat, 34 +/- 0.8% protein) or a high-fat, standard-protein (HF-SP) diet (45 +/- 0.6% fat, 18 +/- 0.3% protein) during 12 wk of energy restriction (6 +/- 0.1 MJ/d) and 4 wk of energy balance (7.4 +/- 0.3 MJ/d). Fifty-seven overweight and obese [mean body mass index (in kg/m(2)): 33.8 +/- 0.9] volunteers with insulin concentrations >12 mU/L completed the study. Weight loss (LF-HP group, 9.7 +/- 1.1 kg; HF-SP group, 10.2 +/- 1.4 kg; P = 0.78) and fat loss were not significantly different between diet groups even though the subjects desired less to eat after the LF-HP meal (P = 0.02). The decrease in resting energy expenditure was not significantly different between diet groups (LF-HP, -342 +/- 185 kJ/d; HF-SP, -349 +/- 220 kJ/d). The decrease in the thermic effect of feeding with weight loss was smaller in the LF-HP group than in the HF-SP group (-0.3 +/- 1.0% compared with -3.6 +/- 0.7%; P = 0.014). Glucose and insulin responses to test meals improved after weight loss (P loss and the improvements in insulin resistance and cardiovascular disease risk factors did not differ significantly between the 2 diets, and neither diet had any detrimental effects on bone turnover or renal function.

  20. A high-fat diet differentially affects the gut metabolism and blood lipids of rats depending on the type of dietary fat and carbohydrate.

    Science.gov (United States)

    Jurgoński, Adam; Juśkiewicz, Jerzy; Zduńczyk, Zenon

    2014-02-03

    The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated) and carbohydrate (simple vs. complex). The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet) as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet) as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  1. A High-Fat Diet Differentially Affects the Gut Metabolism and Blood Lipids of Rats Depending on the Type of Dietary Fat and Carbohydrate

    Directory of Open Access Journals (Sweden)

    Adam Jurgoński

    2014-02-01

    Full Text Available The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated and carbohydrate (simple vs. complex. The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  2. Chronic blood pressure and appetite responses to central leptin infusion in rats fed a high fat diet.

    Science.gov (United States)

    Dubinion, John H; da Silva, Alexandre A; Hall, John E

    2011-04-01

    Obesity has been suggested to induce selective leptin resistance whereby leptin's anorexic effects are attenuated, whereas the effects to increase sympathetic nervous system activity and blood pressure remain intact. Most studies, however, have tested only the acute responses to leptin administration. This study tested whether feeding a high-fat diet causes resistance to the appetite and cardiovascular responses to chronic central leptin infusion. Sprague-Dawley rats were fed high-fat diet (40% kcal from fat, n=5) or normal-fat diet (13% kcal from fat, n=5) for a year. Radiotelemeters were implanted for continuous monitoring of mean arterial pressure (MAP) and heart rate (HR). A 21G steel cannula was implanted in the lateral cerebral ventricle [intracerebroventricular (ICV)]. After recovery, leptin was infused ICV at 0.02 μg/kg per min for 10 days. High-fat rats were heavier than normal-fat rats (582±12 vs. 511±19 g) and exhibited significantly higher MAP (114±3 vs. 96±7 mmHg). Although the acute (24 h) effects of leptin were attenuated in high-fat rats, chronic ICV leptin infusion decreased caloric intake in both groups similarly (50±8 vs. 40±10%) by day 5. Despite decreased food intake and weight loss, leptin infusion significantly increased MAP and HR in both high-fat and normal-fat rats (7±2 and 5±1 mmHg; 18±11 and 21±10 b.p.m., respectively). These results suggest that obesity induced by feeding a high-fat diet blunts the acute anorexic effects of leptin but does not cause significant resistance to the chronic central nervous system effects of leptin on appetite, MAP, or HR.

  3. Soluble Fermentable Dietary Fibre (Pectin) Decreases Caloric Intake, Adiposity and Lipidaemia in High-Fat Diet-Induced Obese Rats

    Science.gov (United States)

    Adam, Clare L.; Thomson, Lynn M.; Williams, Patricia A.; Ross, Alexander W.

    2015-01-01

    Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks (n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity. PMID:26447990

  4. High-fat feeding increases hepatic vitamin C synthesis and its circulatory mobilization in mice

    DEFF Research Database (Denmark)

    Christensen, Britt Tranberg; Hansen, Axel Jacob Kornerup; Lykkesfeldt, Jens

    2014-01-01

    , glucose and vitC concentrations. Hepatic vitC concentration and gulonolactone oxidase (GLO) capacity, as a measure of vitC de novo biosynthesis, were analyzed in liver homogenates. RESULTS: HF diet significantly increased plasma concentrations of vitC compared with a control diet low in fat (P ... to modulate their vitC homeostasis during high-fat (HF) feeding. METHODS: Twenty-five male 5-week-old C57BL/6 mice were fed high- or low-fat diets for 14 weeks. An oral glucose tolerance test (OGTT) was performed after 12 weeks of intervention. Terminal fasting plasma samples were analyzed for insulin.......05). Hepatic de novo biosynthesis of vitC was upregulated (P glucose and insulin concentrations...

  5. High-fat diet feeding differentially affects the development of inflammation in the central nervous system.

    Science.gov (United States)

    Guillemot-Legris, Owein; Masquelier, Julien; Everard, Amandine; Cani, Patrice D; Alhouayek, Mireille; Muccioli, Giulio G

    2016-08-26

    Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks) a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest on a primary co-culture of astrocytes and microglial cells. We measured an increase in the inflammatory tone in the cerebellum at the different time-points. However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two different regions of the central nervous system, specifically an increase in the cerebellum and no modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly suggest region-dependent as well as time-dependent adaptations of the central nervous system to the high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing enabled us to identify three classes of lipids-phosphatidylinositols, phosphatidylethanolamines, and lysophosphatidylcholines-as well as palmitoylethanolamide, as potentially responsible for the difference in inflammatory tone. This study demonstrates that the inflammatory tone induced by a high-fat diet does not similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize

  6. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Weng-Yew Wong

    2012-10-01

    Full Text Available Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome.

  7. The effect of a low-fat, high-protein or high-carbohydrate ad libitum diet on weight loss maintenance and metabolic risk factors.

    Science.gov (United States)

    Claessens, M; van Baak, M A; Monsheimer, S; Saris, W H M

    2009-03-01

    High-protein (HP) diets are often advocated for weight reduction and weight loss maintenance. The aim was to compare the effect of low-fat, high-carbohydrate (HC) and low-fat, HP ad libitum diets on weight maintenance after weight loss induced by a very low-calorie diet, and on metabolic and cardiovascular risk factors in healthy obese subjects. Forty-eight subjects completed the study that consisted of an energy restriction period of 5-6 weeks followed by a weight maintenance period of 12 weeks. During weight maintenance subjects received maltodextrin (HC group) or protein (HP group) (casein (HPC subgroup) or whey (HPW subgroup)) supplements (2 x 25 g per day), respectively and consumed a low-fat diet. Subjects in the HP diet group showed significantly better weight maintenance after weight loss (2.3 kg difference, P=0.04) and fat mass reduction (2.2 kg difference, P=0.02) than subjects in the HC group. Triglyceride (0.6 mM difference, P=0.01) and glucagon (9.6 pg ml(-1) difference, P=0.02) concentrations increased more in the HC diet group, while glucose (0.3 mM difference, P=0.02) concentration increased more in the HP diet group. Changes in total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, insulin, HOMAir index, HbA1c, leptin and adiponectin concentrations did not differ between the diets. No differences were found between the casein- or whey-supplemented HP groups. These results show that low-fat, high-casein or whey protein weight maintenance diets are more effective for weight control than low-fat, HC diets and do not adversely affect metabolic and cardiovascular risk factors in weight-reduced moderately obese subjects without metabolic or cardiovascular complications.

  8. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats.

    Science.gov (United States)

    Kumar, Senthil A; Ward, Leigh C; Brown, Lindsay

    2016-11-01

    Prebiotics alter bacterial content in the colon, and therefore could be useful for obesity management. We investigated the changes following addition of inulin oligofructose (IO) in the food of rats fed either a corn starch (C) diet or a high-carbohydrate, high-fat (H) diet as a model of diet-induced metabolic syndrome. IO did not affect food intake, but reduced body weight gain by 5·3 and 12·3 % in corn starch+inulin oligofructose (CIO) and high-carbohydrate, high-fat with inulin oligofructose (HIO) rats, respectively. IO reduced plasma concentrations of free fatty acids by 26·2 % and TAG by 75·8 % in HIO rats. IO increased faecal output by 93·2 %, faecal lipid excretion by 37·9 % and weight of caecum by 23·4 % and colon by 41·5 % in HIO rats. IO improved ileal morphology by reducing inflammation and improving the density of crypt cells in HIO rats. IO attenuated H diet-induced increases in abdominal fat pads (C 275 (sem 19), CIO 264 (sem 40), H 688 (sem 55), HIO 419 (sem 32) mg/mm tibial length), fasting blood glucose concentrations (C 4·5 (sem 0·1), CIO 4·2 (sem 0·1), H 5·2 (sem 0·1), HIO 4·3 (sem 0·1) mmol/l), systolic blood pressure (C 124 (sem 2), CIO 118 (sem 2), H 152 (sem 2), HIO 123 (sem 3) mmHg), left ventricular diastolic stiffness (C 22·9 (sem 0·6), CIO 22·9 (sem 0·5), H 27·8 (sem 0·5), HIO 22·6 (sem 1·2)) and plasma alanine transaminase (C 29·6 (sem 2·8), CIO 32·1 (sem 3·0), H 43·9 (sem 2·6), HIO 33·6 (sem 2·0) U/l). IO attenuated H-induced increases in inflammatory cell infiltration in the heart and liver, lipid droplets in the liver and plasma lipids as well as impaired glucose and insulin tolerance. These results suggest that increasing soluble fibre intake with IO improves signs of the metabolic syndrome by decreasing gastrointestinal carbohydrate and lipid uptake.

  9. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers

    Science.gov (United States)

    Ross, Megan L.; Garvican‐Lewis, Laura A.; Welvaert, Marijke; Heikura, Ida A.; Forbes, Sara G.; Mirtschin, Joanne G.; Cato, Louise E.; Strobel, Nicki; Sharma, Avish P.; Hawley, John A.

    2017-01-01

    Key points Three weeks of intensified training and mild energy deficit in elite race walkers increases peak aerobic capacity independent of dietary support.Adaptation to a ketogenic low carbohydrate, high fat (LCHF) diet markedly increases rates of whole‐body fat oxidation during exercise in race walkers over a range of exercise intensities.The increased rates of fat oxidation result in reduced economy (increased oxygen demand for a given speed) at velocities that translate to real‐life race performance in elite race walkers.In contrast to training with diets providing chronic or periodised high carbohydrate availability, adaptation to an LCHF diet impairs performance in elite endurance athletes despite a significant improvement in peak aerobic capacity. Abstract We investigated the effects of adaptation to a ketogenic low carbohydrate (CHO), high fat diet (LCHF) during 3 weeks of intensified training on metabolism and performance of world‐class endurance athletes. We controlled three isoenergetic diets in elite race walkers: high CHO availability (g kg−1 day−1: 8.6 CHO, 2.1 protein, 1.2 fat) consumed before, during and after training (HCHO, n = 9); identical macronutrient intake, periodised within or between days to alternate between low and high CHO availability (PCHO, n = 10); LCHF (diets providing chronic or periodised high‐CHO availability, and despite a significant improvement in V˙O2 peak , adaptation to the topical LCHF diet negated performance benefits in elite endurance athletes, in part due to reduced exercise economy. PMID:28012184

  10. High-fat diet exacerbates inflammation and cell survival signals in the skin of ultraviolet B-irradiated C57BL/6 mice

    International Nuclear Information System (INIS)

    Meeran, Syed M.; Singh, Tripti; Nagy, Tim R.; Katiyar, Santosh K.

    2009-01-01

    Inflammation induced by chronic exposure to ultraviolet (UV) radiation has been implicated in various skin diseases. We formulated the hypothesis that a high-fat diet may influence the UV-induced inflammatory responses in the skin. C57BL/6 mice were fed a high-fat diet or control diet and exposed to UVB radiation (120 mJ/cm 2 ) three times/week for 10 weeks. The mice were then sacrificed and skin and plasma samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. We found that the levels of inflammatory biomarkers were increased in the UVB-exposed skin of the mice fed the high-fat diet than the UVB-exposed skin of the mice fed the control diet. The levels of inflammatory biomarkers of early responses to UVB exposure (e.g., myeloperoxidase, cyclooxygenase-2, prostaglandin-E 2 ), proinflammatory cytokines (i.e., tumor necrosis factor-α, interleukin-1β, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser 473 ) were higher in high-fat-diet-fed mouse skin than control-diet-fed mouse skin. The plasma levels of insulin growth factor-1 were greater in the UVB-irradiated mice fed the high-fat diet than the UVB-irradiated mice fed the control diet, whereas the levels of plasma adiponectin were significantly lower. This pronounced exacerbation of the UVB-induced inflammatory responses in the skin of mice fed a high-fat diet suggests that high-fat diet may increase susceptibility to inflammation-associated skin diseases, including the risk of skin cancer.

  11. High-protein, low-fat diets are effective for weight loss and favorably alter biomarkers in healthy adults.

    Science.gov (United States)

    Johnston, Carol S; Tjonn, Sherrie L; Swan, Pamela D

    2004-03-01

    Although popular and effective for weight loss, low-carbohydrate, high-protein, high-fat (Atkins) diets have been associated with adverse changes in blood and renal biomarkers. High-protein diets low in fat may represent an equally appealing diet plan but promote a more healthful weight loss. Healthy adults (n = 20) were randomly assigned to 1 of 2 low-fat (vs. the high-carbohydrate diet (3.9 +/- 1.4 and 0.7 +/- 1.7 g N/d, respectively, P low-fat, energy-restricted diets of varying protein content (15 or 30% energy) promoted healthful weight loss, but diet satisfaction was greater in those consuming the high-protein diet.

  12. Prenatal exposure to lipopolysaccharide combined with pre- and postnatal high-fat diet result in lowered blood pressure and insulin resistance in offspring rats.

    Science.gov (United States)

    Hao, Xue-Qin; Du, Jing-Xia; Li, Yan; Li, Meng; Zhang, Shou-Yan

    2014-01-01

    Adult metabolic syndrome may in part have origins in fetal or early life. This study was designed to explore the effect of prenatal exposure to lipopolysaccharide and high-fat diet on metabolic syndrome in offspring rats. 32 pregnant rats were randomly divided into four groups, including Control group; LPS group (pregnant rats were injected with LPS 0.4 mg/kg intraperitoneally on the 8(th), 10(th) and 12(th) day of pregnancy); High-fat group (maternal rats had high-fat diet during pregnancy and lactation period, and their pups also had high-fat diet up to the third month of life); LPS + High-fat group (rats were exposed to the identical experimental scheme with LPS group and High-fat group). Blood pressure elevated in LPS group and High-fat group, reduced in LPS+High-fat group, accompanied by the increase of serum leptin level in LPS and High-fat group and increase of serum IL-6, TNF-a in High-fat group; both serum insulin and cholesterol increased in High-fat and LPS+High-fat group, as well as insulin in LPS group. HOMA-IR value increased in LPS, High-fat and LPS+High-fat group, and QUICKI decreased in these groups; H-E staining showed morphologically pathological changes in thoracic aorta and liver tissue in the three groups. Increased serum alanine and aspartate aminotransferase suggest impaired liver function in LPS+High-fat group. Prenatal exposure to lipopolysaccharide combined with pre- and postnatal high-fat diet result in lowered blood pressure, insulin resistance and impaired liver function in three-month old offspring rats. The lowered blood pressure might benefit from the predictive adaptive response to prenatal inflammation.

  13. Isocaloric intake of a high-fat diet modifies adiposity and lipid handling in a sex dependent manner in rats

    Directory of Open Access Journals (Sweden)

    Lladó Isabel

    2011-04-01

    Full Text Available Abstract Background High-fat (HF diet feeding usually leads to hyperphagia and body weight gain, but macronutrient proportions in the diet can modulate energy intake and fat deposition. The mechanisms of fat accumulation and mobilization may differ significantly between depots, and gender can also influence these differences. Aim To investigate, in rats of both sexes, the effect of an isocaloric intake of a diet with an unbalanced proportion of macronutrients on fatty acid composition of visceral and subcutaneous adipose tissues and how this is influenced by both dietary fatty acids and levels of proteins involved in tissue lipid handling. Methods Eight-week-old Wistar rats of both sexes were fed a control diet (3% w/w fat or high-fat diet (30% w/w fat for 14 weeks. Fatty acid composition was analyzed by gas-chromatography and levels of LPL, HSL, α2-AR, β3-AR, PKA and CPT1 were determined by Western blot. Results The HF diet did not induce hyperphagia or body weight gain, but promoted an increase of adiposity index only in male rats. HF diet produced an increase of the proportion of MUFA and a decrease in that of PUFA in both adipose depots and in both sexes. The levels of proteins involved in the adrenergic control of the lipolytic pathway increased in the gonadal fat of HF females, whereas LPL levels increased in the inguinal fat of HF males and decreased in that of females. Conclusion Sexual dimorphism in adiposity index reflects a differential sex response to dietary fatty acid content and could be related to the levels of the proteins involved in tissue lipid management.

  14. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    Science.gov (United States)

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  15. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns

    NARCIS (Netherlands)

    La Fleur, S. E.; Luijendijk, M. C. M.; van der Zwaal, E. M.; Brans, M. A. D.; Adan, R. A. H.

    2014-01-01

    Rats subjected to a free-choice high-fat high-sugar (fcHFHS) diet persistently overeat, exhibit increased food-motivated behavior and become overtly obese. Conversely, several studies using a non-choice (nc) high-energy diet showed only an initial increase in food intake with unaltered or reduced

  16. Magnetic resonance spectroscopy detects differential lipid composition in mammary glands on low fat, high animal fat versus high fructose diets.

    Directory of Open Access Journals (Sweden)

    Dianning He

    Full Text Available The effects of consumption of different diets on the fatty acid composition in the mammary glands of SV40 T-antigen (Tag transgenic mice, a well-established model of human triple-negative breast cancer, were investigated with magnetic resonance spectroscopy and spectroscopic imaging. Female C3(1 SV40 Tag transgenic mice (n = 12 were divided into three groups at 4 weeks of age: low fat diet (LFD, high animal fat diet (HAFD, and high fructose diet (HFruD. MRI scans of mammary glands were acquired with a 9.4 T scanner after 8 weeks on the diet. 1H spectra were acquired using point resolved spectroscopy (PRESS from two 1 mm3 boxes on each side of inguinal mammary gland with no cancers, lymph nodes, or lymph ducts. High spectral and spatial resolution (HiSS images were also acquired from nine 1-mm slices. A combination of Gaussian and Lorentzian functions was used to fit the spectra. The percentages of poly-unsaturated fatty acids (PUFA, mono-unsaturated fatty acids (MUFA, and saturated fatty acids (SFA were calculated from each fitted spectrum. Water and fat peak height images (maps were generated from HiSS data. The results showed that HAFD mice had significantly lower PUFA than both LFD (p < 0.001 and HFruD (p < 0.01 mice. The mammary lipid quantity calculated from 1H spectra was much larger in HAFD mice than in LFD (p = 0.03 but similar to HFruD mice (p = 0.10. The average fat signal intensity over the mammary glands calculated from HiSS fat maps was ~60% higher in HAFD mice than in LFD (p = 0.04 mice. The mean or median of calculated parameters for the HFruD mice were between those for LFD and HAFD mice. Therefore, PRESS spectroscopy and HiSS MRI demonstrated water and fat composition changes in mammary glands due to a Western diet, which was low in potassium, high in sodium, animal fat, and simple carbohydrates. Measurements of PUFA with MRI could be used to evaluate cancer risk, improve cancer detection and diagnosis, and guide preventative

  17. Exercise protects against high-fat diet-induced hypothalamic inflammation.

    Science.gov (United States)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D; Woods, Stephen C; Hofmann, Susanna M

    2012-06-25

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing local production of specific interleukins and cytokines, and these in turn may further promote systemic metabolic disease. Whether or how this microglial activation can be averted or reversed is unknown. Since running exercise improves systemic metabolic health and has been found to promote neuronal survival as well as the recovery of brain functions after injury, we hypothesized that regular treadmill running may blunt the effect of western diet on hypothalamic inflammation. Using low-density lipoprotein receptor deficient (l dlr-/-) mice to better reflect human lipid metabolism, we first confirmed that microglial activation in the hypothalamus is severely increased upon exposure to a high-fat, or "western", diet. Moderate, but regular, treadmill running exercise markedly decreased hypothalamic inflammation in these mice. Furthermore, the observed decline in microglial activation was associated with an improvement of glucose tolerance. Our findings support the hypothesis that hypothalamic inflammation can be reversed by exercise and suggest that interventions to avert or reverse neuronal damage may offer relevant potential in obesity treatment and prevention. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet

    Directory of Open Access Journals (Sweden)

    Laia Oliva

    2017-09-01

    Full Text Available Background Food selection and ingestion both in humans and rodents, often is a critical factor in determining excess energy intake and its related disorders. Methods Two different concepts of high-fat diets were tested for their obesogenic effects in rats; in both cases, lipids constituted about 40% of their energy intake. The main difference with controls fed standard lab chow, was, precisely, the lipid content. Cafeteria diets (K were self-selected diets devised to be desirable to the rats, mainly because of its diverse mix of tastes, particularly salty and sweet. This diet was compared with another, more classical high-fat (HF diet, devised not to be as tasty as K, and prepared by supplementing standard chow pellets with fat. We also analysed the influence of sex on the effects of the diets. Results K rats grew faster because of a high lipid, sugar and protein intake, especially the males, while females showed lower weight but higher proportion of body lipid. In contrast, the weight of HF groups were not different from controls. Individual nutrient’s intake were analysed, and we found that K rats ingested large amounts of both disaccharides and salt, with scant differences of other nutrients’ proportion between the three groups. The results suggest that the key differential factor of the diet eliciting excess energy intake was the massive presence of sweet and salty tasting food. Conclusions The significant presence of sugar and salt appears as a powerful inducer of excess food intake, more effective than a simple (albeit large increase in the diet’s lipid content. These effects appeared already after a relatively short treatment. The differential effects of sex agree with their different hedonic and obesogenic response to diet.

  19. Diminished metabolic responses to centrally-administered apelin-13 in diet-induced obese rats fed a high-fat diet.

    Science.gov (United States)

    Clarke, K J; Whitaker, K W; Reyes, T M

    2009-02-01

    The central administration of apelin, a recently identified adipokine, has been shown to affect food and water intake. The present study investigated whether body weight could affect an animal's response to apelin. The effects of centrally-administered apelin-13 on food and water intake, activity and metabolic rate were investigated in adult male diet-induced obese (DIO) rats fed either a high fat (32%) or control diet. Rats were administered i.c.v. apelin-13, 15-30 min prior to lights out, and food and water intake, activity and metabolic rate were assessed. Intracerebroventricular administration of apelin-13 decreased food and water intake and respiratory exchange ratio in DIO rats on the control diet, but had no effect in DIO rats on the high-fat diet. In an effort to identify potential central mechanisms explaining the observed physiological responses, the mRNA level of the apelin receptor, APJ, was examined in the hypothalamus. A high-fat diet induced an up-regulation of the expression of the receptor. Apelin induced a down-regulation of the receptor, but only in the DIO animals on the high-fat diet. In conclusion, we have demonstrated a diminished central nervous system response to apelin that is coincident with obesity.

  20. Liver Fat Scores Moderately Reflect Interventional Changes in Liver Fat Content by a Low-Fat Diet but Not by a Low-Carb Diet.

    Science.gov (United States)

    Kabisch, Stefan; Bäther, Sabrina; Dambeck, Ulrike; Kemper, Margrit; Gerbracht, Christiana; Honsek, Caroline; Sachno, Anna; Pfeiffer, Andreas F H

    2018-01-31

    Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder all over the world, mainly being associated with a sedentary lifestyle, adiposity, and nutrient imbalance. The increasing prevalence of NAFLD accommodates similar developments for type 2 diabetes and diabetes-related comorbidities and complications. Therefore, early detection of NAFLD is an utmost necessity. Potentially helpful tools for the prediction of NAFLD are liver fat indices. The fatty liver index (FLI) and the NAFLD-liver fat score (NAFLD-LFS) have been recently introduced for this aim. However, both indices have been shown to correlate with liver fat status, but there is neither sufficient data on the longitudinal representation of liver fat change, nor proof of a diet-independent correlation between actual liver fat change and change of index values. While few data sets on low-fat diets have been published recently, low-carb diets have not been yet assessed in this context. We aim to provide such data from a highly effective short-term intervention to reduce liver fat, comparing a low-fat and a low-carb diet in subjects with prediabetes. Anthropometric measurements, magnetic resonance (MR)-based intrahepatic lipid (IHL) content, and several serum markers for liver damage have been collected in 140 subjects, completing the diet phase in this trial. Area-under-the-responder-operator-curves (AUROC) calculations as well as cross-sectional and longitudinal Spearman correlations were used. Both FLI and NAFLD-LFS predict liver fat with moderate accuracy at baseline (AUROC 0.775-0.786). These results are supported by correlation analyses. Changes in liver fat, achieved by the dietary intervention, correlate moderately with changes in FLI and NAFLD-LFS in the low-fat diet, but not in the low-carb diet. A correlation analysis between change of actual IHL content and change of single elements of the liver fat indices revealed diet-specific moderate to strong correlations between ΔIHL and

  1. Effects of High-sugar and High-fat Diet on Fat Deposition and Blood Vessel Wall on Sprague Dawley Rats Liver

    Directory of Open Access Journals (Sweden)

    Vera Citra Setiawan Hoei

    2013-11-01

    Full Text Available People nowadays tend to consume more fast food and sweetened beverages. These foods usually contain high amount sugar and fat that have effects on the body including liver.This study was conducted to explore the effects of extensive intake of sugar and fat on blood glucose and  cholesterol level as well as changes in liver. Research was conducted with experimental method using 20 Sprague Dawley rats which were divided into 4 groups; 2 controls and 2 treatments. Rats were given 5 ml sugar or lard alternatively every 2 consecutive days for 1-month and 2-month respectively. Data was retrieved include blood glucose and cholesterol level, fatty liver percentage and blood vessel thickening after intervention through HE staining. The results showed that both 1-month and 2-month intervention group has significant increase in blood glucose and cholesterol level. However, the enhancement of fatty liver percentage and number of thickened blood vessels (p<0.05 were only foundsignificant (p<0.05 in 1-month intervention group.  We concluded that high intake of sugar and fat within 1-monthintervention have significant effects on the rat body including liver. Nevertheless, it was not found significant in 2-months intervention. Further studies are still needed to analyze this incongruent result.Key words: high-sugar diet, high-fat diet, fatty liver, atherosclerosis 

  2. Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high-fat diet.

    Science.gov (United States)

    Ferreira, Paula S; Spolidorio, Luis C; Manthey, John A; Cesar, Thais B

    2016-06-15

    The flavanones hesperidin, eriocitrin and eriodictyol were investigated for their prevention of the oxidative stress and systemic inflammation caused by high-fat diet in C57BL/6J mice. The mice received a standard diet (9.5% kcal from fat), high-fat diet (45% kcal from fat) or high-fat diet supplemented with hesperidin, eriocitrin or eriodictyol for a period of four weeks. Hesperidin, eriocitrin and eriodictyol increased the serum total antioxidant capacity, and restrained the elevation of interleukin-6 (IL-6), macrophage chemoattractant protein-1 (MCP-1), and C-reactive protein (hs-CRP). In addition, the liver TBARS levels and spleen mass (g per kg body weight) were lower for the flavanone-treated mice than in the unsupplemented mice. Eriocitrin and eriodictyol reduced TBARS levels in the blood serum, and hesperidin and eriodictyol also reduced fat accumulation and liver damage. The results showed that hesperidin, eriocitrin and eriodictyol had protective effects against inflammation and oxidative stress caused by high-fat diet in mice, and may therefore prevent metabolic alterations associated with the development of cardiovascular diseases in other animals.

  3. A free-choice high-fat high-sugar diet induces changes in arcuate neuropeptide expression that support hyperphagia

    NARCIS (Netherlands)

    La Fleur, S. E.; van Rozen, A. J.; Luijendijk, M. C. M.; Groeneweg, F.; Adan, R. A. H.

    2010-01-01

    The mechanisms for how saturated fat and sugar-based beverages contribute to human obesity are poorly understood. This paper describes a series of experiments developed to examine the response of hypothalamic neuropeptides to diets rich in sugar and fat, using three different diets: a high-fat

  4. Effects of Yogurt Containing Fermented Pepper Juice on the Body Fat and Cholesterol Level in High Fat and High Cholesterol Diet Fed Rat.

    Science.gov (United States)

    Yeon, Su-Jung; Hong, Go-Eun; Kim, Chang-Kyu; Park, Woo Joon; Kim, Soo-Ki; Lee, Chi-Ho

    2015-01-01

    This experiment investigated whether yogurt containing fermented pepper juice (FPJY) affects cholesterol level in high fat and high cholesterol diet (HFCD) fed rat. Twenty five Sprague-Dawley male rats of 7 wk were divided into 5 groups, and fed following diets for 9 wk; CON (control diet), HFCD (HFCD), PY (HFCD supplemented with 2% of plain yogurt), LFY (HFCD supplemented with 2% of FPJY), and HFY (HFCD supplemented with 5% of FPJY). In the LFY group, hepatic total lipid level decreased significantly compared to the HFCD group (p0.05). In HFY group, body weight and hepatic total lipid level significantly decreased over the HFCD group (p0.05). Liver weight decreased as FPJY content was increased. Results suggested FPJY would inhibit organ hypertrophy and accumulation of body fat, hepatic lipid, and cholesterol in HFCD fed rat.

  5. High fat diet-induced non alcoholic fatty liver disease in rats is associated with hyperhomocysteinemia caused by down regulation of the transsulphuration pathway

    Directory of Open Access Journals (Sweden)

    Napolitano Mariarosaria

    2011-04-01

    Full Text Available Abstract Background Hyperhomocysteinemia (HHcy causes increased oxidative stress and is an independent risk factor for cardiovascular disease. Oxidative stress is now believed to be a major contributory factor in the development of non alcoholic fatty liver disease, the most common liver disorder worldwide. In this study, the changes which occur in homocysteine (Hcy metabolism in high fat-diet induced non alcoholic fatty liver disease (NAFLD in rats were investigated. Methods and results After feeding rats a standard low fat diet (control or a high fat diet (57% metabolisable energy as fat for 18 weeks, the concentration of homocysteine in the plasma was significantly raised while that of cysteine was lowered in the high fat as compared to the control diet fed animals. The hepatic activities of cystathionine β-synthase (CBS and cystathionine γ-lyase (CGS, the enzymes responsible for the breakdown of homocysteine to cysteine via the transsulphuration pathway in the liver, were also significantly reduced in the high fat-fed group. Conclusions These results indicate that high fat diet-induced NAFLD in rats is associated with increased plasma Hcy levels caused by down-regulation of hepatic CBS and CGL activity. Thus, HHcy occurs at an early stage in high fat diet-induced NAFLD and is likely to contribute to the increased risk of cardiovascular disease associated with the condition.

  6. Hyperleptinemia Exacerbates High-Fat Diet-Mediated Atrial Fibrosis and Fibrillation.

    Science.gov (United States)

    Fukui, Akira; Ikebe-Ebata, Yuki; Kondo, Hidekazu; Saito, Shotaro; Aoki, Kohei; Fukunaga, Naoya; Shinohara, Tetsuji; Masaki, Takayuki; Teshima, Yasushi; Takahashi, Naohiko

    2017-06-01

    Obesity including metabolic syndrome is an independent risk factor of atrial fibrillation (AF). Although hyperleptinemia is usually a characteristic of obese subjects, the relationship with atrial fibrosis and AF is unknown. We tested the hypothesis that high-fat diet (HFD)-induced hyperleptinemia exacerbates atrial fibrosis and AF. Eight-week-old male C57BL/6 (WT) and leptin-deficient ob/ob (Ob) mice were treated with a normal-fat diet (NFD) or 60% HFD. After 8 weeks, transesophageal burst pacing and electrophysiological study using isolated perfused hearts were performed and left atrial (LA) tissues were collected for histological analysis, hydroxyproline assay, and reverse transcription-polymerase chain reaction. HFD treatment increased body weight in both WT and Ob mice compared with NFD (both P atrial fibrosis and AF. Inhibition of leptin signaling may become a novel therapeutic target to prevent obesity-related AF. © 2017 Wiley Periodicals, Inc.

  7. Tangeretin and 3',4',3,5,6,7,8-heptamethoxyflavone decrease insulin resistance, fat accumulation and oxidative stress in mice fed high-fat diet

    Science.gov (United States)

    Tangeretin and heptamethoxyflavone were investigated for their ability to repair metabolic damage caused by high-fat diet in C57BL/6J mice. In the first four weeks, induction of obesity was performed and the mice received standard diet (11% kcal from fat) or high-fat diet (45% kcal from fat). After ...

  8. Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice.

    Science.gov (United States)

    Buckman, Laura B; Thompson, Misty M; Lippert, Rachel N; Blackwell, Timothy S; Yull, Fiona E; Ellacott, Kate L J

    2015-01-01

    Introduction of a high-fat diet to mice results in a period of voracious feeding, known as hyperphagia, before homeostatic mechanisms prevail to restore energy intake to an isocaloric level. Acute high-fat diet hyperphagia induces astrocyte activation in the rodent hypothalamus, suggesting a potential role of these cells in the homeostatic response to the diet. The objective of this study was to determine physiologic role of astrocytes in the acute homeostatic response to high-fat feeding. We bred a transgenic mouse model with doxycycline-inducible inhibition of NFkappaB (NFκB) signaling in astrocytes to determine the effect of loss of NFκB-mediated astrocyte activation on acute high-fat hyperphagia. ELISA was used to measure the levels of markers of astrocyte activation, glial-fibrillary acidic protein (GFAP) and S100B, in the medial basal hypothalamus. Inhibition of NFκB signaling in astrocytes prevented acute high-fat diet-induced astrocyte activation and resulted in a 15% increase in caloric intake (P fat feeding.

  9. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Abu

    2015-01-01

    Full Text Available The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC which received standard rodent diet, the high fat diet (HFD which received high fat diet only, the high fat diet treated with T. crispa (HFDTC, and the high fat diet treated with orlistat (HFDO. After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05 reduced the body weight (41.14 ± 1.40%, adiposity index serum levels (4.910 ± 0.80%, aspartate aminotransferase (AST: 161 ± 4.71 U/L, alanine aminotransferase (ALT: 100.95 ± 3.10 U/L, total cholesterol (TC: 18.55 ± 0.26 mmol/L, triglycerides (TG: 3.70 ± 0.11 mmol/L, blood glucose (8.50 ± 0.30 mmo/L, resistin (0.74 ± 0.20 ng/mL, and leptin (17.428 ± 1.50 ng/mL hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL and C-peptide (136.48 pmol/L hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet.

  10. Endurance and Resistance Training Affect High Fat Diet-Induced Increase of Ceramides, Inflammasome Expression, and Systemic Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Cornelia Mardare

    2016-01-01

    Full Text Available The study aimed to investigate the effects of differentiated exercise regimes on high fat-induced metabolic and inflammatory pathways. Mice were fed a standard diet (ST or a high fat diet (HFD and subjected to regular endurance training (ET or resistance training (RT. After 10 weeks body weight, glucose tolerance, fatty acids (FAs, circulating ceramides, cytokines, and immunological mediators were determined. The HFD induced a significant increase in body weight and a disturbed glucose tolerance (p<0.05. An increase of plasma FA, ceramides, and inflammatory mediators in adipose tissue and serum was found (p<0.05. Both endurance and resistance training decreased body weight (p<0.05 and reduced serum ceramides (p<0.005. While RT attenuated the increase of NLRP-3 (RT expression in adipose tissue, ET was effective in reducing TNF-α and IL-18 expression. Furthermore, ET reduced levels of MIP-1γ, while RT decreased levels of IL-18, MIP-1γ, Timp-1, and CD40 in serum (p<0.001, respectively. Although both exercise regimes improved glucose tolerance (p<0.001, ET was more effective than RT. These results suggest that exercise improves HFD-induced complications possibly through a reduction of ceramides, the reduction of inflammasome activation in adipose tissues, and a systemic downregulation of inflammatory cytokines.

  11. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    Science.gov (United States)

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  12. The effect of eight weeks endurance training and high-fat diet on appetite-regulating hormones in rat plasma

    Directory of Open Access Journals (Sweden)

    Rouhollah Haghshenas

    2014-04-01

    Full Text Available Objective(s:Consumption of high-fat foods is one of the major causes of obesity. Physical exercise is a strategy used to counteract obesity. The aim of this study was to investigate the effect of eight weeks endurance training and high-fat diet (HFD on appetite-regulating hormones in rat plasma. Materials and Methods:Twenty eight male Wistar rats were randomly divided into four groups: Control group with standard diet (CSD, endurance training with a standard diet (ESD, control group with high-fat diet (CHFD and endurance training with high-fat diet (EHFD. Twenty-four hr after the last training session, the blood samples were obtained and analyzed for hormones levels. Results: The significant increased weight gain and food intake and decreased plasma nesfatin-1 and PYY3-36 levels were observed in CHFD group, while exercise under the HFD antagonized these effects. There were no significant changes in ghrelin, insulin and leptin levels in different groups. Conclusion: These results suggest that exercise can prevent fattening effect of HFD. Probably, performing exercise makes a reduction of food intake and weight gain in rat via the increase in nesfatin-1 and PYY levels. However, further studies are necessary to understand the exact mechanisms involved in this field.

  13. A High-Fat, High-Fructose Diet Induces Antioxidant Imbalance and Increases the Risk and Progression of Nonalcoholic Fatty Liver Disease in Mice

    Directory of Open Access Journals (Sweden)

    Kanokwan Jarukamjorn

    2016-01-01

    Full Text Available Excessive fat liver is an important manifestation of nonalcoholic fatty liver disease (NAFLD, associated with obesity, insulin resistance, and oxidative stress. In the present study, the effects of a high-fat, high-fructose diet (HFFD on mRNA levels and activities of the antioxidant enzymes, including superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx, were determined in mouse livers and brains. The histomorphology of the livers was examined and the state of nonenzymatic reducing system was evaluated by measuring the glutathione system and the lipid peroxidation. Histopathology of the liver showed that fat accumulation and inflammation depended on the period of the HFFD-consumption. The levels of mRNA and enzymatic activities of SOD, CAT, and GPx were raised, followed by the increases in malondialdehyde levels in livers and brains of the HFFD mice. The oxidized GSSG content was increased while the total GSH and the reduced GSH were decreased, resulting in the increase in the GSH/GSSG ratio in both livers and brains of the HFFD mice. These observations suggested that liver damage and oxidative stress in the significant organs were generated by continuous HFFD-consumption. Imbalance of antioxidant condition induced by long-term HFFD-consumption might increase the risk and progression of NAFLD.

  14. Berberine improves insulin resistance induced by high fat diet in rats

    International Nuclear Information System (INIS)

    Zhou Libin; Yang Ying; Shang Wenbin; Li Fengying; Tang Jinfeng; Wang Xiao; Liu Shangquan; Yuan Guoyue; Chen Mingdao

    2005-01-01

    Objective: To observe the effect of berberine on insulin resistance induced by high fat diet in rats. Methods: Normal male SD rats (8 weeks old) were divided into two groups taking either normal chow (NC, n=9) or high fat diet (HF, n=20). After fourteen weeks, HF rats were divided into two groups. Ten rats continued to take high fat diet. Another ten rats took additional berberine gavage (HF+B, 150mg/kg weight once a day). Six weeks later, oral glucose tolerance test and insulin tolerance test were performed for estimating insulin sensitivity. Results: The body weight, liver weight and epididyaml fat pads weight of HF group were significantly higher than those of HF+B group and NC group (all P<0.01). Fasting plasma glucose, insulin and plasma glucose, insulin 2h after taking glucose in HF+B rats were significantly lower than those in HF rats (all P<0.01). Plasma glucose and insulin levels at all time points in HF rats were significantly higher than those in NC rats. Homa-IR of HF group was markedly higher than that of HF+B group (P<0.01). The glucose-lowering effects after the administration of insuin (0.5u/kg intrapenitoneally) at all time points in HF+B rats were stronger than those in HF rats with 23% and 7% reduction at 15min respectively. Conclusion: Long term high fat diet resulted in insulin resistance. Berberine was able to reverse insulin resistance through promoting peripheral tissue up taking of glucose and decreasing insulin, which would be quite ideal for the intervention of IGT. (authors)

  15. Maternal stress and high-fat diet effect on maternal behavior, milk composition, and pup ingestive behavior.

    Science.gov (United States)

    Purcell, Ryan H; Sun, Bo; Pass, Lauren L; Power, Michael L; Moran, Timothy H; Tamashiro, Kellie L K

    2011-09-01

    Chronic variable prenatal stress or maternal high-fat diet results in offspring that are significantly heavier by the end of the first postnatal week with increased adiposity by weaning. It is unclear, however, what role maternal care and diet play in the ontogenesis of this phenotype and what contributions come from differences already established in the rat pups. In the present studies, we examined maternal behavior and milk composition as well as offspring ingestive behavior. Our aim was to better understand the development of the obese phenotype in offspring from dams subjected to prenatal stress and/or fed a high-fat (HF) diet during gestation and lactation. We found that dams maintained on a HF diet through gestation and lactation spent significantly more time nursing their pups during the first postnatal week. In addition, offspring of prenatal stress dams consumed more milk at postnatal day (PND) 3 and offspring of HF dams consume more milk on PND 7 in an independent ingestion test. Milk from HF dams showed a significant increase in fat content from PND 10-21. Together these results suggest that gestational dietary or stress manipulations can alter the rat offspring's developmental environment, evidence of which is apparent by PND 3. Alterations in maternal care, milk composition, and pup consumption during the early postnatal period may contribute to long-term changes in body weight and adiposity induced by maternal prenatal stress or high-fat diet. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy.

    Science.gov (United States)

    Diniz, Gabriela Placoná; Huang, Zhan-Peng; Liu, Jianming; Chen, Jinghai; Ding, Jian; Fonseca, Renata Inzinna; Barreto-Chaves, Maria Luiza; Donato, Jose; Hu, Xiaoyun; Wang, Da-Zhi

    2017-12-15

    Obesity is associated with development of diverse diseases, including cardiovascular diseases and dyslipidemia. MiRNA-22 (miR-22) is a critical regulator of cardiac function and targets genes involved in metabolic processes. Previously, we generated miR-22 null mice and we showed that loss of miR-22 blunted cardiac hypertrophy induced by mechanohormornal stress. In the present study, we examined the role of miR-22 in the cardiac and metabolic alterations promoted by high-fat (HF) diet. We found that loss of miR-22 attenuated the gain of fat mass and prevented dyslipidemia induced by HF diet, although the body weight gain, or glucose intolerance and insulin resistance did not seem to be affected. Mechanistically, loss of miR-22 attenuated the increased expression of genes involved in lipogenesis and inflammation mediated by HF diet. Similarly, we found that miR-22 mediates metabolic alterations and inflammation induced by obesity in the liver. However, loss of miR-22 did not appear to alter HF diet induced cardiac hypertrophy or fibrosis in the heart. Our study therefore establishes miR-22 as an important regulator of dyslipidemia and suggests it may serve as a potential candidate in the treatment of dyslipidemia associated with obesity. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. Effect of High Fat and High Sugar Diet on Glucose Tolerance, Insulin Response to Glucose Load and Insulin Sensitivity in Rats

    OpenAIRE

    岡﨑, 悟

    1987-01-01

    To investigate the precipitating effects of the westernized diet on diabetes mellitus, glucose tolerance and insulin response to oral glucose load (1.5g/kg body weight) and insulin sensitivity to exogenous insulin (0.2U/kg) were studied in rats fed an experimental diet for 8 weeks. Four experimental diets were used : low fat-no sugar diet (energy ratio of 10% fat, 70% starch, a model of the traditional Japanese diet), high fat-high sugar diet (40% fat, 20% starch, 20% sugar, a model of the we...

  18. Consumption of a High-Fat Diet Induces Central Insulin Resistance Independent of Adiposity

    Science.gov (United States)

    Clegg, Deborah J.; Gotoh, Koro; Kemp, Christopher; Wortman, Matthew D.; Benoit, Stephen C.; Brown, Lynda M.; D’Alessio, David; Tso, Patrick; Seeley, Randy J.; Woods, Stephen C.

    2011-01-01

    Plasma insulin enters the CNS where it interacts with insulin receptors in areas that are related to energy homeostasis and elicits a decrease of food intake and body weight. Here, we demonstrate that consumption of a high-fat (HF) diet impairs the central actions of insulin. Male Long-Evans rats were given chronic (70-day) or acute (3-day) ad libitum access to HF, low-fat (LF), or chow diets. Insulin administered into the 3rd-cerebral ventricle (i3vt) decreased food intake and body weight of LF and chow rats but had no effect on HF rats in either the chronic or the acute experiment. Rats chronically pair-fed the HF diet to match the caloric intake of LF rats, and with body weights and adiposity levels comparable to those of LF rats, were also unresponsive to i3vt insulin when returned to ad lib food whereas rats pair-fed the LF diet had reduced food intake and body weight when administered i3vt insulin. Insulin’s inability to reduce food intake in the presence of the high-fat diet was associated with a reduced ability of insulin to activate its signaling cascade, as measured by pAKT. Finally, i3vt administration of insulin increased hypothalamic expression of POMC mRNA in the LF-but not the HF-fed rats. We conclude that consumption of a HF diet leads to central insulin resistance following short exposure to the diet, and as demonstrated by reductions in insulin signaling and insulin-induced hypothalamic expression of POMC mRNA. PMID:21241723

  19. Vitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice.

    Science.gov (United States)

    Kim, Misung; Na, Woori; Sohn, Cheongmin

    2013-09-01

    Several reports suggest that obesity is a risk factor for osteoporosis. Vitamin K plays an important role in improving bone metabolism. This study examined the effects of vitamin K1 and vitamin K2 supplementation on the biochemical markers of bone turnover and morphological microstructure of the bones by using an obese mouse model. Four-week-old C57BL/6J male mice were fed a 10% fat normal diet group or a 45% kcal high-fat diet group, with or without 200 mg/1000 g vitamin K1 (Normal diet + K1, high-fat diet + K1) and 200 mg/1000 g vitamin K2 (Normal diet + K2, high-fat diet + K2) for 12 weeks. Serum levels of osteocalcin were higher in the high-fat diet + K2 group than in the high-fat diet group. Serum OPG level of the high-fat diet group, high-fat diet + K1 group, and high-fat diet + K2 group was 2.31 ± 0.31 ng/ml, 2.35 ± 0.12 ng/ml, and 2.90 ± 0.11 ng/ml, respectively. Serum level of RANKL in the high-fat diet group was significantly higher than that in the high-fat diet + K1 group and high-fat diet + K2 group (p<0.05). Vitamin K supplementation seems to tend to prevent bone loss in high-fat diet induced obese state. These findings suggest that vitamin K supplementation reversed the high fat diet induced bone deterioration by modulating osteoblast and osteoclast activities and prevent bone loss in a high-fat diet-induced obese mice.

  20. Sex-dependent effects of high-fat-diet feeding on rat pancreas oxidative stress.

    Science.gov (United States)

    Gómez-Pérez, Yolanda; Gianotti, Magdalena; Lladó, Isabel; Proenza, Ana M

    2011-07-01

    The objective of the study was to investigate whether sex differences in oxidative stress-associated insulin resistance previously reported in rats could be attributed to a possible sex dimorphism in pancreas redox status. Fifteen-month-old male and female Wistar rats were fed a control diet or a high-fat diet for 14 weeks. Serum glucose, lipids, and hormone levels were measured. Insulin immunohistochemistry and morphometric analysis of islets were performed. Pancreas triglyceride content, oxidative damage, and antioxidant enzymatic activities were determined. Lipoprotein lipase, hormone-sensitive lipase, and uncoupling protein 2 (UCP2) levels were also measured. Male rats showed a more marked insulin resistance profile than females. In control female rats, pancreas Mn-superoxide dismutase activity and UCP2 levels were higher, and oxidative damage was lower compared with males. High-fat-diet feeding decreased pancreas triglyceride content in female rats and UCP2 levels in male rats. High-fat-diet female rats showed larger islets than both their control and sex counterparts. These results confirm the existence of a sex dimorphism in pancreas oxidative status in both control and high-fat-diet feeding situations, with female rats showing higher protection against oxidative stress, thus maintaining pancreatic function and contributing to a lower risk of insulin resistance.

  1. Molecular fingerprint of high fat diet induced urinary bladder metabolic dysfunction in a rat model.

    Directory of Open Access Journals (Sweden)

    Andreas Oberbach

    Full Text Available AIMS/HYPOTHESIS: Diabetic voiding dysfunction has been reported in epidemiological dimension of individuals with diabetes mellitus. Animal models might provide new insights into the molecular mechanisms of this dysfunction to facilitate early diagnosis and to identify new drug targets for therapeutic interventions. METHODS: Thirty male Sprague-Dawley rats received either chow or high-fat diet for eleven weeks. Proteomic alterations were comparatively monitored in both groups to discover a molecular fingerprinting of the urinary bladder remodelling/dysfunction. Results were validated by ELISA, Western blotting and immunohistology. RESULTS: In the proteome analysis 383 proteins were identified and canonical pathway analysis revealed a significant up-regulation of acute phase reaction, hypoxia, glycolysis, β-oxidation, and proteins related to mitochondrial dysfunction in high-fat diet rats. In contrast, calcium signalling, cytoskeletal proteins, calpain, 14-3-3η and eNOS signalling were down-regulated in this group. Interestingly, we found increased ubiquitin proteasome activity in the high-fat diet group that might explain the significant down-regulation of eNOS, 14-3-3η and calpain. CONCLUSIONS/INTERPRETATION: Thus, high-fat diet is sufficient to induce significant remodelling of the urinary bladder and alterations of the molecular fingerprint. Our findings give new insights into obesity related bladder dysfunction and identified proteins that may indicate novel pathophysiological mechanisms and therefore constitute new drug targets.

  2. Hunger and satiety responses to high-fat meals after a high-polyunsaturated fat diet: A randomized trial.

    Science.gov (United States)

    Stevenson, Jada L; Paton, Chad M; Cooper, Jamie A

    2017-09-01

    Previous studies have shown that polyunsaturated fats (PUFAs) elicit a greater response in satiety after a single-meal challenge compared with other types of fats. The long-term effects of PUFAs on satiety, however, remain unknown. The aim of this study was to determine subjective and physiological hunger and satiety responses to high-fat (HF) meals before and after a 7-d PUFA-rich diet. Twenty-six, healthy weight (body mass index 18-24.9 kg/m 2 ), sedentary adults were randomly assigned to either a 7-d PUFA-rich diet (n = 8 men and n = 8 women) or a 7-d control diet (n = 5 men and n = 5 women). After a 3-d lead-in diet, participants reported for the baseline visit where anthropometrics, fasting visual analog scale (VAS) measurements, and a fasting blood sample were collected. Then, two HF meals (breakfast and lunch) were consumed. Postprandial blood draws and VAS measures were collected approximately every 30 min for 4 h after each meal, for a total of 8 h. From pre- to post-PUFA-rich diet, there was a decrease in fasting ghrelin (P hunger and satiety; yet, did not alter subjective ratings of hunger or fullness. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Does increased Nitric Oxide production and oxidative stress due to high fat diet affect cardiac function after myocardial infarction?

    Directory of Open Access Journals (Sweden)

    Marjan Aghajani

    2017-01-01

    Full Text Available Background &Objectives: High fat (HF diet by affecting the oxidative stress and nitric oxide (NO production may lead to different effects on function of the heart after myocardial infarction (MI. In the present study we aimed to address the hypothesis that high release of NO by activated macrophages affects LV function after MI.Methods: The animals were randomly divided into four groups comprising each of 10 rats: 1 Sham; 2 MI; 3 Sham+ HF diet; 4 MI+ HF diet. Animals fed with HF diet 30 days before sham and MI surgery. MI was induced by permanent ligation of left anterior descending coronary artery (LAD. Nitric oxide (NO production of peritoneal macrophages, the concentrations of MDA in the heart and the infarct size were measured.Results: Our study indicated that HF has adverse effects on myocardium and it may increase NO production as well as oxidative stress, resulting in augmentation of infarct size.Conclusion: Our results add to our knowledge that HF diet was associated with overproduction of NO by peritoneal macrophages and ROS that lead to development of infarct size and adverse remodeling.

  4. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns.

    Science.gov (United States)

    la Fleur, S E; Luijendijk, M C M; van der Zwaal, E M; Brans, M A D; Adan, R A H

    2014-05-01

    Rats subjected to a free-choice high-fat high-sugar (fcHFHS) diet persistently overeat, exhibit increased food-motivated behavior and become overtly obese. Conversely, several studies using a non-choice (nc) high-energy diet showed only an initial increase in food intake with unaltered or reduced food-motivated behavior. This raises the question of the importance of choice in the persistence of hyperphagia in rats on a fcHFHS diet. Meal patterns, food intake and body weight gain were studied in male Wistar rats on free-choice diets with fat and/or sugar and in rats on nc diets with fat and sugar (custom made with ingredients similar to the fcHFHS diet). Rats on a ncHFHS diet initially overconsumed, but reduced intake thereafter, whereas rats on a fcHFHS diet remained hyperphagic. Because half of the sugar intake in the fcHFHS group occurred during the inactive period, we next determined whether sugar intake during the light phase was a necessary requirement for hyperphagia, by restricting access to liquid sugar to either the light or dark period with unlimited access to fat and chow. Results showed that hyperphagia occurred irrespective of the timing of sugar intake. Meal pattern analysis revealed consumption of larger but fewer meals in the ncHFHS group, as well as the fcHF group. Interestingly, meal number was increased in all rats drinking liquid sugar (whether on a fcHFHS or a fcHS diet), whereas a compensatory decrease in meal size was only observed in the fcHS group, but not the fcHFHS group. We hereby show the importance of choice in the observation of fcHFHS diet-induced hyperphagia, which results in increases in meal number due to sugar drinking without any compensatory decrease in meal size. We thus provide a novel dietary model in rats that mimics important features of human overconsumption that have been ignored in rodent models of obesity.

  5. High fat diet alters lactation outcomes: possible involvement of inflammatory and serotonergic pathways.

    Directory of Open Access Journals (Sweden)

    Laura L Hernandez

    Full Text Available Delay in the onset of lactogenesis has been shown to occur in women who are obese, however the mechanism altered within the mammary gland causing the delay remains unknown. Consumption of high fat diets (HFD has been previously determined to result decreased litters and litter numbers in rodent models due to a decrease in fertility. We examined the effects of feeding a HFD (60% kcal from fat diet versus a low-fat diet (LFD; 10% kcal from fat to female Wistar rats on lactation outcomes. Feeding of HFD diet resulted in increased pup weights compared to pups from LFD fed animals for 4 d post-partum. Lactation was delayed in mothers on HFD but they began to produce copious milk volumes beginning 2 d post-partum, and milk yield was similar to LFD by day 3. Mammary glands collected from lactating animals on HFD diet, displayed a disrupted morphologies, with very few and small alveoli. Consistently, there was a significant decrease in the mRNA expression of milk protein genes, glucose transporter 1 (GLUT1 and keratin 5 (K5, a luminobasal cell marker in the mammary glands of HFD lactating animals. Expression of tryptophan hydroxylase 1 (TPH1, the rate-limiting enzyme in serotonin (5-HT biosynthesis, and the 5-HT(7 receptor (HTR7, which regulates mammary gland involution, were significantly increased in mammary glands of HFD animals. Additionally, we saw elevation of the inflammatory markers interleukin-6 (IL-6 and tumor necrosis factor-α (TNF- α. These results indicate that consumption of HFD impairs mammary parenchymal tissue and impedes its ability to synthesize and secrete milk, possibly through an increase in 5-HT production within the mammary gland leading to an inflammatory process.

  6. Modulatory effects of dietary supplementation by Vernonia amygdalina on high-fat-diet-induced obesity in Wistar rats.

    Science.gov (United States)

    Ekeleme-Egedigwe, Chima A; Ijeh, Ifeoma I; Okafor, Polycarp N

    2017-01-01

    Obesity is a growing public health problem arising from energy imbalance. The effect of 10% dietary incorporation of Vernonia amygdalina (VA) leaves into high-fat diets on some biological markers of adiposity and dyslipidaemia was investigated. Experimental diets consisted of the following – CD (control diet); HFD (high-fat diet); and HFD- VA (HFD containing 10% Vernonia amygdalina leaves) supplementation. Fifteen male Wistar rats were randomly divided into three groups of five animals each. After twelve weeks of feeding, serum lipid profile, blood glucose concentrations, body weight, adiposity index, feed intake, fecal loss and relative organ weight were investigated. Vernonia amygdalina (VA) inhibited HFD-induced weight gain and adiposity in rats. HFD-induced obese rats showed a significant increase in the levels of serum TG and TC compared to rats on a normal diet. However, the levels of serum TG, TC, LDL-C in HFDVA rats reduced significantly relative to the levels in HFD rats. Our results indicate that HFDVA reversed fatty infiltration leading to decreased body weight and fat tissue mass in the rats. These results suggested that incorporation of Vernonia amygdalina into high-fat diets may have therapeutic potentials for obesity and related metabolic disorders. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted.

  7. Effects of exercise and diet change on cognition function and synaptic plasticity in high fat diet induced obese rats

    Science.gov (United States)

    2013-01-01

    Background Nutritional imbalance-induced obesity causes a variety of diseases and in particular is an important cause of cognitive function decline. This study was performed on Sprague Dawley (SD) rats with 13-weeks of high fat diet-induced obesity in connection to the effects of regular exercise and dietary control for 8 weeks on the synaptic plasticity and cognitive abilities of brain. Methods Four weeks-old SD rats were adopted classified into normal-normal diet-sedentary (NNS, n = 8), obesity-high fat diet-sedentary (OHS, n = 8), obesity-high fat diet-training (OHT, n = 8), obesity-normal diet-sedentary (ONS, n = 8) and obesity- normal diet-training (ONT, n = 8). The exercise program consisted of a treadmill exercise administered at a speed of 8 m/min for 1–4 weeks, and 14 m/min for 5–8 weeks. The Western blot method was used to measure the expression of NGF, BDNF, p38MAPK and p-p38MAPK proteins in hippocampus of the brain, and expressions of NGF, BDNF, TrkA, TrkB, CREB and synapsin1 mRNA were analyzed through qRT-PCR. Results The results suggest cognitive function-related protein levels and mRNA expression to be significantly decreased in the hippocampus of obese rats, and synaptic plasticity as well as cognitive function signaling sub-pathway factors were also significantly decreased. In addition, 8-weeks exercises and treatment by dietary change had induced significant increase of cognitive function-related protein levels and mRNA expression as well as synaptic plasticity and cognitive function signaling sub-pathway factors in obese rats. In particular, the combined treatment had presented even more positive effect. Conclusions Therefore, it was determined that the high fat diet-induced obesity decreases plasticity and cognitive function of the brain, but was identified as being improved by exercises and dietary changes. In particular, it is considered that regular exercise has positive effects on memory span and learning

  8. Aging increases the susceptibility of hepatic inflammation, liver fibrosis and aging in response to high-fat diet in mice.

    Science.gov (United States)

    Kim, In Hee; Xu, Jun; Liu, Xiao; Koyama, Yukinori; Ma, Hsiao-Yen; Diggle, Karin; You, Young-Hyun; Schilling, Jan M; Jeste, Dilip; Sharma, Kumar; Brenner, David A; Kisseleva, Tatiana

    2016-08-01

    We aimed to investigate whether aging increases the susceptibility of hepatic and renal inflammation or fibrosis in response to high-fat diet (HFD) and explore the underlying genetic alterations. Middle (10 months old) and old (20 months old) aged, male C57BL/6N mice were fed either a low-fat diet (4 % fat) or HFD (60 % fat) for 4 months. Young (3 months old) aged mice were included as control group. HFD-induced liver and kidney injuries were analyzed by serum and urine assay, histologic staining, immunohistochemistry, and reverse-transcription real-time quantitative polymerase chain reaction. Total RNA sequencing with next-generation technology was done with RNA extracted from liver tissues. With HFD feeding, aged was associated with higher serum alanine aminotransferase levels, marked infiltration of hepatic macrophages, and increased expression of inflammatory cytokines (MCP1, TNF-α, IL-1β, IL-6, IL-12, IL-17A). Importantly, aged mice showed more advanced hepatic fibrosis and increased expression of fibrogenic markers (Col-I-α1, αSMA, TGF-β1, TGF-β2, TGFβRII, PDGF, PDGFRβII, TIMP1) in response to HFD. Aged mice fed on HFD also showed increased oxidative stress and TLR4 expression. In the total RNA seq and gene ontology analysis of liver, old-aged HFD group showed significant up-regulation of genes linked to innate immune response, immune response, defense response, inflammatory response compared to middle-aged HFD group. Meanwhile, aging and HFD feeding showed significant increase in glomerular size and mesangial area, higher urine albumin/creatinine ratio, and advanced renal inflammation or fibrosis. However, the difference of HFD-induced renal injury between old-aged group and middle-aged group was not significant. The susceptibility of hepatic fibrosis as well as hepatic inflammation in response to HFD was significantly increased with aging. In addition, aging was associated with glomerular alterations and increased renal inflammation or

  9. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice.

    Science.gov (United States)

    Zeng, Huawei; Ishaq, Suzanne L; Zhao, Feng-Qi; Wright, André-Denis G

    2016-09-01

    Consumption of an obesigenic/high-fat diet (HFD) is associated with a high colon cancer risk and may alter the gut microbiota. To test the hypothesis that long-term high-fat (HF) feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed HFD (45% energy) or a low-fat (LF) diet (10% energy) for 36 weeks. At the end of the study, body weights in the HF group were 35% greater than those in the LF group. These changes were associated with dramatic increases in body fat composition, inflammatory cell infiltration, inducible nitric oxide synthase protein concentration and cell proliferation marker (Ki67) in ileum and colon. Similarly, β-catenin expression was increased in colon (but not ileum). Consistent with gut inflammation phenotype, we also found that plasma leptin, interleukin 6 and tumor necrosis factor α concentrations were also elevated in mice fed the HFD, indicative of chronic inflammation. Fecal DNA was extracted and the V1-V3 hypervariable region of the microbial 16S rRNA gene was amplified using primers suitable for 454 pyrosequencing. Compared to the LF group, the HF group had high proportions of bacteria from the family Lachnospiraceae/Streptococcaceae, which is known to be involved in the development of metabolic disorders, diabetes and colon cancer. Taken together, our data demonstrate, for the first time, that long-term HF consumption not only increases inflammatory status but also accompanies an increase of colonic β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of C57BL/6 mice. Published by Elsevier Inc.

  10. Studies on insulin receptor, 2. Studies on the influence of starvation and high fat diet on insulin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y [Hiroshima Univ. (Japan). School of Medicine

    1979-08-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using /sup 125/I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia.

  11. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study

    OpenAIRE

    Raider, Kayla; Ma, Delin; Harris, Janna L.; Fuentes, Isabella; Rogers, Robert S.; Wheatley, Joshua L.; Geiger, Paige C.; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M.; Stanford, John A.

    2016-01-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy (1H-MRS) to measure neurochemicals in ...

  12. Protective potentials of wild rice (Zizania latifolia (Griseb) Turcz) against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats.

    Science.gov (United States)

    Han, Shu-Fen; Zhang, Hong; Zhai, Cheng-Kai

    2012-07-01

    The study evaluates the protective potentials of wild rice against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats. In addition to the rats of low-fat diet group, others animals were exposed to a high-fat/cholesterol diet condition for 8 weeks. The city diet (CD) is based on the diet consumed by urban residents in modern China, which is rich in fat/cholesterol and high in carbohydrates from white rice and processed wheat starch. The chief source of dietary carbohydrates of wild rice diet (WRD) is from Chinese wild rice and other compositions are the same with CD. Rats fed CD showed elevated body and liver organ weights, lipid profiles, free fatty acids (FFA) and leptin comparable with rats fed high-fat/cholesterol diet (HFD) known to induce obesity and hyperlipidaemia in this species. However, rats consuming WRD suppressed the increase of lipid droplets accumulation, FFA, and leptin, and the decrease of lipoprotein lipase and adipose triglyceride lipase. Meanwhile, WRD prevented high-fat/cholesterol diet-induced elevation in protein expression of sterol-regulatory element binding protein-1c, and gene expression of fatty acid synthase and acetyl-CoA carboxylase. These findings indicate that wild rice as a natural food has the potentials of preventing obesity and liver lipotoxicity induced by a high-fat/cholesterol diet in rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Modification of high saturated fat diet with n-3 polyunsaturated fat improves glucose intolerance and vascular dysfunction

    Science.gov (United States)

    Lamping, KL; Nuno, DW; Coppey, LJ; Holmes, AJ; Hu, S; Oltman, CL; Norris, AW; Yorek, MA

    2013-01-01

    Aims The ability of dietary enrichment with monounsaturated (MUFA), n-3, or n-6 polyunsaturated fatty acids (PUFA) to reverse glucose intolerance and vascular dysfunction resulting from excessive dietary saturated fatty acids is not resolved. We hypothesized that partial replacement of dietary saturated fats with n-3 PUFA enriched menhaden oil (MO) would provide greater improvement in glucose tolerance and vascular function compared to n-6 enriched safflower oil (SO) or MUFA-enriched olive oil (OO). Material and Methods We fed mice a high saturated fat diet (60% kcal from lard) for 12 weeks before substituting half the lard with MO, SO or OO for an additional 4 weeks. At the end of 4 weeks, we assessed glucose tolerance, insulin signaling and reactivity of isolated pressurized gracilis arteries. Results After 12 weeks of saturated fat diet, body weights were elevated and glucose tolerance abnormal compared to mice on control diet (13% kcal lard). Diet substituted with MO restored basal glucose levels, glucose tolerance, and indices of insulin signaling (phosphorylated Akt) to normal whereas restoration was limited for SO and OO substitutions. Although dilation to acetylcholine was reduced in arteries from mice on HF, OO and SO diets compared to normal diet, dilation to acetylcholine was fully restored and constriction to phenylephrine reduced in MO fed mice compared to normal. Conclusion We conclude that short term enrichment of an ongoing high fat diet with n-3 PUFA rich MO but not MUFA rich OO or n-6 PUFA rich SO reverses glucose tolerance, insulin signaling, and vascular dysfunction. PMID:22950668

  14. Effects of Ad libitum Low-Carbohydrate High-Fat Dieting in Middle-Age Male Runners.

    Science.gov (United States)

    Heatherly, Alexander J; Killen, Lauren G; Smith, Ashton F; Waldman, Hunter S; Seltmann, Christie L; Hollingsworth, Angela; O'Neal, Eric K

    2018-03-01

    This study examined the effects of a 3-wk ad libitum, low-carbohydrate (fat (~70% of calories) (LCHF) diet on markers of endurance performance in middle-age, recreationally competitive male runners. All subjects (n = 8) after their normal high-carbohydrate (HC) diet had anthropometric measures assessed and completed five 10-min running bouts at multiple individual race paces in the heat while physiological variables, metabolic variables, and perceptual responses were recorded. After 20 min of rest, participants completed a 5-km time trial on a road course. Subjects then consumed an LCHF diet for 3 wk and returned for repeat testing. Body mass and seven-site skinfold thickness sum decreased by approximately 2.5 kg (P vs 37.3°C ± 0.2°C) in the HC diet but did not differ at any other time with LCHF diet. Heart rate and perceptual measures did not display any consistent differences between treatments excluding thirst sensation for LCHF diet. RER and carbohydrate oxidation declined significantly, whereas fat oxidation increased after LCHF diet for every pace (P fat oxidation from LCHF diet potentially negate expected performance decrement from reduced carbohydrate use late in exercise for nonelite runners. An acute decrease in training capacity is expected; however, if performance improvement is not exhibited after 3 wk, diet cessation is suggested for negative responders.

  15. Randomized, multi-center trial of two hypo-energetic diets in obese subjects: high- versus low-fat content

    DEFF Research Database (Denmark)

    Petersen, M; Taylor, M A; Saris, W H M

    2006-01-01

    :Obese (BMI >or=30 kg/m(2)) adult subjects (n = 771), from eight European centers. MEASUREMENTS: Body weight loss, dropout rates, proportion of subjects who lost more than 10% of initial body weight, blood lipid profile, insulin and glucose. RESULTS: The dietary fat energy percent was 25% in the low-fat group...... and 40% in the high-fat group (mean difference: 16 (95% confidence interval (CI) 15-17)%). Average weight loss was 6.9 kg in the low-fat group and 6.6 kg in the high-fat group (mean difference: 0.3 (95% CI -0.2 to 0.8) kg). Dropout was 13.6% (n = 53) in the low-fat group and 18.3% (n = 70) in the high......-fat group than in the high-fat group. Fasting plasma insulin and glucose were lowered equally by both diets. CONCLUSIONS: The low-fat diet produced similar mean weight loss as the high-fat diet, but resulted in more subjects losing >10% of initial body weight and fewer dropouts. Both diets produced...

  16. Voluntary running of defined distances reduces body adiposity and its associated inflammation in C57BL/6 mice fed a high-fat diet.

    Science.gov (United States)

    Yan, Lin; Sundaram, Sneha; Nielsen, Forrest H

    2017-11-01

    This study investigated the effect of voluntary running of defined distances on body adiposity in male C57BL/6 mice fed a high-fat diet. Mice were assigned to 6 groups and fed a standard AIN93G diet (sedentary) or a modified high-fat AIN93G diet (sedentary; unrestricted running; or 75%, 50%, or 25% of unrestricted running) for 12 weeks. The average running distance was 8.3, 6.3, 4.2, and 2.1 km/day for the unrestricted, 75%, 50%, and 25% of unrestricted runners, respectively. Body adiposity was 46% higher in sedentary mice when fed the high-fat diet instead of the standard diet. Running decreased adiposity in mice fed the high-fat diet in a dose-dependent manner but with no significant difference between sedentary mice and those running 2.1 km/day. In sedentary mice, the high-fat instead of the standard diet increased insulin resistance, hepatic triacylglycerides, and adipose and plasma concentrations of leptin and monocyte chemotactic protein-1 (MCP-1). Running reduced these variables in a dose-dependent manner. Adipose adiponectin was lowest in sedentary mice fed the high-fat diet; running raised adiponectin in both adipose tissue and plasma. Running 8.3 and 6.3 km/day had the greatest, but similar, effects on the aforementioned variables. Running 2.1 km/day did not affect these variables except, when compared with sedentariness, it significantly decreased MCP-1. The findings showed that running 6.3 kg/day was optimal for reducing adiposity and associated inflammation that was increased in mice by feeding a high-fat diet. The findings suggest that voluntary running of defined distances may counteract the obesogenic effects of a high-fat diet.

  17. Effects of high fat diet on incidence of spontaneous tumors in Wistar rats

    DEFF Research Database (Denmark)

    KRISTIANSEN, E.; Madsen, Charlotte Bernhard; Meyer, Otto A.

    1993-01-01

    In a 2.5-year carcinogenicity study, two groups, both including male and female Wistar rats, were fed two different diets with 4% and 16% fat. In addition to 4% soybean oil, the high-fat diet contained 12% mono- and diglycerides, of which 85% was stearic acid and 13% palmitic acid...

  18. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring

    OpenAIRE

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    Background The mother?s consumption of high-fat food can affect glucose metabolism and the hypothalamic?pituitary?adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Methods Female rats were randomly divided into normal and high-fat diet groups and were fed in a...

  19. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    International Nuclear Information System (INIS)

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I.; Watson, Walter H.; Zhong, Hai; States, J. Christopher; Arteel, Gavin E.

    2011-01-01

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a ‘2-hit’ paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet (± arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. -- Highlights: ► Characterizes a mouse model of arsenic enhanced NAFLD. ► Arsenic synergistically enhances experimental fatty liver disease at concentrations that cause no overt hepatotoxicity alone. ► This effect is associated with increased inflammation.

  20. Effects of Inulin Supplementation in Low- or High-Fat Diets on Reproductive Performance of Sows and Antioxidant Defence Capacity in Sows and Offspring.

    Science.gov (United States)

    Wang, Y S; Zhou, P; Liu, H; Li, S; Zhao, Y; Deng, K; Cao, D D; Che, L Q; Fang, Z F; Xu, S Y; Lin, Y; Feng, B; Li, J; Wu, D

    2016-08-01

    This experiment was conducted to investigate the effects of inulin supplementation in low- or high-fat diets on both the reproductive performance of sow and the antioxidant defence capacity in sows and offspring. Sixty Landrace × Yorkshire sows were randomly allocated to four treatments with low-fat diet (L), low-fat diet containing 1.5% inulin (LI), high-fat diet (H) and high-fat diet containing 1.5% inulin (HI). Inulin-rich diets lowered the within-litter birth weight coefficient of variation (CV, p = 0.05) of piglets, increased the proportion of piglets weighing 1.0-1.5 kg at farrowing (p Inulin-rich diets fed to sow during gestation had beneficial effects on within-litter uniformity of piglet birthweight and enhanced the antioxidant defence capacity of sows and piglets. © 2016 Blackwell Verlag GmbH.

  1. The regulatory effects of fish oil and chitosan on hepatic lipogenic signals in high-fat diet-induced obese rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chang, Tien-Chia; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-10-01

    The present study investigated the regulatory effects of fish oil and chitosan on the signals of hepatic lipid metabolism and the postulated mechanism in high-fat diet-induced obese rats. Diet supplementation of chitosan and fish oil efficiently suppressed the increased weights in body and livers of high-fat diet-fed rats. Supplementation of chitosan and fish oil significantly decreased the activities of hepatic lipid biosynthesis-related enzymes and efficiently regulated plasma lipoprotein homeostasis. Both chitosan and fish oil significantly ameliorated the alterations in the protein expressions of hepatic lipogenic transcription factors (LXRα and PPARα), and could also significantly regulate the downstream hepatic lipogenic genes (FAS, HMGCR, CYP7A1, FATP, FABP, AOX, and ABCA) expressions in high-fat diet-fed rats. These results suggest that both fish oil and chitosan exerts downregulative effects on hepatic lipid metabolism in high-fat diet-induced obese rats via the LXRα inhibition and PPARα activation, which further affect the expressions of hepatic lipogenesis-associated genes. Copyright © 2017. Published by Elsevier B.V.

  2. Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein.

    Science.gov (United States)

    Bielohuby, Maximilian; Menhofer, Dominik; Kirchner, Henriette; Stoehr, Barbara J M; Müller, Timo D; Stock, Peggy; Hempel, Madlen; Stemmer, Kerstin; Pfluger, Paul T; Kienzle, Ellen; Christ, Bruno; Tschöp, Matthias H; Bidlingmaier, Martin

    2011-01-01

    Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). We subsequently measured body composition by nuclear magnetic resonance (NMR), analyzed blood chemistry and urine acetone content, evaluated gene expression changes of key ketogenic and gluconeogenic genes, and measured energy expenditure (EE) and locomotor activity (LA) during the first 4 days and after 3 wk on the respective diets. Compared with chow, rats fed with LC-75/10, LC-65/20, and LC-55/30 gained significantly less body weight. Reductions in body weight were mainly due to lower lean body mass and paralleled by significantly increased fat mass. Levels of β-hydroxybutyate were significantly elevated feeding LC-75/10 and LC-65/20 but decreased in parallel to reductions in dietary fat. Acetone was about 16-fold higher with LC-75/10 only (P ketosis. LC-HFDs must be high in fat, but also low in protein contents to be clearly ketogenic. Independent of the macronutrient composition, LC-HFD-induced weight loss is not due to increased EE and LA.

  3. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    Science.gov (United States)

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Perceived hunger is lower and weight loss is greater in overweight premenopausal women consuming a low-carbohydrate/high-protein vs high-carbohydrate/low-fat diet.

    Science.gov (United States)

    Nickols-Richardson, Sharon M; Coleman, Mary Dean; Volpe, Joanne J; Hosig, Kathy W

    2005-09-01

    The impact of a low-carbohydrate/high-protein diet compared with a high-carbohydrate/low-fat diet on ratings of hunger and cognitive eating restraint were examined. Overweight premenopausal women consumed a low-carbohydrate/high-protein (n=13) or high-carbohydrate/low-fat diet (n=15) for 6 weeks. Fasting body weight (BW) was measured and the Eating Inventory was completed at baseline, weeks 1 to 4, and week 6. All women experienced a reduction in BW (Plow-carbohydrate/high-protein vs high-carbohydrate/low-fat group at week 6 (Plow-carbohydrate/high-protein but not in the high-carbohydrate/low-fat group from baseline to week 6. In both groups, self-rated cognitive eating restraint increased (Plow-carbohydrate/high-protein group may have contributed to a greater percentage of BW loss.

  5. Effects of Shiitake Intake on Serum Lipids in Rats Fed Different High-Oil or High-Fat Diets.

    Science.gov (United States)

    Asada, Norihiko; Kairiku, Rumi; Tobo, Mika; Ono, Akifumi

    2018-04-27

    Shiitake (Lentinula edodes) extract, eritadenine, has been shown to reduce cholesterol levels, and its hypocholesterolemic actions are involved in the metabolism of methionine. However, the mechanisms by which eritadenine affects cholesterol metabolism in animals fed a high-fat diet containing different sources of lipids have not yet been elucidated in detail. This study was conducted to investigate the effects of shiitake supplementation on serum lipid concentrations in rats fed a diet including a high amount of a plant oil (HO [high oil] and HOS [high oil with shiitake] groups), animal fat (HF [high fat] and HFS [high fat with shiitake] groups), or MCT- (medium-chain triglyceride-) rich plant oil (HM [high MCT] and HMS [high MCT with shiitake] groups). Rats in the HOS, HFS, and HMS groups were fed shiitake. When rats were fed a diet containing shiitake, serum triglyceride, cholesterol levels, and LCAT (lecithin-cholesterol acyltransferase) activities were lower in rats given MCT-rich plant oil than in those that consumed lard. The lipid type in the diet with shiitake also affected serum cholesterol levels and LCAT activities. The diet containing MCT-rich plant oil showed the greatest rates of decrease in all serum lipid profiles and LCAT activities. These results suggest that shiitake and MCT-rich plant oil work together to reduce lipid profiles and LCAT activity in serum.

  6. Long-term intake of a high prebiotic fiber diet but not high protein reduces metabolic risk after a high fat challenge and uniquely alters gut microbiota and hepatic gene expression.

    Science.gov (United States)

    Saha, Dolan C; Reimer, Raylene A

    2014-09-01

    A mismatch between early developmental diet and adulthood may increase obesity risk. Our objective was to determine the effects of re-matching rats to their weaning diets high in protein or fiber after transient high-fat/high-sucrose challenge in adulthood. We hypothesize that a long-term high fiber diet will be associated with a gut microbiota and hepatic gene expression reflective of reduced adiposity. Wistar rat pups were fed a control (C), high prebiotic fiber (HF), or high protein (HP) diet from 3-15 weeks of age; a high-fat/high-sucrose diet from 15-21 weeks; their respective C, HF, or HP diets from 21-25 weeks. Gut microbiota of cecal contents and hepatic gene expression were measured when rats were terminated at 25 weeks of age. HF rats had higher total bacteria, bifidobacteria and Bacteroides/Prevotella spp than C and HP at 25 weeks (P diet attenuated the typical increase in Firmicutes:Bacteroidetes ratio associated with consumption of a high fat diet. Lower hepatic cholesterol with long-term HF diet intake may be related to alterations in gut microbiota and hepatic lipid metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice

    Science.gov (United States)

    Buckman, Laura B.; Thompson, Misty M.; Lippert, Rachel N.; Blackwell, Timothy S.; Yull, Fiona E.; Ellacott, Kate L.J.

    2014-01-01

    Objective Introduction of a high-fat diet to mice results in a period of voracious feeding, known as hyperphagia, before homeostatic mechanisms prevail to restore energy intake to an isocaloric level. Acute high-fat diet hyperphagia induces astrocyte activation in the rodent hypothalamus, suggesting a potential role of these cells in the homeostatic response to the diet. The objective of this study was to determine physiologic role of astrocytes in the acute homeostatic response to high-fat feeding. Methods We bred a transgenic mouse model with doxycycline-inducible inhibition of NFkappaB (NFκB) signaling in astrocytes to determine the effect of loss of NFκB-mediated astrocyte activation on acute high-fat hyperphagia. ELISA was used to measure the levels of markers of astrocyte activation, glial-fibrillary acidic protein (GFAP) and S100B, in the medial basal hypothalamus. Results Inhibition of NFκB signaling in astrocytes prevented acute high-fat diet-induced astrocyte activation and resulted in a 15% increase in caloric intake (P < 0.01) in the first 24 h after introduction of the diet. Conclusions These data reveal a novel homeostatic role for astrocytes in the acute physiologic regulation of food intake in response to high-fat feeding. PMID:25685690

  8. High Dietary Fat Selectively Increases Catalase Expression within Cardiac Mitochondria*

    Science.gov (United States)

    Rindler, Paul M.; Plafker, Scott M.; Szweda, Luke I.; Kinter, Michael

    2013-01-01

    Obesity is a predictor of diabetes and cardiovascular disease. One consequence of obesity is dyslipidemia characterized by high blood triglycerides. It has been proposed that oxidative stress, driven by utilization of lipids for energy, contributes to these diseases. The effects of oxidative stress are mitigated by an endogenous antioxidant enzyme network, but little is known about its response to high fat utilization. Our experiments used a multiplexed quantitative proteomics method to measure antioxidant enzyme expression in heart tissue in a mouse model of diet-induced obesity. This experiment showed a rapid and specific up-regulation of catalase protein, with subsequent assays showing increases in activity and mRNA. Catalase, traditionally considered a peroxisomal protein, was found to be present in cardiac mitochondria and significantly increased in content and activity during high fat feeding. These data, coupled with the fact that fatty acid oxidation enhances mitochondrial H2O2 production, suggest that a localized catalase increase is needed to consume excessive mitochondrial H2O2 produced by increased fat metabolism. To determine whether the catalase-specific response is a common feature of physiological conditions that increase blood triglycerides and fatty acid oxidation, we measured changes in antioxidant expression in fasted versus fed mice. Indeed, a similar specific catalase increase was observed in mice fasted for 24 h. Our findings suggest a fundamental metabolic process in which catalase expression is regulated to prevent damage while preserving an H2O2-mediated sensing of diet composition that appropriately adjusts insulin sensitivity in the short term as needed to prioritize lipid metabolism for complete utilization. PMID:23204527

  9. Centrally administered urocortin 2 decreases gorging on high-fat diet in in both diet induced obesity-prone and -resistant rats

    Science.gov (United States)

    Cottone, Pietro; Sabino, Valentina; Nagy, Tim R.; Coscina, Donald V.; Levin, Barry E.; Zorrilla, Eric P.

    2013-01-01

    Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity. PMID:23478425

  10. Exercise protects against high-fat diet-induced hypothalamic inflammation

    NARCIS (Netherlands)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D.; Woods, Stephen C.; Hofmann, Susanna M.

    2012-01-01

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing

  11. Neonatal overfeeding attenuates acute central pro-inflammatory effects of short-term high fat diet

    Directory of Open Access Journals (Sweden)

    Guohui eCai

    2015-01-01

    Full Text Available Neonatal obesity predisposes individuals to obesity throughout life. In rats, neonatal overfeeding also leads to early accelerated weight gain that persists into adulthood. The phenotype is associated with dysfunction in a number of systems including paraventricular nucleus of the hypothalamus (PVN responses to psychological and immune stressors. However, in many cases weight gain in neonatally overfed rats stabilizes in early adulthood so the animal does not become more obese as it ages. Here we examined if neonatal overfeeding by suckling rats in small litters predisposes them to exacerbated metabolic and central inflammatory disturbances if they are also given a high fat diet in later life. In adulthood we gave the rats normal chow, 3 days, or 3 weeks high fat diet (45% kcal from fat and measured peripheral indices of metabolic disturbance. We also investigated hypothalamic microglial changes, as an index of central inflammation, as well as PVN responses to lipopolysaccharide (LPS. Surprisingly, neonatal overfeeding did not predispose rats to the metabolic effects of a high fat diet. Weight changes and glucose metabolism were unaffected by the early life experience. However, short term (3 day high fat diet was associated with more microglia in the hypothalamus and a markedly exacerbated PVN response to LPS in control rats; effects not seen in the neonatally overfed. Our findings indicate neonatally overfed animals are not more susceptible to the adverse metabolic effects of a short-term high fat diet but may be less able to respond to the central effects.

  12. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial.

    Science.gov (United States)

    Yancy, William S; Olsen, Maren K; Guyton, John R; Bakst, Ronna P; Westman, Eric C

    2004-05-18

    Low-carbohydrate diets remain popular despite a paucity of scientific evidence on their effectiveness. To compare the effects of a low-carbohydrate, ketogenic diet program with those of a low-fat, low-cholesterol, reduced-calorie diet. Randomized, controlled trial. Outpatient research clinic. 120 overweight, hyperlipidemic volunteers from the community. Low-carbohydrate diet (initially, carbohydrate daily) plus nutritional supplementation, exercise recommendation, and group meetings, or low-fat diet (fat, low-carbohydrate diet group than the low-fat diet group completed the study (76% vs. 57%; P = 0.02). At 24 weeks, weight loss was greater in the low-carbohydrate diet group than in the low-fat diet group (mean change, -12.9% vs. -6.7%; P fat mass (change, -9.4 kg with the low-carbohydrate diet vs. -4.8 kg with the low-fat diet) than fat-free mass (change, -3.3 kg vs. -2.4 kg, respectively). Compared with recipients of the low-fat diet, recipients of the low-carbohydrate diet had greater decreases in serum triglyceride levels (change, -0.84 mmol/L vs. -0.31 mmol/L [-74.2 mg/dL vs. -27.9 mg/dL]; P = 0.004) and greater increases in high-density lipoprotein cholesterol levels (0.14 mmol/L vs. -0.04 mmol/L [5.5 mg/dL vs. -1.6 mg/dL]; P low-density lipoprotein cholesterol level did not differ statistically (0.04 mmol/L [1.6 mg/dL] with the low-carbohydrate diet and -0.19 mmol/L [-7.4 mg/dL] with the low-fat diet; P = 0.2). Minor adverse effects were more frequent in the low-carbohydrate diet group. We could not definitively distinguish effects of the low-carbohydrate diet and those of the nutritional supplements provided only to that group. In addition, participants were healthy and were followed for only 24 weeks. These factors limit the generalizability of the study results. Compared with a low-fat diet, a low-carbohydrate diet program had better participant retention and greater weight loss. During active weight loss, serum triglyceride levels decreased more and high

  13. A low-fat high-carbohydrate diet reduces plasma total adiponectin concentrations compared to a moderate-fat diet with no impact on biomarkers of systemic inflammation in a randomized controlled feeding study.

    Science.gov (United States)

    Song, Xiaoling; Kestin, Mark; Schwarz, Yvonne; Yang, Pamela; Hu, Xiaojun; Lampe, Johanna W; Kratz, Mario

    2016-02-01

    We compared the effects of a eucaloric moderate-fat diet (18% protein, 36% fat, and 46% carbohydrate), a eucaloric low-fat high-carbohydrate diet (18% protein, 18% fat, and 64% carbohydrate), and a low-calorie (33% reduced) low-fat high-carbohydrate diet on biomarkers of systemic inflammation. We randomly assigned 102 participants (age 21-76 years and BMI 19.2-35.5 kg/m(2)) to the three different diets for 6 weeks in a parallel design intervention trial. All foods were provided. Ninety-three participants completed all study procedures; 92 were included in the analyses. Endpoints included plasma C-reactive protein (CRP), interleukin-6 (IL-6), soluble tumor necrosis factor receptors I and II (sTNFRI and II), and adiponectin. In the unadjusted primary analyses, none of the endpoints were differentially affected by the dietary interventions despite the significantly greater reductions in body weight and fat mass in participants consuming the low-calorie low-fat diet compared to the eucaloric diets (p loss (time × weight change interaction, p = 0.051). Adjusted for weight change, adiponectin was reduced in the groups consuming the low-fat diets relative to the moderate-fat diet (p = 0.008). No effect of the intervention diets or weight loss on CRP, IL-6, or sTNFRI and II was seen in these secondary analyses. In relatively healthy adults, moderate weight loss had minimal effects on systemic inflammation, and raised plasma adiponectin only modestly. A lower dietary fat and higher carbohydrate content had little impact on measures of systemic inflammation, but reduced adiponectin concentrations compared to a moderate-fat diet. The latter may be of concern given the consistent and strong inverse association of plasma adiponectin with many chronic diseases.

  14. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats.

    Science.gov (United States)

    Mitra, Anaya; Alvers, Kristin M; Crump, Erica M; Rowland, Neil E

    2009-01-01

    Maternal obesity is becoming more prevalent. We used borderline hypertensive rats (BHR) to investigate whether a high-fat diet at different stages of development has adverse programming consequences on metabolic parameters and blood pressure. Wistar dams were fed a high- or low-fat diet for 6 wk before mating with spontaneously hypertensive males and during the ensuing pregnancy. At birth, litters were fostered to a dam from the same diet group as during gestation or to the alternate diet condition. Female offspring were weaned on either control or "junk food" diets until about 6 mo of age. Rats fed the high-fat junk food diet were hyperphagic relative to their chow-fed controls. The junk food-fed rats were significantly heavier and had greater fat pad mass than those rats maintained on chow alone. Importantly, those rats suckled by high-fat dams had heavier fat pads than those suckled by control diet dams. Fasting serum leptin and insulin levels differed as a function of the gestational, lactational, and postweaning diet histories. Rats gestated in, or suckled by high-fat dams, or maintained on the junk food diet were hyperleptinemic compared with their respective controls. Indirect blood pressure did not differ as a function of postweaning diet, but rats gestated in the high-fat dams had lower mean arterial blood pressures than those gestated in the control diet dams. The postweaning dietary history affected food-motivated behavior; junk food-fed rats earned less food pellets on fixed (FR) and progressive (PR) ratio cost schedules than chow-fed controls. In conclusion, the effects of maternal high-fat diet during gestation or lactation were mostly small and transient. The postweaning effects of junk food diet were evident on the majority of the parameters measured, including body weight, fat pad mass, serum leptin and insulin levels, and operant performance.

  15. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High Fat Diets

    Directory of Open Access Journals (Sweden)

    Laurence B Lindenmaier

    2016-08-01

    Full Text Available Low bone mass is often associated with increased bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Genetic (e.g., leptin deficiency and high fat diet-induced (e.g., leptin resistance obesity are associated with increased marrow adipose tissue (MAT and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice using recombinant adeno-associated virus (rAAV gene therapy. In a first study, eight- to ten-week-old male ob/ob mice were randomized into 4 groups: (1 untreated, (2 rAAV-Lep, (3 rAAV-green fluorescent protein (rAAV-GFP, or (4 pair-fed to rAAV-Lep. For vector administration, mice were placed in a Kopf stereotaxic apparatus, and injected intracerebroventricularly with either rAAV-Lep or rAAV-GFP (9 × 107 particles in 1.5 µl. The mice were maintained for 30 weeks following vector administration. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high fat diets. Eight- to ten-week-old male ob/ob mice were randomized into 2 groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high fat diet for 8 weeks. Wild type (WT controls included age-matched mice fed regular or high fat diet. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high fat diet to values similar to WT mice fed regular diet. These

  16. High dietary fat intake during lactation promotes development of diet-induced obesity in male offspring of mice.

    Science.gov (United States)

    Tsuduki, Tsuyoshi; Kitano, Yasuna; Honma, Taro; Kijima, Ryo; Ikeda, Ikuo

    2013-01-01

    The maternal nutritional status during pregnancy and lactation influences the risk of obesity in offspring, but the details of this phenomenon are unclear. In particular, there is little information on the influence on the offspring of the maternal nutritional status during lactation only. Therefore, in this study, we examined the influence of high dietary fat intake in dams during lactation on the risk of obesity in offspring, using C57BL/6J mice. The mice were fed a control diet (CD) during pregnancy. After birth, dams were fed a CD or a high-fat diet (HD) during lactation (3 wk). Fat and energy were significantly increased in milk from dams fed a HD during lactation. Male offspring were weaned at 3 wk old and fed a CD for 4 wk, which resulted in no significant difference in their physique. Four weeks after weaning, the offspring (7 wk old) were fed a CD or HD for 4 wk to induce obesity. High dietary fat intake in dams and offspring promoted lipid accumulation in white adipose tissue and adipocyte hypertrophy in male offspring. The underlying mechanism may involve an increase in expression of Lpl and a decrease in expression of Hsl in white adipose tissue of offspring. In conclusion, our results show that high dietary fat intake during lactation promotes development of diet-induced obesity in male offspring.

  17. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Wang, Dongmei; Yan, Junqiang; Chen, Jing; Wu, Wenlan; Zhu, Xiaoying; Wang, Yong

    2015-10-01

    The epidemic and experimental studies have confirmed that the obesity induced by high-fat diet not only caused neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment in mice. Naringin has been reported to posses biological functions which are beneficial to human cognitions, but its protective effects on HFD-induced cognitive deficits and underlying mechanisms have not been well characterized. In the present study Male C57BL/6 J mice were fed either a control or high-fat diet for 20 weeks and then randomized into four groups treated with their respective diets including control diet, control diet + naringin, high-fat diet (HFD), and high-fat diet + naringin (HFDN). The behavioral performance was assessed by using novel object recognition test and Morris water maze test. Hippocampal mitochondrial parameters were analyzed. Then the protein levels of insulin signaling pathway and the AMP-activated protein kinase (AMPK) in the hippocampus were detected by Western blot method. Our results showed that oral administration of naringin significantly improved the learning and memory abilities as evidenced by increasing recognition index by 52.5% in the novel object recognition test and inducing a 1.05-fold increase in the crossing-target number in the probe test, and ameliorated mitochondrial dysfunction in mice caused by HFD consumption. Moreover, naringin significantly enhanced insulin signaling pathway as indicated by a 34.5% increase in the expression levels of IRS-1, a 47.8% decrease in the p-IRS-1, a 1.43-fold increase in the p-Akt, and a 1.89-fold increase in the p-GSK-3β in the hippocampus of the HFDN mice versus HFD mice. Furthermore, the AMPK activity significantly increased in the naringin-treated (100 mg kg(-1) d(-1)) group. These findings suggest that an enhancement in insulin signaling and a decrease in mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms that naringin

  18. Effect of Short-Term High Fat Diet Inducing Obesity on Hematological, Some Biochemical Parameters and Testicular Oxidative Stress in Male Rats

    Directory of Open Access Journals (Sweden)

    Sherif M. Shawky

    2015-10-01

    Full Text Available Obesity constitutes a health problem due to its increasing worldwide prevalence. Among the health detriments caused by obesity, reproduction is disrupted. Some studies have shown a relationship between obesity and infertility, but until now it remains controversial. The objective of the current work was to examine the effect of diet-induced obesity on blood parameters, liver and kidney function tests, lipid profile and testicular oxidative stress. For that purpose, Male rats were fed ad libitum with a standard diet (control group; n.= 15 and high fat diet (HFD group; n.= 15 for 6 weeks. Hematological parameters, urea, creatinine, albumin were similar between the two groups. Intergroup testosterone levels were also comparable. The high fat diet induced significant increase in serum triglycerides, cholesterol, low density lipoprotein and very low density lipoprotein cholesterol concentrations. This diet also increases significantly alanine aminotransferase and aspartate aminotransferase activities and decreased total protein level and high-density lipoprotein cholesterol concentration. Furthermore, HFD showed a significant increasing in malondialdehyde contents in testes and decreasing in superoxide dismutase activity, the results of this study concluded that short-term high fat diet affect on liver enzymes and causing oxidative stress in testes.

  19. High-protein diet selectively reduces fat mass and improves glucose tolerance in Western-type diet-induced obese rats

    Science.gov (United States)

    Stengel, Andreas; Goebel-Stengel, Miriam; Wang, Lixin; Hu, Eugenia; Karasawa, Hiroshi; Pisegna, Joseph R.

    2013-01-01

    Obesity is an increasing health problem. Because drug treatments are limited, diets remain popular. High-protein diets (HPD) reduce body weight (BW), although the mechanisms are unclear. We investigated physiological mechanisms altered by switching diet induced obesity (DIO) rats from Western-type diet (WTD) to HPD. Male rats were fed standard (SD) or WTD (45% calories from fat). After developing DIO (50% of rats), they were switched to SD (15% calories from protein) or HPD (52% calories from protein) for up to 4 weeks. Food intake (FI), BW, body composition, glucose tolerance, insulin sensitivity, and intestinal hormone plasma levels were monitored. Rats fed WTD showed an increased FI and had a 25% greater BW gain after 9 wk compared with SD (P Diet-induced obese rats switched from WTD to HPD reduced daily FI by 30% on day 1, which lasted to day 9 (−9%) and decreased BW during the 2-wk period compared with SD/SD (P < 0.05). During these 2 wk, WTD/HPD rats lost 72% more fat mass than WTD/SD (P < 0.05), whereas lean mass was unaltered. WTD/HPD rats had lower blood glucose than WTD/SD at 30 min postglucose gavage (P < 0.05). The increase of pancreatic polypeptide and peptide YY during the 2-h dark-phase feeding was higher in WTD/HPD compared with WTD/SD (P < 0.05). These data indicate that HPD reduces BW in WTD rats, which may be related to decreased FI and the selective reduction of fat mass accompanied by improved glucose tolerance, suggesting relevant benefits of HPD in the treatment of obesity. PMID:23883680

  20. Antiobesity Effects of the Ethanol Extract of Laminaria japonica Areshoung in High-Fat-Diet-Induced Obese Rat

    Directory of Open Access Journals (Sweden)

    Woong Sun Jang

    2013-01-01

    Full Text Available Laminaria japonica Areshoung, a widely consumed marine vegetable, has traditionally been used in Korean maternal health. The present study investigated the antiobesity effects of Laminaria japonica Areshoung ethanol extract (LE and its molecular mechanism in high-fat-diet-induced obese rats. Six-week-old Sprague-Dawley male rats were separately fed a normal diet or a high-calorie high-fat diet for 6 weeks; then they were treated with LE or tea catechin for another 6 weeks. LE administration significantly decreased the body weight gain, fat-pad weights, and serum and hepatic lipid levels in HD-induced obese rats. The histological analysis revealed that LE-treated group showed a significantly decreased number of lipid droplets and size of adipocytes compared to the HD group. To elucidate the mechanism of action of LE, the levels of genes and proteins involved in obesity were measured in the liver and skeletal muscle. LE treatment resulted in an increased expression of fatty acid oxidation and thermogenesis-related genes in obese rats. Conversely, the expression of the fat intake-related gene (ACC2 and lipogenesis-related genes was reduced by LE treatment. Additionally, LE treatment increased the phosphorylation of AMP-activated protein kinase and its direct downstream protein, acetyl coenzyme A carboxylase, which is one of the rate-limiting enzymes in fatty acid synthesis pathway. These findings demonstrate that LE treatment has a protective effect against a high-fat-diet-induced obesity in rats through regulation of expression of genes and proteins involved in lipolysis and lipogenesis.

  1. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance.

    Science.gov (United States)

    Bosse, John D; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E Dale; Pereira, Troy J; Dolinsky, Vernon W; Symons, J David; Jalili, Thunder

    2013-06-15

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-HF had lower (P vs. 159 ± 3 mmHg) but a similar degree of cardiac hypertrophy (33.4 ± 0.4 vs. 33.1 ± 0.4 heart weight/tibia length, mg/mm). Mesenteric arteries and the entire aorta were used to assess vascular function and endothelial nitric oxide synthase (eNOS) signaling, respectively. Endothelium-dependent (acetylcholine) relaxation of mesenteric arteries was improved (P vs. SHR-C, whereas contraction (potassium chloride, phenylephrine) was reduced (P vs. SHR-C. Plasma glucose, insulin, and homoeostatic model of insulin assessment were lower (P vs. SHR-C, whereas peripheral insulin sensitivity (insulin tolerance test) was similar. After a 10-h fast, insulin stimulation (2 U/kg ip) increased (P vs. SHR-HF. In conclusion, a low-carbohydrate/high-fat diet reduced blood pressure and improved arterial function in SHR without producing signs of insulin resistance or altering insulin-mediated signaling in the heart, skeletal muscle, or vasculature.

  2. Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high-fat feeding regardless of insulin-sensitizing treatment.

    Science.gov (United States)

    Newsom, Sean A; Miller, Benjamin F; Hamilton, Karyn L; Ehrlicher, Sarah E; Stierwalt, Harrison D; Robinson, Matthew M

    2017-11-01

    Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial, with reports varying from decreases to increases in mitochondrial respiration. We investigated the impact of changes in insulin sensitivity on long-term rates of mitochondrial protein synthesis as a mechanism for changes to mitochondrial respiration in skeletal muscle. Insulin resistance was induced in C57BL/6J mice using 4 wk of a high-fat compared with a low-fat diet. For 8 additional weeks, diets were enriched with pioglitazone to restore insulin sensitivity compared with nonenriched control low-fat or high-fat diets. Skeletal muscle mitochondrial protein synthesis was measured using deuterium oxide labeling during weeks 10-12 High-resolution respirometry was performed using palmitoyl-l-carnitine, glutamate+malate, and glutamate+malate+succinate as substrates for mitochondria isolated from quadriceps. Mitochondrial protein synthesis and palmitoyl- l-carnitine oxidation were increased in mice consuming a high-fat diet, regardless of differences in insulin sensitivity with pioglitazone treatment. There was no effect of diet or pioglitazone treatment on ADP-stimulated respiration or H 2 O 2 emission using glutamate+malate or glutamate+malate+succinate. The results demonstrate no impairments to mitochondrial protein synthesis or respiration following induction of insulin resistance. Instead, mitochondrial protein synthesis was increased with a high-fat diet and may contribute to remodeling of the mitochondria to increase lipid oxidation capacity. Mitochondrial adaptations with a high-fat diet appear driven by nutrient availability, not intrinsic defects that contribute to insulin resistance. Copyright © 2017 the

  3. Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF

    OpenAIRE

    Moy, Gregory A.; McNay, Ewan C.

    2012-01-01

    Obesity, high-fat diets, and subsequent type 2 diabetes (T2DM) are associated with cognitive impairment. Moreover, T2DM increases the risk of Alzheimer’s disease (AD) and leads to abnormal elevation of brain beta-amyloid levels, one of the hallmarks of AD. The psychoactive alkaloid caffeine has been shown to have therapeutic potential in AD but the central impact of caffeine has not been well-studied in the context of a high-fat diet. Here we investigated the impact of caffeine administration...

  4. Diet-induced increases in chemerin are attenuated by exercise and mediate the effect of diet on insulin and HOMA-IR.

    Science.gov (United States)

    Lloyd, Jesse W; Zerfass, Kristy M; Heckstall, Ebony M; Evans, Kristin A

    2015-10-01

    Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p HOMA-IR; 846.5 ± 1723.3%, p HOMA-IR. Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin.

  5. A high-fat diet and NAD+ activate sirt1 to rescue premature aging in cockayne syndrome

    DEFF Research Database (Denmark)

    Scheibye-Knudsen, Morten; Mitchell, Sarah J.; Fang, Evandro F.

    2014-01-01

    -fat, caloric-restricted, or resveratrol-supplemented diet. High-fat feeding rescued the metabolic, transcriptomic, and behavioral phenotypes of Csbm/m mice. Furthermore, premature aging in CS mice, nematodes, and human cells results from aberrant PARP activation due to deficient DNA repair leading to decreased......Cockayne syndrome (CS) is an accelerated aging disorder characterized by progressive neurodegeneration caused by mutations in genes encoding the DNA repair proteins CS group A or B (CSA or CSB). Since dietary interventions can alter neurodegenerative processes, Csbm/m mice were given a high...... SIRT1 activity and mitochondrial dysfunction. Notably, β-hydroxybutyrate levels are increased by the high-fat diet, and β-hydroxybutyrate, PARP inhibition, or NAD+ supplementation can activate SIRT1 and rescue CS-associated phenotypes. Mechanistically, CSB can displace activated PARP1 from damaged DNA...

  6. Diet-induced increases in chemerin are attenuated by exercise and mediate the effect of diet on insulin and HOMA-IR

    Science.gov (United States)

    Lloyd, Jesse W.; Zerfass, Kristy M.; Heckstall, Ebony M.; Evans, Kristin A.

    2015-01-01

    Objectives: Chemerin concentrations are elevated in obesity and associated with inflammation and insulin resistance. Exercise improves insulin sensitivity, which may be facilitated by changes in chemerin. We explored the effects of chronic exercise on chemerin levels in diet-induced obese mice. Methods: We divided 40 mice into 4 groups: high-fat diet/exercise, high-fat diet/sedentary, normal diet/exercise, and normal diet/sedentary. A 9-week dietary intervention was followed by a 12-week exercise intervention (treadmill run: 11 m/min for 30 min, 3×/week). We analyzed blood samples before and after the exercise intervention. We used t-tests and linear regression to examine changes in chemerin, insulin resistance, and inflammatory markers, and associations between changes in chemerin and all other biomarkers. Results: Chemerin increased significantly across all mice over the 12-week intervention (mean ± SD = 40.7 ± 77.8%, p = 0.01), and this increase was smaller in the exercise versus sedentary mice (27.2 ± 83.9% versus 54.9 ± 70.5%, p = 0.29). The increase among the high-fat diet/exercise mice was ~44% lower than the increase among the high-fat diet/sedentary mice (55.7 ± 54.9% versus 99.8 ± 57.7%, p = 0.12). The high-fat diet mice showed significant increases in insulin (773.5 ± 1286.6%, p diet-induced increases in insulin and HOMA-IR. Conclusion: Chronic exercise may attenuate diet-driven increases in circulating chemerin, and the insulin resistance associated with a high-fat diet may be mediated by diet-induced increases in chemerin. PMID:26445641

  7. Green tea (-)-epigallocatechin-3-gallate counteracts daytime overeating induced by high-fat diet in mice.

    Science.gov (United States)

    Li, Hongyu; Kek, Huiling Calvina; Lim, Joy; Gelling, Richard Wayne; Han, Weiping

    2016-12-01

    High-fat diet (HFD) induces overeating and obesity. Green tea (-)-epigallocatechin-3-gallate (EGCG) reduces HFD-induced body weight and body fat gain mainly through increased lipid metabolism and fat oxidation. However, little is known about its effect on HFD-induced alterations in feeding behavior. Three diet groups of wildtype C57B/6j male mice at 5 months old were fed on normal chow diet, 1 week of HFD (60% of energy) and 3 months of HFD (diet-induced obesity (DIO)) prior to EGCG supplement in respective diet. EGCG had no effect on feeding behavior in normal chow diet group. Increased daytime feeding induced by HFD was selectively corrected by EGCG treatment in HFD groups, including reversed food intake, feeding frequency and meal size in HFD + EGCG group, and reduced food intake and feeding frequency in DIO + EGCG group. Moreover, EGCG treatment altered diurnally oscillating expression pattern of key appetite-regulating genes, including AGRP, POMC, and CART, and key circadian genes Clock and Bmal1 in hypothalamus of DIO mice, indicating its central effect on feeding regulation. Our study demonstrates that EGCG supplement specifically counteracts daytime overeating induced by HFD in mice, suggesting its central role in regulating feeding behavior and energy homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats.

    Science.gov (United States)

    Barella, Luiz F; Miranda, Rosiane A; Franco, Claudinéia C S; Alves, Vander S; Malta, Ananda; Ribeiro, Tatiane A S; Gravena, Clarice; Mathias, Paulo C F; de Oliveira, Júlio C

    2015-01-01

    What is the central question of this study? Different nerve contributes periods of life are known for their differential sensitivity to interventions, and increased parasympathetic activity affects the development and maintenance of obesity. Thus, we evaluated the involvement of the vagus nerve by performing a vagotomy in young or adult rats that were offered an obesogenic high-fat diet. What is the main finding and its importance? Although the accumulation of adipose tissue decreased in both younger and older groups, the younger rats showed a greater response to the effects of vagotomy in general. In addition to the important role of the parasympathetic activity, we suggest that the vagus nerve contributes to the condition of obesity. Obesity has become a global problem, and this condition develops primarily because of an imbalance between energy intake and expenditure. The high complexity involved in the regulation of energy metabolism results from several factors besides endocrine factors. It has been suggested that obesity could be caused by an imbalance in the autonomous nervous system, which could lead to a condition of high parasympathetic activity in counterpart to low sympathetic tonus. High-fat (HF) diets have been used to induce obesity in experimental animals, and their use in animals leads to insulin resistance, hyperinsulinaemia and high parasympathetic activity, among other disorders. The aim of this work was to evaluate the effects of a vagotomy performed at the initiation of a HF diet at two different stages of life, weaning and adulthood. The vagotomy reduced parasympathetic activity (-32 and -51% in normal fat-fed rats and -43 and -55% in HF diet-fed rats; P fat depots (-17 and -33%, only in HF diet-fed rats; P fat diet-fed rats exhibited fasting hyperinsulinaemia (fivefold higher in young rats and threefold higher in older rats; P diet-fed groups was not altered in the vagotomized rats. We suggest that the vagus nerve, in addition to the

  9. A low-carbohydrate/high-fat diet improves glucoregulation in type 2 diabetes mellitus by reducing postabsorptive glycogenolysis.

    Science.gov (United States)

    Allick, Gideon; Bisschop, Peter H; Ackermans, Mariette T; Endert, Erik; Meijer, Alfred J; Kuipers, Folkert; Sauerwein, Hans P; Romijn, Johannes A

    2004-12-01

    The aim of this study was to examine the mechanisms by which dietary carbohydrate and fat modulate fasting glycemia. We compared the effects of an eucaloric high-carbohydrate (89% carbohydrate) and high-fat (89% fat) diet on fasting glucose metabolism and insulin sensitivity in seven obese patients with type 2 diabetes using stable isotopes and euglycemic hyperinsulinemic clamps. At basal insulin levels glucose concentrations were 148 +/- 11 and 123 +/- 11 mg/dl (8.2 +/- 0.6 and 6.8 +/- 0.6 mmol/liter) on the high-carbohydrate and high-fat diet, respectively (P carbohydrate diet (1.88 +/- 0.06 vs. 1.55 +/- 0.05 mg/kg.min (10.44 +/- 0.33 vs. 8.61 +/- 0.28 micromol/kg.min) (P carbohydrate and high-fat diet, respectively. We conclude that short-term variations in dietary carbohydrate to fat ratios affect basal glucose metabolism in people with type 2 diabetes merely through modulation of the rate of glycogenolysis, without affecting insulin sensitivity of glucose metabolism.

  10. Omega-3 fatty acids revert high-fat diet-induced neuroinflammation but not recognition memory impairment in rats.

    Science.gov (United States)

    de Andrade, Aline Marcelino; Fernandes, Marilda da Cruz; de Fraga, Luciano Stürmer; Porawski, Marilene; Giovenardi, Márcia; Guedes, Renata Padilha

    2017-12-01

    Neuroinflammation is a consequence of overeating and may predispose to the development of cognitive decline and neurological disorders. This study aimed to evaluate the impact of omega-3 supplementation on memory and neuroinflammatory markers in rats fed a high-fat diet. Male Wistar rats were divided into four groups: standard diet (SD); standard diet + omega-3 (SD + O); high fat diet (HFD); and high fat diet + omega-3 (HFD + O). Diet administration was performed for 20 weeks and omega-3 supplementation started at the 16th week. HFD significantly increased body weight, while omega-3 supplementation did not modify the total weight gain. However, animals from the HFD + O group showed a lower level of visceral fat along with an improvement in insulin sensitivity following HFD. Thus, our results demonstrate a beneficial metabolic role of omega-3 following HFD. On the other hand, HFD animals presented an impairment in object recognition memory, which was not recovered by omega-3. In addition, there was an increase in GFAP-positive cells in the cerebral cortex of the HFD group, showing that omega-3 supplementation can be effective to decrease astrogliosis. However, no differences in GFAP number of cells were found in the hippocampus. We also demonstrated a significant increase in gene expression of pro-inflammatory cytokines IL-6 and TNF-α in cerebral cortex of the HFD group, reinforcing the anti-inflammatory role of this family of fatty acids. In summary, omega-3 supplementation was not sufficient to reverse the memory deficit caused by HFD, although it played an important role in reducing the neuroinflammatory profile. Therefore, omega-3 fatty acids may play an important role in the central nervous system, preventing the progression of neuroinflammation in obesity.

  11. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  12. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet.

    Science.gov (United States)

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  13. Anti-oxidant and anti-hyperlipidemic activity of Hemidesmus indicus in rats fed with high-fat diet

    Directory of Open Access Journals (Sweden)

    Suganya Venkateshan

    2016-08-01

    Full Text Available Objective: Dietary changes playmajor risk roles in oxidative stress andcardiovascular disease and modulate normal metabolic function. The present study was designed to investigate the ameliorative potential of different extracts of Hemidesmus indicus to experimental high-fat diet in wistar rats, and their possible mechanism of action.  Materials and Methods: Male wistar rats were divided into 6 groups (n=6/group andfed with a standard diet (control, high-fat diet (HFD, high-fat diet supplemented with different extracts and positive control for 9 weeks. High-fat diet induced changes in average body weight andoxidative stress and elevated levels of plasma lipid profilein rats. Results: Oral administration of methanolic extract of H. indicus(200 mg/kg offered a significant dose-dependent protection against HFD-induced oxidative stress, as reflected in the levels of catalase (pConclusion: The present study revealed that the methanolic extract of H.indicus protects against oxidative stress, hyperlipidemia and liver damage.

  14. A High Fat Diet during Adolescence in Male Rats Negatively Programs Reproductive and Metabolic Function Which Is Partially Ameliorated by Exercise

    Directory of Open Access Journals (Sweden)

    Carlos A. Ibáñez

    2017-11-01

    Full Text Available An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF diet during adolescence. The effect of physical training (Ex in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w for 30 days then subsequently fed a normal fat diet (NF for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se. At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive

  15. Effects of medium-chain triglycerides on gluconeogenesis and ureagenesis in weaned rats fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Chitose Sugiyama

    2015-12-01

    Full Text Available We explored the effects of Medium-chain triglycerides (MCT on gluconeogenesis and ureagenesis in the liver of weaned male rats fed high fat, carbohydrate-free diets. The rats of three experimental groups and control were fed for 10 days. The diets were high fat, carbohydrate-free diets consisting either of a corn oil or MCT, and high protein carbohydrate-free diet and a control (high carbohydrate diet. The hepatic glucose-6-phosphatase (G6Pase activity increased in the experimental groups. Despite the elevated G6Pase activity in these groups, hepatic activities of glutamic alanine transaminase (GAT, pyruvate carboxylase (PC and arginase differed among the experimental groups. The HF-corn oil rats showed elevation of PC activity, but no elevation of GAT activity, and the lowest arginase activity among the three groups. The HF-MCT diet-fed rats showed higher GAT and arginase activities than the HF-corn oil group. In the HP diet-fed rats, GAT and arginase activities enhanced, PC did not.

  16. A Lower-Carbohydrate, Higher-Fat Diet Reduces Abdominal and Intermuscular Fat and Increases Insulin Sensitivity in Adults at Risk of Type 2 Diabetes123

    Science.gov (United States)

    Gower, Barbara A; Goss, Amy M

    2015-01-01

    Background: Obesity, particularly visceral and ectopic adiposity, increases the risk of type 2 diabetes. Objective: The aim of this study was to determine if restriction of dietary carbohydrate is beneficial for body composition and metabolic health. Methods: Two studies were conducted. In the first, 69 overweight/obese men and women, 53% of whom were European American (EA) and 47% of whom were African American (AA), were provided with 1 of 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 43%, 18%, and 39%, respectively) for 8 wk at a eucaloric level and 8 wk at a hypocaloric level. In the second study, 30 women with polycystic ovary syndrome (PCOS) were provided with 2 diets (lower-fat diet: 55%, 18%, and 27% of energy from carbohydrate, protein, and fat, respectively; lower-carbohydrate diet: 41%, 19%, and 40%, respectively) at a eucaloric level for 8 wk in a random-order crossover design. Results: As previously reported, among overweight/obese adults, after the eucaloric phase, participants who consumed the lower-carbohydrate vs. the lower-fat diet lost more intra-abdominal adipose tissue (IAAT) (11 ± 3% vs. 1 ± 3%; P diet had 4.4% less total fat mass. Original to this report, across the entire 16-wk study, AAs lost more fat mass with a lower-carbohydrate diet (6.2 vs. 2.9 kg; P diets. As previously reported, among women with PCOS, the lower-carbohydrate arm showed decreased fasting insulin (−2.8 μIU/mL; P < 0.001) and fasting glucose (−4.7 mg/dL; P < 0.01) and increased insulin sensitivity (1.06 arbitrary units; P < 0.05) and “dynamic” β-cell response (96.1 · 109; P < 0.001). In the lower-carbohydrate arm, women lost both IAAT (−4.8 cm2; P < 0.01) and intermuscular fat (−1.2 cm2; P < 0.01). In the lower-fat arm, women lost lean mass (−0.6 kg; P < 0.05). Original to this report, after the lower-carbohydrate arm, the change in IAAT was positively associated with the

  17. Goat Milk Kefir Supplemented with Porang Glucomannan Improves Lipid Profile and Haematological Parameter in Rat Fed High Fat and High Fructose Diet

    Directory of Open Access Journals (Sweden)

    Nurliyani

    2018-03-01

    Full Text Available Background and Aims: Diet with a high fat and high sugar is associated with an increased incindence of the metabolic syndrome. Kefir has been known as a natural probiotic, while glucomannan from porang (Amorphophallus oncophyllus tuber was demonstrated as prebiotic in vivo. Probiotics and prebiotics can be used adjuvant nutritional therapy for metabolic syndrome. The aim of this study was to evaluate the effect of goat milk kefir supplemented with porang glucomannan on the lipid profile and haematological parameters in rats fed with a high-fat/high-fructose (HFHF diet.

  18. A high-fat, high-protein diet attenuates the negative impact of casein-induced chronic inflammation on testicular steroidogenesis and sperm parameters in adult mice.

    Science.gov (United States)

    Zhao, Jing-Lu; Zhao, Yu-Yun; Zhu, Wei-Jie

    2017-10-01

    The interaction between obesity and chronic inflammation has been studied. Diet-induced obesity or chronic inflammation could reduce the testicular functions of males. However, the mechanism underlying the reproductive effects of fattening foods in males with or without chronic inflammation still needs further discussion. This study was aimed to investigate the effects of high-fat, high-protein diet on testicular steroidogenesis and sperm parameters in adult mice under physiological and chronic inflammatory conditions. Because casein can trigger a non-infectious systemic inflammatory response, we used casein injection to induce chronic inflammation in male adult Kunming mice. Twenty-four mice were randomly and equally divided into four groups: (i) normal diet+saline (Control); (ii) normal diet+casein (ND+CS); (iii) high-fat, high-protein diet+saline (HFPD+SI); (iv) high-fat, high-protein diet+casein (HFPD+CS). After 8weeks, there was a significant increase in body weight for groups HFPD+SI and HFPD+CS and a decrease in group ND+CS compared with the control. The serum levels of tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10) and lipid profiles were increased markedly in groups ND+CS, HFPD+SI and HFPD+CS compared with the control. A remarkable reduction of serum adiponectin level occurred in group HFPD+CS compared with group ND+CS. Sperm parameters (sperm count, viability and abnormality) were also adversely affected in groups ND+CS and HFPD+SI. Groups ND+CS and HFPD+SI showed severe pathological changes in testicular tissues. Semiquantitative RT-PCR, Western blot and immunohistochemical staining also showed significant reductions in both testicular mRNA and protein levels of steroidogenic acute regulatory (StAR) and cytochrome P450scc (CYP11A1) in groups HFPD+SI and HFPD+CS compared with the control, whereas testicular mRNA and protein levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) in groups HFPD+SI and HFPD+CS significantly increased. The m

  19. Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system.

    Science.gov (United States)

    Buckman, Laura B; Hasty, Alyssa H; Flaherty, David K; Buckman, Christopher T; Thompson, Misty M; Matlock, Brittany K; Weller, Kevin; Ellacott, Kate L J

    2014-01-01

    Obesity is associated with chronic low-grade inflammation in peripheral tissues caused, in part, by the recruitment of inflammatory monocytes into adipose tissue. Studies in rodent models have also shown increased inflammation in the central nervous system (CNS) during obesity. The goal of this study was to determine whether obesity is associated with recruitment of peripheral immune cells into the CNS. To do this we used a bone marrow chimerism model to track the entry of green-fluorescent protein (GFP) labeled peripheral immune cells into the CNS. Flow cytometry was used to quantify the number of GFP(+) immune cells recruited into the CNS of mice fed a high-fat diet compared to standard chow fed controls. High-fat feeding resulted in obesity associated with a 30% increase in the number of GFP(+) cells in the CNS compared to control mice. Greater than 80% of the GFP(+) cells recruited to the CNS were also CD45(+) CD11b(+) indicating that the GFP(+) cells displayed characteristics of microglia/macrophages. Immunohistochemistry further confirmed the increase in GFP(+) cells in the CNS of the high-fat fed group and also indicated that 93% of the recruited cells were found in the parenchyma and had a stellate morphology. These findings indicate that peripheral immune cells can be recruited to the CNS in obesity and may contribute to the inflammatory response. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Decreases in high-fat and/or high added sugar food group intake occur when a hypocaloric, low-fat diet is prescribed within a lifestyle intervention: a secondary cohort analysis

    Science.gov (United States)

    Keshani, Vaishali Deepak; Sheikh, Vaishali Keshani; Raynor, Hollie Anne

    2016-01-01

    Background When a hypocaloric, low-fat diet is prescribed, intake of currently consumed foods can decrease, foods naturally low in fat and/or added sugar may increase, or fat- or sugar-modified foods may increase. Objective Examine food group intake change and its relation to reductions in energy and fat intake, and weight during a lifestyle intervention. Design Secondary cohort analysis. Participants One hundred sixty-nine participants (52.0 ± 8.6 years, 34.9 ± 4.5 kg/m2, 92% white, 97.6% non-Hispanic, and 56.8% female) with complete data at 0 and 6 months collected in a research setting. Main Outcome Measures From 3, 24-hr phone dietary recalls, 165 food groups from NDSR software were coded into 25 larger food groups assessing intake of higher fat and/or added sugar food groups vs. naturally lower fat and/or added sugar food groups and into 17 larger food groups assessing intake of non-modified vs. fat- and/or sugar-modified food groups. Statistical Analyses Performed Repeated measures analyses of covariance (intervention group: covariate) assessed changes from 0 to 6 months. Hierarchical regressions examined changes in food group intake and changes in energy intake, percent energy from fat intake, and weight from 0 to 6 months. Results Significant reductions (p hypocaloric, low-fat diet is prescribed, reductions in high-fat and/or high-added sugar food groups occur. Targeting reductions in high-fat meats may improve outcomes. PMID:27436530

  1. Effects of a very high saturated fat diet on LDL particles in adults with atherogenic dyslipidemia: A randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Sally Chiu

    Full Text Available Previous studies have shown that increases in LDL-cholesterol resulting from substitution of dietary saturated fat for carbohydrate or unsaturated fat are due primarily to increases in large cholesterol-enriched LDL, with minimal changes in small, dense LDL particles and apolipoprotein B. However, individuals can differ by their LDL particle distribution, and it is possible that this may influence LDL subclass response.The objective of this study was to test whether the reported effects of saturated fat apply to individuals with atherogenic dyslipidemia as characterized by a preponderance of small LDL particles (LDL phenotype B.Fifty-three phenotype B men and postmenopausal women consumed a baseline diet (55%E carbohydrate, 15%E protein, 30%E fat, 8%E saturated fat for 3 weeks, after which they were randomized to either a moderate carbohydrate, very high saturated fat diet (HSF; 39%E carbohydrate, 25%E protein, 36%E fat, 18%E saturated fat or low saturated fat diet (LSF; 37%E carbohydrate, 25%E protein, 37%E fat, 9%E saturated fat for 3 weeks.Compared to the LSF diet, consumption of the HSF diet resulted in significantly greater increases from baseline (% change; 95% CI in plasma concentrations of apolipoprotein B (HSF vs. LSF: 9.5; 3.6 to 15.7 vs. -6.8; -11.7 to -1.76; p = 0.0003 and medium (8.8; -1.3 to 20.0 vs. -7.3; -15.7 to 2.0; p = 0.03, small (6.1; -10.3 to 25.6 vs. -20.8; -32.8 to -6.7; p = 0.02, and total LDL (3.6; -3.2 to 11.0 vs. -7.9; -13.9 to -1.5; p = 0.03 particles, with no differences in change of large and very small LDL concentrations. As expected, total-cholesterol (11.0; 6.5 to 15.7 vs. -5.7; -9.4 to -1.8; p<0.0001 and LDL-cholesterol (16.7; 7.9 to 26.2 vs. -8.7; -15.4 to -1.4; p = 0.0001 also increased with increased saturated fat intake.Because medium and small LDL particles are more highly associated with cardiovascular disease than are larger LDL, the present results suggest that very high saturated fat intake may

  2. Effects of a very high saturated fat diet on LDL particles in adults with atherogenic dyslipidemia: A randomized controlled trial.

    Science.gov (United States)

    Chiu, Sally; Williams, Paul T; Krauss, Ronald M

    2017-01-01

    Previous studies have shown that increases in LDL-cholesterol resulting from substitution of dietary saturated fat for carbohydrate or unsaturated fat are due primarily to increases in large cholesterol-enriched LDL, with minimal changes in small, dense LDL particles and apolipoprotein B. However, individuals can differ by their LDL particle distribution, and it is possible that this may influence LDL subclass response. The objective of this study was to test whether the reported effects of saturated fat apply to individuals with atherogenic dyslipidemia as characterized by a preponderance of small LDL particles (LDL phenotype B). Fifty-three phenotype B men and postmenopausal women consumed a baseline diet (55%E carbohydrate, 15%E protein, 30%E fat, 8%E saturated fat) for 3 weeks, after which they were randomized to either a moderate carbohydrate, very high saturated fat diet (HSF; 39%E carbohydrate, 25%E protein, 36%E fat, 18%E saturated fat) or low saturated fat diet (LSF; 37%E carbohydrate, 25%E protein, 37%E fat, 9%E saturated fat) for 3 weeks. Compared to the LSF diet, consumption of the HSF diet resulted in significantly greater increases from baseline (% change; 95% CI) in plasma concentrations of apolipoprotein B (HSF vs. LSF: 9.5; 3.6 to 15.7 vs. -6.8; -11.7 to -1.76; p = 0.0003) and medium (8.8; -1.3 to 20.0 vs. -7.3; -15.7 to 2.0; p = 0.03), small (6.1; -10.3 to 25.6 vs. -20.8; -32.8 to -6.7; p = 0.02), and total LDL (3.6; -3.2 to 11.0 vs. -7.9; -13.9 to -1.5; p = 0.03) particles, with no differences in change of large and very small LDL concentrations. As expected, total-cholesterol (11.0; 6.5 to 15.7 vs. -5.7; -9.4 to -1.8; pvs. -8.7; -15.4 to -1.4; p = 0.0001) also increased with increased saturated fat intake. Because medium and small LDL particles are more highly associated with cardiovascular disease than are larger LDL, the present results suggest that very high saturated fat intake may increase cardiovascular disease risk in phenotype B

  3. A PUFA-rich diet improves fat oxidation following saturated fat-rich meal.

    Science.gov (United States)

    Stevenson, Jada L; Miller, Mary K; Skillman, Hannah E; Paton, Chad M; Cooper, Jamie A

    2017-08-01

    To determine substrate oxidation responses to saturated fatty acid (SFA)-rich meals before and after a 7-day polyunsaturated fatty acid (PUFA)-rich diet versus control diet. Twenty-six, normal-weight, adults were randomly assigned to either PUFA or control diet. Following a 3-day lead-in diet, participants completed the pre-diet visit where anthropometrics and resting metabolic rate (RMR) were measured, and two SFA-rich HF meals (breakfast and lunch) were consumed. Indirect calorimetry was used to determine fat oxidation (Fox) and energy expenditure (EE) for 4 h after each meal. Participants then consumed a PUFA-rich diet (50 % carbohydrate, 15 % protein, 35 % fat, of which 21 % of total energy was PUFA) or control diet (50 % carbohydrate, 15 % protein, 35 % fat, of which 7 % of total energy was PUFA) for the next 7 days. Following the 7-day diet, participants completed the post-diet visit. From pre- to post-PUFA-rich diet, there was no change in RMR (16.3 ± 0.8 vs. 16.4 ± 0.8 kcal/20 min) or in incremental area under the curve for EE (118.9 ± 20.6-126.9 ± 14.1 kcal/8h, ns). Fasting respiratory exchange ratio increased from pre- to post-PUFA-rich diet only (0.83 ± 0.1-0.86 ± 0.1, p diet (0.03 ± 0.1-0.23 ± 0.1 g/15 min for cumulative Fox; p diet initiates greater fat oxidation after eating occasional high SFA meals compared to a control diet, an effect achieved in 7 days.

  4. Equisetum sylvaticum base reduces atherosclerosis risk factors in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Cheng-He Lin

    2014-08-01

    Full Text Available We identify an Equisetum sylvaticum alkaloid (ESA derived from E. hyemale, which has robust antihyperlipidemic effects in rats fed a high-fat diet. ESA was isolated from E. hyemale and identified by IR, 13C NMR and 1H NMR. Rats were induced to hyperlipidemia and subjected to ESA treatment. In hyperlipidemic model, fed with a high-fat diet, the blood levels of TC, TG and LDL-C were increased. The administration of ESA (20 or 40 mg/kg to those rats significantly improved the HDL-C level and reduced the levels of TC, TG, LDL-C. The atherosclerosis index and atherosclerosis risk of these rats were significantly reduced by ESA. In addition, the administration of ESA in rats increased the activity of SOD and decreased the level of MDA. These results reveal the antihyperlipidemic and anti-oxidative effects of ESA in vivo.

  5. Effects of High Fat Diet and Physical Exercise on Glucose Tolelance and Insulin Sensitivity in Rats

    OpenAIRE

    福田,哲也

    1987-01-01

    To investigate the interrelationships between the westernized diet and physical exercise as they affect the development of non-insulin-dependent diabetes mellitus (NIDDM), adiposity, glucose tolerance and insulin response to an intraperitoneal glucose load (1.5g/kg bw) and insulin sensitivity to exogenous insulin (0.2U/kg bw) were studied in spontaneously exercised and sedentary rats fed either a high fat diet (40% fat, modern western type) or a low fat diet (10% fat, traditional Japanese typ...

  6. Effects of a high fat or a balanced omega 3/omega 6 diet on cytokines levels and DNA damage in experimental colitis.

    Science.gov (United States)

    Vieira de Barros, Karina; Gomes de Abreu, Gilclay; Xavier, Roberta Araujo Navarro; Real Martinez, Carlos Augusto; Ribeiro, Marcelo Lima; Gambero, Alessandra; de Oliveira Carvalho, Patrícia; Silveira, Vera Lúcia Flor

    2011-02-01

    High-fat diets have been shown to be a risk factor for ulcerative colitis (UC). Omega-6 polyunsaturated fatty acids are considered to increase lipid peroxidation, while the omega-3 polyunsaturated fatty acid exerts a chemopreventative effect. We evaluated the effect of high-fat diets (20%) enriched with fish or soybean oil on colonic inflammation and DNA damage in dextran sulfate sodium-induced colitis. Male Wistar rats (28-30 days) were fed an American Institute of Nutrition (AIN)-93 diet for 47 days and divided into five groups: control normal fat non-colitic (C) or control colitis (CC), high soybean fat group (HS) colitis, high fish fat group colitis, or high-fat soybean plus fish oil colitis. UC was induced from day 35 until day 41 by 3% dextran sulfate sodium. On day 47, the rats were anesthetized; blood samples collected for corticosterone determination, and the distal colon was excised to quantify interleukin-4 (IL-4), IL-10, and interferon-gamma levels, myeloperoxidase activity, histological analyses, and DNA damage. The disease activity index was recorded daily. The disease activity index, histological analysis, myeloperoxidase activity, IL-4, interferon-gamma, and corticosterone levels did not differ among the colitic groups. IL-10 was significantly increased by the high fish fat group diet in relation to HS, but only the high soybean-fish fat diet increased the IL-10/IL-4 ratio (anti-inflammatory/pro-inflammatory) to levels closer to the C group and reduced DNA damage compared to the HS group (Pdiets did not exacerbate UC and suggest that the soybean and fish oil mixture, more than the fish oil alone, could be a complementary therapy to achieve a cytokine balance in UC. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Dietary β-conglycinin prevents fatty liver induced by a high-fat diet by a decrease in peroxisome proliferator-activated receptor γ2 protein.

    Science.gov (United States)

    Yamazaki, Tomomi; Kishimoto, Kyoko; Miura, Shinji; Ezaki, Osamu

    2012-02-01

    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). Mice fed a high-fat diet, especially that of saturated-fat-rich oil, develop fatty liver with an increase in peroxisome proliferator-activated receptor (PPAR) γ2 protein in liver. The fatty liver induced by a high-fat diet is improved by knockdown of liver PPARγ2. In this study, we investigated whether β-conglycinin (a major protein of soy protein) could reduce PPARγ2 protein and prevent high-fat-diet-induced fatty liver in ddY mice. Mice were fed a high-starch diet (70 energy% [en%] starch) plus 20% (wt/wt) sucrose in their drinking water or a high-safflower-oil diet (60 en%) or a high-butter diet (60 en%) for 11 weeks, by which fatty liver is developed. As a control, mice were fed a high-starch diet with drinking water. Either β-conglycinin or casein (control) was given as dietary protein. β-Conglycinin supplementation completely prevented fatty liver induced by each type of diet, along with a reduction in adipose tissue weight. β-Conglycinin decreased sterol regulatory element-binding protein (SREBP)-1c and carbohydrate response element-binding protein (ChREBP) messenger RNAs (mRNAs) in sucrose-supplemented mice, whereas it decreased PPARγ2 mRNA (and its target genes CD36 and FSP27), but did not decrease SREBP-1c and ChREBP mRNAs, in mice fed a high-fat diet. β-Conglycinin decreased PPARγ2 protein and liver triglyceride (TG) concentration in a dose-dependent manner in mice fed a high-butter diet; a significant decrease in liver TG concentration was observed at a concentration of 15 en%. In conclusion, β-conglycinin effectively prevents fatty liver induced by a high-fat diet through a decrease in liver PPARγ2 protein. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Meal pattern alterations associated with intermittent fasting for weight loss are normalized after high-fat diet re-feeding.

    Science.gov (United States)

    Gotthardt, Juliet D; Bello, Nicholas T

    2017-05-15

    Alternate day, intermittent fasting (IMF) can be an effective weight loss strategy. However, the effects of IMF on eating behaviors are not well characterized. We investigated the acute and residual effects of IMF for weight loss on meal patterns in adult obese male C57BL/6 mice. After 8weeks of ad libitum high-fat diet to induce diet-induced obesity (DIO), mice were either continued on ad libitum high-fat diet (HFD) or placed on one of 5 diet strategies for weight loss: IMF of high-fat diet (IMF-HFD), pair-fed to IMF-HFD group (PF-HFD), ad libitum low-fat diet (LFD), IMF of low-fat diet (IMF-LFD), or pair-fed to IMF-LFD group (PF-LFD). After the 4-week diet period, all groups were refed the high-fat diet for 6weeks. By the end of the diet period, all 5 groups had lost weight compared with HFD group, but after 6weeks of HFD re-feeding all groups had similar body weights. On (Day 2) of the diet period, IMF-HFD had greater first meal size and faster eating rate compared with HFD. Also, first meal duration was greater in LFD and IMF-LFD compared with HFD. At the end of the diet period (Day 28), the intermittent fasting groups (IMF-HFD and IMF-LFD) had greater first meal sizes and faster first meal eating rate compared with their respective ad libitum fed groups on similar diets (HFD and LFD). Also, average meal duration was longer on Day 28 in the low-fat diet groups (LFD and IMF-LFD) compared with high-fat diet groups (HFD and IMF-HFD). After 6weeks of HFD re-feeding (Day 70), there were no differences in meal patterns in groups that had previously experienced intermittent fasting compared with ad libitum fed groups. These findings suggest that meal patterns are only transiently altered during alternate day intermittent fasting for weight loss in obese male mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice.

    Science.gov (United States)

    Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B

    2012-09-10

    Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity.

  10. Effects of Enzymatically Synthesized Glycogen and Exercise on Abdominal Fat Accumulation in High-Fat Diet-Fed Mice.

    Science.gov (United States)

    Tamura, Shohei; Honda, Kazuhisa; Morinaga, Ryoji; Saneyasu, Takaoki; Kamisoyama, Hiroshi

    2017-01-01

    The combination of diet and exercise is the first choice for the treatment of obesity and metabolic syndrome. We previously reported that enzymatically synthesized glycogen (ESG) suppresses abdominal fat accumulation in obese rats. However, the effect of the combination of ESG and exercise on abdominal fat accumulation has not yet been investigated. Our goal in this study was therefore to evaluate the effects of dietary ESG and its combination with exercise on abdominal fat accumulation in high-fat diet (HFD)-fed mice. Male ICR mice were assigned to four groups: HFD, HFD containing 20% ESG, HFD with exercise, HFD containing 20% ESG with exercise. Treadmill exercise was performed for 3 wk (25 m/min, 30 min/d, 3 d/wk) after 5-d adaption to running at that speed. Both ESG and exercise significantly reduced the weights of abdominal adipose tissues. In addition, the combination of ESG and exercise significantly suppressed abdominal fat accumulation, suggesting that ESG and exercise showed an additive effect. Exercise significantly increased the mRNA levels of lipid metabolism-related genes such as lipoprotein lipase, peroxisome proliferator-activated receptor delta; factor-delta (PPARδ), carnitin palmitoyltransferase b, adipose triglyceride lipase (ATGL), and uncoupling protein-3 in the gastrocnemius muscle. On the other hand, dietary ESG significantly decreased the mRNA levels of PPARδ and ATGL in the gastrocnemius muscle. These results suggest that the combined treatment of ESG and exercise effectively suppresses abdominal fat accumulation in HFD-fed mice by different mechanisms.

  11. The effect of sugar-sweetened beverage intake on energy intake in an ad libitum 6-month low-fat high-carbohydrate diet.

    Science.gov (United States)

    Munsters, Marjet J M; Saris, Wim H M

    2010-01-01

    The increased incidence of obesity coincides with an increased consumption of sugar-sweetened beverages (SSBs). This study investigated the effect of SSB intake on energy intake in an ad libitum 6-month low-fat high-carbohydrate diet in a reanalysis of the CARMEN data. Forty-seven overweight-to-obese men and women participated in the Maastricht centre of the randomized controlled CARMEN study. They were allocated to a control (habitual) diet group (CD), a low-fat (-10 energy percent, En%) high simple carbohydrate (SCHO) or low-fat high complex carbohydrate group (CCHO) (SCHO vs. CCHO: 1.5 vs. 0.5) using a controlled laboratory shop system. Reanalyses were made for the energy, amount and density of all drinks and in particular of sweetened beverages (SBs). The SCHO and CD group could select non-diet SBs, including soft drinks and fruit juices, while the CCHO group received SB alternatives. Energy intake decreased in the CCHO and SCHO groups versus the CD group (-2.7 ± 0.4 MJ/day CCHO group vs. -0.2 ± 0.5 MJ/day CD group, p carbohydrate intake increased significantly in the SCHO group versus the CCHO and CD groups (+10.8 ± 1.6 vs. -2.0 ± 0.9 and -0.5 ± 1.1 En%; p carbohydrate intake increased through enhanced intake of non-diet SBs in the SCHO group. Fat reduction combined with only diet SBs in an ad libitum situation has a greater impact on energy intake than fat reduction combined with non-diet SBs. Copyright © 2010 S. Karger AG, Basel.

  12. High-Fat and Fat-Enriched Diets Impair the Benefits of Moderate Physical Training in the Aorta and the Heart in Rats

    Directory of Open Access Journals (Sweden)

    Cleverson Rodrigues Fernandes

    2017-05-01

    Full Text Available AimMillions of people die each year due to cardiovascular disease (CVD. A Western lifestyle not only fuses a significant intake of fat with physical inactivity and obesity but also promotes CVD. Recent evidence suggests that dietary fat intake impairs the benefits of physical training. We investigated whether aerobic training could reverse the adverse effects of a high-fat diet (HFD on the aorta. Then, we explored whether this type of exercise could reverse the damage to the heart that is imposed by fat-enriched diet (FED.MethodsRats were randomly assigned to two experiments, which lasted 8 weeks each. First, rats swam for 60 min and were fed either a regular diet [standard diet (STD] or an HFD. After aortic samples had been collected, the rats underwent a histopathological analysis for different biomarkers. Another experiment subjected rats that were fed either an STD or an FED to swimming for 20 or 90 min.ResultsThe first experiment revealed that rats that were subjected to an HFD-endured increased oxidative damage in the aorta that exercises could not counteract. Together with increased cyclooxygenase 2 expression, an HFD in combination with physical training increased the number of macrophages. A reduction in collagen fibers with an increased number of positive α-actin cells and expression of matrix metalloproteinase-2 occurred concomitantly. Upon analyzing the second experiment, we found that physically training rats that were given an FED for 90 min/day decreased the cardiac adipose tissue density, although it did not protect the heart from fat-induced oxidative damage. Even though the physical training lowered cholesterol levels that were promoted by the FED, the levels were still higher than those in the animals that were given an STD. Feeding rats an FED impaired the swimming protocol’s effects on lowering triglyceride concentration. Additionally, exercise was unable to reverse the fat-induced deregulation in hepatic

  13. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    Science.gov (United States)

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release.

  14. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    OpenAIRE

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission el...

  15. Differential Effects of High-Carbohydrate and High-Fat Diet Composition on Metabolic Control and Insulin Resistance in Normal Rats

    Science.gov (United States)

    Ble-Castillo, Jorge L.; Aparicio-Trapala, María A.; Juárez-Rojop, Isela E.; Torres-Lopez, Jorge E.; Mendez, Jose D.; Aguilar-Mariscal, Hidemi; Olvera-Hernández, Viridiana; Palma-Cordova, Leydi C.; Diaz-Zagoya, Juan C.

    2012-01-01

    The macronutrient component of diets is critical for metabolic control and insulin action. The aim of this study was to compare the effects of high fat diets (HFDs) vs. high carbohydrate diets (HCDs) on metabolic control and insulin resistance in Wistar rats. Thirty animals divided into five groups (n = 6) were fed: (1) Control diet (CD); (2) High-saturated fat diet (HSFD); (3) High-unsaturated fat diet (HUFD); (4) High-digestible starch diet, (HDSD); and (5) High-resistant starch diet (HRSD) during eight weeks. HFDs and HCDs reduced weight gain in comparison with CD, however no statistical significance was reached. Calorie intake was similar in both HFDs and CD, but rats receiving HCDs showed higher calorie consumption than other groups, (p < 0.01). HRSD showed the lowest levels of serum and hepatic lipids. The HUFD induced the lowest fasting glycemia levels and HOMA-IR values. The HDSD group exhibited the highest insulin resistance and hepatic cholesterol content. In conclusion, HUFD exhibited the most beneficial effects on glycemic control meanwhile HRSD induced the highest reduction on lipid content and did not modify insulin sensitivity. In both groups, HFDs and HCDs, the diet constituents were more important factors than caloric intake for metabolic disturbance and insulin resistance. PMID:22754464

  16. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy.

    Science.gov (United States)

    Kandadi, Machender R; Panzhinskiy, Evgeniy; Roe, Nathan D; Nair, Sreejayan; Hu, Dahai; Sun, Aijun

    2015-02-01

    Obesity-induced cardiomyopathy may be mediated by alterations in multiple signaling cascades involved in glucose and lipid metabolism. Protein tyrosine phosphatase-1B (PTP1B) is an important negative regulator of insulin signaling. This study was designed to evaluate the role of PTP1B in high fat diet-induced cardiac contractile anomalies. Wild-type and PTP1B knockout mice were fed normal (10%) or high (45%) fat diet for 5months prior to evaluation of cardiac function. Myocardial function was assessed using echocardiography and an Ion-Optix MyoCam system. Western blot analysis was employed to evaluate levels of AMPK, mTOR, raptor, Beclin-1, p62 and LC3-II. RT-PCR technique was employed to assess genes involved in hypertrophy and lipid metabolism. Our data revealed increased LV thickness and LV chamber size as well as decreased fractional shortening following high fat diet intake, the effect was nullified by PTP1B knockout. High fat diet intake compromised cardiomyocyte contractile function as evidenced by decreased peak shortening, maximal velocity of shortening/relengthening, intracellular Ca²⁺ release as well as prolonged duration of relengthening and intracellular Ca²⁺ decay, the effects of which were alleviated by PTP1B knockout. High fat diet resulted in enlarged cardiomyocyte area and increased lipid accumulation, which were attenuated by PTP1B knockout. High fat diet intake dampened myocardial autophagy as evidenced by decreased LC3-II conversion and Beclin-1, increased p62 levels as well as decreased phosphorylation of AMPK and raptor, the effects of which were significantly alleviated by PTP1B knockout. Pharmacological inhibition of AMPK using compound C disengaged PTP1B knockout-conferred protection against fatty acid-induced cardiomyocyte contractile anomalies. Taken together, our results suggest that PTP1B knockout offers cardioprotection against high fat diet intake through activation of AMPK. This article is part of a Special Issue entitled

  17. Effects of a high-fat diet during pregnancy and lactation are modulated by E. coli in rat offspring.

    Science.gov (United States)

    Fåk, F; Karlsson, C L J; Ahrné, S; Molin, G; Weström, B

    2012-05-01

    Microbial manipulations in early life can affect gut development and inflammatory status of the neonate. The maternal diet during pregnancy and lactation also influences the health of the offspring, but the impact of maternal high-fat (HF) feeding along with modulations of the gut microbiota on body weight, fat deposition and gut function in the offspring has been poorly studied. Rat dams were given access to either an HF or a standard low-fat diet during the last 2 weeks of pregnancy and during lactation and effects on body weight and gastrointestinal function were investigated in the 14-day-old offspring. To elucidate whether bacterial administration to the dam could modulate any effects of the diets in the rat pups, another group of dams were given Escherichia coli in their drinking water. Maternal HF feeding resulted in increased body and fat pad weights in the offspring, along with increased levels of the acute-phase protein, haptoglobin and decreased protein content and disaccharidase activities in the small intestine. The addition of E. coli further accentuated these responses in the young rats, which, in addition to higher body weights and increased fat deposition, also showed an increased intestinal permeability and elevated levels of haptoglobin. The present study demonstrates for the first time how bacterial administration to the maternal diet during the neonatal period can affect body weight and fat deposition in the offspring. The results point to a mechanistic link between the gut microbiota, increased intestinal permeability and metabolic endotoxemia, which appear to have led to increased adiposity in the young rats.

  18. Oral insulin improves metabolic parameters in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    LEANDRO C. LIPINSKI

    2017-08-01

    Full Text Available ABSTRACT Introduction/Aim: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. Methods: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL standard chow group; high fat diet low carbohydrates group (HFD and HFD plus daily oral 20U insulin gavage (HFD+INS. Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. Results: Rat oral insulin treatment decreased body weight gain (p<0,001, fasting glucose and triglycerides serum levels (p<0,05 an increased intestinal weight of distal ileum (P<0,05. Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05 in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. Conclusions: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.

  19. Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome.

    Science.gov (United States)

    Poudyal, Hemant; Panchal, Sunil; Brown, Lindsay

    2010-11-01

    Anthocyanins, phenolic acids and carotenoids are the predominant phytochemicals present in purple carrots. These phytochemicals could be useful in treatment of the metabolic syndrome since anthocyanins improve dyslipidaemia, glucose tolerance, hypertension and insulin resistance; the phenolic acids may also protect against CVD and β-carotene may protect against oxidative processes. In the present study, we have compared the ability of purple carrot juice and β-carotene to reverse the structural and functional changes in rats fed a high-carbohydrate, high-fat diet as a model of the metabolic syndrome induced by diet. Cardiac structure and function were defined by histology, echocardiography and in isolated hearts and blood vessels; liver structure and function, oxidative stress and inflammation were defined by histology and plasma markers. High-carbohydrate, high-fat diet-fed rats developed hypertension, cardiac fibrosis, increased cardiac stiffness, endothelial dysfunction, impaired glucose tolerance, increased abdominal fat deposition, altered plasma lipid profile, liver fibrosis and increased plasma liver enzymes together with increased plasma markers of oxidative stress and inflammation as well as increased inflammatory cell infiltration. Purple carrot juice attenuated or reversed all changes while β-carotene did not reduce oxidative stress, cardiac stiffness or hepatic fat deposition. As the juice itself contained low concentrations of carotenoids, it is likely that the anthocyanins are responsible for the antioxidant and anti-inflammatory properties of purple carrot juice to improve glucose tolerance as well as cardiovascular and hepatic structure and function.

  20. Body fat accumulation in zebrafish is induced by a diet rich in fat and reduced by supplementation with green tea extract.

    Directory of Open Access Journals (Sweden)

    Shinichi Meguro

    Full Text Available Fat-rich diets not only induce obesity in humans but also make animals obese. Therefore, animals that accumulate body fat in response to a high-fat diet (especially rodents are commonly used in obesity research. The effect of dietary fat on body fat accumulation is not fully understood in zebrafish, an excellent model of vertebrate lipid metabolism. Here, we explored the effects of dietary fat and green tea extract, which has anti-obesity properties, on body fat accumulation in zebrafish. Adult zebrafish were allocated to four diet groups and over 6 weeks were fed a high-fat diet containing basal diet plus two types of fat or a low-fat diet containing basal diet plus carbohydrate or protein. Another group of adult zebrafish was fed a high-fat diet with or without 5% green tea extract supplementation. Zebrafish fed the high-fat diets had nearly twice the body fat (visceral, subcutaneous, and total fat volume and body fat volume ratio (body fat volume/body weight of those fed low-fat diets. There were no differences in body fat accumulation between the two high-fat groups, nor were there any differences between the two low-fat groups. Adding green tea extract to the high-fat diet significantly suppressed body weight, body fat volume, and body fat volume ratio compared with the same diet lacking green tea extract. 3-Hydroxyacyl-coenzyme A dehydrogenase and citrate synthase activity in the liver and skeletal muscle were significantly higher in fish fed the diet supplemented with green tea extract than in those fed the unsupplemented diet. Our results suggest that a diet rich in fat, instead of protein or carbohydrate, induced body fat accumulation in zebrafish with mechanisms that might be similar to those in mammals. Consequently, zebrafish might serve as a good animal model for research into obesity induced by high-fat diets.

  1. Ameliorative effect of vitamin E on hepatic oxidative stress and hypoimmunity induced by high-fat diet in turbot (Scophthalmus maximus).

    Science.gov (United States)

    Jia, Yudong; Jing, Qiqi; Niu, Huaxin; Huang, Bin

    2017-08-01

    This study was conducted to examine the effects of vitamin E on growth performance, oxidative stress and non-specific immunity of turbot (Scophthalmus maximus) fed with high-fat diet. Results showed that high-fat diet significantly increased hepatosomatic index, viscerosomatic index, hepatic malondialdehyde level and decreased catalase and superoxide dismutase activities, whereas final weight, specific growth rate and survival rate remained unchanged. Meanwhile, nitro blue tetrazolium positive leucocytes of head kidney, respiratory burst activity in head-kidney macrophage, phagocytic index and serum lysozyme activity were significantly reduced after feeding with high-fat diet. Furthermore, fish fed with high-fat diet promoted higher expression of heat shock protein (hsp70, hsp90), and inhibited expression of complement component 3 (c3) in the liver and tumor necrosis factor-α (tnf-α), interleukine 1β (il-1β), toll like receptor 22 (tlr-22) in the spleen and head-kidney, respectively. However, simultaneous supplementation with 480 mg kg -1 vitamin E protected turbot against high-fat diet-induced hepatic oxidative stress, hypoimmunity through attenuating lipid peroxidation, renewing antioxidant enzymes activities and nonspecific immune responses, and modulating the expression of stress protein (hsp70, hsp90) and immune-related genes (c3, tnf-α, il-1β, tlr-22). In conclusion, the obtained results indicate the vitamin E as a wildly used functional feed additive contributes potentially to alleviate high-fat diet-induced hepatic oxidative stress and hypoimmunity, maintain the health, and improve the broodstock management for turbot. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Impairment of fat oxidation under high- vs. low-glycemic index diet occurs before the development of an obese phenotype.

    Science.gov (United States)

    Isken, F; Klaus, S; Petzke, K J; Loddenkemper, C; Pfeiffer, A F H; Weickert, M O

    2010-02-01

    Exposure to high vs. low glycemic index (GI) diets increases fat mass and insulin resistance in obesity-prone C57BL/6J mice. However, the longer-term effects and potentially involved mechanisms are largely unknown. We exposed four groups of male C57BL/6J mice (n = 10 per group) to long-term (20 wk) or short-term (6 wk) isoenergetic and macronutrient matched diets only differing in starch type and as such GI. Body composition, liver fat, molecular factors of lipid metabolism, and markers of insulin sensitivity and metabolic flexibility were investigated in all four groups of mice. Mice fed the high GI diet showed a rapid-onset (from week 5) marked increase in body fat mass and liver fat, a gene expression profile in liver consistent with elevated lipogenesis, and, after long-term exposure, significantly reduced glucose clearance following a glucose load. The long-term high-GI diet also led to a delayed switch to both carbohydrate and fat oxidation in the postprandial state, indicating reduced metabolic flexibility. In contrast, no difference in carbohydrate oxidation was observed after short-term high- vs. low-GI exposure. However, fatty acid oxidation was significantly blunted as early as 3 wk after beginning of the high-GI intervention, at a time where most measured phenotypic markers including body fat mass were comparable between groups. Thus long-term high-GI feeding resulted in an obese, insulin-resistant, and metabolically inflexible phenotype in obesity-prone C57BL/6J mice. Early onset and significantly impaired fatty acid oxidation preceded these changes, thereby indicating a potentially causal involvement.

  3. Fatty liver accompanies an increase in Lactobacillus species in the hind gut of C57BL/6 mice fed a high-fat diet

    Science.gov (United States)

    High-fat diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease (NAFLD). They have also been shown to induce changes in the gut microbiome, metabolic products of which have also been linked to NAFLD. This study tested the hypothesis that high-fat fee...

  4. Effect of Herbal Acupuncture with Sang-hwang(Phellinus linteus on High Fat Diet-induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    2004-02-01

    Full Text Available Acupuncture has fairly good weight-reducing effect in treating simple obesity due to the neuroendocrine regulation. In this study, the anti-obesity effects of herbal acupuncture (HA with Sang-hwang (Phellinus linteus at Fuai (SP16 were investigated in the rat fed on high-fat (HF diet. Sang-hwang mushroom has been proven to have anti-carcinogenic effects and Sang-hwang extracts are highly effective in treatment and preventive treatment of AIDS, diabetes and high blood-pressure. To determine whether the Sang-hwang herbal acupuncture may have the anti-obesity effect, male Sprague-Dawley (4-wk-old rats were fed a HF diet for 5 wk, which produced significant weight gain compared to rats were fed a normal diet, and then herbal acupuncture were treated for 3 wk in HF diet group. The body weight, food consumption, food effeciency ratio (FER, body fat mass, plasma nitric oxide (NO were investigated in rats fed on normal diet, HF diet, and HF diet with HA (HF-diet-HA groups. NO has been proposed to be involved in the regulation of food intake. In addition, the expression of appetite peptides such as orexigenic peptide neuropeptide Y (NPY and the anorectic peptide cholecystokinin (CCK were observed in the hypothalamus. HF-HA group reduced body weight gain, FER, body fat contents and NO concentration compared to HF diet group. The expression of NPY was reduced in arcuate nucleus (ARC, and CCK was increased in the paraventricular nucleus (PVN after treatment of HA. In conclusion, Sang-hwang HA reduced adipocity, plasma NO and hypothalamic NPY, but increased CCK expression in the HF diet-induced obesity rat, therefore HA may have anti-obesity action through regulating body weight and appetite peptide of the central nervous system.

  5. Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice.

    Science.gov (United States)

    Borg, Melissa L; Omran, Simin Fallah; Weir, Jacquelyn; Meikle, Peter J; Watt, Matthew J

    2012-09-01

    Obesity is characterised by increased storage of fatty acids in an expanded adipose tissue mass and in peripheral tissues such as the skeletal muscle and liver, where it is associated with the development of insulin resistance. Insulin resistance also develops in the central nervous system with high-fat feeding. The capacity for hypothalamic cells to accumulate/store lipids, and the effects of obesity remain undefined. The aims of this study were (1) to examine hypothalamic lipid content in mice with increased dietary fat intake and in obese ob/ob mice fed a low-fat diet, and (2) to determine whether endurance exercise training could reduce hypothalamic lipid accumulation in high-fat fed mice. Male C57BL/6 mice were fed a low- (LFD) or high-fat diet (HFD) for 12 weeks; ob/ob mice were maintained on a chow diet. HFD-exercise (HFD-ex) mice underwent 12 weeks of high-fat feeding with 6 weeks of treadmill exercise training (increasing from 30 to 70 min day(-1)). Hypothalamic lipids were assessed by unbiased mass spectrometry. The HFD increased body mass and hepatic lipid accumulation, and induced glucose intolerance, while the HFD-ex mice had reduced body weight and improved glucose tolerance. A total of 335 lipid molecular species were identified and quantified. Lipids known to induce insulin resistance, including ceramide (22%↑), diacylglycerol (25%↑), lysophosphatidylcholine (17%↑), cholesterol esters (60%↑) and dihexosylceramide (33%↑), were increased in the hypothalamus of HFD vs. LFD mice. Hypothalamic lipids were unaltered with exercise training and in the ob/ob mice, suggesting that obesity per se does not alter hypothalamic lipids. Overall, hypothalamic lipid accumulation is regulated by dietary lipid content and is refractory to change with endurance exercise training.

  6. High fat diet and food restriction differentially modify the behavioral effects of quinpirole and raclopride in rats.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2009-05-21

    Nutritional status can impact dopamine systems in a manner that might be important to understanding possible common neurobiological mechanisms that mediate abnormal compulsive food (e.g., obesity) and drug taking. Limiting food intake, for example, can increase sensitivity to the behavioral effects of indirect-acting dopamine receptor agonists. Much less is known regarding possible diet-induced changes in sensitivity to direct-acting dopamine receptor drugs. The present study investigated the effects of a high fat diet and of food restriction on sensitivity of rats to the behavioral effects of a direct-acting dopamine receptor agonist and a dopamine receptor antagonist. Free access to high fat chow increased sensitivity to quinpirole-induced yawning without changing sensitivity to raclopride-induced catalepsy or quinpirole-induced hypothermia. Food restriction (10 g/day) decreased sensitivity to quinpirole-induced yawning and raclopride-induced catalepsy without affecting sensitivity to quinpirole-induced hypothermia. Free access to a standard chow restored sensitivity to the behavioral effects of both drugs in rats that were previously food-restricted but not in rats that previously ate a high fat diet. These data confirm that food restriction can decrease sensitivity to behavioral effects of direct-acting dopamine receptor drugs, they provide evidence (i.e., no change in hypothermic effects) indicating that these changes are not due to pharmacokinetic mechanisms, and they provide initial evidence showing enhanced sensitivity to behavioral effects of dopamine receptor drugs in rats eating a high fat diet. These changes in sensitivity of dopamine systems could be relevant to understanding the impact of nutrition on therapeutic and recreational drug use.

  7. Hypercholesterolemia and hepatic steatosis in mice fed on low-cost high-fat diet - doi: 10.4025/actascihealthsci.v35i1.10871

    Directory of Open Access Journals (Sweden)

    Lívia Bracht

    2013-03-01

    Full Text Available To verify whether high-fat diet prepared from commercial diet plus chocolate, roasted peanuts and corn cookies induces hypercholesterolemia in mice and whether there is any hepatic involvement in this type of animal testing. Swiss mice received a high-fat diet for 15 and 30 days; plasma cholesterol, triglycerides and glucose rates were determined. Hepatic impairment was evaluated by histopathological analysis. Cholesterol levels increased 43% in animals treated with high-fat diet for 30 days. Further, histopathological analysis revealed that treatment of animals for 15 and 30 days produced hepatic steatosis and steatohepatitis, respectively. Experimental model is suitable for assessing the action of anti-hypercholesterolemia and the treatment of steatohepatitis.  

  8. Decreases in High-Fat and/or High-Added-Sugar Food Group Intake Occur when a Hypocaloric, Low-Fat Diet Is Prescribed Within a Lifestyle Intervention: A Secondary Cohort Analysis.

    Science.gov (United States)

    Sheikh, Vaishali Keshani; Raynor, Hollie A

    2016-10-01

    When a hypocaloric, low-fat diet is prescribed, intake of currently consumed foods can decrease, foods naturally low in fat and/or added sugar may increase, or fat- or sugar-modified foods may increase. To examine food group intake change and its relation to reductions in energy and fat intake and weight during a lifestyle intervention. Secondary cohort analysis. One hundred sixty-nine participants (aged 52.0±8.6 years, body mass index 34.9±4.5, 92% white, 97.6% non-Hispanic, and 56.8% women) with complete data at 0 and 6 months collected in a research setting. From three 24-hour telephone dietary recalls, 165 food groups from Nutrition Data System for Research software were coded into 25 larger food groups assessing intake of higher-fat and/or added-sugar food groups vs naturally lower-fat and/or added-sugar food groups and into 17 larger food groups assessing intake of nonmodified vs fat- and/or sugar-modified food groups. Repeated measures analyses of covariance (intervention group: covariate) assessed changes from 0 to 6 months. Hierarchical regressions examined changes in food group intake and changes in energy intake, percent energy from fat intake, and weight from 0 to 6 months. Significant reductions (Phypocaloric, low-fat diet is prescribed, reductions in high-fat and/or high-added-sugar food groups occur. Targeting reductions in high-fat meats may improve outcomes. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  9. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoqing Ma

    2018-01-01

    Full Text Available Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD, high fat diet (HFD, and HFD administered with vildagliptin (50 mg/Kg (V-HFD. After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27% and liver triglycerides (314.75% compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  10. Characterization of fat metabolism in the fatty liver caused by a high-fat, low-carbohydrate diet: A study under equal energy conditions.

    Science.gov (United States)

    Kurosaka, Yuka; Shiroya, Yoko; Yamauchi, Hideki; Kitamura, Hiromi; Minato, Kumiko

    2017-05-20

    The pathology of fatty liver due to increased percentage of calories derived from fat without increased overall caloric intake is largely unclear. In this study, we aimed to characterize fat metabolism in rats with fatty liver resulting from consumption of a high-fat, low-carbohydrate (HFLC) diet without increased caloric intake. Four-week-old male Sprague-Dawley rats were randomly assigned to the control (Con) and HFLC groups, and rats were fed the corresponding diets ad libitum. Significant decreases in food intake per gram body weight were observed in the HFLC group compared with that in the Con group. Thus, there were no significant differences in body weights or caloric intake per gram body weight between the two groups. Marked progressive fat accumulation was observed in the livers of rats in the HFLC group, accompanied by suppression of de novo lipogenesis (DNL)-related proteins in the liver and increased leptin concentrations in the blood. In addition, electron microscopic observations revealed that many lipid droplets had accumulated within the hepatocytes, and mitochondrial numbers were reduced in the hepatocytes of rats in the HFLC group. Our findings confirmed that consumption of the HFLC diet induced fatty liver, even without increased caloric intake. Furthermore, DNL was not likely to be a crucial factor inducing fatty liver with standard energy intake. Instead, ultrastructural abnormalities found in mitochondria, which may cause a decline in β-oxidation, could contribute to the development of fatty liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Enzymatic regulation of glucose disposal in human skeletal muscle after a high-fat, low-carbohydrate diet.

    Science.gov (United States)

    Pehleman, Tanya L; Peters, Sandra J; Heigenhauser, George J F; Spriet, Lawrence L

    2005-01-01

    Whole body glucose disposal and skeletal muscle hexokinase, glycogen synthase (GS), pyruvate dehydrogenase (PDH), and PDH kinase (PDK) activities were measured in aerobically trained men after a standardized control diet (Con; 51% carbohydrate, 29% fat, and 20% protein of total energy intake) and a 56-h eucaloric, high-fat, low-carbohydrate diet (HF/LC; 5% carbohydrate, 73% fat, and 22% protein). An oral glucose tolerance test (OGTT; 1 g/kg) was administered after the Con and HF/LC diets with vastus lateralis muscle biopsies sampled pre-OGTT and 75 min after ingestion of the oral glucose load. The 90-min area under the blood glucose and plasma insulin concentration vs. time curves increased by 2-fold and 1.25-fold, respectively, after the HF/LC diet. The pre-OGTT fraction of GS in its active form and the maximal activity of hexokinase were not affected by the HF/LC diet. However, the HF/LC diet increased PDK activity (0.19 +/- 0.05 vs. 0.08 +/- 0.02 min(-1)) and decreased PDH activation (0.38 +/- 0.08 vs. 0.79 +/- 0.10 mmol acetyl-CoA.kg wet muscle(-1).min(-1)) before the OGTT vs. Con. During the OGTT, GS and PDH activation increased by the same magnitude in both diets, such that PDH activation remained lower during the HF/LC OGTT (0.60 +/- 0.11 vs. 1.04 +/- 0.09 mmol acetyl-CoA.kg(-1).min(-1)). These data demonstrate that the decreased glucose disposal during the OGTT after the 56-h HF/LC diet was in part related to decreased oxidative carbohydrate disposal in skeletal muscle and not to decreased glycogen storage. The rapid increase in PDK activity during the HF/LC diet appeared to account for the reduced potential for oxidative carbohydrate disposal.

  12. Short-term consumption of a high-fat diet impairs whole-body efficiency and cognitive function in sedentary men.

    Science.gov (United States)

    Edwards, Lindsay M; Murray, Andrew J; Holloway, Cameron J; Carter, Emma E; Kemp, Graham J; Codreanu, Ion; Brooker, Helen; Tyler, Damian J; Robbins, Peter A; Clarke, Kieran

    2011-03-01

    We recently showed that a short-term high-fat diet blunted exercise performance in rats, accompanied by increased uncoupling protein levels and greater respiratory uncoupling. In this study, we investigated the effects of a similar diet on physical and cognitive performance in humans. Twenty sedentary men were assessed when consuming a standardized, nutritionally balanced diet (control) and after 7 d of consuming a diet comprising 74% kcal from fat. Efficiency was measured during a standardized exercise task, and cognition was assessed using a computerized assessment battery. Skeletal muscle mitochondrial function was measured using (31)P magnetic resonance spectroscopy. The diet increased mean ± se plasma free fatty acids by 44% (0.32±0.03 vs. 0.46±0.05 mM; Pdiet consumption also increased subjects' simple reaction times (Pdiet blunts whole-body efficiency and cognition in sedentary men. We suggest that this effect may be due to increased respiratory uncoupling.

  13. DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Pili Zhang

    2017-04-01

    Full Text Available Objective: Overnutrition can alter gene expression patterns through epigenetic mechanisms that may persist through generations. However, it is less clear if overnutrition, for example a high fat diet, modifies epigenetic control of gene expression in adults, or by what molecular mechanisms, or if such mechanisms contribute to the pathology of the metabolic syndrome. Here we test the hypothesis that a high fat diet alters hepatic DNA methylation, transcription and gene expression patterns, and explore the contribution of such changes to the pathophysiology of obesity. Methods: RNA-seq and targeted high-throughput bisulfite DNA sequencing were used to undertake a systematic analysis of the hepatic response to a high fat diet. RT-PCR, chromatin immunoprecipitation and in vivo knockdown of an identified driver gene, Phlda1, were used to validate the results. Results: A high fat diet resulted in the hypermethylation and decreased transcription and expression of Phlda1 and several other genes. A subnetwork of genes associated with Phlda1 was identified from an existing Bayesian gene network that contained numerous hepatic regulatory genes involved in lipid and body weight homeostasis. Hepatic-specific depletion of Phlda1 in mice decreased expression of the genes in the subnetwork, and led to increased oil droplet size in standard chow-fed mice, an early indicator of steatosis, validating the contribution of this gene to the phenotype. Conclusions: We conclude that a high fat diet alters the epigenetics and transcriptional activity of key hepatic genes controlling lipid homeostasis, contributing to the pathophysiology of obesity. Author Video: Author Video Watch what authors say about their articles Keywords: DNA methylation, RNA-seq, Transcription, High fat diet, Liver, Phlda1

  14. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  15. High-Fat, High-Calorie Diet Enhances Mammary Carcinogenesis and Local Inflammation in MMTV-PyMT Mouse Model of Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, Sarah [Department of Surgery, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Mary Babb Randolph Cancer Center, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); McLaughlin, Sarah L. [Mary Babb Randolph Cancer Center, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Hobbs, Gerald [Mary Babb Randolph Cancer Center, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Department of Statistics, West Virginia University, Morgantown, WV 26506 (United States); Coad, James [Department of Pathology, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Martin, Karen H. [Mary Babb Randolph Cancer Center, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Department of Neurobiology and Anatomy, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Olfert, I. Mark [Mary Babb Randolph Cancer Center, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Department of Human Performance and Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Vona-Davis, Linda, E-mail: lvdavis@hsc.wvu.edu [Department of Surgery, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Mary Babb Randolph Cancer Center, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States)

    2015-06-26

    Epidemiological studies provide strong evidence that obesity and the associated adipose tissue inflammation are risk factors for breast cancer; however, the molecular mechanisms are poorly understood. We evaluated the effect of a high-fat/high-calorie diet on mammary carcinogenesis in the immunocompetent MMTV-PyMT murine model. Four-week old female mice (20/group) were randomized to receive either a high-fat (HF; 60% kcal as fat) or a low-fat (LF; 16% kcal) diet for eight weeks. Body weights were determined, and tumor volumes measured by ultrasound, each week. At necropsy, the tumors and abdominal visceral fat were weighed and plasma collected. The primary mammary tumors, adjacent mammary fat, and lungs were preserved for histological and immunohistochemical examination and quantification of infiltrating macrophages, crown-like structure (CLS) formation, and microvessel density. The body weight gains, visceral fat weights, the primary mammary tumor growth rates and terminal weights, were all significantly greater in the HF-fed mice. Adipose tissue inflammation in the HF group was indicated by hepatic steatosis, pronounced macrophage infiltration and CLS formation, and elevations in plasma monocyte chemoattractant protein-1 (MCP-1), leptin and proinflammatory cytokine concentrations. HF intake was also associated with higher tumor-associated microvascular density and the proangiogenic factor MCP-1. This study provides preclinical evidence in a spontaneous model of breast cancer that mammary adipose tissue inflammation induced by diet, enhances the recruitment of macrophages and increases tumor vascular density suggesting a role for obesity in creating a microenvironment favorable for angiogenesis in the progression of breast cancer.

  16. High-Fat, High-Calorie Diet Enhances Mammary Carcinogenesis and Local Inflammation in MMTV-PyMT Mouse Model of Breast Cancer

    International Nuclear Information System (INIS)

    Cowen, Sarah; McLaughlin, Sarah L.; Hobbs, Gerald; Coad, James; Martin, Karen H.; Olfert, I. Mark; Vona-Davis, Linda

    2015-01-01

    Epidemiological studies provide strong evidence that obesity and the associated adipose tissue inflammation are risk factors for breast cancer; however, the molecular mechanisms are poorly understood. We evaluated the effect of a high-fat/high-calorie diet on mammary carcinogenesis in the immunocompetent MMTV-PyMT murine model. Four-week old female mice (20/group) were randomized to receive either a high-fat (HF; 60% kcal as fat) or a low-fat (LF; 16% kcal) diet for eight weeks. Body weights were determined, and tumor volumes measured by ultrasound, each week. At necropsy, the tumors and abdominal visceral fat were weighed and plasma collected. The primary mammary tumors, adjacent mammary fat, and lungs were preserved for histological and immunohistochemical examination and quantification of infiltrating macrophages, crown-like structure (CLS) formation, and microvessel density. The body weight gains, visceral fat weights, the primary mammary tumor growth rates and terminal weights, were all significantly greater in the HF-fed mice. Adipose tissue inflammation in the HF group was indicated by hepatic steatosis, pronounced macrophage infiltration and CLS formation, and elevations in plasma monocyte chemoattractant protein-1 (MCP-1), leptin and proinflammatory cytokine concentrations. HF intake was also associated with higher tumor-associated microvascular density and the proangiogenic factor MCP-1. This study provides preclinical evidence in a spontaneous model of breast cancer that mammary adipose tissue inflammation induced by diet, enhances the recruitment of macrophages and increases tumor vascular density suggesting a role for obesity in creating a microenvironment favorable for angiogenesis in the progression of breast cancer

  17. Switching adolescent high-fat diet to adult control diet restores neurocognitive alterations

    Directory of Open Access Journals (Sweden)

    Chloe Boitard

    2016-11-01

    Full Text Available In addition to metabolic and cardiovascular disorders, obesity is associated with adverse cognitive and emotional outcomes. Its growing prevalence in adolescents is particularly alarming since this is a period of ongoing maturation for brain structures (including the hippocampus and amygdala and for the hypothalamic-pituitary-adrenal (HPA stress axis, which is required for cognitive and emotional processing. We recently demonstrated that adolescent, but not adult, high-fat diet (HF exposure leads to impaired hippocampal function and enhanced amygdala function through HPA axis alteration (Boitard et al., 2014; Boitard et al., 2012; Boitard et al., 2015. Here, we assessed whether the effects of adolescent HF consumption on brain function are permanent or reversible. After adolescent exposure to HF, switching to a standard chow diet restored levels of hippocampal neurogenesis and normalized enhanced HPA axis reactivity, amygdala activity and avoidance memory. Therefore, while the adolescent period is highly vulnerable to the deleterious effects of diet-induced obesity, adult exposure to a standard diet appears sufficient to reverse alterations of brain function.

  18. Metabolic responses to high-fat diets rich in n-3 or n-6 long-chain polyunsaturated fatty acids in mice selected for either high body weight or leanness explain different health outcomes

    Directory of Open Access Journals (Sweden)

    Nuernberg Karin

    2011-08-01

    Full Text Available Abstract Background Increasing evidence suggests that diets high in polyunsaturated fatty acids (PUFA confer health benefits by improving insulin sensitivity and lipid metabolism in liver, muscle and adipose tissue. Methods The present study investigates metabolic responses in two different lines of mice either selected for high body weight (DU6 leading to rapid obesity development, or selected for high treadmill performance (DUhTP leading to a lean phenotype. At 29 days of age the mice were fed standard chow (7.2% fat, 25.7% protein, or a high-fat diet rich in n-3 PUFA (n-3 HFD, 27.7% fat, 19% protein or a high-fat diet rich in n-6 PUFA (n-6 HFD, 27.7% fat, 18.6% protein for 8 weeks. The aim of the study was to determine the effect of these PUFA-rich high-fat diets on the fatty acid profile and on the protein expression of key components of insulin signalling pathways. Results Plasma concentrations of leptin and insulin were higher in DU6 in comparison with DUhTP mice. The high-fat diets stimulated a strong increase in leptin levels and body fat only in DU6 mice. Muscle and liver fatty acid composition were clearly changed by dietary lipid composition. In both lines of mice n-3 HFD feeding significantly reduced the hepatic insulin receptor β protein concentration which may explain decreased insulin action in liver. In contrast, protein kinase C ζ expression increased strongly in abdominal fat of n-3 HFD fed DUhTP mice, indicating enhanced insulin sensitivity in adipose tissue. Conclusions A diet high in n-3 PUFA may facilitate a shift from fuel deposition in liver to fuel storage as fat in adipose tissue in mice. Tissue specific changes in insulin sensitivity may describe, at least in part, the health improving properties of dietary n-3 PUFA. However, important genotype-diet interactions may explain why such diets have little effect in some population groups.

  19. Maternal high-fat diet accelerates development of Crohn's disease-like ileitis in TNF ΔaRE/WT offspring

    NARCIS (Netherlands)

    Gruber, Lisa; Hemmerling, Jana; Schüppel, Valentina; Müller, Michael; Boekschoten, M.V.; Haller, Dirk

    2015-01-01

    Background: Maternal high-fat diet (HFD) and obesity increases the risk of the offspring to develop inflammatory processes in various organs including the gut. We hypothesized that maternal diet-induced obesity programs the fetal gut towards inflammation in a mouse model of genetically-driven

  20. ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model

    Directory of Open Access Journals (Sweden)

    Seong-Jong Lee

    2015-01-01

    Full Text Available The medicinal plants Artemisia iwayomogi (A. iwayomogi and Curcuma longa (C. longa radix have been used to treat metabolic abnormalities in traditional Korean medicine and traditional Chinese medicine (TKM and TCM. In this study we evaluated the effect of the water extract of a mixture of A. iwayomogi and C. longa (ACE on high-fat diet-induced metabolic syndrome in a mouse model. Four groups of C57BL/6N male mice (except for the naive group were fed a high-fat diet freely for 10 weeks. Among these, three groups (except the control group were administered a high-fat diet supplemented with ACE (100 or 200 mg/kg or curcumin (50 mg/kg. Body weight, accumulation of adipose tissues in abdomen and size of adipocytes, serum lipid profiles, hepatic steatosis, and oxidative stress markers were analyzed. ACE significantly reduced the body and peritoneal adipose tissue weights, serum lipid profiles (total cholesterol and triglycerides, glucose levels, hepatic lipid accumulation, and oxidative stress markers. ACE normalized lipid synthesis-associated gene expressions (peroxisome proliferator-activated receptor gamma, PPARγ; fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator-activated receptor alpha, PPARα. The results from this study suggest that ACE has the pharmaceutical potential reducing the metabolic abnormalities in an animal model.

  1. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Steven D Kunkel

    Full Text Available Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II, blood vessel recruitment (Vegfa and autocrine/paracrine IGF-I signaling (Igf1. As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  2. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone

    Science.gov (United States)

    Diet-induced obesity has been suggested to lead to increased susceptibility to air pollutants such as ozone (03); however, there is little experimental evidence. Thirty day old male and female Brown Norway rats were fed a normal, high-fructose or high-fat diet for 12 weeks and th...

  3. Activation of pregnane X receptor by pregnenolone 16 α-carbonitrile prevents high-fat diet-induced obesity in AKR/J mice.

    Directory of Open Access Journals (Sweden)

    Yongjie Ma

    Full Text Available Pregnane X receptor (PXR is known to function as a xenobiotic sensor to regulate xenobiotic metabolism through selective transcription of genes responsible for maintaining physiological homeostasis. Here we report that the activation of PXR by pregnenolone 16α-carbonitrile (PCN in AKR/J mice can prevent the development of high-fat diet-induced obesity and insulin resistance. The beneficial effects of PCN treatment are seen with reduced lipogenesis and gluconeogenesis in the liver, and lack of hepatic accumulation of lipid and lipid storage in the adipose tissues. RT-PCR analysis of genes involved in gluconeogenesis, lipid metabolism and energy homeostasis reveal that PCN treatment on high-fat diet-fed mice reduces expression in the liver of G6Pase, Pepck, Cyp7a1, Cd36, L-Fabp, Srebp, and Fas genes and slightly enhances expression of Cyp27a1 and Abca1 genes. RT-PCR analysis of genes involved in adipocyte differentiation and lipid metabolism in white adipose tissue show that PCN treatment reduces expression of Pparγ2, Acc1, Cd36, but increases expression of Cpt1b and Pparα genes in mice fed with high-fat diet. Similarly, PCN treatment of animals on high-fat diet increases expression in brown adipose tissue of Pparα, Hsl, Cpt1b, and Cd36 genes, but reduces expression of Acc1 and Scd-1 genes. PXR activation by PCN in high-fat diet fed mice also increases expression of genes involved in thermogenesis in brown adipose tissue including Dio2, Pgc-1α, Pgc-1β, Cidea, and Ucp-3. These results verify the important function of PXR in lipid and energy metabolism and suggest that PXR represents a novel therapeutic target for prevention and treatment of obesity and insulin resistance.

  4. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet.

    Science.gov (United States)

    da Silva-Santi, Lorena Gimenez; Antunes, Marina Masetto; Caparroz-Assef, Silvana Martins; Carbonera, Fabiana; Masi, Laureane Nunes; Curi, Rui; Visentainer, Jesuí Vergílio; Bazotte, Roberto Barbosa

    2016-10-29

    Both high-carbohydrate diet (HCD) and high-fat diet (HFD) modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA) composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets), and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1), ∆-6 desaturase (D6D), elongases and de novo lipogenesis (DNL) were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO) production, and mRNA expressions of F4/80, type I collagen, interleukin (IL)-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α) were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs) and had a lower omega-6/omega-3 fatty acid ( n -6/ n -3) ratio. In conclusion, liver lipid accumulation, fatty acids (FA) composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD.

  5. Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Lorena Gimenez da Silva-Santi

    2016-10-01

    Full Text Available Both high-carbohydrate diet (HCD and high-fat diet (HFD modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets, and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1, ∆-6 desaturase (D6D, elongases and de novo lipogenesis (DNL were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1 was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO production, and mRNA expressions of F4/80, type I collagen, interleukin (IL-6, IL-1β, IL-10, and tumor necrosis factor-α (TNF-α were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs and monounsaturated fatty acids (MUFAs. This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs and had a lower omega-6/omega-3 fatty acid (n-6/n-3 ratio. In conclusion, liver lipid accumulation, fatty acids (FA composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD.

  6. Red pitaya juice supplementation ameliorates energy balance homeostasis by modulating obesity-related genes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ramli, Nurul Shazini; Ismail, Patimah; Rahmat, Asmah

    2016-07-26

    Red pitaya (Hylocereus polyrhizus) or known as buah naga merah in Malay belongs to the cactus family, Cactaceae. Red pitaya has been shown to give protection against liver damage and may reduce the stiffness of the heart. Besides, the beneficial effects of red pitaya against obesity have been reported; however, the mechanism of this protection is not clear. Therefore, in the present study, we have investigated the red pitaya-targeted genes in obesity using high-carbohydrate, high-fat diet-induced metabolic syndrome rat model. A total of four groups were tested: corn-starch (CS), corn-starch + red pitaya juice (CRP), high-carbohydrate, high-fat (HCHF) and high-carbohydrate, high-fat + red pitaya juice (HRP). The intervention with 5 % red pitaya juice was continued for 8 weeks after 8 weeks initiation of the diet. Retroperitoneal, epididymal and omental fat pads were collected and weighed. Plasma concentration of IL-6 and TNF-α were measured using commercial kits. Gene expression analysis was conducted using RNA extracted from liver samples. A total of eighty-four genes related to obesity were analyzed using PCR array. The rats fed HCHF-diet for 16 weeks increased body weight, developed excess abdominal fat deposition and down-regulated the expression level of IL-1α, IL-1r1, and Cntfr as compared to the control group. Supplementation of red pitaya juice for 8 weeks increased omental and epididymal fat but no change in retroperitoneal fat was observed. Red pitaya juice reversed the changes in energy balance homeostasis in liver tissues by regulation of the expression levels of Pomc and Insr. The increased protein expression levels of IL-6 and TNF-α in HCHF group and red pitaya treated rats confirmed the results of gene expression. Collectively, this study revealed the usefulness of this diet-induced rat model and the beneficial effects of red pitaya on energy balance homeostasis by modulating the anorectic, orexigenic and energy expenditure related

  7. Effect of Dietary Cocoa Tea (Camellia ptilophylla Supplementation on High-Fat Diet-Induced Obesity, Hepatic Steatosis, and Hyperlipidemia in Mice

    Directory of Open Access Journals (Sweden)

    Xiao Rong Yang

    2013-01-01

    Full Text Available Recent studies suggested that green tea has the potential to protect against diet-induced obesity. The presence of caffeine within green tea has caused limitations. Cocoa tea (Camellia ptilophylla is a naturally decaffeinated tea plant. To determine whether cocoa tea supplementation results in an improvement in high-fat diet-induced obesity, hyperlipidemia and hepatic steatosis, and whether such effects would be comparable to those of green tea extract, we studied six groups of C57BL/6 mice that were fed with (1 normal chow (N; (2 high-fat diet (21% butterfat + 0.15% cholesterol, wt/wt (HF; (3 a high-fat diet supplemented with 2% green tea extract (HFLG; (4 a high-fat diet supplemented with 4% green tea extract (HFHG; (5 a high-fat diet supplemented with 2% cocoa tea extract (HFLC; and (6 a high-fat diet supplemented with 4% cocoa tea extract (HFHC. From the results, 2% and 4% dietary cocoa tea supplementation caused a dose-dependent decrease in (a body weight, (b fat pad mass, (c liver weight, (d total liver lipid, (e liver triglyceride and cholesterol, and (f plasma lipids (triglyceride and cholesterol. These data indicate that dietary cocoa tea, being naturally decaffeinated, has a beneficial effect on high-fat diet-induced obesity, hepatomegaly, hepatic steatosis, and elevated plasma lipid levels in mice, which are comparable to green tea. The present findings have provided the proof of concept that dietary cocoa tea might be of therapeutic value and could therefore provide a safer and cost effective option for patients with diet-induced metabolic syndrome.

  8. Effects of high-fat diet on somatic growth, metabolic parameters and function of peritoneal macrophages of young rats submitted to a maternal low-protein diet.

    Science.gov (United States)

    Alheiros-Lira, Maria Cláudia; Jurema-Santos, Gabriela Carvalho; da-Silva, Helyson Tomaz; da-Silva, Amanda Cabral; Moreno Senna, Sueli; Ferreira E Silva, Wylla Tatiana; Ferraz, José Candido; Leandro, Carol Góis

    2017-03-01

    This study evaluated the effects of a post-weaning high-fat (HF) diet on somatic growth, food consumption, metabolic parameters, phagocytic rate and nitric oxide (NO) production of peritoneal macrophages in young rats submitted to a maternal low-protein (LP) diet. Male Wistar rats (aged 60 d) were divided in two groups (n 22/each) according to their maternal diet during gestation and lactation: control (C, dams fed 17 % casein) and LP (dams fed 8 % casein). At weaning, half of the groups were fed HF diet and two more groups were formed (HF and low protein-high fat (LP-HF)). Somatic growth, food and energy intake, fat depots, serum glucose, cholesterol and leptin concentrations were evaluated. Phagocytic rate and NO production were analysed in peritoneal macrophages under stimulation of zymosan and lipopolysaccharide (LPS)+interferon γ (IFN-γ), respectively. The maternal LP diet altered the somatic parameters of growth and development of pups. LP and LP-HF pups showed a higher body weight gain and food intake than C pups. HF and LP-HF pups showed increased retroperitoneal and epididymal fat depots, serum level of TAG and total cholesterol compared with C and LP pups. After LPS+IFN-γ stimulation, LP and LP-HF pups showed reduced NO production when compared with their pairs. Increased phagocytic activity and NO production were seen in LP but not LP-HF peritoneal macrophages. However, peritoneal macrophages of LP pups were hyporesponsive to LPS+IFN-γ induced NO release, even after a post-weaning HF diet. Our data demonstrated that there was an immunomodulation related to dietary fatty acids after the maternal LP diet-induced metabolic programming.

  9. Change in proportional protein intake in a 10-week energy-restricted low- or high-fat diet, in relation to changes in body size and metabolic factors

    DEFF Research Database (Denmark)

    Stocks, Tanja; Taylor, Moira A; Ängquist, Lars

    2013-01-01

    Objective: To investigate in a secondary analysis of a randomised trial the effects of a low-/high-fat diet and reported change from baseline in energy% from protein (prot%), in relation to changes in body size and metabolic factors. Methods: Obese adults (n = 771) were randomised to a 600 kcal...... while not considering prot% change. The high-fat group reduced plasma triglycerides more than the low-fat group, but not compared to those in the low-fat group with >2 units prot% increase (p fat-protein interaction = 0.01). Conclusions: Under energy restriction, participants on a low-fat diet who had...... increased the percentage energy intake from protein showed the greatest reduction in weight and cholesterol, and a triglyceride reduction equally large to that of participants on a high-fat diet. Copyright © 2013 S. Karger GmbH, Freiburg....

  10. Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring.

    Science.gov (United States)

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin; Qi, Cuijuan; Wang, Tong

    2015-10-01

    Substantial evidence demonstrated that maternal dietary nutrients can significantly determine the susceptibility to developing metabolic disorders in the offspring. Therefore, we aimed to investigate the later-life effects of maternal and postweaning diets interaction on epigenetic modification of the central nervous system in the offspring. We examined the effects of dams fed a high-fat, high-sucrose (FS) diet during pregnancy and lactation and weaned to FS diet continuously until 32 weeks of age. Then, DNA methylation and gene expressions of hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were determined in the offspring. Offspring of FS diet had heavier body weight, impaired glucose tolerance, decreased insulin sensitivity and higher serum leptin level at 32-week age (p diet during gestation, lactation and into 32-week age (p diet offspring (p fat diet predisposes the offspring for obesity, glucose intolerance and insulin resistance in later life. Our findings can advance our thinking around the DNA methylation status of the promoter of the POMC and MC4R genes between long-term high-fat, high-sucrose diet and glucose homeostasis in mouse.

  11. A High-Carbohydrate, High-Fiber, Low-Fat Diet Results in Weight Loss among Adults at High Risk of Type 2 Diabetes.

    Science.gov (United States)

    Sylvetsky, Allison C; Edelstein, Sharon L; Walford, Geoffrey; Boyko, Edward J; Horton, Edward S; Ibebuogu, Uzoma N; Knowler, William C; Montez, Maria G; Temprosa, Marinella; Hoskin, Mary; Rother, Kristina I; Delahanty, Linda M

    2017-11-01

    Background: Weight loss is a key factor in reducing diabetes risk. The Diabetes Prevention Program (DPP) is a completed clinical trial that randomly assigned individuals at high risk of diabetes to a placebo (PLBO), metformin (MET), or intensive lifestyle intervention (ILS) group, which included physical activity (PA) and reduced dietary fat intake. Objective: We aimed to evaluate the associations between diet and weight at baseline and to identify specific dietary factors that predicted weight loss among DPP participants. Methods: Diet was assessed by a food frequency questionnaire. The associations between intakes of macronutrients and various food groups and body weight among DPP participants at baseline were assessed by linear regression, adjusted for race/ethnicity, age, sex, calorie intake, and PA. Models that predicted weight loss at year 1 were adjusted for baseline weight, change in calorie intake, and change in PA and stratified by treatment allocation (MET, ILS, and PLBO). All results are presented as estimates ± SEs. Results: A total of 3234 participants were enrolled in the DPP; 2924 had completed dietary data (67.5% women; mean age: 50.6 ± 10.7 y). Adjusted for calorie intake, baseline weight was negatively associated with carbohydrate intake (-1.14 ± 0.18 kg body weight/100 kcal carbohydrate, P fat (1.25 ± 0.21 kg/100 kcal, P fat (1.96 ± 0.46 kg/100 kcal, P loss after 1 y was associated with increases in carbohydrate intake, specifically dietary fiber, and decreases in total fat and saturated fat intake. Conclusions: Higher carbohydrate consumption among DPP participants, specifically high-fiber carbohydrates, and lower total and saturated fat intake best predicted weight loss when adjusted for changes in calorie intake. Our results support the benefits of a high-carbohydrate, high-fiber, low-fat diet in the context of overall calorie reduction leading to weight loss, which may prevent diabetes in high-risk individuals. This trial was registered

  12. Acetone as biomarker for ketosis buildup capability--a study in healthy individuals under combined high fat and starvation diets.

    Science.gov (United States)

    Prabhakar, Amlendu; Quach, Ashley; Zhang, Haojiong; Terrera, Mirna; Jackemeyer, David; Xian, Xiaojun; Tsow, Francis; Tao, Nongjian; Forzani, Erica S

    2015-04-22

    Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as NK alone, have been used as resources for weight loss management and treatment of epilepsy. A crossover study design was applied to 11 healthy individuals, who maintained moderately sedentary lifestyle, and consumed three types of diet randomly assigned over a three-week period. All participants completed the diets in a randomized and counterbalanced fashion. Each weekly diet protocol included three phases: Phase 1 - A mixed diet with ratio of fat: (carbohydrate + protein) by mass of 0.18 or the equivalence of 29% energy from fat from Day 1 to Day 5. Phase 2- A mixed or a high-fat diet with ratio of fat: (carbohydrate + protein) by mass of approximately 0.18, 1.63, or 3.80 on Day 6 or the equivalence of 29%, 79%, or 90% energy from fat, respectively. Phase 3 - A fasting diet with no calorie intake on Day 7. Caloric intake from diets on Day 1 to Day 6 was equal to each individual's energy expenditure. On Day 7, ketone buildup from FK was measured. A statistically significant effect of Phase 2 (Day 6) diet was found on FK of Day 7, as indicated by repeated analysis of variance (ANOVA), F(2,20) = 6.73, p fat content and 90% fat content vs. 29% fat content (with p = 0.00159**, and 0.04435**, respectively), with no significant difference between diets with 79% fat content and 90% fat content. In addition, independent of the diet, a significantly higher ketone buildup capability of subjects with higher resting energy expenditure (R(2) = 0.92), and lower body mass index (R(2) = 0.71) was observed during FK.

  13. Lack of suppression of circulating free fatty acids and hypercholesterolemia during weight loss on a high-fat, low-carbohydrate diet.

    Science.gov (United States)

    Hernandez, Teri L; Sutherland, Julie P; Wolfe, Pamela; Allian-Sauer, Marybeth; Capell, Warren H; Talley, Natalie D; Wyatt, Holly R; Foster, Gary D; Hill, James O; Eckel, Robert H

    2010-03-01

    Little is known about the comparative effect of weight-loss diets on metabolic profiles during dieting. The purpose of this study was to compare the effect of a low-carbohydrate diet (carbohydrate diet (55% of total energy intake) on fasting and hourly metabolic variables during active weight loss. Healthy, obese adults (n = 32; 22 women, 10 men) were randomly assigned to receive either a carbohydrate-restricted diet [High Fat; mean +/- SD body mass index (BMI; in kg/m(2)): 35.8 +/- 2.9] or a calorie-restricted, low-fat diet (High Carb; BMI: 36.7 +/- 4.6) for 6 wk. A 24-h in-patient feeding study was performed at baseline and after 6 wk. Glucose, insulin, free fatty acids (FFAs), and triglycerides were measured hourly during meals, at regimented times. Remnant lipoprotein cholesterol was measured every 4 h. Patients lost a similar amount of weight in both groups (P = 0.57). There was an absence of any diet treatment effect between groups on fasting triglycerides or on remnant lipoprotein cholesterol, which was the main outcome. Fasting insulin decreased (P = 0.03), and both fasting (P = 0.040) and 24-h FFAs (P Fat group. Twenty-four-hour insulin decreased (P loss was similar between diets, but only the high-fat diet increased LDL-cholesterol concentrations. This effect was related to the lack of suppression of both fasting and 24-h FFAs.

  14. Ablation of PPP1R3G reduces glycogen deposition and mitigates high-fat diet induced obesity.

    Science.gov (United States)

    Zhang, Yongxian; Gu, Jin; Wang, Lin; Zhao, Zilong; Pan, Yi; Chen, Yan

    2017-01-05

    Glycogen and triglyceride are two major forms of energy storage in the body and provide the fuel during different phases of food deprivation. However, how glycogen metabolism is linked to fat deposition in adipose tissue has not been clearly characterized. We generated a mouse model with whole-body deletion of PPP1R3G, a glycogen-targeting subunit of protein phosphatase-1 required for glycogen synthesis. Upon feeding with high-fat diet, the body weight and fat composition are significantly reduced in the PPP1R3G -/- mice compared to the wild type controls. The metabolic rate of the mice as measured by O 2 consumption and CO 2 production is accelerated by PPP1R3G deletion. The high-fat diet-induced liver steatosis is also slightly relieved by PPP1R3G deletion. The glycogen level in adipose tissue is reduced by PPP1R3G deletion. In 3T3L1 cells, overexpression of PPP1R3G leads to increases of both glycogen and triglyceride levels. In conclusion, our study indicates that glycogen is actively involved in fat accumulation in adipose tissue and obesity development upon high-fat diet. Our study also suggests that PPP1R3G is an important player that links glycogen metabolism to lipid metabolism in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Kefir Peptides Prevent Hyperlipidemia and Obesity in High-Fat-Diet-Induced Obese Rats via Lipid Metabolism Modulation.

    Science.gov (United States)

    Tung, Yu-Tang; Chen, Hsiao-Ling; Wu, Hsin-Shan; Ho, Mei-Hsuan; Chong, Kowit-Yu; Chen, Chuan-Mu

    2018-02-01

    Obesity has reached epidemic proportions worldwide. Obesity is a complex metabolic disorder that is linked to numerous serious health complications with high morbidity. The present study evaluated the effects of kefir peptides on high fat diet (HFD)-induced obesity in rats. Kefir peptides markedly improved obesity, including body weight gain, inflammatory reactions and the formation of adipose tissue fat deposits around the epididymis and kidney, and adipocyte size. Treating high fat diet (HFD)-induced obese rats with kefir peptides significantly reduced the fatty acid synthase protein and increased the p-acetyl-CoA carboxylase protein to block lipogenesis in the livers. Kefir peptides also increased fatty acid oxidation by increasing the protein expressions of phosphorylated AMP-activated protein kinase, peroxisome proliferator-activated receptor-α, and hepatic carnitine palmitoyltransferase-1 in the livers. In addition, administration of kefir peptides significantly decreased the inflammatory response (TNF-α, IL-1β, and TGF-β) to modulate oxidative damage. These results demonstrate that kefir peptides treatment improves obesity via inhibition of lipogenesis, modulation of oxidative damage, and stimulation of lipid oxidation. Therefore, kefir peptides may act as an anti-obesity agent to prevent body fat accumulation and obesity-related metabolic diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The early infant gut microbiome varies in association with a maternal high-fat diet.

    Science.gov (United States)

    Chu, Derrick M; Antony, Kathleen M; Ma, Jun; Prince, Amanda L; Showalter, Lori; Moller, Michelle; Aagaard, Kjersti M

    2016-08-09

    Emerging evidence suggests that the in utero environment is not sterile as once presumed. Work in the mouse demonstrated transmission of commensal bacteria from mother to fetus during gestation, though it is unclear what modulates this process. We have previously shown in the nonhuman primate that, independent of obesity, a maternal high-fat diet during gestation and lactation persistently shapes the juvenile gut microbiome. We therefore sought to interrogate in a population-based human longitudinal cohort whether a maternal high-fat diet similarly alters the neonatal and infant gut microbiome in early life. A representative cohort was prospectively enrolled either in the early third trimester or intrapartum (n = 163), with a subset consented to longitudinal sampling through the postpartum interval (n = 81). Multiple body site samples, including stool and meconium, were collected from neonates at delivery and by 6 weeks of age. A rapid dietary questionnaire was administered to estimate intake of fat, added sugars, and fiber over the past month (National Health and Examination Survey). DNA was extracted from each infant meconium/stool sample (MoBio) and subjected to 16S rRNA gene sequencing and analysis. On average, the maternal dietary intake of fat ranged from 14.0 to 55.2 %, with an average intake of 33.1 % (σ = 6.1 %). Mothers whose diets significantly differed from the mean (±1 standard deviation) were separated into two distinct groups, a control group (n = 13, μ = 24.4 %) and a high-fat group (n = 13, μ = 43.1 %). Principal coordinate analysis revealed that the microbiome of the neonatal stool at birth (meconium) clustered differently by virtue of maternal gestational diet (PERMANOVA p = 0.001). LEfSe feature selection identified several taxa that discriminated the groups, with a notable relative depletion of Bacteroides in the neonates exposed to a maternal high-fat gestational diet (Student's t-test, p < 0

  17. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  18. Hypercaloric diets with increased meal frequency, but not meal size, increase intrahepatic triglycerides: a randomized controlled trial.

    Science.gov (United States)

    Koopman, Karin E; Caan, Matthan W A; Nederveen, Aart J; Pels, Anouk; Ackermans, Mariette T; Fliers, Eric; la Fleur, Susanne E; Serlie, Mireille J

    2014-08-01

    American children consume up to 27% of calories from high-fat and high-sugar snacks. Both sugar and fat consumption have been implicated as a cause of hepatic steatosis and obesity but the effect of meal pattern is largely understudied. We hypothesized that a high meal frequency, compared to consuming large meals, is detrimental in the accumulation of intrahepatic and abdominal fat. To test this hypothesis, we randomized 36 lean, healthy men to a 40% hypercaloric diet for 6 weeks or a eucaloric control diet and measured intrahepatic triglyceride content (IHTG) using proton magnetic resonance spectroscopy ((1) H-MRS), abdominal fat using magnetic resonance imaging (MRI), and insulin sensitivity using a hyperinsulinemic euglycemic clamp with a glucose isotope tracer before and after the diet intervention. The caloric surplus consisted of fat and sugar (high-fat-high-sugar; HFHS) or sugar only (high-sugar; HS) and was consumed together with, or between, the three main meals, thereby increasing meal size or meal frequency. All hypercaloric diets similarly increased body mass index (BMI). Increasing meal frequency significantly increased IHTG (HFHS mean relative increase of 45%; P = 0.016 and HS mean relative increase of 110%; P = 0.047), whereas increasing meal size did not (2-way analysis of variance [ANOVA] size versus frequency P = 0.03). Abdominal fat increased in the HFHS-frequency group (+63.3 ± 42.8 mL; P = 0.004) and tended to increase in the HS-frequency group (+46.5 ± 50.7 mL; P = 0.08). Hepatic insulin sensitivity tended to decrease in the HFHS-frequency group while peripheral insulin sensitivity was not affected. A hypercaloric diet with high meal frequency increased IHTG and abdominal fat independent of caloric content and body weight gain, whereas increasing meal size did not. This study suggests that snacking, a common feature in the Western diet, independently contributes to hepatic steatosis and obesity. ( www

  19. Antihyperlipidemic effect of Acanthopanax senticosus (Rupr. et Maxim) Harms leaves in high-fat-diet fed mice.

    Science.gov (United States)

    Nishida, Miyako; Kondo, Momoko; Shimizu, Taro; Saito, Tetsuo; Sato, Shinji; Hirayama, Masao; Konishi, Tetsuya; Nishida, Hiroshi

    2016-08-01

    Metabolic syndrome is a major risk factor for a variety of obesity-related diseases. Recently, the effects of functional foods have been investigated on lipid metabolism as a means to reduce lipid content in the blood, liver and adipose tissues associated with carnitine O-palmitoyltransferase (CPT) activity. Acanthopanax senticosus (Rupr. et Maxim) Harms (AS) is a medicinal herb possessing a wide spectra of functions including antioxidant, anti-inflammatory and anti-fatigue actions. Despite much research being focused on the cortical roots of AS, little information is available regarding its leaves, which are also expected to promote human health, for example by improving abnormal lipid metabolism. Here, we explored whether AS leaves affect lipid metabolism in mice fed a high-fat diet. The administration of AS to BALB/c mice fed a high-fat diet significantly decreased plasma triglycerides (TG). CPT activity in the liver of these mice was significantly enhanced by AS treatment. These findings indicate that AS leaves have the potential to alleviate increase in plasma TG levels due to high-fat diet intake in mice, possibly by increasing mitochondrial fatty acid β-oxidation, especially via CPT activation. Consequently, daily intake of AS leaves could promote beneficial health effects including the prevention of metabolic syndrome. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Late gestation undernutrition can predispose for visceral adiposity by altering fat distribution patterns and increasing the preference for a high-fat diet in early postnatal life

    DEFF Research Database (Denmark)

    Nielsen, Mette Olaf; Kongsted, Anna Hauntoft; Thygesen, M.P.

    2013-01-01

    We have developed a sheep model to facilitate studies of the fetal programming effects of mismatched perinatal and postnatal nutrition. During the last trimester of gestation, twenty-one twin-bearing ewes were fed a normal diet fulfilling norms for energy and protein (NORM) or 50% of a normal diet...... (LOW). From day 3 postpartum to 6 months (around puberty) of age, one twin lamb was fed a conventional (CONV) diet and the other a high-carbohydrate-high-fat (HCHF) diet, resulting in four groups of offspring: NORM-CONV; NORMHCHF; LOW-CONV; LOW-HCHF. At 6 months of age, half of the lambs (all males...... and three females) were slaughtered for further examination and the other half (females only) were transferred to a moderate sheep diet until slaughtered at 24 months of age (adulthood). Maternal undernutrition during late gestation reduced the birth weight of LOW offspring (P...

  1. Antihyperlipidemic Effects of Sesamum indicum L. in Rabbits Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Sedigheh Asgary

    2013-01-01

    Full Text Available The present study aimed to investigate the anti-hyperlipidemic effects of sesame in a high-fat fed rabbit model. Animals were randomly divided into four groups of eight animals each for 60 days as follows: normal diet, hypercholesterolemic diet (1% cholesterol, hypercholesterolemic diet (1% cholesterol + sesame seed (10%, and hypercholesterolemic diet (1% cholesterol + sesame oil (5%. Serum concentrations of total cholesterol, LDL-C, HDL-C, triglycerides, apoA and apoB, SGOT, SGPT, glucose and insulin were measured at the end of supplementation period in all studied groups. Hypercholesterolemic feeding resulted in a significant elevation of TC, TG, LDL-C, HDL-C, SGOT and SGPT as compared to the normocholesterolemic diet group (P0.05. In contrast, rabbits supplemented with sesame oil were found to have lower circulating concentrations of TC, LDL-C, HDL-C, SGOT and SGPT (P0.05. Supplementation with sesame oil, but not sesame seed, can ameliorate serum levels of lipids and hepatic enzymes in rabbits under a high-fat diet.

  2. Phloretin Prevents High-Fat Diet-Induced Obesity and Improves Metabolic Homeostasis.

    Science.gov (United States)

    Alsanea, Sary; Gao, Mingming; Liu, Dexi

    2017-05-01

    Reactive oxygen species generated as a by-product in metabolism play a central role in the development of obesity and obesity-related metabolic complications. The objective of the current study is to explore the possibility to block obesity and improve metabolic homeostasis via phloretin, a natural antioxidant product from apple tree leaves and Manchurian apricot. Both preventive and therapeutic activities of phloretin were assessed using a high-fat diet-induced obesity mouse model. Phloretin was injected intraperitoneally twice weekly into regular and obese mice fed a high-fat diet. The effects of phloretin treatment on body weight and composition, fat content in the liver, glucose and lipid metabolism, and insulin resistance were monitored and compared to the control animals. Phloretin treatment significantly blocks high-fat diet-induced weight gain but did not induce weight loss in obese animals. Phloretin improved glucose homeostasis and insulin sensitivity and alleviated hepatic lipid accumulation. RT-PCR analysis showed that phloretin treatment suppresses expression of macrophage markers (F4/80 and Cd68) and pro-inflammatory genes (Mcp-1 and Ccr2) and enhances adiponectin gene expression in white adipose tissue. In addition, phloretin treatment elevated the expression of fatty acid oxidation genes such as carnitine palmitoyltransferase 1a and 1b (Cpt1a and Cpt1b) and reduced expression of monocyte chemoattractant protein-1 (Mcp-1), de novo lipogenesis transcriptional factor peroxisome proliferator-activated receptor-γ 2 (Pparγ2), and its target monoacylglycerol O-acyltransferase (Mgat-1) genes. These results provide direct evidence to support a possible use of phloretin for mitigation of obesity and maintenance of metabolic homeostasis.

  3. A safflower oil based high-fat/high-sucrose diet modulates the gut microbiota and liver phospholipid profiles associated with early glucose intolerance in the absence of tissue inflammation.

    Science.gov (United States)

    Danneskiold-Samsøe, Niels Banhos; Andersen, Daniel; Radulescu, Ilinca Daria; Normann-Hansen, Ann; Brejnrod, Asker; Kragh, Marie; Madsen, Tobias; Nielsen, Christian; Josefsen, Knud; Fretté, Xavier; Fjaere, Even; Madsen, Lise; Hellgren, Lars I; Brix, Susanne; Kristiansen, Karsten

    2017-05-01

    Omega-6 (n-6) PUFA-rich diets are generally considered obesogenic in rodents. Here, we examined how long-term intake of a high-fat/high-sucrose (HF/HS) diet based on safflower oil affected metabolism, inflammation, and gut microbiota composition. We fed male C57BL/6J mice a HF/HS diet based on safflower oil-rich in n-6 PUFAs-or a low-fat/low-sucrose diet for 40 wk. Compared to the low-fat/low-sucrose diet, intake of the safflower-based HF/HS diet only led to moderate weight gain, while glucose intolerance developed at week 5 prior to signs of inflammation, but concurrent with increased levels of linoleic acid and arachidonic acid in hepatic phospholipids. Intake of the HF/HS diet resulted in early changes in the gut microbiota, including an increased abundance of Blautia, while late changes coincided with altered inflammatory profiles and increased fasting plasma insulin. Analysis of immune cells in visceral fat and liver revealed no differences between diets before week 40, where the number of immune cells decreased in the liver of HF/HS-fed mice. We suggest that a diet-dependent increase in the n-6 to omega-3 (n-3) PUFA ratio in hepatic phospholipids together with gut microbiota changes contributed to early development of glucose intolerance without signs of inflammation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Swimming training induces liver adaptations to oxidative stress and insulin sensitivity in rats submitted to high-fat diet.

    Science.gov (United States)

    Zacarias, Aline Cruz; Barbosa, Maria Andrea; Guerra-Sá, Renata; De Castro, Uberdan Guilherme Mendes; Bezerra, Frank Silva; de Lima, Wanderson Geraldo; Cardoso, Leonardo M; Santos, Robson Augusto Souza Dos; Campagnole-Santos, Maria José; Alzamora, Andréia Carvalho

    2017-11-01

    Oxidative stress, physical inactivity and high-fat (FAT) diets are associated with hepatic disorders such as metabolic syndrome (MS). The therapeutic effects of physical training (PT) were evaluated in rats with MS induced by FAT diet for 13 weeks, on oxidative stress and insulin signaling in the liver, during the last 6 weeks. FAT-sedentary (SED) rats increased body mass, retroperitoneal fat, mean arterial pressure (MAP) and heart rate (HR), and total cholesterol, serum alanine aminotransferase, glucose and insulin. Livers of FAT-SED rats increased superoxide dismutase activity, thiobarbituric acid-reactive substances, protein carbonyl and oxidized glutathione (GSSG); and decreased catalase activity, reduced glutathione/GSSG ratio, and the mRNA expression of insulin receptor substrate 1 (IRS-1) and serine/threonine kinase 2. FAT-PT rats improved in fitness and reduced their body mass, retroperitoneal fat, and glucose, insulin, total cholesterol, MAP and HR; and their livers increased superoxide dismutase and catalase activities, the reduced glutathione/GSSG ratio and the expression of peroxisome proliferator-activated receptor gamma and insulin receptor compared to FAT-SED rats. These findings indicated adaptive responses to PT by restoring the oxidative balance and insulin signaling in the liver and certain biometric and biochemical parameters as well as MAP in MS rats.

  5. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P

  6. Acceptability of a low-fat vegan diet compares favorably to a step II diet in a randomized, controlled trial.

    Science.gov (United States)

    Barnard, Neal D; Scialli, Anthony R; Turner-McGrievy, Gabrielle; Lanou, Amy J

    2004-01-01

    This study aimed to assess the acceptability of a low-fat vegan diet, as compared with a more typical fat-modified diet, among overweight and obese adults. Through newspaper advertisements, 64 overweight, postmenopausal women were recruited, 59 of whom completed the study. The participants were assigned randomly to a low-fat vegan diet or, for comparison, to a National Cholesterol Education Program Step II (NCEP) diet. At baseline and 14 weeks later, dietary intake, dietary restraint, disinhibition, and hunger, as well as the acceptability and perceived benefits and adverse effects of each diet were assessed. Dietary restraint increased in the NCEP group (P vegan group. Disinhibition and hunger scores fell in each group (P vegan group participants rated their diet as less easy to prepare than their usual diets (P vegan diet is high and not demonstrably different from that of a more moderate low-fat diet among well-educated, postmenopausal women in a research environment.

  7. Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice.

    Science.gov (United States)

    Katsumura, Masanori; Takagi, Shoko; Oya, Hana; Tamura, Shohei; Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2017-08-01

    Animal by-products can be recycled and used as sources of essential nutrients. Water-soluble heme iron (WSHI), a functional food additive for supplementing iron, is produced by processing animal blood. In this study, we investigated the effects of dietary supplementation of 3% WSHI and exercise training for 4 weeks on the accumulation of abdominal fat and lipid metabolism in mice fed high-fat diet. Exercise-trained mice had significantly less perirenal adipose tissue, whereas WSHI-fed mice tended to have less epididymal adipose tissue. In addition, total weight of abdominal adipose tissues was significantly decreased in the Exercise + WSHI group. Dietary WSHI significantly increased the messenger RNA (mRNA) levels of lipoprotein lipase and hormone-sensitive lipase. WSHI-fed mice also tended to show increased mRNA levels of adipose triglyceride lipase in their epididymal adipose tissue. Dietary WSHI also significantly decreased the mRNA levels of fatty acid oxidation-related enzymes in the liver, but did not influence levels in the Gastrocnemius muscle. Exercise training did not influence the mRNA levels of lipid metabolism-related enzymes in the epididymal adipose tissue, liver or the Gastrocnemius muscle. These findings suggest that the accumulation of abdominal fat can be efficiently decreased by the combination of dietary WSHI and exercise training in mice fed high-fat diet. © 2016 Japanese Society of Animal Science.

  8. High-fat diet amplifies renal renin angiotensin system expression, blood pressure elevation, and renal dysfunction caused by Ceacam1 null deletion.

    Science.gov (United States)

    Li, Caixia; Culver, Silas A; Quadri, Syed; Ledford, Kelly L; Al-Share, Qusai Y; Ghadieh, Hilda E; Najjar, Sonia M; Siragy, Helmy M

    2015-11-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAMl), a substrate of the insulin receptor tyrosine kinase, regulates insulin action by promoting insulin clearance. Global null mutation of Ceacam1 gene (Cc1(-/-)) results in features of the metabolic syndrome, including insulin resistance, hyperinsulinemia, visceral adiposity, elevated blood pressure, and albuminuria. It also causes activation of the renal renin-angiotensin system (RAS). In the current study, we tested the hypothesis that high-fat diet enhances the expression of RAS components. Three-month-old wild-type (Cc1(+/+)) and Cc1(-/-) mice were fed either a regular or a high-fat diet for 8 wk. At baseline under regular feeding conditions, Cc1(-/-) mice exhibited higher blood pressure, urine albumin-to-creatinine ratio (UACR), and renal expression of angiotensinogen, renin/prorenin, angiotensin-converting enzyme, (pro)renin receptor, angiotensin subtype AT1 receptor, angiotensin II, and elevated PI3K phosphorylation, as detected by p85α (Tyr(508)) immunostaining, inflammatory response, and the expression of collagen I and collagen III. In Cc1(+/+) mice, high-fat diet increased blood pressure, UACR, the expression of angiotensin-converting enzyme and angiotensin II, PI3K phosphorylation, inflammatory response, and the expression of collagen I and collagen III. In Cc1(-/-) mice, high-fat intake further amplified these parameters. Immunohistochemical staining showed increased p-PI3K p85α (Tyr(508)) expression in renal glomeruli, proximal, distal, and collecting tubules of Cc1(-/-) mice fed a high-fat diet. Together, this demonstrates that high-fat diet amplifies the permissive effect of Ceacam1 deletion on renal expression of all RAS components, PI3K phosphorylation, inflammation, and fibrosis. Copyright © 2015 the American Physiological Society.

  9. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice.

    Directory of Open Access Journals (Sweden)

    Gladys Ferrere

    Full Text Available The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD. To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.

  10. Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice.

    Science.gov (United States)

    Sun, Quancai; Xiao, Xiao; Kim, Yoo; Kim, Daeyoung; Yoon, Kyoon Sup; Clark, John M; Park, Yeonhwa

    2016-12-14

    Imidacloprid, a neonicotinoid insecticide widely used in agriculture worldwide, has been reported to promote adipogenesis and cause insulin resistance in vitro. The purpose of the current study was to determine the effects of imidacloprid and its interaction with dietary fat in the development of adiposity and insulin resistance using male C57BL/6J mice. Imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) was mixed in a low-fat (4% w/w) or high-fat (20% w/w) diet and given to mice ad libitum for 12 weeks. Imidacloprid significantly promoted high fat diet-induced body weight gain and adiposity. In addition, imidacloprid treatment with the high fat diet resulted in impaired glucose metabolism. Consistently, there were significant effects of imidacloprid on genes regulating lipid and glucose metabolisms, including the AMP-activated protein kinase-α (AMPKα) pathway in white adipose tissue and liver. These results suggest that imidacloprid may potentiate high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice.

  11. Silicon Alleviates Nonalcoholic Steatohepatitis by Reducing Apoptosis in Aged Wistar Rats Fed a High-Saturated Fat, High-Cholesterol Diet.

    Science.gov (United States)

    Garcimartín, Alba; López-Oliva, M Elvira; Sántos-López, Jorge A; García-Fernández, Rosa A; Macho-González, Adrián; Bastida, Sara; Benedí, Juana; Sánchez-Muniz, Francisco J

    2017-06-01

    Background: Lipoapoptosis has been identified as a key event in the progression of nonalcoholic fatty liver disease (NAFLD), and hence, antiapoptotic agents have been recommended as a possible effective treatment for nonalcoholic steatohepatitis (NASH). Silicon, included in meat as a functional ingredient, improves lipoprotein profiles and liver antioxidant defenses in aged rats fed a high-saturated fat, high-cholesterol diet (HSHCD). However, to our knowledge, the antiapoptotic effect of this potential functional meat on the liver has never been tested. Objective: This study was designed to evaluate the effect of silicon on NASH development and the potential antiapoptotic properties of silicon in aged rats. Methods: One-year-old male Wistar rats weighing ∼500 g were fed 3 experimental diets containing restructured pork (RP) for 8 wk: 1 ) a high-saturated fat diet, as an NAFLD control, with 16.9% total fat, 0.14 g cholesterol/kg diet, and 46.8 mg SiO 2 /kg (control); 2 ) the HSHCD as a model of NASH, with 16.6% total fat, 16.3 g cholesterol/kg diet, and 46.8 mg SiO 2 /kg [high-cholesterol diet (Chol-C)]; and 3 ) the HSHCD with silicon-supplemented RP with amounts of fat and cholesterol identical to those in the Chol-C diet, but with 750 mg SiO 2 /kg (Chol-Si). Detailed histopathological assessments were performed, and the NAFLD activity score (NAS) was calculated. Liver apoptosis and damage markers were evaluated by Western blotting and immunohistochemical staining. Results: Chol-C rats had a higher mean NAS (7.4) than did control rats (1.9; P silicon substantially affects NASH development in aged male Wistar rats fed an HSHCD by partially blocking apoptosis. These results suggest that silicon-enriched RP could be used as an effective nutritional strategy in preventing NASH. © 2017 American Society for Nutrition.

  12. Green Tea Extract Supplementation Induces the Lipolytic Pathway, Attenuates Obesity, and Reduces Low-Grade Inflammation in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Cláudio A. Cunha

    2013-01-01

    Full Text Available The aim of this study was to evaluate the effects of green tea Camellia sinensis extract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water; CG (chow diet and water + green tea extract; HW (high-fat diet and water; HG (high-fat diet and water + green tea extract. The mice were fed ad libitum with chow or high-fat diet and concomitantly supplemented (oral gavage with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.. The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 μg/mg epigallocatechin, 95 μg/mg epigallocatechin gallate, 20.8 μg/mg epicatechin gallate, and 4.9 μg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFα levels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice.

  13. [Effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats].

    Science.gov (United States)

    Yu, Tao; Liu, Rui; Li, Mao; Li, Xian; Qiang, Ou; Huang, Wei; Tang, Chengwei

    2014-03-01

    To investigate effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats. SD rats were divided into control group (n = 14) and high-fat diet group (n = 36). Obese rats from the high-fat diet group were further divided into 2 groups: the obese group (n = 14) and the octreotide-treated group (n = 16). Rats in the octreotide-treated group were subcutaneously injected with octreotide per 12 h (40 mg/kg BW) for 8 days. Body weight, fasting plasma glucose (FPG), fasting serum insulin, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) levels, pancreatic TG and FFA content were measured. Homeostatic model assessment (HOMA) index was calculated. Somatostatin (SST) and the expression of adipose differentiation-related protein (ADFP) in pancrea were measured. Pathological changes of pancreas were examined with light microscopy. Body weight, Lee's index, FPG, fasting serum insulin, TG, TC levels and HOMA index in the obese group were higher than those in the control group (P pancreas, and lowering the levels of plasma glucose and lipid in the high-fat diet induced obesity rats.

  14. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    Science.gov (United States)

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  15. High Phenolics Rutgers Scarlet Lettuce Improves Glucose Metabolism in High Fat Diet-Induced Obese Mice

    Science.gov (United States)

    Cheng, Diana M.; Roopchand, Diana E.; Poulev, Alexander; Kuhn, Peter; Armas, Isabel; Johnson, William D.; Oren, Andrew; Ribnicky, David; Zelzion, Ehud; Bhattacharya, Debashish; Raskin, Ilya

    2016-01-01

    Scope The ability of high phenolic Rutgers Scarlet Lettuce (RSL) to attenuate metabolic syndrome and gut dysbiosis was studied in very high fat diet (VHFD)-fed mice. Phenolic absorption was assessed in vivo and in a gastrointestinal tract model. Methods and results Mice were fed VHFD, VHFD supplemented with RSL (RSL-VHFD) or store-purchased green lettuce (GL-VHFD), or low-fat diet (LFD) for 13 weeks. Compared to VHFD or GL-VHFD-fed groups, RSL-VHFD group showed significantly improved oral glucose tolerance (p<0.05). Comparison of VHFD, RSL-VHFD, and GL-VHFD groups revealed no significant differences with respect to insulin tolerance, hepatic lipids, body weight gain, fat mass, plasma glucose, triglycerides, free fatty acid, and lipopolysaccharide levels, as well as relative abundances of major bacterial phyla from 16S rDNA amplicon data sequences (from fecal and cecal samples). However, RSL and GL-supplementation increased abundance of several taxa involved in plant polysaccharide degradation/fermentation. RSL phenolics chlorogenic acid, quercetin-3-glucoside, and quercetin-malonyl-glucoside were bioaccessible in the TIM-1 digestion model, but had relatively low recovery. Conclusions RSL phenolics contributed to attenuation of postprandial hyperglycemia. Changes in gut microbiota were likely due to microbiota accessible carbohydrates in RSL and GL rather than RSL phenolics, which may be metabolized, absorbed, or degraded before reaching the colon. PMID:27529448

  16. Fatty liver accompanies an increase in lactobacillus species in the hind gut of C57BL/6 mice fed a high-fat diet.

    Science.gov (United States)

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F

    2013-05-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model.

  17. Red Cabbage Microgreens Lower Circulating Low-Density Lipoprotein (LDL), Liver Cholesterol, and Inflammatory Cytokines in Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Huang, Haiqiu; Jiang, Xiaojing; Xiao, Zhenlei; Yu, Lu; Pham, Quynhchi; Sun, Jianghao; Chen, Pei; Yokoyama, Wallace; Yu, Liangli Lucy; Luo, Yaguang Sunny; Wang, Thomas T Y

    2016-12-07

    Cardiovascular disease (CVD) is the leading cause of death in the United States, and hypercholesterolemia is a major risk factor. Population studies, as well as animal and intervention studies, support the consumption of a variety of vegetables as a means to reduce CVD risk through modulation of hypercholesterolemia. Microgreens of a variety of vegetables and herbs have been reported to be more nutrient dense compared to their mature counterparts. However, little is known about the effectiveness of microgreens in affecting lipid and cholesterol levels. The present study used a rodent diet-induced obesity (DIO) model to address this question. C57BL/6NCr mice (n = 60, male, 5 weeks old) were randomly assigned to six feeding groups: (1) low-fat diet; (2) high-fat diet; (3) low-fat diet + 1.09% red cabbage microgreens; (4) low-fat diet + 1.66% mature red cabbage; (5) high-fat diet + 1.09% red cabbage microgreens; (6) high-fat diet + 1.66% mature red cabbage. The animals were on their respective diets for 8 weeks. We found microgreen supplementation attenuated high-fat diet induced weight gain. Moreover, supplementation with microgreens significantly lowered circulating LDL levels in animals fed the high-fat diet and reduced hepatic cholesterol ester, triacylglycerol levels, and expression of inflammatory cytokines in the liver. These data suggest that microgreens can modulate weight gain and cholesterol metabolism and may protect against CVD by preventing hypercholesterolemia.

  18. Whey Protein Reduces Early Life Weight Gain in Mice Fed a High-Fat Diet

    Science.gov (United States)

    Tranberg, Britt; Hellgren, Lars I.; Lykkesfeldt, Jens; Sejrsen, Kristen; Jeamet, Aymeric; Rune, Ida; Ellekilde, Merete; Nielsen, Dennis S.; Hansen, Axel Kornerup

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (Pwhey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, Pwhey group (Pwhey compared to casein (Pwhey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey. PMID:23940754

  19. Comparison of the effects on insulin resistance and glucose tolerance of 6-mo high-monounsaturated-fat, low-fat, and control diets

    DEFF Research Database (Denmark)

    Due, Anette; Larsen, Thomas M; Hermansen, Kjeld

    2008-01-01

    and after the 6-mo dietary intervention. All foods were provided by a purpose-built supermarket. RESULTS: After 6 mo, the MUFA diet reduced fasting glucose (-3.0%), insulin (-9.4%), and the homeostasis model assessment of insulin resistance score (-12.1%). Compared with the MUFA diet, the control diet......BACKGROUND: The effect of dietary fat and carbohydrate on glucose metabolism has been debated for decades. OBJECTIVE: The objective was to compare the effect of 3 ad libitum diets, different in type and amount of fat and carbohydrate, on insulin resistance and glucose tolerance subsequent to weight...... loss. DESIGN: Forty-six nondiabetic, obese [mean (+/-SEM) body mass index (in kg/m(2)): 31.2 +/- 0.3] men (n = 20) and premenopausal women (n = 26) aged 28.0 +/- 0.7 y were randomly assigned to 1 of 3 diets after > or = 8% weight loss: 1) MUFA diet (n = 16): moderate in fat (35-45% of energy) and high...

  20. Dietary supplementation with fish oil prevents high fat diet-induced enhancement of sensitivity to the locomotor stimulating effects of cocaine in adolescent female rats.

    Science.gov (United States)

    Serafine, Katherine M; Labay, Caitlin; France, Charles P

    2016-08-01

    Eating a diet high in fat can lead to obesity, chronic metabolic disease, and increased inflammation in both the central and peripheral nervous systems. Dietary supplements that are high in omega-3 polyunsaturated fatty acids can reduce or prevent these negative health consequences in rats. Eating high fat chow also increases the sensitivity of rats to behavioral effects of drugs acting on dopamine systems (e.g., cocaine), and this effect is greatest in adolescent females. The present experiment tested the hypothesis that dietary supplementation with fish oil prevents high fat chow induced increases in sensitivity to cocaine in adolescent female rats. Female Sprague-Dawley rats (post-natal day 25-27) ate standard laboratory chow (5.7% fat), high fat chow (34.4% fat), or high fat chow supplemented with fish oil (20% w/w). Cocaine dose dependently (1-17.8mg/kg) increased locomotion and induced sensitization across 6 weeks of once-weekly testing in all rats; however, these effects were greatest in rats eating high fat chow. Dietary supplementation with fish oil prevented enhanced locomotion and sensitization in rats eating high fat chow. There were no differences in inflammatory markers in plasma or the hypothalamus among dietary conditions. These results demonstrate that dietary supplementation with fish oil can prevent high fat diet-induced sensitization to cocaine, but they fail to support the view that these effects are due to changes in proinflammatory cytokines. These data add to a growing literature on the relationship between diet and drug abuse and extend the potential health benefits of fish oil to stimulant drug abuse prevention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Dietary salecan reverts partially the metabolic gene expressions and NMR-based metabolomic profiles from high-fat-diet-induced obese rats.

    Science.gov (United States)

    Sun, Qi; Li, Minghui; Yang, Xiao; Xu, Xi; Wang, Junsong; Zhang, Jianfa

    2017-09-01

    Previous studies suggest that dietary salecan (a water-soluble β-glucan) effectively reduces high-fat-diet-induced adiposity through disturbing bile-acid-promoted emulsification in mice. However, the effects of salecan on metabolic genes and metabolites involved in lipid accumulation are mostly unknown. Here, we confirmed that dietary 3% and 6% salecan for 4 weeks markedly decreased fat accumulation in liver and adipose tissue in high-fat-diet rats, displaying a decrease in mRNA levels of SREBP1-C, FAS, SCD1 and ACC1 involved in de novo lipogenesis and a reduction of levels of GPAT1, DGAT1 and DGAT2 related to triglyceride synthesis. Dietary salecan also increased the mRNA levels of PPARα and CYP7A1, which are related to fatty acid oxidation and cholesterol decomposition, respectively. In the 1 H nuclear magnetic resonance metabolomic analysis, both the serum and liver metabolite profiles differed among the control groups, and the metabolic profiles of the salecan groups were shifted toward that of the low-fat-diet group. Metabolites analysis showed that salecan significantly increased hepatic glutathione and betaine levels which are related to regulation of cellular reactive oxygen species. These data demonstrate that dietary salecan not only disturbed fat digestion and absorption but also influenced lipid accumulation and metabolism in diet-induced obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. High fat diet and GLP-1 drugs induce pancreatic injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, Rodney, E-mail: rodney.rouse@fda.hhs.gov; Xu, Lin; Stewart, Sharron; Zhang, Jun

    2014-04-15

    Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) were administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment.

  3. High fat diet and GLP-1 drugs induce pancreatic injury in mice

    International Nuclear Information System (INIS)

    Rouse, Rodney; Xu, Lin; Stewart, Sharron; Zhang, Jun

    2014-01-01

    Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) were administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment

  4. [The effects of a low-fat versus a low carbohydrate diet in obese adults].

    Science.gov (United States)

    De Luis, Daniel A; Aller, Rocio; Izaola, Olatz; González Sagrado, Manuel; Conde, Rosa

    2009-02-21

    The aim of our study was to compare the effect of a high fat and a high protein diet vs a fat restricted diet on weight loss in obese patients. A population of 74 obesity non diabetic outpatients was analyzed in a prospective way. Patients were randomly allocated to two groups: a) diet I (low fat diet: 1500kcal/day, 52% carbohydrates, 20% proteins, 27% fats) with a distribution of fats and b) diet II (high fat and high protein diet: 1507kcal/day, 38% carbohydrates, 26% proteins, 36% fats). After three months with diet, weight, blood pressure, glucose, C reactive protein, insulin, insulin resistance, total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides were evaluated. There were randomized 35 patients (4 males and 31 females) in the group I and 39 patients (6 males and 33 females) in diet group II. In group I, systolic pressure, BMI, weight, fat free mass, fat mass total body water, intracellular body water and waist circumference decreased significantly. In group II, glucose, total cholesterol, LDL cholesterol, systolic blood, BMI, weight, fat mass, total body water and waist circumference decreased significantly. Differences among averages of parameters before treatment with both diets were not detected. No differences were detected on weight loss between a fat-restricted diet and a high fat and high protein enhanced diet.

  5. Impaired mTORC2 signaling in catecholaminergic neurons exaggerates high fat diet-induced hyperphagia

    Directory of Open Access Journals (Sweden)

    Olga I. Dadalko

    2015-09-01

    Conclusions: Our data support a model in which mTORC2 signaling within catecholaminergic neurons constrains consumption of a high-fat diet, while disruption causes high-fat diet-specific exaggerated hyperphagia. In parallel, impaired mTORC2 signaling leads to aberrant striatal DA neurotransmission, which has been associated with obesity in human and animal models, as well as with escalating substance abuse. These data suggest that defects localized to the catecholaminergic pathways are capable of overriding homeostatic circuits, leading to obesity, metabolic impairment, and aberrant DA-dependent behaviors.

  6. GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet

    DEFF Research Database (Denmark)

    McClean, Paula L; Irwin, Nigel; Cassidy, Roslyn S

    2007-01-01

    The gut hormone gastric inhibitory polypeptide (GIP) plays a key role in glucose homeostasis and lipid metabolism. This study investigated the effects of administration of a stable and specific GIP receptor antagonist, (Pro(3))GIP, in mice previously fed a high-fat diet for 160 days to induce...... obesity and related diabetes. Daily intraperitoneal injection of (Pro(3))GIP over 50 days significantly decreased body weight compared with saline-treated controls, with a modest increase in locomotor activity but no change of high-fat diet intake. Plasma glucose, glycated hemoglobin, and pancreatic......))GIP concentrations peaked rapidly and remained elevated 24 h after injection. These data indicate that GIP receptor antagonism using (Pro(3))GIP provides an effective means of countering obesity and related diabetes induced by consumption of a high-fat, energy-rich diet....

  7. Maternal high fat diet alters skeletal muscle mitochondrial catalytic activity in adult male rat offspring.

    Directory of Open Access Journals (Sweden)

    Chantal Anne Pileggi

    2016-11-01

    Full Text Available A maternal high-fat (HF diet during pregnancy can lead to metabolic compromise such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat or a high fat diet (HFD; 45% kcal from fat for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1 and mitochondrial transcription factor A (mtTFA were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS respiratory complex subunits were supressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%, which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%. Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle.

  8. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets.

    Science.gov (United States)

    Sadowska, Julita; Gębczyński, Andrzej K; Konarzewski, Marek

    2017-01-01

    Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks) to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget) and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model-mice selected for divergent BMR rates (the H-BMR and L-BMR line type) presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human "sedentary lifestyle", with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts) taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets.

  9. Analysis of time-dependent adaptations in whole-body energy balance in obesity induced by high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Maghdoori Babak

    2011-06-01

    Full Text Available Abstract Background High-fat (HF diet has been extensively used as a model to study metabolic disorders of human obesity in rodents. However, the adaptive whole-body metabolic responses that drive the development of obesity with chronically feeding a HF diet are not fully understood. Therefore, this study investigated the physiological mechanisms by which whole-body energy balance and substrate partitioning are adjusted in the course of HF diet-induced obesity. Methods Male Wistar rats were fed ad libitum either a standard or a HF diet for 8 weeks. Food intake (FI and body weight were monitored daily, while oxygen consumption, respiratory exchange ratio, physical activity, and energy expenditure (EE were assessed weekly. At week 8, fat mass and lean body mass (LBM, fatty acid oxidation and uncoupling protein-1 (UCP-1 content in brown adipose tissue (BAT, as well as acetyl-CoA carboxylase (ACC content in liver and epidydimal fat were measured. Results Within 1 week of ad libitum HF diet, rats were able to spontaneously reduce FI to precisely match energy intake of control rats, indicating that alterations in dietary energy density were rapidly detected and FI was self-regulated accordingly. Oxygen consumption was higher in HF than controls throughout the study as whole-body fat oxidation also progressively increased. In HF rats, EE initially increased, but then reduced as dark cycle ambulatory activity reached values ~38% lower than controls. No differences in LBM were detected; however, epidydimal, inguinal, and retroperitoneal fat pads were 1.85-, 1.89-, and 2.54-fold larger in HF-fed than control rats, respectively. Plasma leptin was higher in HF rats than controls throughout the study, indicating the induction of leptin resistance by HF diet. At week 8, UCP-1 content and palmitate oxidation in BAT were 3.1- and 1.5-fold higher in HF rats than controls, respectively, while ACC content in liver and epididymal fat was markedly reduced

  10. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats.

    Science.gov (United States)

    Zhang, Xiao-Juan; Zhou, Li-Hong; Ban, Xiang; Liu, Dian-Xin; Jiang, Wei; Liu, Xiao-Min

    2011-10-01

    Mammals spontaneously prefer lipid rich foods. Overconsumption of high-fat diet leads to obesity and related diseases. Recent findings indicate that taste may participate in the orosensory perception of dietary lipids and the fatty taste may contribute to a preference for and excessive consumption of dietary fat. CD36, a trans-membrane glycoprotein, which is located in the taste buds of circumvallate papillae of rodents, appears to be a plausible receptor for this fatty taste. Obese subjects present a stronger preference for fatty foods, though the mechanisms involved are complex and are not fully investigated. Our data from immunofluorescence and real-time RT-PCR showed that the expression levels of CD36 in circumvallate taste buds were significantly lower in high-fat diet induced obese rats as compared with that of control rats fed a normal diet. These results suggest that decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats may be associated with diminished fatty taste sensitivity and in order to compensate the preference for dietary fat, rats consume more fatty foods. Therapeutic strategies designed to alter or manipulate CD36 expression or function in taste buds may have important implications in treating obesity and related diseases. Copyright © 2010 Elsevier GmbH. All rights reserved.

  11. The Metabolic Implications of Glucocorticoids in a High-Fat Diet Setting and the Counter-Effects of Exercise

    Directory of Open Access Journals (Sweden)

    Emily C. Dunford

    2016-12-01

    Full Text Available Glucocorticoids (GCs are steroid hormones, naturally produced by activation of the hypothalamic-pituitary-adrenal (HPA axis, that mediate the immune and metabolic systems. Synthetic GCs are used to treat a number of inflammatory conditions and diseases including lupus and rheumatoid arthritis. Generally, chronic or high dose GC administration is associated with side effects such as steroid-induced skeletal muscle loss, visceral adiposity, and diabetes development. Patients who are taking exogenous GCs could also be more susceptible to poor food choices, but the effect that increasing fat consumption in combination with elevated exogenous GCs has only recently been investigated. Overall, these studies show that the damaging metabolic effects initiated through exogenous GC treatment are significantly amplified when combined with a high fat diet (HFD. Rodent studies of a HFD and elevated GCs demonstrate more glucose intolerance, hyperinsulinemia, visceral adiposity, and skeletal muscle lipid deposition when compared to rodents subjected to either treatment on its own. Exercise has recently been shown to be a viable therapeutic option for GC-treated, high-fat fed rodents, with the potential mechanisms still being examined. Clinically, these mechanistic studies underscore the importance of a low fat diet and increased physical activity levels when individuals are given a course of GC treatment.

  12. Effect of Ethanolic Extract of Emblica officinalis (Amla on Glucose Homeostasis in Rats Fed with High Fat Diet

    Directory of Open Access Journals (Sweden)

    Pallavi S. Kanthe

    2017-07-01

    Full Text Available Background: Emblica officinalis contains many biological active components which are found to have some medicinal properties against diseases. Aim and Objectives: To assess hypolipidemic and glucose regulatory actions of Ethanolic Extract of Emblica officinalis (EEO on High Fat Diet (HFD fed experimental rats. Material and Methods: Twenty four rats were divided into four groups, having six rats in each group as following; Group I- Control (20% fat; Group II (EEO 100 mg/kg/b w; Group III (30% fat and Group IV (30% fat + EEO 100 mg/kg/b w. The treatment was continued for 21 days. Gravimetric parameters and lipid profiles of all the groups were measured. Oral Glucose Tolerance Test (OGTT, fasting and postprandial glucose and fasting insulin levels were estimated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR was calculated. Statistical analysis was done. Results: Significant alteration in serum lipid profile, fasting and post prandial blood glucose levels and fasting insulin level were observed in rats of Group III fed with high fat diet. Supplementation of EEO improved both of glycemic and lipid profiles in rats of Group IV fed with high fat diet. Conclusion: Results from the study indicate the beneficial role of EEO on dyslipidemia and glucose homeostasis in rats treated with high fat diet.

  13. Low-intensity aerobic exercise training: inhibition of skeletal muscle atrophy in high-fat-diet-induced ovariectomized rats.

    Science.gov (United States)

    Kim, Hye Jin; Lee, Won Jun

    2017-09-30

    Postmenopausal women are highly susceptible to diseases, such as obesity, type 2 diabetes, osteoporosis, or skeletal muscle atrophy and many people recognize the need for regular physical activity. Aerobic exercise training is known to improve the oxidative capacity and insulin sensitivity of skeletal muscles. This study aimed to investigate the role of low-intensity aerobic exercise training on skeletal muscle protein degradation or synthesis in the plantaris muscles of high-fat-fed ovariectomized rats. Ovariectomized female rats were divided into two groups: a high-fat diet-sedentary group (HFD), and a high-fat diet-aerobic exercise group (HFD+EX). The exercise group exercised aerobically on a treadmill 5 days/week for 8 weeks. The rats progressively ran 30 min/day at 15 m/min, up to 40 min/day at 18 m/min, 0% slope, in the last 4 weeks. Although aerobic exercise led to significantly increased AMP-activated protein kinase (AMPK) phosphorylation at Thr172, phosphorylation of the mammalian target of rapamycin (mTOR) substrate Thr389 S6K1 level did not decrease. Additionally, even though Akt activity did not increase at Ser473, the atrogin-1 level significantly decreased in the exercise group compared to the non-exercise group. Immunohistochemical staining revealed that high-fat-induced TSC2 protein expression was eliminated in response to aerobic exercise. These results suggest that aerobic exercise can inhibit skeletal muscle protein degradation, but it cannot increase protein synthesis in the plantaris muscle of high-fat-fed ovariectomized rats. Our findings have implications in understanding skeletal muscle mass maintenance with low intensity aerobic exercise in post-menopausal women. ©2017 The Korean Society for Exercise Nutrition

  14. Effect of Saffron on Metabolic Profile and Retina in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Doumouchtsis, Evangelos K; Tzani, Aspasia; Doulamis, Ilias P; Konstantopoulos, Panagiotis; Laskarina-Maria, Korou; Agrogiannis, Georgios; Agapitos, Emmanouil; Moschos, Marilita M; Kostakis, Alkiviadis; Perrea, Despina N

    2017-09-22

    Saffron is a spice that has been traditionally used as a regimen for a variety of diseases due to its potent antioxidant attributes. It is well documented that impaired systemic oxidative status is firmly associated with diverse adverse effects including retinal damage. The aim of this study was to investigate the role of saffron administration against the retinal damage in apoE -/- mice fed a high-fat diet, since they constitute a designated experimental model susceptible to oxidative stress. Twenty-one mice were allocated into three groups: Group A (control, n = 7 c57bl/6 mice) received standard chow diet; Group B (high-fat, n = 7 apoE -/- mice) received a high-fat diet; and Group C (high-fat and saffron, n = 7 apoE -/- mice) received a high-fat diet and saffron (25 mg/kg/d) through their drinking water. The duration of the study was 20 weeks. Lipidemic profile, glucose, C-reactive protein (CRP), and total oxidative capacity (PerOX) were measured in blood serum. Histological analysis of retina was also conducted. Administration of saffron resulted in enhanced glycemic control and preservation of retinal thickness when compared with apoE -/- mice fed a high-fat diet. The outcomes of the study suggest the potential protective role of saffron against retinal damage induced by oxidative stress. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.

  15. Voluntary exercise improves high-fat diet-induced leptin resistance independent of adiposity.

    Science.gov (United States)

    Krawczewski Carhuatanta, Kimberly A; Demuro, Giovanna; Tschöp, Matthias H; Pfluger, Paul T; Benoit, Stephen C; Obici, Silvana

    2011-07-01

    The efficacy of exercise as primary prevention of obesity is the subject of intense investigation. Here, we show that voluntary exercise in a mouse strain susceptible to diet-induced obesity (C57B6J) decreases fat mass and increases energy expenditure. In addition, exercise attenuates obesity in mice fed a high-fat diet (HFD). Using FosB immunoreactivity as a marker of chronic neuronal activation, we found that exercise activates leptin receptor-positive neurons in the ventromedial hypothalamic nucleus, involved in homeostatic control of energy balance. FosB immunoreactivity in the ventromedial hypothalamic nucleus is decreased in sedentary mice exposed to HFD but is increased in exercised mice independent of adiposity. To determine whether the antiobesity effects of voluntary exercise improve central nervous system (CNS) leptin action, we measured the anorectic and weight reducing effects of intracerebroventricular (ICV) leptin in sedentary and exercised mice exposed to HFD (EH), as well as in sedentary mice that have been calorie restricted (SR) to match the fat mass of EH mice. ICV leptin was ineffective in lowering food intake and body weight (BW) in sedentary mice exposed to HFD mice. The anorectic potency of leptin was partially restored in EH and SR groups. However, ICV leptin significantly lowered BW in EH but not SR mice. Thus, exercise leads to the maintenance of a lower BW and leaner composition, as well as to improved CNS leptin action, independent of fat mass. These results support the notion that physical exercise directly influences the responsiveness of the CNS circuits involved in energy homeostasis by allowing the defense of a lowered BW.

  16. Macrophage migration inhibitory factor (MIF) knockout preserves cardiac homeostasis through alleviating Akt-mediated myocardial autophagy suppression in high-fat diet-induced obesity.

    Science.gov (United States)

    Xu, X; Ren, J

    2015-03-01

    Macrophage migration inhibitory factor (MIF) has a role in the development of obesity and diabetes. However, whether MIF has a role in fat diet-induced obesity and associated cardiac anomalies still remains unknown. The aim of this study was to examine the impact of MIF knockout on high-fat diet-induced obesity, obesity-associated cardiac anomalies and the underlying mechanisms involved with a focus on Akt-mediated autophagy. Adult male wild-type (WT) and MIF knockout (MIF(-/-)) mice were placed on 45% high-fat diet for 5 months. Oxygen consumption, CO2 production, respiratory exchange ratio, locomotor activity and heat generation were measured using energy calorimeter. Echocardiographic, cardiomyocyte mechanical and intracellular Ca2+ properties were assessed. Apoptosis was examined using terminal dUTP nick end labeling staining and western blot analysis. Akt signaling pathway and autophagy markers were evaluated. Cardiomyocytes isolated from WT and MIF(-/-) mice were treated with recombinant mouse MIF (rmMIF). High-fat diet feeding elicited increased body weight gain, insulin resistance and caloric disturbance in WT and MIF(-/-) mice. High-fat diet induced unfavorable geometric, contractile and histological changes in the heart, the effects of which were alleviated by MIF knockout. In addition, fat diet-induced cardiac anomalies were associated with Akt activation and autophagy suppression, which were nullified by MIF deficiency. In cardiomyocytes from WT mice, autophagy was inhibited by exogenous rmMIF through Akt activation. In addition, MIF knockout rescued palmitic acid-induced suppression of cardiomyocyte autophagy, the effect of which was nullified by rmMIF. These results indicate that MIF knockout preserved obesity-associated cardiac anomalies without affecting fat diet-induced obesity, probably through restoring myocardial autophagy in an Akt-dependent manner. Our findings provide new insights for the role of MIF in obesity and associated cardiac

  17. A very-low-fat vegan diet increases intake of protective dietary factors and decreases intake of pathogenic dietary factors.

    Science.gov (United States)

    Dewell, Antonella; Weidner, Gerdi; Sumner, Michael D; Chi, Christine S; Ornish, Dean

    2008-02-01

    There is increasing evidence that dietary factors in plant-based diets are important in the prevention of chronic disease. This study examined protective (eg, antioxidant vitamins, carotenoids, and fiber) and pathogenic (eg, saturated fatty acids and cholesterol) dietary factors in a very-low-fat vegan diet. Ninety-three early-stage prostate cancer patients participated in a randomized controlled trial and were assigned to a very-low-fat (10% fat) vegan diet supplemented with soy protein and lifestyle changes or to usual care. Three-day food records were collected at baseline (n=42 intervention, n=43 control) and after 1 year (n=37 in each group). Analyses of changes in dietary intake of macronutrients, vitamins, minerals, carotenoids, and isoflavones from baseline to 1 year showed significantly increased intake of most protective dietary factors (eg, fiber increased from a mean of 31 to 59 g/day, lycopene increased from 8,693 to 34,464 mug/day) and significantly decreased intake of most pathogenic dietary factors (eg, saturated fatty acids decreased from 20 to 5 g/day, cholesterol decreased from 200 to 10 mg/day) in the intervention group compared to controls. These results suggest that a very-low-fat vegan diet can be useful in increasing intake of protective nutrients and phytochemicals and minimizing intake of dietary factors implicated in several chronic diseases.

  18. Antiobesity and Hypoglycaemic Effects of Aqueous Extract of Ibervillea sonorae in Mice Fed a High-Fat Diet with Fructose

    Science.gov (United States)

    Rivera-Ramírez, Fabiola; Escalona-Cardoso, Gerardo N.; Garduño-Siciliano, Leticia; Galaviz-Hernández, Carlos; Paniagua-Castro, Norma

    2011-01-01

    Obesity, type II diabetes, and hyperlipidaemia, which frequently coexist and are strongly associated with oxidative stress, increase the risk of cardiovascular disease. An increase in carbohydrate intake, especially of fructose, and a high-fat diet are both factors that contribute to the development of these metabolic disorders. In recent studies carried out in diabetic rats, authors reported that Ibervillea sonorae had hypoglycaemic activity; saponins and monoglycerides present in the plant could be responsible for the effects observed. In the present study, we determined the effects of an aqueous I. sonorae extract on a murine model of obesity and hyperglycaemia, induced by a high-calorie diet, and the relationship of these effects with hepatic oxidation. A high-fat diet over a period of 8 weeks induced weight gain in the mice and increased triglycerides and blood glucose levels. Simultaneous treatment with I. sonorae aqueous extracts, at doses of 100, 200, and 400 mg/kg, decreased triglycerides and glycaemia levels, prevented an increase in body weight in a dose-dependent manner, and decreased hepatic lipid oxidation at a dose of 200 mg/kg. These data suggest that the aqueous extract from I. sonorae root prevents obesity, dyslipidaemia, and hyperglycaemia induced by a hypercaloric diet; however, high doses may induce toxicity. PMID:22174560

  19. Antiobesity and hypoglycaemic effects of aqueous extract of Ibervillea sonorae in mice fed a high-fat diet with fructose.

    Science.gov (United States)

    Rivera-Ramírez, Fabiola; Escalona-Cardoso, Gerardo N; Garduño-Siciliano, Leticia; Galaviz-Hernández, Carlos; Paniagua-Castro, Norma

    2011-01-01

    Obesity, type II diabetes, and hyperlipidaemia, which frequently coexist and are strongly associated with oxidative stress, increase the risk of cardiovascular disease. An increase in carbohydrate intake, especially of fructose, and a high-fat diet are both factors that contribute to the development of these metabolic disorders. In recent studies carried out in diabetic rats, authors reported that Ibervillea sonorae had hypoglycaemic activity; saponins and monoglycerides present in the plant could be responsible for the effects observed. In the present study, we determined the effects of an aqueous I. sonorae extract on a murine model of obesity and hyperglycaemia, induced by a high-calorie diet, and the relationship of these effects with hepatic oxidation. A high-fat diet over a period of 8 weeks induced weight gain in the mice and increased triglycerides and blood glucose levels. Simultaneous treatment with I. sonorae aqueous extracts, at doses of 100, 200, and 400 mg/kg, decreased triglycerides and glycaemia levels, prevented an increase in body weight in a dose-dependent manner, and decreased hepatic lipid oxidation at a dose of 200 mg/kg. These data suggest that the aqueous extract from I. sonorae root prevents obesity, dyslipidaemia, and hyperglycaemia induced by a hypercaloric diet; however, high doses may induce toxicity.

  20. Antiobesity and Hypoglycaemic Effects of Aqueous Extract of Ibervillea sonorae in Mice Fed a High-Fat Diet with Fructose

    Directory of Open Access Journals (Sweden)

    Fabiola Rivera-Ramírez

    2011-01-01

    Full Text Available Obesity, type II diabetes, and hyperlipidaemia, which frequently coexist and are strongly associated with oxidative stress, increase the risk of cardiovascular disease. An increase in carbohydrate intake, especially of fructose, and a high-fat diet are both factors that contribute to the development of these metabolic disorders. In recent studies carried out in diabetic rats, authors reported that Ibervillea sonorae had hypoglycaemic activity; saponins and monoglycerides present in the plant could be responsible for the effects observed. In the present study, we determined the effects of an aqueous I. sonorae extract on a murine model of obesity and hyperglycaemia, induced by a high-calorie diet, and the relationship of these effects with hepatic oxidation. A high-fat diet over a period of 8 weeks induced weight gain in the mice and increased triglycerides and blood glucose levels. Simultaneous treatment with I. sonorae aqueous extracts, at doses of 100, 200, and 400 mg/kg, decreased triglycerides and glycaemia levels, prevented an increase in body weight in a dose-dependent manner, and decreased hepatic lipid oxidation at a dose of 200 mg/kg. These data suggest that the aqueous extract from I. sonorae root prevents obesity, dyslipidaemia, and hyperglycaemia induced by a hypercaloric diet; however, high doses may induce toxicity.

  1. Inulin supplementation reduces the negative effect of a high-fat diet rich in SFA on bone health of growing pigs.

    Science.gov (United States)

    Sobol, Monika; Raj, Stanisława; Skiba, Grzegorz

    2018-05-01

    Consumption of a high-fat diet, rich in SFA, causes deterioration of bone properties. Some studies suggest that feeding inulin to animals may increase mineral absorption and positively affect bone quality; however, these studies have been carried out only on rodents fed a standard diet. The primary objective of this study was to determine the effect of inulin on bone health of pigs (using it as an animal model for humans) fed a high-fat diet rich in SFA, having an unbalanced ratio of lysine:metabolisable energy. It was hypothesised that inulin reduces the negative effects of such a diet on bone health. At 50 d of age, twenty-one pigs were randomly allotted to three groups: the control (C) group fed a standard diet, and two experimental (T and TI) groups fed a high-fat diet rich in SFA. Moreover, TI pigs consumed an extra inulin supply (7 % of daily feed intake). After 10 weeks, whole-body bone mineral content (P=0·0054) and bone mineral density (P=0·0322) were higher in pigs of groups TI and C compared with those of group T. Femur bone mineral density was highest in pigs in group C, lower in group TI and lowest in group T (P=0·001). Femurs of pigs in groups TI and C had similar, but higher, maximum strength compared with femurs of pigs in group T (P=0·0082). In conclusion, consumption of a high-fat diet rich in SFA adversely affected bone health, but inulin supplementation in such a diet diminishes this negative effect.

  2. Effects of a plant-based high-carbohydrate/high-fiber diet versus high-monounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients.

    Science.gov (United States)

    De Natale, Claudia; Annuzzi, Giovanni; Bozzetto, Lutgarda; Mazzarella, Raffaella; Costabile, Giuseppina; Ciano, Ornella; Riccardi, Gabriele; Rivellese, Angela A

    2009-12-01

    To search for a better dietary approach to treat postprandial lipid abnormalities and improve glucose control in type 2 diabetic patients. According to a randomized crossover design, 18 type 2 diabetic patients (aged 59 +/- 5 years; BMI 27 +/- 3 kg/m(2)) (means +/- SD) in satisfactory blood glucose control on diet or diet plus metformin followed a diet relatively rich in carbohydrates (52% total energy), rich in fiber (28 g/1,000 kcal), and with a low glycemic index (58%) (high-carbohydrate/high-fiber diet) or a diet relatively low in carbohydrate (45%) and rich in monounsaturated fat (23%) (low-carbohydrate/high-monounsaturated fat diet) for 4 weeks. Thereafter, they shifted to the other diet for 4 more weeks. At the end of each period, plasma glucose, insulin, lipids, and lipoprotein fractions (separated by discontinuous density gradient ultracentrifugation) were determined on blood samples taken at fasting and over 6 h after a test meal having a similar composition as the corresponding diet. In addition to a significant decrease in postprandial plasma glucose, insulin responses, and glycemic variability, the high-carbohydrate/high-fiber diet also significantly improved the primary end point, since it reduced the postprandial incremental areas under the curve (IAUCs) of triglyceride-rich lipoproteins, in particular, chylomicrons (cholesterol IAUC: 0.05 +/- 0.01 vs. 0.08 +/- 0.02 mmol/l per 6 h; triglycerides IAUC: 0.71 +/- 0.35 vs. 1.03 +/- 0.58 mmol/l per 6 h, P carbohydrate and fiber, essentially based on legumes, vegetables, fruits, and whole cereals, may be particularly useful for treating diabetic patients because of its multiple effects on different cardiovascular risk factors, including postprandial lipids abnormalities.

  3. Voluntary exercise improves murine dermal connective tissue status in high-fat diet-induced obesity.

    Science.gov (United States)

    Lőrincz, Kende; Haluszka, Dóra; Kiss, Norbert; Gyöngyösi, Nóra; Bánvölgyi, András; Szipőcs, Róbert; Wikonkál, Norbert M

    2017-04-01

    Obesity is a risk factor for several cardiovascular and metabolic diseases. Its influence on the skin is less obvious, yet certain negative effects of adipose tissue inflammation on the dermis have been suggested. Excess weight is closely associated with sedentary behavior, so any increase in physical activity is considered beneficial against obesity. To investigate the effects of obesity and physical exercise on the skin, we established a mouse model in which mice were kept either on a high-fat diet or received standard chow. After the two groups achieved a significant weight difference, physical exercise was introduced to both. Animals were given the opportunity to perform voluntary exercise for 40 min daily in a hamster wheel for a period of 8 weeks. We evaluated the status of the dermis at the beginning and at the end of the exercise period by in vivo nonlinear microscopy. Obese mice kept on high-fat diet lost weight steadily after they started to exercise. In the high-fat diet group, we could detect significantly larger adipocytes and a thicker layer of subcutaneous tissue; both changes started to normalize after exercise. Nonlinear microscopy revealed an impaired collagen structure in obese mice that improved considerably after physical activity was introduced. With the ability to detect damage on collagen structure, we set out to address the question whether this process is reversible. With the use of a novel imaging method, we were able to show the reversibility of connective tissue deterioration as a benefit of physical exercise.

  4. High-fat diets and seizure control in myoclonic-astatic epilepsy: a single center's experience.

    Science.gov (United States)

    Simard-Tremblay, Elisabeth; Berry, Patricia; Owens, Aaron; Cook, William Byron; Sittner, Haley R; Mazzanti, Marta; Huber, Jennifer; Warner, Molly; Shurtleff, Hillary; Saneto, Russell P

    2015-02-01

    To determine the efficacy of the Modified Atkins Diet (MAD) and Ketogenic Diet (KD) in seizure control within a population of myoclonic-astatic epilepsy (MAE) patients. This was a retrospective, single center study evaluating the seizure control by high fat diets. Seizure diaries kept by the parents performed seizure counts. All patients met the clinical criteria for MAE. Nine patients met the clinical criteria. We found that both the MAD and KD were efficacious in complete seizure control and allowed other medications to be stopped in seven patients. Two patients had greater than 90% seizure control without medications, one on the KD and the other on the MAD. Seizure freedom has ranged from 13 to 36 months, and during this time four patients have been fully weaned off of diet management. One patient was found to have a mutation in SLC2A1. Our results suggest that strictly defined MAE patients respond to the MAD with prolonged seizure control. Some patients may require the KD for seizure freedom, suggesting a common pathway of increased requirement for fats. Once controlled, those fully responsive to the Diet(s) could be weaned off traditional seizure medications and in many, subsequently off the MAD or KD. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  5. Adverse fetal and neonatal outcomes associated with a life-long high fat diet: role of altered development of the placental vasculature.

    Directory of Open Access Journals (Sweden)

    Emily K Hayes

    Full Text Available Maternal obesity results in a number of obstetrical and fetal complications with both immediate and long-term consequences. The increased prevalence of obesity has resulted in increasing numbers of women of reproductive age in this high-risk group. Since many of these obese women have been subjected to hypercaloric diets from early childhood we have developed a rodent model of life-long maternal obesity to more clearly understand the mechanisms that contribute to adverse pregnancy outcomes in obese women. Female Sprague Dawley rats were fed a control diet (CON--16% of calories from fat or high fat diet (HF--45% of calories from fat from 3 to 19 weeks of age. Prior to pregnancy HF-fed dams exhibited significant increases in body fat, serum leptin and triglycerides. A subset of dams was sacrificed at gestational day 15 to evaluate fetal and placental development. The remaining animals were allowed to deliver normally. HF-fed dams exhibited a more than 3-fold increase in fetal death and decreased neonatal survival. These outcomes were associated with altered vascular development in the placenta, as well as increased hypoxia in the labyrinth. We propose that the altered placental vasculature may result in reduced oxygenation of the fetal tissues contributing to premature demise and poor neonatal survival.

  6. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects.

    Science.gov (United States)

    Haufe, Sven; Engeli, Stefan; Kast, Petra; Böhnke, Jana; Utz, Wolfgang; Haas, Verena; Hermsdorf, Mario; Mähler, Anja; Wiesner, Susanne; Birkenfeld, Andreas L; Sell, Henrike; Otto, Christoph; Mehling, Heidrun; Luft, Friedrich C; Eckel, Juergen; Schulz-Menger, Jeanette; Boschmann, Michael; Jordan, Jens

    2011-05-01

    Obesity-related hepatic steatosis is a major risk factor for metabolic and cardiovascular disease. Fat reduced hypocaloric diets are able to relieve the liver from ectopically stored lipids. We hypothesized that the widely used low carbohydrate hypocaloric diets are similarly effective in this regard. A total of 170 overweight and obese, otherwise healthy subjects were randomized to either reduced carbohydrate (n = 84) or reduced fat (n = 86), total energy restricted diet (-30% of energy intake before diet) for 6 months. Body composition was estimated by bioimpedance analyses and abdominal fat distribution by magnetic resonance tomography. Subjects were also submitted to fat spectroscopy of liver and oral glucose tolerance testing. In all, 102 subjects completed the diet intervention with measurements of intrahepatic lipid content. Both hypocaloric diets decreased body weight, total body fat, visceral fat, and intrahepatic lipid content. Subjects with high baseline intrahepatic lipids (>5.56%) lost ≈7-fold more intrahepatic lipids compared with those with low baseline values (diet composition. In contrast, changes in visceral fat mass and insulin sensitivity were similar between subgroups, with low and high baseline intrahepatic lipids. A prolonged hypocaloric diet low in carbohydrates and high in fat has the same beneficial effects on intrahepatic lipid accumulation as the traditional low-fat hypocaloric diet. The decrease in intrahepatic lipids appears to be independent of visceral fat loss and is not tightly coupled with changes in whole body insulin sensitivity during 6 months of an energy restricted diet. Copyright © 2011 American Association for the Study of Liver Diseases.

  7. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    International Nuclear Information System (INIS)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-01-01

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  8. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Li, Yue, E-mail: ly99ly@vip.163.com [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province (China)

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  9. Fatty Liver Accompanies an Increase in Lactobacillus Species in the Hind Gut of C57BL/6 Mice Fed a High-Fat Diet123

    Science.gov (United States)

    Zeng, Huawei; Liu, Jun; Jackson, Matthew I.; Zhao, Feng-Qi; Yan, Lin; Combs, Gerald F.

    2013-01-01

    High-fat (HF) diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease and changes in the gut microbiome. To test the hypothesis that HF feeding increases certain predominant hind gut bacteria and development of steatohepatitis, C57BL/6 mice were fed an HF (45% energy) or low-fat (LF) (10% energy) diet for 10 wk. At the end of the feeding period, body weights in the HF group were 34% greater than those in the LF group (P < 0.05). These changes were associated with dramatic increases in lipid droplet number and size, inflammatory cell infiltration, and inducible nitric oxide (NO) synthase protein concentration in the livers of mice fed the HF diet. Consistent with the fatty liver phenotype, plasma leptin and tumor necrosis factor-α concentrations were also elevated in mice fed the HF diet, indicative of chronic inflammation. Eight of 12 pairs of polymerase chain reaction (PCR) primers for bacterial species that typically predominate hind gut microbial ecology generated specific PCR products from the fecal DNA samples. The amount of DNA from Lactobacillus gasseri and/or Lactobacillus taiwanensis in the HF group was 6900-fold greater than that in the LF group. Many of these bacteria are bile acid resistant and are capable of bile acid deconjugation. Because bile acids are regulators of hepatic lipid metabolism, the marked increase of gut L. gasseri and/or L. taiwanensis species bacteria with HF feeding may play a role in development of steatohepatitis in this model. PMID:23486979

  10. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Frédéric Raymond

    Full Text Available Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF diet that has a high (H or a low (L protein-to-carbohydrate (P/C ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words.

  11. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Science.gov (United States)

    Raymond, Frédéric; Wang, Long; Moser, Mireille; Metairon, Sylviane; Mansourian, Robert; Zwahlen, Marie-Camille; Kussmann, Martin; Fuerholz, Andreas; Macé, Katherine; Chou, Chieh Jason

    2012-01-01

    Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words).

  12. The organ specificity in pathological damage of chronic intermittent hypoxia: an experimental study on rat with high-fat diet.

    Science.gov (United States)

    Wang, Hui; Tian, Jian-li; Feng, Shu-zhi; Sun, Ning; Chen, Bao-yuan; Zhang, Yun

    2013-09-01

    It is known today that sleep apnea hypopnea syndrome and its characteristic chronic intermittent hypoxia can cause damages to multiple organs, including the cardiovascular system, urinary system, and liver. It is still unclear, however, whether the damage caused by sleep apnea hypopnea syndrome and the severity of the damage are organ-specific. This research observed the pathological effects of chronic intermittent hypoxia on rat's thoracic aorta, myocardium, liver, and kidney, under the condition of lipid metabolism disturbance, through establishing the rat model of chronic intermittent hypoxia with high-fat diet by imitating the features of human sleep apnea hypopnea syndrome. In this model, 24 male Wistar rats were randomly divided into three groups: a control group fed by regular diet, a high-fat group fed by high-fat diet, and a high-fat plus intermittent hypoxia group fed by high-fat diet and treated with intermittent hypoxia 7 h a day. At the end of the ninth week, the pathological changes of rat's organs, including the thoracic aorta, myocardium, liver, and kidney are observed (under both optical microscopy and transmission electron microscopy). As the result of the experiment shows, while there was no abnormal effect observed on any organs of the control group, slight pathological changes were found in the organs of the high-fat group. For the high-fat plus intermittent hypoxia group, however, remarkably severer damages were found on all the organs. It also showed that the severity of the damage varies by organ in the high-fat plus intermittent hypoxia group, with the thoracic aorta being the worst, followed by the liver and myocardium, and the kidney being the slightest. Chronic intermittent hypoxia can lead to multiple-organ damage to rat with high-fat diet. Different organs appear to have different sensitivity to chronic intermittent hypoxia.

  13. Effect of high fat diets on the NTPDase, 5'-nucleotidase and acetylcholinesterase activities in the central nervous system.

    Science.gov (United States)

    Kaizer, Rosilene Rodrigues; Spanevello, Rosélia Maria; Costa, Eduarda; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2018-02-01

    High fat diets are associated with the promotion of neurological diseases, such as Alzheimer disease (AD). This study aim investigate the high fat diets role to promotion of AD using as biochemistry parameter of status of central nervous system through the NTPDase, 5'-nucleotidase and acetylcholinesterase (AChE) activities in brain of young rats. The intake of high fat diets promotes an inhibition of purinergic and cholinergic functions, mainly in the long-term exposure to saturated and saturated/unsaturated diets. The AChE activity was decreased to supernatant and synaptosomes tissues preparations obtained from cerebral cortex in average of 20%, to both groups exposed to saturated and saturated/unsaturated diets, when compared to the control group. Very similar results were found in hippocampus and cerebellum brain areas. At same time, the adenine nucleotides hydrolysis in synaptosomes of cerebral cortex were decreased to ATP, ADP and AMP after the long-term exposure to high fat diets, as saturated and saturated/unsaturated. The inhibition of ATP hydrolysis was of 26% and 39% to saturated and saturated/unsaturated diets, respectively. ADP hydrolysis was decreased in 20% to saturated diet, and AMP hydrolysis was decreased in 25% and 33% to saturated and saturated/unsaturated diets, respectively, all in comparison to the control. Thus, we can suggest that the effects of high diets on the purinergic and cholinergic nervous system may contribute to accelerate the progressive memory loss, to decline in language and other cognitive disruptions, such as AD patients presents. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  14. Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Ulla, Anayt; Alam, Md Ashraful; Sikder, Biswajit; Sumi, Farzana Akter; Rahman, Md Mizanur; Habib, Zaki Farhad; Mohammed, Mostafe Khalid; Subhan, Nusrat; Hossain, Hemayet; Reza, Hasan Mahmud

    2017-06-02

    Obesity and related complications have now became epidemic both in developed and developing countries. Cafeteria type diet mainly composed of high fat high carbohydrate components which plays a significant role in the development of obesity and metabolic syndrome. This study investigated the effect of Syzygium cumini seed powder on fat accumulation and dyslipidemia in high carbohydrate high fat diet (HCHF) induced obese rats. Male Wistar rats were fed with HCHF diet ad libitum, and the rats on HCHF diet were supplemented with Syzygium cumini seed powder for 56 days (2.5% w/w of diet). Oral glucose tolerance test, lipid parameters, liver marker enzymes (AST, ALT and ALP) and lipid peroxidation products were analyzed at the end of 56 days. Moreover, antioxidant enzyme activities were also measured in all groups of rats. Supplementation with Syzygium cumini seed powder significantly reduced body weight gain, white adipose tissue (WAT) weights, blood glucose, serum insulin, and plasma lipids such as total cholesterol, triglyceride, LDL and HDL concentration. Syzygium cumini seed powder supplementation in HCHF rats improved serum aspartate amino transferase (AST), alanine amino transferase (ALT), and alkaline phosphatase (ALP) activities. Syzygium cumini seed powder supplementation also reduced the hepatic thiobarbituric acid reactive substances (TBARS) and elevated the antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) activities as well as increased glutathione (GSH) concentration. In addition, histological assessment showed that Syzygium cumini seed powder supplementation prevented inflammatory cell infiltration; fatty droplet deposition and fibrosis in liver of HCHFD fed rats. Our investigation suggests that Syzygium cumini seed powder supplementation prevents oxidative stress and showed anti-inflammatory and antifibrotic activity in liver of HCHF diet fed rats. In addition, Syzygium cumini seed powder may be beneficial in ameliorating insulin

  15. Maternal consumption of high-fat diet and grape juice modulates global histone H4 acetylation levels in offspring hippocampus: A preliminary study.

    Science.gov (United States)

    Gonçalves, Luciana Kneib; da Silva, Ivy Reichert Vital; Cechinel, Laura Reck; Frusciante, Marina Rocha; de Mello, Alexandre Silva; Elsner, Viviane Rostirola; Funchal, Claudia; Dani, Caroline

    2017-11-20

    This study aimed to investigate the impact of maternal consumption of a hyperlipid diet and grape juice on global histone H4 acetylation levels in the offsprinǵs hippocampus at different stages of development. During pregnancy and lactation of offspring, dams were divided into 4 groups: control diet (CD), high-fat diet (HFD), control diet and purple grape juice (PGJCD) and purple grape juice and high-fat diet (PGJHFD). Male Wistar rats were euthanized at 21days of age (PN21, adolescents) and at 50days of age (PN50, adults). The maternal consumption of grape juice increased global histone H4 acetylation levels in hippocampus of adolescents pups (PN21), an indicative of enhanced transcriptional activity and increased gene expression. On the other hand, the maternal high-fat diet diminished significantly this epigenetic marker in the adult phase (PN50), suggesting gene silencing. These preliminary findings demonstrated that the maternal choices are able to induce changes on histone H4 acetylation status in hippocampus of the offspring, which may modulate the expression of specific genes. Interestingly, this response occurs in an age and stimuli-dependent manner and strongly reinforce the importance of maternal choices during gestation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of a high-fat-high-cholesterol diet on gallbladder bile acid composition and gallbladder motility in dogs.

    Science.gov (United States)

    Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime

    2017-12-01

    OBJCTIVE To investigate the effects of dietary lipid overload on bile acid metabolism and gallbladder motility in healthy dogs. ANIMALS 7 healthy Beagles. PROCEDURES In a crossover study, dogs were fed a high-fat-high-cholesterol diet (HFCD) or a low-fat diet (LFD) for a period of 2 weeks. After a 4-month washout period, dogs were fed the other diet for 2 weeks. Before and at the end of each feeding period, the concentrations of each of the gallbladder bile acids, cholecystokinin (CCK)-induced gallbladder motility, and bile acid metabolism-related hepatic gene expression were examined in all dogs. RESULTS The HFCD significantly increased plasma total cholesterol concentrations. The HFCD also increased the concentration of taurochenodeoxycholic acid and decreased the concentration of taurocholic acid in bile and reduced gallbladder contractility, whereas the LFD significantly decreased the concentration of taurodeoxycholic acid in bile. Gene expression analysis revealed significant elevation of cholesterol 7α-hydroxylase mRNA expression after feeding the HFCD for 2 weeks, but the expression of other genes was unchanged. CONCLUSIONS AND CLINICAL RELEVANCE Feeding the HFCD and LFD for 2 weeks induced changes in gallbladder bile acid composition and gallbladder motility in dogs. In particular, feeding the HFCD caused an increase in plasma total cholesterol concentration, an increase of hydrophobic bile acid concentration in bile, and a decrease in gallbladder sensitivity to CCK. These results suggested that similar bile acid compositional changes and gallbladder hypomotility might be evident in dogs with hyperlipidemia.

  17. Osteoarthritis and a high-fat diet: the full 'OA syndrome' in a small animal model.

    NARCIS (Netherlands)

    Kraan, P.M. van der

    2010-01-01

    Obesity is one of the main risk factors for osteoarthritis (OA) and due to the global rise in obesity this will increasingly contribute to OA development. The article of Griffin and co-workers in this issue of Arthritis Research and Therapy shows that a high-fat diet leads to obesity and OA in the

  18. Effects of aqueous extract of Portulaca oleracea L. on oxidative stress and liver, spleen leptin, PARα and FAS mRNA expression in high-fat diet induced mice.

    Science.gov (United States)

    Chen, Bendong; Zhou, Haining; Zhao, Wenchao; Zhou, Wenyan; Yuan, Quan; Yang, Guangshun

    2012-08-01

    We reported that an aqueous extract of Portulaca oleracea L. inhibited high-fat-diet-induced oxidative injury in a dose-dependent manner. Male kunming mice (5-weeks-old, 24 g) were used in this experiment. After a 4-day adaptation period, animals were randomly divided into four groups (n = 10 in each group); Group 1: animals received normal powdered rodent diet; Group 2: animals received high fat diet; Groups 3 and 4: animals received high fat diet and were fed by gavage to mice once a day with aqueous extract at the doses of 100 and 200 mg/kg body weight, respectively. In mice fed with high-fat diet, blood and liver lipid peroxidation level was significantly increased, whereas antioxidant enzymes activities were markedly decreased compared to normal control mice. Administration of an aqueous extract of P. oleracea L. significantly dose-dependently reduced levels of blood and liver lipid peroxidation and increased the activities of blood and liver antioxidant enzymes activities in high fat mice. Moreover, administration of an aqueous extract of P. oleracea L. significantly dose-dependently increase liver Leptin/β-actin (B), and Liver PPARα/β-actin, decrease liver, spleen FAS mRNA, p-PERK and p-PERK/PERK protein expression levels. Taken together, these data demonstrate that aqueous extract of P. oleracea L. can markedly alleviate high fat diet-induced oxidative injury by enhancing blood and liver antioxidant enzyme activities, modulating Leptin/β-actin (B), and Liver PPARα/β-actin, decrease liver, spleen FAS mRNA, p-PERK and p-PERK/PERK protein expression levels in mice.

  19. [PPARβ/δ Activation prevents hypertriglyceridemia caused by a high fat diet. Involvement of AMPK and PGC-1α-Lipin1-PPARα pathway].

    Science.gov (United States)

    Barroso, Emma; Astudillo, Alma M; Balsinde, Jesús; Vázquez-Carrera, Manuel

    2013-01-01

    Excessive consume of hypercaloric and high in saturated fat food causes an atherogenic dyslipidemia. In this study we analyzed the effects of PPARβ/δ activator GW501516 on the hypertriglyceridemia induced by a high-fat diet. Male mice were randomized in three groups: control (standard chow), high fat diet (HFD, 35% fat by weight, 58% Kcal from fat) and high fat diet plus GW501516 (3mg/Kg/day). Treatment duration was three weeks. HFD-induced hypertriglyceridemia was accompanied by a reduction in hepatic levels of phospho-AMPK and in PGC-1α and Lipin1 mRNA levels. All these effects were reversed by GW501516 treatment. The lack of changes in phospho-AMPK levels after GW501516 treatment in HFD-fed animals could be the result of an increase in the AMP/ATP ratio. GW501516 treatment also increased Lipin1 protein levels in the nucleus, led to the amplification of the PGC-1α-PPARα pathway and increased PPARα DNA-binding activity, as well as the expression of PPARα-target genes involved in fatty acid oxidation. GW501516 also increased β-hydroxibutirate plasmatic levels, a hepatic β-oxidation end product. Finally, GW501516 increased the hepatic levels of the PPARα endogenous ligand 16:0/18:1-PC and the expression of the VLDL receptor. These data indicate that the hypotriglyceridemic effect of GW501516 in mice subjected to HFD-fed mice is accompanied by an increase in phospho-AMPK levels and the amplification of the PGC-1α-Lipin1-PPARα pathway. Copyright © 2012 Elsevier España, S.L. and SEA. All rights reserved.

  20. ROLE OF RS9939609 FTO GENE VARIANT IN WEIGHT LOSS, INSULIN RESISTANCE AND METABOLIC PARAMETERS AFTER A HIGH MONOUNSATURATED VS A HIGH POLYUNSATURATED FAT HYPOCALORIC DIETS.

    Science.gov (United States)

    De Luis, Daniel Antonio; Aller, Rocío; Izaola, Olatz; Pacheco, D

    2015-07-01

    common polymorphisms (rs9939609) of the fat mass and obesity associated gene (FTO) have been linked to obesity. our aim was to investigate the role of this polymorphism on insulin resistance, metabolic changes and weight loss secondary to a high monounsaturated fat vs a high polyunsaturated fat hypocaloric diets. a sample of 233 obese subjects was enrolled in a prospective way. In the basal visit, patients were randomly allocated during 3 months to; Diet M (high monounsaturated fat hypocaloric diet) or Diet P (high polyunsaturated fat hypocaloric diet). after treatment with two diets and in both genotypes, weight, fat mass and waist circumference decreased. Lower levels of body mass index (BMI), weight and fat mass were detected after Diet P in A allele carriers than TT genotype subjects. With the diet type P and in both genotypes (TT and AT + AA), total cholesterol levels (-15.3 + 35.1 mg/dl vs -11.6 + 32.1 mg/dl: p > 0.05) and LDL cholesterol levels (-11.5 + 34.1 mg/dl vs -8.5 + 30.1 mg/dl: p > 0.05) decreased. In A allele carriers a significant decreased was detected in insulin levels (-2.8 + 2.1 UI/L vs -1.3 + 8.0 UI/L: p 0.05), too. With the diet M and in both genotype groups, leptin levels (-8.0 + 17.1 ng/ ml vs -4.9 + 18.7 ng/ml: p > 0.05) decreased. Conclusiones: metabolic improvement secondary to weight loss was better in A carriers with a high polyunsaturated fat hypocaloric diet. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  1. Maternal high fat diet promotion of mammary tumor risk in adult progeny is associated with early expansion of mammary cancer stem-like cells and increased maternal oxidative environment

    Science.gov (United States)

    Many adult chronic diseases might be programmed during early life by maternal nutritional history. Here, we evaluated effects of maternal high fat diet on mammary gland development and tumor formation in adult progeny. Female Wnt-1 transgenic mice exposed to high fat (HFD, 45% kcal fat) or control C...

  2. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice.

    Science.gov (United States)

    Gotthardt, Juliet D; Verpeut, Jessica L; Yeomans, Bryn L; Yang, Jennifer A; Yasrebi, Ali; Roepke, Troy A; Bello, Nicholas T

    2016-02-01

    Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%-52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%-13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%-42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%-60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%-32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%-75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy.

  3. Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets.

    Science.gov (United States)

    Park, Sunmin; Yoo, Kyung Min; Hyun, Joo Suk; Kang, Suna

    2017-02-01

    Intermittent fasting (IMF) is a relatively new dietary approach to weight management, although the efficacy and adverse effects have not been full elucidated and the optimal diets for IMF are unknown. We tested the hypothesis that a one-meal-per-day intermittent fasting with high fat (HF) or protein (HP) diets can modify energy, lipid, and glucose metabolism in normal young male Sprague-Dawley rats with diet-induced obesity or overweight. Male rats aged 5 weeks received either HF (40% fat) or HP (26% protein) diets ad libitum (AL) or for 3 h at the beginning of the dark cycle (IMF) for 5 weeks. Epidydimal fat pads and fat deposits in the leg and abdomen were lower with HP and IMF. Energy expenditure at the beginning of the dark cycle, especially from fat oxidation, was higher with IMF than AL, possibly due to greater activity levels. Brown fat content was higher with IMF. Serum ghrelin levels were higher in HP-IMF than other groups, and accordingly, cumulative food intake was also higher in HP-IMF than HF-IMF. HF-IMF exhibited higher area under the curve (AUC) of serum glucose at the first part (0-40 min) during oral glucose tolerance test, whereas AUC of serum insulin levels in both parts were higher in IMF and HF. During intraperitoneal insulin tolerance test, serum glucose levels were higher with IMF than AL. Consistently, hepatic insulin signaling (GLUT2, pAkt) was attenuated and PEPCK expression was higher with IMF and HF than other groups, and HOMA-IR revealed significantly impaired attenuated insulin sensitivity in the IMF groups. However, surprisingly, hepatic and skeletal muscle glycogen storage was higher in IMF groups than AL. The higher glycogen storage in the IMF groups was associated with the lower expression of glycogen phosphorylase than the AL groups. In conclusion, IMF especially with HF increased insulin resistance, possibly by attenuating hepatic insulin signaling, and lowered glycogen phosphorylase expression despite decreased fat mass in young

  4. The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet.

    Science.gov (United States)

    Meireles, Manuela; Marques, Cláudia; Norberto, Sónia; Fernandes, Iva; Mateus, Nuno; Rendeiro, Catarina; Spencer, Jeremy P E; Faria, Ana; Calhau, Conceição

    2015-11-01

    Neuroinflammation has been suggested as a central mediator of central nervous system dysfunction, including in dementia and neurodegenerative disease. Flavonoids have emerged as promising candidates for the prevention of neurodegenerative diseases and are thought to be capable of antiinflammatory effects in the brain. In the present study, the impact of a chronic intake of an anthocyanin extract from blackberry (BE) on brain inflammatory status in the presence or absence of a high-fat diet was investigated. Following intake of the dietary regimes for 17 weeks neuroinflammatory status in Wistar rat cortex, hippocampus and plasma were assessed using cytokine antibody arrays. In the cortex, intake of the high-fat diet resulted in an increase of at least 4-fold, in expression of the cytokine-induced neutrophil chemoattractant CINC-3, the ciliary neurotrophic factor CNTF, the platelet-derived growth factor PDGF-AA, IL-10, the tissue inhibitor of metalloproteinase TIMP-1 and the receptor for advanced glycation end products RAGE. BE intake partially decreased the expression of these mediators in the high-fat challenged brain. In standard-fed animals, BE intake significantly increased cortical levels of fractalkine, PDGF-AA, activin, the vascular endothelial growth factor VEGF and agrin expression, suggesting effects as neuronal growth and synaptic connection modulators. In hippocampus, BE modulates fractalkine and the thymus chemokine TCK-1 expression independently of diet intake and, only in standard diet, increased PDGF-AA. Exploring effects of anthocyanins on fractalkine transcription using the neuronal cell line SH-SY5Y suggested that other cell types may be involved in this effect. This is the first evidence, in in vivo model, that blackberry extract intake may be capable of preventing the detrimental effects of neuroinflammation in a high-fat challenged brain. Also, fractalkine and TCK-1 expression may be specific targets of anthocyanins and their metabolites on

  5. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    International Nuclear Information System (INIS)

    Yasuda-Yamahara, Mako; Kume, Shinji; Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi; Koya, Daisuke; Haneda, Masakzu; Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi

    2015-01-01

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding

  6. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda-Yamahara, Mako [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Kume, Shinji, E-mail: skume@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Koya, Daisuke [Department of Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Haneda, Masakzu [Division of Metabolism and Biosystemic Science, Asahikawa Medical University, Asahikawa, Hokkaido (Japan); Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan)

    2015-09-18

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding.

  7. Whey-reduced weight gain is associated with a temporary growth reduction in young mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Madsen, Andreas N.; Hansen, Axel K.

    2015-01-01

    Whey protein consumption reportedly alleviates parameters of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in young mice fed a high-fat diet. We hypothesized that whey as the sole protein source reduced early weight gain associated with retarded growth...... and decreased concentration of insulin-like growth factor-1. Moreover, we hypothesized that these changes were explained by increased nitrogen loss via elevated urea production and/or increased energy expenditure. Male 5-week-old C57BL/6 mice were fed high-fat diets with the protein source being either whey......, casein or a combination of both for 5 weeks. After 1, 3 or 5 weeks, respectively, the mice were subjected to a meal challenge with measurements of blood and urinary urea before and 1 and 3 h after eating a weighed meal of their respective diets. In a subset of mice, energy expenditure was measured...

  8. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    Science.gov (United States)

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs.

    Science.gov (United States)

    Jankord, Ryan; Ganjam, Venkataseshu K; Turk, James R; Hamilton, Marc T; Laughlin, M Harold

    2008-06-01

    Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo-pituitary-adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16-20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted

  10. Maternal deprivation exacerbates the response to a high fat diet in a sexually dimorphic manner.

    Directory of Open Access Journals (Sweden)

    Virginia Mela

    Full Text Available Maternal deprivation (MD during neonatal life has diverse long-term effects, including affectation of metabolism. Indeed, MD for 24 hours during the neonatal period reduces body weight throughout life when the animals are maintained on a normal diet. However, little information is available regarding how this early stress affects the response to increased metabolic challenges during postnatal life. We hypothesized that MD modifies the response to a high fat diet (HFD and that this response differs between males and females. To address this question, both male and female Wistar rats were maternally deprived for 24 hours starting on the morning of postnatal day (PND 9. Upon weaning on PND22 half of each group received a control diet (CD and the other half HFD. MD rats of both sexes had significantly reduced accumulated food intake and weight gain compared to controls when raised on the CD. In contrast, when maintained on a HFD energy intake and weight gain did not differ between control and MD rats of either sex. However, high fat intake induced hyperleptinemia in MD rats as early as PND35, but not until PND85 in control males and control females did not become hyperleptinemic on the HFD even at PND102. High fat intake stimulated hypothalamic inflammatory markers in both male and female rats that had been exposed to MD, but not in controls. Reduced insulin sensitivity was observed only in MD males on the HFD. These results indicate that MD modifies the metabolic response to HFD intake, with this response being different between males and females. Thus, the development of obesity and secondary complications in response to high fat intake depends on numerous factors.

  11. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress.

    Science.gov (United States)

    Prasad, Vikram; Lorenz, John N; Miller, Marian L; Vairamani, Kanimozhi; Nieman, Michelle L; Wang, Yigang; Shull, Gary E

    2013-12-01

    Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice. © 2013 Elsevier Ltd. All rights reserved.

  12. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes.

    Science.gov (United States)

    Nazli, S A; Loeser, R F; Chubinskaya, S; Willey, J S; Yammani, R R

    2017-09-01

    Insulin-like growth factor-1 (IGF-1) promotes matrix synthesis and cell survival in cartilage. Chondrocytes from aged and osteoarthritic cartilage have a reduced response to IGF-1. The purpose of this study was to determine the effect of free fatty acids (FFA) present in a high-fat diet on IGF-1 function in cartilage and the role of endoplasmic reticulum (ER) stress. C57BL/6 male mice were maintained on either a high-fat (60% kcal from fat) or a low-fat (10% kcal from fat) diet for 4 months. Mice were then sacrificed; femoral head cartilage caps were collected and treated with IGF-1 to measure proteoglycan (PG) synthesis. Cultured human chondrocytes were treated with 500 μM FFA palmitate or oleate, followed by stimulation with (100 ng/ml) IGF-1 overnight to measure CHOP (a protein marker for ER stress) and PG synthesis. Human chondrocytes were pre-treated with palmitate or 1 mM 4-phenyl butyric acid (PBA) or 1 μM C-Jun N terminal Kinase (JNK) inhibitor, and IGF-1 function (PG synthesis and signaling) was measured. Cartilage explants from mice on the high fat-diet showed reduced IGF-1 mediated PG synthesis compared to a low-fat group. Treatment of human chondrocytes with palmitate induced expression of CHOP, activated JNK and inhibited IGF-1 function. PBA, a small molecule chemical chaperone that alleviates ER stress rescued IGF-1 function and a JNK inhibitor rescued IGF-1 signaling. Palmitate-induced ER stress inhibited IGF-1 function in chondrocytes/cartilage via activating the mitogen-activated protein (MAP) kinase JNK. This is the first study to demonstrate that ER stress is metabolic factor that regulates IGF-1 function in chondrocytes. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice.

    Science.gov (United States)

    Carbone, Salvatore; Mauro, Adolfo G; Mezzaroma, Eleonora; Kraskauskas, Donatas; Marchetti, Carlo; Buzzetti, Raffaella; Van Tassell, Benjamin W; Abbate, Antonio; Toldo, Stefano

    2015-11-01

    Heart failure (HF) is a clinical syndrome characterized by dyspnea, fatigue, exercise intolerance and cardiac dysfunction. Unhealthy diet has been associated with increased risk of obesity and heart disease, but whether it directly affects cardiac function, and promotes the development and progression of HF is unknown. We fed 8-week old male or female CD-1 mice with a standard diet (SD) or a diet rich in saturated fat and sugar, resembling a "Western" diet (WD). Cardiac systolic and diastolic function was measured at baseline and 4 and 8 weeks by Doppler echocardiography, and left ventricular (LV) end-diastolic pressure (EDP) by cardiac catheterization prior to sacrifice. An additional group of mice received WD for 4 weeks followed by SD (wash-out) for 8 weeks. WD-fed mice experienced a significant decreased in LV ejection fraction (LVEF), reflecting impaired systolic function, and a significant increase in isovolumetric relaxation time (IRT), myocardial performance index (MPI), and LVEDP, showing impaired diastolic function, without any sex-related differences. Switching to a SD after 4 weeks of WD partially reversed the cardiac systolic and diastolic dysfunction. A diet rich in saturated fat and sugars (WD) impairs cardiac systolic and diastolic function in the mouse. Further studies are required to define the mechanism through which diet affects cardiac function, and whether dietary interventions can be used in patients with, or at risk for, HF. Published by Elsevier Ireland Ltd.

  14. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner.

    Science.gov (United States)

    Perello, Mario; Sakata, Ichiro; Birnbaum, Shari; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri; Rovinsky, Sherry A; Woloszyn, Jakub; Yanagisawa, Masashi; Lutter, Michael; Zigman, Jeffrey M

    2010-05-01

    Ghrelin is a potent orexigenic hormone that likely impacts eating via several mechanisms. Here, we hypothesized that ghrelin can regulate extra homeostatic, hedonic aspects of eating behavior. In the current study, we assessed the effects of different pharmacological, physiological, and genetic models of increased ghrelin and/or ghrelin-signaling blockade on two classic behavioral tests of reward behavior: conditioned place preference (CPP) and operant conditioning. Using both CPP and operant conditioning, we found that ghrelin enhanced the rewarding value of high-fat diet (HFD) when administered to ad lib-fed mice. Conversely, wild-type mice treated with ghrelin receptor antagonist and ghrelin receptor-null mice both failed to show CPP to HFD normally observed under calorie restriction. Interestingly, neither pharmacologic nor genetic blockade of ghrelin signaling inhibited the body weight homeostasis-related, compensatory hyperphagia associated with chronic calorie restriction. Also, ghrelin's effects on HFD reward were blocked in orexin-deficient mice and wild-type mice treated with an orexin 1 receptor antagonist. Our results demonstrate an obligatory role for ghrelin in certain rewarding aspects of eating that is separate from eating associated with body weight homeostasis and that requires the presence of intact orexin signaling. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. High-fat diet feeding alters metabolic response to fasting/non fasting conditions. Effect on caveolin expression and insulin signalling.

    Science.gov (United States)

    Gómez-Ruiz, Ana; Milagro, Fermín I; Campión, Javier; Martínez, J Alfredo; de Miguel, Carlos

    2011-04-13

    The effect of food intake on caveolin expression in relation to insulin signalling was studied in skeletal muscle and adipocytes from retroperitoneal (RP) and subcutaneous (SC) adipose tissue, comparing fasted (F) to not fasted (NF) rats that had been fed a control or high-fat (HF) diet for 72 days. Serum glucose was analysed enzymatically and insulin and leptin by ELISA. Caveolins and insulin signalling intermediaries (IR, IRS-1 and 2 and GLUT4) were determined by RT-PCR and western blotting. Caveolin and IR phosphorylation was measured by immunoprecipitation. Data were analysed with Mann-Whitney U test. High-fat fed animals showed metabolic alterations and developed obesity and insulin resistance. In skeletal muscle, food intake (NF) induced activation of IR and increased expression of IRS-2 in control animals with normal metabolic response. HF animals became overweight, hyperglycaemic, hyperinsulinemic, hyperleptinemic and showed insulin resistance. In skeletal muscle of these animals, food intake (NF) also induced IRS-2 expression together with IR, although this was not active. Caveolin 3 expression in this tissue was increased by food intake (NF) in animals fed either diet. In RP adipocytes of control animals, food intake (NF) decreased IR and IRS-2 expression but increased that of GLUT4. A similar but less intense response was found in SC adipocytes. Food intake (NF) did not change caveolin expression in RP adipocytes with either diet, but in SC adipocytes of HF animals a reduction was observed. Food intake (NF) decreased caveolin-1 phosphorylation in RP but increased it in SC adipocytes of control animals, whereas it increased caveolin-2 phosphorylation in both types of adipocytes independently of the diet. Animals fed a control-diet show a normal response to food intake (NF), with activation of the insulin signalling pathway but without appreciable changes in caveolin expression, except a small increase of caveolin-3 in muscle. Animals fed a high-fat diet

  16. Plantago maxima leaves extract inhibits adipogenic action of a high-fat diet in female Wistar rats.

    Science.gov (United States)

    Tinkov, Alexey A; Nemereshina, Olga N; Popova, Elizaveta V; Polyakova, Valentina S; Gritsenko, Viktor A; Nikonorov, Alexandr A

    2014-04-01

    The primary objective of this study is to investigate the content of biologically active compounds producing an antioxidant effect in Plantago maxima and their influence on main mechanisms of dietary obesity development. Biologically active compounds in P. maxima were tested using paper chromatography. In in vivo experiment, high-fat-fed Wistar rats obtained P. maxima water extract for 3 months. Morphometric parameters, weight gain, serum adipokines, and cytokines, as well as oxidative stress biomarkers in rats’ tissues were evaluated. Gut microflora was also examined. Plantago maxima leaves used in the experiment contained significant amount of flavonoids, iridoids, phenol carboxylic acids, and tannins and ascorbic acid. Our in vivo experiment data demonstrate that P. maxima water extract prevents excessive adiposity in a diet-induced model. P. maxima consumption reduced serum leptin (twofold), macrophage chemoattractant protein-1 (sevenfold), tumornecrosis factor-α (25%), and interleukine-6 (26%) levels. P. maxima water extract decreased adipose tissue oxidative stress biomarkers in rats fed a high-fat diet. In addition, increased bacterial growth in the diet-induced obesity model was reversed by the P. maxima extract treatment. Plantago maxima water extract possessed antiadipogenic, antidiabetic, antiinflammatory, antioxidant activity, and normalized gut microflora in a rat model of diet-induced excessive adiposity due to a high content of biologically active compounds.

  17. Effects of high fat fish oil and high fat corn oil diets on initiation of AOM-induced colonic aberrant crypt foci in male F344 rats

    NARCIS (Netherlands)

    Dommels, Y.E.M.; Heemskerk, S.; Berg, H. van den; Alink, G.M.; Bladeren, P.J. van; Ommen, B. van

    2003-01-01

    Modulating effects of high fat fish oil (HFFO) and high fat corn oil (HFCO) diets on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) were studied in male F344 rats following 8 weeks of dietary treatment. The incidence of AOM-induced ACF was significantly lower in the proximal colon of

  18. Effects of vitamin D deficient and high-fat diets in the diabetic brain: focus on insulin signaling

    OpenAIRE

    Loureiro, Guilherme Alvarinhas de Assis

    2015-01-01

    Dissertação de Mestrado em Bioquímica, apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra. Type 2 diabetes (T2D) is a chronic metabolic disorder that reached epidemic proportions, affecting almost 390 million people around the globe. Most cases of T2D result from unhealthy eating habits. In fact, consumption of high-fat diets and high intake of saturated fat are associated with an increased risk of obesity, meta...

  19. Myeloid-specific deletion of NOX2 prevents the metabolic and neurologic consequences of high fat diet.

    Directory of Open Access Journals (Sweden)

    Jennifer K Pepping

    Full Text Available High fat diet-induced obesity is associated with inflammatory and oxidative signaling in macrophages that likely participates in metabolic and physiologic impairment. One key factor that could drive pathologic changes in macrophages is the pro-inflammatory, pro-oxidant enzyme NADPH oxidase. However, NADPH oxidase is a pleiotropic enzyme with both pathologic and physiologic functions, ruling out indiscriminant NADPH oxidase inhibition as a viable therapy. To determine if targeted inhibition of monocyte/macrophage NADPH oxidase could mitigate obesity pathology, we generated mice that lack the NADPH oxidase catalytic subunit NOX2 in myeloid lineage cells. C57Bl/6 control (NOX2-FL and myeloid-deficient NOX2 (mNOX2-KO mice were given high fat diet for 16 weeks, and subject to comprehensive metabolic, behavioral, and biochemical analyses. Data show that mNOX2-KO mice had lower body weight, delayed adiposity, attenuated visceral inflammation, and decreased macrophage infiltration and cell injury in visceral adipose relative to control NOX2-FL mice. Moreover, the effects of high fat diet on glucose regulation and circulating lipids were attenuated in mNOX2-KO mice. Finally, memory was impaired and markers of brain injury increased in NOX2-FL, but not mNOX2-KO mice. Collectively, these data indicate that NOX2 signaling in macrophages participates in the pathogenesis of obesity, and reinforce a key role for macrophage inflammation in diet-induced metabolic and neurologic decline. Development of macrophage/immune-specific NOX-based therapies could thus potentially be used to preserve metabolic and neurologic function in the context of obesity.

  20. Adipose Tissue CLK2 Promotes Energy Expenditure during High-Fat Diet Intermittent Fasting.

    Science.gov (United States)

    Hatting, Maximilian; Rines, Amy K; Luo, Chi; Tabata, Mitsuhisa; Sharabi, Kfir; Hall, Jessica A; Verdeguer, Francisco; Trautwein, Christian; Puigserver, Pere

    2017-02-07

    A promising approach to treating obesity is to increase diet-induced thermogenesis in brown adipose tissue (BAT), but the regulation of this process remains unclear. Here we find that CDC-like kinase 2 (CLK2) is expressed in BAT and upregulated upon refeeding. Mice lacking CLK2 in adipose tissue exhibit exacerbated obesity and decreased energy expenditure during high-fat diet intermittent fasting. Additionally, tissue oxygen consumption and protein levels of UCP1 are reduced in CLK2-deficient BAT. Phosphorylation of CREB, a transcriptional activator of UCP1, is markedly decreased in BAT cells lacking CLK2 due to enhanced CREB dephosphorylation. Mechanistically, CREB dephosphorylation is rescued by the inhibition of PP2A, a phosphatase that targets CREB. Our results suggest that CLK2 is a regulatory component of diet-induced thermogenesis in BAT through increased CREB-dependent expression of UCP1. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Whey protein reduces early life weight gain in mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Britt Tranberg

    Full Text Available An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001-0.05. Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001. Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01 and glucose clearance was improved after an oral glucose challenge (P<0.05. Plasma cholesterol was lowered by whey compared to casein (P<0.001. The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05 whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey.

  2. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats

    Directory of Open Access Journals (Sweden)

    Zhai Hua-Ling

    2012-01-01

    Full Text Available Abstract Background There is a high prevalence of diabetes mellitus (DM and dyslipidemia in women with polycystic ovary syndrome (PCOS. The purpose of this study was to investigate the role of different metabolic pathways in the development of diabetes mellitus in high-androgen female mice fed with a high-fat diet. Methods Female Sprague-Dawley rats were divided into 3 groups: the control group(C, n = 10; the andronate-treated group (Andronate, n = 10 (treated with andronate, 1 mg/100 g body weight/day for 8 weeks; and the andronate-treated and high-fat diet group (Andronate+HFD, n = 10. The rate of glucose appearance (Ra of glucose, gluconeogenesis (GNG, and the rate of glycerol appearance (Ra of glycerol were assessed with a stable isotope tracer. The serum sex hormone levels, insulin levels, glucose concentration, and the lipid profile were also measured. Results Compared with control group, both andronate-treated groups exhibited obesity with higher insulin concentrations (P P Conclusions Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels. Therefore, aberrant IR, increased glucose Ra, GNG, and lipid metabolism may represent the early-stage of glucose and lipid kinetics disorder, thereby might be used as potential early-stage treatment targets for PCOS.

  3. A low-carbohydrate/high-fat diet improves glucoregulation in type 2 diabetes mellitus by reducing postabsorptive glycogenolysis

    NARCIS (Netherlands)

    Allick, G; Bisschop, PH; Ackermans, MT; Endert, E; Meijer, AJ; Kuipers, F; Sauerwein, HP; Romijn, JA

    2004-01-01

    The aim of this study was to examine the mechanisms by which dietary carbohydrate and fat modulate fasting glycemia. We compared the effects of an eucaloric high-carbohydrate (89% carbohydrate) and high-fat (89% fat) diet on fasting glucose metabolism and insulin sensitivity in seven obese patients

  4. Enhancement of carcinogenesis and fatty infiltration in the pancreas in N-nitrosobis(2-oxopropyl)amine-treated hamsters by high-fat diet.

    Science.gov (United States)

    Hori, Mika; Kitahashi, Tsukasa; Imai, Toshio; Ishigamori, Rikako; Takasu, Shinji; Mutoh, Michihiro; Sugimura, Takashi; Wakabayashi, Keiji; Takahashi, Mami

    2011-11-01

    Obesity is associated with increased pancreatic cancer risk, although the mechanisms have yet to be detailed. This study aimed to elucidate promotion of pancreatic cancer by obesity and hyperlipidemia. Six-week-old female Syrian golden hamsters were treated with N-nitrosobis(2-oxopropyl)amine (BOP) and after 1 week were fed a high-fat diet (HFD) or standard diet (STD) for 6 or 17 weeks. Body weight and serum levels of lipids and leptin were significantly higher in the HFD than the STD group at 14 weeks of age. Pancreatic ductal adenocarcinomas developed only in the BOP + HFD group, with an incidence of 67% (P pancreas. High-fat diet is shown to increase serum lipid levels and enhance fatty infiltration in the pancreas with abnormal adipocytokine production, which may accelerate and enhance pancreatic cancer.

  5. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice.

    Science.gov (United States)

    Kübeck, Raphaela; Bonet-Ripoll, Catalina; Hoffmann, Christina; Walker, Alesia; Müller, Veronika Maria; Schüppel, Valentina Luise; Lagkouvardos, Ilias; Scholz, Birgit; Engel, Karl-Heinz; Daniel, Hannelore; Schmitt-Kopplin, Philippe; Haller, Dirk; Clavel, Thomas; Klingenspor, Martin

    2016-12-01

    Gut microbiota may promote positive energy balance; however, germfree mice can be either resistant or susceptible to diet-induced obesity (DIO) depending on the type of dietary intervention. We here sought to identify the dietary constituents that determine the susceptibility to body fat accretion in germfree (GF) mice. GF and specific pathogen free (SPF) male C57BL/6N mice were fed high-fat diets either based on lard or palm oil for 4 wks. Mice were metabolically characterized at the end of the feeding trial. FT-ICR-MS and UPLC-TOF-MS were used for cecal as well as hepatic metabolite profiling and cecal bile acids quantification, respectively. Hepatic gene expression was examined by qRT-PCR and cecal gut microbiota of SPF mice was analyzed by high-throughput 16S rRNA gene sequencing. GF mice, but not SPF mice, were completely DIO resistant when fed a cholesterol-rich lard-based high-fat diet, whereas on a cholesterol-free palm oil-based high-fat diet, DIO was independent of gut microbiota. In GF lard-fed mice, DIO resistance was conveyed by increased energy expenditure, preferential carbohydrate oxidation, and increased fecal fat and energy excretion. Cecal metabolite profiling revealed a shift in bile acid and steroid metabolites in these lean mice, with a significant rise in 17β-estradiol, which is known to stimulate energy expenditure and interfere with bile acid metabolism. Decreased cecal bile acid levels were associated with decreased hepatic expression of genes involved in bile acid synthesis. These metabolic adaptations were largely attenuated in GF mice fed the palm-oil based high-fat diet. We propose that an interaction of gut microbiota and cholesterol metabolism is essential for fat accretion in normal SPF mice fed cholesterol-rich lard as the main dietary fat source. This is supported by a positive correlation between bile acid levels and specific bacteria of the order Clostridiales (phylum Firmicutes ) as a characteristic feature of normal SPF mice

  6. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats

    Science.gov (United States)

    Kim, Ji Hye; Kim, Ok-Kyung; Yoon, Ho-Geun; Park, Jeongjin; You, Yanghee; Kim, Kyungmi; Lee, Yoo-Hyun; Choi, Kyung-Chul; Lee, Jeongmin; Jun, Woojin

    2016-01-01

    Background Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food. Objective The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis. Design Rats were divided into four groups (n=6 per group) after 1 week of acclimatization: a normal diet group comprised rats fed the AIN76A rodent diet; a high-fat diet-induced obese group with rats fed a 60% high-fat diet; a Garcinia cambogia treated group (positive control) with rats fed a 60% high-fat diet with G. cambogia 500 g/kg body weight (b.w.)/day; and an fermented C. longa L. 50% ethanolic extract treated group (FCE50) with rats fed a 60% high-fat diet with FCE50 500 g/kg b.w./day. Each group received the appropriate vehicle or sample daily by gastric intubation for 12 weeks. Results We found that FCE50 administration suppressed b.w. gain and reduced white adipose tissue weight, serum triglyceride (TG), and cholesterol in high-fat diet-induced obese rats. These results can be associated with the suppression of adipocyte differentiation and lipogenesis with a decrease in the mRNA expressions of fatty acid synthase, acetyl-CoA carboxylase, adipocyte protein 2, and lipoprotein lipase induced by FCE50 administration. In addition, FCE50 increased lipolysis and β-oxidation by up-regulating the expression of lipases such as adipose triglyceride lipase, hormone-sensitive lipase, adiponectin, and AMP-activated protein kinase. Conclusions These results suggest that FCE50 can be a candidate for the prevention of obesity via suppressing adipogenesis and promoting lipolysis. PMID:26822962

  7. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Guodong Zheng

    Full Text Available In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD, and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK, carnitine acyltransferase (CAT and hormone-sensitive lipase (HSL were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2 was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases.

  8. Lipoprotein lipase activity and chylomicron clearance in rats fed a high fat diet

    International Nuclear Information System (INIS)

    Brown, C.M.; Layman, D.K.

    1988-01-01

    The relationships of tissue and plasma lipoprotein lipase (LPL) activities to tissue uptake and plasma clearance of 14 C-labeled chylomicron-triglyceride ( 14 C-CM-TG) were studied in female rats fed isoenergetic and isonitrogenous control (12% kJ from fat) or high fat diets (72% kJ from fat) for 8 wk. Animals fed the high-fat diet had higher levels of fasting plasma triglycerides and lower LPL activities in heart, renal adipose tissue and post-heparin plasma. Changes in LPL activities of skeletal muscles varied among muscles with higher values in the soleus and plantaris (32-61%) and no differences in the gastrocnemius. The lower LPL activity in renal adipose tissue was associated with lower uptake of fatty acids from 14 C-CM-TG by adipose. Fatty-acid uptake from labeled TG was not associated with tissue LPL activity in other tissues. Clearance of 14 C-CM-TG from plasma and the half-lives of 14 C-CM-TG were similar in both dietary groups. These data indicate that tissue and plasma LPL activities are not a direct index of uptake of fatty acids by tissues or clearance of chylomicron triglycerides

  9. Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver.

    Science.gov (United States)

    Chukijrungroat, Natsasi; Khamphaya, Tanaporn; Weerachayaphorn, Jittima; Songserm, Thaweesak; Saengsirisuwan, Vitoon

    2017-08-01

    The role of gender in the progression of fatty liver due to chronic high-fat high-fructose diet (HFFD) has not been studied. The present investigation assessed whether HFFD induced hepatic perturbations differently between the sexes and examined the potential mechanisms. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were fed either a control diet or HFFD for 12 wk. Indexes of liver damage and hepatic steatosis were analyzed biochemically and histologically together with monitoring changes in hepatic gene and protein expression. HFFD induced a higher degree of hepatic steatosis in females, with significant increases in proteins involved in hepatic lipogenesis, whereas HFFD significantly induced liver injury, inflammation, and oxidative stress only in males. Interestingly, a significant increase in hepatic fibroblast growth factor 21 (FGF21) protein expression was observed in HFFD-fed males but not in HFFD-fed females. Ovarian hormone deprivation by itself led to a significant reduction in FGF21 with hepatic steatosis, and HFFD further aggravated hepatic fat accumulation in OVX rats. Importantly, estrogen replacement restored hepatic FGF21 levels and reduced hepatic steatosis in HFFD-fed OVX rats. Collectively, our results indicate that male rats are more susceptible to HFFD-induced hepatic inflammation and that the mechanism underlying this sex dimorphism is mediated through hepatic FGF21 expression. Our findings reveal sex differences in the development of HFFD-induced fatty liver and indicate the protective role of estrogen against HFFD-induced hepatic steatosis. Copyright © 2017 the American Physiological Society.

  10. A High-Fat Diet Differentially Affects the Gut Metabolism and Blood Lipids of Rats Depending on the Type of Dietary Fat and Carbohydrate

    OpenAIRE

    Jurgoński, Adam; Juśkiewicz, Jerzy; Zduńczyk, Zenon

    2014-01-01

    The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated) and carbohydrate (simple vs. complex). The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet) as the source of saturated or unsaturated fatty ac...

  11. Resistant starch and exercise independently attenuate weight regain on a high fat diet in a rat model of obesity

    Directory of Open Access Journals (Sweden)

    Johnson Ginger C

    2011-07-01

    Full Text Available Abstract Background Long-term weight reduction remains elusive for many obese individuals. Resistant starch (RS and exercise may be useful for weight maintenance. The effects of RS, with or without exercise, on weight regain was examined during relapse to obesity on a high carbohydrate, high fat (HC/HF diet. Methods Obesity-prone rats were fed ad libitum for 16 weeks then weight reduced on a low fat diet to induce a 17% body weight loss (weight reduced rats. Weight reduced rats were maintained on an energy-restricted low fat diet for 18 weeks, with or without a daily bout of treadmill exercise. Rats were then allowed free access to HC/HF diet containing low (0.3% or high (5.9% levels of RS. Weight regain, energy balance, body composition, adipocyte cellularity, and fuel utilization were monitored as rats relapsed to obesity and surpassed their original, obese weight. Results Both RS and exercise independently attenuated weight regain by reducing the energy gap between the drive to eat and suppressed energy requirements. Exercise attenuated the deposition of lean mass during relapse, whereas its combination with RS sustained lean mass accrual as body weight returned. Early in relapse, RS lowered insulin levels and reduced the deposition of fat in subcutaneous adipose tissue. Exercise cessation at five weeks of relapse led to increased weight gain, body fat, subcutaneous adipocytes, and decreased lean mass; all detrimental consequences to overall metabolic health. Conclusions These data are the first to show the complimentary effects of dietary RS and regular exercise in countering the metabolic drive to regain weight following weight loss and suggest that exercise cessation, in the context of relapse on a HC/HF diet, may have dire metabolic consequences.

  12. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats

    OpenAIRE

    Mitra, Anaya; Alvers, Kristin M.; Crump, Erica M.; Rowland, Neil E.

    2008-01-01

    Maternal obesity is becoming more prevalent. We used borderline hypertensive rats (BHR) to investigate whether a high-fat diet at different stages of development has adverse programming consequences on metabolic parameters and blood pressure. Wistar dams were fed a high- or low-fat diet for 6 wk before mating with spontaneously hypertensive males and during the ensuing pregnancy. At birth, litters were fostered to a dam from the same diet group as during gestation or to the alternate diet con...

  13. Evolution from increased cardiac mechanical function towards cardiomyopathy in the obese rat due to unbalanced high fat and abundant equilibrated diets

    Directory of Open Access Journals (Sweden)

    Mourmoura Evangelia

    2015-07-01

    Full Text Available The aim of our study was to know whether high dietary energy intake (HDEI with equilibrated and unbalanced diets in term of lipid composition modify the fatty acid profile of cardiac phospholipids and function of various cardiac cells and to know if the changes in membrane lipid composition can explain the modifications of cellular activity. Wistar rats were fed either a control or high-fat (HF diet for 12 weeks and Zucker diabetic fatty (ZDF rats as well as their lean littermate (ZL a control diet between week 7 to 11 of their life. Energy intake and abdominal obesity was increased in HF-fed and ZDF rats. Circulating lipids were also augmented in both strains although hyperglycemia was noticed only in ZDF rats. HDEI induced a decrease in linoleate and increase in arachidonate in membrane phospholipids which was more pronounced in the ZDF rats compared to the HF-fed rats. In vivo cardiac function (CF was improved in HF-fed rats whereas ex vivo cardiac function was unchanged, suggesting that environmental factors such as catecholamines stimulated the in vivo CF. The unchanged ex vivo CF was associated with an increased cardiac mass which indicated development of fibrosis and/or hypertrophy. The increased in vivo CF was sustained by an augmented coronary reserve which was related to the cyclooxygenase pathway and accumulation of arachidonate in membrane phospholipids. In conclusion, before triggering a diabetic cardiomyopathy, HDEI stimulated the CF. The development of cardiomyopathy seems to result from fibrosis and/or hypertrophy which augments myocardial stiffness and decreases contractility.

  14. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben; Van Schothorst, E. M.; Keijer, J.; Palou, A.; Oliver, P.

    2016-01-01

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  15. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben

    2016-03-22

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  16. Body weight gain in rats by a high-fat diet produces chronodisruption in activity/inactivity circadian rhythm.

    Science.gov (United States)

    Bravo, Rafael; Cubero, Javier; Franco, Lourdes; Mesa, Mónica; Galán, Carmen; Rodríguez, Ana Beatriz; Jarne, Carlos; Barriga, Carmen

    2014-04-01

    In the last few decades, obesity has become one of the most important public health problems. Adipose tissue is an active endocrine tissue which follows a rhythmic pattern in its functions and may produce alterations in certain circadian rhythms. Our aim was to evaluate whether the locomotor activity circadian rhythm could be modified by a hypercaloric diet in rodents. Two groups were considered in the experiment: 16 rats were used as a control group and were fed standard chow; the other group comprised 16 rats fed a high-fat diet (35.8% fat, 35% glucides). The trial lasted 16 weeks. Body weight was measured every week, and a blood sample was extracted every two weeks to quantify triglyceride levels. The activity/inactivity circadian rhythm was logged through actimetry throughout the trial, and analysed using the DAS 24© software package. At the end of the experiment, the high-fat fed rats had obese-like body weights and high plasma triglyceride levels, and, compared with the control group, increased diurnal activity, decreased nocturnal activity, reductions in amplitude, midline estimating statistic of rhythm, acrophase and interdaily stability, and increases in intradaily variability of their activity rhythms. The results thus show how obesity can lead to symptoms of chronodisruption in the body similar to those of ageing.

  17. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    Directory of Open Access Journals (Sweden)

    Heather L. Vellers

    2017-08-01

    Full Text Available Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels.Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD or high fat/high sugar (HFHS diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males and 17β-estradiol (females to determine if sex hormone augmentation altered diet-induced changes in activity.Results: 117 mice (56♂, 61♀ were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p < 0.0001; female: p < 0.0001 and had significantly higher body fat (male: p < 0.0001; female: p < 0.0001. The HFHS diet did not reduce sex hormone levels, but did significantly reduce acute running-wheel distance in male (p = 0.05, 70 ± 28% and female mice (p = 0.02, 57 ± 26%. In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat.Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones.

  18. Effects of Berberine on Amelioration of Hyperglycemia and Oxidative Stress in High Glucose and High Fat Diet-Induced Diabetic Hamsters In Vivo

    Directory of Open Access Journals (Sweden)

    Cong Liu

    2015-01-01

    Full Text Available This study investigated the effects of berberine on amelioration of hyperglycemia and hyperlipidemia and the mechanism involved in high glucose and high fat diet-induced diabetic hamsters. Golden hamsters fed with high glucose and high fat diet were medicated with metformin, simvastatin, and low or high dose of berberine (50 and 100 mg·kg−1 for 6 weeks. The results showed that the body weights were significantly lower in berberine-treated groups than control group. Histological analyses revealed that the treatment of berberine inhibited hepatic fat accumulation. Berberine significantly reduced plasma total cholesterol, triglyceride, free fatty acid, low density lipoprotein cholesterol, malondialdehyde, thiobarbituric acid-reactive substance, and 8-isoprostane level but significantly increased plasma superoxide dismutase activity. Glucose and insulin levels were significantly reduced in metformin and berberine-treated groups. Glucose tolerance tests documented that berberine-treated mice were more glucose tolerant. Berberine treatment increased expression of skeletal muscle glucose transporter 4 mRNA and significantly decreased liver low density lipoprotein receptor mRNA expression. The study suggested that berberine was effective in lowering blood glucose and lipids levels, reducing the body weight, and alleviating the oxidative stress in diabetic hamsters, which might be beneficial in reducing the cardiovascular risk factors in diabetes.

  19. Extract of Ginkgo Biloba Ameliorates Streptozotocin-Induced Type 1 Diabetes Mellitus and High-Fat Diet-Induced Type 2 Diabetes Mellitus in Mice.

    Science.gov (United States)

    Rhee, Ki-Jong; Lee, Chang Gun; Kim, Sung Woo; Gim, Dong-Hyeon; Kim, Hyun-Cheol; Jung, Bae Dong

    2015-01-01

    Diabetes mellitus (DM) is caused by either destruction of pancreatic β-cells (type 1 DM) or unresponsiveness to insulin (type 2 DM). Conventional therapies for diabetes mellitus have been developed but still needs improvement. Many diabetic patients have complemented conventional therapy with alternative methods including oral supplementation of natural products. In this study, we assessed whether Ginkgo biloba extract (EGb) 761 could provide beneficial effects in the streptozotocin-induced type 1 DM and high-fat diet-induced type 2 DM murine model system. For the type 1 DM model, streptozotocin-induced mice were orally administered EGb 761 for 10 days prior to streptozotocin injection and then again administered EGb 761 for an additional 10 days. Streptozotocin-treated mice administered EGb 761 exhibited lower blood triglyceride levels, lower blood glucose levels and higher blood insulin levels compared to streptozotocin-treated mice. Furthermore, liver LPL and liver PPAR-α were increased whereas IL-1β and TNF-α were decreased in streptozotocin-injected mice treated with EGb 761 compared to mice injected with streptozotocin alone. For the type 2 DM model, mice were given high-fat diet for 60 days and then orally administered EGb 761 every other day for 80 days. We found that mice given a high-fat diet and EGb 761 showed decreased blood triglyceride levels, increased liver LPL, increased liver PPAR-α and decreased body weight compared to mice given high-fat diet alone. These results suggest that EGb 761 can exert protective effects in both type 1 and type 2 DM murine models.

  20. Dietary supplementation of chinese ginseng prevents obesity and metabolic syndrome in high-fat diet-fed mice.

    Science.gov (United States)

    Li, Xiaoxiao; Luo, Jing; Anandh Babu, Pon Velayutham; Zhang, Wei; Gilbert, Elizabeth; Cline, Mark; McMillan, Ryan; Hulver, Matthew; Alkhalidy, Hana; Zhen, Wei; Zhang, Haiyan; Liu, Dongmin

    2014-12-01

    Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBPα and PPARγ) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice.

  1. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

    Science.gov (United States)

    Tan, Si; Li, Mingxia; Ding, Xiaobo; Fan, Shengjie; Guo, Lu; Gu, Ming; Zhang, Yu; Feng, Li; Jiang, Dong; Li, Yiming; Xi, Wanpeng; Huang, Cheng; Zhou, Zhiqin

    2014-01-01

    Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice. The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

  2. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Si Tan

    Full Text Available INTRODUCTION: Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle fruit extract (FME on high-fat diet-induced C57BL/6 obese mice. METHODS: The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow, high-fat diet (HF, and high-fat diet with 1% (w/w extract of kumquat (HF+FME for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. RESULTS: In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC, serum low density lipoprotein cholesterol (LDL-c levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG, serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. CONCLUSION: Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

  3. Brain transcriptional responses to high-fat diet in Acads-deficient mice reveal energy sensing pathways.

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    Full Text Available How signals from fatty acid metabolism are translated into changes in food intake remains unclear. Previously we reported that mice with a genetic inactivation of Acads (acyl-coenzyme A dehydrogenase, short-chain, the enzyme responsible for mitochondrial beta-oxidation of C4-C6 short-chain fatty acids (SCFAs, shift consumption away from fat and toward carbohydrate when offered a choice between diets. In the current study, we sought to indentify candidate genes and pathways underlying the effects of SCFA oxidation deficiency on food intake in Acads-/- mice.We performed a transcriptional analysis of gene expression in brain tissue of Acads-/- and Acads+/+ mice fed either a high-fat (HF or low-fat (LF diet for 2 d. Ingenuity Pathway Analysis revealed three top-scoring pathways significantly modified by genotype or diet: oxidative phosphorylation, mitochondrial dysfunction, and CREB signaling in neurons. A comparison of statistically significant responses in HF Acads-/- vs. HF Acads+/+ (3917 and Acads+/+ HF vs. LF Acads+/+ (3879 revealed 2551 genes or approximately 65% in common between the two experimental comparisons. All but one of these genes were expressed in opposite direction with similar magnitude, demonstrating that HF-fed Acads-deficient mice display transcriptional responses that strongly resemble those of Acads+/+ mice fed LF diet. Intriguingly, genes involved in both AMP-kinase regulation and the neural control of food intake followed this pattern. Quantitative RT-PCR in hypothalamus confirmed the dysregulation of genes in these pathways. Western blotting showed an increase in hypothalamic AMP-kinase in Acads-/- mice and HF diet increased, a key protein in an energy-sensing cascade that responds to depletion of ATP.Our results suggest that the decreased beta-oxidation of short-chain fatty acids in Acads-deficient mice fed HF diet produces a state of energy deficiency in the brain and that AMP-kinase may be the cellular energy

  4. The Effects of Diet on the Proportion of Intramuscular Fat in Human Muscle: A Systematic Review and Meta-analysis

    Directory of Open Access Journals (Sweden)

    Sara Ahmed

    2018-02-01

    Full Text Available BackgroundThere is an increasing trend in the consumption of poor-quality diets worldwide, contributing to the increase of non-communicable diseases. Diet directly influences physiological composition and subsequently physical health. Studies have shown that dietary macronutrient and energy content can influence the proportion of intramuscular fat (IMF, which mediates various metabolic and endocrine dysfunction. The purpose of this systematic review was to identify evidence in the literature assessing the association between different dietary interventions on the proportion of IMF in humans.MethodsThree medical databases were investigated (Medline, EMBASE, and Cochrane to identify studies assessing changes in IMF after dietary interventions. The primary outcome measure was the change in IMF proportions after a dietary intervention. The effects of high-fat, high-carbohydrate, low-calorie, and starvation diets were assessed qualitatively. A meta-analysis assessing the effect of high-fat diets was conducted. Follow-up sensitivity and subgroup analyses were also conducted.ResultsOne thousand eight hundred and sixty-six articles were identified for review. Of these articles, 13 were eligible for inclusion after a full screening. High-fat diets increased IMF proportions, standardized mean difference = 1.24 (95% confidence interval, 0.43–2.05 and a significant overall effect size (P = 0.003. Diets with an increased proportion of carbohydrates decreased IMF proportions; however, increasing caloric intake with carbohydrates increased IMF. Starvation diets increased IMF stores, and hypocaloric diets did not result in any IMF proportion changes.ConclusionThis systematic review suggests that high-fat diets and diets with caloric intake increased above the amount required to maintain BMI with carbohydrates, and short-term starvation diets are associated with increases in IMF content. Further studies are needed to assess the effects of macronutrient

  5. Both paternal exercise and healthy diet are required to protect offspring from high fat diet-induced obesity and type 2 diabetes risk in mice

    Science.gov (United States)

    Objective: Paternal eating and physical activity behaviors peri-conception may influence offspring obesity and type 2 diabetes (T2D) risk. A recent study showed that paternal exercise increased offspring susceptibility to obesity when the offspring consumed a high fat (HF) diet. However, it is not y...

  6. Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding.

    Science.gov (United States)

    More, Vijay R; Xu, Jialin; Shimpi, Prajakta C; Belgrave, Clyde; Luyendyk, James P; Yamamoto, Masayuki; Slitt, Angela L

    2013-08-01

    The nuclear factor E2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway upregulates antioxidant and biotransformation enzyme expression to counter cellular oxidative stress. The contributions of Nrf2 to other cellular functions, such as lipid homeostasis, are emerging. This study was conducted to determine how enhanced Nrf2 activity influences the progression of metabolic syndrome with long-term high-fat diet (HFD) feeding. C57BL/6 and Keap1-knockdown (Keap1-KD) mice, which exhibit enhanced Nrf2 activity, were fed a HFD for 24 weeks. Keap1-KD mice had higher body weight and white adipose tissue mass compared to C57BL/6 mice on HFD, along with increased inflammation and lipogenic gene expression. HFD feeding increased hepatic steatosis and inflammation to a greater extent in Keap1-KD mice compared to C57BL/6 mice, which was associated with increased liver Cd36, fatty acid-binding protein 4, and monocyte chemoattractant protein 1 mRNA expression, as well as increased acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1 protein expression. The HFD altered short-term glucose homeostasis to a greater degree in Keap-KD mice compared to C57BL/6 mice, which was accompanied by downregulation of insulin receptor substrate 1 mRNA expression in skeletal muscle. Together, the results indicate that Keap1 knockdown, on treatment with HFD, increases certain markers of metabolic syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. High fat diet and inflammation - modulation of Haptoglobin level in rat brain

    Directory of Open Access Journals (Sweden)

    Maria Stefania eSpagnuolo

    2015-12-01

    Full Text Available Obesity and dietary fats are well known risk factors for the pathogenesis of neurodegenerative diseases. The analysis of specific markers, whose brain level can be affected by diet, might contribute to unveil the intersection between inflammation/obesity and neurodegeneration. Haptoglobin (Hpt is an acute phase protein, which acts as antioxidant by binding free Haemoglobin (Hb, thus neutralizing its pro-oxidative action. We previously demonstrated that Hpt plays critical functions in brain, modulating cholesterol trafficking in neuroblastoma cell lines, beta-amyloid (Aβ uptake by astrocyte, and limiting Aβ toxicity on these cells. A major aim of this study was to evaluate whether a long term (12 or 24 weeks high-fat diet (HFD influences Hpt and Hb expression in rat hippocampus. We also assessed the development of obesity-induced inflammation by measuring hippocampal level of TNF-alpha, and the extent of protein oxidation by titrating nitro-tyrosine (N-Tyr. Hpt concentration was lower (p<0.001 in hippocampus of HFD rats than in control animals, both in the 12 and in the 24 weeks fed groups. HFD was also associated in hippocampus with the increase of Hb level (p<0.01, inflammation and protein oxidative modification, as evidenced by the increase in the concentration of TNF-alpha and nitro-tyrosine. In fact, TNF-alpha concentration was higher in rats receiving HFD for 12 (p<0.01 or 24 weeks (p<0.001 compared to those receiving the control diet. N-Tyr concentration was more elevated in hippocampus of HFD than in control rats in both 12 weeks (p=0.04 and 24 weeks groups (p=0.01, and a positive correlation between Hb and N-Tyr concentration was found in each group. Finally, we found that the treatment of the human glioblastoma-astrocytoma cell line U-87 MG with cholesterol and fatty acids, such as palmitic and linoleic acid, significantly impairs (p<0.001 Hpt secretion in the extracellular compartment.We hypothesize that the HFD-dependent decrease of

  8. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations

    Directory of Open Access Journals (Sweden)

    Oller do Nascimento Cláudia

    2011-01-01

    Full Text Available Abstract Background Adiponectin is the most abundant plasma protein synthesized for the most part in adipose tissue, and it is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. In addition, it increases fatty acid oxidation in the muscle and potentiates insulin inhibition of hepatic gluconeogenesis. Two adiponectin receptors have been identified: AdipoR1 is the major receptor expressed in skeletal muscle, whereas AdipoR2 is mainly expressed in liver. Consumption of high levels of dietary fat is thought to be a major factor in the promotion of obesity and insulin resistance. Excessive levels of cortisol are characterized by the symptoms of abdominal obesity, hypertension, glucose intolerance or diabetes and dyslipidemia; of note, all of these features are shared by the condition of insulin resistance. Although it has been shown that glucocorticoids inhibit adiponectin expression in vitro and in vivo, little is known about the regulation of adiponectin receptors. The link between glucocorticoids and insulin resistance may involve the adiponectin receptors and adrenalectomy might play a role not only in regulate expression and secretion of adiponectin, as well regulate the respective receptors in several tissues. Results Feeding of a high-fat diet increased serum glucose levels and decreased adiponectin and adipoR2 mRNA expression in subcutaneous and retroperitoneal adipose tissues, respectively. Moreover, it increased both adipoR1 and adipoR2 mRNA levels in muscle and adipoR2 protein levels in liver. Adrenalectomy combined with the synthetic glucocorticoid dexamethasone treatment resulted in increased glucose and insulin levels, decreased serum adiponectin levels, reduced adiponectin mRNA in epididymal adipose tissue, reduction of adipoR2 mRNA by 7-fold in muscle and reduced adipoR1 and adipoR2 protein levels in muscle. Adrenalectomy alone increased adiponectin mRNA expression 3-fold in subcutaneous adipose

  9. Omega-3 attenuates high fat diet-induced kidney injury of female rats and renal programming of their offsprings.

    Science.gov (United States)

    Shamseldeen, Asmaa Mohammed; Ali Eshra, Mohammed; Ahmed Rashed, Laila; Fathy Amer, Marwa; Elham Fares, Amal; Samir Kamar, Samaa

    2018-05-09

    Maternal diet composition could influence fetal organogenesis. We investigated effects of high fat diet (HFD) intake alone or combined with omega 3 during pregnancy, lactation and early days of weaning on nephrogenesis of pups and maternal renal function and morphology. Mothers and their pups included in each group were supplied with the same diet composition. Rats were divided into group I, II and III supplied with chow of either 10 kcal%, 45 kcal% or 45 kcal% from fat together with omega-3 respectively. Group II showed increased serum urea and creatinine, renal TNF-α, IL1β. Structural injury was observed in mothers and their pups as Bowman's capsule and tubular dilatation and increased expression of PCNA that were decreased following omega-3 supplementation added to down regulation of Wnt4, Pax2 gene and podocin expression. Omega-3 supplementation improves lipid nephrotoxicity observed in mothers and their pups.

  10. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Su-Kyung Shin

    2016-02-01

    Full Text Available Obesity, along with its related complications, is a serious health problem worldwide. Many studies reported the anti-diabetic effect of phlorizin, while little is known about its anti-obesity effect. We investigated the beneficial effects of phlorizin on obesity and its complications, including diabetes and inflammation in obese animal. Male C57BL/6J mice were divided into three groups and fed their respective experimental diets for 16 weeks: a normal diet (ND, 5% fat, w/w, high-fat diet (HFD, 20% fat, w/w, or HFD supplemented with phlorizin (PH, 0.02%, w/w. The findings revealed that the PH group had significantly decreased visceral and total white adipose tissue (WAT weights, and adipocyte size compared to the HFD. Plasma and hepatic lipids profiles also improved in the PH group. The decreased levels of hepatic lipids in PH were associated with decreased activities of enzymes involved in hepatic lipogenesis, cholesterol synthesis and esterification. The PH also suppressed plasma pro-inflammatory adipokines levels such as leptin, adipsin, tumor necrosis factor-α, monocyte chemoattractant protein-1, interferon-γ, and interleukin-6, and prevented HFD-induced collagen accumulation in the liver and WAT. Furthermore, the PH supplementation also decreased plasma glucose, insulin, glucagon, and homeostasis model assessment of insulin resistance levels. In conclusion, phlorizin is beneficial for preventing diet-induced obesity, hepatic steatosis, inflammation, and fibrosis, as well as insulin resistance.

  11. Short-Term High-Fat Diet Increases Leptin Activation of CART Neurons and Advances Puberty in Female Mice.

    Science.gov (United States)

    Venancio, Jade Cabestre; Margatho, Lisandra Oliveira; Rorato, Rodrigo; Rosales, Roberta Ribeiro Costa; Debarba, Lucas Kniess; Coletti, Ricardo; Antunes-Rodrigues, Jose; Elias, Carol F; Elias, Lucila Leico K

    2017-11-01

    Leptin is a permissive factor for puberty initiation, participating as a metabolic cue in the activation of the kisspeptin (Kiss1)-gonadotropin-releasing hormone neuronal circuitry; however, it has no direct effect on Kiss1 neurons. Leptin acts on hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons, participating in the regulation of energy homeostasis. We investigated the influence of a short-term high-fat diet (HFD) on the effect of leptin on puberty timing. Kiss1-hrGFP female mice received a HFD or regular diet (RD) after weaning at postnatal day (PN)21 and were studied at PN28 and PN32. The HFD increased body weight and plasma leptin concentrations and decreased the age at vaginal opening (HFD, 32 ± 0.53 days; RD, 38 ± 0.67 days). Similar colocalization of neurokinin B and dynorphin in Kiss1-hrGFP neurons of the arcuate nucleus (ARC) was observed between the HFD and RD groups. The HFD increased CART expression in the ARC and Kiss1 messenger RNA expression in the anteroventral periventricular (AVPV)/anterior periventricular (Pe). The HFD also increased the number of ARC CART neurons expressing leptin-induced phosphorylated STAT3 (signal transducer and activator of transcription 3) at PN32. Close apposition of CART fibers to Kiss1-hrGFP neurons was observed in the ARC of both RD- and HFD-fed mice. In conclusion, these data reinforce the notion that a HFD increases kisspeptin expression in the AVPV/Pe and advances puberty initiation. Furthermore, we have demonstrated that the HFD-induced earlier puberty is associated with an increase in CART expression in the ARC. Therefore, these data indicate that CART neurons in the ARC can mediate the effect of leptin on Kiss1 neurons in early puberty induced by a HFD. Copyright © 2017 Endocrine Society.

  12. Hypolipidemic, antioxidant and antiatherogenic property of sardine by-products proteins in high-fat diet induced obese rats.

    Science.gov (United States)

    Affane, Fouad; Louala, Sabrine; El Imane Harrat, Nour; Bensalah, Fatima; Chekkal, Hadjera; Allaoui, Amine; Lamri-Senhadji, Myriem

    2018-04-15

    Fish by-products valorization on account of their richness in bioactive compounds may represent a better alternative to marine products with a view to economic profitability and sustainable development. In this study, we compared the effect of sardine by-product proteins (SBy-P), with those of the fillets (SF-P) or casein (Cas), on growth parameters, serum leptin level, lipids disorders, lipid peroxidation and reverse cholesterol transport, in diet-induced obese rats. Obesity was induced by feeding rats a high-fat diet (20% sheep fat), during 12 weeks. At body weight (BW) of 400 ± 20 g, eighteen obese rats were divided into three homogenous groups and continue to consume the high-fat diet for 4 weeks containing either, 20% SBy-P, SF-P or Cas. The results showed that SBy-P, compared to SF-P and Cas, efficiently reduced food intake (FI), BW gain and serum leptin level, and improved blood lipids levels and reverse cholesterol transport by reducing total cholesterol (TC), triacylglycerols (TG) and low-density lipoprotein cholesterol (LDL-HDL 1 -C) serum levels, increasing the level of high-density lipoprotein cholesterol (HDL 2 -C and HDL 3 -C), and enhancing lecithin: cholesterol acyltransferase (LCAT) activity. Furthermore, they attenuated lipid peroxidation by increasing atheroprotective activity of the paraoxonase-1 (PON-1). Sardine by-product proteins due to their richness in certain essential amino acids, highlight weight-loss, lipid-lowering, antioxidant and anti-atherogenic potentials, contributing to the improvement of the complications associated with obesity. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Diet fat alters synaptosomal phosphatidylethanolaminemethyl-transferase activity and phosphatidylcholine synthesis in brain

    International Nuclear Information System (INIS)

    Hargreaves, K.M.; Clandinin, M.T.

    1986-01-01

    Phosphatidylcholine (PC) can be synthesized via three routes, each having potentially different metabolic fates. One route for PC synthesis is methylation of phosphatidylethanolamine (PE). To examine if dietary fat affects membrane PE composition and phosphatidylethanolaminemethyltransferase (PEMT) activity, male weanling rats were fed semi-purified diets containing 20% (w/w) fat of differing fatty acid composition for 24 days. Microsomal and synaptic plasma membranes were isolated and phospholipid composition analyzed. PEMT activity was measured by incorporation of the methyl group from 3 H-S-adenosylmethionine into PE. Polyunsaturated diets high in omega 6 fatty acids produce a high ratio of omega 6/omega 3 fatty acids in synaptic plasma membranes. Dietary omega 3 and omega 6 fatty acid levels are reflected in membrane phospholipid content of 22:6(3), 20:4(6), 22:4(6) and 22:5(6). Diet-induced increase in these longer chain homologues of omega 6 and omega 3 fatty acids and a high ratio of omega 6/omega 3 fatty acids in PE are both associated with increased PEMT activity. These results suggest that diet-fat induced change in fatty acid composition of membrane PE results in transition in PEMT activity and synthesis of PC in brain, by providing preferred species of PE for methylation

  14. Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets.

    Science.gov (United States)

    Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung

    2016-10-01

    Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.

  15. Red wine intake but not other alcoholic beverages increases total antioxidant capacity and improves pro-inflammatory profile after an oral fat diet in healthy volunteers.

    Science.gov (United States)

    Torres, A; Cachofeiro, V; Millán, J; Lahera, V; Nieto, M L; Martín, R; Bello, E; Alvarez-Sala, L A

    2015-12-01

    Different alcoholic beverages exert different effects on inflammation and oxidative stress but these results are controversial and scanty in some aspects. We analyze the effect of different alcoholic beverages after a fat-enriched diet on lipid profile, inflammatory factors and oxidative stress in healthy people in a controlled environment. We have performed a cross-over design in five different weeks. Sixteen healthy volunteers have received the same oral fat-enriched diet (1486kcal/m(2)) and a daily total amount of 16g/m(2) of alcohol, of different beverages (red wine, vodka, brandy or rum) and equivalent caloric intakes as sugar with water in the control group. We have measured the levels of serum lipids, high sensitivity C-reactive protein (hsCRP), tumor necrosis factor α (TNFα), interleukin 6 (IL-6), soluble phospholipase A2 (sPLA2), lipid peroxidation (LPO) and total antioxidant capacity (TAC). Red wine intake was associated with decreased of mean concentrations of hsCRP, TNFα and IL-6 induced by fat-enriched diet (p<0.05); nevertheless, sPLA2 concentrations were not significantly modified. After a fat-enriched diet added with red wine, TAC increased as compared to the same diet supplemented with rum, brandy, vodka or the control (water with sugar) (p<0.05). Moderate red wine intake, but not other alcoholic beverages, decreased pro-inflammatory factors and increased total antioxidant capacity despite a fat-enriched diet intake in healthy young volunteers. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  16. Effect of Gamma-Oryzanol as Therapeutic Agent to Prevent Cardiorenal Metabolic Syndrome in Animals Submitted to High Sugar-Fat Diet

    Directory of Open Access Journals (Sweden)

    Fabiane Valentini Francisqueti

    2017-11-01

    Full Text Available Background: The high consumption of fat and sugar contributes to the development of obesity and co-morbidities, such as diabetes, and cardiovascular and kidney diseases. Different strategies have been used to prevent these diseases associated with obesity, such as changes in eating habits and/or the addition of dietary components with anti-inflammatory and anti-oxidant properties, such as gamma-oryzanol (γOz present mainly in bran layers and rice germ. Methods: Animals were randomly divided into four experimental groups and fed ad libitum for 20 weeks with control diet (C, n = 8, control diet + γOz (C + γOz, n = 8, high-sugar and high-fat diet (HSF, n = 8, and high-sugar and high-fat diet + γOz (HSF + γOz, n = 8. HSF groups also received water + sucrose (25%. The dose of γOz was added to diets to reach 0.5% of final concentration (w/w. Evaluation in animals included food and caloric intake, body weight, plasma glucose, insulin, triglycerides, uric acid, HOMA-IR, glomerular filtration rate, protein/creatinine ratio, systolic blood pressure, and Doppler echocardiographic. Results: Animals that consumed the HSF diet had weight gain compared to group C, increased insulin, HOMA, glucose and triglycerides, there were also atrial and ventricular structural alterations, deterioration of systolic and diastolic function, decreased glomerular filtration rate, and proteinuria. Gamma-oryzanol is significantly protective against effects on body weight, hypertriglyceridemia, renal damage, and against structural and functional alteration of the heart. Conclusion: Gamma-oryzanol shows potential as a therapeutic to prevent Cardiorenal Metabolic Syndrome.

  17. Exposure to Common Food Additive Carrageenan Alone Leads to Fasting Hyperglycemia and in Combination with High Fat Diet Exacerbates Glucose Intolerance and Hyperlipidemia without Effect on Weight

    Directory of Open Access Journals (Sweden)

    Sumit Bhattacharyya

    2015-01-01

    Full Text Available Aims. Major aims were to determine whether exposure to the commonly used food additive carrageenan could induce fasting hyperglycemia and could increase the effects of a high fat diet on glucose intolerance and dyslipidemia. Methods. C57BL/6J mice were exposed to either carrageenan, high fat diet, or the combination of high fat diet and carrageenan, or untreated, for one year. Effects on fasting blood glucose, glucose tolerance, lipid parameters, weight, glycogen stores, and inflammation were compared. Results. Exposure to carrageenan led to glucose intolerance by six days and produced elevated fasting blood glucose by 23 weeks. Effects of carrageenan on glucose tolerance were more severe than from high fat alone. Carrageenan in combination with high fat produced earlier onset of fasting hyperglycemia and higher glucose levels in glucose tolerance tests and exacerbated dyslipidemia. In contrast to high fat, carrageenan did not lead to weight gain. In hyperinsulinemic, euglycemic clamp studies, the carrageenan-exposed mice had higher early glucose levels and lower glucose infusion rate and longer interval to achieve the steady-state. Conclusions. Carrageenan in the Western diet may contribute to the development of diabetes and the effects of high fat consumption. Carrageenan may be useful as a nonobese model of diabetes in the mouse.

  18. Wheat bran with enriched gamma-aminobutyric acid attenuates glucose intolerance and hyperinsulinemia induced by a high-fat diet.

    Science.gov (United States)

    Shang, Wenting; Si, Xu; Zhou, Zhongkai; Strappe, Padraig; Blanchard, Chris

    2018-05-23

    In this study, the level of gamma-aminobutyric acid (GABA) in wheat bran was increased to be six times higher through the action of endogenous glutamate decarboxylase compared with untreated bran. The process of GABA formation in wheat bran also led to an increased level of phenolic compounds with enhanced antioxidant capacity 2 times higher than the untreated status. The interventional effect of a diet containing GABA-enriched bran on hyperinsulinemia induced by a high-fat diet (HFD) was investigated in a rat model. The results showed that, when compared with animals fed with HFD-containing untreated bran (NB group), the consumption of HFD-containing GABA-enriched bran (GB group) demonstrated a greater improvement of insulin resistance/sensitivity as revealed by the changes in the homeostatic model assessment for insulin resistance index (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI). The expression of hepatic genes, cytochrome P450 family 7 subfamily A member 1 (Cyp7a1) and ubiquitin C (Ubc), which are involved in the adipogenesis-associated PPAR signalling pathway, was found to be significantly down-regulated in the GB group compared with the HFD group (P = 0.0055). Meanwhile, changes in the expression of a number of genes associated with lipid metabolism and gluconeogenesis were also noted in the GB group versus the HFD group, but not in the NB group, indicating different regulatory patterns between the two brans in a high-fat diet. More importantly, the analysis of key genes related to glucose metabolism further revealed that the expression of insulin-induced gene 1/2 (Insig-1/2) was increased following GB intervention with a corresponding reduction in phosphoenolpyruvate carboxykinase 1 (Pepck) and glucose-6-phosphatase, catalytic subunit (G6pc) expression, suggesting that glucose homeostasis is greatly improved through the intervention of GABA-enriched bran in the context of a high-fat diet.

  19. Perinatal exposure to a diet high in saturated fat, refined sugar and cholesterol affects behaviour, growth, and feed intake in weaned piglets

    NARCIS (Netherlands)

    Clouard, Caroline; Gerrits, Walter J.J.; Kemp, Bas; Val-Laillet, David; Bolhuis, J.E.

    2016-01-01

    The increased consumption of diets high in saturated fats and refined sugars is a major public health concern in Western human societies. Recent studies suggest that perinatal exposure to dietary fat and/or sugar may affect behavioural development. We thus investigated the effects of perinatal

  20. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial.

    Science.gov (United States)

    Estruch, Ramon; Martínez-González, Miguel Angel; Corella, Dolores; Salas-Salvadó, Jordi; Fitó, Montserrat; Chiva-Blanch, Gemma; Fiol, Miquel; Gómez-Gracia, Enrique; Arós, Fernando; Lapetra, José; Serra-Majem, Lluis; Pintó, Xavier; Buil-Cosiales, Pilar; Sorlí, José V; Muñoz, Miguel A; Basora-Gallisá, Josep; Lamuela-Raventós, Rosa María; Serra-Mir, Mercè; Ros, Emilio

    2016-08-01

    Because of the high density of fat, high-fat diets are perceived as likely to lead to increased bodyweight, hence health-care providers are reluctant to recommend them to overweight or obese individuals. We assessed the long-term effects of ad libitum, high-fat, high-vegetable-fat Mediterranean diets on bodyweight and waist circumference in older people at risk of cardiovascular disease, most of whom were overweight or obese. PREDIMED was a 5 year parallel-group, multicentre, randomised, controlled clinical trial done in primary care centres affiliated to 11 hospitals in Spain. 7447 asymptomatic men (aged 55-80 years) and women (aged 60-80 years) who had type 2 diabetes or three or more cardiovascular risk factors were randomly assigned (1:1:1) with a computer-generated number sequence to one of three interventions: Mediterranean diet supplemented with extra-virgin olive oil (n=2543); Mediterranean diet supplemented with nuts (n=2454); or a control diet (advice to reduce dietary fat; n=2450). Energy restriction was not advised, nor was physical activity promoted. In this analysis of the trial, we measured bodyweight and waist circumference at baseline and yearly for 5 years in the intention-to-treat population. The PREDIMED trial is registered with ISRCTN.com, number ISRCTN35739639. After a median 4·8 years (IQR 2·8-5·8) of follow-up, participants in all three groups had marginally reduced bodyweight and increased waist circumference. The adjusted difference in 5 year changes in bodyweight in the Mediterranean diet with olive oil group was -0·43 kg (95% CI -0·86 to -0·01; p=0·044) and in the nut group was -0·08 kg (-0·50 to 0·35; p=0·730), compared with the control group. The adjusted difference in 5 year changes in waist circumference was -0·55 cm (-1·16 to -0·06; p=0·048) in the Mediterranean diet with olive oil group and -0·94 cm (-1·60 to -0·27; p=0·006) in the nut group, compared with the control group. A long-term intervention with an

  1. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice.

    Science.gov (United States)

    Wang, Zhi; Li, Liaoliao; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2015-08-01

    Obesity can cause pathological changes in organs. We determined the effects of chronic high fat diet (HFD) and intermittent fasting, a paradigm providing organ protection, on mouse heart. Seven-week old CD1 male mice were randomly assigned to control, HFD and intermittent fasting groups. Control mice had free access to regular diet (RD). RD was provided every other day to mice in the intermittent fasting group. Mice in HFD group had free access to HFD. Their left ventricles were harvested 11 months after they had been on these diet regimens. HFD increased cardiomyocyte cross-section area and fibrosis. HFD decreased active caspase 3, an apoptosis marker, and the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3) II/LC3I, an autophagy marker. HFD increased the phospho-glycogen synthase kinase-3β (GSK-3β) at Ser9, a sign of GSK-3β inhibition. Nuclear GATA binding protein 4 and yes-associated protein, two GSK-3β targeting transcription factors that can induce hypertrophy-related gene expression, were increased in HFD-fed mice. Mice on intermittent fasting did not have these changes except for the increased active caspase 3 and decreased ratio of LC3II/LC3I. These results suggest that chronic HFD induces myocardial hypertrophy and fibrosis, which may be mediated by GSK-3β inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity.

    Science.gov (United States)

    Jing, Li; Zhang, Yu; Fan, Shengjie; Gu, Ming; Guan, Yu; Lu, Xiong; Huang, Cheng; Zhou, Zhiqin

    2013-09-05

    D-limonene is a major constituent in citrus essential oil, which is used in various foods as a flavoring agent. Recently, d-limonene has been reported to alleviate fatty liver induced by a high-fat diet. Here we determined the preventive and therapeutic effects of d-limonene on metabolic disorders in mice with high-fat diet-induced obesity. In the preventive treatment, d-limonene decreased the size of white and brown adipocytes, lowered serum triglyceride (TG) and fasting blood glucose levels, and prevented liver lipid accumulations in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, d-limonene reduced serum TG, low-density lipoprotein cholesterol (LDL-c) and fasting blood glucose levels and glucose tolerance, and increased serum high-density lipoprotein cholesterol (HDL-c) in obese mice. Using a reporter assay and gene expression analysis, we found that d-limonene activated peroxisome proliferator-activated receptor (PPAR)-α signaling, and inhibited liver X receptor (LXR)-β signaling. Our data suggest that the intake of d-limonene may benefit patients with dyslipidemia and hyperglycemia and is a potential dietary supplement for preventing and ameliorating metabolic disorders. © 2013 Elsevier B.V. All rights reserved.

  3. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects.

    Science.gov (United States)

    Ruth, Megan R; Port, Ava M; Shah, Mitali; Bourland, Ashley C; Istfan, Nawfal W; Nelson, Kerrie P; Gokce, Noyan; Apovian, Caroline M

    2013-12-01

    High fat, low carbohydrate (HFLC) diets have become popular tools for weight management. We sought to determine the effects of a HFLC diet compared to a low fat high carbohydrate (LFHC) diet on the change in weight loss, cardiovascular risk factors and inflammation in subjects with obesity. Obese subjects (29.0-44.6 kg/m2) recruited from Boston Medical Center were randomized to a hypocaloric LFHC (n=26) or HFLC (n=29) diet for 12 weeks. The age range of subjects was 21-62 years. As a percentage of daily calories, the HFLC group consumed 33.5% protein, 56.0% fat and 9.6% carbohydrate and the LFHC group consumed 22.0% protein, 25.0% fat and 55.7% carbohydrate. The change in percent body weight, lean and fat mass, blood pressure, flow mediated dilation, hip:waist ratio, hemoglobin A1C, fasting insulin and glucose, and glucose and insulin response to a 2h oral glucose tolerance test did not differ (P>0.05) between diets after 12 weeks. The HFLC group had greater mean decreases in serum triglyceride (P=0.07), and hs-CRP (P=0.03), and greater mean increases in HDL cholesterol (P=0.004), and total adiponectin (P=0.045) relative to the LFHC. Secreted adipose tissue adiponectin or TNF-α did not differ after weight loss for either diet. Relative to the LFHC group, the HFLC group had greater improvements in blood lipids and systemic inflammation with similar changes in body weight and composition. This small-scale study suggests that HFLC diets may be more beneficial to cardiovascular health and inflammation in free-living obese adults compared to LFHC diets. © 2013.

  4. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    Science.gov (United States)

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  5. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet.

    Science.gov (United States)

    Shai, Iris; Schwarzfuchs, Dan; Henkin, Yaakov; Shahar, Danit R; Witkow, Shula; Greenberg, Ilana; Golan, Rachel; Fraser, Drora; Bolotin, Arkady; Vardi, Hilel; Tangi-Rozental, Osnat; Zuk-Ramot, Rachel; Sarusi, Benjamin; Brickner, Dov; Schwartz, Ziva; Sheiner, Einat; Marko, Rachel; Katorza, Esther; Thiery, Joachim; Fiedler, Georg Martin; Blüher, Matthias; Stumvoll, Michael; Stampfer, Meir J

    2008-07-17

    Trials comparing the effectiveness and safety of weight-loss diets are frequently limited by short follow-up times and high dropout rates. In this 2-year trial, we randomly assigned 322 moderately obese subjects (mean age, 52 years; mean body-mass index [the weight in kilograms divided by the square of the height in meters], 31; male sex, 86%) to one of three diets: low-fat, restricted-calorie; Mediterranean, restricted-calorie; or low-carbohydrate, non-restricted-calorie. The rate of adherence to a study diet was 95.4% at 1 year and 84.6% at 2 years. The Mediterranean-diet group consumed the largest amounts of dietary fiber and had the highest ratio of monounsaturated to saturated fat (Pcarbohydrate group consumed the smallest amount of carbohydrates and the largest amounts of fat, protein, and cholesterol and had the highest percentage of participants with detectable urinary ketones (Ploss was 2.9 kg for the low-fat group, 4.4 kg for the Mediterranean-diet group, and 4.7 kg for the low-carbohydrate group (Plosses were 3.3 kg, 4.6 kg, and 5.5 kg, respectively. The relative reduction in the ratio of total cholesterol to high-density lipoprotein cholesterol was 20% in the low-carbohydrate group and 12% in the low-fat group (P=0.01). Among the 36 subjects with diabetes, changes in fasting plasma glucose and insulin levels were more favorable among those assigned to the Mediterranean diet than among those assigned to the low-fat diet (Pcarbohydrate diets may be effective alternatives to low-fat diets. The more favorable effects on lipids (with the low-carbohydrate diet) and on glycemic control (with the Mediterranean diet) suggest that personal preferences and metabolic considerations might inform individualized tailoring of dietary interventions. (ClinicalTrials.gov number, NCT00160108.) 2008 Massachusetts Medical Society

  6. High fat diet accelerates cartilage repair in DBA/1 mice.

    Science.gov (United States)

    Wei, Wu; Bastiaansen-Jenniskens, Yvonne M; Suijkerbuijk, Mathijs; Kops, Nicole; Bos, Pieter K; Verhaar, Jan A N; Zuurmond, Anne-Marie; Dell'Accio, Francesco; van Osch, Gerjo J V M

    2017-06-01

    Obesity is a well-known risk factor for osteoarthritis, but it is unknown what it does on cartilage repair. Here we investigated whether a high fat diet (HFD) influences cartilage repair in a mouse model of cartilage repair. We fed DBA/1 mice control or HFD (60% energy from fat). After 2 weeks, a full thickness cartilage defect was made in the trochlear groove. Mice were sacrificed, 1, 8, and 24 weeks after operation. Cartilage repair was evaluated on histology. Serum glucose, insulin and amyloid A were measured 24 h before operation and at endpoints. Immunohistochemical staining was performed on synovium and adipose tissue to evaluate macrophage infiltration and phenotype. One week after operation, mice on HFD had defect filling with fibroblast-like cells and more cartilage repair as indicated by a lower Pineda score. After 8 weeks, mice on a HFD still had a lower Pineda score. After 24 weeks, no mice had complete cartilage repair and we did not detect a significant difference in cartilage repair between diets. Bodyweight was increased by HFD, whereas serum glucose, amyloid A and insulin were not influenced. Macrophage infiltration and phenotype in adipose tissue and synovium were not influenced by HFD. In contrast to common wisdom, HFD accelerated intrinsic cartilage repair in DBA/1 mice on the short term. Resistance to HFD induced inflammatory and metabolic changes could be associated with accelerated cartilage repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1258-1264, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    Science.gov (United States)

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-03

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (Plycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (Plycopene helps to protect HFD induced cognitive dysfunction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  8. Transcriptome analysis of the effects of chitosan on the hyperlipidemia and oxidative stress in high-fat diet fed mice.

    Science.gov (United States)

    Wang, Bin; Zhang, Sicong; Wang, Xiaoya; Yang, Shuo; Jiang, Qixing; Xu, Yanshun; Xia, Wenshui

    2017-09-01

    Transcriptome analysis was performed to investigate the alterations in gene expression after chitosan (CS) treatment on the liver of mice fed with high-fat diet (HFD). The results showed that the body weight, the liver weight and the epididymal fat mass of HFD mice, which were 62.98%, 46.51% and 239.37%, respectively, higher than those of control mice, could be significantly decreased by chitosan supplementation. Also, high-fat diet increased both plasma lipid and liver lipid as compared with the control mice. Chitosan supplementation decreased the plasma lipid and liver lipid, increased the lipoprotein lipase (LPL) and hepatic lipase (HL) activity, increased T-AOC and decreased MDA in the liver and the epididymis adipose as compared with the HFD mice. Transcriptome analysis indicated that increased Mups, Lcn2, Gstm3 and CYP2E1 expressions clearly indicated HFD induced lipid metabolism disorder and oxidative damage. Especially, chitosan treatment decreased the Mup17 and Lcn2 expressions by 64.32% and 82.43% respectively as compared with those of HFD mice. These results indicated that chitosan possess the ability to improve the impairment of lipid metabolism as strongly associated with increased Mups expressions and gene expressions related to oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  10. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  11. Obesity development in neuron-specific lipoprotein lipase deficient mice is not responsive to increased dietary fat content or change in fat composition.

    Science.gov (United States)

    Wang, Hong; Taussig, Matthew D; DiPatrizio, Nicholas V; Bruce, Kimberley; Piomelli, Daniele; Eckel, Robert H

    2016-07-01

    We have previously reported that mice with neuron-specific LPL deficiency (NEXLPL-/-) become obese by 16weeks of age on chow. Moreover, these mice had reduced uptake of triglyceride (TG)-rich lipoprotein-derived fatty acids and lower levels of n-3 long chain polyunsaturated fatty acids (n-3 PUFAs) in the hypothalamus. Here, we asked whether increased dietary fat content or altered dietary composition could modulate obesity development in NEXLPL-/- mice. Male NEXLPL-/- mice and littermate controls (WT) were randomly assigned one of three synthetic diets; a high carbohydrate diet (HC, 10% fat), a high-fat diet (HF, 45% fat), or a HC diet supplemented with n-3 PUFAs (HCn-3, 10% fat, Lovaza, GSK®). After 42weeks of HC feeding, body weight and fat mass were increased in the NEXLPL-/- mice compared to WT. WT mice fed a HF diet displayed typical diet-induced obesity, but weight gain was only marginal in HF-fed NEXLPL-/- mice, with no significant difference in body composition. Dietary n-3 PUFA supplementation did not prevent obesity in NEXLPL-/- mice, but was associated with differential modifications in hypothalamic gene expression and PUFA concentration compared to WT mice. Our findings suggest that neuronal LPL is involved in the regulation of body weight and composition in response to either the change in quantity (HF feeding) or quality (n-3 PUFA-enriched) of dietary fat. The precise role of LPL in lipid sensing in the brain requires further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Effects of dietary fat energy restriction and fish oil feeding on hepatic metabolic abnormalities and insulin resistance in KK mice with high-fat diet-induced obesity.

    Science.gov (United States)

    Arai, Takeshi; Kim, Hyoun-ju; Hirako, Satoshi; Nakasatomi, Maki; Chiba, Hiroshige; Matsumoto, Akiyo

    2013-01-01

    We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets - LSO, FO2.5, FO12.5 or FO25 - containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. High-protein, low-fat, short-term diet results in less stress and fatigue than moderate-protein moderate-fat diet during weight loss in male weightlifters: a pilot study.

    Science.gov (United States)

    Helms, Eric R; Zinn, Caryn; Rowlands, David S; Naidoo, Ruth; Cronin, John

    2015-04-01

    Athletes risk performance and muscle loss when dieting. Strategies to prevent losses are unclear. This study examined the effects of two diets on anthropometrics, strength, and stress in athletes. This double-blind crossover pilot study began with 14 resistance-trained males (20-43 yr) and incurred one dropout. Participants followed carbohydrate-matched, high-protein low-fat (HPLF) or moderate-protein moderate-fat (MPMF) diets of 60% habitual calories for 2 weeks. Protein intakes were 2.8g/kg and 1.6g/kg and mean fat intakes were 15.4% and 36.5% of calories, respectively. Isometric midthigh pull (IMTP) and anthropometrics were measured at baseline and completion. The Daily Analysis of Life Demands of Athletes (DALDA) and Profile of Mood States (POMS) were completed daily. Outcomes were presented statistically as probability of clinical benefit, triviality, or harm with effect sizes (ES) and qualitative assessments. Differences of effect between diets on IMTP and anthropometrics were likely or almost certainly trivial, respectively. Worse than normal scores on DALDA part A, part B and the part A "diet" item were likely more harmful (ES 0.32, 0.4 and 0.65, respectively) during MPMF than HPLF. The POMS fatigue score was likely more harmful (ES 0.37) and the POMS total mood disturbance score (TMDS) was possibly more harmful (ES 0.29) during MPMF than HPLF. For the 2 weeks observed, strength and anthropometric differences were minimal while stress, fatigue, and diet-dissatisfaction were higher during MPMF. A HPLF diet during short-term weight loss may be more effective at mitigating mood disturbance, fatigue, diet dissatisfaction, and stress than a MPMF diet.

  14. Comparison of hydrogenated vegetable shortening and nutritionally complete high fat diet on limited access-binge behavior in rats

    OpenAIRE

    Davis, Jon F.; Melhorn, Susan J.; Heiman, Justin U.; Tschöp, Matthias H.; Clegg, Deborah J.; Benoit, Stephen C.

    2007-01-01

    Previous studies have suggested that intermittent exposure to hydrogenated vegetable shortening yields a binge/compensate pattern of feeding in rats. The present study was designed to assess whether rats would exhibit similar patterns of intake when given intermittent access to a nutritionally complete high-fat diet. Four groups of rats received varying exposure to either hydrogenated vegetable shortening or high-fat diet for 8 consecutive weeks. Animals were given daily and intermittent acce...

  15. Amyloid Precursor Protein and Proinflammatory Changes Are Regulated in Brain and Adipose Tissue in a Murine Model of High Fat Diet-Induced Obesity

    Science.gov (United States)

    Puig, Kendra L.; Floden, Angela M.; Adhikari, Ramchandra; Golovko, Mikhail Y.; Combs, Colin K.

    2012-01-01

    Background Middle age obesity is recognized as a risk factor for Alzheimer's disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-α and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokine secretion with no obvious effects on adipocyte culture phenotype. These data support the hypothesis that high fat diet-dependent obesity results in concomitant pro-inflammatory changes in brain and adipose tissue that is characterized, in part, by increased levels of APP that may be contributing specifically to inflammatory changes that occur. PMID:22276186

  16. Effects of dietary carbohydrate restriction versus low-fat diet on flow-mediated dilation.

    Science.gov (United States)

    Volek, Jeff S; Ballard, Kevin D; Silvestre, Ricardo; Judelson, Daniel A; Quann, Erin E; Forsythe, Cassandra E; Fernandez, Maria Luz; Kraemer, William J

    2009-12-01

    We previously reported that a carbohydrate-restricted diet (CRD) ameliorated many of the traditional markers associated with metabolic syndrome and cardiovascular risk compared with a low-fat diet (LFD). There remains concern how CRD affects vascular function because acute meals high in fat have been shown to impair endothelial function. Here, we extend our work and address these concerns by measuring fasting and postprandial vascular function in 40 overweight men and women with moderate hypertriacylglycerolemia who were randomly assigned to consume hypocaloric diets (approximately 1500 kcal) restricted in carbohydrate (percentage of carbohydrate-fat-protein = 12:59:28) or LFD (56:24:20). Flow-mediated dilation of the brachial artery was assessed before and after ingestion of a high-fat meal (908 kcal, 84% fat) at baseline and after 12 weeks. Compared with the LFD, the CRD resulted in a greater decrease in postprandial triacylglycerol (-47% vs -15%, P = .007), insulin (-51% vs -6%, P = .009), and lymphocyte (-12% vs -1%, P = .050) responses. Postprandial fatty acids were significantly increased by the CRD compared with the LFD (P = .033). Serum interleukin-6 increased significantly over the postprandial period; and the response was augmented in the CRD (46%) compared with the LFD (-13%) group (P = .038). After 12 weeks, peak flow-mediated dilation at 3 hours increased from 5.1% to 6.5% in the CRD group and decreased from 7.9% to 5.2% in the LFD group (P = .004). These findings show that a 12-week low-carbohydrate diet improves postprandial vascular function more than a LFD in individuals with atherogenic dyslipidemia.

  17. Association between High Fat-low Carbohydrate Diet Score and Newly Diagnosed Type 2 Diabetes in Chinese Population

    NARCIS (Netherlands)

    Na, Y.; Feskens, E.J.M.; Li, Y.P.; Zhang, J.; Fu, P.; Ma, G.S.; Yang, X.G.

    2012-01-01

    Objective To study the association between high fat-low carbohydrate diet score and newly diagnosed type 2 diabetes in Chinese population. Methods Data about 20 717 subjects aged 45-59 years from the cross-sectional 2002 China National Nutrition and Health Survey were analyzed. High fat-low

  18. Electronegative LDL is linked to high-fat, high-cholesterol diet-induced nonalcoholic steatohepatitis in hamsters.

    Science.gov (United States)

    Lai, Yu-Sheng; Yang, Tzu-Ching; Chang, Po-Yuan; Chang, Shwu-Fen; Ho, Shu-Li; Chen, Hui-Ling; Lu, Shao-Chun

    2016-04-01

    The pathogenesis of nonalcoholic steatohepatitis (NASH), like that of atherosclerosis, involves lipid accumulation, inflammation and fibrosis. Recent studies suggest that oxidized LDL (oxLDL) may be a risk factor for NASH, but oxLDL levels were not directly measured in these studies. The aim of this study was to examine whether there was an association between electronegative LDL [LDL(-)], a mildly oxLDL found in the blood, and the development of NASH using two animal models. Golden Syrian hamsters and C57BL/6 mice were fed a high-fat, high-cholesterol (HFC) diet for 6 or 12weeks, then liver lipid and histopathology, plasma lipoprotein profile and LDL(-) levels were examined. The HFC-diet-fed hamsters and mice had similar levels of hepatic lipid but different histopathological changes, with microvesicular steatosis, hepatocellular hypertrophy, inflammation and bridging fibrosis in the hamsters, but only in mild steatohepatitis with low inflammatory cell infiltration in the mice. It also resulted in a significant increase in plasma levels of LDL cholesterol and LDL(-) in hamsters, but only a slight increase in mice. Moreover, enlarged Kupffer cells, LDL(-) and accumulation of unesterified cholesterol were detected in the portal area of HFC-diet-fed hamsters, but not HFC-diet-fed mice. An in vitro study showed that LDL(-) from HFC-diet-fed hamsters induced TNF-α secretion in rat Kupffer cell through a LOX-1-dependent pathway. Our results strongly suggest that LDL(-) is one of the underlying causes of hepatic inflammation and plays a critical role in the development of NASH. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. DSS colitis promotes tumorigenesis and fibrogenesis in a choline-deficient high-fat diet-induced NASH mouse model.

    Science.gov (United States)

    Achiwa, Koichi; Ishigami, Masatoshi; Ishizu, Yoji; Kuzuya, Teiji; Honda, Takashi; Hayashi, Kazuhiko; Hirooka, Yoshiki; Katano, Yoshiaki; Goto, Hidemi

    2016-01-29

    Nonalcoholic steatohepatitis (NASH) patients progress to liver cirrhosis and even hepatocellular carcinoma (HCC). Several lines of evidence indicate that accumulation of lipopolysaccharide (LPS) and disruption of gut microbiota play contributory roles in HCC. Moreover, in a dextran sodium sulfate (DSS)-induced colitis model in mice, a high-fat diet increases portal LPS level and promotes hepatic inflammation and fibrosis. However, this diet-induced NASH model requires at least 50 weeks for carcinogenesis. In this study, we sought to determine whether increased intestinal permeability would aggravate liver inflammation and fibrosis and accelerate tumorigenesis in a diet-induced NASH model. Mice were fed a choline-deficient high-fat (CDHF) diet for 4 or 12 weeks. The DSS group was fed CDHF and intermittently received 1% DSS in the drinking water. Exposure to DSS promoted mucosal changes such as crypt loss and increased the number of inflammatory cells in the colon. In the DSS group, portal LPS levels were elevated at 4 weeks, and the proportions of Clostridium cluster XI in the fecal microbiota were elevated. In addition, levels of serum transaminase, number of lobular inflammatory cells, F4/80 staining-positive area, and levels of inflammatory cytokines were all elevated in the DSS group. Liver histology in the DSS group revealed severe fibrosis at 12 weeks. Liver tumors were detected in the DSS group at 12 weeks, but not in the other groups. Thus, DSS administration promoted liver tumors in a CDHF diet-induced NASH mouse over the short term, suggesting that the induction of intestinal inflammation and gut disruption of microbiota in NASH promote hepatic tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. High fat diet accelerates pathogenesis of murine Crohn's disease-like ileitis independently of obesity.

    Directory of Open Access Journals (Sweden)

    Lisa Gruber

    Full Text Available BACKGROUND: Obesity has been associated with a more severe disease course in inflammatory bowel disease (IBD and epidemiological data identified dietary fats but not obesity as risk factors for the development of IBD. Crohn's disease is one of the two major IBD phenotypes and mostly affects the terminal ileum. Despite recent observations that high fat diets (HFD impair intestinal barrier functions and drive pathobiont selection relevant for chronic inflammation in the colon, mechanisms of high fat diets in the pathogenesis of Crohn's disease are not known. The aim of this study was to characterize the effect of HFD on the development of chronic ileal inflammation in a murine model of Crohn's disease-like ileitis. METHODS: TNF(ΔARE/WT mice and wildtype C57BL/6 littermates were fed a HFD compared to control diet for different durations. Intestinal pathology and metabolic parameters (glucose tolerance, mesenteric tissue characteristics were assessed. Intestinal barrier integrity was characterized at different levels including polyethylene glycol (PEG translocation, endotoxin in portal vein plasma and cellular markers of barrier function. Inflammatory activation of epithelial cells as well as immune cell infiltration into ileal tissue were determined and related to luminal factors. RESULTS: HFD aggravated ileal inflammation but did not induce significant overweight or typical metabolic disorders in TNF(ΔARE/WT. Expression of the tight junction protein Occludin was markedly reduced in the ileal epithelium of HFD mice independently of inflammation, and translocation of endotoxin was increased. Epithelial cells showed enhanced expression of inflammation-related activation markers, along with enhanced luminal factors-driven recruitment of dendritic cells and Th17-biased lymphocyte infiltration into the lamina propria. CONCLUSIONS: HFD feeding, independently of obesity, accelerated disease onset of small intestinal inflammation in Crohn's disease

  1. Effect of maternal protein restriction during pregnancy and postweaning high-fat feeding on diet-induced thermogenesis in adult mouse offspring.

    Science.gov (United States)

    Sellayah, Dyan; Dib, Lea; Anthony, Frederick W; Watkins, Adam J; Fleming, Tom P; Hanson, Mark A; Cagampang, Felino R

    2014-10-01

    Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Female MF-1 mice were fed a normal protein (NP, 18% casein) or a protein-restricted (PR, 9% casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45% kcal fat) or standard chow (C, 7% kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood.

  2. Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet.

    Science.gov (United States)

    Webster, Christopher C; Noakes, Timothy D; Chacko, Shaji K; Swart, Jeroen; Kohn, Tertius A; Smith, James A H

    2016-08-01

    Blood glucose is an important fuel for endurance exercise. It can be derived from ingested carbohydrate, stored liver glycogen and newly synthesized glucose (gluconeogenesis). We hypothesized that athletes habitually following a low carbohydrate high fat (LCHF) diet would have higher rates of gluconeogenesis during exercise compared to those who follow a mixed macronutrient diet. We used stable isotope tracers to study glucose production kinetics during a 2 h ride in cyclists habituated to either a LCHF or mixed macronutrient diet. The LCHF cyclists had lower rates of total glucose production and hepatic glycogenolysis but similar rates of gluconeogenesis compared to those on the mixed diet. The LCHF cyclists did not compensate for reduced dietary carbohydrate availability by increasing glucose synthesis during exercise but rather adapted by altering whole body substrate utilization. Endogenous glucose production (EGP) occurs via hepatic glycogenolysis (GLY) and gluconeogenesis (GNG) and plays an important role in maintaining euglycaemia. Rates of GLY and GNG increase during exercise in athletes following a mixed macronutrient diet; however, these processes have not been investigated in athletes following a low carbohydrate high fat (LCHF) diet. Therefore, we studied seven well-trained male cyclists that were habituated to either a LCHF (7% carbohydrate, 72% fat, 21% protein) or a mixed diet (51% carbohydrate, 33% fat, 16% protein) for longer than 8 months. After an overnight fast, participants performed a 2 h laboratory ride at 72% of maximal oxygen consumption. Glucose kinetics were measured at rest and during the final 30 min of exercise by infusion of [6,6-(2) H2 ]-glucose and the ingestion of (2) H2 O tracers. Rates of EGP and GLY both at rest and during exercise were significantly lower in the LCHF group than the mixed diet group (Exercise EGP: LCHF, 6.0 ± 0.9 mg kg(-1)  min(-1) , Mixed, 7.8 ± 1.1 mg kg(-1)  min(-1) , P < 0.01; Exercise GLY

  3. Effects of high fat diet on the Basal activity of the hypothalamus-pituitary-adrenal axis in mice: a systematic review.

    Science.gov (United States)

    Auvinen, H E; Romijn, J A; Biermasz, N R; Havekes, L M; Smit, J W A; Rensen, P C N; Pereira, A M

    2011-12-01

    Hypothalamus-pituitary-adrenal-axis activity is suggested to be involved in the pathophysiology of the metabolic syndrome. In diet-induced obesity mouse models, features of the metabolic syndrome are induced by feeding high fat diet. However, the models reveal conflicting results with respect to the hypothalamus-pituitary-adrenal-axis activation. The aim of this review was to assess the effects of high fat feeding on the activity of the hypothalamus-pituitary-adrenal-axis in mice. PubMed, EMBASE, Web of Science, the Cochrane database, and Science Direct were electronically searched and reviewed by 2 individual researchers. We included only original mouse studies reporting parameters of the hypothalamus-pituitary-adrenal-axis after high fat feeding, and at least 1 basal corticosterone level with a proper control group. Studies with adrenalectomized mice, transgenic animals only, high fat diet for less than 2 weeks, or other interventions besides high fat diet, were excluded. 20 studies were included. The hypothalamus-pituitary-adrenal-axis evaluation was the primary research question in only 5 studies. Plasma corticosterone levels were unchanged in 40%, elevated in 30%, and decreased in 20% of the studies. The effects in the peripheral tissues and the central nervous system were also inconsistent. However, major differences were found between mouse strains, experimental conditions, and the content and duration of the diets. This systematic review demonstrates that the effects of high fat feeding on the basal activity of the hypothalamus-pituitary-adrenal-axis in mice are limited and inconclusive. Differences in experimental conditions hamper comparisons and accentuate the need for standardized evaluations to discern the effects of diet-induced obesity on the hypothalamus-pituitary-adrenal-axis. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Correction of dyslipidemia resulting from high fat diets with purified anthocyanins from blueberry or strawberry but not in context of the complete berry

    Science.gov (United States)

    Male C57BL/6 mice received diets with either 10% of kcal from fat (LF), a high fat diet [45% (HF45) or 60% (HF60) kcal from fat]. In the first study the diets were prepared with or without freeze dried powders from whole blueberries (BB) and strawberries (SB). In the 2nd study, a LF or HF60 diet was...

  5. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    Science.gov (United States)

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  6. Effects of high-fat diets with different carbohydrate-to-protein ratios on energy homeostasis in rats with impaired brain melanocortin receptor activity

    NARCIS (Netherlands)

    Morens, C.; Keijzer, M.; de Vries, K.; Scheurink, A; van Dijk, G

    Changes in dietary macronutrient composition and/or central nervous system neuronal activity can underlie obesity and disturbed fuel homeostasis. We examined whether switching rats from a diet with high carbohydrate content (HC; i.e., regular chow) to diets with either high fat (HF) or high fat/high

  7. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Singh, Tripti; Prasad, Ram [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States)

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  8. High-fat diet based on dried bovine brain: an effective animal model of dyslipidemia and insulin resistance.

    Science.gov (United States)

    Araújo, Tiago Gomes; Leite, Ana Catarina Rezende; Martins da Fonseca, Caíque Silveira; Carvalho, Bruno Melo; Schuler, Alexandre Ricardo Pereira; Lima, Vera Lúcia de Menezes

    2011-09-01

    Currently, there are no reports in the literature demonstrating any animal model that ingests one of the fattiest animal food source, the bovine brain. We hypothesized that a high-fat diet (HFD), based on dried bovine brain, could be used to develop an animal model possessing a spectrum of insulin resistance-related features. The HFD was formulated with 40% dried bovine brain plus 16.4% butter fat, prepared in-house. Furthermore, the diet contained 52% calories as fat and 73% of total fatty acids were saturated. Swiss mice weighing about 40 g were assigned to two dietary groups (n=6/group), one group received a standard chow diet and the other was given HFD for 3 months. The body weight and biochemical parameters of the animals were measured initially and at monthly intervals until the end of the experiment. Animals fed on a HFD showed a significant increase in the body and adipose tissue weight, serum total cholesterol and triglyceride levels, when compared with mice fed on the control diet. Additionally, the HFD group showed higher circulating levels of liver transaminases, such as alanine aminotransferase and aspartate aminotransferase, compared with the control group. Finally, to illustrate the usefulness of this model, we report that the HFD induced mild hyperglycemia, fasting hyperinsulinemia, and increased the homeostasis model of assessment (HOMA-IR), in comparison with the control group. In conclusion, our results show that HFD, based on dried bovine brain, causes insulin resistance-related metabolic disturbances. Thus, this may be a suitable model to study disturbances in energy metabolism and their consequences.

  9. Western diet increases wheel running in mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Meek, T H; Eisenmann, J C; Garland, T

    2010-06-01

    Mice from a long-term selective breeding experiment for high voluntary wheel running offer a unique model to examine the contributions of genetic and environmental factors in determining the aspects of behavior and metabolism relevant to body-weight regulation and obesity. Starting with generation 16 and continuing through to generation 52, mice from the four replicate high runner (HR) lines have run 2.5-3-fold more revolutions per day as compared with four non-selected control (C) lines, but the nature of this apparent selection limit is not understood. We hypothesized that it might involve the availability of dietary lipids. Wheel running, food consumption (Teklad Rodent Diet (W) 8604, 14% kJ from fat; or Harlan Teklad TD.88137 Western Diet (WD), 42% kJ from fat) and body mass were measured over 1-2-week intervals in 100 males for 2 months starting 3 days after weaning. WD was obesogenic for both HR and C, significantly increasing both body mass and retroperitoneal fat pad mass, the latter even when controlling statistically for wheel-running distance and caloric intake. The HR mice had significantly less fat than C mice, explainable statistically by their greater running distance. On adjusting for body mass, HR mice showed higher caloric intake than C mice, also explainable by their higher running. Accounting for body mass and running, WD initially caused increased caloric intake in both HR and C, but this effect was reversed during the last four weeks of the study. Western diet had little or no effect on wheel running in C mice, but increased revolutions per day by as much as 75% in HR mice, mainly through increased time spent running. The remarkable stimulation of wheel running by WD in HR mice may involve fuel usage during prolonged endurance exercise and/or direct behavioral effects on motivation. Their unique behavioral responses to WD may render HR mice an important model for understanding the control of voluntary activity levels.

  10. The flavonoid compound apigenin prevents colonic inflammation and motor dysfunctions associated with high fat diet-induced obesity.

    Science.gov (United States)

    Gentile, Daniela; Fornai, Matteo; Colucci, Rocchina; Pellegrini, Carolina; Tirotta, Erika; Benvenuti, Laura; Segnani, Cristina; Ippolito, Chiara; Duranti, Emiliano; Virdis, Agostino; Carpi, Sara; Nieri, Paola; Németh, Zoltán H; Pistelli, Laura; Bernardini, Nunzia; Blandizzi, Corrado; Antonioli, Luca

    2018-01-01

    Apigenin can exert beneficial actions in the prevention of obesity. However, its putative action on obesity-associated bowel motor dysfunctions is unknown. This study examined the effects of apigenin on colonic inflammatory and motor abnormalities in a mouse model of diet-induced obesity. Male C57BL/6J mice were fed with standard diet (SD) or high-fat diet (HFD). SD or HFD mice were treated with apigenin (10 mg/Kg/day). After 8 weeks, body and epididymal fat weight, as well as cholesterol, triglycerides and glucose levels were evaluated. Malondialdehyde (MDA), IL-1β and IL-6 levels, and let-7f expression were also examined. Colonic infiltration by eosinophils, as well as substance P (SP) and inducible nitric oxide synthase (iNOS) expressions were evaluated. Motor responses elicited under blockade of NOS and tachykininergic contractions were recorded in vitro from colonic longitudinal muscle preparations. When compared to SD mice, HFD animals displayed increased body weight, epididymal fat weight and metabolic indexes. HFD mice showed increments in colonic MDA, IL-1β and IL-6 levels, as well as a decrease in let-7f expression in both colonic and epididymal tissues. HFD mice displayed an increase in colonic eosinophil infiltration. Immunohistochemistry revealed an increase in SP and iNOS expression in myenteric ganglia of HFD mice. In preparations from HFD mice, electrically evoked contractions upon NOS blockade or mediated by tachykininergic stimulation were enhanced. In HFD mice, Apigenin counteracted the increase in body and epididymal fat weight, as well as the alterations of metabolic indexes. Apigenin reduced also MDA, IL-1β and IL-6 colonic levels as well as eosinophil infiltration, SP and iNOS expression, along with a normalization of electrically evoked tachykininergic and nitrergic contractions. In addition, apigenin normalized let-7f expression in epididymal fat tissues, but not in colonic specimens. Apigenin prevents systemic metabolic alterations

  11. Isocaloric pair-fed high-carbohydrate diet induced more hepatic steatosis and inflammation than high-fat diet mediated by miR- 34a/SIRT1 axis in mice

    Science.gov (United States)

    To investigate the different effects of isocaloric high-fat diet (HFD) and high-carbohydrate diet (HCD) on hepatic steatosis and the underlying mechanisms, especially the role of microRNA- 34a/silent information regulator T1 (SIRT1) axis, C57BL/6J mice (n = 12/group) were isocaloric pair-fed with Li...

  12. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-01-01

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD 10 dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-α, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 ± 14.0 nmol/min/g heart in ND versus 400.2 ± 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-α2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating the JAK/STAT3

  13. Physical exercise ameliorates mood disorder-like behavior on high fat diet-induced obesity in mice.

    Science.gov (United States)

    Park, Hye-Sang; Lee, Jae-Min; Cho, Han-Sam; Park, Sang-Seo; Kim, Tae-Woon

    2017-04-01

    Obesity is associated with mood disorders such as depression and anxiety. The aim of this study was to investigate whether treadmill exercise had any benefits on mood disorder by high fat diet (HFD) induced obesity. Mice were randomly divided into four groups: control, control and exercise, high fat diet (HFD), and HFD and exercise. Obesity was induced by a 20-week HFD (60%). In the exercise groups, exercise was performed 6 times a week for 12 weeks, with the exercise duration and intensity gradually increasing at 4-week intervals. Mice were tested in tail suspension and elevated plus maze tasks in order to verify the mood disorder like behavior such as depression and anxiety on obesity. In the present study, the number of 5-HT- and TPH-positive cells, and expression of 5-HT 1A and 5-HTT protein decreased in dorsal raphe, and depression and anxiety like behavior increased in HFD group compared with the CON group. In contrast, treadmill exercise ameliorated mood disorder like behavior by HFD induced obesity and enhanced expression of the serotonergic system in the dorsal raphe. We concluded that exercise increases the capacity of the serotonergic system in the dorsal raphe, which improves the mood disorders associated with HFD-induced obesity. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. Perinatal Exposure to a Diet High in Saturated Fat, Refined Sugar and Cholesterol Affects Behaviour, Growth, and Feed Intake in Weaned Piglets.

    Science.gov (United States)

    Clouard, Caroline; Gerrits, Walter J J; Kemp, Bas; Val-Laillet, David; Bolhuis, J Elizabeth

    2016-01-01

    The increased consumption of diets high in saturated fats and refined sugars is a major public health concern in Western human societies. Recent studies suggest that perinatal exposure to dietary fat and/or sugar may affect behavioural development. We thus investigated the effects of perinatal exposure to a high-fat high-sugar diet (HFS) on behavioural development and production performance of piglets. Thirty-two non-obese sows and their piglets were allocated to 1 of 4 treatments in a 2 × 2 factorial design, with 8-week prenatal (gestation) and 8-week postnatal (lactation and post-weaning) exposure to a HFS diet (12% saturated fat, 18.5% sucrose, 1% cholesterol) or control low-fat low-sugar high-starch diets as factors. From weaning onwards (4 weeks of age), piglets were housed in group of 3 littermates (n = 8 groups/treatment) and fed ad libitum. After the end of the dietary intervention (8 weeks of age), all the piglets were fed a standard commercial diet. Piglet behaviours in the home pens were scored, and skin lesions, growth, feed intake and feed efficiency were measured up to 8 weeks after the end of the dietary treatment, i.e. until 16 weeks of age. At the end of the dietary treatment (8 weeks of age), response to novelty was assessed in a combined open field and novel object test (OFT/NOT). During the weeks following weaning, piglets fed the postnatal HFS diet tended to be less aggressive (p = 0.06), but exhibited more oral manipulation of pen mates (p = 0.05) than controls. Compared to controls, piglets fed the prenatal or postnatal HFS diet walked more in the home pen (p ≤ 0.05), and tended to have fewer skin lesions (p diet depended on the prenatal diet, with piglets subjected to a switch of diet at birth being more active, and exploring feeding materials, pen mates, and the environment more than piglets that remained on the same diet. Behaviours during the OFT/NOT were not affected by the diet. The intake of the postnatal HFS diet drastically

  15. Dietary supplementation of grape skin extract improves glycemia and inflammation in diet-induced obese mice fed a Western high fat diet.

    Science.gov (United States)

    Hogan, Shelly; Canning, Corene; Sun, Shi; Sun, Xiuxiu; Kadouh, Hoda; Zhou, Kequan

    2011-04-13

    Dietary antioxidants may provide a cost-effective strategy to promote health in obesity by targeting oxidative stress and inflammation. We recently found that the antioxidant-rich grape skin extract (GSE) also exerts a novel anti-hyperglycemic activity. This study investigated whether 3-month GSE supplementation can improve oxidative stress, inflammation, and hyperglycemia associated with a Western diet-induced obesity. Young diet-induced obese (DIO) mice were randomly divided to three treatment groups (n = 12): a standard diet (S group), a Western high fat diet (W group), and the Western diet plus GSE (2.4 g GSE/kg diet, WGSE group). By week 12, DIO mice in the WGSE group gained significantly more weight (24.6 g) than the W (20.2 g) and S groups (11.2 g); the high fat diet groups gained 80% more weight than the standard diet group. Eight of 12 mice in the W group, compared to only 1 of 12 mice in the WGSE group, had fasting blood glucose levels above 140 mg/dL. Mice in the WGSE group also had 21% lower fasting blood glucose and 17.1% lower C-reactive protein levels than mice in the W group (P < 0.05). However, the GSE supplementation did not affect oxidative stress in diet-induced obesity as determined by plasma oxygen radical absorbance capacity, glutathione peroxidase, and liver lipid peroxidation. Collectively, the results indicated a beneficial role of GSE supplementation for improving glycemic control and inflammation in diet-induced obesity.

  16. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone

    Science.gov (United States)

    pulmonary parameters, BALF biomarkers, body composition, motor activity data collected from rats exposed to ozone after high fructose or high fat diets.This dataset is associated with the following publication:Gordon , C., P. Phillips , A. Johnstone , T. Beasley , A. Ledbetter , M. Schladweiler , S. Snow, and U. Kodavanti. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone. INHALATION TOXICOLOGY. Taylor & Francis, Inc., Philadelphia, PA, USA, 28(5): 203-15, (2016).

  17. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Directory of Open Access Journals (Sweden)

    Hitoshi Watanabe

    Full Text Available There are two independent serotonin (5-HT systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  18. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Science.gov (United States)

    Watanabe, Hitoshi; Nakano, Tatsuya; Saito, Ryo; Akasaka, Daisuke; Saito, Kazuki; Ogasawara, Hideki; Minashima, Takeshi; Miyazawa, Kohtaro; Kanaya, Takashi; Takakura, Ikuro; Inoue, Nao; Ikeda, Ikuo; Chen, Xiangning; Miyake, Masato; Kitazawa, Haruki; Shirakawa, Hitoshi; Sato, Kan; Tahara, Kohji; Nagasawa, Yuya; Rose, Michael T; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi

    2016-01-01

    There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  19. Exploring the relationship between preferences for high fat foods and efficacy of the ketogenic and modified Atkins diets among children with seizure disorders.

    Science.gov (United States)

    Amari, Adrianna; Turner, Zahava; Rubenstein, James E; Miller, Jonathan R; Kossoff, Eric H

    2015-02-01

    Previous research has indicated that children with seizures may prefer high fat foods - a preference compatible with ketogenic and modified Atkins dietary therapies. The purpose of this prospective study was to examine the relationship between fat preference and efficacy of therapeutic diets in treating intractable seizures among a pediatric population. Preference for high fat foods was directly assessed in a sample of 30 children prior to commencing either the ketogenic or modified Atkins diet. Seizure control was assessed at 1, 3, 6, and 12 months following diet initiation. Using an intent-to-treat analysis, correlations between fat preference and diet efficacy were examined at each follow-up and across the follow-up period. At individual follow-ups, correlations between fat preference and diet efficacy varied in terms of both strength and significance; however, modest, positive correlations with fat preference were significant when examining high levels of efficacy (100% seizure reduction, ≥90% seizure reduction) across a 1-year follow-up period. These findings provide preliminary evidence that fat preference, when directly assessed, may be a useful predictor of treatment efficacy for the ketogenic and modified Atkins diets; however, further research is necessary. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  20. [Rosuvastatin improves insulin sensitivity in overweight rats induced by high fat diet. Role of SIRT1 in adipose tissue].

    Science.gov (United States)

    Valero-Muñoz, María; Martín-Fernández, Beatriz; Ballesteros, Sandra; Cachofeiro, Victoria; Lahera, Vicente; de Las Heras, Natalia

    2014-01-01

    To study the effects of rosuvastatin on insulin resistance in overweight rats induced by high fat diet, as well as potential mediators. We used male Wistar rats fed with a standard diet (CT) or high fat diet (33.5% fat) (HFD); half of the animals HFD were treated with rosuvastatin (15mg/kg/day) (HFD+Rosu) for 7 weeks. HFD rats showed increased body, epididymal and lumbar adipose tissue weights. Treatment with Rosu did not modify body weight or the weight of the adipose packages in HFD rat. Plasma glucose and insulin levels and HOMA index were higher in HFD rats, and rosuvastatin treatment reduced them. Leptin/adiponectin ratio in plasma and lumbar adipose tissue were higher in HDF rats, and were reduced by rosuvastatin. SIRT-1, PPAR-γ and GLUT-4 protein expression in lumbar adipose tissue were lower in HFD rats and Rosu normalized expression of the three mediators. Rosuvastatin ameliorates insulin sensitivity induced by HFD in rats. This effect is mediated by several mechanisms including reduction of leptin and enhancement of SIRT-1, PPAR-γ and GLUT-4 expression in white adipose tissue. SIRT1 could be considered a major mediator of the beneficial effects of rosuvastatin on insulin sensitivity in overweight rats induced by diet. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  1. Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet.

    Directory of Open Access Journals (Sweden)

    Sonja N Heinritz

    Full Text Available The intestinal microbiota and its metabolites appear to be an important factor for gastrointestinal function and health. However, research is still needed to further elaborate potential relationships between nutrition, gut microbiota and host's health by means of a suitable animal model. The present study examined the effect of two different diets on microbial composition and activity by using the pig as a model for humans. Eight pigs were equally allotted to two treatments, either fed a low-fat/high-fiber (LF, or a high-fat/low-fiber (HF diet for 7 weeks. Feces were sampled at day 7 of every experimental week. Diet effects on fecal microbiota were assessed using quantitative real-time PCR, DNA fingerprinting and metaproteomics. Furthermore, fecal short-chain fatty acid (SCFA profiles and ammonia concentrations were determined. Gene copy numbers of lactobacilli, bifidobacteria (P0.05. Results provide evidence that beginning from the start of the experiment, the LF diet stimulated beneficial bacteria and SCFA production, especially butyrate (P<0.05, while the HF diet fostered those bacterial groups which have been associated with a negative impact on health conditions. These findings correspond to results in humans and might strengthen the hypothesis that the response of the porcine gut microbiota to a specific dietary modulation is in support of using the pig as suitable animal model for humans to assess diet-gut-microbiota interactions. Data are available via ProteomeXchange with identifier PXD003447.

  2. Differential effects of restricted versus unlimited high-fat feeding in rats on fat mass, plasma hormones and brain appetite regulators.

    Science.gov (United States)

    Shiraev, T; Chen, H; Morris, M J

    2009-07-01

    The rapid rise in obesity has been linked to altered food consumption patterns. There is increasing evidence that, in addition to total energy intake, the macronutrient composition of the diet may influence the development of obesity. The present study aimed to examine the impact of high dietary fat content, under both isocaloric and hypercaloric conditions, compared with a low fat diet, on adiposity, glucose and lipid metabolism, and brain appetite regulators in rats. Male Sprague-Dawley rats were exposed to one of three diets: control (14% fat), ad lib high-fat palatable (HFD, 35% fat) or high-fat palatable restricted (HFD-R, matched to the energy intake of control) and were killed in the fasting state 11 weeks later. Body weight was increased by 28% in unrestricted HFD fed rats, with an almost tripling of caloric intake and fat mass (P < 0.001) and double the plasma triglycerides of controls. Glucose intolerance and increased insulin levels were observed. HFD-R animals calorie matched to control had double their fat mass, plasma insulin and triglycerides (P < 0.05). Only ad lib consumption of the HFD increased the hypothalamic mRNA expression of the appetite-regulating peptides, neuropeptide Y and pro-opiomelanocortin. Although restricted consumption of palatable HFD had no significant impact on hypothalamic appetite regulators or body weight, it increased adiposity and circulating triglycerides, suggesting that the proportion of dietary fat, independent of caloric intake, affects fat deposition and the metabolic profile.

  3. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    Science.gov (United States)

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  4. DHEA supplementation in ovariectomized rats reduces impaired glucose-stimulated insulin secretion induced by a high-fat diet

    Directory of Open Access Journals (Sweden)

    Katherine Veras

    2014-01-01

    Full Text Available Dehydroepiandrosterone (DHEA and the dehydroepiandrosterone sulfate (DHEA-S are steroids produced mainly by the adrenal cortex. There is evidence from both human and animal models suggesting beneficial effects of these steroids for obesity, diabetes mellitus, hypertension, and osteoporosis, conditions associated with the post-menopausal period. Accordingly, we hypothesized that DHEA supplementation in ovariectomized (OVX female rats fed a high-fat diet would maintain glucose-induced insulin secretion (GSIS and pancreatic islet function. OVX resulted in a 30% enlargement of the pancreatic islets area compared to the control rats, which was accompanied by a 50% reduction in the phosphorylation of AKT protein in the pancreatic islets. However, a short-term high-fat diet induced insulin resistance, accompanied by impaired GSIS in isolated pancreatic islets. These effects were reversed by DHEA treatment, with improved insulin sensitivity to levels similar to the control group, and with increased serine phosphorylation of the AKT protein. These data confirm the protective effect of DHEA on the endocrine pancreas in a situation of diet-induced overweight and low estrogen concentrations, a phenotype similar to that of the post-menopausal period.

  5. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet.

    Science.gov (United States)

    Wang, Jun; Ryu, Ho Kyung

    2015-10-01

    The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism.

  6. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet.

    Science.gov (United States)

    Prior, Ronald L; E Wilkes, Samuel; R Rogers, Theodore; Khanal, Ramesh C; Wu, Xianli; Howard, Luke R

    2010-04-14

    Male C57BL/6J mice (25 days of age) were fed either a low-fat diet (10% kcal from fat) (LF) or a high-fat diet (45% kcal from fat) (HF45) for a period of 72 days. Blueberry juice or purified blueberry anthocyanins (0.2 or 1.0 mg/mL) in the drinking water were included in LF or HF45 treatments. Sucrose was added to the drinking water of one treatment to test if the sugars in blueberry juice would affect development of obesity. Total body weights (g) and body fat (%) were higher and body lean tissue (%) was lower in the HF45 fed mice compared to the LF fed mice after 72 days, but in mice fed HF45 diet plus blueberry juice or blueberry anthocyanins (0.2 mg/mL), body fat (%) was not different from those mice fed the LF diet. Anthocyanins (ACNs) decreased retroperitoneal and epididymal adipose tissue weights. Fasting serum glucose concentrations were higher in mice fed the HF45 diet. However, it was reduced to LF levels in mice fed the HF45 diet plus 0.2 mg of ACNs/mL in the drinking water, but not with blueberry juice. beta cell function (HOMA-BCF) score was lowered with HF45 feeding but returned to normal levels in mice fed the HF45 diet plus purified ACNs (0.2 mg/mL). Serum leptin was elevated in mice fed HF45 diet, and feeding either blueberry juice or purified ACNs (0.2 mg/mL) decreased serum leptin levels relative to HF45 control. Sucrose in drinking water, when consumption was restricted to the volume of juice consumed, produced lower serum leptin and insulin levels, leptin/fat, and retroperitoneal and total fat (% BW). Blueberry juice was not as effective as the low dose of anthocyanins in the drinking water in preventing obesity. Additional studies are needed to determine factors responsible for the differing responses of blueberry juice and whole blueberry in preventing the development of obesity.

  7. A randomized trial of energy-restricted high-protein versus high-carbohydrate, low-fat diet in morbid obesity.

    Science.gov (United States)

    Dalle Grave, Riccardo; Calugi, Simona; Gavasso, Ilaria; El Ghoch, Marwan; Marchesini, Giulio

    2013-09-01

    Conflicting evidence exists as to weight loss produced by diets with different carbohydrate/protein ratio. The aim was to compare the long-term effects of high-protein vs. high-carbohydrate diet (HPD, HCD), combined with cognitive behavior therapy (CBT). In a randomized trial, 88 obese participants (mean age, 46.7; mean BMI, 45.6 kg m(-2) ) were enrolled in a 3-week inpatient and 48-week outpatient treatment, with continuous CBT during the study period. All subjects consumed a restricted diet (1,200 kcal day(-1) for women, 1,500 for men; 20% energy from fat, fat). HPD derived 34% energy from proteins, 46% from carbohydrates; HCD 17% from proteins, 64% from carbohydrates. The primary outcome was 1-year percent weight loss. Secondary outcomes were attrition rates and changes in cardiovascular risk factors and psychological profile. Attrition rates were similar between groups (25.6%). In the intention-to-treat analysis, weight loss averaged 15.0% in HPD and 13.3% in HCD at 1 year, without any difference throughout the study period. Both diets produced a similar improvement in secondary outcomes. The relative carbohydrate and protein content of the diet, when combined with intensive CBT, does not significantly affect attrition rate, weight loss and psychosocial outcome in patients with severe obesity. Copyright © 2013 The Obesity Society.

  8. Effects of Diets Differing in Composition of 18-C Fatty Acids on Adipose Tissue Thermogenic Gene Expression in Mice Fed High-Fat Diets

    Directory of Open Access Journals (Sweden)

    Sunhye Shin

    2018-02-01

    Full Text Available Dietary fatty acids play important roles in the regulation of fat accumulation or metabolic phenotype of adipocytes, either as brown or beige fat. However, a systematic comparison of effects of diets with different composition of 18-C fatty acids on browning/beiging phenotype has not been done. In this study, we compared the effects of different dietary fats, rich in specific 18-carbon fatty acids, on thermogenesis and lipid metabolism. Male C57BL/6 mice were fed a control diet containing 5.6% kcal fat from lard and 4.4% kcal fat from soybean oil (CON or high-fat diets (HFD containing 25% kcal from lard and 20% kcal fat from shea butter (stearic acid-rich fat; SHB, olive oil (oleic acid-rich oil; OO, safflower oil (linoleic acid-rich oil; SFO, or soybean oil (mixed oleic, linoleic, and α-linolenic acids; SBO ad libitum for 12 weeks, with or without a terminal 4-h norepinephrine (NE treatment. When compared to SHB, feeding OO, SFO, and SBO resulted in lower body weight gain. The OO fed group had the highest thermogenesis level, which resulted in lower body fat accumulation and improved glucose and lipid metabolism. Feeding SFO downregulated expression of lipid oxidation-related genes and upregulated expression of lipogenic genes, perhaps due to its high n-6:n-3 ratio. In general, HFD-feeding downregulated Ucp1 expression in both subcutaneous and epididymal white adipose tissue, and suppressed NE-induced Pgc1a expression in brown adipose tissue. These results suggest that the position of double bonds in dietary fatty acids, as well as the quantity of dietary fat, may have a significant effect on the regulation of oxidative and thermogenic conditions in vivo.

  9. Supplementary heat-killed Lactobacillus reuteri GMNL-263 ameliorates hyperlipidaemic and cardiac apoptosis in high-fat diet-fed hamsters to maintain cardiovascular function.

    Science.gov (United States)

    Ting, Wei-Jen; Kuo, Wei-Wen; Kuo, Chia-Hua; Yeh, Yu-Lan; Shen, Chia-Yao; Chen, Ya-Hui; Ho, Tsung-Jung; Viswanadha, Vijaya Padma; Chen, Yi-Hsing; Huang, Chih-Yang

    2015-09-14

    Obesity and hyperlipidaemia increase the risk of CVD. Some strains of probiotics have been suggested to have potential applications in cardiovascular health by lowering serum LDL-cholesterol. In this work, high-fat diet-induced hyperlipidaemia in hamsters was treated with different doses (5×108 and 2·5×109 cells/kg per d) of heat-killed Lactobacillus reuteri GMNL-263 (Lr263) by oral gavage for 8 weeks. The serum lipid profile analysis showed that LDL-cholesterol and plasma malondialdehyde (P-MDA) were reduced in the GMNL-263 5×108 cells/kg per d treatment group. Total cholesterol and P-MDA were reduced in the GMNL-263 2·5×109 cells/kg per d treatment group. In terms of heart function, the GMNL-263 2·5×109 cells/kg per d treatments improved the ejection fraction from 85·71 to 91·81 % and fractional shortening from 46·93 to 57·92 % in the high-fat diet-fed hamster hearts. Moreover, the GMNL-263-treated, high-fat diet-fed hamster hearts exhibited reduced Fas-induced myocardial apoptosis and a reactivated IGF1R/PI3K/Akt cell survival pathway. Interestingly, the GMNL-263 treatments also enhanced the heat-shock protein 27 expression in a dose-dependent manner, but the mechanism for this increase remains unclear. In conclusion, supplementary heat-killed L. reuteri GMNL-263 can slightly reduce serum cholesterol. The anti-hyperlipidaemia effects of GMNL-263 may reactivate the IGF1R/PI3K/Akt cell survival pathway and reduce Fas-induced myocardial apoptosis in high-fat diet-fed hamster hearts.

  10. Dietary influences on cognitive function with aging: from high-fat diets to healthful eating.

    Science.gov (United States)

    Parrott, Matthew D; Greenwood, Carol E

    2007-10-01

    Human epidemiologic studies provide convincing evidence that dietary patterns practiced during adulthood are important contributors to age-related cognitive decline and dementia risk. Diets high in fat, especially trans and saturated fats, adversely affect cognition, while those high in fruits, vegetables, cereals, and fish are associated with better cognitive function and lower risk of dementia. While the precise physiologic mechanisms underlying these dietary influences are not completely understood, modulation of brain insulin activity and neuroinflammation likely contribute. Not surprisingly, deficits in cognitive functions, especially those dependent on the medial temporal lobes, are apparent in type 2 diabetes mellitus (T2DM). Special care in food selection at meals should be exercised by those with T2DM since ingestion of rapidly absorbed, high-glycemic index carbohydrate foods further impairs medial temporal lobe function, with food-induced increases in oxidative stress and cytokine release likely explaining the association between food ingestion and reduction in cognitive function in those with T2DM.

  11. Early life adversities or high fat diet intake reduce cognitive function and alter BDNF signaling in adult rats: Interplay of these factors changes these effects.

    Science.gov (United States)

    Arcego, Danusa Mar; Krolow, Rachel; Lampert, Carine; Toniazzo, Ana Paula; Berlitz, Carolina; Lazzaretti, Camilla; Schmitz, Felipe; Rodrigues, André Felipe; Wyse, Angela T S; Dalmaz, Carla

    2016-05-01

    Environmental factors, like early exposure to stressors or high caloric diets, can alter the early programming of central nervous system, leading to long-term effects on cognitive function, increased vulnerability to cognitive decline and development of psychopathologies later in life. The interaction between these factors and their combined effects on brain structure and function are still not completely understood. In this study, we evaluated long-term effects of social isolation in the prepubertal period, with or without chronic high fat diet access, on memory and on neurochemical markers in the prefrontal cortex of rats. We observed that early social isolation led to impairment in short-term and working memory in adulthood, and to reductions of Na(+),K(+)-ATPase activity and the immunocontent of phospho-AKT, in prefrontal cortex. Chronic exposure to a high fat diet impaired short-term memory (object recognition), and decreased BDNF levels in that same brain area. Remarkably, the association of social isolation with chronic high fat diet rescued the memory impairment on the object recognition test, as well as the changes in BDNF levels, Na(+),K(+)-ATPase activity, MAPK, AKT and phospho-AKT to levels similar to the control-chow group. In summary, these findings showed that a brief social isolation period and access to a high fat diet during a sensitive developmental period might cause memory deficits in adulthood. On the other hand, the interplay between isolation and high fat diet access caused a different brain programming, preventing some of the effects observed when these factors are separately applied. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  12. Comparison of the effects on insulin resistance and glucose tolerance of 6-mo high-monounsaturated-fat, low-fat, and control diets

    DEFF Research Database (Denmark)

    Due, Anette; Larsen, Thomas M; Hermansen, Kjeld

    2008-01-01

    loss. DESIGN: Forty-six nondiabetic, obese [mean (+/-SEM) body mass index (in kg/m(2)): 31.2 +/- 0.3] men (n = 20) and premenopausal women (n = 26) aged 28.0 +/- 0.7 y were randomly assigned to 1 of 3 diets after > or = 8% weight loss: 1) MUFA diet (n = 16): moderate in fat (35-45% of energy) and high...

  13. Ruminal, Intestinal, and Total Digestibilities of Nutrients in Cows Fed Diets High in Fat and Undegradable Protein

    DEFF Research Database (Denmark)

    Palmquist, D.L.; Weisbjerg, Martin Riis; Hvelplund, Torben

    1993-01-01

    To study relationships of high undegradable intake protein and dietary fat on intestinal AA supply, the ruminal, intestinal, and total digestibilities of diets with or without added fat (5% of DM) and animal protein (blood meal: hydrolyzed feather meal, 1:1; 8% of DM) were examined with four cows...... with cows cannulated 100-cm distal to the pylorus, but only when cows were fed protein-supplemented diets; the estimates from those diets caused calculated microbial protein efficiency to exceed theoretical values. We postulated that blood meal and feather meal segregated near the pylorus, yielding high...... estimates of duodenal AA N flow. Removal of data for protein-supplemented diets obtained from cows cannulated at the pylorus yielded estimates of microbial protein synthetic efficiency consistent with literature values. Microbial synthesis of AA N was related linearly to ruminal digestion of carbohydrate...

  14. Weight Changes and Metabolic Outcomes in Calorie-Restricted Obese Mice Fed High-Fat Diets Containing Corn or Flaxseed Oil: Physiological Role of Sugar Replacement with Polyphenol-Rich Grape.

    Science.gov (United States)

    Ansar, Hastimansooreh; Zamaninour, Negar; Djazayery, Abolghassem; Pishva, Hamideh; Vafa, Mohammadreza; Mazaheri Nezhad Fard, Ramin; Dilmaghanian, Aydin; Mirzaei, Khadijeh; Shidfar, Farzad

    2017-08-01

    Because diet components are important during dieting in obesity treatment, we examined possible beneficial effects of substituting corn oil and sugar with flaxseed oil and grape in calorie-restricted high-fat diets on weight changes as well as improvement in some metabolic markers and related gene expression. Seventy-five C57BL/6J male mice were given free access to a high-fat (36% of energy from fat) diet containing corn oil plus sugar (CO + S). After 11 weeks, 15 mice were sacrificed and another 60 were divided among 4 high-fat diet groups with 30% calorie restriction (CR) for the next 12 weeks. The diets contained corn oil (CO) or flaxseed oil (FO) with sugar (S) or grape (G). Despite CR, a weight loss trend was observed only during the first 4 weeks in all groups. CR did not significantly increase SIRT1 gene expression. Higher liver weight was observed in mice consuming FO (p sugar (FBS) was significantly higher than in CO + G-CR. Grape intake increased Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression and decreased insulin resistance in CO + G-CR. Sugar replacement with polyphenol-rich grape along with CR improved glucose homeostasis, and substituting corn oil with flaxseed oil in obese mice reduced fat mass, but even with no change in adiponectin levels it could not decrease insulin resistance. However, none of the food item combinations facilitated weight reduction in the long-term CR. Therefore, regardless of the total calorie intake, different diet components and fat contents may have unexpected effects on metabolic regulation.

  15. Tocotrienol rich tocomin attenuates oxidative stress and improves endothelium-dependent relaxation in aortae from rats fed a high-fat western diet

    Directory of Open Access Journals (Sweden)

    Saher F Ali

    2016-10-01

    Full Text Available We have previously reported that tocomin, a mixture high in tocotrienol content and also containing tocopherol, acutely preserves endothelial function in the presence of oxidative stress. In this study we investigated whether tocomin treatment would preserve endothelial function in aortae isolated from rats fed a high fat diet known to cause oxidative stress. Wistar hooded rats were fed a western diet (WD, 21% fat or control rat chow (SD, 6% fat for 12 weeks. Tocomin (40 mg/kg/day sc or its vehicle (peanut oil was administered for the last 4 weeks of the feeding regime. Aortae from WD rats showed an impairment of endothelium-dependent relaxation that was associated with an increased expression of the NADPH oxidase Nox2 subunit and an increase in the vascular generation of superoxide measured using L-012 chemiluminescence. The increase in vascular oxidative stress was accompanied by a decrease in basal NO release and impairment of the contribution of NO to ACh-induced relaxation. The impaired relaxation is likely contributed to by a decreased expression of eNOS, calmodulin and phosphorylated Akt and an increase in caveolin-Tocotrienol rich tocomin, which prevented the diet-induced changes in vascular function, reduced vascular superoxide production and abolished the diet-induced changes in eNOS and other protein expression. Using selective inhibitors of nitric oxide synthase (NOS, soluble guanylate cyclase (sGC and calcium activated potassium (KCa channels we demonstrated that tocomin increased NO mediated relaxation, without affecting the contribution of endothelium-dependent hyperpolarization type relaxation to the endothelium-dependent relaxation. The beneficial actions of tocomin in this diet-induced model of obesity suggests that it may have potential to be used as a therapeutic agent to prevent vascular disease in obesity.

  16. Different responsiveness to a high-fat/cholesterol diet in two inbred mice and underlying genetic factors: a whole genome microarray analysis

    Directory of Open Access Journals (Sweden)

    Jin Gang

    2009-10-01

    Full Text Available Abstract Background To investigate different responses to a high-fat/cholesterol diet and uncover their underlying genetic factors between C57BL/6J (B6 and DBA/2J (D2 inbred mice. Methods B6 and D2 mice were fed a high-fat/cholesterol diet for a series of time-points. Serum and bile lipid profiles, bile acid yields, hepatic apoptosis, gallstones and atherosclerosis formation were measured. Furthermore, a whole genome microarray was performed to screen hepatic genes expression profile. Quantitative real-time PCR, western blot and TUNEL assay were conducted to validate microarray data. Results After fed the high-fat/cholesterol diet, serum and bile total cholesterol, serum cholesterol esters, HDL cholesterol and Non-HDL cholesterol levels were altered in B6 but not significantly changed in D2; meanwhile, biliary bile acid was decreased in B6 but increased in D2. At the same time, hepatic apoptosis, gallstones and atherosclerotic lesions occurred in B6 but not in D2. The hepatic microarray analysis revealed distinctly different genes expression patterns between B6 and D2 mice. Their functional pathway groups included lipid metabolism, oxidative stress, immune/inflammation response and apoptosis. Quantitative real time PCR, TUNEL assay and western-blot results were consistent with microarray analysis. Conclusion Different genes expression patterns between B6 and D2 mice might provide a genetic basis for their distinctive responses to a high-fat/cholesterol diet, and give us an opportunity to identify novel pharmaceutical targets in related diseases in the future.

  17. Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague-Dawley rat.

    Science.gov (United States)

    Bake, T; Morgan, D G A; Mercer, J G

    2014-04-10

    Providing rats and mice with access to palatable high fat diets for a short period each day induces the consumption of substantial binge-like meals. Temporal food intake structure (assessed using the TSE PhenoMaster/LabMaster system) and metabolic outcomes (oral glucose tolerance tests [oGTTs], and dark phase glucose and insulin profiles) were examined in Sprague-Dawley rats given access to 60% high fat diet on one of 3 different feeding regimes: ad libitum access (HF), daily 2 h-scheduled access from 6 to 8 h into the dark phase (2 h-HF), and twice daily 1 h-scheduled access from both 1-2 h and 10-11 h into the dark phase (2×1 h-HF). Control diet remained available during the scheduled access period. HF rats had the highest caloric intake, body weight gain, body fat mass and plasma insulin. Both schedule-fed groups rapidly adapted their feeding behaviour to scheduled access, showing large meal/bingeing behaviour with 44% or 53% of daily calories consumed from high fat diet during the 2 h or 2×1 h scheduled feed(s), respectively. Both schedule-fed groups had an intermediate caloric intake and body fat mass compared to HF and control (CON) groups. Temporal analysis of food intake indicated that schedule-fed rats consumed large binge-type high fat meals without a habitual decrease in preceding intake on control diet, suggesting that a relative hypocaloric state was not responsible or required for driving the binge episode, and substantiating previous indications that binge eating may not be driven by hypothalamic energy balance neuropeptides. In an oGTT, both schedule-fed groups had impaired glucose tolerance with higher glucose and insulin area under the curve, similar to the response in ad libitum HF fed rats, suggesting that palatable feeding schedules represent a potential metabolic threat. Scheduled feeding on high fat diet produces similar metabolic phenotypes to mandatory (no choice) high fat feeding and may be a more realistic platform for mechanistic study

  18. Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague–Dawley rat

    Science.gov (United States)

    Bake, T.; Morgan, D.G.A.; Mercer, J.G.

    2014-01-01

    Providing rats and mice with access to palatable high fat diets for a short period each day induces the consumption of substantial binge-like meals. Temporal food intake structure (assessed using the TSE PhenoMaster/LabMaster system) and metabolic outcomes (oral glucose tolerance tests [oGTTs], and dark phase glucose and insulin profiles) were examined in Sprague–Dawley rats given access to 60% high fat diet on one of 3 different feeding regimes: ad libitum access (HF), daily 2 h-scheduled access from 6 to 8 h into the dark phase (2 h-HF), and twice daily 1 h-scheduled access from both 1–2 h and 10–11 h into the dark phase (2 × 1 h-HF). Control diet remained available during the scheduled access period. HF rats had the highest caloric intake, body weight gain, body fat mass and plasma insulin. Both schedule-fed groups rapidly adapted their feeding behaviour to scheduled access, showing large meal/bingeing behaviour with 44% or 53% of daily calories consumed from high fat diet during the 2 h or 2 × 1 h scheduled feed(s), respectively. Both schedule-fed groups had an intermediate caloric intake and body fat mass compared to HF and control (CON) groups. Temporal analysis of food intake indicated that schedule-fed rats consumed large binge-type high fat meals without a habitual decrease in preceding intake on control diet, suggesting that a relative hypocaloric state was not responsible or required for driving the binge episode, and substantiating previous indications that binge eating may not be driven by hypothalamic energy balance neuropeptides. In an oGTT, both schedule-fed groups had impaired glucose tolerance with higher glucose and insulin area under the curve, similar to the response in ad libitum HF fed rats, suggesting that palatable feeding schedules represent a potential metabolic threat. Scheduled feeding on high fat diet produces similar metabolic phenotypes to mandatory (no choice) high fat feeding and may be a more realistic

  19. Comparative evaluation of flavone from Mucuna pruriens and coumarin from Ionidium suffruticosum for hypolipidemic activity in rats fed with high fat diet.

    Science.gov (United States)

    Dharmarajan, Satheesh Kumar; Arumugam, Kottai Muthu

    2012-10-02

    The objective of the study is a comparative evaluation of flavone isolated from Mucuna pruriens and coumarin isolated from Ionidium suffruticosum was assessed for the hypolipidemic activity in rats fed with high fat diet. The acute toxicity study was found that flavone (M.pruriens) and coumarin (I.suffruticosum) are safe up to 100 mg/kg, so one tenth of this dose (10 mg/kg) was consider as a evaluation dose. High fat diet group of rats showed significant (ppruriens) and coumarin isolated from (I.suffruticosum) at the dose of 10mg/kg b.wt/day along with high fat diet significantly (ppruriens).

  20. Effect of inulin supplementation in male mice fed with high fat diet on ...

    African Journals Online (AJOL)

    A slight decrease in hepatic α-amylase gene expression was observed only in. E1. Conclusion: Besides its sweetening properties, inulin may also find use as a potential anti-obesity compound. Keywords: High-fat diet, Inulin, Obesity, Blood glucose, Biochemical profile. Tropical Journal of Pharmaceutical Research is ...