Sample records for high-energy two-stage pulsed

  1. High-energy monoenergetic proton beams from two stage acceleration with a slow laser pulse

    Directory of Open Access Journals (Sweden)

    H. Y. Wang


    Full Text Available We present a new regime to generate high-energy quasimonoenergetic proton beams in a “slow-pulse” regime, where the laser group velocity v_{g}

  2. Note: 15-fs, 15-μJ green pulses from two-stage temporal compressor of ytterbium laser pulses. (United States)

    Konyashchenko, A V; Kostryukov, P V; Losev, L L; Tenyakov, S Yu


    15-fs, 15-μJ light pulses at the central wavelength of 515 nm were generated by two-stage nonlinear compression of 300-fs, 150-μJ ytterbium laser pulses. The compression was based on the pulse spectrum broadening by self-phase modulation in gas filled capillary and second harmonic generation in crystal.

  3. 15 K two-stage Stirling-type pulse-tube cryocooler (United States)

    Yan, Pengda; Chen, Guobang; Dong, Jingjing; Gao, Weili


    A two-stage pulse-tube cryocooler driven by a linear compressor was designed, manufactured and tested. The compressor is a moving-magnet type and dual-opposed-piston configuration, in which a plate spring is used. The two-stage cold head is a gas-separating thermal-link configuration. The phase shifter of each stage of the cryocooler can be double-inlet or inertance-tube type. Experiments have been carried out. The linear compressor can provide a pressure ratio of 1.3-1.5. Under the conditions of 1.2 MPa charging pressure and 32 Hz frequency, the second stage of the cryocooler reached a lowest temperature of 14.2 K, and the corresponding cooling temperature of the first stage is 93.3 K.

  4. A two-stage series diode for intense large-area moderate pulsed X rays production. (United States)

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Su, Zhaofeng; Li, Mo; Ren, Shuqing; Huang, Zhongliang


    This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm(2) area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.

  5. Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    CERN Document Server

    Cherkashyna, Nataliia; DiJulio, Douglas D.; Khaplanov, Anton; Pfeiffer, Dorothea; Scherzinger, Julius; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Ansell, Stuart; Iverson, Erik B.; Ehlers, Georg; Gallmeier, Franz X.; Panzner, Tobias; Rantsiou, Emmanouela; Kanaki, Kalliopi; Filges, Uwe; Kittelmann, Thomas; Extegarai, Maddi; Santoro, Valentina; Kirstein, Oliver; Bentley, Phillip M.


    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument pe...

  6. High Energy Density Capacitors for Pulsed Power Applications (United States)


    resistor in terms of shock and vibration, mounting requirements, total volume, system reliability, and cost. All of these parameters were from shock and vibration on a deployed system. III. STATE OF THE ART FOR HIGH ENERGY DENSITY CAPACITOR AND NEAR TERM PROJECTIONS t tipo ymer m qua y an capac or cons ruc on. Energy Density of 10,000 Shot High Efficiency Pulse Power Capacitors The primary driver was 1 5

  7. Two-stage optical parametric amplifier of a low energy nanosecond pulses (United States)

    Bagdasarov, V. Kh; Bel'kov, S. A.; Garanin, S. G.; Garnov, S. V.; Nikolaev, D. A.; Orlov, S. N.; Polivanov, Y. N.; Sadovskiy, S. P.; Shcherbakov, I. A.; Tsvetkov, V. B.


    A two-stage optical parametric amplifier (OPA) design that provides over  -5  ×  107 gain at 1053 nm is presented. Noise level of the parametric amplifier in the signal wave propagation direction was 2  ×  10-6 from the signal level. The parasitic parametric oscillation under intense pump wave and its contribution to the OPA output was measured to be less than 8%.

  8. Portable radiation detection system for pulsed high energy photon sources

    Energy Technology Data Exchange (ETDEWEB)

    Harker, Y.D.; Lawrence, R.S.; Yoon, W.Y. [Idaho National Engineering Lab, Idaho Falls, ID (United States)] [and others


    Portable, battery-operated, radiation detection systems for measuring the intensity and energy characteristics of intense, pulsed photon sources (either high energy X-ray or gamma) have been developed at the Idaho National Engineering Laboratory. These field-deployable, suitcase-sized detection units are designed to measure and record the characteristics of a single radiation burst or multiple bursts from a pulsed ionizing radiation source. The recorded information can then be analyzed on a simple laptop computer at a location remote from the detection system and completely independent of the ongoing data acquisition process. Two detection unit designs are described. The first, called the MARK-1, has eight bismuth germanate (BGO) radiation detectors. Four of which are unshielded and have different thicknesses (diameters). The remaining four are the same size as the largest unshielded detector but have different thicknesses of lead shielding surrounding each detector. The second unit design, called the MARK-1 A, utilizes the same detection methodology as the MARK-1 but has ten BGO detectors instead of eight and utilizes a different method of amplifying detector signals enabling reduced overall size and weight of the detection unit. Both the detection system designs have sensitivity ranges from 3 x 10{sup {minus}9} cGy to 9 x 10{sup {minus}5} cGy per radiation burst. Experimental detection results will be presented and discussed along the systems` potential for commercial applications.

  9. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    Energy Technology Data Exchange (ETDEWEB)

    Murari, Krishna


    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  10. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)


    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  11. Experimental research on a 12.1 K gas-coupled two-stage high frequency pulse tube cryocooler (United States)

    Xiaoshuang, Zhu; Yuan, Zhou; Wenxiu, Zhu; Wei, Dai; Junjie, Wang


    High frequency pulse tube cryocoolers (HFPTC) have been widely used in many fields like physics experimental research and aerospace, for no moving part in cold region, low vibration and long life. A gas-coupled two-stage high frequency pulse tube cryocooler with single compressor is introduced in this paper. In the first stage of the cryocooler, double-inlet and multi-bypass has been adopted as phase shifters. To get a better performance in phase shifting the reservoir and the inertance tube of the second stage has been located on the cold head of the first stage. With SS mesh screen as the regenerator of both stage, no-load temperature of 13.5K has been achieved. To improve the heat capacity of the regenerator of the second stage magnetic material Er3Ni has been employed in the second stage as regenerator matrix. With the charge pressure of 1.8MPa, input power of 260W and operating frequency of 23.5 Hz, the no-load temperature of 12.1K has been achieved.


    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  13. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter (United States)

    Hugenschmidt, Manfred


    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  14. Dose equivalent measurements in a strongly pulsed high-energy radiation field

    CERN Document Server

    Mayer, S; Kyllonen, J E; Menzel, Hans Gregor; Otto, Thomas


    The stray radiation field outside the shielding of high-energy accelerators comprises neutrons, photons and charged particles with a wide range of energies. Often, accelerators operate by accelerating and ejecting short pulses of particles, creating an analogue, pulsed radiation field. The pulses can be as short as 10 mu s with high instantaneous fluence rates and dose rates. Measurements of average dose equivalent (rate) for radiation protection purposes in these fields present a challenge for instrumentation. The performance of three instruments (i.e. a recombination chamber, the Sievert Instrument and a HANDITEPC) measuring total dose equivalent is compared in a high-energy reference radiation field (CERF) and a strongly pulsed, high-energy radiation field at the CERN proton synchrotron (PS).

  15. Evaluation of catalyst for closed cycle operation of high energy pulsed CO2 lasers (United States)

    Rogowski, R. S.; Miller, I. M.; Wood, G.; Schryer, D. R.; Hess, R. V.; Upchurch, B. T.


    Several catalyst materials have been tested for efficiency of converting CO and O2 to CO2 for use in a high energy CO2 laser. The composition of the gas mixtures was monitored by mass spectrometry and gas chromatography. A copper/copper oxide catalyst and a platinum/tin oxide catalyst were used for closed cycle operation of a CO2 laser (0.7 joules/pulse), operating at 10 pulses/sec.

  16. [Treatment of giant congenital nevus with high-energy pulsed CO2 laser]. (United States)

    Michel, J L; Caillet-Chomel, L


    All authors agree upon the need for early treatment of giant congenital nevi. The surgeon must seek to minimize the risk of malignancy. The objective calls for radical excision of all pigmented areas; this may be impossible because of the risk of leaving the patient with disfiguring scars. The aim of this study was to assess treatment of giant congenital nevi with the high-energy pulsed CO2 laser as an alternative to surgery. Between 1998 and 1999, the high-energy pulsed CO2 laser was used in nine newborns and five children. The treatment with the high-energy pulsed CO2 laser achieved 70-90% clearing of the giant nevi in most of the children. Two children developed hypertrophic scars on a companion nevi and on giant congenital nevi. One child required a skin graft because of tissue necrosis, associated with a disseminated intravascular coagulation and septic shock. Laser is a surface technique proposed when surgical excision cannot be performed because the surface is too large or the localization is incompatible with surgery. Early treatment, in the first 15 days, is not required for the quality of the cosmetic result. The high-energy pulsed CO2 laser provides satisfactory cosmetic results with short cicatrisation time. It allows the treatment of the companion nevi at the same time. The risk of malignant transformation is greatly but not totally reduced. Regular clinical surveillance should help reduce the risk.

  17. High energy high rate pulsed power processing of materials by powder consolidation and by railgun deposition (United States)

    Persad, C.; Marcus, H. L.; Weldon, W. F.


    This exploratory research program was initiated to investigate the potential of using pulse power sources for powder consolidation, deposition and other High Energy High Rate Processing. The characteristics of the High Energy High Rate (1MJ/s) powder consolidation using megampere current pulses from a Homopolar Generator, have been defined. Molybdenum Alloy TZM, A Nickel based metallic glass, Copper graphite composites, and P/M Aluminum Alloy X7091 have been investigated. The powder consolidation process produced high densification rates. Density values of 80% to 99% could be obtained with sub second high temperature exposure. Specific energy input and applied pressure were controlling process parameters. Time Temperature Transformation (TTT) concepts underpin a fundamental understanding of pulsed power processing. Deposition experiments were conducted using an exploding foil device (EFD) providing an armature feed to railgun mounted in a vacuum chamber. The material to be deposited - in plasma, gas, liquid or solid state - was accelerated electromagnetically in the railgun and deposited on a substrate.

  18. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification. (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi


    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  19. Pulsed high-energy gamma rays from PSR 1055-52 (United States)

    Fierro, J. M.; Bertsch, D. L.; Brazier, K. T.; Chiang, J.; D'Amico, N.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Johnston, S.; Kanbach, G.


    The Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory has detected a high-energy gamma-ray source at a position coincident with that of the radio pulsar PSR 1055-52. Analysis of the EGRET data at the radio pulsar period of 197 ms has revealed pulsed gamma-radiation at energies above 300 MeV, making PSR 1055-52 the fifth detected high-energy gamma-ray pulsar. The pulsed radiation from PSR 1055-52 has a very hard photon spectral index of -1.18 +/- 0.16 and a high efficiency for converting its rotational energy into gamma-rays. No unpulsed emission was observed.

  20. One-Stage and Two-Stage Schemes of High Performance Synchronous PWM with Smooth Pulses-Ratio Changing

    DEFF Research Database (Denmark)

    Oleschuk, V.; Blaabjerg, Frede


    modulation with synchronization of the voltage waveform of the inverter and with smooth pulse-ratio changing. Voltage spectra do not contain even harmonic and sub-harmonics (combined harmonics) during the whole control range including the zone of overmodulation. Examples of determination of the basic control...

  1. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.


    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  2. Note: A high-energy-density Tesla-type pulse generator with novel insulating oil (United States)

    Liu, Sheng; Su, Jiancang; Fan, Xuliang


    A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser—TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.

  3. Double-passed, high-energy quasi-phase-matched optical parametric chirped-pulse amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, I; Forget, N; Brown, C G; Ebbers, C A; Blanc, C L; Barty, C J


    Quasi-phase-matched (QPM) optical parametric chirped-pulse amplification (OPCPA) in periodically poled materials such as periodically poled LiNbO{sub 3} (PPLN) and periodically poled KTiOPO{sub 4} (PPKTP) has been shown to exhibit advantages over the OPCPA in bulk nonlinear crystals. [GHH98, RPN02] The use of the maximum material nonlinear coefficient results in ultra-high gain with low pump peak power. Furthermore, propagation of signal, pump, and idler beams along one of the crystal principal axes eliminates the birefringent walk-off, reduces angular sensitivity, and improves beam quality. Relatively high level of parasitic parametric fluorescence (PF) in QPM OPCPA represents an impediment for simple, single-stage, high-gain amplification of optical pulses from nJ to mJ energies. PF in QPM is increased when compared to PF in critical phase matching in bulk crystals as a result of broader angular acceptance of the nonlinear conversion process. PF reduces prepulse contrast and conversion efficiency by competition with the signal pulse for pump pulse energy. Previous experiments with QPM OPCPA have thus resulted in pulse energies limited to tens of {mu}J. [JSE03] Optical parametric amplification of a narrowband signal pulse in PPKTP utilizing two pump beams has been demonstrated at a mJ-level, [FPK03] but the conversion efficiency has been limited by low energy extraction of pump pulse in the first pass of amplification. Additionally, narrow spectral bandwidth was the result of operation far from signal-idler degeneracy. Here we present a novel double-pass, broad-bandwidth QPM OPCPA. 1.2 mJ of amplified signal energy is produced in a single PPKTP crystal utilizing a single 24-mJ pump pulse from a commercial pump laser. [JFE05] To our knowledge, this is the highest energy demonstrated in QPM OPCPA. Double-passed QPM OPCPA exhibits high gain (> 3 x 10{sup 6}), high prepulse contrast (> 3 x 10{sup 7}), high energy stability (3% rms), and excellent beam quality. We

  4. High-energy noiselike rectangular pulse in a passively mode-locked figure-eight fiber laser (United States)

    Zheng, Xu-Wu; Luo, Zhi-Chao; Liu, Hao; Zhao, Nian; Ning, Qiu-Yi; Liu, Meng; Feng, Xin-Huan; Xing, Xiao-Bo; Luo, Ai-Ping; Xu, Wen-Cheng


    We report on the generation of a high-energy noiselike rectangular pulse in a mode-locked figure-eight fiber laser. The noiselike pulse appeared to have a rectangular shape on the oscilloscope. The pulse duration increased with increasing pump power, while the peak amplitude remained constant, which is very similar to the pulse evolution of dissipative soliton resonance. However, the pulse type is confirmed as a noiselike pulse using an autocorrelator. With the maximum pump power of 350 mW, the 135 nJ noiselike rectangular pulse with 76 ns duration was achieved. The results provide a new guideline for clarifying an alternative formation mechanism of the high-energy rectangular pulses in fiber lasers.

  5. Comparison of high-energy pulsed carbon dioxide laser resurfacing and dermabrasion in the revision of surgical scars. (United States)

    Nehal, K S; Levine, V J; Ross, B; Ashinoff, R


    Both dermabrasion and high-energy pulsed carbon dioxide (CO2) laser resurfacing can improve the appearance of surgical scars. Although the results of these two procedures have been compared using historical data, a prospective evaluation has never been performed in humans. To prospectively compare the clinical effects of dermabrasion and high-energy pulsed CO2 laser resurfacing in the revision of surgical scars. Facial surgical scars in four patients were prospectively revised using a split scar model. One half of the scar was dermabraded and the other half was resurfaced with the high-energy pulsed CO2 laser. Comparisons of the two treatment modalities were performed through clinical assessment, photographic evaluation, and textural analysis of the scars. The high-energy pulsed CO2 laser-resurfaced halves of the scar were bloodless with less postoperative crusting in comparison with the dermabraded halves. Reepithelialization time and degree and duration of postoperative erythema were similar for both treatment halves. Photographic evaluation and textural analysis showed comparable improvement in the clinical appearance and surface texture of the scars with both treatment modalities. Both the high-energy pulsed CO2 laser and dermabrasion can achieve comparable clinical improvement in the revision of surgical scars. The high-energy pulsed CO2 laser offers the advantage of a bloodless field and a more precise method of tissue ablation. Postoperative erythema, however, is an expected finding with both treatment modalities.

  6. Fast Two-stage Protector Against Electromagnetic Pulse Based on Electroresistance Effect in Polycrystalline La-Sr(Ca-Mn-O Films

    Directory of Open Access Journals (Sweden)



    Full Text Available The electroresistance (ER effect in polycrystalline films of La0.83Sr0.17MnO3 and La0.7Ca0.3MnO3 was investigated in the temperature range of (5 – 290 K using high power sub-nanosecond rise time electrical pulses with amplitude up to 1 kV. It was obtained that conductance vs. voltage dependences are nonlinear and could be well fitted by empirical formula G = G0 + Gα · Uα; where G is conductance, U is the voltage applied across the sample, G0 is the conductance at low voltage, and Gα and α are the parameters related to the electrical transport mechanism. Parameters α for La-Ca-Mn-O and La-Sr-Mn-O were 1.5 and 1.33 respectively. It was obtained that there are two regions of the electroresistance vs. temperature dependence for both films: low temperature region where ER exhibits very slow dependence on temperature and high temperature region where ER significantly decreases with temperature. It was demonstrated that polycrystalline manganite films can be used for the development of protectors against short electromagnetic pulse (EMP, and fast two-stage protector operating at cryogenic temperatures (80 K is proposed. DOI:

  7. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams (United States)

    Schumaker, Will


    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  8. Scar resurfacing with high-energy, short-pulsed and flashscanning carbon dioxide lasers. (United States)

    Bernstein, L J; Kauvar, A N; Grossman, M C; Geronemus, R G


    Scars have a significant effect on a person's physical and social being. Many treatment modalities for scar improvement such as surgical scar revision, electrosurgical planing, chemical peeling, filler substance implantation, and dermabrasion have been developed. Recently, the resurfacing carbon dioxide (CO2) laser systems have proven to be a useful and safe treatment in the treatment of facial rhytides and acne scarring. The purpose of this study was to evaluate the resurfacing CO2 lasers in the treatment of various surgical, traumatic, acne, and varicella scars. Thirty subjects, aging between 14 and 84 years, with surgical, traumatic, acne, or varicella scars were evaluated. Two types of resurfacing laser systems were utilized in this study, a high-energy, short-pulsed CO2 laser and a continuous wave CO2 laser with an optico-mechanical computer flash-scanner. Post-surgical scars were treated with laser resurfacing between 4 and 6 weeks after scar formation. Traumatic, acne, and varicella scars were treated after scar maturation (range, 1-10 years). Scar improvement was evaluated by photographic analysis of before and after images by four independent health care workers using a quartile scale of improvement ( 75%) as well as optical profilometry using silicone surface impressions in 12 scars. Twenty of 24 surgical scars had greater than 75% improvement, and 24 of 24 had greater than 50% improvement by photographic analysis. All six traumatic, acne and varicella scars had greater than 50% improvement. Optical profilometry and surface topography maps reveal a significant flattening of related and depressed scars. The high-energy, short-pulsed CO2 laser and the continuous wave CO2 laser with flash-scanning attachment are safe and effective as a treatment modality for scar revision. In general, elevated scars improve more dramatically than depressed scars.

  9. Subthreshold test pulses versus low energy shock delivery to estimate high energy lead impedance in implanted cardioverter defibrillator patients. (United States)

    Vollmann, Dirk; Luethje, Lars; Zenker, Dieter; Domhof, Sebastian; Unterberg, Christina


    The high energy lead impedance is valuable for detecting lead failure in ICDs, but until recently shock delivery was necessary for high energy impedance measurement. This study compared the use of subthreshold test pulses and low energy test shocks to estimate the high energy impedance. Immediately after implantation of Ventak Prizm ICDs in 29 patients, the lead impedance was measured with five subthreshold (0.4 microJ) test pulses, 5 low energy (1.1 J) shocks, and two to three high energy (16 +/- 4.5 J) shocks. The mean impedances measured using high energy shocks, low energy shocks, and subthreshold pulses were 42.0 +/- 7.3 omega, 46.5 +/- 8.1 omega, and 42.4 +/- 7.1 omega, respectively. The impedances measured using high and low energy shocks differed significantly (P delivery. Safe and painless high energy impedance estimation with subthreshold pulses might, therefore, help to detect ICD lead failure during routine follow-up.

  10. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Manzi, Nicholas J [ORNL; Chitnis, Parag V [ORNL; Holt, Ray G [ORNL; Roy, Ronald A [ORNL; Cleveland, Robin O [ORNL; Riemer, Bernie [ORNL; Wendel, Mark W [ORNL


    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will be reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  11. The Atlas pulsed power facility for high energy density physics experiments

    CERN Document Server

    Miller, R B; Barr, G W; Bowman, D W; Cochrane, J C; Davis, H A; Elizondo, J M; Gribble, R F; Griego, J R; Hicks, R D; Hinckley, W B; Hosack, K W; Nielsen, K E; Parker, J V; Parsons, M O; Rickets, R L; Salazar, H R; Sánchez, P G; Scudder, D W; Shapiro, C; Thompson, M C; Trainor, R J; Valdez, G A; Vigil, B N; Watt, R G; Wysocki, F J; Kirbie, H C


    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. Here, the authors describe how the primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently- removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the Marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-ys risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line compo...

  12. High-energy-density electron beam from interaction of two successive laser pulses with subcritical-density plasma

    Directory of Open Access Journals (Sweden)

    J. W. Wang


    Full Text Available It is shown by particle-in-cell simulations that a narrow electron beam with high energy and charge density can be generated in a subcritical-density plasma by two consecutive laser pulses. Although the first laser pulse dissipates rapidly, the second pulse can propagate for a long distance in the thin wake channel created by the first pulse and can further accelerate the preaccelerated electrons therein. Given that the second pulse also self-focuses, the resulting electron beam has a narrow waist and high charge and energy densities. Such beams are useful for enhancing the target-back space-charge field in target normal sheath acceleration of ions and bremsstrahlung sources, among others.

  13. Fiber Based Optical Amplifier for High Energy Laser Pulses Final Report CRADA No. TC02100.0

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cunningham, P. [Boeing Company, Springfield, VA (United States)


    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL), and The Boeing Company to develop an optical fiber-based laser amplifier capable of producing and sustaining very high-energy, nanosecond-scale optical pulses. The overall technical objective of this CRADA was to research, design, and develop an optical fiber-based amplifier that would meet specific metrics.

  14. Generation of multi-octave spanning high-energy pulses by cascaded nonlinear processes in BBO. (United States)

    Kessel, Alexander; Trushin, Sergei A; Karpowicz, Nicholas; Skrobol, Christoph; Klingebiel, Sandro; Wandt, Christoph; Karsch, Stefan


    We present the generation of optical pulses with a spectral range of 500-2400 nm and energies up to 10 µJ at 1 kHz repetition rate by cascaded second-order nonlinear interaction of few-cycle pulses in beta-barium borate (BBO). Numerical simulations with a 1D+time split-step model are performed to explain the experimental findings. The large bandwidth and smooth spectral amplitude of the resulting pulses make them an ideal seed for ultra-broadband optical parametric chirped pulse amplification and an attractive source for spectroscopic applications.

  15. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment (United States)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe

  16. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)


    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  17. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining. (United States)

    Jaworski, Piotr; Yu, Fei; Carter, Richard M; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P


    In this paper we present an anti-resonant guiding, low-loss Negative Curvature Fiber (NCF) for the efficient delivery of high energy short (ns) and ultrashort (ps) pulsed laser light in the green spectral region. The fabricated NCF has an attenuation of 0.15 dB/m and 0.18 dB/m at 532 nm and 515 nm respectively, and provided robust transmission of nanosecond and picosecond pulses with energies of 0.57 mJ (10.4 kW peak power) and 30 µJ (5 MW peak power) respectively. It provides single-mode, stable (low bend-sensitivity) output and maintains spectral and temporal properties of the source laser beam. The practical application of fiber-delivered pulses has been demonstrated in precision micro-machining and marking of metals and glass.

  18. Experimental investigation of high energy noise-like pulses from a long cavity erbium-doped fiber laser (United States)

    Li, Kexuan; Guoyu, Heyang; Tian, Jinrong; Song, Yanrong


    The high energy noise-like pulses (NLPs) were experimentally investigated in a passively mode-locked erbium-doped fiber laser with a long ring cavity by using nonlinear polarization rotation technique. Large net normal group-velocity dispersion of the cavity is estimated as high as 6.46 ps2, which is beneficial to formation of high-energy pulses. With the total pump power of 970 mW (the pump powers of forward pump and backward pump are set at the value of 455 mW and 515 mW, respectively), a stable ultrahigh energy rectangular-shape pulse emission with the pulse duration of 35 ns was observed. The energy of square packet with a fundamental repetition rate of 141.6 kHz is as high as 840 nJ. The signal-to-noise is higher than 60 dB in RF spectrum. The feature of NLPs is confirmed by the coherent spike of autocorrelation trace. When the pump power is beyond 970 mW, the mode locking operation with fundamental repetition rate cannot be achieved despite of the large range variation of polarization controller (PC) settings. However, the forthorder harmonic mode locking can be observed, the square pulse packet duration still remains at ˜ 35 ns. The experimental results demonstrated that the ultrahigh energy NLPs is only realized at the condition of special physical parameters and it is restricted by the number and intensity of ultra short pulses within the envelope to some extent.

  19. Burst train generator of high energy femtosecond laser pulses for driving heat accumulation effect during micromachining. (United States)

    Rezaei, Saeid; Li, Jianzhao; Herman, Peter R


    A new method for generating high-repetition-rate (12.7-38.2 MHz) burst trains of femtosecond laser pulses has been demonstrated for the purpose of tailoring ultrashort laser interactions in material processing that can harness the heat accumulation effect among pulses separated by a short interval (i.e., 26 ns). Computer-controlled time delays were applied to synchronously trigger the high frequency switching of a high voltage Pockels cell to specify distinctive values of polarization rotation for each round-trip of a laser pulse cycling within a passive resonator. Polarization dependent output coupling facilitated the flexible shaping of the burst envelope profile to provide burst trains of up to ∼1  mJ of burst energy divided over a selectable number (1 to 25) of pulses. Individual pulses of variable energy up to 150 μJ and with pulse duration tunable over 70 fs to 2 ps, were applied in burst trains to generate deep and high aspect ratio holes that could not form with low-repetition-rate laser pulses.

  20. HiRadMat: A high-energy, pulsed beam, material irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Charitonidis, N.; Fabich, A.; Efthymiopoulos, I. [CERN, EN-MEF-LE, 1211 Geneva 23 (Switzerland)


    HiRadMat is a recently constructed facility designed to provide high-intensity pulsed beams to an irradiation area where different material samples or accelerator components can be tested. The facility, located at the CERN SPS accelerator complex, uses a 440 GeV proton beam with a pulse length up to 7.2 μs and a maximum intensity up to 10{sup 13} protons / pulse. The facility, a unique place for performing state-of-the art beam-to-material experiments, operates under transnational access and welcomes and financially supports, under certain conditions, experimental teams to perform their experiments. (authors)

  1. Improvement of the magnetron sputtered coating adhesion through pulsed bombardment by high-energy ions (United States)

    Melnik, Yu A.; Metel, A. S.


    Comparative study of titanium nitride deposition has been carried out, the growing coating being uninterruptedly bombarded by 100-eV ions or ions accelerated by high-voltage pulses applied to the substrate. The study revealed that microhardness of coatings synthesized using 25-kV pulses rises from 21 GPa to 29 GPa when percentage of nitrogen in the mixture with argon increases from 15% to 20%. With a further increase of nitrogen percentage to 30%, the microhardness slightly diminishes to 27 GPa. In contrast to golden coatings synthesized at low-voltage substrate biasing, the color of titanium nitride coating produced using high-voltage pulses is brown. The most striking difference of coating deposited using high-voltage pulses applied to the substrate is its perfect adhesion despite the interface formation at the room temperature without any preheating and activation. The adhesion characterization using a scratch-tester has revealed that critical loads of coatings synthesized using 25-kV pulses are several times higher than those of conventional nitride coatings synthesized at uninterrupted substrate biasing of 100 V. When the pulse amplitude diminishes to 5 kV, the critical loads and microhardness of the coating decrease to conventional values.

  2. Spatial-temporal structure of seismicity of the North Tien Shan and its changeunder effect of high energy electromagnetic pulses

    Directory of Open Access Journals (Sweden)

    N. V. Tarasova


    Full Text Available The effect of high-energy electromagnetic pulses emitted by a magnetohydrodynamic generator used as a source for deep electrical sounding of the crust on spatial-temporal structure of seismicity of the North Tien Shan is explored. Five-six years periodicity of changes in spatial distribution of seismicity was revealed. The effect of electromagnetic pulses increases the stability of the spatial distribution of seismicity over time and simultaneously speeds up cycles of its transformations, which develop on stabilization background. Increasing of seismic energy release after electromagnetic impacts is observed basically in most active zones. Periodic variation of efficiency of earthquakes triggering on the distance to the MHD-generator was detected. It was shown that electromagnetic pulses give rise to an appreciable increase in the rate of local earthquakes, occurring around 2-6 days after the pulses. Total earthquakes energy released after start-ups was by 2.03·1015 J greater than the energy released before them. At the same time, the total energy transmitted by the MHD-generator was 1.1·109 J, i.e. six orders of magnitude smaller. Consequently, the electromagnetic pulses initiated the release of the energy that had been stored in the crust due to activity of natural tectonic processes in the form of comparatively small earthquakes, which leads to an additional release of tectonic stresses.

  3. Production of high energy electrons by irradiation of fs-pulse laser on copper film

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Yuji; Nayuki, Takuya; Fujii, Takashi; Nemoto, Koshichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan); Kayoiji, Tsutomu [Tokyo Inst. of Technology, Interdisciplinary Graduate School of Science and Engineering, Yokohama, Kanagawa (Japan); Okano, Yasuaki; Hironaka, Yoichiro; Nakamura, Kazutaka G.; Kondo, Ken-ichi [Tokyo Inst. of Technology, Materials and Structures Laboratory, Yokohama, Kanagawa (Japan)


    Fast electrons with energy corresponding to the ponderomotive potential were produced by laser irradiation of 43-fs, 2.7 X 10{sup 18} W/cm{sup 2} on a 30 {mu}m thick copper target. The energy spectra of the electrons were directly measured using a magnetic spectrometer with an imaging plate. The typical temperature was 350 keV for irradiation at 15deg incidence angle. The energy spectra of high-energy photons, which were expected to be produced from the electrons, were also calculated. (author)

  4. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers. (United States)

    Alessi, David A; Rosso, Paul A; Nguyen, Hoang T; Aasen, Michael D; Britten, Jerald A; Haefner, Constantin


    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. Combining this technique with low absorption multilayer dielectric gratings developed in our group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.

  5. The effects of electrode cleaning and conditioning on the performance of high-energy, pulsed-power devices

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, M.E.


    High-energy pulsed-power devices routinely access field strengths above those at which broad-area, cathode-initiated, high-voltage vacuum-breakdown occur (> 1e7--3e7 V/m). Examples include magnetically-insulated-transmission-lines and current convolutes, high-current-density electron and ion diodes, high-power microwave devices, and cavities and other structures for electrostatic and RF accelerators. Energy deposited in anode surfaces may exceed anode plasma thermal-desorption creation thresholds on the time-scale of the pulse. Stimulated desorption by electron or photon bombardment can also lead to plasma formation on electrode or insulator surfaces. Device performance is limited above these thresholds, particularly in pulse length and energy, by the formation and expansion of plasmas formed primarily from electrode contaminants. In-situ conditioning techniques to modify and eliminate the contaminants through multiple high-voltage pulses, low base pressures, RF discharge cleaning, heating, surface coatings, and ion- and electron-beam surface treatment allow access to new regimes of performance through control of plasma formation and modification of the plasma properties. Experimental and theoretical progress from a variety of devices and small scale experiments with a variety of treatment methods will be reviewed and recommendations given for future work.

  6. High energy micro electron beam generation using chirped laser pulse in the presence of an axial magnetic field (United States)

    Akou, H.; Hamedi, M.


    In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy through keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 μm electron bunch with about MeV initial energy becomes a 20 μm electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.

  7. High energy micro electron beam generation using chirped laser pulse in the presence of an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akou, H., E-mail:; Hamedi, M. [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of)


    In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy through keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 μm electron bunch with about MeV initial energy becomes a 20 μm electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.

  8. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    Energy Technology Data Exchange (ETDEWEB)

    Jung, S., E-mail: [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Christenson, M.; Curreli, D. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Bryniarski, C. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Andruczyk, D.; Ruzic, D.N. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States)


    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m{sup 2} and 0.43 ± 0.01 GW/m{sup 2}. A few ways to further increase the plasma heat flux for LiMIT experiments are discussed.

  9. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility (United States)

    Tommasini, R.; Bailey, C.; Bradley, D. K.; Bowers, M.; Chen, H.; Di Nicola, J. M.; Di Nicola, P.; Gururangan, G.; Hall, G. N.; Hardy, C. M.; Hargrove, D.; Hermann, M.; Hohenberger, M.; Holder, J. P.; Hsing, W.; Izumi, N.; Kalantar, D.; Khan, S.; Kroll, J.; Landen, O. L.; Lawson, J.; Martinez, D.; Masters, N.; Nafziger, J. R.; Nagel, S. R.; Nikroo, A.; Okui, J.; Palmer, D.; Sigurdsson, R.; Vonhof, S.; Wallace, R. J.; Zobrist, T.


    High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV, of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.

  10. From Swords to Plowshares: The US/Russian Collaboration in High Energy Density Physics Using Pulsed Power

    Energy Technology Data Exchange (ETDEWEB)

    Younger, S.M.; Fowler, C.M.; Lindemuth, I.; Chernyshev, V.K.; Mokhov, V.N.; Pavlovskii, A.I.


    Since 1992, the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory, the institutes that designed the first nuclear weapons of the Soviet Union and the US, respectively, have been working together in fundamental research related to pulsed power and high energy density science. This collaboration has enabled scientists formerly engaged in weapons activities to redirect their attention to peaceful pursuits of wide benefit to the technical community. More than thirty joint experiments have been performed at Sarov and Los Alamos in areas as diverse as solid state physics in high magnetic fields, fusion plasma formation, isentropic compression of noble gases, and explosively driven-high current generation technology. Expanding on the introductory comments of the conference plenary presentation, this paper traces the origins of this collaboration and briefly reviews the scientific accomplishments. Detailed reports of the scientific accomplishments can be found in other papers in these proceedings and in other publications.

  11. Improved ethanol production of a newly isolated thermotolerant Saccharomyces cerevisiae strain after high-energy-pulse-electron beam. (United States)

    Zhang, Q; Fu, Y; Wang, Y; Han, J; Lv, J; Wang, S


    To isolate thermotolerant Saccharomyces cerevisiae with high-energy-pulse-electron (HEPE) beam, to optimize the mutation strain fermentation conditions for ethanol production and to conduct a preliminary investigation into the thermotolerant mechanisms. After HEPE beam radiation, the thermotolerant S. cerevisiae strain Y43 was obtained at 45°C. Moreover, the fermentation conditions of mutant Y43 were optimized by L3(3) orthogonal experiment. The optimal glucose content and initial pH for fermentation were 20% g l(-1) and 4·5, respectively; peptone content was the most neglected important factor. Under this condition, ethanol production of Y43 was 83·1 g l(-1) after fermentation for 48 h at 43°C, and ethanol yield was 0·42 g g(-1), which was about 81·5% of the theoretical yield. The results also showed that the trehalose content and the expression of the genes MSN2, SSA3 and TPS1 in Y43 were higher than those in the original strain (YE0) under the same stress conditions. A genetically stable mutant strain with high ethanol yield under heat stress was obtained using HEPE. This mutant may be a suitable candidate for the industrial-scale ethanol production. High-energy-pulse-electron radiation is a new efficient technology in breeding micro-organisms. The mutant obtained in this work has the advantages in industrial ethanol production under thermostress. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  12. A High-Energy, Ultrashort-Pulse X-Ray System for the Dynamic Study of Heavy, Dense Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, David Jeremy [Univ. of California, Davis, CA (United States)


    Thomson-scattering based x-ray radiation sources, in which a laser beam is scattered off a relativistic electron beam resulting in a high-energy x-ray beam, are currently being developed by several groups around the world to enable studies of dynamic material properties which require temporal resolution on the order of tens of femtoseconds to tens of picoseconds. These sources offer pulses that are shorter than available from synchrotrons, more tunable than available from so-called Ka sources, and more penetrating and more directly probing than ultrafast lasers. Furthermore, Thomson-scattering sources can scale directly up to x-ray energies in the few MeV range, providing peak brightnesses far exceeding any other sources in this regime. This dissertation presents the development effort of one such source at Lawrence Livermore National Laboratory, the Picosecond Laser-Electron InterAction for the Dynamic Evaluation of Structures (PLEIADES) project, designed to target energies from 30 keV to 200 keV, with a peak brightness on the order of 1018 photons • s-1 • mm-2 • mrad-2 • 0.01% bandwidth-1. A 10 TW Ti:Sapphire based laser system provides the photons for the interaction, and a 100 MeV accelerator with a 1.6 cell S-Band photoinjector at the front end provides the electron beam. The details of both these systems are presented, as is the initial x-ray production and characterization, validating the theory of Thomson scattering. In addition to the systems used to enable PLEIADES, two alternative systems are discussed. An 8.5 GHz X-Band photoinjector, capable of sustaining higher accelerating gradients and producing lower emittance electron beams in a smaller space than the S-Band gun, is presented, and the initial operation and commissioning of this gun is presented. Also, a hybrid chirped-pulse amplification system is presented as an alternative to the standard regenerative amplifier technology in high

  13. The use of the 1.0 mm handpiece in high energy, pulsed CO2 laser destruction of facial adnexal tumors. (United States)

    Sajben, F P; Ross, E V


    The treatment of syringoma and trichoepithelioma has included punch and shave biopsy, excision, electrodessication, as well as continuous wave and superpulsed carbon dioxide laser ablation. More recently, high-energy pulsed CO2 lasers have been reported to be effective with standard available handpieces that deliver collimated beams. To report our experience using a focusing handpiece (1.0 mm spot at focus) with a high energy pulsed CO2 laser. Four patients with syringoma and two with multiple trichoepithelioma were treated with a high energy pulsed CO2 laser using a 1 mm spot size focusing handpiece. Pulse energies ranged from 125 to 250 mJ. All patients were followed 2 weeks after treatment and then for variable periods ranging from 8 to 18 months (mean=13.3 months). The 1 mm spot focusing handpiece permitted rapid tumor ablation with optimal matching of lesion size and laser spot diameter. Recurrence of tumor was associated with superficial ablation while complications such as hypopigmentation and atrophy were associated with deeper ablation. Facial adnexal tumors such as syringoma and trichoepithelioma can be successfully treated with the 1.0 mm handpiece in tandem with high energy pulsed CO2 lasers.

  14. Improvement of dermatochalasis and periorbital rhytides with a high-energy pulsed CO2 laser: a retrospective study. (United States)

    Alster, Tina S; Bellew, Supriya G


    Upper eyelid dermatochalasis is typically treated with excisional blepharoplasty. The role of the CO2 laser previously had been confined to that of a vaporizing, incisional, or hemostatic tool. Over the past several years, however, ablative CO2 laser skin resurfacing has been popularized as an adjunctive treatment to blepharoplasty to minimize periorbital rhytides through its vaporizing as well as skin-tightening action. To evaluate the safety and efficacy of a high-energy pulsed CO2 laser as a stand-alone treatment for dermatochalasis and periorbital rhytides. Sixty-seven patients (skin phototypes I-IV) with mild-to-severe upper eyelid dermatochalasis and periorbital rhytides received periocular CO2 laser skin treatment. Global assessment scores of dermatochalasis and rhytides were determined by a side-by-side comparison of periocular photographs preoperatively and 1, 3, and 6 months postoperatively. In addition, caliper measurements of upper eyelids before and 1, 3, and 6 months after treatment were obtained. Both dermatochalasis and periorbital rhytides were significantly improved after periocular CO2 laser skin resurfacing. Patients with more severe dermatochalasis and rhytides showed greater improvement after CO2 laser treatment than did those with mild or moderate involvement. Side effects were limited to erythema and transient hyperpigmentation. No scarring, hypopigmentation, or ectropion were observed. Periocular skin resurfacing with a CO2 laser can safely and effectively improve upper eyelid dermatochalasis and periorbital rhytides.

  15. The effect of wiping on skin resurfacing in a pig model using a high energy pulsed CO2 laser system. (United States)

    Ross, E V; Mowlavi, A; Barnette, D; Glatter, R D; Grevelink, J M


    The impact of wiping in laser skin resurfacing has not been systematically studied. We examined the effects of wiping during single- and multiple-pass high energy pulsed CO2 laser skin resurfacing in a farm pig. Consequences of wiping were evaluated with regard to depth of residual thermal damage, tissue necrosis, and fibroplasia. Also, the impact of wiping on gross wound healing was observed. Wounds were followed for 21 days and biopsies were obtained on postoperative days 0, 1, and 21. Immediate postoperative biopsies of single-pass wounds showed equivalent residual thermal damage regardless of wiping; in contrast, biopsies from multiple-pass sites without wiping showed more extensive and variable residual thermal damage than wiped sites. On postoperative day one, single pass sites without wiping were grossly less erythematous than wiped sites, and biopsies showed less extensive necrosis and inflammation. In contrast, multiple pass sites without wiping were grossly more erythematous than corresponding wiped sites, and biopsies revealed significantly increased and variable necrosis. After 21 days, multiple pass sites without wiping were grossly more erythematous and showed a thicker band of fibroplasia microscopy. For single pass wounds, not wiping decreased the level of wounding. In contrast, not wiping in multiple pass wounds significantly increased the depth and variability of residual thermal damage and necrosis, resulting in prolonged healing.

  16. Retrieval of parameters of few-cycle laser pulses from high-energy photoelectron spectra of atoms by a genetic algorithm (United States)

    Zhou, Zhaoyan; Wang, Xu; Chen, Zhangjin; Lin, C. D.


    According to the quantitative rescattering theory, the laser features are imbedded in the returning electron wave packets. By analyzing high-energy photoelectron wave packets on the two sides of the linearly polarization axis we can retrieve the experimental laser pulse irrespective of the atomic targets. Laser parameters including its carrier-envelope phase, pulse duration, and peak intensity can be retrieved within a small range simultaneously from the output of the genetic algorithm. This is a simple direct retrieval method for characterizing a phase-stabilized few-cycle laser pulse based only on one set of photoelectron spectra.

  17. Laser diode structures with a saturable absorber for high-energy picosecond optical pulse generation by combined gain-and Q-switching (United States)

    Ryvkin, B. S.; Avrutin, E. A.; Kostamovaara, J. E. K.; Kostamovaara, J. T.


    The performance of gain-switched Fabry-Perot asymmetric-waveguide semiconductor lasers with a large equivalent spot size and an intracavity saturable absorber was investigated experimentally and theoretically. The laser with a short (˜20 μm) absorber emitted high-energy afterpulse-free optical pulses in a broad range of injection current pulse amplitudes; optical pulses with a peak power of about 35 W and a duration of about 80 ps at half maximum were achieved with a current pulse with an amplitude of just 8 A and a duration of 1.5 ns. Good quality pulsations were observed in a broad range of elevated temperatures. The introduction of a substantially longer absorber section leads to strong spectral broadening of the output without a significant improvement to pulse energy and peak power.

  18. High-energy Few-cycle Pulses Directly Generated from Strongly Phase-mismatched Lithium Niobate Crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Chong, A.; Wise, F.W.


    We show that effective soliton compression can be realized in strongly phase-mismatched quadratic media. Sub-15 fs pulses are experimentally generated directly from 10-mm-long bulk lithium niobate crystal by 120-fs input pulses at 1300 nm.......We show that effective soliton compression can be realized in strongly phase-mismatched quadratic media. Sub-15 fs pulses are experimentally generated directly from 10-mm-long bulk lithium niobate crystal by 120-fs input pulses at 1300 nm....

  19. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    Directory of Open Access Journals (Sweden)

    W. A. Stygar


    (MHD simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

  20. Validity of factorization of the high-energy photoelectron yield in above-threshold ionization of an atom by a short laser pulse. (United States)

    Frolov, M V; Knyazeva, D V; Manakov, N L; Popov, A M; Tikhonova, O V; Volkova, E A; Xu, Ming-Hui; Peng, Liang-You; Pi, Liang-Wen; Starace, Anthony F


    An analytic description for the yield, P(p), of high-energy electrons ionized from an atom by a short (few-cycle) laser pulse is obtained quantum mechanically. Factorization of P(p) in terms of an electron wave packet and the cross section for elastic electron scattering (EES) is shown to occur only for an ultrashort pulse, while in general P(p) involves interference of EES amplitudes with laser-field-dependent momenta. The analytic predictions agree well with accurate numerical results.

  1. Terawatt Post compression of high energy fs pulses using ionization: A way to overcome the conventional limitation in energy of few optical cycle pulses

    Directory of Open Access Journals (Sweden)

    Descamps D.


    Full Text Available By using optical-field-ionization of helium we postcompress 50 fs pulses to 8 fs with a pulse energy of 8,7 mJ. Hence few cycle pulses were obtained with TW peak power and a good shot-to-shot stability.

  2. High energy noise-like pulsing in a double-clad Er/Yb figure-of-eight fiber laser. (United States)

    Lauterio-Cruz, J P; Hernandez-Garcia, J C; Pottiez, O; Estudillo-Ayala, J M; Kuzin, E A; Rojas-Laguna, R; Santiago-Hernandez, H; Jauregui-Vazquez, D


    In this work, we study a 215-m-long figure-of-eight fiber laser including a double-clad erbium-ytterbium fiber and a nonlinear optical loop mirror based on nonlinear polarization evolution. For proper adjustments, self-starting passive mode-locking is obtained. Measurements show that the mode-locked pulses actually are noise-like pulses, by analyzing the autocorrelation, scope traces and the very broad and flat spectrum extending over a record bandwidth of more than 200 nm, beyond the 1750 nm upper wavelength limit of the optical spectrum analyzer. Noise-like pulsing was observed for moderate and high pump power preserving the same behavior, reaching pulse energies as high as 300 nJ, with pulse durations of a few tens of ns and a coherence length in the order of 1 ps. Stable fundamental mode locking as well as harmonic mode locking up to the 6th order were observed. The bandwidth was further extended to more than 450 nm when a 100-m piece of highly nonlinear fiber was inserted at the laser output. The enhanced performances obtained compared to other similar schemes could be related to the absence of a polarizer in the present setup, so that the state of polarization along the cavity is no longer restricted.

  3. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments


    W. A. Stygar; T. J. Awe; J. E. Bailey; N. L. Bennett; E. W. Breden; E. M. Campbell; R. E. Clark; R. A. Cooper; M. E. Cuneo; J. B. Ennis; D. L. Fehl; T. C. Genoni; M. R. Gomez; G. W. Greiser; F. R. Gruner


    We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-G...

  4. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers (United States)


    figures. In order to present the arguments in a concrete model, NLS is explored for the Transverse Electric (TE) polarization in a pair of identical one...nanotubes [3], graphene [4], Kerr lensing [5], and nonlinear polarization rotation (NPR) [6]. Desired attributes of SAs include fast response time...nanotube- and graphene -based SAs when exposed to intense optical pulses is at best questionable [9], and both are limited in modulation depths. SAs based

  5. A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers. (United States)

    Barcellan, L; Berto, E; Carugno, G; Galet, G; Galeazzi, G; Borghesani, A F


    We report on the design of a new type of hot-filament electron gun delivering fairly high current (a few hundreds of μ A) at high voltage (up to 100 kV) in continuous or pulsed mode. Its novel features are that the filament is heated by means of a pack of rechargeable batteries floated atop the high-voltage power supply in order to get rid of bulky isolation transformers, and that the filament current and, hence, the electron gun current, is controlled by a feedback circuit including a superluminescent diode decoupled from the high voltage by means of an optical fiber. This electron gun is intended for general purposes, although we have especially developed it to meet the needs of our experiment on the infrared emission spectroscopy of rare gas excimers. Our experiment requires that the charge injection into the sample is pulsed and constant and stable in time. The new electron gun can deliver several tens of nC per pulse of electrons of energy up to 100 keV into the sample cell. The new design also eliminates ripples in the emission current and ensures up to 12 h of stable performance. © 2011 American Institute of Physics

  6. Pulse shape measurements using single shot-frequency resolved optical gating for high energy (80 J) short pulse (600 fs) laser. (United States)

    Palaniyappan, S; Shah, R C; Johnson, R; Shimada, T; Gautier, D C; Letzring, S; Jung, D; Hörlein, R; Offermann, D T; Fernández, J C; Hegelich, B M


    Relevant to laser based electron/ion accelerations, a single shot second harmonic generation frequency resolved optical gating (FROG) system has been developed to characterize laser pulses (80 J, ∼600 fs) incident on and transmitted through nanofoil targets, employing relay imaging, spatial filter, and partially coated glass substrates to reduce spatial nonuniformity and B-integral. The device can be completely aligned without using a pulsed laser source. Variations of incident pulse shape were measured from durations of 613 fs (nearly symmetric shape) to 571 fs (asymmetric shape with pre- or postpulse). The FROG measurements are consistent with independent spectral and autocorrelation measurements.

  7. [Bowen disease treated with scanned pulsed high energy CO2 laser. Follow-up of 6 cases]. (United States)

    Vaïsse, V; Clerici, T; Fusade, T


    Cutaneous Bowen's disease is an intra-epidermal squamous cell carcinoma. Ten cases of cutaneous Bowen's disease diagnosed among 8 patients were treated by scanned high energy carbon dioxide laser between November 1996, and March 1998. A biopsy was performed in all patients before treatment. The post-treatment follow-up extended from 1 to 4 years with an average follow-up of 2 years and 11 months. Only one patient, whose lesion was located on the auricle, presented a recurrence after one year. The remaining patients did not present any recurrence during their last control: six patients were followed for two years or more and one patient for one year. We demonstrate a histological and clinical correlation between the number of carbon dioxide laser passes before a clinical endpoint and the thickness of the epidermal carcinoma treated. This new treatment has comparable efficacy to other treatments. It can be applied to extensive lesions without sequelae except for the risk of residual hypopigmentation.

  8. Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre. (United States)

    Urich, A; Maier, R R J; Mangan, B J; Renshaw, S; Knight, J C; Hand, D P; Shephard, J D


    In this paper the delivery of high power Er:YAG laser pulses through a silica hollow core photonic crystal fibre is demonstrated. The Er:YAG wavelength of 2.94 µm is well beyond the normal transmittance of bulk silica but the unique hollow core guidance allows silica to guide in this regime. We have demonstrated for the first time the ability to deliver high energy pulses through an all-silica fibre at 2.94 µm. These silica fibres are mechanically and chemically robust, biocompatible and have low sensitivity to bending. A maximum pulse energy of 14 mJ at 2.94 µm was delivered through the fibre. This, to our knowledge, is the first time a silica hollow core photonic crystal fibre has been shown to transmit 2.94 μm laser light at a fluence exceeding the thresholds required for modification (e.g. cutting and drilling) of hard biological tissue. Consequently, laser delivery systems based on these fibres have the potential for the realization of novel, minimally-invasive surgical procedures.

  9. Overview of pulsed-power-driven high-energy-density plasma research at the University of Michigan (United States)

    McBride, R. D.; Campbell, P. C.; Miller, S. M.; Woolstrum, J. M.; Yager-Elorriaga, D. A.; Steiner, A. M.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.; Shrestha, I. K.; Butcher, C. J.; Laity, G. R.; Leckbee, J. J.; Wisher, M. L.; Slutz, S. A.; Cuneo, M. E.


    The Michigan Accelerator for Inductive Z-pinch Experiments (MAIZE) is a 3-m-diameter, single-cavity Linear Transformer Driver (LTD) at the University of Michigan (UM). MAIZE supplies a fast electrical pulse (0-1 MA in 100 ns for matched loads) to various experimental configurations, including wire-array z-pinches and cylindrical foil loads. This talk will report on projects aimed at upgrading the MAIZE facility (e.g., a new power feed and new diagnostics) as well as various physics campaigns on MAIZE (e.g., radiation source development, power flow, implosion instabilities, and other projects relevant to the MagLIF program at Sandia). In addition to MAIZE, UM is constructing a second, smaller LTD facility consisting of four 1.25-m-diameter cavities. These cavities were previously part of Sandia's 21-cavity Ursa Minor facility. The status of the four Ursa Minor cavities at UM will also be presented. This research was funded in part by the University of Michigan, a Faculty Development Grant from the Nuclear Regulatory Commission, the NNSA under DOE Grant DE-NA0003047 for UNR, and Sandia National Laboratories under DOE-NNSA contract DE-NA0003525.

  10. Diode-pumped large-aperture Nd:YAG slab amplifier for high energy nanosecond pulse laser (United States)

    Guo, Guangyan; Chen, Yanzhong; He, Jianguo; Lang, Ye; Lin, Weiran; Tang, Xiongxin; Zhang, Hongbo; Kang, Zhijun; Fan, Zhongwei


    A high gain, low thermal-induced wavefront distortion, laser diode-pumped Nd: YAG slab amplifier is demonstrated with its active media dimensions of 7 mm ×35 mm ×138.2 mm. Under the 200 Hz, 1440 W pulse pumping condition while no seed light to amplify, the thermal induced wavefront aberration of a He-Ne probe passing through the gain meUdium is 0.165 λ@633 nm (RMS). The amplifier shows stable aberration character with two major low-order terms, defocus and 0° astigmatism. The fluorescence distribution, stored energy, and small-signal gain of the amplifier are measured and have a good agreement with the calculated results. In the amplifier, the fluorescence is uniformly distributed and the maximum stored energy of 3.2 J can be achieved with a plane-concave cavity at 200 Hz pump repetition frequency. For a repetition frequency of 200 Hz, 25 μJ injection polarized seed-light and 1440 W pump power, the small signal gain reaches 9.45. The amplifier has been successfully employed in a 200 Hz, 5 J, MOPA system with 1.7 times diffraction limited output.

  11. Apparatus to control and visualize the impact of a high-energy laser pulse on a liquid target (United States)

    Klein, Alexander L.; Lohse, Detlef; Versluis, Michel; Gelderblom, Hanneke


    We present an experimental apparatus to control and visualize the response of a liquid target to a laser-induced vaporization. We use a millimeter-sized drop as target and present two liquid-dye solutions that allow a variation of the absorption coefficient of the laser light in the drop by seven orders of magnitude. The excitation source is a Q-switched Nd:YAG laser at its frequency-doubled wavelength emitting nanosecond pulses with energy densities above the local vaporization threshold. The absorption of the laser energy leads to a large-scale liquid motion at time scales that are separated by several orders of magnitude, which we spatiotemporally resolve by a combination of ultra-high-speed and stroboscopic high-resolution imaging in two orthogonal views. Surprisingly, the large-scale liquid motion upon laser impact is completely controlled by the spatial energy distribution obtained by a precise beam-shaping technique. The apparatus demonstrates the potential for accurate and quantitative studies of laser-matter interactions.

  12. Selected properties of high velocity oxy liquid fuel (HVOLF - sprayed nanocrystalline WC-CO INFRALLOYTM S7412 coatings modified by high energy electric pulse

    Directory of Open Access Journals (Sweden)

    S. Spadło


    Full Text Available The paper presents a brief study of selected properties of HVOLF-sprayed nanocrystalline WC-Co InfralloyTM S7412 coatings modified by the application of a high energy electric pulse. The anti-wear coatings were applied on carbon steel with the use of High Velocity Oxy Liquid Fuel (HVOLF spraying system TAFA – JP-5000. The process was modified by the application of the SST France & Vision Lasertechnik device WS 7000 S. The resultant type of coatings may be applied to increase the abrasive wear resistance of tools and machine parts. The properties of the powders and coatings were studied using metallographic methods and EDS analyses. The microhardness and nanohardness of the resultant layers were measured and Young’s modulus of elasticity was determined.

  13. Active phase locking of a tiled two-grating assembly for high-energy laser pulse compression using simultaneous controls from far-field profiles and interferometry (United States)

    Sharma, A. K.; Joshi, A. S.; Naik, P. A.; Gupta, P. D.


    A prototype study on active phase locking of a tiled two-grating assembly (TTGA) using four electronic nanometric actuators has been reported, for its use in high-energy laser pulse compression. Measurement and correction of various phase errors of a TTGA have been demonstrated with a precision of sub-50 nm in differential longitudinal translational and sub-10 µrad in differential angular errors using controls derived from simultaneous recording of laser interferogram and far-field profiles of reflected and diffracted beams from TTGA differentiating in-plane rotation with respect to tip error, which is otherwise difficult in the case of using interferometry alone. Multiple-level intensities in the thresholds of the power spectra of apodized interferogram and far-field profiles have been adapted to estimate spatial frequencies and beam peak positions with sub-pixel accuracies.

  14. Energy spectrum measurement of high power and high energy(6 and 9 MeV) pulsed x-ray source for industrial use

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Hiroyuki [Hitachi, Ltd. Power Systems Company, Ibaraki (Japan); Murata, Isao [Graduate School of Engineering, Osaka University, Osaka (Japan)


    Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

  15. Photoionized plasmas induced in neon with extreme ultraviolet and soft X-ray pulses produced using low and high energy laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, A.; Wachulak, P.; Fok, T.; Węgrzyński, Ł.; Fiedorowicz, H. [Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z. [Institute of Plasma Physics and Laser Microfusion, 23 Hery St., 00-908 Warsaw (Poland); Dudzak, R.; Dostal, J.; Krousky, E.; Skala, J.; Ullschmied, J.; Hrebicek, J.; Medrik, T. [Institute of Plasma Physics ASCR, Prague, Czech Republic and Institute of Physics ASCR, Prague (Czech Republic)


    A comparative study of photoionized plasmas created by two soft X-ray and extreme ultraviolet (SXR/EUV) laser plasma sources with different parameters is presented. The two sources are based on double-stream Xe/He gas-puff targets irradiated with high (500 J/0.3 ns) and low energy (10 J/1 ns) laser pulses. In both cases, the SXR/EUV beam irradiated the gas stream, injected into a vacuum chamber synchronously with the radiation pulse. Irradiation of gases resulted in formation of photoionized plasmas emitting radiation in the SXR/EUV range. The measured Ne plasma radiation spectra are dominated by emission lines corresponding to radiative transitions in singly charged ions. A significant difference concerns origin of the lines: K-shell or L-shell emissions occur in case of the high and low energy irradiating system, respectively. In high energy system, the electron density measurements were also performed by laser interferometry, employing a femtosecond laser system. A maximum electron density for Ne plasma reached the value of 2·10{sup 18 }cm{sup −3}. For the low energy system, a detection limit was too high for the interferometric measurements, thus only an upper estimation for electron density could be made.

  16. The Role of Electrode Contamination and the Effects of Cleaning and Conditioning on the Performance of High-Energy, Pulsed-Power Devices

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, M.E.


    High-energy pulsed-power devices routinely access field strengths above those at which broad-area, cathode-initiated, high-voltage vacuum-breakdown occur. Examples include magnetically-insulated-transmission lines and current convolutes, high-current-density electron and ion diodes, high-power microwave devices, and cavities and other structures for electrostatic and RF accelerators. Energy deposited in anode surfaces may exceed anode plasma thermal-desorption creation thresholds on the time-scale of the pulse. Stimulated resorption by electron or photon bombardment can also lead to plasma formation on electrode or insulator surfaces. Device performance is limited above these thresholds, particularly impulse length and energy, by the formation and expansion of neutral and plasma layers formed, primarily from electrode contaminants. In-situ conditioning tech&ques to modify and eliminate the contaminants through multiple high-voltage pukes, low base pressures, RF discharge cleaning, heating, surface coatings, and ion- and electron-beam surface treatment allow access to new regimes of performance through control of plasma formation and modification of the plasma properties. Experimental and theoretical progress from a variety of devices and small scale experiments with a variety of treatment methods will be reviewed and recommendations given for future work.

  17. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben


    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  18. Advances in High Energy Solid-State Pulsed 2-micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements (United States)

    Singh, Upendra; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael; Remus, Ruben


    NASA Langley Research Center has a long history of developing 2 µm lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2 µm lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250-mJ in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hrs of flight measurement were made from an altitude ranging 1500 meter to 8000 meter. These measurements were compared to in-situ measurements and NOAA airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a triple-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA

  19. Artificial construction of the layered Ruddlesden-Popper manganite La2Sr2Mn3O10 by reflection high energy electron diffraction monitored pulsed laser deposition. (United States)

    Palgrave, Robert G; Borisov, Pavel; Dyer, Matthew S; McMitchell, Sean R C; Darling, George R; Claridge, John B; Batuk, Maria; Tan, Haiyan; Tian, He; Verbeeck, Jo; Hadermann, Joke; Rosseinsky, Matthew J


    Pulsed laser deposition has been used to artificially construct the n = 3 Ruddlesden-Popper structure La(2)Sr(2)Mn(3)O(10) in epitaxial thin film form by sequentially layering La(1-x)Sr(x)MnO(3) and SrO unit cells aided by in situ reflection high energy electron diffraction monitoring. The interval deposition technique was used to promote two-dimensional SrO growth. X-ray diffraction and cross-sectional transmission electron microscopy indicated that the trilayer structure had been formed. A site ordering was found to differ from that expected thermodynamically, with the smaller Sr(2+) predominantly on the R site due to kinetic trapping of the deposited cation sequence. A dependence of the out-of-plane lattice parameter on growth pressure was interpreted as changing the oxygen content of the films. Magnetic and transport measurements on fully oxygenated films indicated a frustrated magnetic ground state characterized as a spin glass-like magnetic phase with the glass temperature T(g) ≈ 34 K. The magnetic frustration has a clear in-plane (ab) magnetic anisotropy, which is maintained up to temperatures of 150 K. Density functional theory calculations suggest competing antiferromagnetic and ferromagnetic long-range orders, which are proposed as the origin of the low-temperature glassy state.

  20. The construction of two-stage tests

    NARCIS (Netherlands)

    Adema, Jos J.


    Although two-stage testing is not the most efficient form of adaptive testing, it has some advantages. In this paper, linear programming models are given for the construction of two-stage tests. In these models, practical constraints with respect to, among other things, test composition,

  1. Depth of morphologic skin damage and viability after one, two, and three passes of a high-energy, short-pulse CO2 laser (Tru-Pulse) in pig skin. (United States)

    Smith, K J; Skelton, H G; Graham, J S; Hamilton, T A; Hackley, B E; Hurst, C G


    CO2 laser energy is absorbed by water, which is present in all tissue. The depth of penetration of CO2 lasers is narrow with minimal reflection, scatter, or transmission. However, thermal damage has limited the usefulness of conventional, continuous-wave CO2 lasers for debridement as demonstrated by wound healing studies. The development of high-energy CO2 lasers, with pulse durations that are less than the thermal relaxation time of tissue, have made vaporization of skin for resurfacing and wound debridement possible because of the decreased risk of thermal damage. This study was performed to evaluate thermal damage produced by a CO2 laser. Routine histopathologic examination and nitroblue-tetrazolium chloride (NBTC) staining were used to evaluate the depth of tissue damage and viability in weanling pig skin after one, two, and three passes of the laser. At a pulse energy of 300 mJ, with a pulse duration of 60 microseconds, one pass of the laser produced vaporization of the epidermis with minimal thermal damage. Two passes produced areas of denatured collagen with loss of viable cells in the superficial papillary dermis. Three passes extended the damage into the papillary dermis. Hyalinization of collagen appears to correspond well with the level of thermal damage as measured by NBTC staining. Our findings suggest that the energy necessary to vaporize the dermis may be greater than that needed to vaporize epidermis.

  2. High-energy high-rate pulsed-power processing of materials by powder consolidation and by railgun deposition. Technical report (Final), 10 April 1985-10 February 1987

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Marcus, H.L.; Weldon, W.F.


    This exploratory research program was initiated to investigate the potential of using pulse power sources for powder consolidation, deposition and other high-energy high-rate processing. The characteristics of the high-energy-high-rate (1MJ/s) powder consolidation using megampere current pulses from a homopolar generator, were defined. Molybdenum Alloy TZM, a nickel-based metallic glass, copper/graphite composites, and P/M aluminum alloy X7091 were investigated. The powder-consolidation process produced high densification rates. Density values of 80% to 99% could be obtained with subsecond high-temperature exposure. Specific energy input and applied pressure were controlling process parameters. Time temperature transformation (TTT) concepts underpin a fundamental understanding of pulsed power processing. Inherent control of energy input, and time-to-peak processing temperature developed to be held to short times. Deposition experiments were conducted using an exploding-foil device (EFD) providing an armature feed to railgun mounted in a vacuum chamber. The material to be deposited - in plasma, gas, liquid, or solid state - was accelerated electromagnetically in the railgun and deposited on a substrate. Deposits of a wide variety of single- and multi-specie materials were produced on several types of substrates. In a series of ancillary experiments, pulsed-skin-effect heating and self quenching of metallic conductors was discovered to be a new means of surface modification by high-energy high-rate-processing.

  3. Two-stage designs in bioequivalence trials. (United States)

    Schütz, Helmut


    The aim of this study is to assess the current status of non-fixed sample size designs in bioequivalence trials with a focus on two-stage adaptive approaches. We searched PubMed and Google Scholar from inception to October 2014. Regulatory guidelines were obtained from the public domain. Different methods were compared by Monte Carlo simulations for their impact on the patient's and producer's risks. Add-on designs, group sequential designs and adaptive two-stage sequential designs are currently accepted to demonstrate bioequivalence in various regulations. All three approaches may inflate the patient's risk if applied inconsiderately. Direct transfer of methods developed for superiority testing to bioequivalence is not warranted. Published two-stage frameworks maintain the type I error and generally the desired power. Adaptation based on the observed T/R ratio observed in the first stage should be applied with caution. Monte Carlo simulations are an efficient tool to explore the operating characteristics of methods. Validated two-stage frameworks can be applied without requiring the sponsor to perform own simulations-which could further improve power based on additional assumptions. Two-stage designs are both ethical and economical alternatives to fixed sample designs.

  4. Treatment of atrophic facial scars with combined use of high-energy pulsed CO2 laser and Er:YAG laser: a practical guide of the laser techniques for the Er:YAG laser. (United States)

    Cho, S I; Kim, Y C


    Although CO2 laser resurfacing provides substantial clinical improvement for atrophic facial scars, the CO2 laser often results in excessive thermal damage to the skin. It increases complications postoperatively. The Er:YAG laser ablates thinner layers of tissue than the CO2 laser with minimal thermal damage to the surrounding skin. To determine the efficacy of combined treatment of atrophic facial scars with high-energy pulsed CO2 laser and Er:YAG laser. One hundred fifty-eight patients were treated with a combination of high-energy pulsed CO2 laser and Er:YAG laser for atrophic facial scars. All patients were evaluated after 3 months of treatment. The scars improved 80-89% in 65 patients, 70-79% in 56 patients, more than 90% in 32 patients, 60-69% in 2 patients, and less than 60% in 3 patients after laser treatment. Treatment of atrophic facial scars with combined use of high-energy pulsed CO2 laser and Er:YAG laser is a very effective and useful method.

  5. Two-stage sampling for acceptance testing

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, C.L.; Bryan, M.F.


    Sometimes a regulatory requirement or a quality-assurance procedure sets an allowed maximum on a confidence limit for a mean. If the sample mean of the measurements is below the allowed maximum, but the confidence limit is above it, a very widespread practice is to increase the sample size and recalculate the confidence bound. The confidence level of this two-stage procedure is rarely found correctly, but instead is typically taken to be the nominal confidence level, found as if the final sample size had been specified in advance. In typical settings, the correct nominal [alpha] should be between the desired P(Type I error) and half that value. This note gives tables for the correct a to use, some plots of power curves, and an example of correct two-stage sampling.

  6. Two-stage sampling for acceptance testing

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, C.L.; Bryan, M.F.


    Sometimes a regulatory requirement or a quality-assurance procedure sets an allowed maximum on a confidence limit for a mean. If the sample mean of the measurements is below the allowed maximum, but the confidence limit is above it, a very widespread practice is to increase the sample size and recalculate the confidence bound. The confidence level of this two-stage procedure is rarely found correctly, but instead is typically taken to be the nominal confidence level, found as if the final sample size had been specified in advance. In typical settings, the correct nominal {alpha} should be between the desired P(Type I error) and half that value. This note gives tables for the correct a to use, some plots of power curves, and an example of correct two-stage sampling.

  7. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus


    Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...... that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds...... and the level of inhibition are so low that condensate from the optimised two-stage gasifier can be led to the public sewer....

  8. Two-stage microbial community experimental design. (United States)

    Tickle, Timothy L; Segata, Nicola; Waldron, Levi; Weingart, Uri; Huttenhower, Curtis


    Microbial community samples can be efficiently surveyed in high throughput by sequencing markers such as the 16S ribosomal RNA gene. Often, a collection of samples is then selected for subsequent metagenomic, metabolomic or other follow-up. Two-stage study design has long been used in ecology but has not yet been studied in-depth for high-throughput microbial community investigations. To avoid ad hoc sample selection, we developed and validated several purposive sample selection methods for two-stage studies (that is, biological criteria) targeting differing types of microbial communities. These methods select follow-up samples from large community surveys, with criteria including samples typical of the initially surveyed population, targeting specific microbial clades or rare species, maximizing diversity, representing extreme or deviant communities, or identifying communities distinct or discriminating among environment or host phenotypes. The accuracies of each sampling technique and their influences on the characteristics of the resulting selected microbial community were evaluated using both simulated and experimental data. Specifically, all criteria were able to identify samples whose properties were accurately retained in 318 paired 16S amplicon and whole-community metagenomic (follow-up) samples from the Human Microbiome Project. Some selection criteria resulted in follow-up samples that were strongly non-representative of the original survey population; diversity maximization particularly undersampled community configurations. Only selection of intentionally representative samples minimized differences in the selected sample set from the original microbial survey. An implementation is provided as the microPITA (Microbiomes: Picking Interesting Taxa for Analysis) software for two-stage study design of microbial communities.

  9. Two-stage repair in hypospadias

    Directory of Open Access Journals (Sweden)

    K N Haxhirexha


    Full Text Available We provide the reader with a nonsystematic review concerning the use of the two-stage approach in hypospadias repairs. A one-stage approach using the tubularized incised plate urethroplasty is a well-standardized approach for the most cases of hypospadias. Nevertheless, in some primary severe cases, in most hypospadias failures and in selected patients with balanitis xerotica obliterans a two-stage approach is preferable. During the first stage the penis is straightened, if necessary and the urethral plate is substituted with a graft of either genital (prepuce or extragenital origin (oral mucosa or postauricular skin. During the second stage, performed around 6 months later, urethroplasty is accomplished by graft tubulization. Graft take is generally excellent, with only few cases requiring an additional inlay patch at second stage due to graft contracture. A staged approach allows for both excellent cosmetic results and a low morbidity including an overall 6% fistula rate and 2% stricture rate. Complications usually occur in the first year after the second stage and are higher in secondary repairs. Complications tend to decrease as experience increases and use of additional waterproofing layers contributes to reduce the fistula rate significantly. Long-term cosmetic results are excellent, but voiding and ejaculatory problems may occur in as much as 40% of cases if a long urethral tube is constructed. The procedure has a step learning curve but because of its technical simplicity does not require to be confined only to highly specialized centers.

  10. A two-stage amplifying detector candidate for the CMS forward tracker

    CERN Document Server

    Barvich, Tobias; Kärcher, Kurt; Knoblauch, Dieter; Mörmann, Dirk; Müller, Thomas; Neuberger, Dirk; Pallarès, Anne; Schilling, M; Simonis, Hans-Jürgen; Thümmel, Wolf Hagen


    We report on the construction and first test beam results of a prototype of two-stage amplifying detector modules with four trapezoidal elements arranged in a geometry as planned for the CMS forward tracker. The performance of the detector is studied for different operational parameters in a high energy pion beam at CERN.


    Directory of Open Access Journals (Sweden)

    T.R. Anoop


    Full Text Available Fingerprint alteration is the process of masking one’s identity from personal identification systems especially in boarder control security systems. Failure of matching the altered fingerprint of the criminals against the watch list of fingerprints can help them to break the security system. This fact leads to the need of a method for altered fingerprint matching. This paper presents a two stage method for altered fingerprint matching. In first stage, approximated global ridge orientation field of altered fingerprint is matched against the orientation field of its unaltered mate. If this matching is successful, fingerprints go to second stage. Second stage starts with the selection of unaltered region from the altered FP and same region from the unaltered mates. Matching in this stage is performed by extraction of ridge texture and ridge frequency from the selected region of interest. Euclidian distance is used in both stages to compute the matching score.

  12. Development of a long-pulse (30-s), high-energy (120-keV) ion source for neutral-beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.; Barber, G.C.; Blue, C.W.


    Multimegawatt neutral beams of hydrogen or deuterium atoms are needed for fusion machine applications such as MFTB-B, TFTR-U, DIII-U, and FED (INTOR or ETR). For these applications, a duoPIGatron ion source is being developed to produce high-brightness deuterium beams at a beam energy of approx. 120 keV for pulse lengths up to 30 s. A long-pulse plasma generator with active water cooling has been operated at an arc level of 1200 A with 30-s pulse durations. The plasma density and uniformity are sufficient for supplying a 60-A beam of hydrogen ions to a 13- by 43-cm accelerator. A 10- by 25-cm tetrode accelerator has been operated to form 120-keV hydrogen ion beams. Using the two-dimensional (2-D) ion extraction code developed at Oak Ridge National Laboratory (ORNL), a 13- by 43-cm tetrode accelerator has been designed and is being fabricated. The aperture shapes of accelerator grids are optimized for 120-keV beam energy.

  13. Analysis of atomic distribution in as-fabricated Zircaloy-2 claddings by atom probe tomography under high-energy pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Sawabe, T., E-mail: [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Sonoda, T.; Kitajima, S. [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Kameyama, T. [Tokai University, Department of Nuclear Engineering, Kitakaname 4-1-1, Hiratsuka, Kanagawa 259-1292 (Japan)


    The properties of second-phase particles (SPPs) in Zircaloy-2 claddings are key factors influencing the corrosion resistance of the alloy. The chemical compositions of Zr (Fe, Cr){sub 2} and Zr{sub 2}(Fe, Ni) SPPs were investigated by means of pulsed laser atom probe tomography. In order to prevent specimen fracture and to analyse wide regions of the specimen, the pulsed laser energy was increased to 2.0 nJ. This gave a high yield of average of 3 × 10{sup 7} ions per specimen. The Zr (Fe, Cr){sub 2} SPPs contained small amounts of Ni and Si atoms, while in Zr{sub 2}(Fe, Ni) SPPs almost all the Si was concentrated and the ratio of Zr: (Fe + Ni + Si) was 2:1. Atomic concentrations of the Zr-matrix and the SPPs were identified by two approaches: the first by using all the visible peaks of the mass spectrum and the second using the representative peaks with the natural abundance of the corresponding atoms. It was found that the change in the concentration between the Zr-matrix and the SPPs can be estimated more accurately by the second method, although Sn concentration in the Zr{sub 2}(Fe, Ni) SPPs is slightly overestimated.

  14. Temporal optimization of ultrabroadband high-energy OPCPA

    National Research Council Canada - National Science Library

    Jeffrey Moses; Cristian Manzoni; Shu-Wei Huang; Giulio Cerullo; Franz X. Kaertner


    We present general guidelines for the design of ultrabroadband, high-energy optical parametric chirped-pulse amplifiers, where maximization of both conversion efficiency and bandwidth and simultaneous...

  15. On the robustness of two-stage estimators

    KAUST Repository

    Zhelonkin, Mikhail


    The aim of this note is to provide a general framework for the analysis of the robustness properties of a broad class of two-stage models. We derive the influence function, the change-of-variance function, and the asymptotic variance of a general two-stage M-estimator, and provide their interpretations. We illustrate our results in the case of the two-stage maximum likelihood estimator and the two-stage least squares estimator. © 2011.

  16. Development of two-stage grain grinder

    Directory of Open Access Journals (Sweden)

    V. N. Trubnikov


    Full Text Available The most important task in the development of the diet of farm animals feeding is a selection of the most balanced in its composition and most nutritious feeds, which are safe and meet all the necessary requirements at the same time. To evaluate the productive value of feeds and their effectiveness the rate of food productive action η was proposed. This ratio reflects the productive part of the total value of the exchange energy of the daily feed ration and is an essential criterion of the feed quality indicators. In the feed rations of animals the most expensive, but energy-rich feed is a mixed fodder, a mixture of grinded seeds of agricultural crops and protein, mineral and vitamin additives. In the diet for its nutritional value, this feed product is for cattle – 50, pigs – 60… 100 and birds – 100%. The basic operation in the production of mixed fodder is seeds grinding, i.e. their destruction under the influence of external forces, exceeding the forces of molecular adhesion of the grains particles. To grind the grain different ways are used: chopping, grinding, impact «in flight», crushing, etc. In the production of mixed fodder on the existing production equipment, there is the problem of getting the grain mixed fodder the necessary degree of grinding and uniform in its particle size distribution at the same time. When receiving too coarse grinding there is a problem of difficult digestibility of mixed fodder by farm animals. Moreover grinding process is accompanied by a high energy consumption. Grain grinder, the principle of which is based on the implementation of two ways of grinding grain: splitting and impact «in flight» is proposed. The proposed constructive solutions allow to obtain a high-performance technical means for crushing seeds of crops, as well as reduce energy costs that arise during the course of the process of obtaining of mixed fodder. The methodology justification of degree of grain grinding by

  17. Controlling fundamentals in high-energy high-rate pulsed power materials processing of powdered tungsten, titanium aluminides, and copper-graphite composites. Final technical report, 1 Jun 87-31 Aug 90

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Marcus, H.L.; Bourell, D.L.; Eliezer, Z.; Weldon, W.F.


    This study was conducted to determine the controlling fundamentals in the high-energy high-rate (1 MJ in 1s) processing of metal powders. This processing utilizes a large electrical current pulse to heat a pressurized powder mass. The current pulse was provided by a homopolar generator. Simple short cylindrical shapes were consolidated so as to minimize tooling costs. Powders were subjected to current densities of 5 kA/cm2 to 25 kA/cm2 under applied pressures ranging from 70 MPa to 500 MPa. Disks with diameters of 25 mm to 70 mm, and thicknesses of 1 mm to 10 mm were consolidated. Densities of 75% to 99% of theoretical values were obtained in powder consolidates of tungsten, titanium aluminides, copper-graphite, and other metal-ceramic composites. Extensive microstructural characterization was performed to follow the changes occuring in the shape and microstructure of the various powders. The processing science has at its foundation the control of the duration of elevated temperature exposure during powder consolidation.

  18. High-energy detector (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY


    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  19. Evaluation of Two-Stage Cooked Canavalia plagiosperma (Piper ...

    African Journals Online (AJOL)

    It is evident therefore that two-stage cooking reduced the level of anti nutritional factors in raw Canavalia plagiosperma seed meal hence the comparable performance of layers on diets containing the test material and the group on the control diet. The results of this experiment suggests that Two-stage cooked Canavalia ...

  20. Two stages repair of proximal hypospadias: Review of 700 cases

    Directory of Open Access Journals (Sweden)

    Arvind Kumar Shukla


    Conclusion: Two stages procedure using the principles of Byar's technique is a versatile operation that can be used for 2 two-stage procedures the proximal hypospadias. It decreases the rate of fistula formation, disruption, and stenosis and gives a satisfactory cosmetic appearance.

  1. High energy semiconductor switch (United States)

    Risberg, R. L.


    The objective was a controller for electric motors. By operating standard Nema B induction motors at variable speed a great deal of energy is saved. This is especially true in pumping and air conditioning applications. To allow wider use of variable speed AC drives, and to provide improved performance, a better semiconductor switch was sought. This was termed the High Energy Semiconductor Switch.

  2. Experimental high energy physics

    CERN Document Server

    De Paula, L


    A summary of the contributions on experimental high energy physics to the XXIV Brazilian National Meeting on Particle and Fields is presented. There were 5 invited talks and 32 submitted contributions. The active Brazilian groups are involved in several interesting projects but suffer from the lack of funding and interaction with Brazilian theorists.

  3. High Energy Exoplanet Transits (United States)

    Llama, Joe; Shkolnik, Evgenya L.


    X-ray and ultraviolet transits of exoplanets allow us to probe the atmospheres of these worlds. High energy transits have been shown to be deeper but also more variable than in the optical. By simulating exoplanet transits using high-energy observations of the Sun, we can test the limits of our ability to accurately measure the properties of these planets in the presence of stellar activity. We use both disk-resolved images of the Solar disk spanning soft X-rays, the ultraviolet, and the optical and also disk-integrated Sun-as-a-star observations of the Lyα irradiance to simulate transits over a wide wavelength range. We find that for stars with activity levels similar to the Sun, the planet-to-star radius ratio can be overestimated by up to 50% if the planet occults an active region at high energies. We also compare our simulations to high energy transits of WASP-12b, HD 189733, 55 Cnc b, and GJ 436b.

  4. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.


    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  5. High energy particle astronomy. (United States)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.


    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  6. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York


    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  7. Multifunctional two-stage riser fluid catalytic cracking process


    Zhang, Jinhong; Shan, Honghong; Chen, Xiaobo; Li, Chunyi; Yang, Chaohe


    This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis of the TSR FCC process was described, which were carried out by the optimization of reaction conditio...

  8. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger


    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  9. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.


    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  10. High energy cosmic rays

    CERN Document Server

    Stanev, Todor


    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  11. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa


    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  12. High Performance Gasification with the Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Gøbel, Benny; Hindsgaul, Claus; Henriksen, Ulrik Birk


    Based on more than 15 years of research and practical experience, the Technical University of Denmark (DTU) and COWI Consulting Engineers and Planners AS present the two-stage gasification process, a concept for high efficiency gasification of biomass producing negligible amounts of tars....... In the two-stage gasification concept, the pyrolysis and the gasification processes are physical separated. The volatiles from the pyrolysis are partially oxidized, and the hot gases are used as gasification medium to gasify the char. Hot gases from the gasifier and a combustion unit can be used for drying...... a cold gas efficiency exceeding 90% is obtained. In the original design of the two-stage gasification process, the pyrolysis unit consists of a screw conveyor with external heating, and the char unit is a fixed bed gasifier. This design is well proven during more than 1000 hours of testing with various...

  13. Evaluation of Monte Carlo tools for high energy atmospheric physics

    NARCIS (Netherlands)

    C. Rutjes (Casper); D. Sarria (David); A.B. Skeltved (Alexander Broberg); A. Luque (Alejandro); G. Diniz (Gabriel); N. Østgaard (Nikolai); U. Ebert (Ute)


    textabstractThe emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires

  14. Dynamic Modelling of the Two-stage Gasification Process

    DEFF Research Database (Denmark)

    Gøbel, Benny; Henriksen, Ulrik B.; Houbak, Niels


    A two-stage gasification pilot plant was designed and built as a co-operative project between the Technical University of Denmark and the company REKA.A dynamic, mathematical model of the two-stage pilot plant was developed to serve as a tool for optimising the process and the operating conditions...... of the gasification plant.The model consists of modules corresponding to the different elements in the plant. The modules are coupled together through mass and heat conservation.Results from the model are compared with experimental data obtained during steady and unsteady operation of the pilot plant. A good...

  15. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)


    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  16. Straw Gasification in a Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Hindsgaul, Claus; Henriksen, Ulrik Birk


    Additive-prepared straw pellets were gasified in the 100 kW two-stage gasifier at The Department of Mechanical Engineering of the Technical University of Denmark (DTU). The fixed bed temperature range was 800-1000°C. In order to avoid bed sintering, as observed earlier with straw gasification...

  17. Two-Stage Fuzzy Portfolio Selection Problem with Transaction Costs

    Directory of Open Access Journals (Sweden)

    Yanju Chen


    Full Text Available This paper studies a two-period portfolio selection problem. The problem is formulated as a two-stage fuzzy portfolio selection model with transaction costs, in which the future returns of risky security are characterized by possibility distributions. The objective of the proposed model is to achieve the maximum utility in terms of the expected value and variance of the final wealth. Given the first-stage decision vector and a realization of fuzzy return, the optimal value expression of the second-stage programming problem is derived. As a result, the proposed two-stage model is equivalent to a single-stage model, and the analytical optimal solution of the two-stage model is obtained, which helps us to discuss the properties of the optimal solution. Finally, some numerical experiments are performed to demonstrate the new modeling idea and the effectiveness. The computational results provided by the proposed model show that the more risk-averse investor will invest more wealth in the risk-free security. They also show that the optimal invested amount in risky security increases as the risk-free return decreases and the optimal utility increases as the risk-free return increases, whereas the optimal utility increases as the transaction costs decrease. In most instances the utilities provided by the proposed two-stage model are larger than those provided by the single-stage model.

  18. Two Stages repair of proximal hypospadias: Review of 33 cases

    African Journals Online (AJOL)


    It decreases the rate of fistula formation; disruption; stenosis and gives a satisfactory cosmetic appearance. Index Word: proximal hypospadias, two stages repair. ... Second procedure: a) formation of the neo-urethra, b) skin closure, c) dressing. Complete degloving of the penile shaft was performed till its base. Then artificial ...

  19. Two-stage named-entity recognition using averaged perceptrons

    NARCIS (Netherlands)

    Buitinck, L.; Marx, M.


    We describe a simple approach to named-entity recognition (NER), aimed initially at the Dutch language, but potentially applicable to other languages. Our NER system employs a two-stage architecture, with handcrafted but dataset-independent features for both stages, and is on a par with

  20. Did There Exist Two Stages of Franklin Bobbitt's Curriculum Theory? (United States)

    Liu, Xing


    Franklin Bobbitt is the founder of modern curriculum theory. There is a generally supported saying that Bobbitt's theory went through two stages, the first focused on social efficiency with a mechanical and behavioral approach, and the second a more progressive approach, caring for the living experience of pupils. A close reading of his so-called…

  1. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.


    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  2. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.


    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10{sup 5} Z`s by the end of 1989 and 10{sup 6} in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry.

  3. High energy chemical laser system (United States)

    Gregg, D.W.; Pearson, R.K.


    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  4. Simple Digital Control of a Two-Stage PFC Converter Using DSPIC30F Microprocessor

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig


    The use of dsPIC digital signal controllers (DSC) in Switch Mode Power Supply (SMPS) applications opens new perspectives for cheap and flexible digital control solutions. This paper presents the digital control of a two stage power factor corrector (PFC) converter. The PFC circuit is designed...... and built for 70W rated output power. Average current mode control for boost converter and current programmed control for forward converter are implemented on a dsPIC30F1010. Pulse Width Modulation (PWM) technique is used to drive the switching MOSFETs. Results show that digital solutions with dsPIC...

  5. Some relations between two stages DNA splicing languages (United States)

    Mudaber, Mohammad Hassan; Yusof, Yuhani; Mohamad, Mohd Sham


    A new symbolization of Yusof-Goode (Y-G) rule, which is associated with Y-G splicing system, was introduced by Yusof in 2012 under the framework of formal language theory. The purpose of this investigation is to present the biological process of DNA splicing in a translucent way. In this study, two stages splicing languages are introduced based on Y-G approach and some relations between stage one and stage two splicing languages are presented, given as theorems. Additionally, the existing relations between two stages splicing languages based on crossings and contexts of restriction enzymes factors with respect to two initial strings (having two cutting sites) and two rules are presented as subset.

  6. Multifunctional two-stage riser fluid catalytic cracking process. (United States)

    Zhang, Jinhong; Shan, Honghong; Chen, Xiaobo; Li, Chunyi; Yang, Chaohe

    This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis of the TSR FCC process was described, which were carried out by the optimization of reaction conditions for fresh feedstock and cycle oil catalytic cracking, respectively, by the coupling of cycle oil cracking and light FCC naphtha upgrading processes in the second-stage riser, and the specially designed reactor for further reducing the olefin content of gasoline. The pilot test showed that it can further improve the product quality, increase the diesel yield, and enhance the conversion of heavy oil.

  7. A probabilistic lower bound for two-stage stochastic programs

    Energy Technology Data Exchange (ETDEWEB)

    Dantzig, G.B.; Infanger, G.


    In the framework of Benders decomposition for two-stage stochastic linear programs, the authors estimate the coefficients and right-hand sides of the cutting planes using Monte Carlo sampling. The authors present a new theory for estimating a lower bound for the optimal objective value and they compare (using various test problems whose true optimal value is known) the predicted versus the observed rate of coverage of the optimal objective by the lower bound confidence interval.

  8. The design of two-stage-to-orbit vehicles (United States)


    Two separate student design groups developed conceptual designs for a two-stage-to-orbit vehicle, with each design group consisting of a carrier team and an orbiter team. A two-stage-to-orbit system is considered in the event that single-stage-to-orbit is deemed not feasible in the foreseeable future; the two-stage system would also be used as a complement to an already existing heavy lift vehicle. The design specifications given are to lift a 10,000-lb payload 27 ft long by 10 ft diameter, to low Earth orbit (300 n.m.) using an air breathing carrier configuration that will take off horizontally within 15,000 ft. The staging Mach number and altitude were to be determined by the design groups. One group designed a delta wing/body carrier with the orbiter nested within the fuselage of the carrier, and the other group produced a blended cranked-delta wing/body carrier with the orbiter in the more conventional piggyback configuration. Each carrier used liquid hydrogen-fueled turbofanramjet engines, with data provided by General Electric Aircraft Engine Group. While one orbiter used a full-scale Space Shuttle Main Engine (SSME), the other orbiter employed a half-scale SSME coupled with scramjet engines, with data again provided by General Electric. The two groups conceptual designs, along with the technical trade-offs, difficulties, and details that surfaced during the design process are presented.

  9. High-energy, high-rate materials processing (United States)

    Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.


    The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.

  10. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D


    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  11. High Energy Break-Up of Few-Nucleon Systems


    Sargsian, Misak M.


    We discus recent developments in theory of high energy two-body break-up reactions of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The...

  12. Two stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa (United States)


    Background Dairy effluents contains high organic load and unscrupulous discharge of these effluents into aquatic bodies is a matter of serious concern besides deteriorating their water quality. Whilst physico-chemical treatment is the common mode of treatment, immobilized microalgae can be potentially employed to treat high organic content which offer numerous benefits along with waste water treatment. Methods A novel low cost two stage treatment was employed for the complete treatment of dairy effluent. The first stage consists of treating the diary effluent in a photobioreactor (1 L) using immobilized Chlorella pyrenoidosa while the second stage involves a two column sand bed filtration technique. Results Whilst NH4+-N was completely removed, a 98% removal of PO43--P was achieved within 96 h of two stage purification processes. The filtrate was tested for toxicity and no mortality was observed in the zebra fish which was used as a model at the end of 96 h bioassay. Moreover, a significant decrease in biological oxygen demand and chemical oxygen demand was achieved by this novel method. Also the biomass separated was tested as a biofertilizer to the rice seeds and a 30% increase in terms of length of root and shoot was observed after the addition of biomass to the rice plants. Conclusions We conclude that the two stage treatment of dairy effluent is highly effective in removal of BOD and COD besides nutrients like nitrates and phosphates. The treatment also helps in discharging treated waste water safely into the receiving water bodies since it is non toxic for aquatic life. Further, the algal biomass separated after first stage of treatment was highly capable of increasing the growth of rice plants because of nitrogen fixation ability of the green alga and offers a great potential as a biofertilizer. PMID:24355316

  13. False discovery rate control in two-stage designs

    Directory of Open Access Journals (Sweden)

    Zehetmayer Sonja


    Full Text Available Abstract Background For gene expression or gene association studies with a large number of hypotheses the number of measurements per marker in a conventional single-stage design is often low due to limited resources. Two-stage designs have been proposed where in a first stage promising hypotheses are identified and further investigated in the second stage with larger sample sizes. For two types of two-stage designs proposed in the literature we derive multiple testing procedures controlling the False Discovery Rate (FDR demonstrating FDR control by simulations: designs where a fixed number of top-ranked hypotheses are selected and designs where the selection in the interim analysis is based on an FDR threshold. In contrast to earlier approaches which use only the second-stage data in the hypothesis tests (pilot approach, the proposed testing procedures are based on the pooled data from both stages (integrated approach. Results For both selection rules the multiple testing procedures control the FDR in the considered simulation scenarios. This holds for the case of independent observations across hypotheses as well as for certain correlation structures. Additionally, we show that in scenarios with small effect sizes the testing procedures based on the pooled data from both stages can give a considerable improvement in power compared to tests based on the second-stage data only. Conclusion The proposed hypothesis tests provide a tool for FDR control for the considered two-stage designs. Comparing the integrated approaches for both selection rules with the corresponding pilot approaches showed an advantage of the integrated approach in many simulation scenarios.

  14. Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier. (United States)

    Beutler, Marcus; Ghotbi, Masood; Noack, Frank; Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio


    We report on the generation of powerful sub-20 fs deep UV pulses with 10 microJ level energy and broadly tunable in the 250-310 nm range. These pulses are produced by frequency doubling a high-power noncollinear optical parametric amplifier and compressed by a pair of MgF2 prisms to an almost transform-limited duration. Our results provide a power scaling by an order of magnitude with respect to previous works.

  15. MEET ISOLDE - High Energy Physics

    CERN Multimedia


    Meet ISOLDE - High Energy Physics. ISOLDE is always developing, equipment moves on and off the hall floor, new groups start and end experiments regularly, visiting scientists come and go and experiments evolve. So it was a natural step for ISOLDE to expand from its core low energy science into high-energies.

  16. Fundamentals of high energy electron beam generation (United States)

    Turman, B. N.; Mazarakis, M. G.; Neau, E. L.

    High energy electron beam accelerator technology has been developed over the past three decades in response to military and energy-related requirements for weapons simulators, directed-energy weapons, and inertially-confined fusion. These applications required high instantaneous power, large beam energy, high accelerated particle energy, and high current. These accelerators are generally referred to as 'pulsed power' devices, and are typified by accelerating potential of millions of volts (MV), beam current in thousands of amperes (KA), pulse duration of tens to hundreds of nanoseconds, kilojoules of beam energy, and instantaneous power of gigawatts to teffawatts (10(exp 9) to 10(exp 12) watts). Much of the early development work was directed toward single pulse machines, but recent work has extended these pulsed power devices to continuously repetitive applications. These relativistic beams penetrate deeply into materials, with stopping range on the order of a centimeter. Such high instantaneous power deposited in depth offers possibilities for new material fabrication and processing capabilities that can only now be explored. Fundamental techniques of pulse compression, high voltage requirements, beam generation and transport under space-charge-dominated conditions will be discussed in this paper.

  17. Characterisation of the current switch mechanism in two-stage wire array Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.; Hall, G. N.; Swadling, G. F.; Suzuki-Vidal, F.; Khoory, E.; Bland, S. N.; Pickworth, L.; Grouchy, P. de; Skidmore, J.; Suttle, L. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Waisman, E. M. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1106 (United States)


    In this paper, we describe the operation of a two-stage wire array z-pinch driven by the 1.4 MA, 240 ns rise-time Magpie pulsed-power device at Imperial College London. In this setup, an inverse wire array acts as a fast current switch, delivering a current pre-pulse into a cylindrical load wire array, before rapidly switching the majority of the generator current into the load after a 100–150 ns dwell time. A detailed analysis of the evolution of the load array during the pre-pulse is presented. Measurements of the load resistivity and energy deposition suggest significant bulk heating of the array mass occurs. The ∼5 kA pre-pulse delivers ∼0.8 J of energy to the load, leaving it in a mixed, predominantly liquid-vapour state. The main current switch occurs as the inverse array begins to explode and plasma expands into the load region. Electrical and imaging diagnostics indicate that the main current switch may evolve in part as a plasma flow switch, driven by the expansion of a magnetic cavity and plasma bubble along the length of the load array. Analysis of implosion trajectories suggests that approximately 1 MA switches into the load in 100 ns, corresponding to a doubling of the generator dI/dt. Potential scaling of the device to higher current machines is discussed.

  18. Two-stage liquefaction of a Spanish subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.T.; Fernandez, I.; Benito, A.M.; Cebolla, V.; Miranda, J.L.; Oelert, H.H. (Instituto de Carboquimica, Zaragoza (Spain))


    A Spanish subbituminous coal has been processed in two-stage liquefaction in a non-integrated process. The first-stage coal liquefaction has been carried out in a continuous pilot plant in Germany at Clausthal Technical University at 400[degree]C, 20 MPa hydrogen pressure and anthracene oil as solvent. The second-stage coal liquefaction has been performed in continuous operation in a hydroprocessing unit at the Instituto de Carboquimica at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The total conversion for the first-stage coal liquefaction was 75.41 wt% (coal d.a.f.), being 3.79 wt% gases, 2.58 wt% primary condensate and 69.04 wt% heavy liquids. The heteroatoms removal for the second-stage liquefaction was 97-99 wt% of S, 85-87 wt% of N and 93-100 wt% of O. The hydroprocessed liquids have about 70% of compounds with boiling point below 350[degree]C, and meet the sulphur and nitrogen specifications for refinery feedstocks. Liquids from two-stage coal liquefaction have been distilled, and the naphtha, kerosene and diesel fractions obtained have been characterized. 39 refs., 3 figs., 8 tabs.

  19. Two-Stage Heuristic Algorithm for Aircraft Recovery Problem

    Directory of Open Access Journals (Sweden)

    Cheng Zhang


    Full Text Available This study focuses on the aircraft recovery problem (ARP. In real-life operations, disruptions always cause schedule failures and make airlines suffer from great loss. Therefore, the main objective of the aircraft recovery problem is to minimize the total recovery cost and solve the problem within reasonable runtimes. An aircraft recovery model (ARM is proposed herein to formulate the ARP and use feasible line of flights as the basic variables in the model. We define the feasible line of flights (LOFs as a sequence of flights flown by an aircraft within one day. The number of LOFs exponentially grows with the number of flights. Hence, a two-stage heuristic is proposed to reduce the problem scale. The algorithm integrates a heuristic scoring procedure with an aggregated aircraft recovery model (AARM to preselect LOFs. The approach is tested on five real-life test scenarios. The computational results show that the proposed model provides a good formulation of the problem and can be solved within reasonable runtimes with the proposed methodology. The two-stage heuristic significantly reduces the number of LOFs after each stage and finally reduces the number of variables and constraints in the aircraft recovery model.

  20. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)


    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  1. The role of two-stage repair in modern hypospadiology

    Directory of Open Access Journals (Sweden)

    Aivar Bracka


    Full Text Available Hypospadias surgery continues to evolve. The enthusiasm for flap-based urethroplasty is waning and instead there is an increasing preference for urethroplasty that uses either the urethral plate alone or in combination with grafts. From the vast armamentarium of hypospadias repairs that are still in use, the author suggests a simple protocol of just three closely related procedures with which we can now repair almost all hypospadias. The tubularised incised plate (TIP repair and the ′Snodgraft′ modification of the TIP principle are simple and effective one-stage solutions when partial circumference urethroplasty is required. Conversely, the Bracka two-stage graft repair remains an ideal and versatile solution when a full circumference urethroplasty is required. It is particularly appropriate for severe primary hypospadias associated with a poor plate and marked chordee and also to replace a scarred, hairy or balanitis xerotica obliterans diseased urethra in re-operative salvage hypospadias.

  2. Composite likelihood and two-stage estimation in family studies

    DEFF Research Database (Denmark)

    Andersen, Elisabeth Anne Wreford


    In this paper register based family studies provide the motivation for linking a two-stage estimation procedure in copula models for multivariate failure time data with a composite likelihood approach. The asymptotic properties of the estimators in both parametric and semi-parametric models...... in this last case where very flexible modelling is possible. The suggested method is also studied in simulations and found to be efficient compared to maximum likelihood. Finally, the suggested method is applied to a family study of deep venous thromboembolism where it is seen that the association between ages...... are derived, combining the approaches of Parner (2001) and Andersen (2003). The method is mainly studied when the families consist of groups of exchangeable members (e.g. siblings) or members at different levels (e.g. parents and children). The advantages of the proposed method are especially clear...

  3. The design of two stage to orbit vehicles (United States)

    Gregorek, G. M.; Ramsay, T. N.


    Two designs are presented for a two-stage-to-orbit vehicle to complement an existing heavy lift vehicle. The payload is 10,000 lbs and 27 ft long by 10 ft in diameter for design purposes and must be carried to a low earth orbit by an air-breathing carrier configuration that can take off horizontally within 15,000 ft. Two designs are presented: a delta wing/body carrier in which the fuselage contains the orbiter; and a cranked-delta wing/body carrier in which the orbiter is carried piggy back. The engines for both carriers are turbofanramjets powered with liquid hydrogen, and the orbiters employ either a Space Shuttle Main Engine or a half-scale version with additional scramjet engines. The orbiter based on a full-scale Space Shuttle Main Engine is found to have a significantly higher takeoff weight which results in a higher total takeoff weight.

  4. The hybrid two stage anticlockwise cycle for ecological energy conversion

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr


    Full Text Available The anticlockwise cycle is commonly used for refrigeration, air conditioning and heat pumps applications. The application of refrigerant in the compression cycle is within the temperature limits of the triple point and the critical point. New refrigerants such as 1234yf or 1234ze have many disadvantages, therefore natural refrigerants application is favourable. The carbon dioxide and water can be applied only in the hybrid two stages cycle. The possibilities of this solutions are shown for refrigerating applications, as well some experimental results of the adsorption-compression double stages cycle, powered with solar collectors are shown. As a high temperature cycle the adsorption system is applied. The low temperature cycle is the compression stage with carbon dioxide as a working fluid. This allows to achieve relatively high COP for low temperature cycle and for the whole system.

  5. Lightweight Concrete Produced Using a Two-Stage Casting Process (United States)

    Yoon, Jin Young; Kim, Jae Hong; Hwang, Yoon Yi; Shin, Dong Kyu


    The type of lightweight aggregate and its volume fraction in a mix determine the density of lightweight concrete. Minimizing the density obviously requires a higher volume fraction, but this usually causes aggregates segregation in a conventional mixing process. This paper proposes a two-stage casting process to produce a lightweight concrete. This process involves placing lightweight aggregates in a frame and then filling in the remaining interstitial voids with cementitious grout. The casting process results in the lowest density of lightweight concrete, which consequently has low compressive strength. The irregularly shaped aggregates compensate for the weak point in terms of strength while the round-shape aggregates provide a strength of 20 MPa. Therefore, the proposed casting process can be applied for manufacturing non-structural elements and structural composites requiring a very low density and a strength of at most 20 MPa. PMID:28788007

  6. Two-stage designs for cross-over bioequivalence trials. (United States)

    Kieser, Meinhard; Rauch, Geraldine


    The topic of applying two-stage designs in the field of bioequivalence studies has recently gained attention in the literature and in regulatory guidelines. While there exists some methodological research on the application of group sequential designs in bioequivalence studies, implementation of adaptive approaches has focused up to now on superiority and non-inferiority trials. Especially, no comparison of the features and performance characteristics of these designs has been performed, and therefore, the question of which design to employ in this setting remains open. In this paper, we discuss and compare 'classical' group sequential designs and three types of adaptive designs that offer the option of mid-course sample size recalculation. A comprehensive simulation study demonstrates that group sequential designs can be identified, which show power characteristics that are similar to those of the adaptive designs but require a lower average sample size. The methods are illustrated with a real bioequivalence study example. Copyright © 2015 John Wiley & Sons, Ltd.

  7. A two-stage method for inverse medium scattering

    KAUST Repository

    Ito, Kazufumi


    We present a novel numerical method to the time-harmonic inverse medium scattering problem of recovering the refractive index from noisy near-field scattered data. The approach consists of two stages, one pruning step of detecting the scatterer support, and one resolution enhancing step with nonsmooth mixed regularization. The first step is strictly direct and of sampling type, and it faithfully detects the scatterer support. The second step is an innovative application of nonsmooth mixed regularization, and it accurately resolves the scatterer size as well as intensities. The nonsmooth model can be efficiently solved by a semi-smooth Newton-type method. Numerical results for two- and three-dimensional examples indicate that the new approach is accurate, computationally efficient, and robust with respect to data noise. © 2012 Elsevier Inc.

  8. Two stage hybrid approach for complex aortic coarctation repair

    Directory of Open Access Journals (Sweden)

    Crockett James


    Full Text Available Abstract Background Management of an adult patient with aortic coarctation and an associated cardiac pathology poses a great surgical challenge since there are no standard guidelines for the therapy of such complex pathology. Debate exists not only on which lesion should be corrected first, but also upon the type and timing of the procedure. Surgery can be one- or two-staged. Both of these strategies are accomplice with elevate morbidity and mortality. Case report In the face of such an extended surgical approach, balloon dilatation seems preferable for treatment of severe aortic coarctation. We present an adult male patient with aortic coarctation combined with ascending aorta aneurysm and concomitant aortic valve regurgitation. The aortic coarctation was corrected first, using percutaneous balloon dilatation; and in a second stage the aortic regurgitation and ascending aorta aneurysm was treated by Bentall procedure. The patients' postoperative period was uneventful. Three years after the operation he continues to do well.

  9. High Energy Density Capacitors Project (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  10. High energy neutrinos from GRBs

    CERN Document Server

    De Paolis, F; Orlando, D; Perrone, L


    It is by now recognized that GRBs can accelerate protons to relativistic energies and that high density media may be present nearby the source. We compute the high-energy gamma-ray and neutrino fluxes from the decay of pions produced through the interaction of accelerated protons with nucleons in the surrounding medium. Then, we estimate the flux of high-energy muons induced on a detector by upward-going neutrinos interacting through charge current processes with the surrounding matter.

  11. High energy laser demonstrators for defense applications (United States)

    Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.


    Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.

  12. Page 1 Cryogenic refrigeration methods 221 two stages of cooling ...

    Indian Academy of Sciences (India)

    It may be noted that the pulse tube is a very simple device; however, it appears that no commercial models of this type of refrigerator have entered the market so far. All the methods considered above (except the first one i.e. the use of liquid. Cryogen) have one thing in common, viz, all of them use gas as the working.

  13. Vibration and Acoustic Noise Characteristic on SRM with compensating winding by two stage commutation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seok Gyu; Choi, Tae Wan [Chinju National University (Korea); Lee, Jong Gun [Kumho Electronics Co., Ltd. (Korea)


    SRM drives generate large vibration and acoustic noise because it is rotated by step pulse mmf and switching commutation mechanism. The main vibration source of SRM drive is generated by rapidly variation of radial force when phase winding current is extinguished for commutation action. So the rapidly variation of radial force is repressed firstly to reduce vibrating force of SRM drive. This paper suggests an SRM excitation scheme using unidirect-short compensation winding to reduce vibration of the motor. The motor is excited by a two stage commutation method during commutation period. This reduction effect of vibration is verified with the result obtained in the test of prototype machine. (author). 7 refs., 11 figs.

  14. Effect of Silica Fume on two-stage Concrete Strength (United States)

    Abdelgader, H. S.; El-Baden, A. S.


    Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.

  15. High-energy astroparticle physics

    CERN Document Server

    Semikoz, A


    In these three lectures I discuss the present status of high-energy astroparticle physics including Ultra-High-Energy Cosmic Rays (UHECR), high-energy gamma rays, and neutrinos. The first lecture is devoted to ultra-high-energy cosmic rays. After a brief introduction to UHECR I discuss the acceleration of charged particles to highest energies in the astrophysical objects, their propagation in the intergalactic space, recent observational results by the Auger and HiRes experiments, anisotropies of UHECR arrival directions, and secondary gamma rays produced by UHECR. In the second lecture I review recent results on TeV gamma rays. After a short introduction to detection techniques, I discuss recent exciting results of the H.E.S.S., MAGIC, and Milagro experiments on the point-like and diffuse sources of TeV gamma rays. A special section is devoted to the detection of extragalactic magnetic fields with TeV gammaray measurements. Finally, in the third lecture I discuss Ultra-High-Energy (UHE) neutrinos. I review t...

  16. Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Krzysztof Gajowniczek


    Full Text Available Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors. In this paper, our contributions comprise a proposed data-mining scheme for demand modeling through peak detection, as well as the use of this information to feed the forecasting system. For this purpose, we have taken a different approach from that of time series forecasting, representing it as a two-stage pattern recognition problem. We have developed a peak classification model followed by a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of electricity peaks (load value equal to or above the 99th percentile of the load distribution and deliver accurate forecasts, with mean absolute percentage error (MAPE of 3.10% and resistant mean absolute percentage error (r-MAPE of 2.70% for the 24 h forecasting horizon.

  17. Immediate breast reconstruction in two stages using anatomical tissue expansion. (United States)

    Castelló, J R; Garro, L; Nájera, A; Mirelis, E; Sánchez-Olaso, A; Barros, J


    Over the last four years, 43 modified radical mastectomies and 13 simple mastectomies were done for 56 patients with breast cancer followed by immediate reconstruction in two stages using anatomical tissue expansion. In 49 patients a permanent prosthesis was successfully implanted while three patients refused a further operation, and four required removal of the expander. Complications were seen in 21 cases, including infection (n = 4), Baker III-IV contractures (n = 5), radiodermitis with breast distorsion (n = 3), and seroma (n = 2). Four patients required removal of the expander, and no further attempts were made to reconstruct the breast. All 10 patients given radiotherapy developed some kind of complication. After a mean follow up of 2.5 years (range 6-48 months), the aesthetic result was rated 6.9 and patient satisfaction 7.8 on a 0-10 scale. We concluded that immediate breast reconstruction with anatomical tissue expansion gives predictable aesthetic results, which satisfied most patients. Although the complication rate is high, it does not exceed complication rates associated with mastectomy alone or delayed reconstruction. At present, only patients undergoing preoperative or postoperative radiotherapy and hesitant patients are not considered to be candidates for this procedure.

  18. Two-stage shoulder reconstruction for active glenohumeral sepsis. (United States)

    Hattrup, Steven J; Renfree, Kevin J


    In some circumstances, two-stage reconstruction is recommended for the treatment of glenohumeral sepsis. This study retrospectively reviewed the results in 25 patients after this treatment. Pain was the only consistent preoperative symptom, found in 95% of patients. The most common infecting organisms were coagulase-negative Staphylococcus in 8 cases, Proprionibacterium acnes in 7, and methicillin-sensitive Staphylococcus aureus in 3. Outcomes were reviewed in 21 patients with 2-year minimum follow-up, at an average 4.1 years. Infection was eradicated in 18 of 21 shoulders. Success was related to the specific infecting organism, as all failures were among shoulders infected with Proprionibacterium (P=.0198). Pain was typically relieved, with a mean visual analog pain score of 1.67 at follow-up. Motion was similarly improved, with flexion increased to 100.9 degrees (Pshoulder reconstruction for infection is typically effective for curing the infection and improving pain and motion; however, function tends to remain limited. Copyright 2010, SLACK Incorporated.

  19. A two-stage DEA approach for environmental efficiency measurement. (United States)

    Song, Malin; Wang, Shuhong; Liu, Wei


    The slacks-based measure (SBM) model based on the constant returns to scale has achieved some good results in addressing the undesirable outputs, such as waste water and water gas, in measuring environmental efficiency. However, the traditional SBM model cannot deal with the scenario in which desirable outputs are constant. Based on the axiomatic theory of productivity, this paper carries out a systematic research on the SBM model considering undesirable outputs, and further expands the SBM model from the perspective of network analysis. The new model can not only perform efficiency evaluation considering undesirable outputs, but also calculate desirable and undesirable outputs separately. The latter advantage successfully solves the "dependence" problem of outputs, that is, we can not increase the desirable outputs without producing any undesirable outputs. The following illustration shows that the efficiency values obtained by two-stage approach are smaller than those obtained by the traditional SBM model. Our approach provides a more profound analysis on how to improve environmental efficiency of the decision making units.

  20. Two-Stage, 90-GHz, Low-Noise Amplifier (United States)

    Samoska, Lorene A.; Gaier, Todd C.; Xenos, Stephanie; Soria, Mary M.; Kangaslahti, Pekka P.; Cleary, Kieran A.; Ferreira, Linda; Lai, Richard; Mei, Xiaobing


    A device has been developed for coherent detection of the polarization of the cosmic microwave background (CMB). A two-stage amplifier has been designed that covers 75-110 GHz. The device uses the emerging 35-nm InP HEMT technology recently developed at Northrop Grumman Corporation primarily for use at higher frequencies. The amplifier has more than 18 dB gain and less than 35 K noise figure across the band. These devices have noise less than 30 K at 100 GHz. The development started with design activities at JPL, as well as characterization of multichip modules using existing InP. Following processing, a test campaign was carried out using single-chip modules at 100 GHz. Successful development of the chips will lead to development of multichip modules, with simultaneous Q and U Stokes parameter detection. This MMIC (monolithic microwave integrated circuit) amplifier takes advantage of performance improvements intended for higher frequencies, but in this innovation are applied at 90 GHz. The large amount of available gain ultimately leads to lower possible noise performance at 90 GHz.

  1. High-energy scissors mode

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R.; Faessler, A.; Dingfelder, M. [Institut fuer Theoretische Physik, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)


    All the orbital {ital M}1 excitations, at both low and high energies, obtained from a rotationally invariant quasiparticle random-phase approximation, represent the fragmented scissors mode. The high-energy {ital M}1 strength is almost purely orbital and resides in the region of the isovector giant quadrupole resonance. In heavy deformed nuclei the high-energy scissors model is strongly fragmented between 17 and 25 MeV (with uncertainties arising from the poor knowledge of the isovector potential). The coherent scissors motion is hindered by the fragmentation and {ital B}({ital M}1){lt}0.25{mu}{sub {ital N}}{sup 2} for single transitions in this region. The ({ital e},{ital e}{prime}) cross sections for excitations above 17 MeV are one order of magnitude larger for {ital E}2 than for {ital M}1 excitations even at backward angles.

  2. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V


    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  3. Transport fuels from two-stage coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.; Cebolla, V.; Fernandez, I.; Martinez, M.T.; Miranda, J.L.; Oelert, H.; Prado, J.G. (Instituto de Carboquimica CSIC, Zaragoza (Spain))


    Four Spanish lignites and their vitrinite concentrates were evaluated for coal liquefaction. Correlationships between the content of vitrinite and conversion in direct liquefaction were observed for the lignites but not for the vitrinite concentrates. The most reactive of the four coals was processed in two-stage liquefaction at a higher scale. First-stage coal liquefaction was carried out in a continuous unit at Clausthal University at a temperature of 400[degree]C at 20 MPa hydrogen pressure and with anthracene oil as a solvent. The coal conversion obtained was 75.41% being 3.79% gases, 2.58% primary condensate and 69.04% heavy liquids. A hydroprocessing unit was built at the Instituto de Carboquimica for the second-stage coal liquefaction. Whole and deasphalted liquids from the first-stage liquefaction were processed at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The effects of liquid hourly space velocity (LHSV), temperature, gas/liquid ratio and catalyst on the heteroatom liquids, and levels of 5 ppm of nitrogen and 52 ppm of sulphur were reached at 450[degree]C, 10 MPa hydrogen pressure, 0.08 kg H[sub 2]/kg feedstock and with Harshaw HT-500E catalyst. The liquids obtained were hydroprocessed again at 420[degree]C, 10 MPa hydrogen pressure and 0.06 kg H[sub 2]/kg feedstock to hydrogenate the aromatic structures. In these conditions, the aromaticity was reduced considerably, and 39% of naphthas and 35% of kerosene fractions were obtained. 18 refs., 4 figs., 4 tabs.

  4. Developments in high energy theory

    Indian Academy of Sciences (India)

    It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the Standard Model, and proposals – including the radical ...

  5. Developments in high energy theory

    Indian Academy of Sciences (India)

    High-energy physics; gauge theories; Standard Model; physics beyond the ... elusive goal. The Standard Model describes the electromagnetic, weak and strong interactions, but only unifies the first two. Despite its spectacular success in ex ..... Towards the end of the 1960s, a path-breaking new 'deep inelastic' electron scat-.

  6. Very High Energy γ- rays from Galactic Sources

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    found (main pulse region for Crab and around 0.6 for Geminga) displayed features expected from gamma ray events. 3. Recent PACT observations on galactic sources. A new atmospheric Cerenkov array to study cosmic sources of Very High Energy. (VHE) Gamma rays has been set up in Pachmarhi in central India.

  7. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics


    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  8. A two-stage outflow in NGC 1068 (United States)

    May, D.; Steiner, J. E.


    We present an analysis of the Seyfert 2 galaxy NGC 1068 of archive data from the Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI)-Very Large Telescope, in the HK bands with pixel scales of 0.1 (data set 1 - DS1) and 0.025 (DS2) arcsec. The data are revisited with a sophisticated data treatment, such as the differential atmospheric refraction correction and the application of a Butterworth filtering and deconvolution. The gain in the process is quantified by a significant improvement in the Strehl ratio and it shows that an unprecedented high spatial resolution is achieved. For DS1, a detailed study of the H2, [Fe II] and [Si VI] emission lines reveals a three-phase gas morphology: (1) the low-velocity [Fe II] emission representing the glowing wall of an hourglass structure, (2) the high-velocity compact blobs of low and high ionization emissions filling the hourglass volume and (3) the distribution of H2 molecular gas defines the thick and irregular walls of a bubble surrounding a cavity. Both the hourglass and the molecular emissions have an asymmetry caused by the fragmentation of the north-eastern molecular wall, closest to the active galactic nucleus, resulting in high-velocity compact blobs of ionized gas outside the bubble. The south-western part of the bubble is excavated by the jet, where the blobs remain confined and are blown along the bubble's inner boundary. We propose that those blobs are driven by a hot 'secondary wind' coming from the spot where the jet interacts and injects its energy in the molecular gas. The combination of a primary wind launched by the central source and the secondary wind is what we call a two-stage outflow. For DS2, we detected a [Si VI] outflow nearly coplanar to the maser disc and orthogonal to the CO outflow found by a previous study. Such unexpected scenario is interpreted as the interaction between the central radiation field and a two-phase gas density torus.

  9. High Energy Density Capacitors Project (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  10. Pb0.94La0.04[(Zr0.70Sn0.30)0.90Ti0.10]O3 antiferroelectric bulk ceramics for pulsed capacitors with high energy and power density (United States)

    Xu, Ran; Li, Borui; Tian, Jingjing; Xu, Zhuo; Feng, Yujun; Wei, Xiaoyong; Huang, Dong; Yang, Lanjun


    Pb0.94La0.04[(Zr0.70Sn0.30)0.90Ti0.10]O3 antiferroelectric (AFE) bulk ceramics with both excellent energy storage and release properties were fabricated via the solid-state reaction method. The ceramics exhibited a high releasable energy density of 1.39 J/cm3, high efficiency of 92%, and good temperature stability under 104 kV/cm. Fast discharge current was measured, and a large current density up to 820 A/cm2 was achieved. The nonlinear dielectric behavior resulted in the variation of the discharge period of AFE ceramics. The stored charge was released completely due to the low remanent polarization, and the actually released energy density was about 1.0 J/cm3 in 400 ns. A high peak power density of 6.4 × 109 W/kg without a load resistor and an average power density of 3.16 × 108 W/kg with a 204.7 Ω load resistor were achieved in the rapid discharge process. The excellent energy storage and release properties indicate that the obtained antiferroelectric bulk ceramics are very promising for submicrosecond pulsed capacitors.

  11. High energy density aluminum battery (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan


    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  12. A high energy physics perspective

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.


    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  13. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V


    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  14. Two-Stage Exams Improve Student Learning in an Introductory Geology Course: Logistics, Attendance, and Grades (United States)

    Knierim, Katherine; Turner, Henry; Davis, Ralph K.


    Two-stage exams--where students complete part one of an exam closed book and independently and part two is completed open book and independently (two-stage independent, or TS-I) or collaboratively (two-stage collaborative, or TS-C)--provide a means to include collaborative learning in summative assessments. Collaborative learning has been shown to…

  15. Duke University high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.


    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and {sub {Chi}} meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report.

  16. Flexible High Energy Lidar Transmitter for Remote Gas and Wind Sensing Project (United States)

    National Aeronautics and Space Administration — Fibertek proposes a high energy and flexible operation 1570 nm pulsed lidar transmitter for airborne and space-based remote CO2 gas and doppler wind sensing. The...

  17. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G


    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  18. Tactical high-energy laser (United States)

    Shwartz, Josef; Wilson, Gerald T.; Avidor, Joel M.


    The Nautilus Project was started in 1995 as a joint US-Israel feasibility study for using laser systems to defend against short-range artillery rockets. It has now matured into a successful laser weapon demonstration program - the Tactical High Energy Laser (THEL) Advanced Concept Technology Demonstration (ACTD) Program. By now the THEL Demonstrator has engaged and destroyed a large number of artillery rockets in mid-flight in an extended series of demonstration tests at the US Army's White Sands Missile Range in New Mexico. The THEL ACTD hardware and development process are described in this paper, as well as the major test results. The paper also describes the operational concept for a deployed THEL weapon system and some possible growth paths for the THEL ACTD Program.

  19. Two-stage acceleration of externally injected electrons in plasma bubble derived from the combination of DLA and LWFA (United States)

    Khudik, Vladimir; Wang, Tianhong; Vicuna, Daniel; Zhang, Xi; Shvets, Gennady


    Simultaneous interactions of accelerated electrons directly with a laser pulse and with a laser wakefield are studied using a novel quasistatic 3D particle-in-cell code. Relativistic electrons externally injected into the plasma bubble's decelerating phase can gain significant energy through the direct laser acceleration (DLA) mechanism from the driving laser pulse, increasing the amplitude of betatron oscillations. With time, the resonant interaction condition is violated, leading to gradual dephasing between electrons and laser wave, and to eventual slipping of the electrons to the back of the plasma bubble. After that, the oscillating electrons experience the second stage of acceleration gaining energy only from the bubble wakefield. We analyze each stage of acceleration and show that electrons undergoing two stages emits much more X-ray radiation compared with those accelerated during one wakefield stage. This work was supported by DOE Grant DESC0007889 and by AFOSR Grant FA9550-16-1-0013.


    Energy Technology Data Exchange (ETDEWEB)

    Wootton, A J


    The workshop is intended as a forum to discuss the latest experimental, theoretical and computational results related to the interaction of high energy radiation with matter. High energy is intended to mean soft x-ray and beyond, but important new results from visible systems will be incorporated. The workshop will be interdisciplinary amongst scientists from many fields, including: plasma physics; x-ray physics and optics; solid state physics and material science; biology ; quantum optics. Topics will include, among other subjects: understanding damage thresholds for x-ray interactions with matter developing {approx} 5 keV x-ray sources to investigate damage; developing {approx} 100 keV Thomsom sources for material studies; developing short pulse (100 fs and less) x-ray diagnostics; developing novel X-ray optics; and developing models for the response of biological samples to ultra intense, sub ps x-rays high-energy radiation.

  1. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences


    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  2. High-Energy Passive Mode-Locking of Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Edwin Ding


    Full Text Available Mode-locking refers to the generation of ultrashort optical pulses in laser systems. A comprehensive study of achieving high-energy pulses in a ring cavity fiber laser that is passively mode-locked by a series of waveplates and a polarizer is presented in this paper. Specifically, it is shown that the multipulsing instability can be circumvented in favor of bifurcating to higher-energy single pulses by appropriately adjusting the group velocity dispersion in the fiber and the waveplate/polarizer settings in the saturable absorber. The findings may be used as practical guidelines for designing high-power lasers since the theoretical model relates directly to the experimental settings.

  3. High Energy Break-Up of Few-Nucleon Systems (United States)

    Sargsian, Misak


    We discus recent developments in theory of high energy two-body break-up reactions of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The latter provides a mechanism of sharing the initial high momentum of the photon by the outgoing two nucleons. Within HRM we discuss hard break-up reactions involving 2D and 3He targets. Another development of HRM is the prediction of new helicity selection mechanism for hard two-body reactions, which was apparently confirmed in the recent JLab experiment.

  4. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers. (United States)

    Wan, Peng; Yang, Lih-Mei; Liu, Jian


    Two all fiber-based laser systems are demonstrated to achieve high energy and high average power femtosecond pulsed outputs at wavelength of 1 µm. In the high energy laser system, a pulse energy of 1.05 mJ (0.85 mJ after pulse compressor) at 100 kHz repetition rate has been realized by a Yb-doped ultra large-core single-mode photonic crystal fiber (PCF) rod amplifier, seeded with a 50 µJ fiber laser. The pulse duration is 705 fs. In the high average power experiment, a large mode area (LMA) fiber has been used in the final stage amplifier, seeded with a 50 W mode locked fiber laser. The system is running at a repetition rate of 69 MHz producing 1052 W of average power before compressor. After pulse compression, a pulse duration of 800 fs was measured.


    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Rice, C Keith [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL


    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  6. Phase conjugation of high energy lasers.

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, David E; Valley, Michael T.; Atherton, Briggs W.; Bigman, Verle Howard; Boye, Lydia Ann; Broyles, Robin Scott; Kimmel, Mark W.; Law, Ryan J.; Yoder, James R.


    In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.

  7. Split School of High Energy Physics 2015

    CERN Document Server


    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  8. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J


    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  9. High Energy Astrophysics Science Archive Research Center (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  10. High Energy Solid State Laser Research Facility (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  11. Second order analysis of two-stage rank tests for the one-sample problem

    NARCIS (Netherlands)

    Albers, Willem/Wim


    In this paper we present a rank analogue to Stein's two-stage procedure. We analyze its behavior to second order using existing asymptotic expansions for fixed sample size rank tests and recent results on combinations of independent rank statistics.


    NARCIS (Netherlands)

    Vuurpijl, L.; Schomaker, L.


    This paper describes a two-stage classification method for (1) classification of isolated characters and (2) verification of the classification result. Character prototypes are generated using hierarchical clustering. For those prototypes known to sometimes produce wrong classification results, a

  13. Design of a Scalable Modular Production System for a Two-Stage Food Service Franchise System

    National Research Council Canada - National Science Library

    Matt, D. T; Rauch, E


    .... The purpose of this research is to examine the case of a European fresh food manufacturer's approach to introduce a scalable modular production concept for an international two-stage gastronomy...

  14. A Two-Stage Waste Gasification Reactor for Mars In-Situ Resource Utilization Project (United States)

    National Aeronautics and Space Administration — We propose to design, build, and test a two-stage waste processing reactor for space applications. Our proposed technology converts waste from space missions into...

  15. Cost-effectiveness Analysis of a Two-stage Screening Intervention for Hepatocellular Carcinoma in Taiwan

    Directory of Open Access Journals (Sweden)

    Sophy Ting-Fang Shih


    Conclusion: Screening the population of high-risk individuals for HCC with the two-stage screening intervention in Taiwan is considered potentially cost-effective compared with opportunistic screening in the target population of an HCC endemic area.

  16. Optimized trigger for ultra-high-energy cosmic-ray and neutrino observations with the low frequency radio array

    NARCIS (Netherlands)

    Singh, K.; Mevius, M.; Scholten, O.; Anderson, J.M.; van Ardenne, A.; Arts, M.; Avruch, M.; Asgekar, A.; Bell, M.; Bennema, P.; Bentum, Marinus Jan; ... [et al.], [Unknown


    When an ultra-high energy neutrino or cosmic-ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses.

  17. Optimized trigger for ultra-high-energy cosmic-ray and neutrino observations with the low frequency radio array

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Vrije Universiteit Brussel, Dienst ELEM, B-1050 Brussels (Belgium); Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Mevius, M. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Scholten, O., E-mail: [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Anderson, J.M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Ardenne, A. van; Arts, M. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Avruch, M. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen (Netherlands); Asgekar, A. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Bell, M. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Bennema, P.; Bentum, M. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Bernadi, G. [Center for Astrophysics, Harvard University (United States); Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen (Netherlands); Best, P. [Institute for Astronomy, University of Edinburgh, Royal Observatory of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Boonstra, A.-J.; Bregman, J.; Brink, R. van de; Broekema, C.; Brouw, W. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Brueggen, M. [Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany); and others


    When an ultra-high energy neutrino or cosmic-ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses.

  18. High energy interactions of cosmic ray particles (United States)

    Jones, L. W.


    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  19. Two-stage ionoacoustic range verification leveraging Monte Carlo and acoustic simulations to stably account for tissue inhomogeneity and accelerator-specific time structure - A simulation study. (United States)

    Patch, Sarah K; Hoff, Daniel E M; Webb, Tyler B; Sobotka, Lee G; Zhao, Tianyu


    Range errors constrain treatment planning by limiting choice of ion beam angles and requiring large margins. Ionoacoustic range verification requires recovering the location of an acoustic source from low frequency signals. A priori information is applied to stably overcome resolution limits of inverse acoustic source imaging in this simulation study. In particular, the accuracy and robustness of ionoacoustic range verification for lateral and oblique delivery of high-energy protons to the prostate is examined. Dose maps were computed using GEANT4 Monte Carlo simulations via the TOPAS user interface. Thermoacoustic pulses were propagated using k-Wave software, with initial pressures corresponding to instantaneous dose deposition and piecewise constant maps of tissue properties derived from the planning CT. A database of dose maps with corresponding thermoacoustic emissions and Bragg peak locations, referred to as "control points," were precomputed. Corresponding thermoacoustic emissions were also precomputed. Pulses were recorded at four coplanar locations corresponding to the outer surface of a virtual transrectal array. To model experimental beam delivery, k-Wave results were convolved in time with a Gaussian envelope to account for noninstantaneous proton delivery by a synchrocyclotron. Thermoacoustic pulses were bandlimited below 150 kHz, and amplitudes were directly proportional to charge delivered. To test robustness of our method, white noise was added. Range was estimated in a two-step process. The first step obtained a preliminary range estimate by one-way beamforming. The second step was taken using data corresponding to the "control point" nearest to the preliminary range estimate. For each receiver, the time of flight difference, ∆t, between the measured and control thermoacoustic signals were accurately estimated by applying the Fourier shift theorem. Receiver-Bragg peak distance was then estimated by adding vs ∆t to the known distance of the

  20. Accuracy of the One-Stage and Two-Stage Impression Techniques: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Ladan Jamshidy


    Full Text Available Introduction. One of the main steps of impression is the selection and preparation of an appropriate tray. Hence, the present study aimed to analyze and compare the accuracy of one- and two-stage impression techniques. Materials and Methods. A resin laboratory-made model, as the first molar, was prepared by standard method for full crowns with processed preparation finish line of 1 mm depth and convergence angle of 3-4°. Impression was made 20 times with one-stage technique and 20 times with two-stage technique using an appropriate tray. To measure the marginal gap, the distance between the restoration margin and preparation finish line of plaster dies was vertically determined in mid mesial, distal, buccal, and lingual (MDBL regions by a stereomicroscope using a standard method. Results. The results of independent test showed that the mean value of the marginal gap obtained by one-stage impression technique was higher than that of two-stage impression technique. Further, there was no significant difference between one- and two-stage impression techniques in mid buccal region, but a significant difference was reported between the two impression techniques in MDL regions and in general. Conclusion. The findings of the present study indicated higher accuracy for two-stage impression technique than for the one-stage impression technique.

  1. New accelerators in high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Blewett, J.P.


    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  2. High Energy Particles from the Universe

    CERN Document Server

    Ong, R A


    The field of high energy particle astronomy is exciting and rapidly developing. In the last few years, we have detected extragalactic sources of intense TeV gamma radiation and individual cosmic ray particles with energies exceeding 25 Joules. Understanding the workings of astrophysics under extreme conditions is the primary goal of this field. Also important is the possibility of using high energy particles from space to probe beyond the standard models of particle physics and cosmology. This paper presents a review of high energy particle astronomy using photons, cosmic rays, and neutrinos.

  3. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel


    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  4. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts) (United States)


    The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL Presentation to: IEEE Pulsed Power and Plasma Science...Conference C. J. Keane Director, NIF User Office June 21, 2013 1491978-1-4673-5168-3/13/$31.00 ©2013 IEEE Report Documentation Page Form ApprovedOMB No...4. TITLE AND SUBTITLE The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL 5a. CONTRACT NUMBER 5b. GRANT

  5. A Two-Stage Approach to Civil Conflict: Contested Incompatibilities and Armed Violence

    DEFF Research Database (Denmark)

    Bartusevicius, Henrikas; Gleditsch, Kristian Skrede


    conflict origination but have no clear effect on militarization, whereas other features emphasized as shaping the risk of civil war, such as refugee flows and soft state power, strongly influence militarization but not incompatibilities. We posit that a two-stage approach to conflict analysis can help......We present a two-stage approach to civil conflict analysis. Unlike conventional approaches that focus only on armed conflict and treat all other cases as “at peace”, we first distinguish cases with and without contested incompatibilities (Stage 1) and then whether or not contested incompatibilities...... prior studies of violent civil conflict, reformulated as a two-stage process, considering a number of different estimation procedures and potential selection problems. We find that the group-based horizontal political inequalities highlighted in research on violent civil conflict clearly influence...

  6. Succinic acid production with metabolically engineered E. coli recovered from two-stage fermentation. (United States)

    Ma, Jiang-Feng; Jiang, Min; Chen, Ke-Quan; Xu, Bing; Liu, Shu-Wen; Wei, Ping; Ying, Han-Jie


    Escherichia coli AFP111 cells recovered from spent two-stage fermentation broth were investigated for additional production of succinic acid under anaerobic conditions. Recovered cells produced succinic acid in an aqueous environment with no nutrient supplementation except for glucose and MgCO(3). In addition, initial glucose concentration and cell density had a significant influence on succinic acid mass yield and productivity. Although the final concentration of succinic acid from recovered cells was lower than from two-stage fermentation, an average succinic acid mass yield of 0.85 g/g was achieved with an average productivity of 1.81 g/l h after three rounds of recycling, which was comparable to two-stage fermentation. These results suggested that recovered cells might be reused for the efficient production of succinic acid.

  7. Frequency analysis of a two-stage planetary gearbox using two different methodologies (United States)

    Feki, Nabih; Karray, Maha; Khabou, Mohamed Tawfik; Chaari, Fakher; Haddar, Mohamed


    This paper is focused on the characterization of the frequency content of vibration signals issued from a two-stage planetary gearbox. To achieve this goal, two different methodologies are adopted: the lumped-parameter modeling approach and the phenomenological modeling approach. The two methodologies aim to describe the complex vibrations generated by a two-stage planetary gearbox. The phenomenological model describes directly the vibrations as measured by a sensor fixed outside the fixed ring gear with respect to an inertial reference frame, while results from a lumped-parameter model are referenced with respect to a rotating frame and then transferred into an inertial reference frame. Two different case studies of the two-stage planetary gear are adopted to describe the vibration and the corresponding spectra using both models. Each case presents a specific geometry and a specific spectral structure.

  8. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)


    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  9. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.


    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  10. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.


    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

  11. 1570 nm High Energy Fiber Laser Project (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy fiber laser for remote sensing. Current state-of-art technologies can not provide all features of...

  12. High Energy Single Frequency Resonant Amplifier Project (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  13. Optimal two-stage strategy for detecting interacting genes in complex diseases

    Directory of Open Access Journals (Sweden)

    Man Michael


    Full Text Available Abstract Background The mapping of complex diseases is one of the most important problems in human genetics today. The rapid development of technology for genetic research has led to the discovery of millions of polymorphisms across the human genome, making it possible to conduct genome-wide association studies with hundreds of thousands of markers. Given the large number of markers to be tested in such studies, a two-stage strategy may be a reasonable and powerful approach: in the first stage, a small subset of promising loci is identified using single-locus testing, and, in the second stage, multi-locus methods are used while taking into account the loci selected in the first stage. In this report, we investigate and compare two possible two-stage strategies for genome-wide association studies: a conditional approach and a simultaneous approach. Results We investigate the power of both the conditional and the simultaneous approach to detect the disease loci for a range of two-locus disease models in a case-control study design. Our results suggest that, overall, the conditional approach is more robust and more powerful than the simultaneous approach; the conditional approach can greatly outperform the simultaneous approach when one of the two disease loci has weak marginal effect, but interacts strongly with the other, stronger locus (easily detectable using single-locus methods in the first stage. Conclusion Genome-wide association studies hold the promise of finding new genes implicated in complex diseases. Two-stage strategies are likely to be employed in these large-scale studies. Therefore we compared two natural two-stage approaches: the conditional approach and the simultaneous approach. Our power studies suggest that, when doing genome-wide association studies, a two-stage conditional approach is likely to be more powerful than a two-stage simultaneous approach.

  14. European School of High-Energy Physics

    CERN Document Server


    The European School of High-Energy Physics is intended to give young experimental and phenomenological physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, Monte Carlo generators, relativistic heavy-ion physics, the flavour dynamics and CP violation in the Standard Model, cosmology, and high-energy neutrino astronomy with IceCube.

  15. Future of high energy physics some aspects

    CERN Document Server

    Prokofiev, Kirill


    This book comprises 26 carefully edited articles with well-referenced and up-to-date material written by many of the leading experts. These articles originated from presentations and dialogues at the second HKUST Institute for Advanced Study Program on High Energy Physics are organized into three aspects, Theory, Accelerator, and Experiment, focusing on in-depth analyses and technical aspects that are essential for the developments and expectations for the future high energy physics.

  16. New developments in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Neal, H.A.


    Some of the important developments in the field of high energy physics are reviewed. Starting from the status of knowledge of the structure of matter the details of experiments leading to the discovery of charmed particles and psi resonances are emphasized. Also some of the areas of activity of the Indiana University High Energy group are reviewed and related to the principal unsolved problems in the field. (JFP)

  17. Heavy Quark Production at High Energy

    CERN Document Server

    Ball, R D


    We report on QCD radiative corrections to heavy quark production valid at high energy. The formulae presented will allow a matched calculation of the total cross section which is correct at $O(\\as^3)$ and includes resummation of all terms of order $\\as^3 [\\as \\ln (s/m^2)]^n$. We also include asymptotic estimates of the effect of the high energy resummation. A complete description of the calculation of the heavy quark impact factor is included in an appendix.

  18. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.


    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  19. Institute for High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Alan [Univ. of Texas, Austin, TX (United States)


    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  20. Evaluation of Monte Carlo tools for high energy atmospheric physics (United States)

    Rutjes, Casper; Sarria, David; Broberg Skeltved, Alexander; Luque, Alejandro; Diniz, Gabriel; Østgaard, Nikolai; Ebert, Ute


    The emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.

  1. Evaluation of Monte Carlo tools for high energy atmospheric physics

    Directory of Open Access Journals (Sweden)

    C. Rutjes


    Full Text Available The emerging field of high energy atmospheric physics (HEAP includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.

  2. Methane production from sweet sorghum residues via a two-stage process

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelatou, K.; Dravillas, K.; Lyberatos, G. [University of Patras (Greece). Department of Chemical Engineering, Laboratory of Biochemical Engineering and Environmental Technology


    The start-up of a two-stage reactor configuration for the anaerobic digestion of sweet sorghum residues was evaluated. The sweet sorghum residues were a waste stream originating from the alcoholic fermentation of sweet sorghum and the subsequent distillation step. This waste stream contained high concentration of solid matter (9% TS) and thus could be characterized as a semi-solid, not easily biodegradable wastewater with high COD (115 g/l). The application of the proposed two-stage configuration (consisting of one thermophilic hydrolyser and one mesophilic methaniser) achieved a methane production of 16 l/l wastewater under a hydraulic retention time of 19 d. (author)

  3. One-stage and two-stage penile buccal mucosa urethroplasty

    Directory of Open Access Journals (Sweden)

    G. Barbagli


    Full Text Available The paper provides the reader with the detailed description of current techniques of one-stage and two-stage penile buccal mucosa urethroplasty. The paper provides the reader with the preoperative patient evaluation paying attention to the use of diagnostic tools. The one-stage penile urethroplasty using buccal mucosa graft with the application of glue is preliminary showed and discussed. Two-stage penile urethroplasty is then reported. A detailed description of first-stage urethroplasty according Johanson technique is reported. A second-stage urethroplasty using buccal mucosa graft and glue is presented. Finally postoperative course and follow-up are addressed.

  4. A Copositive Approach for Two-Stage Adjustable Robust Optimization with Uncertain Right-Hand Sides


    Xu, Guanglin; Burer, Samuel


    We study two-stage adjustable robust linear programming in which the right-hand sides are uncertain and belong to a convex, compact uncertainty set. This problem is NP-hard, and the affine policy is a popular, tractable approximation. We prove that under standard and simple conditions, the two-stage problem can be reformulated as a copositive optimization problem, which in turn leads to a class of tractable, semidefinite-based approximations that are at least as strong as the affine policy. W...

  5. Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials

    DEFF Research Database (Denmark)

    Ahmadi Atouei, Saeed; Ranjbar, Ali Akbar; Rezaniakolaei, Alireza


    experimentally. In the first stage, a TEG module installed between a phase change material (PCM) heat sink, as cooling system, and an electrical heater, as the heat source. Because of the inherent characteristics of PCMs to save the thermal energy as latent heat, the PCM heat sink is used as the heat source......Due to limitations in performance of thermoelectric materials, applying two-stage thermoelectric generator (TTEG) has been proposed to improve the performance of thermoelectric generator (TEG) system. In this paper, a novel prototype of a two-stage thermoelectric generator system is investigated...

  6. Reliable pump sources for high-energy class lasers (United States)

    Wölz, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Wolf, Jürgen; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen


    High-energy class laser systems operating at high average power are destined to serve fundamental research and commercial applications. System cost is becoming decisive, and JENOPTIK supports future developments with the new range of 500 W quasi-continuous wave (QCW) laser diode bars. In response to different strategies in implementing high-energy class laser systems, pump wavelengths of 880 nm and 940 nm are available. The higher power output per chip increases array irradiance and reduces the size of the optical system, lowering system cost. Reliability testing of the 880 nm laser diode bar has shown 1 Gshots at 500 W and 300 μs pulse duration, with insignificant degradation. Parallel operation in eight-bar diode stacks permits 4 kW pulse power operation. A new high-density QCW package is under development at JENOPTIK. Cost and reliability being the design criteria, the diode stacks are made by simultaneous soldering of submounts and insulating ceramic. The new QCW stack assembly technology permits an array irradiance of 12.5 kW/cm². We present the current state of the development, including laboratory data from prototypes using the new 500 W laser diode in dense packaging.

  7. Design, Modelling and Simulation of Two-Phase Two-Stage Electronic System with Orthogonal Output for Supplying of Two-Phase ASM

    Directory of Open Access Journals (Sweden)

    Michal Prazenica


    Full Text Available This paper deals with the two-stage two-phase electronic systems with orthogonal output voltages and currents - DC/AC/AC. Design of two-stage DC/AC/AC high frequency converter with two-phase orthogonal output using single-phase matrix converter is also introduced. Output voltages of them are strongly nonharmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal currents with low total harmonic distortion. Simulation experiment results of matrix converter for both steady and transient states for IM motors are given in the paper, also experimental verification under R-L load, so far. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and application with high frequency voltage sources.

  8. Feasibility study on temporal-resolved diffraction of high-energy electrons produced in femtosecond laser-plasmas

    CERN Document Server

    Zhang Jun; Cang Yu; Chen Qing; Peng Lian Mao; Wang Huai Bin; Zhong Jia Yong


    The high-energy electrons can be produced in the interaction between intense ultra-short laser pulses and Al targets. The diffraction may take place when high-energy electrons pass through an Al single crystal. Feasibility is studied using such diffraction as a method to analyze the structures of crystals

  9. Parameter estimation for fm signals in two stages: non uniform fast ...

    African Journals Online (AJOL)

    This study deals with estimating the parameters of the received signal of the poly phase in three orders. The process of estimation occurs in two stages: in the first stage, the high orders of the signal are estimated highly accurately using the Non Uniform FFT. The received signal passes through the componential match filter ...

  10. On a pair of job-machine assignment problems with two stages

    NARCIS (Netherlands)

    Volgenant, A.; Duin, C.W.


    We consider two assignment problems in which a number of jobs are assigned to the same number of machines that operate in parallel, but in two stages. They are known as the ‘2-stage time minimizing assignment problem’ and the ‘bi-level time minimizing assignment problem’. These problems have the

  11. Two-stage, dilute sulfuric acid hydrolysis of wood : an investigation of fundamentals (United States)

    John F. Harris; Andrew J. Baker; Anthony H. Conner; Thomas W. Jeffries; James L. Minor; Roger C. Pettersen; Ralph W. Scott; Edward L Springer; Theodore H. Wegner; John I. Zerbe


    This paper presents a fundamental analysis of the processing steps in the production of methanol from southern red oak (Quercus falcata Michx.) by two-stage dilute sulfuric acid hydrolysis. Data for hemicellulose and cellulose hydrolysis are correlated using models. This information is used to develop and evaluate a process design.

  12. Two-Stage Electric Vehicle Charging Coordination in Low Voltage Distribution Grids

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna


    ). Being a sizable rated element, electric vehicles (EVs) can offer a great deal of demand flexibility in future intelligent grids. This paper first investigates and analyzes driving pattern and charging requirements of EVs. Secondly, a two-stage charging algorithm, namely local adaptive control...

  13. Single mode fibers for two stage higher-order soliton compression (United States)

    Li, Qian; Cheng, Zihao


    Practical fiber designs for two stage third-order soliton compression with single mode fibers are presented. Fiber design rules as well as influences of higher-order dispersion and splicing loss are discussed. A compression factor of 85.92 is achieved with only 60.39% pedestal energy.

  14. Application of a two-stage fuzzy neural network to a prostate cancer prognosis system. (United States)

    Kuo, Ren-Jieh; Huang, Man-Hsin; Cheng, Wei-Che; Lin, Chih-Chieh; Wu, Yung-Hung


    This study intends to develop a two-stage fuzzy neural network (FNN) for prognoses of prostate cancer. Due to the difficulty of making prognoses of prostate cancer, this study proposes a two-stage FNN for prediction. The initial membership function parameters of FNN are determined by cluster analysis. Then, an integration of the optimization version of an artificial immune network (Opt-aiNET) and a particle swarm optimization (PSO) algorithm is developed to investigate the relationship between the inputs and outputs. The evaluation results for three benchmark functions show that the proposed two-stage FNN has better performance than the other algorithms. In addition, model evaluation results indicate that the proposed algorithm really can predict prognoses of prostate cancer more accurately. The proposed two-stage FNN is able to learn the relationship between the clinical features and the prognosis of prostate cancer. Once the clinical data are known, the prognosis of prostate cancer patient can be predicted. Furthermore, unlike artificial neural networks, it is much easier to interpret the training results of the proposed network since they are in the form of fuzzy IF-THEN rules. These rules are very important for medical doctors. This can dramatically assist medical doctors to make decisions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Development of a heavy-duty diesel engine with two-stage turbocharging

    NARCIS (Netherlands)

    Sturm, L.; Kruithof, J.


    A mean value model was developed by using Matrixx/ Systembuild simulation tool for designing real-time control algorithms for the two-stage engine. All desired characteristics are achieved, apart from lower A/F ratio at lower engine speeds and Turbocharger matches calculations. The CANbus is used to

  16. Two-Stage Power Factor Corrected Power Supplies: The Low Component-Stress Approach

    DEFF Research Database (Denmark)

    Petersen, Lars; Andersen, Michael Andreas E.


    The discussion concerning the use of single-stage contra two-stage PFC solutions has been going on for the last decade and it continues. The purpose of this paper is to direct the focus back on how the power is processed and not so much as to the number of stages or the amount of power processed....

  17. Hearing sensitivity in adults with a unilateral cleft lip and palate after two-stage palatoplasty

    NARCIS (Netherlands)

    Kappen, I. F P M; Schreinemakers, J. B S; Oomen, K. P Q; Bittermann, D.; Kon, M.; Breugem, C. C.; Mink van der Molen, A. B.


    Objective To evaluate long-term hearing and middle ear status in patients treated for a unilateral complete cleft lip and palate (UCLP) by two-stage palatoplasty. Methods Forty-nine UCLP patients aged 17 years and older were included in this retrospective study. Patients were invited for a

  18. The rearrangement process in a two-stage broadcast switching network

    DEFF Research Database (Denmark)

    Jacobsen, Søren B.


    The rearrangement process in the two-stage broadcast switching network presented by F.K. Hwang and G.W. Richards (ibid., vol.COM-33, no.10, p.1025-1035, Oct. 1985) is considered. By defining a certain function it is possible to calculate an upper bound on the number of connections to be moved...

  19. Comparison between a two-stage and single-stage digesters when ...

    African Journals Online (AJOL)


    Aug 1, 2008 ... Phenol is a pollutant found in many industrial wastewaters, which diminishes biogas formation in anaerobic digesters. In this study, a two-stage .... 7.3. From phenol. 2.4. NS composition. Typical Values. Per 100 g powder b. Energy value. 1 552 kJ. Protein. 20. Carbohydrate. 68. Of which sugars. 55. Fat. 1.5.

  20. Two-Stage MAS Technique for Analysis of DRA Elements and Arrays on Finite Ground Planes

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav


    A two-stage Method of Auxiliary Sources (MAS) technique is proposed for analysis of dielectric resonator antenna (DRA) elements and arrays on finite ground planes (FGPs). The problem is solved by first analysing the DRA on an infinite ground plane (IGP) and then using this solution to model the FGP...... problem....

  1. Thermal design of two-stage evaporative cooler based on thermal comfort criterion (United States)

    Gilani, Neda; Poshtiri, Amin Haghighi


    Performance of two-stage evaporative coolers at various outdoor air conditions was numerically studied, and its geometric and physical characteristics were obtained based on thermal comfort criteria. For this purpose, a mathematical model was developed based on conservation equations of mass, momentum and energy to determine heat and mass transfer characteristics of the system. The results showed that two-stage indirect/direct cooler can provide the thermal comfort condition when outdoor air temperature and relative humidity are located in the range of 34-54 °C and 10-60 %, respectively. Moreover, as relative humidity of the ambient air rises, two-stage evaporative cooler with the smaller direct and larger indirect cooler will be needed. In building with high cooling demand, thermal comfort may be achieved at a greater air change per hour number, and thus an expensive two-stage evaporative cooler with a higher electricity consumption would be required. Finally, a design guideline was proposed to determine the size of required plate heat exchangers at various operating conditions.

  2. On A Two-Stage Supply Chain Model In The Manufacturing Industry ...

    African Journals Online (AJOL)

    We model a two-stage supply chain where the upstream stage (stage 2) always meet demand from the downstream stage (stage 1).Demand is stochastic hence shortages will occasionally occur at stage 2. Stage 2 must fill these shortages by expediting using overtime production and/or backordering. We derive optimal ...

  3. Standard Error Correction in Two-Stage Optimization Models: A Quasi-Maximum Likelihood Estimation Approach


    Rios-Avila, Fernando; Canavire-Bacarreza, Gustavo


    Following Wooldridge (2014), we discuss and implement in Stata an efficient maximum likelihood approach to the estimation of corrected standard errors of two-stage optimization models. Specifically, we compare the robustness and efficiency of this estimate using different non-linear routines already implemented in Stata such as ivprobit, ivtobit, ivpoisson, heckman, and ivregress.

  4. Influence of capacity- and time-constrained intermediate storage in two-stage food production systems

    DEFF Research Database (Denmark)

    Akkerman, Renzo; van Donk, Dirk Pieter; Gaalman, Gerard


    In food processing, two-stage production systems with a batch processor in the first stage and packaging lines in the second stage are common and mostly separated by capacity- and time-constrained intermediate storage. This combination of constraints is common in practice, but the literature hard...... is dictated by the storage time constraint....

  5. An intracooling system for a novel two-stage sliding-vane air compressor (United States)

    Murgia, Stefano; Valenti, Gianluca; Costanzo, Ida; Colletta, Daniele; Contaldi, Giulio


    Lube-oil injection is used in positive-displacement compressors and, among them, in sliding-vane machines to guarantee the correct lubrication of the moving parts and as sealing to prevent air leakage. Furthermore, lube-oil injection allows to exploit lubricant also as thermal ballast with a great thermal capacity to minimize the temperature increase during the compression. This study presents the design of a two-stage sliding-vane rotary compressor in which the air cooling is operated by high-pressure cold oil injection into a connection duct between the two stages. The heat exchange between the atomized oil jet and the air results in a decrease of the air temperature before the second stage, improving the overall system efficiency. This cooling system is named here intracooling, as opposed to intercooling. The oil injection is realized via pressure-swirl nozzles, both within the compressors and inside the intracooling duct. The design of the two-stage sliding-vane compressor is accomplished by way of a lumped parameter model. The model predicts an input power reduction as large as 10% for intercooled and intracooled two-stage compressors, the latter being slightly better, with respect to a conventional single-stage compressor for compressed air applications. An experimental campaign is conducted on a first prototype that comprises the low-pressure compressor and the intracooling duct, indicating that a significant temperature reduction is achieved in the duct.

  6. Simultaneous versus sequential pharmacokinetic-pharmacodynamic population analysis using an iterative two-stage Bayesian technique

    NARCIS (Netherlands)

    Proost, Johannes H.; Schiere, Sjouke; Eleveld, Douglas J.; Wierda, J. Mark K. H.


    A method for simultaneous pharmacokinetic-pharmacodynamic (PK-PD) population analysis using an Iterative Two-Stage Bayesian (ITSB) algorithm was developed. The method was evaluated using clinical data and Monte Carlo simulations. Data from a clinical study with rocuronium in nine anesthetized

  7. Influence of capacity- and time-constrained intermediate storage in two-stage food production systems

    NARCIS (Netherlands)

    Akkerman, Renzo; van Donk, Dirk Pieter; Gaalman, Gerard


    In food processing, two-stage production systems with a batch processor in the first stage and packaging lines in the second stage are common and mostly separated by capacity- and time-constrained intermediate storage. This combination of constraints is common in practice, but the literature hardly

  8. On response time and cycle time distributions in a two-stage cyclic queue

    NARCIS (Netherlands)

    Boxma, O.J.; Donk, P.


    We consider a two-stage closed cyclic queueing model. For the case of an exponential server at each queue we derive the joint distribution of the successive response times of a custumer at both queues, using a reversibility argument. This joint distribution turns out to have a product form. The

  9. Continuous xylose fermentation by Candida shehatae in a two-stage reactor (United States)

    M. A. Alexander; T. W. Chapman; T. W. Jeffries


    Recent work has identified ethanol toxicity as a major factor preventing continuous production of ethanol at the concentrations obtainable in batch culture. In this paper we investigate the use of a continuous two-stage bioreactor design to circumvent toxic effects of ethanol. Biomass is produced via continuous culture in the first stage reactor in which ethanol...

  10. Overcoming the bottlenecks of anaerobic digestion of olive mill solid waste by two-stage fermentation. (United States)

    Stoyanova, Elitza; Lundaa, Tserennyam; Bochmann, Günther; Fuchs, Werner


    Two-stage anaerobic digestion (AD) of two-phase olive mill solid waste (OMSW) was applied for reducing the inhibiting factors by optimizing the acidification stage. Single-stage AD and co-fermentation with chicken manure were conducted coinstantaneous for direct comparison. Degradation of the polyphenols up to 61% was observed during the methanogenic stage. Nevertheless the concentration of phenolic substances was still high; the two-stage fermentation remained stable at OLR 1.5 kgVS/m³day. The buffer capacity of the system was twice as high, compared to the one-stage fermentation, without additives. The two-stage AD was a combined process - thermophilic first stage and mesophilic second stage, which pointed out to be the most profitable for AD of OMSW for the reduced hydraulic retention time (HRT) from 230 to 150 days, and three times faster than the single-stage and the co-fermentation start-up of the fermentation. The optimal HRT and incubation temperature for the first stage were determined to four days and 55°C. The performance of the two-stage AD concerning the stability of the process was followed by the co-digestion of OMSW with chicken manure as a nitrogen-rich co-substrate, which makes them viable options for waste disposal with concomitant energy recovery.

  11. Two stage DOA and Fundamental Frequency Estimation based on Subspace Techniques

    DEFF Research Database (Denmark)

    Zhou, Zhenhua; Christensen, Mads Græsbøll; So, Hing-Cheung


    In this paper, the problem of fundamental frequency and direction-of-arrival (DOA) estimation for multi-channel harmonic sinusoidal signal is addressed. The estimation procedure consists of two stages. Firstly, by making use of the subspace technique and Markov-based eigenanalysis, a multi- chann...

  12. Kinetics analysis of two-stage austenitization in supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Villa, Matteo; Hald, John


    that the austenitization kinetics is governed by Ni-diffusion and that slow transformation kinetics separating the two stages is caused by soft impingement in the martensite phase. Increasing the lath width in the kinetics model had a similar effect on the austenitization kinetics as increasing the heating-rate....

  13. Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion. (United States)

    Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S

    In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion.

  14. Comparison between a two-stage and single-stage digesters when ...

    African Journals Online (AJOL)

    Phenol is a pollutant found in many industrial wastewaters, which diminishes biogas formation in anaerobic digesters. In this study, a two-stage (acidogenic and methanogenic) anaerobic digester (TSAD) was compared to a single stage digester (SSD), in treating a synthetic wastewater contaminated with phenol.

  15. Numerical simulation of brain tumor growth model using two-stage ...

    African Journals Online (AJOL)

    In the recent years, the study of glioma growth to be an active field of research Mathematical models that describe the proliferation and diffusion properties of the growth have been developed by many researchers. In this work, the performance analysis of two-stage Gauss-Seidel (TSGS) method to solve the glioma growth ...

  16. One-stage and two-stage penile buccal mucosa urethroplasty ...

    African Journals Online (AJOL)

    The paper provides the reader with the detailed description of current techniques of one-stage and two-stage penile buccal mucosa urethroplasty. The paper provides the reader with the preoperative patient evaluation paying attention to the use of diagnostic tools. The one-stage penile urethroplasty using buccal mucosa ...

  17. Forecasting long memory series subject to structural change: A two-stage approach

    DEFF Research Database (Denmark)

    Papailias, Fotis; Dias, Gustavo Fruet


    A two-stage forecasting approach for long memory time series is introduced. In the first step, we estimate the fractional exponent and, by applying the fractional differencing operator, obtain the underlying weakly dependent series. In the second step, we produce multi-step-ahead forecasts...... change and yields good forecasting results....

  18. Two-Stage Precision-Effect Estimation and Heckman Meta-Regression for Publication Selection Bias


    T.D. Stanley


    This study offers a simple meta-regression method for estimating genuine empirical effects in research literatures tainted by publication selection. Two-stage precision-effect (PETS) corrects for the misspecification of conventional meta-regression models and provides a viable strategy for estimating empirical economic effects.

  19. Advancing early detection of autism spectrum disorder by applying an integrated two-stage screening approach.

    NARCIS (Netherlands)

    Oosterling, I.J.; Wensing, M.J.P.; Swinkels, S.H.N.; Gaag, R.J. van der; Visser, J.C.; Woudenberg, T.; Minderaa, R.B.; Steenhuis, M.P.; Buitelaar, J.K.


    BACKGROUND: Few field trials exist on the impact of implementing guidelines for the early detection of autism spectrum disorders (ASD). The aims of the present study were to develop and evaluate a clinically relevant integrated early detection programme based on the two-stage screening approach of

  20. Advancing early detection of autism spectrum disorder by applying an integrated two-stage screening approach

    NARCIS (Netherlands)

    Oosterling, Iris J.; Wensing, Michel; Swinkels, Sophie H.; van der Gaag, Rutger Jan; Visser, Janne C.; Woudenberg, Tim; Minderaa, Ruud; Steenhuis, Mark-Peter; Buitelaar, Jan K.

    Background: Few field trials exist on the impact of implementing guidelines for the early detection of autism spectrum disorders (ASD). The aims of the present study were to develop and evaluate a clinically relevant integrated early detection programme based on the two-stage screening approach of

  1. A two-stage stochastic programming approach for operating multi-energy systems

    DEFF Research Database (Denmark)

    Zeng, Qing; Fang, Jiakun; Chen, Zhe


    This paper provides a two-stage stochastic programming approach for joint operating multi-energy systems under uncertainty. Simulation is carried out in a test system to demonstrate the feasibility and efficiency of the proposed approach. The test energy system includes a gas subsystem with a gas...

  2. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor

    NARCIS (Netherlands)

    Kleerebezem, R.; Beckers, J.; Pol, L.W.H.; Lettinga, G.


    The feasibility was studied of anaerobic treatment of wastewater generated during purified terephthalic acid (PTA) production in two-stage upflow anaerobic sludge blanket (UASB) reactor system. The artificial influent of the system contained the main organic substrates of PTA-wastewater: acetate,

  3. Design and construction of a two-stage centrifugal pump | Nordiana ...

    African Journals Online (AJOL)

    Centrifugal pumps are widely used in moving liquids from one location to another in homes, offices and industries. Due to the ever increasing demand for centrifugal pumps it became necessary to design and construction of a two-stage centrifugal pump. The pump consisted of an electric motor, a shaft, two rotating impellers ...

  4. Advancing Early Detection of Autism Spectrum Disorder by Applying an Integrated Two-Stage Screening Approach (United States)

    Oosterling, Iris J.; Wensing, Michel; Swinkels, Sophie H.; van der Gaag, Rutger Jan; Visser, Janne C.; Woudenberg, Tim; Minderaa, Ruud; Steenhuis, Mark-Peter; Buitelaar, Jan K.


    Background: Few field trials exist on the impact of implementing guidelines for the early detection of autism spectrum disorders (ASD). The aims of the present study were to develop and evaluate a clinically relevant integrated early detection programme based on the two-stage screening approach of Filipek et al. (1999), and to expand the evidence…

  5. Use a Log Splitter to Demonstrate Two-Stage Hydraulic Pump (United States)

    Dell, Timothy W.


    The two-stage hydraulic pump is commonly used in many high school and college courses to demonstrate hydraulic systems. Unfortunately, many textbooks do not provide a good explanation of how the technology works. Another challenge that instructors run into with teaching hydraulic systems is the cost of procuring an expensive real-world machine…

  6. A modeling comparison between a two-stage and three-stage cascaded thermoelectric generator (United States)

    Kanimba, Eurydice; Pearson, Matthew; Sharp, Jeff; Stokes, David; Priya, Shashank; Tian, Zhiting


    In this work, a comparison between the performance of two- and three-stage cascaded thermoelectric generator (TEG) devices is analyzed based on a prescribed maximum hot side temperature of 973 K, an imposed maximum heat input of 505 W, and a fixed cold side temperature of 473 K. Half-Heusler is used as a thermoelectric (TE) material in the top higher temperature stage and skutterudite as a TE in the bottom lower temperature stage for the two-stage structure. Lead telluride is added in the middle stage to form the three-stage structure. Based on the prescribed constraints, the two-stage cascaded TEG is found to produce a power output of 42 W with an efficiency of 8.3%. The three-stage cascaded TEG produces a power output of 51 W with an efficiency of 10.2%. The three-stage cascaded TEG produces 21% more power than the two-stage does; however, if the system complexity, mechanical robustness, manufacturability, and/or cost of three-stage cascaded TEG outweigh the 21% percent power production increase, the two-stage TEG could be preferable.

  7. The Bracka two-stage repair for severe proximal hypospadias: A single center experience

    Directory of Open Access Journals (Sweden)

    Rakesh S Joshi


    Full Text Available Background: Surgical correction of severe proximal hypospadias represents a significant surgical challenge and single-stage corrections are often associated with complications and reoperations. Bracka two-stage repair is an attractive alternative surgical procedure with superior, reliable, and reproducible results. Purpose: To study the feasibility and applicability of Bracka two-stage repair for the severe proximal hypospadias and to analyze the outcomes and complications of this surgical technique. Materials and Methods: This prospective study was conducted from January 2011 to December 2013. Bracka two-stage repair was performed using inner preputial skin as a free graft in subjects with proximal hypospadias in whom severe degree of chordee and/or poor urethral plate was present. Only primary cases were included in this study. All subjects received three doses of intra-muscular testosterone 3 weeks apart before first stage. Second stage was performed 6 months after the first stage. Follow-up ranged from 6 months to 24 months. Results: A total of 43 patients operated for Bracka repair, out of which 30 patients completed two-stage repair. Mean age of the patients was 4 years and 8 months. We achieved 100% graft uptake and no revision was required. Three patients developed fistula, while two had metal stenosis. Glans dehiscence, urethral stricture and the residual chordee were not found during follow-up and satisfactory cosmetic results with good urinary stream were achieved in all cases. Conclusion: The Bracka two-stage repair is a safe and reliable approach in select patients in whom it is impractical to maintain the axial integrity of the urethral plate, and, therefore, a full circumference urethral reconstruction become necessary. This gives good results both in terms of restoration of normal function with minimal complication.

  8. High energy 2-micron solid-state laser transmitter for NASA's airborne CO2 measurements (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin


    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  9. A two-stage photonic crystal fiber / silicon photonic wire short-wave infrared wavelength converter/amplifier based on a 1064 nm pump source. (United States)

    Kuyken, B; Leo, F; Mussot, A; Kudlinski, A; Roelkens, G


    We demonstrate a two-stage wavelength converter that uses compact near-infrared sources to amplify and convert short-wave infrared signals. The first stage consists of a photonic crystal fiber wavelength converter pumped by a Q-switched 1064 nm pump source, while the second stage consists of a silicon photonic wire waveguide wavelength converter. The system enables on-chip amplification and conversion of up to 30 dB . We demonstrate amplification in a broad wavelength range around 2344 nm using temporally long pulses (>300ps).

  10. High Energy Physics Research at Louisiana Tech

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Lee [Louisiana State Univ., Baton Rouge, LA (United States); Greenwood, Zeno [Louisiana State Univ., Baton Rouge, LA (United States); Wobisch, Marcus [Louisiana State Univ., Baton Rouge, LA (United States)


    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the DØ experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  11. High energy particles and quanta in astrophysics (United States)

    Mcdonald, F. B. (Editor); Fichtel, C. E.


    The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.

  12. A Parton Shower for High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer


    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching...... it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss...

  13. The influence of partial oxidation mechanisms on tar destruction in TwoStage biomass gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Egsgaard, Helge; Stelte, Wolfgang


    TwoStage gasification of biomass results in almost tar free producer gas suitable for multiple end-use purposes. In the present study, it is investigated to what extent the partial oxidation process of the pyrolysis gas from the first stage is involved in direct and in-direct tar destruction....... The resulting PAH tar compounds are readily converted in the subsequent char-bed of the TwoStage gasification process and the partial oxidation process thus contributes directly as well as in-directly to the overall tar destruction. A high temperature and excess air ratios contribute positively to the direct...... tar destruction and a high moisture content of the biomass enhances the decomposition of phenol and inhibits the formation of naphthalene. This enhances tar conversion and gasification in the char-bed, and thus contributes in-directly to the tar destruction....

  14. Two-stage combustion for reducing pollutant emissions from gas turbine combustors (United States)

    Clayton, R. M.; Lewis, D. H.


    Combustion and emission results are presented for a premix combustor fueled with admixtures of JP5 with neat H2 and of JP5 with simulated partial-oxidation product gas. The combustor was operated with inlet-air state conditions typical of cruise power for high performance aviation engines. Ultralow NOx, CO and HC emissions and extended lean burning limits were achieved simultaneously. Laboratory scale studies of the non-catalyzed rich-burning characteristics of several paraffin-series hydrocarbon fuels and of JP5 showed sooting limits at equivalence ratios of about 2.0 and that in order to achieve very rich sootless burning it is necessary to premix the reactants thoroughly and to use high levels of air preheat. The application of two-stage combustion for the reduction of fuel NOx was reviewed. An experimental combustor designed and constructed for two-stage combustion experiments is described.

  15. A two-stage fuzzy chance-constrained water management model. (United States)

    Xu, Jiaxuan; Huang, Guohe; Li, Zoe; Chen, Jiapei


    In this study, an inexact two-stage fuzzy gradient chance-constrained programming (ITSFGP) method is developed and applied to the water resources management in the Heshui River Basin, Jiangxi Province, China. The optimization model is established by incorporating interval programming, two-stage stochastic programming, and fuzzy gradient chance-constrained programming within an optimization framework. The hybrid model can address uncertainties represented as fuzzy sets, probability distributions, and interval numbers. It can effectively tackle the interactions between pre-regulated economic targets and the associated environmental penalties attributed to water allocation schemes and reflect the tradeoffs between economic revenues and system-failure risk. Furthermore, uncertainties associated with the decision makers' preferences are considered in decision-making processes. The obtained results can provide decision support for the local sustainable economic development and water resources allocation strategies under multiple uncertainties.

  16. Power Frequency Oscillation Suppression Using Two-Stage Optimized Fuzzy Logic Controller for Multigeneration System

    Directory of Open Access Journals (Sweden)

    Y. K. Bhateshvar


    Full Text Available This paper attempts to develop a linearized model of automatic generation control (AGC for an interconnected two-area reheat type thermal power system in deregulated environment. A comparison between genetic algorithm optimized PID controller (GA-PID, particle swarm optimized PID controller (PSO-PID, and proposed two-stage based PSO optimized fuzzy logic controller (TSO-FLC is presented. The proposed fuzzy based controller is optimized at two stages: one is rule base optimization and other is scaling factor and gain factor optimization. This shows the best dynamic response following a step load change with different cases of bilateral contracts in deregulated environment. In addition, performance of proposed TSO-FLC is also examined for ±30% changes in system parameters with different type of contractual demands between control areas and compared with GA-PID and PSO-PID. MATLAB/Simulink® is used for all simulations.

  17. Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials

    DEFF Research Database (Denmark)

    Ahmadi Atouei, Saeed; Ranjbar, Ali Akbar; Rezaniakolaei, Alireza


    experimentally. In the first stage, a TEG module installed between a phase change material (PCM) heat sink, as cooling system, and an electrical heater, as the heat source. Because of the inherent characteristics of PCMs to save the thermal energy as latent heat, the PCM heat sink is used as the heat source......Due to limitations in performance of thermoelectric materials, applying two-stage thermoelectric generator (TTEG) has been proposed to improve the performance of thermoelectric generator (TEG) system. In this paper, a novel prototype of a two-stage thermoelectric generator system is investigated...... this amount of voltage just for 2100 s. Therefore, the proposed design makes TEG systems more suitable for wireless sensor applications when the heat source does not provide steady thermal energy. In this study, four different patterns of thermal power applied to the TTEG system are considered. These patterns...

  18. Isothermal modeling of aerodynamic structure of the swirling flow in a two-stage burner (United States)

    Yusupov, Roman; Shtork, Sergey; Alekseenko, Sergey


    The work deals with the experimental study of the aerodynamic structure of a swirling flow in the isothermal model of two-stage vortex combustion chamber. The main attention is focused on the process of flow mixing of two successively connected tangential swirlers of the first and second stages of the working section. Data on flow visualization are presented for two patterns of flow swirling. Time-averaged profiles of the axial and tangential velocity components are obtained with the help of laser-Doppler anemometer. In the case of flow co-swirling between two stages of the working section, instability of a secondary flow in the form of precessing vortex was distinguished. For the regime with counter flow swirling, effective mixing of the swirl flows was found; this was reflected by formation of the flow with uniform distribution of axial velocity over the cross-section.

  19. Toward Improving Electrocardiogram (ECG) Biometric Verification using Mobile Sensors: A Two-Stage Classifier Approach. (United States)

    Tan, Robin; Perkowski, Marek


    Electrocardiogram (ECG) signals sensed from mobile devices pertain the potential for biometric identity recognition applicable in remote access control systems where enhanced data security is demanding. In this study, we propose a new algorithm that consists of a two-stage classifier combining random forest and wavelet distance measure through a probabilistic threshold schema, to improve the effectiveness and robustness of a biometric recognition system using ECG data acquired from a biosensor integrated into mobile devices. The proposed algorithm is evaluated using a mixed dataset from 184 subjects under different health conditions. The proposed two-stage classifier achieves a total of 99.52% subject verification accuracy, better than the 98.33% accuracy from random forest alone and 96.31% accuracy from wavelet distance measure algorithm alone. These results demonstrate the superiority of the proposed algorithm for biometric identification, hence supporting its practicality in areas such as cloud data security, cyber-security or remote healthcare systems.

  20. A Sensorless Power Reserve Control Strategy for Two-Stage Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede


    Due to the still increasing penetration of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A power reserve control, where namely the active power from the PV panels is reserved during operation, is required for grid...... support. In this paper, a cost-effective solution to realize the power reserve for two-stage grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...... performed on a 3-kW two-stage single-phase grid-connected PV system, where the power reserve control is achieved upon demands....

  1. Assessment of increasing loading rate on two-stage digestion of food waste. (United States)

    Voelklein, M A; Jacob, A; O' Shea, R; Murphy, J D


    A two-stage food waste digestion system involved a first stage hydrolysis reactor followed by a second stage methanogenic reactor. Organic loading rates (OLR) were increased from 6 to 15 g VS L(-1) d(-1) in the hydrolysis reactor and from 2 to 5 g VS L(-1) d(-1) in the methanogenic reactor. The retention time was fixed at 4 days (hydrolysis reactor) and 12 days (methane reactor). A single-stage digester was subjected to similar loading rates as the methanogenic reactor at 16 days retention. Increased OLR resulted in higher quantities of liquid fermentation products from the first stage hydrolysis reactor. Solubilisation of chemical oxygen demand peaked at 47% at the maximum loading. However, enhanced hydrolysis yields had no significant impact on the specific methane yields. The two-stage system increased methane yields up to 23% and enriched methane content by an average of 14% to levels of 71%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Direct Torque Control of Sensorless Induction Machine Drives: A Two-Stage Kalman Filter Approach

    Directory of Open Access Journals (Sweden)

    Jinliang Zhang


    Full Text Available Extended Kalman filter (EKF has been widely applied for sensorless direct torque control (DTC in induction machines (IMs. One key problem associated with EKF is that the estimator suffers from computational burden and numerical problems resulting from high order mathematical models. To reduce the computational cost, a two-stage extended Kalman filter (TEKF based solution is presented for closed-loop stator flux, speed, and torque estimation of IM to achieve sensorless DTC-SVM operations in this paper. The novel observer can be similarly derived as the optimal two-stage Kalman filter (TKF which has been proposed by several researchers. Compared to a straightforward implementation of a conventional EKF, the TEKF estimator can reduce the number of arithmetic operations. Simulation and experimental results verify the performance of the proposed TEKF estimator for DTC of IMs.

  3. ADM1-based modeling of methane production from acidified sweet sorghum extractin a two stage process

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis


    The present study focused on the application of the Anaerobic Digestion Model 1 οn the methane production from acidified sorghum extract generated from a hydrogen producing bioreactor in a two-stage anaerobic process. The kinetic parameters for hydrogen and volatile fatty acids consumption were...... estimated through fitting of the model equations to the data obtained from batch experiments. The simulation of the continuous reactor performance at all HRTs tested (20, 15 and 10d) was very satisfactory. Specifically, the largest deviation of the theoretical predictions against the experimental data...... less than 5% for all steady states. Therefore, the ADM1 is a valuable tool for process design in the case of a two-stage anaerobic process as well....

  4. Isothermal modeling of aerodynamic structure of the swirling flow in a two-stage burner

    Directory of Open Access Journals (Sweden)

    Yusupov Roman


    Full Text Available The work deals with the experimental study of the aerodynamic structure of a swirling flow in the isothermal model of two-stage vortex combustion chamber. The main attention is focused on the process of flow mixing of two successively connected tangential swirlers of the first and second stages of the working section. Data on flow visualization are presented for two patterns of flow swirling. Time-averaged profiles of the axial and tangential velocity components are obtained with the help of laser-Doppler anemometer. In the case of flow co-swirling between two stages of the working section, instability of a secondary flow in the form of precessing vortex was distinguished. For the regime with counter flow swirling, effective mixing of the swirl flows was found; this was reflected by formation of the flow with uniform distribution of axial velocity over the cross-section.

  5. Gas pollutants removal in a single- and two-stage ejector-venturi scrubber. (United States)

    Gamisans, Xavier; Sarrà, Montserrrat; Lafuente, F Javier


    The absorption of SO(2) and NH(3) from the flue gas into NaOH and H(2)SO(4) solutions, respectively has been studied using an industrial scale ejector-venturi scrubber. A statistical methodology is presented to characterise the performance of the scrubber by varying several factors such as gas pollutant concentration, air flowrate and absorbing solution flowrate. Some types of venturi tube constructions were assessed, including the use of a two-stage venturi tube. The results showed a strong influence of the liquid scrubbing flowrate on pollutant removal efficiency. The initial pollutant concentration and the gas flowrate had a slight influence. The use of a two-stage venturi tube considerably improved the absorption efficiency, although it increased energy consumption. The results of this study will be applicable to the optimal design of venturi-based absorbers for gaseous pollution control or chemical reactors.

  6. Observer-Pattern Modeling and Slow-Scale Bifurcation Analysis of Two-Stage Boost Inverters (United States)

    Zhang, Hao; Wan, Xiaojin; Li, Weijie; Ding, Honghui; Yi, Chuanzhi


    This paper deals with modeling and bifurcation analysis of two-stage Boost inverters. Since the effect of the nonlinear interactions between source-stage converter and load-stage inverter causes the “hidden” second-harmonic current at the input of the downstream H-bridge inverter, an observer-pattern modeling method is proposed by removing time variance originating from both fundamental frequency and hidden second harmonics in the derived averaged equations. Based on the proposed observer-pattern model, the underlying mechanism of slow-scale instability behavior is uncovered with the help of eigenvalue analysis method. Then eigenvalue sensitivity analysis is used to select some key system parameters of two-stage Boost inverter, and some behavior boundaries are given to provide some design-oriented information for optimizing the circuit. Finally, these theoretical results are verified by numerical simulations and circuit experiment.

  7. Discussion on back-to-back two-stage centrifugal compressor compact design techniques (United States)

    Huo, Lei; Liu, Huoxing


    Design a small flow back-to-back two-stage centrifugal compressor in the aviation turbocharger, the compressor is compact structure, small axial length, light weighted. Stationary parts have a great influence on their overall performance decline. Therefore, the stationary part of the back-to-back two-stage centrifugal compressor should pay full attention to the diffuser, bend, return vane and volute design. Volute also impact downstream return vane, making the flow in circumferential direction is not uniformed, and several blade angle of attack is drastically changed in downstream of the volute with the airflow can not be rotated to required angle. Loading of high-pressure rotor blades change due to non-uniformed of flow in circumferential direction, which makes individual blade load distribution changed, and affected blade passage load decreased to reduce the capability of work, the tip low speed range increases.

  8. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles


    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  9. Hard scattering in high-energy QCD

    CERN Document Server

    Mangano, Michelangelo L


    I review the recent results in the field of QCD at high energy presented to this Conference. In particular, I will concentrate on measurements of $\\as$ from studies of event structures and jet rates, jet production in hadronic collisions, and heavy quark production.

  10. Detecting ultra high energy neutrinos with LOFAR

    NARCIS (Netherlands)

    Mevius, M.; Buitink, S.; Falcke, H.; Horandel, J.; James, C. W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; ter Veen, S.


    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (similar to 150 MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the

  11. The interaction region of high energy protons

    CERN Document Server

    Dremin, I.M.


    The spatial view of the interaction region of colliding high energy protons (in terms of impact parameter) is considered. It is shown that the region of inelastic collisions has a very peculiar shape. It saturates for central collisions at an energy of 7 TeV. We speculate on the further evolution with energy, which is contrasted to the "black disk" picture.

  12. Maximal Entanglement in High Energy Physics

    NARCIS (Netherlands)

    Cervera-Lierta, Alba; Latorre, José I.; Rojo, Juan; Rottoli, Luca


    We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i) $s$-channel processes

  13. Aesthetic skin resurfacing with the high-energy ultrapulsed CO2 laser. (United States)

    Weinstein, C; Roberts, T L


    CO2 laser resurfacing, using the new generation high-energy output pulsed lasers, provides a highly accurate method of resurfacing and rejuvenating facial skin. Its applications are widespread and well accepted by the general population (Color Figs. 3 to 8). Complications may occur, which may be minimized through adequate laser training and appreciation of the mechanisms of skin healing.

  14. Hybrid staging of a Lysholm positive displacement engine with two Westinghouse two stage impulse Curtis turbines

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.A.


    The University of California at Berkeley has tested and modeled satisfactorly a hybrid staged Lysholm engine (positive displacement) with a two stage Curtis wheel turbine. The system operates in a stable manner over its operating range (0/1-3/1 water ratio, 120 psia input). Proposals are made for controlling interstage pressure with a partial admission turbine and volume expansion to control mass flow and pressure ratio for the Lysholm engine.





    This paper presents a low power, high slew rate, high gain, ultra wide band two stage CMOS cascode operational amplifier for radio frequency application. Current mirror based cascoding technique and pole zero cancelation technique is used to ameliorate the gain and enhance the unity gain bandwidth respectively, which is the novelty of the circuit. In cascading technique a common source transistor drive a common gate transistor. The cascoding is used to enhance the output resistance and hence ...

  16. An Efficient Robust Solution to the Two-Stage Stochastic Unit Commitment Problem

    DEFF Research Database (Denmark)

    Blanco, Ignacio; Morales González, Juan Miguel


    This paper proposes a reformulation of the scenario-based two-stage unitcommitment problem under uncertainty that allows finding unit-commitment plansthat perform reasonably well both in expectation and for the worst caserealization of the uncertainties. The proposed reformulation is based...... onpartitioning the sample space of the uncertain factors by clustering thescenarios that approximate their probability distributions. It is, furthermore,very amenable to decomposition and parallelization using acolumn-and-constraint generation procedure....

  17. Midterm Electricity Market Clearing Price Forecasting Using Two-Stage Multiple Support Vector Machine


    Yan, Xing; Chowdhury, Nurul A.


    Currently, there are many techniques available for short-term forecasting of the electricity market clearing price (MCP), but very little work has been done in the area of midterm forecasting of the electricity MCP. The midterm forecasting of the electricity MCP is essential for maintenance scheduling, planning, bilateral contracting, resources reallocation, and budgeting. A two-stage multiple support vector machine (SVM) based midterm forecasting model of the electricity MCP is proposed in t...

  18. The search of chemical oxidation stage of two stage pyrite and copper concentrate bioleaching technology


    Scornyacov, A.; Petukhova, N.; Meftakhov, R.; V. Zorin


    The bioleaching stage of two-stage biochemical leaching technology of pyrite and copper concentrate consisted of bornite, chalcopyrite and chalcocite, by moderate thermophiles consortium was searched. It has been shown that at 45 oC the bioleaching of copper concentrate pre-treated by biogenic leaching solution seems to be near 1.7 times faster than the non-treated one. Though the similar chemical pre-treatment of pyrite doesnt show any significant increase of its bioleaching rate.

  19. Neuroscience and approach/avoidance personality traits: a two stage (valuation-motivation) approach


    Corr, P. J.; McNaughton, N


    Many personality theories link specific traits to the sensitivities of the neural systems that control approach and avoidance. But there is no consensus on the nature of these systems. Here we combine recent advances in economics and neuroscience to provide a more solid foundation for a neuroscience of approach/avoidance personality. We propose a two-stage integration of valuation (loss/gain) sensitivities with motivational (approach/avoidance/conflict) sensitivities. Our key conclusions are:...

  20. A two-stage, two-organism process for biohydrogen from glucose


    Redwood, MD; Macaskie, LE


    H2 can potentially be produced in a two-stage biological process: the fermentation of glucose by Escherichia coli HD701 and the photofermentation of the residual medium by Rhodobacter sphaeroides O.U. 001. In a typical batch fermentation, E. coli consumed glucose and produced H2, organic end-products and biomass. Organic end-products and residual glucose were removed during subsequent photofermentation by R. sphaeroides, with associated growth and neutralization of pH. However, photoproductio...

  1. Two-staged management for all types of congenital pouch colon

    Directory of Open Access Journals (Sweden)

    Rajendra K Ghritlaharey


    Full Text Available Background: The aim of this study was to review our experience with two-staged management for all types of congenital pouch colon (CPC. Patients and Methods: This retrospective study included CPC cases that were managed with two-staged procedures in the Department of Paediatric Surgery, over a period of 12 years from 1 January 2000 to 31 December 2011. Results: CPC comprised of 13.71% (97 of 707 of all anorectal malformations (ARM and 28.19% (97 of 344 of high ARM. Eleven CPC cases (all males were managed with two-staged procedures. Distribution of cases (Narsimha Rao et al.′s classification into types I, II, III, and IV were 1, 2, 6, and 2, respectively. Initial operative procedures performed were window colostomy (n = 6, colostomy proximal to pouch (n = 4, and ligation of colovesical fistula and end colostomy (n = 1. As definitive procedures, pouch excision with abdomino-perineal pull through (APPT of colon in eight, and pouch excision with APPT of ileum in three were performed. The mean age at the time of definitive procedures was 15.6 months (ranges from 3 to 53 months and the mean weight was 7.5 kg (ranges from 4 to 11 kg. Good fecal continence was observed in six and fair in two cases in follow-up periods, while three of our cases lost to follow up. There was no mortality following definitive procedures amongst above 11 cases. Conclusions: Two-staged procedures for all types of CPC can also be performed safely with good results. The most important fact that the definitive procedure is being done without protective stoma and therefore, it avoids stoma closure, stoma-related complications, related cost of stoma closure and hospital stay.

  2. Dynamic modeling and simulation of a two-stage series-parallel vibration isolation system

    Directory of Open Access Journals (Sweden)

    Rong Guo


    Full Text Available A two-stage series-parallel vibration isolation system is already widely used in various industrial fields. However, when the researchers analyze the vibration characteristics of a mechanical system, the system is usually regarded as a single-stage one composed of two substructures. The dynamic modeling of a two-stage series-parallel vibration isolation system using frequency response function–based substructuring method has not been studied. Therefore, this article presents the source-path-receiver model and the substructure property identification model of such a system. These two models make up the transfer path model of the system. And the model is programmed by MATLAB. To verify the proposed transfer path model, a finite element model simulating a vehicle system, which is a typical two-stage series-parallel vibration isolation system, is developed. The substructure frequency response functions and system level frequency response functions can be obtained by MSC Patran/Nastran and LMS Virtual.lab based on the finite element model. Next, the system level frequency response functions are substituted into the transfer path model to predict the substructural frequency response functions and the system response of the coupled structure can then be further calculated. By comparing the predicted results and exact value, the model proves to be correct. Finally, the random noise is introduced into several relevant system level frequency response functions for error sensitivity analysis. The system level frequency response functions that are most sensitive to the random error are found. Since a two-stage series-parallel system has not been well studied, the proposed transfer path model improves the dynamic theory of the multi-stage vibration isolation system. Moreover, the validation process of the model here actually provides an example for acoustic and vibration transfer path analysis based on the proposed model. And it is worth noting that the

  3. Two-stage SQUID system and transducers development for MiniGrail

    NARCIS (Netherlands)

    Gottardi, L.; Podt, M.; Flokstra, Jakob; Bassan, M.; Karbalai-Sadegh, A.; Minenkov, Y.; Reinke, W.; Shumack, A.; Srinivas, S.; de Waard, A.; de Waard, A.; Frossati, G.


    We present measurements on a two-stage SQUID system based on a dc-SQUID as a sensor and a DROS as an amplifier. We measured the intrinsic noise of the dc-SQUID at 4.2 K. A new dc-SQUID has been fabricated. It was specially designed to be used with MiniGRAIL transducers. Cooling fins have been added

  4. Hydrogen from the two-stage pyrolysis of bituminous coal/waste plastics mixtures

    Czech Academy of Sciences Publication Activity Database

    Kříž, Vlastimil; Bičáková, Olga


    Roč. 36, č. 15 (2011), s. 9014-9022 ISSN 0360-3199 R&D Projects: GA ČR(CZ) GA105/07/1407 Institutional research plan: CEZ:AV0Z30460519 Keywords : hydrogen * two-stage pyrolysis * coal Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.054, year: 2011

  5. Production of endo-pectate lyase by two stage cultivation of Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Satoshi; Kobayashi, Yoshiaki


    The productivity of endo-pectate lyase from Erwinia carotovora GIR 1044 was found to be greatly improved by two stage cultivation: in the first stage the bacterium was grown with an inducing carbon source, e.g., pectin, and in the second stage it was cultivated with glycerol, xylose, or fructose with the addition of monosodium L-glutamate as nitrogen source. In the two stage cultivation using pectin or glycerol as the carbon source the enzyme activity reached 400 units/ml, almost 3 times as much as that of one stage cultivation in a 10 liter fermentor. Using two stage cultivation in the 200 liter fermentor improved enzyme productivity over that in the 10 liter fermentor, with 500 units/ml of activity. Compared with the cultivation in Erlenmeyer flasks, fermentor cultivation improved enzyme productivity. The optimum cultivating conditions were agitation of 480 rpm with aeration of 0.5 vvm at 28 /sup 0/C. (4 figs, 4 tabs, 14 refs)

  6. A Comparison of Direct and Two-Stage Transportation of Patients to Hospital in Poland

    Directory of Open Access Journals (Sweden)

    Anna Rosiek


    Full Text Available Background: The rapid international expansion of telemedicine reflects the growth of technological innovations. This technological advancement is transforming the way in which patients can receive health care. Materials and Methods: The study was conducted in Poland, at the Department of Cardiology of the Regional Hospital of Louis Rydygier in Torun. The researchers analyzed the delay in the treatment of patients with acute coronary syndrome. The study was conducted as a survey and examined 67 consecutively admitted patients treated invasively in a two-stage transport system. Data were analyzed statistically. Results: Two-stage transportation does not meet the timeframe guidelines for the treatment of patients with acute myocardial infarction. Intervals for the analyzed group of patients were statistically significant (p < 0.0001. Conclusions: Direct transportation of the patient to a reference center with interventional cardiology laboratory has a significant impact on reducing in-hospital delay in case of patients with acute coronary syndrome. Perspectives: This article presents the results of two-stage transportation of the patient with acute coronary syndrome. This measure could help clinicians who seek to assess time needed for intervention. It also shows how time from the beginning of pain in chest is important and may contribute to patient disability, death or well-being.

  7. Two-stage energy storage equalization system for lithium-ion battery pack (United States)

    Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.


    How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.

  8. Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling. (United States)

    Terza, Joseph V; Basu, Anirban; Rathouz, Paul J


    The paper focuses on two estimation methods that have been widely used to address endogeneity in empirical research in health economics and health services research-two-stage predictor substitution (2SPS) and two-stage residual inclusion (2SRI). 2SPS is the rote extension (to nonlinear models) of the popular linear two-stage least squares estimator. The 2SRI estimator is similar except that in the second-stage regression, the endogenous variables are not replaced by first-stage predictors. Instead, first-stage residuals are included as additional regressors. In a generic parametric framework, we show that 2SRI is consistent and 2SPS is not. Results from a simulation study and an illustrative example also recommend against 2SPS and favor 2SRI. Our findings are important given that there are many prominent examples of the application of inconsistent 2SPS in the recent literature. This study can be used as a guide by future researchers in health economics who are confronted with endogeneity in their empirical work.

  9. Study on the Control Algorithm of Two-Stage DC-DC Converter for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Changhao Piao


    Full Text Available The fast response, high efficiency, and good reliability are very important characteristics to electric vehicles (EVs dc/dc converters. Two-stage dc-dc converter is a kind of dc-dc topologies that can offer those characteristics to EVs. Presently, nonlinear control is an active area of research in the field of the control algorithm of dc-dc converters. However, very few papers research on two-stage converter for EVs. In this paper, a fixed switching frequency sliding mode (FSFSM controller and double-integral sliding mode (DISM controller for two-stage dc-dc converter are proposed. And a conventional linear control (lag is chosen as the comparison. The performances of the proposed FSFSM controller are compared with those obtained by the lag controller. In consequence, the satisfactory simulation and experiment results show that the FSFSM controller is capable of offering good large-signal operations with fast dynamical responses to the converter. At last, some other simulation results are presented to prove that the DISM controller is a promising method for the converter to eliminate the steady-state error.

  10. Novel two stage bio-oxidation and chlorination process for high strength hazardous coal carbonization effluent. (United States)

    Manekar, Pravin; Biswas, Rima; Karthik, Manikavasagam; Nandy, Tapas


    Effluent generated from coal carbonization to coke was characterized with high organic content, phenols, ammonium nitrogen, and cyanides. A full scale effluent treatment plant (ETP) working on the principle of single stage carbon-nitrogen bio-oxidation process (SSCNBP) revealed competition between heterotrophic and autotrophic bacteria in the bio-degradation and nitrification process. The effluent was pretreated in a stripper and further combined with other streams to treat in the SSCNBP. Laboratory studies were carried on process and stripped effluents in a bench scale model of ammonia stripper and a two stage bio-oxidation process. The free ammonia removal efficiency of stripper was in the range 70-89%. Bench scale studies of the two stage bio-oxidation process achieved a carbon-nitrogen reduction at 6 days hydraulic retention time (HRT) operating in an extended aeration mode. This paper addresses the studies on selection of a treatment process for removal of organic matter, phenols, cyanide and ammonia nitrogen. The treatment scheme comprising ammonia stripping (pretreatment) followed by the two stage bio-oxidation and chlorination process met the Indian Standards for discharge into Inland Surface Waters. This treatment process package offers a techno-economically viable treatment scheme to neuter hazardous effluent generated from coal carbonization process. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Effects of earthworm casts and zeolite on the two-stage composting of green waste. (United States)

    Zhang, Lu; Sun, Xiangyang


    Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21days with the optimized two-stage composting method rather than in the 90-270days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effects of earthworm casts and zeolite on the two-stage composting of green waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu, E-mail:; Sun, Xiangyang, E-mail:


    Highlights: • Earthworm casts (EWCs) and clinoptilolite (CL) were used in green waste composting. • Addition of EWCs + CL improved physico-chemical and microbiological properties. • Addition of EWCs + CL extended the duration of thermophilic periods during composting. • Addition of EWCs + CL enhanced humification, cellulose degradation, and nutrients. • Combined addition of 0.30% EWCs + 25% CL reduced composting time to 21 days. - Abstract: Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21 days with the optimized two-stage composting method rather than in the 90–270 days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL.

  13. Assessing efficiency and effectiveness of Malaysian Islamic banks: A two stage DEA analysis (United States)

    Kamarudin, Norbaizura; Ismail, Wan Rosmanira; Mohd, Muhammad Azri


    Islamic banks in Malaysia are indispensable players in the financial industry with the growing needs for syariah compliance system. In the banking industry, most recent studies concerned only on operational efficiency. However rarely on the operational effectiveness. Since the production process of banking industry can be described as a two-stage process, two-stage Data Envelopment Analysis (DEA) can be applied to measure the bank performance. This study was designed to measure the overall performance in terms of efficiency and effectiveness of Islamic banks in Malaysia using Two-Stage DEA approach. This paper presents analysis of a DEA model which split the efficiency and effectiveness in order to evaluate the performance of ten selected Islamic Banks in Malaysia for the financial year period ended 2011. The analysis shows average efficient score is more than average effectiveness score thus we can say that Malaysian Islamic banks were more efficient rather than effective. Furthermore, none of the bank exhibit best practice in both stages as we can say that a bank with better efficiency does not always mean having better effectiveness at the same time.

  14. Continuous hydrogen and methane production in a two-stage cheese whey fermentation system. (United States)

    Cota-Navarro, C B; Carrillo-Reyes, J; Davila-Vazquez, G; Alatriste-Mondragón, F; Razo-Flores, E


    The feasibility of integrating biological hydrogen and methane production in a two-stage process using mixed cultures and cheese whey powder (CWP) as substrate was studied. The effect of operational parameters such as hydraulic retention time (HRT) and organic loading rate (OLR) on the volumetric hydrogen (VHPR) and methane (VMPR) production rates was assessed. The highest VHPR was 28 L H2/L/d, obtained during stable operation in a CSTR at HRT and OLR of 6 h and 142 g lactose/ L/d, respectively. Moreover, hydrogen (13 L/L/d) was produced even at HRT as low as 3.5 h and OLR of 163 g lactose/L/d, nonetheless, the reactor operation was not stable. Regarding methane production in an UASB reactor, the acidified effluent from the hydrogen-producing bioreactor was efficiently treated obtaining COD removals above 90% at OLR and HRT of 20 g COD/L/d and 6 h, respectively. The two-stage process for continuous production of hydrogen and methane recovered over 70% of the energy present in the substrate. This study demonstrated that hydrogen production can be efficiently coupled to methane production in a two-stage system and that CWP is an adequate substrate for energy production.

  15. Two-Stage Liver Transplantation with Temporary Porto-Middle Hepatic Vein Shunt

    Directory of Open Access Journals (Sweden)

    Giovanni Varotti


    Full Text Available Two-stage liver transplantation (LT has been reported for cases of fulminant liver failure that can lead to toxic hepatic syndrome, or massive hemorrhages resulting in uncontrollable bleeding. Technically, the first stage of the procedure consists of a total hepatectomy with preservation of the recipient's inferior vena cava (IVC, followed by the creation of a temporary end-to-side porto-caval shunt (TPCS. The second stage consists of removing the TPCS and implanting a liver graft when one becomes available. We report a case of a two-stage total hepatectomy and LT in which a temporary end-to-end anastomosis between the portal vein and the middle hepatic vein (TPMHV was performed as an alternative to the classic end-to-end TPCS. The creation of a TPMHV proved technically feasible and showed some advantages compared to the standard TPCS. In cases in which a two-stage LT with side-to-side caval reconstruction is utilized, TPMHV can be considered as a safe and effective alternative to standard TPCS.

  16. Is the continuous two-stage anaerobic digestion process well suited for all substrates? (United States)

    Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas


    Two-stage anaerobic digestion systems are often considered to be advantageous compared to one-stage processes. Although process conditions and fermenter setups are well examined, overall substrate degradation in these systems is controversially discussed. Therefore, the aim of this study was to investigate how substrates with different fibre and sugar contents (hay/straw, maize silage, sugar beet) influence the degradation rate and methane production. Intermediates and gas compositions, as well as methane yields and VS-degradation degrees were recorded. The sugar beet substrate lead to a higher pH-value drop 5.67 in the acidification reactor, which resulted in a six time higher hydrogen production in comparison to the hay/straw substrate (pH-value drop 5.34). As the achieved yields in the two-stage system showed a difference of 70.6% for the hay/straw substrate, and only 7.8% for the sugar beet substrate. Therefore two-stage systems seem to be only recommendable for digesting sugar rich substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. [Efficiency analysis of two-stage SBR for phosphorus nitrogen and organic substrate removal]. (United States)

    Long, Bei-Sheng; Liu, Hong-Bo; Xiao, Guo-Shi; Ren, He-Jun; Nie, Xi


    Taking simulated domestic sewage as treatment object, the characteristics of separate-stage phosphorus, organic substrate and nitrogen removal were studied in two-stage SBR by contrast experiment and mechanism analysis under the normal temperature, its efficiency-predominance was analyzed. The results indicate that the heterotrophic PAOs and nitrobacteria can be dominant growth in individual reactor respectively, under the effluent quality is more superior, the treatment efficiency is one time higher than that in the single SBR by controlling the sludge age (the phosphorus removal stage 5-7 d, the nitrogen removal stage about 50 d). The two-stage SBR can relieve the attack of organic load to nitrification process effectively, its nitrogen removal stage (SBR2) can still maintain stable nitrification rate under the higher COD concentration and the final effluent of the system is easy and stable to reach national standards (TP SBR2) of two-stage SBR not only can maintain nitrobacteria predominant, but also can cultivate heterotrophic bacteria which can remove difficult degraded organic substrate, that results in lower COD concentration than in the single's at the end of nitrification.

  18. Two-Stage Cerenkov Radiation Shifting Liquid Zero Degree Calorimeter for pp-Run at ATLAS (United States)

    Li, Daniel; Perdekamp, Matthias; Citron, Zvi; Atlas Zdc Team


    The Liquid Zero Degree Calorimeter (LqZDC) is an electromagnetic sampling calorimeter that transmits Cerenkov radiation produced by incoming scattered particles using a two-stage wavelength shifting process. The first iteration of the LqZDC was irradiated by a Pb-nuclei beam at the SPS to test the validity of a liquid two-stage shifting process. The first stage transmitted Cerenkov radiation transversely (horizontal) in the active region which consisted of an organic wavelength shifter (WLS), Alexa Fluor 430, dissolved in LAB oil. The second stage transmitted the shifted Cerenkov light transversely (vertical) within a quartz capillary immersed at opposite ends of the active region which consisted of the WLS POPOP dissolved in DMSO. The signal produced by the two-stage process transmits through an incident PMMA fiber to a silicon photomultiplier-equipped pre-amplifier and processed using DRS4/RCDAQ software. However, for the LqZDC to withstand the high radiation environment (1.8 Grad) environment at ATLAS, quantum dots (QD) will replace the organic WLS. The degradative effects and byproducts of QD under large neutron flux (1014 n/cm2) are undescribed in literature, thus are the current focus of this research. NSF, DOE.

  19. Two-stage UASB design enables activated-sludge free treatment of easily biodegradable wastewater. (United States)

    Diamantis, Vasileios; Aivasidis, Alexandros


    A two-stage lab-scale UASB reactor, incorporating a selector-type UASB prior to the main reactor was operated at 37 degrees C with an easily biodegradable food wastewater having a COD of 3,000 mg/L. Varying the hydraulic retention time from 25 to 5 h, the removal of COD by the two-stage process was higher than 95%. Effluent soluble COD was consistently below 75 mg/L and the methane production rate close to theoretical values. The selector UASB removed the majority of the organic load (70-90%) at high organic loading rate, i.e. between 6 and 30 g/(Ld) and the granular sludge developed was characterized by dense microbial colonies, high volatile suspended solids' content and high substrate degradation efficiency. Design of a two-stage process, incorporating a selector and a second UASB reactor, was able to achieve stable and complete substrate degradation at overall loading rates of the order of approximately 10-15 g/(Ld).

  20. Two-stage graft urethroplasty for proximal and complicated hypospadias in children: A retrospective study. (United States)

    Faure, Alice; Bouty, Aurore; Nyo, Yoke Lin; O'Brien, Mike; Heloury, Yves


    Although two-stage graft urethroplasty is widely used, the literature regarding the complication rates and functional characteristics of reconstructed neourethra is relatively modest. The aim was to analyze the complication rates and uroflow data of boys who have previously undergone a two-stage graft urethroplasty procedure for proximal and complicated hypospadias. We retrospectively reviewed the clinical outcomes of 52 boys with proximal (n = 44) and complicated (n = 8) hypospadias who underwent two-stage graft urethroplasty repair (median age of 15 months and 3 years respectively) between 2004 and 2015. Fifteen toilet-trained boys without fistulas underwent uroflowmetry. The uroflow data were plotted on age-volume-dependent normograms with normal controls. The median follow-up was 34 months (8 months-8 years). Complications were identified in three patients (6%) after the first stage (i.e. contracture of the graft) and in 20 patients (38.4%) after the second stage, including meatal stenosis (n = 8, 15.3%), urethral stricture (n = 4, 7.6%), urethrocutaneous fistula (n = 8, 15.3%), glandular dehiscence (n = 1, 1.9%), and diverticulum (n = 1, 1.9%). The patients with failed hypospadias experienced fewer complications than those who underwent the two-stage procedure for primary repair (25% and 45%, respectively). The reoperation rate was 36.8%. Eleven of the 15 toilet-trained boys were asymptomatic but exhibited flow rates below the normal range (median Qmax = 7 mL/s, range 3.5-16.7). Only one of the boys with a low flow rate was confirmed to have urethral stenosis under general anesthesia. In our study, primary hypospadias repair requiring urethral plate transection elicited worse outcomes than those observed in the prior failed hypospadias cases. However, because of our study's retrospective design, we were unable to accurately assess the initial position of the meatus in the redo hypospadias cases. Our data also demonstrated that the majority of

  1. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon


    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  2. High peak power diode stacks for high energy lasers (United States)

    Negoita, Viorel C.; Vethake, Thilo; Jiang, John; Roff, Robert; Shih, Ming; Duck, Richard; Bauer, Marc; Mite, Roberto; Boucke, Konstantin; Treusch, Georg


    High energy solid state lasers are being developed for fusion experiments and other research applications where high energy per pulse is required but the repetition rate is rather low, around 10Hz. We report our results on high peak power diode laser stacks used as optical pumps for these lasers. The stacks are based on 10 mm bars with 4 mm cavity length and 55% fill factor, with peak power exceeding 500 W per bar. These bars are stacked and mounted on a cooler which provides backside cooling and electrical insulation. Currently we mount 25 bars per cooler for a nominal peak power of 12.5 kW, but in principle the mounting scheme can be scaled to a different number of devices depending on the application. Pretesting of these bars before soldering on the cooler enables us to select devices with similar wavelength and thus we maintain tight control of the spectral width (FWHM less than 6 nm). Fine adjustments of the centroid wavelength can be done by means of temperature of the cooling fluid or bias current. The available wavelength range spans from 880 nm to 1000 nm, and the wavelength of the entire assembly of stacks can be controlled to within 0.5 nm of the target value, which makes these stacks suitable for pumping a variety of gain media. The devices are fast axis collimated, with over 95% power being collimated in 6 mrad (full angle). The slow axis divergence is 9° (full angle) for 95% power content.

  3. Maximum likelihood estimation of signal detection model parameters for the assessment of two-stage diagnostic strategies. (United States)

    Lirio, R B; Dondériz, I C; Pérez Abalo, M C


    The methodology of Receiver Operating Characteristic curves based on the signal detection model is extended to evaluate the accuracy of two-stage diagnostic strategies. A computer program is developed for the maximum likelihood estimation of parameters that characterize the sensitivity and specificity of two-stage classifiers according to this extended methodology. Its use is briefly illustrated with data collected in a two-stage screening for auditory defects.

  4. Identifying the nature of high energy Astroparticles

    CERN Document Server

    Mora, Karen Salomé Caballero


    High energy Astroparticles include Cosmic Ray, gamma ray and neutrinos, all of them coming from the universe. The origin and production, acceleration and propagation mechanisms of ultrahigh-energy CR (up to $10^{20}$ eV) are still unknown. Knowledge on particle interactions taking place at those energies, useful for studying current theories on particle physics, can be obtained only from measurements of high energy astroparticles. In the present document some techniques on data analysis of mass composition of UHECR with the Pierre Auger Observatory are described. The relevance of the muon component of air showers produced by the primary CR, as well as some low energy simulations of that component, are explained.

  5. High energy electron-positron physics

    CERN Document Server

    Ali, Ahmed


    With the termination of the physics program at PETRA, and with the start of TRISTAN and the SLC and later LEP, an era of e+e- physics has come to an end and a new one begins. The field is changing from a field of few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way most useful to any high energy physicists, in particular to newcomers in the e+e- field. This is the purpose of the book. This book should be used as a reference for future workers in the field of

  6. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)



    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  7. High energy physics at UC Riverside

    Energy Technology Data Exchange (ETDEWEB)



    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

  8. Identifying the nature of high energy Astroparticles (United States)

    Salomé Caballero Mora, Karen


    High energy Astroparticles include Cosmic Ray (CR), gamma ray and neutrinos, all of them coming from the universe. The origin and production, acceleration and propagation mechanisms of ultrahigh-energy CR (UHECR ∼ 1020 eV) are still unknown. Knowledge on particle interactions taking place at those energies, useful for studying current theories on particle physics, can be obtained only from measurements of high energy astroparticles. In the present document some techniques on data analysis of mass composition of UHECR with the Pierre Auger Observatory are described. The relevance of the muon component of air showers produced by the primary CR, as well as some low energy simulations of that component, are explained.

  9. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M.T.


    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  10. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park


    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  11. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli


    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  12. High energy bosons do not propagate

    Energy Technology Data Exchange (ETDEWEB)

    Kurkov, M.A., E-mail: [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Lizzi, Fedele, E-mail: [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Departament de Estructura i Constituents de la Matèria, Institut de Ciéncies del Cosmos, Universitat de Barcelona, Barcelona, Catalonia (Spain); Vassilevich, Dmitri, E-mail: [CMCC, Universidade Federal do ABC, Santo André, S.P. (Brazil)


    We discuss the propagation of bosons (scalars, gauge fields and gravitons) at high energy in the context of the spectral action. Using heat kernel techniques, we find that in the high-momentum limit the quadratic part of the action does not contain positive powers of the derivatives. We interpret this as the fact that the two-point Green functions vanish for nearby points, where the proximity scale is given by the inverse of the cutoff.


    Marshall, L.


    An apparatus and method are described for separating charged, high energy particles of equal momentum forming a beam where the particles differ slightly in masses. Magnetic lenses are utilized to focus the beam and maintain that condition while electrostatic fields located between magnetic lenses are utilized to cause transverse separation of the particles into two beams separated by a sufficient amount to permit an aperture to block one beam. (AEC)

  14. High Energy Emission From Millisecond Pulsars (United States)

    Harding, Alice K.


    Emission at X-ray and gamma-ray energies has been detected from millisecond pulsars, both isolated and in binary systems. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, so that high-energy emission from these sources is not unexpected. In fact, several nearby energetic millisecond pulsars that have been detected in X-rays could easily have been detected in gamma-rays by EGRET, but they were not. The reason for this may lie in a high-energy spectrum that is very different in these sources from that of normal pulsars. Both polar cap and outer gap models predict a two-component spectrum, one component peaking in hard X-rays and the other peaking above 1 GeV, with a gap at EGRET peak sensitivity. I will discuss the models for high-energy emission from millisecond pulsars, highlighting the differences between polar cap and outer gap models in spectrum and geometry of the emission.

  15. Data Preservation in High Energy Physics

    CERN Document Server

    Kogler, Roman; Steder, Michael


    Data from high-energy physics experiments are collected with significant financial and human effort and are mostly unique. However, until recently no coherent strategy existed for data preservation and re-use, and many important and complex data sets have simply been lost. While the current focus is on the LHC at CERN, in the current period several important and unique experimental programs at other facilities are coming to an end, including those at HERA, b-factories and the Tevatron. To address this issue, an inter-experimental study group on HEP data preservation and long-term analysis (DPHEP) was convened at the end of 2008. The group now aims to publish a full and detailed review of the present status of data preservation in high energy physics. This contribution summarises the results of the DPHEP study group, describing the challenges of data preservation in high energy physics and the group's first conclusions and recommendations. The physics motivation for data preservation, generic computing and pre...

  16. Proposal for a High Energy Nuclear Database

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David A.; Vogt, Ramona


    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  17. Current Perspectives in High Energy Astrophysics (United States)

    Ormes, Jonathan F. (Editor)


    High energy astrophysics is a space-age discipline that has taken a quantum leap forward in the 1990s. The observables are photons and particles that are unable to penetrate the atmosphere and can only be observed from space or very high altitude balloons. The lectures presented as chapters of this book are based on the results from the Compton Gamma-Ray Observatory (CGRO) and Advanced Satellite for Cosmology and Astrophysics (ASCA) missions to which the Laboratory for High Energy Astrophysics at NASA's Goddard Space Flight Center made significant hardware contributions. These missions study emissions from very hot plasmas, nuclear processes, and high energy particle interactions in space. Results to be discussed include gamma-ray beaming from active galactic nuclei (AGN), gamma-ray emission from pulsars, radioactive elements in the interstellar medium, X-ray emission from clusters of galaxies, and the progress being made to unravel the gamma-ray burst mystery. The recently launched X-ray Timing Explorer (XTE) and prospects for upcoming Astro-E and Advanced X-ray Astronomy Satellite (AXAF) missions are also discussed.

  18. Thiol-vinyl systems as shape memory polymers and novel two-stage reactive polymer systems (United States)

    Nair, Devatha P.


    The focus of this research was to formulate, characterize and tailor the reaction methodologies and material properties of thiol-vinyl systems to develop novel polymer platforms for a range of engineering applications. Thiol-ene photopolymers were demonstrated to exhibit several advantageous characteristics for shape memory polymer systems for a range of biomedical applications. The thiol-ene shape memory polymer systems were tough and flexible as compared to the acrylic control systems with glass transition temperatures between 30 and 40 °C; ideal for actuation at body temperature. The thiol-ene polymers also exhibited excellent shape fixity and a rapid and distinct shape memory actuation response along with free strain recoveries of greater than 96% and constrained stress recoveries of 100%. Additionally, two-stage reactive thiol-acrylate systems were engineered as a polymer platform technology enabling two independent sets of polymer processing and material properties. There are distinct advantages to designing polymer systems that afford two distinct sets of material properties -- an intermediate polymer that would enable optimum handling and processing of the material (stage 1), while maintaining the ability to tune in different, final properties that enable the optimal functioning of the polymeric material (stage 2). To demonstrate the range of applicability of the two-stage reactive systems, three specific applications were demonstrated; shape memory polymers, lithographic impression materials, and optical materials. The thiol-acrylate reactions exhibit a wide range of application versatility due to the range of available thiol and acrylate monomers as well as reaction mechanisms such as Michael Addition reactions and free radical polymerizations. By designing a series of non-stoichiometeric thiol-acrylate systems, a polymer network is initially formed via a base catalyzed 'click' Michael addition reaction. This self-limiting reaction results in a Stage 1

  19. Performance analysis of RDF gasification in a two stage fluidized bed-plasma process. (United States)

    Materazzi, M; Lettieri, P; Taylor, R; Chapman, C


    The major technical problems faced by stand-alone fluidized bed gasifiers (FBG) for waste-to gas applications are intrinsically related to the composition and physical properties of waste materials, such as RDF. The high quantity of ash and volatile material in RDF can provide a decrease in thermal output, create high ash clinkering, and increase emission of tars and CO2, thus affecting the operability for clean syngas generation at industrial scale. By contrast, a two-stage process which separates primary gasification and selective tar and ash conversion would be inherently more forgiving and stable. This can be achieved with the use of a separate plasma converter, which has been successfully used in conjunction with conventional thermal treatment units, for the ability to 'polish' the producer gas by organic contaminants and collect the inorganic fraction in a molten (and inert) state. This research focused on the performance analysis of a two-stage fluid bed gasification-plasma process to transform solid waste into clean syngas. Thermodynamic assessment using the two-stage equilibrium method was carried out to determine optimum conditions for the gasification of RDF and to understand the limitations and influence of the second stage on the process performance (gas heating value, cold gas efficiency, carbon conversion efficiency), along with other parameters. Comparison with a different thermal refining stage, i.e. thermal cracking (via partial oxidation) was also performed. The analysis is supported by experimental data from a pilot plant. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Two-stage hybrid repair of Kommerell diverticulum with supra-aortic debranching. (United States)

    Kawajiri, Hidetake; Oka, Katsuhiko; Sakai, Osamu; Takahashi, Akiyuki; Goto, Tomoyuki; Kanda, Keiichi; Yaku, Hitoshi


    The surgical treatment of Kommerell diverticula is associated with high mortality and morbidity rates. In the mid-2000s, hybrid aortic arch repair was developed, and the procedure has since been used to repair Kommerell diverticula. In the present study, we focused on the postoperative outcomes of two-stage hybrid repair of Kommerell diverticula that required supra-aortic debranching (type I hybrid arch repair). From August 2010 to July 2013, a total of four patients (aged 73.5 ± 9.5 years) underwent two-stage hybrid repair (type I hybrid arch repair) for Kommerell diverticula, and their cases were retrospectively studied. All four patients had right aortic arches and aberrant left subclavian arteries. The repair procedure consisted of two stages: (1) debranching of the supra-aortic vessels via a median sternotomy; (2) exclusion of the Kommerell diverticulum by performing thoracic endovascular repair via a femoral approach and coil embolization of the orifice of the aberrant subclavian artery. There were no in-hospital deaths. One patient developed an acute kidney injury and required hemodialysis on postoperative day 2, although his renal function recovered within 48 hours. No strokes, paraplegia, or early aortic events were observed in our series. The mean follow-up period was 19.5 months (range, 5-47 months). All patients remained free from aortic events and endoleaks during the follow-up period. The early and mid-term outcomes of hybrid repair for Kommerell diverticula that require supra-aortic debranching, which are less invasive and do not involve hypothermic circulatory arrest, are acceptable. However, this procedure requires the insertion of an endograft into the ascending aorta, and careful and long-term follow-up is required to confirm its efficacy. Georg Thieme Verlag KG Stuttgart · New York.

  1. Artificial immune system and sheep flock algorithms for two-stage fixed-charge transportation problem

    DEFF Research Database (Denmark)

    Kannan, Devika; Govindan, Kannan; Soleimani, Hamed


    In this paper, we cope with a two-stage distribution planning problem of supply chain regarding fixed charges. The focus of the paper is on developing efficient solution methodologies of the selected NP-hard problem. Based on computational limitations, common exact and approximation solution...... approaches are unable to solve real-world instances of such NP-hard problems in a reasonable time. These approaches involve cumbersome computational steps in real-size cases. In order to solve the mixed integer linear programming model, we develop an artificial immune system and a sheep flock algorithm...

  2. Two-stage estimation in copula models used in family studies

    DEFF Research Database (Denmark)

    Andersen, Elisabeth Anne Wreford


    In this paper register based family studies provide the motivation for studying a two-stage estimation procedure in copula models for multivariate failure time data. The asymptotic properties of the estimators in both parametric and semi-parametric models are derived, generalising the approach...... by Shih and Louis (Biometrics vol. 51, pp. 1384-1399, 1995b) and Glidden (Lifetime Data Analysis vol. 6, pp. 141-156, 2000). Because register based family studies often involve very large cohorts a method for analysing a sampled cohort is also derived together with the asymptotic properties...

  3. Performance prediction and parametric analysis of two stage stirling cycle cryocooler (United States)

    Natu, P. V.; Narayankhedkar, K. G.

    The lowest temperature that can be achieved inStirling cycle cryocooler is governed by various losses. This paper presents performance prediction of Two Stage Stirling Cryocooler(for 20K as the second stage temperature) by using second order analysis which calculates the ideal refrigerating effect at intermediate and final stage temperatures and the ideal power input. The losses are found out for both the stages to determine the actual refrigerating effects and power input. The results obtained are in good agreement with reported values. The performance of the cryocooler is governed by various operating and geometric parameters. Parametric analysis is carried.

  4. Two-Stage Linearization Filter for Direct-Detection Subcarrier Modulation


    Li, Z.; Erkilinc, M. S.; Maher, R.; Galdino, L.; Shi, K.; Thomsen, B. C.; Bayvel, P.; Killey, R. I.


    A novel digital two-stage linearization filter is proposed for direct-detection (DD) systems and assessed experimentally for the first time. The performance improvement is quantified by experiments with a 7 × 25 Gb/s wavelength division multiplexing DD single sideband 16-QAM Nyquist-shaped subcarrier modulation system with a net optical information spectral density of 2.3 (b/s)/Hz. The results indicate that this technique can effectively compensate the nonlinearity caused by square-law detect...

  5. A comprehensive review on two-stage integrative schemes for the valorization of dark fermentative effluents. (United States)

    Sivagurunathan, Periyasamy; Kuppam, Chandrasekhar; Mudhoo, Ackmez; Saratale, Ganesh D; Kadier, Abudukeremu; Zhen, Guangyin; Chatellard, Lucile; Trably, Eric; Kumar, Gopalakrishnan


    This review provides the alternative routes towards the valorization of dark H 2 fermentation effluents that are mainly rich in volatile fatty acids such as acetate and butyrate. Various enhancement and alternative routes such as photo fermentation, anaerobic digestion, utilization of microbial electrochemical systems, and algal system towards the generation of bioenergy and electricity and also for efficient organic matter utilization are highlighted. What is more, various integration schemes and two-stage fermentation for the possible scale up are reviewed. Moreover, recent progress for enhanced performance towards waste stabilization and overall utilization of useful and higher COD present in the organic source into value-added products are extensively discussed.

  6. The Aggregate Effect of School Choice: Evidence from a Two-stage Experiment in India


    Karthik Muralidharan; Venkatesh Sundararaman


    We present experimental evidence on the impact of a school choice program in the Indian state of Andhra Pradesh (AP) that provided students with a voucher to finance attending a private school of their choice. The study design featured a unique two-stage lottery-based allocation of vouchers that created both a student-level and a market-level experiment, which allows us to study both the individual and the aggregate effects of school choice (including spillovers). After two and four years of ...

  7. Two-stage fluidized-bed/cyclonic agglomerating incinerator. Technology spotlight report

    Energy Technology Data Exchange (ETDEWEB)



    The two-stage fluidized-bed/cyclonic agglomerating incinerator combines and improves upon the fluidized-bed, agglomeration/ incineration-technology and the cyclonic-combustion technology developed at Institute of Gas Technolgy (IGT) over many years. The result is a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes. The system can operate over a wide range of conditions and has a destruction and removal efficiency (DRE) greater than 99.99%. Solid inorganic contaminants are contained within aglassy matrix, rendering them benign and suitable for disposal in an ordinary landfill.

  8. Biomass waste gasification - can be the two stage process suitable for tar reduction and power generation? (United States)

    Sulc, Jindřich; Stojdl, Jiří; Richter, Miroslav; Popelka, Jan; Svoboda, Karel; Smetana, Jiří; Vacek, Jiří; Skoblja, Siarhei; Buryan, Petr


    A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW(th). The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950°C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER=0.71) led to substantial reduction of gas heating value (LHV=3.15 MJ/Nm(3)), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950°C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the

  9. Two-stage bargaining with coverage extension in a dual labour market

    DEFF Research Database (Denmark)

    Roberts, Mark A.; Stæhr, Karsten; Tranæs, Torben


    in extending coverage of a minimum wage to the non-union sector. Furthermore, the union sector does not seek to increase the non-union wage to a level above the market-clearing wage. In fact, it is optimal for the union sector to impose a market-clearing wage on the non-union sector. Finally, coverage......This paper studies coverage extension in a simple general equilibrium model with a dual labour market. The union sector is characterized by two-stage bargaining whereas the firms set wages in the non-union sector. In this model firms and unions of the union sector have a commonality of interest...

  10. Enhanced acarbose production by Streptomyces M37 using a two-stage fermentation strategy


    Fei Ren; Long Chen; Shuangli Xiong; Qunyi Tong


    In this work, we investigated the effect of pH on Streptomyces M37 growth and its acarbose biosynthesis ability. We observed that low pH was beneficial for cell growth, whereas high pH favored acarbose synthesis. Moreover, addition of glucose and maltose to the fermentation medium after 72 h of cultivation promoted acarbose production. Based on these results, a two-stage fermentation strategy was developed to improve acarbose production. Accordingly, pH was kept at 7.0 during the first 72 h a...

  11. Hydrogen and methane production from household solid waste in the two-stage fermentation process

    DEFF Research Database (Denmark)

    Lui, D.; Liu, D.; Zeng, Raymond Jianxiong


    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H-2/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH4/g VS....... The optimum PH range for hydrogen production in this system was in the range from 5 to 5.5. The short hydraulic retention time (2 days) applied in the first stage was enough to separate acidogenesis from methanogenesis. No additional control for preventing methanogenesis in the first stage was necessary...

  12. Assessing a two-stage heap leaching process for Platreef flotation concentrate


    Mwase Malumbo, James(*); Petersen, Jochen(*); Eksteen, Jacques J


    Samples of low-grade flotation concentrate derived from Platreef ore were treated with a two-stage heap leach process to determine the potential to run this process parallel to the convential concentrate–smelt–refine process for extracting platinum group metals, thereby adding value to the convential process via economic treatment of low-grade materials. Using bench-scale columns, a first stage bioleach achieved extractions of 91.1% Cu, 98.5% Ni and 83.5% Co in a space of 88 days at a tempera...

  13. A Two-Stage Assembly-Type Flowshop Scheduling Problem for Minimizing Total Tardiness

    Directory of Open Access Journals (Sweden)

    Ju-Yong Lee


    Full Text Available This research considers a two-stage assembly-type flowshop scheduling problem with the objective of minimizing the total tardiness. The first stage consists of two independent machines, and the second stage consists of a single machine. Two types of components are fabricated in the first stage, and then they are assembled in the second stage. Dominance properties and lower bounds are developed, and a branch and bound algorithm is presented that uses these properties and lower bounds as well as an upper bound obtained from a heuristic algorithm. The algorithm performance is evaluated using a series of computational experiments on randomly generated instances and the results are reported.

  14. Two-Stage Maximum Likelihood Estimation (TSMLE for MT-CDMA Signals in the Indoor Environment

    Directory of Open Access Journals (Sweden)

    Sesay Abu B


    Full Text Available This paper proposes a two-stage maximum likelihood estimation (TSMLE technique suited for multitone code division multiple access (MT-CDMA system. Here, an analytical framework is presented in the indoor environment for determining the average bit error rate (BER of the system, over Rayleigh and Ricean fading channels. The analytical model is derived for quadrature phase shift keying (QPSK modulation technique by taking into account the number of tones, signal bandwidth (BW, bit rate, and transmission power. Numerical results are presented to validate the analysis, and to justify the approximations made therein. Moreover, these results are shown to agree completely with those obtained by simulation.

  15. Two-stage bargaining with coverage extension in a dual labour market

    DEFF Research Database (Denmark)

    Roberts, Mark A.; Stæhr, Karsten; Tranæs, Torben


    This paper studies coverage extension in a simple general equilibrium model with a dual labour market. The union sector is characterized by two-stage bargaining whereas the firms set wages in the non-union sector. In this model firms and unions of the union sector have a commonality of interest...... in extending coverage of a minimum wage to the non-union sector. Furthermore, the union sector does not seek to increase the non-union wage to a level above the market-clearing wage. In fact, it is optimal for the union sector to impose a market-clearing wage on the non-union sector. Finally, coverage...

  16. A High-Energy, 100 Hz, Picosecond Laser for OPCPA Pumping

    Directory of Open Access Journals (Sweden)

    Hongpeng Su


    Full Text Available A high-energy diode-pumped picosecond laser system centered at 1064 nm for optical parametric chirped pulse amplifier (OPCPA pumping was demonstrated. The laser system was based on a master oscillator power amplifier configuration, which contained an Nd:YVO4 mode-locked seed laser, an LD-pumped Nd:YAG regenerative amplifier, and two double-pass amplifiers. A reflecting volume Bragg grating with a 0.1 nm reflective bandwidth was used in the regenerative amplifier for spectrum narrowing and pulse broadening to suit the pulse duration of the optical parametric amplifier (OPA process. Laser pulses with an energy of 316.5 mJ and a pulse duration of 50 ps were obtained at a 100 Hz repetition rate. A top-hat beam distribution and a 0.53% energy stability (RMS were achieved in this system.

  17. A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Hitoshi [Tsukuba U.


    High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower....

  18. Two-stage solar power tower cavity-receiver design and thermal performance analysis (United States)

    Pang, Liping; Wang, Ting; Li, Ruihua; Yang, Yongping


    New type of two-stage solar power tower cavity-receiver is designed and a calculating procedure of radiation, convection and flow under the Gaussian heat flux is established so as to determine the piping layout and geometries in the receiver I and II and the heat flux distribution in different positions is obtained. Then the main thermal performance on water/steam temperature, steam quality, wall temperature along the typical tubes and pressure drop are specified according to the heat transfer and flow characteristics of two-phase flow. Meanwhile, a series of systematic design process is promoted and analysis on thermal performance of the two receivers is conducted. Results show that this type of two-stage cavity-receivers can minimize the size and reduce the mean temperature of receiver I while raise the average heat flux, thus increase the thermal efficiency of the two receivers; besides, the multiple serpentine tubes from header can make a more uniform distribution of the outlet parameters, preventing wall overheated.

  19. Enhanced degradation of waste grass clippings in one and two stage anaerobic systems. (United States)

    Nair, S; Kuang, Y; Pullammanappallil, P


    The present work investigated the use of a simple rumen-fluid-inoculated anaerobic treatment system for the degradation of organic waste. Fresh rumen fluid collected from a fistulated sheep was used as the inoculum and fresh grass clippings were used as the waste material for treatment. Studies were carried out on both a one-stage system where the ligno-cellulosic fraction breaks down into a mixture of soluble products including volatile fatty acids and a two- stage system where these products are subsequently mineralised to biogas. In the one stage system about 70% of the organic waste was solubilized and in the two stage system about 60% waste material was solubilized in a week. About 50% of the degradation was achieved in a 4 day period, showing that a 4 day solids retention time would be a suitable operating regime. The maximum volatile fatty acid production rate was 327 mg COD l(-1) h(-1). A higher loading rate of 30 g l(-1) d(-1) was achieved in these systems compared to anaerobic digesters. Microbiological studies showed an increase in the number of fungal spores as well as a decrease in the number of protozoa in the treatment system. These numbers attained stable values over the duration of the experiments. The system developed is superior to conventional composting or anaerobic digestion and can be applied for the treatment of ligno-cellulosic agricultural residues.

  20. Rules and mechanisms for efficient two-stage learning in neural circuits. (United States)

    Teşileanu, Tiberiu; Ölveczky, Bence; Balasubramanian, Vijay


    Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in 'tutor' circuits ( e.g., LMAN) should match plasticity mechanisms in 'student' circuits ( e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning.

  1. Implications of two-stage depression screening for identifying persons with thoughts of self-harm. (United States)

    Pratt, Laura A; Brody, Debra J


    Persons with thoughts of self-harm may need evaluation for suicide risk. We examine the prevalence of thoughts of self-harm and whether persons with thoughts of self-harm are identified when two-stage depression screening is used. Data are from the 2005-2010 National Health and Nutrition Examination Surveys. Persons responding positively to question nine of the Patient Health Questionnaire-9 (PHQ-9) are identified as having thoughts of self-harm. We compare two depression cutoff scores for the Patient Health Questionnaire-2 (PHQ-2) to see what percentage of persons with thoughts of self-harm would be identified as needing further screening with the PHQ-9. The prevalence of thoughts of self-harm was 3.5%. Persons 12-17 years old, poor and reporting fair or poor health were more likely to report thoughts of self-harm. A cutoff score of three on the PHQ-2 identified 49% of persons with thoughts of self-harm for further screening with the PHQ-9. A cut point of two increased the proportion of persons with thoughts of self-harm continuing for further screening to 76%. Using a lower cutoff score, two, the PHQ-2 captures more persons with thoughts of self-harm. One quarter of persons with self-harm thoughts may not be identified for further screening when two-stage screening is used. © 2014.

  2. A two-stage sequential linear programming approach to IMRT dose optimization (United States)

    Zhang, Hao H; Meyer, Robert R; Wu, Jianzhou; Naqvi, Shahid A; Shi, Leyuan; D’Souza, Warren D


    The conventional IMRT planning process involves two stages in which the first stage consists of fast but approximate idealized pencil beam dose calculations and dose optimization and the second stage consists of discretization of the intensity maps followed by intensity map segmentation and a more accurate final dose calculation corresponding to physical beam apertures. Consequently, there can be differences between the presumed dose distribution corresponding to pencil beam calculations and optimization and a more accurately computed dose distribution corresponding to beam segments that takes into account collimator-specific effects. IMRT optimization is computationally expensive and has therefore led to the use of heuristic (e.g., simulated annealing and genetic algorithms) approaches that do not encompass a global view of the solution space. We modify the traditional two-stage IMRT optimization process by augmenting the second stage via an accurate Monte-Carlo based kernel-superposition dose calculations corresponding to beam apertures combined with an exact mathematical programming based sequential optimization approach that uses linear programming (SLP). Our approach was tested on three challenging clinical test cases with multileaf collimator constraints corresponding to two vendors. We compared our approach to the conventional IMRT planning approach, a direct-aperture approach and a segment weight optimization approach. Our results in all three cases indicate that the SLP approach outperformed the other approaches, achieving superior critical structure sparing. Convergence of our approach is also demonstrated. Finally, our approach has also been integrated with a commercial treatment planning system and may be utilized clinically. PMID:20071764

  3. Two staged incentive contract focused on efficiency and innovation matching in critical chain project management

    Directory of Open Access Journals (Sweden)

    Min Zhang


    Full Text Available Purpose: The purpose of this paper is to define the relative optimal incentive contract to effectively encourage employees to improve work efficiency while actively implementing innovative behavior. Design/methodology/approach: This paper analyzes a two staged incentive contract coordinated with efficiency and innovation in Critical Chain Project Management using learning real options, based on principle-agent theory. The situational experiment is used to analyze the validity of the basic model. Finding: The two staged incentive scheme is more suitable for employees to create and implement learning real options, which will throw themselves into innovation process efficiently in Critical Chain Project Management. We prove that the combination of tolerance for early failure and reward for long-term success is effective in motivating innovation. Research limitations/implications: We do not include the individual characteristics of uncertain perception, which might affect the consistency of external validity. The basic model and the experiment design need to improve. Practical Implications: The project managers should pay closer attention to early innovation behavior and monitoring feedback of competition time in the implementation of Critical Chain Project Management. Originality/value: The central contribution of this paper is the theoretical and experimental analysis of incentive schemes for innovation in Critical Chain Project Management using the principal-agent theory, to encourage the completion of CCPM methods as well as imitative free-riding on the creative ideas of other members in the team.

  4. Two-stage effects of awareness cascade on epidemic spreading in multiplex networks (United States)

    Guo, Quantong; Jiang, Xin; Lei, Yanjun; Li, Meng; Ma, Yifang; Zheng, Zhiming


    Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. The dynamic process with human awareness is called awareness cascade, during which individuals exhibit herd-like behavior because they are making decisions based on the actions of other individuals [Borge-Holthoefer et al., J. Complex Networks 1, 3 (2013), 10.1093/comnet/cnt006]. In this paper, to investigate the epidemic spreading with awareness cascade, we propose a local awareness controlled contagion spreading model on multiplex networks. By theoretical analysis using a microscopic Markov chain approach and numerical simulations, we find the emergence of an abrupt transition of epidemic threshold βc with the local awareness ratio α approximating 0.5 , which induces two-stage effects on epidemic threshold and the final epidemic size. These findings indicate that the increase of α can accelerate the outbreak of epidemics. Furthermore, a simple 1D lattice model is investigated to illustrate the two-stage-like sharp transition at αc≈0.5 . The results can give us a better understanding of why some epidemics cannot break out in reality and also provide a potential access to suppressing and controlling the awareness cascading systems.

  5. Performance Optimization of Two-Stage Exoreversible Thermoelectric Converter in Electrically Series and Parallel Configuration (United States)

    Hans, Ranjana; Manikandan, S.; Kaushik, S. C.


    A two-stage exoreversible semiconductor thermoelectric converter (TEC) with internal heat transfer is proposed in two different configurations, i.e., electrically series and electrically parallel. The TEC performance assuming Newton's heat transfer law is evaluated through a combination of finite-time thermodynamics (FTT) and nonequilibrium thermodynamics. A formulation based on the power output versus working electrical current and efficiency versus working electrical current is applied in this study. For fixed total number of thermoelectric elements, the current-voltage ( I- V) characteristics of the series and parallel configurations have been obtained for different combinations of thermoelectric elements in the top and bottom stage. The number of thermoelectric elements in the top stage has been optimized to maximize the power output of the TEC in the electrically series and parallel modes. Thermodynamic models for a multistage TEC system considering internal irreversibilities have been developed in a matrix laboratory Simulink environment. The effect of load resistance on V opt, I opt, V oc, and I sc for different combinations of thermoelectric elements in the top and bottom stage has been analyzed. The I- V characteristics obtained for the two-stage series and parallel TEC configurations suggest a range of load resistance values to be chosen, in turn indicating the suitability of the parallel rather than series configuration when designing real multistage TECs. This analysis will be helpful in designing actual multistage TECs.

  6. Metamodeling and Optimization of a Blister Copper Two-Stage Production Process (United States)

    Jarosz, Piotr; Kusiak, Jan; Małecki, Stanisław; Morkisz, Paweł; Oprocha, Piotr; Pietrucha, Wojciech; Sztangret, Łukasz


    It is often difficult to estimate parameters for a two-stage production process of blister copper (containing 99.4 wt.% of Cu metal) as well as those for most industrial processes with high accuracy, which leads to problems related to process modeling and control. The first objective of this study was to model flash smelting and converting of Cu matte stages using three different techniques: artificial neural networks, support vector machines, and random forests, which utilized noisy technological data. Subsequently, more advanced models were applied to optimize the entire process (which was the second goal of this research). The obtained optimal solution was a Pareto-optimal one because the process consisted of two stages, making the optimization problem a multi-criteria one. A sequential optimization strategy was employed, which aimed for optimal control parameters consecutively for both stages. The obtained optimal output parameters for the first smelting stage were used as input parameters for the second converting stage. Finally, a search for another optimal set of control parameters for the second stage of a Kennecott-Outokumpu process was performed. The optimization process was modeled using a Monte-Carlo method, and both modeling parameters and computed optimal solutions are discussed.

  7. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell. (United States)

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian


    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development of a two-stage microalgae dewatering process – A life cycle assessment approach

    Directory of Open Access Journals (Sweden)

    Rizwan R. Soomro


    Full Text Available Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically-viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission and process cost, are presented.

  9. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus: potential for lutein production. (United States)

    Flórez-Miranda, Liliana; Cañizares-Villanueva, Rosa Olivia; Melchy-Antonio, Orlando; Martínez-Jerónimo, Fernando; Flores-Ortíz, Cesar Mateo


    A biomass production process including two stages, heterotrophy/photoinduction (TSHP), was developed to improve biomass and lutein production by the green microalgae Scenedesmus incrassatulus. To determine the effects of different nitrogen sources (yeast extract and urea) and temperature in the heterotrophic stage, experiments using shake flask cultures with glucose as the carbon source were carried out. The highest biomass productivity and specific pigment concentrations were reached using urea+vitamins (U+V) at 30°C. The first stage of the TSHP process was done in a 6L bioreactor, and the inductions in a 3L airlift photobioreactor. At the end of the heterotrophic stage, S. incrassatulus achieved the maximal biomass concentration, increasing from 7.22gL-1 to 17.98gL-1 with an increase in initial glucose concentration from 10.6gL-1 to 30.3gL-1. However, the higher initial glucose concentration resulted in a lower specific growth rate (μ) and lower cell yield (Yx/s), possibly due to substrate inhibition. After 24h of photoinduction, lutein content in S. incrassatulus biomass was 7 times higher than that obtained at the end of heterotrophic cultivation, and the lutein productivity was 1.6 times higher compared with autotrophic culture of this microalga. Hence, the two-stage heterotrophy/photoinduction culture is an effective strategy for high cell density and lutein production in S. incrassatulus. Copyright © 2017. Published by Elsevier B.V.

  10. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Lin, C. S. [Purdue Univ., West Lafayette, IN (United States); Hader, J. S. [Purdue Univ., West Lafayette, IN (United States); Park, T. K. [Purdue Univ., West Lafayette, IN (United States); Deng, P. [Purdue Univ., West Lafayette, IN (United States); Yang, G. [Purdue Univ., West Lafayette, IN (United States); Jung, Y. S. [Purdue Univ., West Lafayette, IN (United States); Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Stauff, N. E. [Argonne National Lab. (ANL), Argonne, IL (United States)


    This report presents the performance characteristics of two “two-stage” fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  11. Many-Objective Particle Swarm Optimization Using Two-Stage Strategy and Parallel Cell Coordinate System. (United States)

    Hu, Wang; Yen, Gary G; Luo, Guangchun


    It is a daunting challenge to balance the convergence and diversity of an approximate Pareto front in a many-objective optimization evolutionary algorithm. A novel algorithm, named many-objective particle swarm optimization with the two-stage strategy and parallel cell coordinate system (PCCS), is proposed in this paper to improve the comprehensive performance in terms of the convergence and diversity. In the proposed two-stage strategy, the convergence and diversity are separately emphasized at different stages by a single-objective optimizer and a many-objective optimizer, respectively. A PCCS is exploited to manage the diversity, such as maintaining a diverse archive, identifying the dominance resistant solutions, and selecting the diversified solutions. In addition, a leader group is used for selecting the global best solutions to balance the exploitation and exploration of a population. The experimental results illustrate that the proposed algorithm outperforms six chosen state-of-the-art designs in terms of the inverted generational distance and hypervolume over the DTLZ test suite.

  12. Waste-gasification efficiency of a two-stage fluidized-bed gasification system. (United States)

    Liu, Zhen-Shu; Lin, Chiou-Liang; Chang, Tsung-Jen; Weng, Wang-Chang


    This study employed a two-stage fluidized-bed gasifier as a gasification reactor and two additives (CaO and activated carbon) as the Stage-II bed material to investigate the effects of the operating temperature (700°C, 800°C, and 900°C) on the syngas composition, total gas yield, and gas-heating value during simulated waste gasification. The results showed that when the operating temperature increased from 700 to 900°C, the molar percentage of H2 in the syngas produced by the two-stage gasification process increased from 19.4 to 29.7mol% and that the total gas yield and gas-heating value also increased. When CaO was used as the additive, the molar percentage of CO2 in the syngas decreased, and the molar percentage of H2 increased. When activated carbon was used, the molar percentage of CH4 in the syngas increased, and the total gas yield and gas-heating value increased. Overall, CaO had better effects on the production of H2, whereas activated carbon clearly enhanced the total gas yield and gas-heating value. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. The two-stage clonal expansion model in occupational cancer epidemiology: results from three cohort studies. (United States)

    Zeka, Ariana; Gore, Rebecca; Kriebel, David


    The objective of this work was to apply the two-stage clonal expansion model, with the intention to expand the literature on epidemiological applications of the model and demonstrate the feasibility of incorporating biologically based modelling methods into the widely used retrospective cohort study. The authors fitted the two-stage clonal expansion model model to three occupational cohort studies: (1) a cohort of textile workers exposed to asbestos and followed for lung cancer mortality; (2) a cohort of diatomaceous earth workers exposed to silica and also followed for lung cancer mortality; and (3) a cohort of automotive manufacturing workers exposed to straight metalworking fluid (MWF) and followed for larynx cancer incidence. The model allowed the authors to estimate exposure effects in three stages: cancer initiation (early effects), promotion or malignant transformation (late effects). In the first cohort, the authors found strong evidence for an early effect of asbestos on lung cancer risk. Findings from analyses of the second cohort suggested early and less evidently late effects of silica on lung cancer risk. In the MWF (third) cohort, there was only weak evidence of straight MWF exposure effects on both early and late stages. The authors also observed a late birth cohort effect on larynx cancer risk. The findings for asbestos and silica were essentially confirmatory, supporting evidence for their early effects on lung cancer from a large body of literature. The effect of straight MWF on larynx cancer was less clear.

  14. Two-stage electrodialytic concentration of glyceric acid from fermentation broth. (United States)

    Habe, Hiroshi; Shimada, Yuko; Fukuoka, Tokuma; Kitamoto, Dai; Itagaki, Masayuki; Watanabe, Kunihiko; Yanagishita, Hiroshi; Sakaki, Keiji


    The aim of this research was the application of a two-stage electrodialysis (ED) method for glyceric acid (GA) recovery from fermentation broth. First, by desalting ED, glycerate solutions (counterpart is Na+) were concentrated using ion-exchange membranes, and the glycerate recovery and energy consumption became more efficient with increasing the initial glycerate concentration (30 to 130 g/l). Second, by water-splitting ED, the concentrated glycerate was electroconverted to GA using bipolar membranes. Using a culture broth of Acetobacter tropicalis containing 68.6 g/l of D-glycerate, a final D-GA concentration of 116 g/l was obtained following the two-stage ED process. The total energy consumption for the D-glycerate concentration and its electroconversion to D-GA was approximately 0.92 kWh per 1 kg of D-GA. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Prediction of bio-methane potential and two-stage anaerobic digestion of starfish. (United States)

    Kim, Dong-Hoon; Cha, Jaehwan; Lee, Mo-Kwon; Kim, Hyun-Woo; Kim, Mi-Sun


    The present work reports the first ever evaluation of the biological CH₄ potential (BMP) of starfish, classified as invasive species. Since starfish contain a large amount of inorganic matter, only the supernatant obtained through grinding and centrifugation was used for BMP test. By applying response surface methodology, the individual and interactive effects of three parameters, inoculum/substrate ratios, substrate concentrations, and buffer capacities on CH₄ production were investigated, and the maximum CH₄ yield of 334 mL CH₄/g COD was estimated. In addition, continuous CH₄ production was attempted using a two-stage (acidogenic sequencing batch reactor+methanogenic up-flow anaerobic sludge blanket reactor (UASBr)) fermentation process. Acidification efficiency was maximized at 2 days of hydraulic retention time with valerate, butyrate, and acetate as main acids, and these were converted to CH₄ with showing 296 mL CH₄/g COD added. Overall, the two-stage fermentation process could convert 44% of organic content in whole starfish to CH₄. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Two-stage fermentation process for enhanced mannitol production using Candida magnoliae mutant R9. (United States)

    Savergave, Laxman S; Gadre, Ramchandra V; Vaidya, Bhalchandra K; Jogdand, Vitthal V


    Mutants of Candida magnoliae NCIM 3470 were generated by treatment of ultra-violet radiations, ethyl methyl sulphonate and N-methyl-N'-nitro-N-nitrosoguanidine. Mutants with higher reductase activity were screened by means of 2,3,5-triphenyl tetrazolium chloride agar plate assay. Among the screened mutants, the mutant R9 produced maximum mannitol (i.e. 46 g l(-1)) in liquid fermentation medium containing 250 g l(-1) glucose and hence was selected for further experiments. Preliminary optimization studies were carried out on shake-flask level which increased the mannitol production to 60 g l(-1) in liquid fermentation medium containing 300 g l(-1) glucose. A two-stage fermentation process comprising of growth phase and production phase was employed. During the growth phase, glucose was supplemented and aerobic conditions were maintained. Thereafter, the production phase was initiated by supplementing fructose and switching to anaerobic conditions by discontinuing aeration and decreasing the speed of agitation. The strategy of two-stage fermentation significantly enhanced the production of mannitol up to 240 g l(-1), which is the highest among all fermentative production processes and corresponds to 81 % yield and 4 g l(-1 )h(-1) productivity without formation of any by-product.

  17. Bio-hydrogen production using a two-stage fermentation process. (United States)

    Alalayah, W M; Kalil, M S; Kadhum, A A H; Jahim, J M; Jaapar, S Z S; Alauj, N M


    A two-stage fermentation process consisting of dark and photo-fermentation periods was carried out in a batch reactor. In the first stage, glucose was fermented in the dark stage using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564; CSN1-4) to produce acetate, CO2 and H2. The acetate produced in the first stage is fermented to H2 and CO2 by Rhodobacter sphaeroides NCIMB 8253 for further hydrogen production in the second, illuminated stage. The yield of hydrogen in the first stage was about 3.10 mol H2 (mol glucose)(-1) at a glucose concentration of 10 g L(-1), pH 6 +/- 0.2 and 37 degrees C and the second stage yield was about 1.10-1.25 mol H2 (mol acetic acid)(-1) at pH 6.8 +/- 0.2 and 32 degrees C, without removal of the Clostridium CSN1-4. The overall yield of hydrogen in the two-stage process, with glucose as the main substrate was higher than single-stage fermentation.

  18. A two-stage inexact joint-probabilistic programming method for air quality management under uncertainty. (United States)

    Lv, Y; Huang, G H; Li, Y P; Yang, Z F; Sun, W


    A two-stage inexact joint-probabilistic programming (TIJP) method is developed for planning a regional air quality management system with multiple pollutants and multiple sources. The TIJP method incorporates the techniques of two-stage stochastic programming, joint-probabilistic constraint programming and interval mathematical programming, where uncertainties expressed as probability distributions and interval values can be addressed. Moreover, it can not only examine the risk of violating joint-probability constraints, but also account for economic penalties as corrective measures against any infeasibility. The developed TIJP method is applied to a case study of a regional air pollution control problem, where the air quality index (AQI) is introduced for evaluation of the integrated air quality management system associated with multiple pollutants. The joint-probability exists in the environmental constraints for AQI, such that individual probabilistic constraints for each pollutant can be efficiently incorporated within the TIJP model. The results indicate that useful solutions for air quality management practices have been generated; they can help decision makers to identify desired pollution abatement strategies with minimized system cost and maximized environmental efficiency. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory (United States)

    Guo, Jiarong


    A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).

  20. Development of a Two-Stage Microalgae Dewatering Process – A Life Cycle Assessment Approach (United States)

    Soomro, Rizwan R.; Zeng, Xianhai; Lu, Yinghua; Lin, Lu; Danquah, Michael K.


    Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF) emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission, and process cost, is presented. PMID:26904075

  1. Two-stage agglomeration of fine-grained herbal nettle waste (United States)

    Obidziński, Sławomir; Joka, Magdalena; Fijoł, Olga


    This paper compares the densification work necessary for the pressure agglomeration of fine-grained dusty nettle waste, with the densification work involved in two-stage agglomeration of the same material. In the first stage, the material was pre-densified through coating with a binder material in the form of a 5% potato starch solution, and then subjected to pressure agglomeration. A number of tests were conducted to determine the effect of the moisture content in the nettle waste (15, 18 and 21%), as well as the process temperature (50, 70, 90°C) on the values of densification work and the density of the obtained pellets. For pre-densified pellets from a mixture of nettle waste and a starch solution, the conducted tests determined the effect of pellet particle size (1, 2, and 3 mm) and the process temperature (50, 70, 90°C) on the same values. On the basis of the tests, we concluded that the introduction of a binder material and the use of two-stage agglomeration in nettle waste densification resulted in increased densification work (as compared to the densification of nettle waste alone) and increased pellet density.

  2. On bi-criteria two-stage transportation problem: a case study

    Directory of Open Access Journals (Sweden)

    Ahmad MURAD


    Full Text Available The study of the optimum distribution of goods between sources and destinations is one of the important topics in projects economics. This importance comes as a result of minimizing the transportation cost, deterioration, time, etc. The classical transportation problem constitutes one of the major areas of application for linear programming. The aim of this problem is to obtain the optimum distribution of goods from different sources to different destinations which minimizes the total transportation cost. From the practical point of view, the transportation problems may differ from the classical form. It may contain one or more objective function, one or more stage to transport, one or more type of commodity with one or more means of transport. The aim of this paper is to construct an optimization model for transportation problem for one of mill-stones companies. The model is formulated as a bi-criteria two-stage transportation problem with a special structure depending on the capacities of suppliers, warehouses and requirements of the destinations. A solution algorithm is introduced to solve this class of bi-criteria two-stage transportation problem to obtain the set of non-dominated extreme points and the efficient solutions accompanied with each one that enables the decision maker to choose the best one. The solution algorithm mainly based on the fruitful application of the methods for treating transportation problems, theory of duality of linear programming and the methods of solving bi-criteria linear programming problems.

  3. Biological hydrogen and methane production from bagasse bioethanol fermentation residues using a two-stage bioprocess. (United States)

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Chung, Man-Chien; Chan, Kun-Chi


    This study investigated the recovery of H2 and CH4 from bagasse bioethanol fermentation residues (bagasse BEFR) using a two-stage bioprocess. In the hydrogen fermentation bioreactor (HFB), carbohydrate removal efficiency was maintained at 82-93% and the highest hydrogen yield was 8.24mL/gCOD at volumetric loading rate (VLR) of 80kgCOD/m(3)/day. The results indicated a positive correlation between hydrogen yield and butyrate-to-acetate ratio, which might be due to the mechanisms of lactate/acetate utilization for hydrogen production and acetogenesis occurring in the HFB. Remaining volatile fatty acids and alcohols in the HFB effluent were further utilized for methane production in methane fermentation bioreactor (MFB), in which the highest methane yield of 345.2mL/gCOD was attained at VLR of 2.5kgCOD/m(3)/day. Overall, the two-stage bioprocess achieved a maximum COD removal of 81% from bagasse BEFR, and converted 0.3% and 72.8% of COD in the forms of H2 and CH4, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Two-Stage Nerve Graft in Severe Scar: A Time-Course Study in a Rat Model

    Directory of Open Access Journals (Sweden)

    Shayan Zadegan


    According to the EPT and WRL, the two-stage nerve graft showed significant improvement (P=0.020 and P =0.017 respectively. The TOA showed no significant difference between the two groups. The total vascular index was significantly higher in the two-stage nerve graft group (P

  5. Rapid Two-stage Versus One-stage Surgical Repair of Interrupted Aortic Arch with Ventricular Septal Defect in Neonates

    Directory of Open Access Journals (Sweden)

    Meng-Lin Lee


    Conclusion: The outcome of rapid two-stage repair is comparable to that of one-stage repair. Rapid two-stage repair has the advantages of significantly shorter cardiopulmonary bypass duration and AXC time, and avoids deep hypothermic circulatory arrest. LVOTO remains an unresolved issue, and postoperative aortic arch restenosis can be dilated effectively by percutaneous balloon angioplasty.

  6. Grid Computing in High Energy Physics (United States)

    Avery, Paul


    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software resources, regardless of location); (4) collaboration (providing tools that allow members full and fair access to all collaboration resources and enable distributed teams to work effectively, irrespective of location); and (5) education, training and outreach (providing resources and mechanisms for training students and for communicating important information to the public). It is believed that computing infrastructures based on Data Grids and optical networks can meet these challenges and can offer data intensive enterprises in high energy physics and elsewhere a comprehensive, scalable framework for collaboration and resource sharing. A number of Data Grid projects have been underway since 1999. Interestingly, the most exciting and far ranging of these projects are led by collaborations of high energy physicists, computer scientists and scientists from other disciplines in support of experiments with massive, near-term data needs. I review progress in this

  7. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)


    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.


    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona


    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  9. Data Preservation in High Energy Physics

    CERN Document Server

    Mount, Richard; Le Diberder, Francois; Dubois-Felsmann, Gregory; Neal, Homer; Bellis, Matt; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; Konigsberg, Jacobo; Roser, Robert; Snider, Rick; Lucchesi, Donatella; Denisov, Dmitri; Soldner-Rembold, Stefan; Li, Qizhong; Varnes, Erich; Jonckheere, Alan; Gasthuber, Martin; Gülzow, Volker; Kemp, Yves; Ozerov, Dmitri; Diaconu, Cristinel; South, David; Lobodzinski, Bogdan; Olsson, Jan; Haas, Tobias; Wrona, Krzysztof; Szuba, Janusz; Schnell, Gunar; Sasaki, Takashi; Katayama, Nobu; Hernandez, Fabio; Mele, Salvatore; Holzner, Andre; Hemmer, Frederic; Schroeder, Matthias; Barring, Olof; Brun, Rene; Maggi, Marcello; Igo-Kemenes, Peter; Van Wezel, Jos; Heiss, Andreas; Chen, Gang; Wang, Yifang; Asner, David; Riley, Daniel; Corney, David; Gordon, John


    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group.

  10. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.


    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  11. Advanced Analysis Methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Pushpalatha C. Bhat


    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  12. Reclustering of high energy physics data

    CERN Document Server

    Schaller, M


    The coming high energy physics experiments will store Petabytes of data into object databases. Analysis jobs will frequently traverse collections containing millions of stored objects. Clustering is one of the most effective means $9 to enhance the performance of these applications. The paper presents a reclustering algorithm for independent objects contained in multiple possibly overlapping collections on secondary storage. The algorithm decomposes the stored $9 objects into a number of independent chunks and then maps these chunks to a traveling salesman problem. Under a set of realistic assumptions, the number of disk seeks is reduced almost to the theoretical minimum. Experimental results $9 obtained from a prototype are included. (17 refs).

  13. Photomask specifications for high energy physics detectors

    CERN Document Server

    Pindo, M


    Planar technologies used for radiation detector fabrication imply an extensive use of photomasks whose characteristics are critical in determining final detector performance. Compatibly with their manufacturing process, photomasks must satisfy the application-specific requirements dictated both by wafer manufacturers and detector final users. The design and realization of microstrip and pixel detectors, widely used in high energy physics experiments, ask for intensive scientific effort, advanced technology and important economical investments. Photomask specification definition is one of the fundamental steps to optimize detector fabrication processes and fulfill experimental requirements at the most appropriate cost.

  14. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M


    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  15. Photons as Ultra High Energy Cosmic Rays ?

    CERN Document Server

    Kalashev, O E; Semikoz, D V; Tkachev, Igor I


    We study spectra of the Ultra High Energy Cosmic Rays assuming primaries are protons and photons, and that their sources are extragalactic. We assume power low for the injection spectra and take into account the influence of cosmic microwave, infrared, optical and radio backgrounds as well as extragalactic magnetic fields on propagation of primaries. Our additional free parameters are the maximum energy of injected particles and the distance to the nearest source. We find a parameter range where the Greisen-Zatsepin-Kuzmin cut-off is avoided.

  16. Energy peaks: A high energy physics outlook (United States)

    Franceschini, Roberto


    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  17. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.


    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the $Sigma ^+$ charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  18. Particle identification methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.


    This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.

  19. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.


    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  20. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge


    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.


    Lambertson, G.R.


    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  2. Computing support for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Avery, P.; Yelton, J. [Univ. of Florida, Gainesville, FL (United States)


    This computing proposal (Task S) is submitted separately but in support of the High Energy Experiment (CLEO, Fermilab, CMS) and Theory tasks. The authors have built a very strong computing base at Florida over the past 8 years. In fact, computing has been one of the main contributions to their experimental collaborations, involving not just computing capacity for running Monte Carlos and data reduction, but participation in many computing initiatives, industrial partnerships, computing committees and collaborations. These facts justify the submission of a separate computing proposal.

  3. Structure design of and experimental research on a two-stage laval foam breaker for foam fluid recycling. (United States)

    Wang, Jin-song; Cao, Pin-lu; Yin, Kun


    Environmental, economical and efficient antifoaming technology is the basis for achievement of foam drilling fluid recycling. The present study designed a novel two-stage laval mechanical foam breaker that primarily uses vacuum generated by Coanda effect and Laval principle to break foam. Numerical simulation results showed that the value and distribution of negative pressure of two-stage laval foam breaker were larger than that of the normal foam breaker. Experimental results showed that foam-breaking efficiency of two-stage laval foam breaker was higher than that of normal foam breaker, when gas-to-liquid ratio and liquid flow rate changed. The foam-breaking efficiency of normal foam breaker decreased rapidly with increasing foam stability, whereas the two-stage laval foam breaker remained unchanged. Foam base fluid would be recycled using two-stage laval foam breaker, which would reduce the foam drilling cost sharply and waste disposals that adverse by affect the environment.

  4. Indirect high-bandwidth stabilization of carrier-envelope phase of a high-energy, low-repetition-rate laser. (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi


    We demonstrate a method of stabilizing the carrier-envelope phase (CEP) of low-repetition-rate, high-energy femtosecond laser systems such as TW-PW class lasers. A relatively weak high-repetition-rate (~1 kHz) reference pulse copropagates with a low-repetition-rate (10 Hz) high-energy pulse, which are s- and p-polarized, respectively. Using a Brewster angle window, the reference pulse is separated after the power amplifier and used for feedback to stabilize its CEP. The single-shot CEP of the high-energy pulse is indirectly stabilized to 550 mrad RMS, which is the highest CEP stability ever reported for a low-repetition-rate (10-Hz) high-energy laser system. In this novel method, the feedback frequency of the reference pulse from the front-end preamplifier can be almost preserved. Thus, higher CEP stability can be realized than for lower frequencies. Of course, a reference pulse with an even higher repetition rate (e.g., 10 kHz) can be easily employed to sample and feed back CEP jitter over a broader frequency bandwidth.

  5. Two-stage atlas subset selection in multi-atlas based image segmentation. (United States)

    Zhao, Tingting; Ruan, Dan


    Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. The authors have developed a novel two-stage atlas

  6. Two stages and three components of the postural preparation to action. (United States)

    Krishnan, Vennila; Aruin, Alexander S; Latash, Mark L


    Previous studies of postural preparation to action/perturbation have primarily focused on anticipatory postural adjustments (APAs), the changes in muscle activation levels resulting in the production of net forces and moments of force. We hypothesized that postural preparation to action consists of two stages: (1) Early postural adjustments (EPAs), seen a few hundred ms prior to an expected external perturbation and (2) APAs seen about 100 ms prior to the perturbation. We also hypothesized that each stage consists of three components, anticipatory synergy adjustments seen as changes in covariation of the magnitudes of commands to muscle groups (M-modes), changes in averaged across trials levels of muscle activation, and mechanical effects such as shifts of the center of pressure. Nine healthy participants were subjected to external perturbations created by a swinging pendulum while standing in a semi-squatting posture. Electrical activity of twelve trunk and leg muscles and displacements of the center of pressure were recorded and analyzed. Principal component analysis was used to identify four M-modes within the space of muscle activations using indices of integrated muscle activation. This analysis was performed twice, over two phases, 400-700 ms prior to the perturbation and over 200 ms just prior to the perturbation. Similar robust results were obtained using the data from both phases. An index of a multi-M-mode synergy stabilizing the center of pressure displacement was computed using the framework of the uncontrolled manifold hypothesis. The results showed high synergy indices during quiet stance. Each of the two stages started with a drop in the synergy index followed by a change in the averaged across trials activation levels in postural muscles. There was a very long electromechanical delay during the early postural adjustments and a much shorter delay during the APAs. Overall, the results support our main hypothesis on the two stages and three components

  7. Two-stage vs single-stage management for concomitant gallstones and common bile duct stones (United States)

    Lu, Jiong; Cheng, Yao; Xiong, Xian-Ze; Lin, Yi-Xin; Wu, Si-Jia; Cheng, Nan-Sheng


    AIM: To evaluate the safety and effectiveness of two-stage vs single-stage management for concomitant gallstones and common bile duct stones. METHODS: Four databases, including PubMed, Embase, the Cochrane Central Register of Controlled Trials and the Science Citation Index up to September 2011, were searched to identify all randomized controlled trials (RCTs). Data were extracted from the studies by two independent reviewers. The primary outcomes were stone clearance from the common bile duct, postoperative morbidity and mortality. The secondary outcomes were conversion to other procedures, number of procedures per patient, length of hospital stay, total operative time, hospitalization charges, patient acceptance and quality of life scores. RESULTS: Seven eligible RCTs [five trials (n = 621) comparing preoperative endoscopic retrograde cholangiopancreatography (ERCP)/endoscopic sphincterotomy (EST) + laparoscopic cholecystectomy (LC) with LC + laparoscopic common bile duct exploration (LCBDE); two trials (n = 166) comparing postoperative ERCP/EST + LC with LC + LCBDE], composed of 787 patients in total, were included in the final analysis. The meta-analysis detected no statistically significant difference between the two groups in stone clearance from the common bile duct [risk ratios (RR) = -0.10, 95% confidence intervals (CI): -0.24 to 0.04, P = 0.17], postoperative morbidity (RR = 0.79, 95% CI: 0.58 to 1.10, P = 0.16), mortality (RR = 2.19, 95% CI: 0.33 to 14.67, P = 0.42), conversion to other procedures (RR = 1.21, 95% CI: 0.54 to 2.70, P = 0.39), length of hospital stay (MD = 0.99, 95% CI: -1.59 to 3.57, P = 0.45), total operative time (MD = 12.14, 95% CI: -1.83 to 26.10, P = 0.09). Two-stage (LC + ERCP/EST) management clearly required more procedures per patient than single-stage (LC + LCBDE) management. CONCLUSION: Single-stage management is equivalent to two-stage management but requires fewer procedures. However, patient’s condition, operator

  8. Theory Summary: Very High Energy Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sarkar Subir


    Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.

  9. High energy neutrinos from the sun (United States)

    Masip, Manuel


    The Sun is a main source of high energy neutrinos. These neutrinos appear as secondary particles after the Sun absorbs high-energy cosmic rays, that find there a low-density environment (much thinner than our atmosphere) where most secondary pions, kaons and muons can decay before they lose energy. The main uncertainty in a calculation of the solar neutrino flux is due to the effects of the magnetic fields on the absorption rate of charged cosmic rays. We use recent data from HAWC on the cosmic-ray shadow of the Sun to estimate this rate. We evaluate the solar neutrino flux and show that at 1 TeV it is over ten times larger than the atmospheric one at zenith θz =30∘ /150∘ . The flux that we obtain has a distinct spectrum and flavor composition: it is harder and richer in antineutrinos and tau/electron neutrinos than the atmospheric background. This solar flux could be detected in current and upcoming neutrino telescopes. KM3NeT, in particular, looks very promising: it will see the Sun high in the sky (the atmospheric flux is lower there than near the horizon) and expects a very good angular resolution (the Sun's radius is just 0.27°).

  10. Tibiofibula Transposition in High-Energy Fractures

    Directory of Open Access Journals (Sweden)

    Peter R. Loughenbury


    Full Text Available We report two cases of failed attempts at closed reduction of high-energy tibial fractures with an associated fibula fracture. The first case was a 39-year-old male involved in high-speed motorbike collision, while the second was a 14-year-old male who injured his leg following a fall of three metres. Emergency medical services at the scenes of the accidents reported a 90-degree valgus deformity of the injured limb and both limbs were realigned on scene and stabilized. Adequate alignment of the tibia could not be achieved by manipulation under sedation or anaesthesia. Open reduction and exposure of the fracture sites revealed that the distal fibula fragment was “transposed” and entrapped in the medulla of the proximal tibial fragment. Reduction required simulation of the mechanism of injury in order to disengage the fragments and allow reduction. Tibiofibula transposition is a rare complication of high-energy lower limb fractures which has not previously been reported and may prevent adequate closed reduction. Impaction of the distal fibula within the tibial medulla occurs as the limb is realigned by paramedic staff before transfer to hospital. We recommend that when this complication is identified the patient is transferred to the operating room for open reduction and stabilization of the fracture.

  11. Extreme Transients in the High Energy Universe (United States)

    Kouveliotou, Chryssa


    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  12. High energy microlaser and compact MOPA transmitter (United States)

    Brickeen, Brian K.; Bernot, Dave; Geathers, Eliot; Mosovsky, Joseph


    A compact micro-oscillator incorporating a dual-bounce, grazing incidence gain module with a folded resonator cavity is presented. The gain module, previously developed for Nd:YVO4, is embodied in highly doped ceramic Nd:YAG to generate improved Q-switch performance while maintaining localized pump absorption. The cavity design utilizes a doubly folded optics path around the gain crystal to increase the intra-cavity mode for a more optimum overlap with the pump light volume produced by standard lensed laser diode bars. A modified CS-package diode mount is developed to facilitate the reduced size of the oscillator without sacrificing the ability to use a high-energy, side-pumping arrangement. The oscillator is combined with a high gain, high energy extraction VHGM amplifier to generate a transmitter source on the order of 50 mJ. Cooling for both the oscillator and amplifier modules is provided via a conductive path through the base of the package. Both devices are mounted on opposite sides of a phase-change cooling reservoir to enable self-contained, burst-mode operation. Beam shaping of the oscillator output, in preparation for injection into the amplifier, is contained in a small cut-away path on the reservoir side.

  13. Two-Stage Surgery for a Large Cervical Dumbbell Tumour in Neurofibromatosis 1: A Case Report

    Directory of Open Access Journals (Sweden)

    Mohd Ariff S


    Full Text Available Spinal neurofibromas occur sporadically and typically occur in association with neurofibromatosis 1. Patients afflicted with neurofibromatosis 1 usually present with involvement of several nerve roots. This report describes the case of a 14- year-old child with a large intraspinal, but extradural tumour with paraspinal extension, dumbbell neurofibroma of the cervical region extending from the C2 to C4 vertebrae. The lesions were readily detected by MR imaging and were successfully resected in a two-stage surgery. The time interval between the first and second surgery was one month. We provide a brief review of the literature regarding various surgical approaches, emphasising the utility of anterior and posterior approaches.

  14. A Two-Stage Approach for Medical Supplies Intermodal Transportation in Large-Scale Disaster Responses (United States)

    Ruan, Junhu; Wang, Xuping; Shi, Yan


    We present a two-stage approach for the “helicopters and vehicles” intermodal transportation of medical supplies in large-scale disaster responses. In the first stage, a fuzzy-based method and its heuristic algorithm are developed to select the locations of temporary distribution centers (TDCs) and assign medial aid points (MAPs) to each TDC. In the second stage, an integer-programming model is developed to determine the delivery routes. Numerical experiments verified the effectiveness of the approach, and observed several findings: (i) More TDCs often increase the efficiency and utility of medical supplies; (ii) It is not definitely true that vehicles should load more and more medical supplies in emergency responses; (iii) The more contrasting the traveling speeds of helicopters and vehicles are, the more advantageous the intermodal transportation is. PMID:25350005

  15. Development of advanced air-blown entrained-flow two-stage bituminous coal IGCC gasifier

    Directory of Open Access Journals (Sweden)

    Abaimov Nikolay A.


    Full Text Available Integrated gasification combined cycle (IGCC technology has two main advantages: high efficiency, and low levels of harmful emissions. Key element of IGCC is gasifier, which converts solid fuel into a combustible synthesis gas. One of the most promising gasifiers is air-blown entrained-flow two-stage bituminous coal gasifier developed by Mitsubishi Heavy Industries (MHI. The most obvious way to develop advanced gasifier is improvement of commercial-scale 1700 t/d MHI gasifier using the computational fluid dynamics (CFD method. Modernization of commercial-scale 1700 t/d MHI gasifier is made by changing the regime parameters in order to improve its cold gas efficiency (CGE and environmental performance, namely H2/CO ratio. The first change is supply of high temperature (900°C steam in gasifier second stage. And the second change is additional heating of blast air to 900°C.

  16. Midterm Electricity Market Clearing Price Forecasting Using Two-Stage Multiple Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xing Yan


    Full Text Available Currently, there are many techniques available for short-term forecasting of the electricity market clearing price (MCP, but very little work has been done in the area of midterm forecasting of the electricity MCP. The midterm forecasting of the electricity MCP is essential for maintenance scheduling, planning, bilateral contracting, resources reallocation, and budgeting. A two-stage multiple support vector machine (SVM based midterm forecasting model of the electricity MCP is proposed in this paper. The first stage is utilized to separate the input data into corresponding price zones by using a single SVM. Then, the second stage is applied utilizing four parallel designed SVMs to forecast the electricity price in four different price zones. Compared to the forecasting model using a single SVM, the proposed model showed improved forecasting accuracy in both peak prices and overall system. PJM interconnection data are used to test the proposed model.

  17. Effekt of a two-stage nursing assesment and intervention - a randomized intervention study

    DEFF Research Database (Denmark)

    Rosted, Elizabeth Emilie; Poulsen, Ingrid; Hendriksen, Carsten

    Background: Geriatric patients recently discharged from hospital are at risk of unplanned readmissions and admission to nursing home. When discharged directly from Emergency Department (ED) the risk increases, as time pressure often requires focus on the presenting problem, although 80...... % of geriatric patients have complex and often unresolved caring needs. The objective was to examine the effect of a two-stage nursing assessment and intervention to address the patients uncompensated problems given just after discharge from ED and one and six months after. Method: We conducted a prospective......, randomized, controlled trial with follow-up at one and six months. Included were patients >70 at increased risk of readmission and functional decline (had an ISAR 1 score of 2-6 points) and discharged home in the period 16th of February 2009 to 31st of January 2011, N=271. Intervention: A nurse did a brief...

  18. Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination

    Energy Technology Data Exchange (ETDEWEB)

    Kosmadakis, G.; Manolakos, D.; Papadakis, G. [Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens (Greece)


    The present work concerns the parametric study of an autonomous, two-stage solar organic Rankine cycle for RO desalination. The main goal of the current simulation is to estimate the efficiency, as well as to calculate the annual mechanical energy available for desalination in the considered cases, in order to evaluate the influence of various parameters on the performance of the system. The parametric study concerns the variation of different parameters, without changing actually the baseline case. The effect of the collectors' slope and the total number of evacuated tube collectors used, have been extensively examined. The total cost is also taken into consideration and is calculated for the different cases examined, along with the specific fresh water cost (EUR/m{sup 3}). (author)

  19. Efficiency of European public higher education institutions: a two-stage multicountry approach. (United States)

    Wolszczak-Derlacz, Joanna; Parteka, Aleksandra


    The purpose of this study is to examine efficiency and its determinants in a set of higher education institutions (HEIs) from several European countries by means of non-parametric frontier techniques. Our analysis is based on a sample of 259 public HEIs from 7 European countries across the time period of 2001-2005. We conduct a two-stage DEA analysis (Simar and Wilson in J Economet 136:31-64, 2007), first evaluating DEA scores and then regressing them on potential covariates with the use of a bootstrapped truncated regression. Results indicate a considerable variability of efficiency scores within and between countries. Unit size (economies of scale), number and composition of faculties, sources of funding and gender staff composition are found to be among the crucial determinants of these units' performance. Specifically, we found evidence that a higher share of funds from external sources and a higher number of women among academic staff improve the efficiency of the institution.

  20. A Two-stage DC-DC Converter for the Fuel Cell-Supercapacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.


    A wide input range multi-stage converter is proposed with the fuel cells and supercapacitors as a hybrid system. The front-end two-phase boost converter is used to optimize the output power and to reduce the current ripple of fuel cells. The supercapacitor power module is connected by push......-pull-forward half bridge (PPFHB) converter with coupled inductors in the second stage to handle the slow transient response of the fuel cells and realize the bidirectional power flow control. Moreover, this cascaded structure simplifies the power management. The control strategy for the whole system is analyzed...... and designed. A 1kW prototype controlled by TMS320F2808 DSP is built in the lab. Simulation and experimental results confirm the feasibility of the proposed two stage dc-dc converter system....

  1. On the optimal use of a slow server in two-stage queueing systems (United States)

    Papachristos, Ioannis; Pandelis, Dimitrios G.


    We consider two-stage tandem queueing systems with a dedicated server in each queue and a slower flexible server that can attend both queues. We assume Poisson arrivals and exponential service times, and linear holding costs for jobs present in the system. We study the optimal dynamic assignment of servers to jobs assuming that two servers cannot collaborate to work on the same job and preemptions are not allowed. We formulate the problem as a Markov decision process and derive properties of the optimal allocation for the dedicated (fast) servers. Specifically, we show that the one downstream should not idle, and the same is true for the one upstream when holding costs are larger there. The optimal allocation of the slow server is investigated through extensive numerical experiments that lead to conjectures on the structure of the optimal policy.

  2. Two-Stage Multi-Task Representation Learning for Synthetic Aperture Radar (SAR) Target Images Classification. (United States)

    Zhang, Xinzheng; Wang, Yijian; Tan, Zhiying; Li, Dong; Liu, Shujun; Wang, Tao; Li, Yongming


    In this paper, we propose a two-stage multi-task learning representation method for the classification of synthetic aperture radar (SAR) target images. The first stage of the proposed approach uses multi-features joint sparse representation learning, modeled as a ℓ 2 , 1 -norm regularized multi-task sparse learning problem, to find an effective subset of training samples. Then, a new dictionary is constructed based on the training subset. The second stage of the method is to perform target images classification based on the new dictionary, utilizing multi-task collaborative representation. The proposed algorithm not only exploits the discrimination ability of multiple features but also greatly reduces the interference of atoms that are irrelevant to the test sample, thus effectively improving classification performance. Conducted with the Moving and Stationary Target Acquisition and Recognition (MSTAR) public SAR database, experimental results show that the proposed approach is effective and superior to many state-of-the-art methods.

  3. Synchronous rapid start-up of the methanation and anammox processes in two-stage ASBRs (United States)

    Duan, Y.; Li, W. R.; Zhao, Y.


    The “methanation + anaerobic ammonia oxidation autotrophic denitrification” method was adopted by using anaerobic sequencing batch reactors (ASBRs) and realized a satisfactory synchronous removal of chemical oxygen demand (COD) and ammonia-nitrogen (NH4 +-N) in wastewater after 75 days operation. 90% of COD was removed at a COD load of 1.2 kg/(m3•d) and 90% of TN was removed at a TN load of 0.14 kg/(m3•d). The anammox reaction ratio was estimated to be 1: 1.32: 0.26. The results showed that synchronous rapid start-up of the methanation and anaerobic ammonia oxidation processes in two-stage ASBRs was feasible.

  4. Cleaner Production of Ti Powder by a Two-Stage Aluminothermic Reduction Process (United States)

    Zhao, Kun; Wang, Yaowu; Feng, Naixiang


    A two-stage aluminothermic reduction process for preparing Ti powder under vacuum conditions using Na2TiF6 was investigated. An Al-Ti master alloy and a clean cryolite were simultaneously obtained as co-products. The first-stage reduction was an exothermic process that occurred at approximately 660°C. The Al and O contents of the Ti powder product were 0.18 wt.% and 0.35 wt.%, respectively, with an average particle size clean cryolite were reduced to 0.002 wt.%. The Al-Ti master alloy obtained by second-stage reduction was composed of Al and TiAl3. The mechanisms involved in these reduction processes were also examined.

  5. Two-stage automated measurement process for high-resolution 3D digitization of unknown objects. (United States)

    Karaszewski, M; Stępień, M; Sitnik, R


    In this paper, a process for high-resolution, automated 3D digitization of unknown objects (i.e., without any digital model) is presented. The process has two stages-the first leads to a coarse 3D digital model of the object, and the second obtains the final model. A rough model, acquired by a 3D measurement head with a large working volume and relatively low resolution, is used to calculate the precise head positions required for the full digitization of the object, as well as collision detection and avoidance. We show that this approach is much more efficient than digitization with only a precise head, when its positions for subsequent measurements (so-called next-best-views) must be calculated based only on a partially recovered 3D model of the object. We also show how using a rough object representation for collision detection shortens the high-resolution digitization process.

  6. Economic Design of Acceptance Sampling Plans in a Two-Stage Supply Chain

    Directory of Open Access Journals (Sweden)

    Lie-Fern Hsu


    Full Text Available Supply Chain Management, which is concerned with material and information flows between facilities and the final customers, has been considered the most popular operations strategy for improving organizational competitiveness nowadays. With the advanced development of computer technology, it is getting easier to derive an acceptance sampling plan satisfying both the producer's and consumer's quality and risk requirements. However, all the available QC tables and computer software determine the sampling plan on a noneconomic basis. In this paper, we design an economic model to determine the optimal sampling plan in a two-stage supply chain that minimizes the producer's and the consumer's total quality cost while satisfying both the producer's and consumer's quality and risk requirements. Numerical examples show that the optimal sampling plan is quite sensitive to the producer's product quality. The product's inspection, internal failure, and postsale failure costs also have an effect on the optimal sampling plan.

  7. A Two-stage Kalman Filter for Sensorless Direct Torque Controlled PM Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Boyu Yi


    Full Text Available This paper presents an optimal two-stage extended Kalman filter (OTSEKF for closed-loop flux, torque, and speed estimation of a permanent magnet synchronous motor (PMSM to achieve sensorless DTC-SVPWM operation of drive system. The novel observer is obtained by using the same transformation as in a linear Kalman observer, which is proposed by C.-S. Hsieh and F.-C. Chen in 1999. The OTSEKF is an effective implementation of the extended Kalman filter (EKF and provides a recursive optimum state estimation for PMSMs using terminal signals that may be polluted by noise. Compared to a conventional EKF, the OTSEKF reduces the number of arithmetic operations. Simulation and experimental results verify the effectiveness of the proposed OTSEKF observer for DTC of PMSMs.

  8. Study of a two-stage photobase generator for photolithography in microelectronics. (United States)

    Turro, Nicholas J; Li, Yongjun; Jockusch, Steffen; Hagiwara, Yuji; Okazaki, Masahiro; Mesch, Ryan A; Schuster, David I; Willson, C Grant


    The investigation of the photochemistry of a two-stage photobase generator (PBG) is described. Absorption of a photon by a latent PBG (1) (first step) produces a PBG (2). Irradiation of 2 in the presence of water produces a base (second step). This two-photon sequence (1 + hν → 2 + hν → base) is an important component in the design of photoresists for pitch division technology, a method that doubles the resolution of projection photolithography for the production of microelectronic chips. In the present system, the excitation of 1 results in a Norrish type II intramolecular hydrogen abstraction to generate a 1,4-biradiacal that undergoes cleavage to form 2 and acetophenone (Φ ∼ 0.04). In the second step, excitation of 2 causes cleavage of the oxime ester (Φ = 0.56) followed by base generation after reaction with water.

  9. A two-stage ethanol-based biodiesel production in a packed bed reactor

    DEFF Research Database (Denmark)

    Xu, Yuan; Nordblad, Mathias; Woodley, John


    -spec’ levels according to the European biodiesel specifications for methanol-based biodiesel. The highest overall productivity achieved in the first stage was 2.52 kg FAEE(kg catalyst)−1 h−1 at a superficial velocity of 7.6 cm min−1, close to the efficiency of a stirred tank reactor under similar conditions...... were conducted in a simulated series of reactors by repeatedly passing the reaction mixture through a single reactor, with separation of the by-product glycerol and water between passes in the first and second stages, respectively. The second stage brought the major components of biodiesel to ‘in....... The overall productivity of the proposed two-stage process was 1.56 kg FAEE(kg catalyst)−1 h−1. Based on this process model, the challenges of scale-up have been addressed and potential continuous process options have been proposed....

  10. Development of advanced air-blown entrained-flow two-stage bituminous coal IGCC gasifier (United States)

    Abaimov, Nikolay A.; Ryzhkov, Alexander F.


    Integrated gasification combined cycle (IGCC) technology has two main advantages: high efficiency, and low levels of harmful emissions. Key element of IGCC is gasifier, which converts solid fuel into a combustible synthesis gas. One of the most promising gasifiers is air-blown entrained-flow two-stage bituminous coal gasifier developed by Mitsubishi Heavy Industries (MHI). The most obvious way to develop advanced gasifier is improvement of commercial-scale 1700 t/d MHI gasifier using the computational fluid dynamics (CFD) method. Modernization of commercial-scale 1700 t/d MHI gasifier is made by changing the regime parameters in order to improve its cold gas efficiency (CGE) and environmental performance, namely H2/CO ratio. The first change is supply of high temperature (900°C) steam in gasifier second stage. And the second change is additional heating of blast air to 900°C.

  11. Denitrification of drinking water in a two-stage membrane bioreactor by using immobilized biomass. (United States)

    Ravnjak, Matjaž; Vrtovšek, Janez; Pintar, Albin


    Nitrate removal from polluted groundwater was investigated in a two-stage anoxic/oxic biofilm membrane bioreactor. The process was carried out with ethanol as a carbon source (corresponding C/N ratio of 1.4-2.5) and commercially available Biocontact-N biocarriers (Nisshinbo, Japan) to enable immobilization of highly efficient and long-lasting microbiota. At a residence time of the liquid phase equal to 2.5h, nitrate conversions higher than 99% were obtained without the formation of nitrite and ammonium ions. The concentration of total organic carbon in the reactor discharge was very similar to the content of organic matter in tap water. The biocarriers minimized the occurrence of suspended filamentous bacteria, and the utilization of increased shear force facilitated collisions of floating biocarrier particles with the outer membrane surface, preventing membrane fouling and resulting in stable operation of the system for 40 days. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Enhanced acarbose production by Streptomyces M37 using a two-stage fermentation strategy. (United States)

    Ren, Fei; Chen, Long; Xiong, Shuangli; Tong, Qunyi


    In this work, we investigated the effect of pH on Streptomyces M37 growth and its acarbose biosynthesis ability. We observed that low pH was beneficial for cell growth, whereas high pH favored acarbose synthesis. Moreover, addition of glucose and maltose to the fermentation medium after 72 h of cultivation promoted acarbose production. Based on these results, a two-stage fermentation strategy was developed to improve acarbose production. Accordingly, pH was kept at 7.0 during the first 72 h and switched to 8.0 after that. At the same time, glucose and maltose were fed to increase acarbose accumulation. With this strategy, we achieved an acarbose titer of 6210 mg/L, representing an 85.7% increase over traditional batch fermentation without pH control. Finally, we determined that the increased acarbose production was related to the high activity of glutamate dehydrogenase and glucose 6-phosphate dehydrogenase.

  13. Movement Control in Recovering UUV Based on Two-Stage Discrete T-S Fuzzy Model

    Directory of Open Access Journals (Sweden)

    Zheping Yan


    Full Text Available A two-stage discrete T-S fuzzy model controller, which is formed by a motion controller and a dynamic controller connected in series, is presented to solve UUV (unmanned underwater vehicle movement control problem for recovering. The motion controller is designed based on the uncertain T-S model and the concept of discrete fuzzy vector. The position error between UUV and moving platform as the input of the motion controller is converted into the speed commands of UUV at the next time. The dynamic controller design is based on the theory of fuzzy region model and a relaxed condition for Lyapunov stabilization function is derived in the form of linear matrix inequalities, which generate force and torque required to complete the recovery task. The feasibility and the efficiency of the proposed control scheme are illustrated through the simulations that UUV follows moving platform.

  14. The Sources of Efficiency of the Nigerian Banking Industry: A Two- Stage Approach

    Directory of Open Access Journals (Sweden)

    Frances Obafemi


    Full Text Available The paper employed a two-stage Data Envelopment Analysis (DEA approach to examine the sources oftechnical efficiency in the Nigerian banking sub-sector. Using a cross sectionof commercial and merchant banks, the study showed that the Nigerian bankingindustry was not efficient both in the pre-and-post-liberalization era. Thestudy further revealed that market share was the strongest determinant oftechnical efficiency in the Nigerian banking Industry. Thus, appropriatemacroeconomic policy, institutional development and structural reforms mustaccompany financial liberalization to create the stable environment requiredfor it to succeed. Hence, the present bank consolidation and reforms by theCentral Bank of Nigeria, which started with Soludo and continued with Sanusi,are considered necessary, especially in the areas of e banking and reorganizingthe management of banks.

  15. A two-stage metal valorisation process from electric arc furnace dust (EAFD

    Directory of Open Access Journals (Sweden)

    H. Issa


    Full Text Available This paper demonstrates possibility of separate zinc and lead recovery from coal composite pellets, composed of EAFD with other synergetic iron-bearing wastes and by-products (mill scale, pyrite-cinder, magnetite concentrate, through a two-stage process. The results show that in the first, low temp erature stage performed in electro-resistant furnace, removal of lead is enabled due to presence of chlorides in the system. In the second stage, performed at higher temperatures in Direct Current (DC plasma furnace, valorisation of zinc is conducted. Using this process, several final products were obtained, including a higher purity zinc oxide, which, by its properties, corresponds washed Waelz oxide.

  16. A Two-Stage Approach for Medical Supplies Intermodal Transportation in Large-Scale Disaster Responses

    Directory of Open Access Journals (Sweden)

    Junhu Ruan


    Full Text Available We present a two-stage approach for the “helicopters and vehicles” intermodal transportation of medical supplies in large-scale disaster responses. In the first stage, a fuzzy-based method and its heuristic algorithm are developed to select the locations of temporary distribution centers (TDCs and assign medial aid points (MAPs to each TDC. In the second stage, an integer-programming model is developed to determine the delivery routes. Numerical experiments verified the effectiveness of the approach, and observed several findings: (i More TDCs often increase the efficiency and utility of medical supplies; (ii It is not definitely true that vehicles should load more and more medical supplies in emergency responses; (iii The more contrasting the traveling speeds of helicopters and vehicles are, the more advantageous the intermodal transportation is.

  17. Two stages of parafoveal processing during reading: Evidence from a display change detection task. (United States)

    Angele, Bernhard; Slattery, Timothy J; Rayner, Keith


    We used a display change detection paradigm (Slattery, Angele, & Rayner Human Perception and Performance, 37, 1924-1938 2011) to investigate whether display change detection uses orthographic regularity and whether detection is affected by the processing difficulty of the word preceding the boundary that triggers the display change. Subjects were significantly more sensitive to display changes when the change was from a nonwordlike preview than when the change was from a wordlike preview, but the preview benefit effect on the target word was not affected by whether the preview was wordlike or nonwordlike. Additionally, we did not find any influence of preboundary word frequency on display change detection performance. Our results suggest that display change detection and lexical processing do not use the same cognitive mechanisms. We propose that parafoveal processing takes place in two stages: an early, orthography-based, preattentional stage, and a late, attention-dependent lexical access stage.

  18. Effect of birth spacing on infant survival in Thailand: two-stage logit analysis. (United States)

    Park, C B; Siasakul, S; Saengtienchai, C


    We formulated a two-stage causal model for infant survival and applied it to data drawn from the 1987 Thai Demographic and Health Survey covering the fate of 5,074 index children. The following six variables were considered as the explanatory variables: maternal age, maternal education, birth order, preceding birth interval, survival of the preceding child, and place of residence. The analysis suggests that the birth interval not only directly affected the chance of infant survival but it played the role of the filtering factor through which other variables indirectly operate on infant mortality. The effect of preceding child's death was very strong, the odds ratios for the following infant's death and short birth interval both exceeding three.

  19. Two-Stage Over-the-Air (OTA Test Method for LTE MIMO Device Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Ya Jing


    Full Text Available With MIMO technology being adopted by the wireless communication standards LTE and HSPA+, MIMO OTA research has attracted wide interest from both industry and academia. Parallel studies are underway in COST2100, CTIA, and 3GPP RAN WG4. The major test challenge for MIMO OTA is how to create a repeatable scenario which accurately reflects the MIMO antenna radiation performance in a realistic wireless propagation environment. Different MIMO OTA methods differ in the way to reproduce a specified MIMO channel model. This paper introduces a novel, flexible, and cost-effective method for measuring MIMO OTA using a two-stage approach. In the first stage, the antenna pattern is measured in an anechoic chamber using a nonintrusive approach, that is without cabled connections or modifying the device. In the second stage, the antenna pattern is convolved with the chosen channel model in a channel emulator to measure throughput using a cabled connection.

  20. One-stage Versus Two-stage Reduction of Malunited Femoral Fracture with Shortening

    Directory of Open Access Journals (Sweden)

    AR Sulaiman


    Full Text Available Reduction of a malunited femoral diaphyseal fracture can be achieved by osteotomy and immediate internal fixation or gradual skeletal traction followed by delayed internal fixation. We retrospectively reviewed 27 patients with malunited and shortened femur. Nine patients with mean shortening of 4.7 cm (2.5-10.0 underwent acute one-stage reduction and gained 2.5 to 5.0 cm length. Eighteen patients with mean shortening of 5.3 cm (3.5 to 9.0 underwent two- stage reduction and gained 2.0 to 5.0 cm length. There was no paralysis in either group. No infection occurred in the one-stage procedure. Intramedullary fixation demonstrated superior results compares to plate fixation.

  1. Validation of Continuous CHP Operation of a Two-Stage Biomass Gasifier

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist


    The Viking gasification plant at the Technical University of Denmark was built to demonstrate a continuous combined heat and power operation of a two-stage gasifier fueled with wood chips. The nominal input of the gasifier is 75 kW thermal. To validate the continuous operation of the plant, a 9-day...... measurement campaign was performed. The campaign verified a stable operation of the plant, and the energy balance resulted in an overall fuel to gas efficiency of 93% and a wood to electricity efficiency of 25%. Very low tar content in the producer gas was observed: only 0.1 mg/Nm3 naphthalene could...... be measured in raw gas. A stable engine operation on the producer gas was observed, and very low emissions of aldehydes, N2O, and polycyclic aromatic hydrocarbons were measured....

  2. Damage detection of truss structures using two-stage optimization based on micro genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Il; Kim, Hyung Min; Lee, Jae Hong [Sejong University, Seoul (Korea, Republic of)


    A simple and efficient two-stage optimization procedure is proposed to properly identify the sites and the extent of multiple damages in truss structures. In the first stage, the most potentially damaged elements are identified using an anti-optimization (AO) technique. In the second stage, a micro genetic algorithm (MGA) is performed to accurately determine the actual damage extents based on a priori knowledge from the first stage. The correctness and effectiveness of the proposed algorithm are proved by two illustrated test examples: the planar and space truss models with the numerically simulated data. The numerical results show the computational advantages of the proposed method to precisely determine the sites and the extent of multiple damages of truss structures.

  3. Stepwise encapsulation and controlled two-stage release system for cis-Diamminediiodoplatinum. (United States)

    Chen, Yun; Li, Qian; Wu, Qingsheng


    cis-Diamminediiodoplatinum (cis-DIDP) is a cisplatin-like anticancer drug with higher anticancer activity, but lower stability and price than cisplatin. In this study, a cis-DIDP carrier system based on micro-sized stearic acid was prepared by an emulsion solvent evaporation method. The maximum drug loading capacity of cis-DIDP-loaded solid lipid nanoparticles was 22.03%, and their encapsulation efficiency was 97.24%. In vitro drug release in phosphate-buffered saline (pH =7.4) at 37.5°C exhibited a unique two-stage process, which could prove beneficial for patients with tumors and malignancies. MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay results showed that cis-DIDP released from cis-DIDP-loaded solid lipid nanoparticles had better inhibition activity than cis-DIDP that had not been loaded.

  4. Propulsion and aerodynamic analysis of the Beta II two-stage-to-orbit vehicle (United States)

    Davic, James R.; Midea, Anthony C.


    A study of a revised version of the Beta II two-stage-to-orbit vehicle has been undertaken. The goal of the study was to modify and refine critical components of the NASA/Boeing/Wright Laboratory Beta II booster design to better define a successful baseline vehicle that can provide routine access to space. The vehicle geometry was modified and corresponding aerodynamics were predicted. The propulsion system was improved by refining the nacelle design which included incorporating a variable capture area inlet, replacing the five High Speed Civil Transport derived turbine bypass turbojet engines with four variable cycle turbofan engines per nacelle, and removing the bypass duct system. The ramjet performance was adjusted for the change in airflow due to the variable capture area inlet. The second stage wing-body orbiter design was not modified for this study. The total Beta II takeoff weight which resulted was approximately 1.0 million pounds.

  5. Multiple P3 evidence of a two-stage process in word gender decision. (United States)

    Muller-Gass, A; Gonthier, I; Desrochers, A; Campbell, K B


    All French nouns must be assigned to one of two grammatical genders: masculine or feminine. Participants used either the superordinate labels masculin/féminin or the singular indefinite articles un/une to classify French target nouns. Reaction time to the labels masculin/féminin was about 200 ms longer than to the un/une labels. When the indefinite articles were used, a single P3 peak of the event-related potential was elicited. When superordinate labels were used, a double-peaked positivity was observed. The latency of the initial P3 in the masculin/féminin trials was not significantly different from that in the un/une trials. The second positive wave peaked approximately 300 ms following the first. An explanation consistent with these data is that subjects used a two-stage process to classify the nouns appearing with superordinate labels.

  6. Two-Stage maximum likelihood estimation in the misspecified restricted latent class model. (United States)

    Wang, Shiyu


    The maximum likelihood classification rule is a standard method to classify examinee attribute profiles in cognitive diagnosis models (CDMs). Its asymptotic behaviour is well understood when the model is assumed to be correct, but has not been explored in the case of misspecified latent class models. This paper investigates the asymptotic behaviour of a two-stage maximum likelihood classifier under a misspecified CDM. The analysis is conducted in a general restricted latent class model framework addressing all types of CDMs. Sufficient conditions are proposed under which a consistent classification can be obtained by using a misspecified model. Discussions are also provided on the inconsistency of classification under certain model misspecification scenarios. Simulation studies and a real data application are conducted to illustrate these results. Our findings can provide some guidelines as to when a misspecified simple model or a general model can be used to provide a good classification result. © 2017 The British Psychological Society.

  7. Determination Bounds for Intermediate Products in a Two-Stage Network DEA

    Directory of Open Access Journals (Sweden)

    Hadi Bagherzadeh Valami


    Full Text Available The internal structure of decision making unit (DMU is the key element at extension of network DEA. In general considering internal performance evaluation of system is a better criterion than the conventional DEA-models, essentially based on the initial inputs and final outputs of the system. The internal performance of a system is dependent on the relation between sub-DMUs and intermediate products. Since the intermediate measures are consumed by some sub-DMUs produced by the others, it is possible to produce systems; the role of intermediate production is twice output and input. That's why they can be analyzed based on conventional mathematical modeling. In this paper we introduce a new method for determining bounds for intermediate product in a two stage network DEA structure.

  8. Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys (United States)

    Murray, R.; Rastegar, J.


    Harvesting mechanical energy from ocean wave oscillations for conversion to electrical energy has long been pursued as an alternative or self-contained power source. The attraction to harvesting energy from ocean waves stems from the sheer power of the wave motion, which can easily exceed 50 kW per meter of wave front. The principal barrier to harvesting this power is the very low and varying frequency of ocean waves, which generally vary from 0.1Hz to 0.5Hz. In this paper the application of a novel class of two-stage electrical energy generators to buoyant structures is presented. The generators use the buoy's interaction with the ocean waves as a low-speed input to a primary system, which, in turn, successively excites an array of vibratory elements (secondary system) into resonance - like a musician strumming a guitar. The key advantage of the present system is that by having two decoupled systems, the low frequency and highly varying buoy motion is converted into constant and much higher frequency mechanical vibrations. Electrical energy may then be harvested from the vibrating elements of the secondary system with high efficiency using piezoelectric elements. The operating principles of the novel two-stage technique are presented, including analytical formulations describing the transfer of energy between the two systems. Also, prototypical design examples are offered, as well as an in-depth computer simulation of a prototypical heaving-based wave energy harvester which generates electrical energy from the up-and-down motion of a buoy riding on the ocean's surface.

  9. Comparative Analysis of Direct Hospital Care Costs between Aseptic and Two-Stage Septic Knee Revision (United States)

    Kasch, Richard; Merk, Sebastian; Assmann, Grit; Lahm, Andreas; Napp, Matthias; Merk, Harry; Flessa, Steffen


    Background The most common intermediate and long-term complications of total knee arthroplasty (TKA) include aseptic and septic failure of prosthetic joints. These complications cause suffering, and their management is expensive. In the future the number of revision TKA will increase, which involves a greater financial burden. Little concrete data about direct costs for aseptic and two-stage septic knee revisions with an in depth-analysis of septic explantation and implantation is available. Questions/Purposes A retrospective consecutive analysis of the major partial costs involved in revision TKA for aseptic and septic failure was undertaken to compare 1) demographic and clinical characteristics, and 2) variable direct costs (from a hospital department’s perspective) between patients who underwent single-stage aseptic and two-stage septic revision of TKA in a hospital providing maximum care. We separately analyze the explantation and implantation procedures in septic revision cases and identify the major cost drivers of knee revision operations. Methods A total of 106 consecutive patients (71 aseptic and 35 septic) was included. All direct costs of diagnosis, surgery, and treatment from the hospital department’s perspective were calculated as real purchase prices. Personnel involvement was calculated in units of minutes. Results Aseptic versus septic revisions differed significantly in terms of length of hospital stay (15.2 vs. 39.9 days), number of reported secondary diagnoses (6.3 vs. 9.8) and incision-suture time (108.3 min vs. 193.2 min). The management of septic revision TKA was significantly more expensive than that of aseptic failure ($12,223.79 vs. $6,749.43) (p financial loss for the operating department. PMID:28107366

  10. Two-Stage Latissimus Dorsi Flap with Implant for Unilateral Breast Reconstruction: Getting the Size Right

    Directory of Open Access Journals (Sweden)

    Jiajun Feng


    Full Text Available BackgroundThe aim of unilateral breast reconstruction after mastectomy is to craft a natural-looking breast with symmetry. The latissimus dorsi (LD flap with implant is an established technique for this purpose. However, it is challenging to obtain adequate volume and satisfactory aesthetic results using a one-stage operation when considering factors such as muscle atrophy, wound dehiscence and excessive scarring. The two-stage reconstruction addresses these difficulties by using a tissue expander to gradually enlarge the skin pocket which eventually holds an appropriately sized implant.MethodsWe analyzed nine patients who underwent unilateral two-stage LD reconstruction. In the first stage, an expander was placed along with the LD flap to reconstruct the mastectomy defect, followed by gradual tissue expansion to achieve overexpansion of the skin pocket. The final implant volume was determined by measuring the residual expander volume after aspirating the excess saline. Finally, the expander was replaced with the chosen implant.ResultsThe average volume of tissue expansion was 460 mL. The resultant expansion allowed an implant ranging in volume from 255 to 420 mL to be placed alongside the LD muscle. Seven patients scored less than six on the relative breast retraction assessment formula for breast symmetry, indicating excellent breast symmetry. The remaining two patients scored between six and eight, indicating good symmetry.ConclusionsThis approach allows the size of the eventual implant to be estimated after the skin pocket has healed completely and the LD muscle has undergone natural atrophy. Optimal reconstruction results were achieved using this approach.

  11. Novel two-stage fermentation process for bioethanol production using Saccharomyces pastorianus. (United States)

    Gowtham, Yogender Kumar; Miller, Kristen P; Hodge, David B; Henson, J Michael; Harcum, Sarah W


    Bioethanol produced from lignocellulosic materials has the potential to be economically feasible, if both glucose and xylose released from cellulose and hemicellulose can be efficiently converted to ethanol. Saccharomyces spp. can efficiently convert glucose to ethanol; however, xylose conversion to ethanol is a major hurdle due to lack of xylose-metabolizing pathways. In this study, a novel two-stage fermentation process was investigated to improve bioethanol productivity. In this process, xylose is converted into biomass via non-Saccharomyces microorganism and coupled to a glucose-utilizing Saccharomyces fermentation. Escherichia coli was determined to efficiently convert xylose to biomass, which was then killed to produce E. coli extract. Since earlier studies with Saccharomyces pastorianus demonstrated that xylose isomerase increased ethanol productivities on pure sugars, the addition of both E. coli extract and xylose isomerase to S. pastorianus fermentations on pure sugars and corn stover hydrolysates were investigated. It was determined that the xylose isomerase addition increased ethanol productivities on pure sugars but was not as effective alone on the corn stover hydrolysates. It was observed that the E. coli extract addition increased ethanol productivities on both corn stover hydrolysates and pure sugars. The ethanol productivities observed on the corn stover hydrolysates with the E. coli extract addition was the same as observed on pure sugars with both E. coli extract and xylose isomerase additions. These results indicate that the two-stage fermentation process has the capability to be a competitive alternative to recombinant Saccharomyces cerevisiae-based fermentations. © 2013 American Institute of Chemical Engineers.

  12. Enhanced bio-energy recovery in a two-stage hydrogen/methane fermentation process. (United States)

    Lee, M J; Song, J H; Hwang, S J


    A two-stage hydrogen/methane fermentation process has emerged as a feasible engineering system to recover bio-energy from wastewater. Hydrogen-producing bacteria (HPB) generate hydrogen from readily available carbohydrates, and organic acids produced during the hydrogen fermentation step can be degraded to generate methane in the following step. Three strong acids, HCl, H(2)SO(4), and HNO(3), were tested to determine the appropriate pre-treatment method for enhanced hydrogen production. The hydrogen production rates of 230, 290, and 20 L/kg(-glucose)/day was observed for the sludge treated with HCl, H(2)SO(4), and HNO(3), respectively, indicating that the acid pre-treatment using either HCl or H(2)SO(4) resulted in a significant increase in hydrogen production. The fluorescent in situ hybridization method indicated that the acid pre-treatment selectively enriched HPB including Clostridium sp. of cluster I from inoculum sludge. After hydrogen fermentation was terminated, the sludge was introduced to a methane fermentation reactor. This experiment showed methane production rates of 100, 30, and 13 L/kg(-glucose)/day for the sludge pre-treated with HCl, H(2)SO(4), and HNO(3), respectively, implying that both sulfate and nitrate inhibited the activity of methane-producing bacteria. Consequently, the acid pre-treatment might be a feasible option to enhance biogas recovery in the two-stage fermentation process, and HCl was selected as the optimal strong acid for the enrichment of HPB and the continuous production of methane.

  13. Two-staged hybrid treatment of persistent atrial fibrillation: short-term single-centre results. (United States)

    Kurfirst, Vojtěch; Mokraček, Aleš; Bulava, Alan; Čanadyova, Júlia; Haniš, Jiři; Pešl, Ladislav


    The treatment of persistent and long-standing persistent atrial fibrillation (AF) has unsatisfactory results using both medical therapy and/or catheter ablation, where incomplete ablation lines remain a significant problem. This study evaluates the feasibility, efficacy and safety of the sequential, two-staged hybrid treatment combining thoracoscopic surgical and transvenous catheter AF ablation. Thirty patients with persistent and long-standing persistent AF underwent surgical thoracoscopic radiofrequency (RF) ablation procedure using a predefined protocol (pulmonary veins isolation, box lesion, isthmus line lesion, dissection of the ligament of Marshall, left atrial appendage exclusion with an epicardial clip and ganglionated plexi ablation) followed by diagnostic catheterization and RF ablation 3 months later. In this session, electrical mapping of the left atrium was performed and any incomplete isolation lines were completed. Mitral and cavotricuspid isthmus ablation lines were performed during this session as well. The preoperative mean duration time of AF was 33 ± 27 months with 17% patients with persistent and 83% patients with long-standing persistent AF. The mean size of the left atrium was 48 ± 5 mm. The complete surgical ablation protocol was achieved in 97% of patients, with no death, and no early stroke or pacemaker implantation in the early postoperative period. In 63% of patients, the left atrial appendage was excluded with an epicardial clip. An endocardial touch-up for achievement of bidirectional block of pulmonary veins was necessary in 10 patients (33%) and on the box, (roof and floor) lesions in 20 patients (67%). Freedom from atrial fibrillation was 77% after surgical ablation and 93% after the completed hybrid procedure. The sequential, two-staged hybrid strategy (surgical thoracoscopic followed by catheter ablation) is feasible and safe with a high post-procedural success and seems to represent the optimal treatment with low risk load and

  14. A Two-Stage Composition Method for Danger-Aware Services Based on Context Similarity (United States)

    Wang, Junbo; Cheng, Zixue; Jing, Lei; Ota, Kaoru; Kansen, Mizuo

    Context-aware systems detect user's physical and social contexts based on sensor networks, and provide services that adapt to the user accordingly. Representing, detecting, and managing the contexts are important issues in context-aware systems. Composition of contexts is a useful method for these works, since it can detect a context by automatically composing small pieces of information to discover service. Danger-aware services are a kind of context-aware services which need description of relations between a user and his/her surrounding objects and between users. However when applying the existing composition methods to danger-aware services, they show the following shortcomings that (1) they have not provided an explicit method for representing composition of multi-user' contexts, (2) there is no flexible reasoning mechanism based on similarity of contexts, so that they can just provide services exactly following the predefined context reasoning rules. Therefore, in this paper, we propose a two-stage composition method based on context similarity to solve the above problems. The first stage is composition of the useful information to represent the context for a single user. The second stage is composition of multi-users' contexts to provide services by considering the relation of users. Finally the danger degree of the detected context is computed by using context similarity between the detected context and the predefined context. Context is dynamically represented based on two-stage composition rules and a Situation theory based Ontology, which combines the advantages of Ontology and Situation theory. We implement the system in an indoor ubiquitous environment, and evaluate the system through two experiments with the support of subjects. The experiment results show the method is effective, and the accuracy of danger detection is acceptable to a danger-aware system.

  15. Focused ultrasound simultaneous irradiation/MRI imaging, and two-stage general kinetic model.

    Directory of Open Access Journals (Sweden)

    Sheng-Yao Huang

    Full Text Available Many studies have investigated how to use focused ultrasound (FUS to temporarily disrupt the blood-brain barrier (BBB in order to facilitate the delivery of medication into lesion sites in the brain. In this study, through the setup of a real-time system, FUS irradiation and injections of ultrasound contrast agent (UCA and Gadodiamide (Gd, an MRI contrast agent can be conducted simultaneously during MRI scanning. By using this real-time system, we were able to investigate in detail how the general kinetic model (GKM is used to estimate Gd penetration in the FUS irradiated area in a rat's brain resulting from UCA concentration changes after single FUS irradiation. Two-stage GKM was proposed to estimate the Gd penetration in the FUS irradiated area in a rat's brain under experimental conditions with repeated FUS irradiation combined with different UCA concentrations. The results showed that the focal increase in the transfer rate constant of Ktrans caused by BBB disruption was dependent on the doses of UCA. Moreover, the amount of in vivo penetration of Evans blue in the FUS irradiated area in a rat's brain under various FUS irradiation experimental conditions was assessed to show the positive correlation with the transfer rate constants. Compared to the GKM method, the Two-stage GKM is more suitable for estimating the transfer rate constants of the brain treated with repeated FUS irradiations. This study demonstrated that the entire process of BBB disrupted by FUS could be quantitatively monitored by real-time dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI.

  16. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M


    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  17. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P.


    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  18. High energy neutrinos from the Fermi bubbles. (United States)

    Lunardini, Cecilia; Razzaque, Soebur


    Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent. Its highest energy part, above 20-50 TeV, is observable at a kilometer-scale detector in the northern hemisphere, such as the planned KM3NeT, while interesting constraints on it could be obtained by the IceCube Neutrino Observatory at the South Pole. The detection or exclusion of neutrinos from the Fermi bubbles will discriminate between hadronic and leptonic models, thus bringing unique information on the still mysterious origin of these objects and on the time scale of their formation.

  19. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W


    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  20. High energy density redox flow device

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Carter, Craig W.; Ho, Bryan Y.; Duduta, Mihai; Limthongkul, Pimpa


    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  1. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Hector [Univ. of Puerto Rico, Mayaguez (Puerto Rico)


    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1) Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of

  2. Polarized targets in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, G.D. Jr. [Princeton Univ., NJ (United States)


    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail.

  3. Nonextensive statistical mechanics and high energy physics

    Directory of Open Access Journals (Sweden)

    Tsallis Constantino


    Full Text Available The use of the celebrated Boltzmann-Gibbs entropy and statistical mechanics is justified for ergodic-like systems. In contrast, complex systems typically require more powerful theories. We will provide a brief introduction to nonadditive entropies (characterized by indices like q, which, in the q → 1 limit, recovers the standard Boltzmann-Gibbs entropy and associated nonextensive statistical mechanics. We then present somerecent applications to systems such as high-energy collisions, black holes and others. In addition to that, we clarify and illustrate the neat distinction that exists between Lévy distributions and q-exponential ones, a point which occasionally causes some confusion in the literature, very particularly in the LHC literature

  4. Photoproduction at high energy and high intensity

    CERN Multimedia


    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  5. High energy physics, past, present and future (United States)

    Sugawara, Hirotaka


    At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, ℏ (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.

  6. Grid computing in high energy physics

    CERN Document Server

    Avery, P


    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...

  7. High-energy neutrinos from AGN

    Energy Technology Data Exchange (ETDEWEB)

    Toschke, Marius [Ruhr-Universitaet Bochum (Germany); TU Dortmund (Germany); Becker Tjus, Julia [Ruhr-Universitaet Bochum (Germany); Rhode, Wolfgang [TU Dortmund (Germany)


    In the outer space there are galactic and extragalactic sources like gamma-ray bursts (GRB), active galactic nuclei (AGN), supernovae or other phenomena which produce high-energy neutrinos. In contrast to supernovae, GRBs and AGN are supposed to generate neutrinos at the highest energies. Neutrinos have a tiny cross section as they mainly suffer from the weak interaction. Therefore, they are useful messenger particles providing information about the direction of the source. With observations of the gamma flux from galactic and extragalactic sources, it is possible to make predictions for the neutrino flux. We suppose that neutrinos are predominantly generated by inelastic proton-proton interactions and derive the possible galactic and extragalactic sources. In this talk, first results are presented.

  8. Progress toward high energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Sergei Nagaitsev


    All electron cooling systems in operation to date can be classified as low energy systems. The electron beam kinetic energy in such a system is limited to about 0.6-1 MeV by the use of a conventional commercial Cockcroft-Walton high-voltage power supply. This, in turn, bounds the maximum ion kinetic energy, accessible for cooling with today's standard technology, to about 2 GeV/nucleon (about a factor of 2-3 times higher than the electron systems in operation today). Electron cooling systems with kinetic energies above 1 MeV could provide economically justifiable improvements in the performance of many existing and proposed accelerator complexes, such as RHIC, Tevatron and HERA. This paper reviews the status of the development of the technology needed for high energy electron cooling.

  9. High energy gravitational scattering: a numerical study

    CERN Document Server

    Marchesini, Giuseppe


    The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschild's radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.

  10. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  11. Laboratory high-energy astrophysics on lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, W.H.; Liedahl, D.A.; Walling, R.S.; Foord, M.E.; Osterheld, A.L.; Wilson, B.G.


    The tremendous range of temperatures and densities spanned by astrophysical plasmas has significant overlap with conditions attainable using high-power laser facilities. These facilities provide an opportunity to create, control, and characterize plasmas in the laboratory that mirror conditions in some of the most important cosmological systems. Moreover, laboratory experiments can enhance astrophysical understanding by focusing on and isolating important physical processes, without necessarily reproducing the exact conditions of the integral system. Basic study of radiative properties, transport phenomena, thermodynamic response and hydrodynamic evolution in plasmas under properly scaled conditions leads both directly and indirectly to improved models of complex astrophysical systems. In this paper, we will discuss opportunities for current and planned highpower lasers to contribute to the study of high-energy astrophysics.

  12. Supernovae and supernova remnants at high energies (United States)

    Chevalier, Roger A.


    The physical phenomena that are observable with X- and gamma-ray observations of supernovae are discussed with respect to possible high-energy astrophysics experiments. Prompt photospheric emission and its echo are discussed, supernova radioactivity and neutron star effects are examined, and circumstellar and interstellar interaction are reviewed. The primary uncertainties are found to be the hardening of the spectrum by non-LTE effects and the amount of absorption of the radiation from the initial soft X-ray burst. The radioactivity in supernovae is theorized to lead to gamma-ray lines and continuum emission unless the event is low-mass type II. Gamma-ray observations are proposed to examine the efficiency of particle acceleration, and high-resolution spectroscopy can provide data regarding ionization, temperature, composition, and velocities of the X-ray-emitting gas.

  13. High Energy Vibration for Gas Piping (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang


    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  14. High Energy Density Science at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W


    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded

  15. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)


    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  16. Space-charge effects in high-energy photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Verna, Adriano, E-mail: [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Greco, Giorgia [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Scuola Dottorale in Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Offi, Francesco; Stefani, Giovanni [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy)


    Highlights: • N-body simulations of interacting photoelectrons in hard X-ray experiments. • Secondary electrons have a pivotal role in determining the energy broadening. • Space charge has negligible effects on the photoelectron momentum distribution. • A simple model provides the characteristic time for energy-broadening mechanism. • The feasibility of time-resolved high-energy experiments with FELs is discussed. - Abstract: Pump-and-probe photoelectron spectroscopy (PES) with femtosecond pulsed sources opens new perspectives in the investigation of the ultrafast dynamics of physical and chemical processes at the surfaces and interfaces of solids. Nevertheless, for very intense photon pulses a large number of photoelectrons are simultaneously emitted and their mutual Coulomb repulsion is sufficiently strong to significantly modify their trajectory and kinetic energy. This phenomenon, referred as space-charge effect, determines a broadening and shift in energy for the typical PES structures and a dramatic loss of energy resolution. In this article we examine the effects of space charge in PES with a particular focus on time-resolved hard X-ray (∼10 keV) experiments. The trajectory of the electrons photoemitted from pure Cu in a hard X-ray PES experiment has been reproduced through N-body simulations and the broadening of the photoemission core-level peaks has been monitored as a function of various parameters (photons per pulse, linear dimension of the photon spot, photon energy). The energy broadening results directly proportional to the number N of electrons emitted per pulse (mainly represented by secondary electrons) and inversely proportional to the linear dimension a of the photon spot on the sample surface, in agreement with the literature data about ultraviolet and soft X-ray experiments. The evolution in time of the energy broadening during the flight of the photoelectrons is also studied. Despite its detrimental consequences on the energy

  17. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon


    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  18. Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses (United States)

    Nie, Bai; Parker, Greg; Lozovoy, Vadim Vadimovich; Dantus, Marcos


    A Yb fiber oscillator producing high-energy femtosecond pulse clusters is reported. Visualized by averaging autocorrelation, the output pulses consist of femtosecond pulse clusters that appear as a picosecond envelope with a ˜100-fs pulse in its center. Using more than 200-m fiber, the pulse energy is scaled up to 450 nJ. This high energy in a cluster of femtosecond pulses enables an important application-laser-induced breakdown spectroscopy.

  19. Dose equivalent measurements in mixed and time varying radiation fields around high-energy accelerators

    CERN Document Server

    Mayer, S


    Measurements of ambient dose equivalent in stray radiation fields behind the shielding of high-energy accelerators are a challenging task. Several radiation components (photons, neutrons, charged particles, muons, etc.), spanning a wide range of energies, contribute to the total dose equivalent. The radiation fields are produced by beam losses interacting with structural material during the acceleration or at the ejection to experimental areas or other accelerators. The particle beam is usually not continuous but separated in "bunches" or pulses, which further complicates dose measurements at high-energy accelerators. An ideal dosimeter for operational radiation protection should measure dose equivalent for any composition of radiation components in the entire energy range even when the field is strongly pulsed. The objective of this work was to find out if an ionisation chamber operated as a "recombination chamber" and a TEPC instrument using the variance-covariance method ("Sievert Instrument") are capable ...

  20. Experimental and numerical studies on two-stage combustion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Houshfar, Eshan


    In this thesis, two-stage combustion of biomass was experimentally/numerically investigated in a multifuel reactor. The following emissions issues have been the main focus of the work: 1- NOx and N2O 2- Unburnt species (CO and CxHy) 3- Corrosion related emissions.The study had a focus on two-stage combustion in order to reduce pollutant emissions (primarily NOx emissions). It is well known that pollutant emissions are very dependent on the process conditions such as temperature, reactant concentrations and residence times. On the other hand, emissions are also dependent on the fuel properties (moisture content, volatiles, alkali content, etc.). A detailed study of the important parameters with suitable biomass fuels in order to optimize the various process conditions was performed. Different experimental studies were carried out on biomass fuels in order to study the effect of fuel properties and combustion parameters on pollutant emissions. Process conditions typical for biomass combustion processes were studied. Advanced experimental equipment was used in these studies. The experiments showed the effects of staged air combustion, compared to non-staged combustion, on the emission levels clearly. A NOx reduction of up to 85% was reached with staged air combustion using demolition wood as fuel. An optimum primary excess air ratio of 0.8-0.95 was found as a minimizing parameter for the NOx emissions for staged air combustion. Air staging had, however, a negative effect on N2O emissions. Even though the trends showed a very small reduction in the NOx level as temperature increased for non-staged combustion, the effect of temperature was not significant for NOx and CxHy, neither in staged air combustion or non-staged combustion, while it had a great influence on the N2O and CO emissions, with decreasing levels with increasing temperature. Furthermore, flue gas recirculation (FGR) was used in combination with staged combustion to obtain an enhanced NOx reduction. The

  1. Diagnostic system to measure spatial and temporal profiles of shock front using compact two-stage light-gas gun and line reflection method. (United States)

    Yokoo, Manabu; Kawai, Nobuaki; Hironaka, Yoichiro; Nakamura, Kazutaka G; Kondo, Ken-Ichi


    A diagnostic system has been developed to obtain spatial and temporal profiles of shock front. A two-stage light-gas gun is used to accelerate impactors in velocity range with 4-9 km/s. The system consists of the Faraday-type electromagnetic sensors to measure impactor velocity, optical system with high-speed streak camera to measure shock-wave velocities, and the delay trigger system with self-adjustable pre-event pulse generator. We describe the specifications and performance of this system and data-analysis technique on the tilt and distortion of the shock front. Finally, we obtained the Hugoniot data of copper for system demonstration.

  2. A farm-scale pilot plant for biohydrogen and biomethane production by two-stage fermentation

    Directory of Open Access Journals (Sweden)

    R. Oberti


    Full Text Available Hydrogen is considered one of the possible main energy carriers for the future, thanks to its unique environmental properties. Indeed, its energy content (120 MJ/kg can be exploited virtually without emitting any exhaust in the atmosphere except for water. Renewable production of hydrogen can be obtained through common biological processes on which relies anaerobic digestion, a well-established technology in use at farm-scale for treating different biomass and residues. Despite two-stage hydrogen and methane producing fermentation is a simple variant of the traditional anaerobic digestion, it is a relatively new approach mainly studied at laboratory scale. It is based on biomass fermentation in two separate, seuqential stages, each maintaining conditions optimized to promote specific bacterial consortia: in the first acidophilic reactorhydrogen is produced production, while volatile fatty acids-rich effluent is sent to the second reactor where traditional methane rich biogas production is accomplished. A two-stage pilot-scale plant was designed, manufactured and installed at the experimental farm of the University of Milano and operated using a biomass mixture of livestock effluents mixed with sugar/starch-rich residues (rotten fruits and potatoes and expired fruit juices, afeedstock mixture based on waste biomasses directly available in the rural area where plant is installed. The hydrogenic and the methanogenic reactors, both CSTR type, had a total volume of 0.7m3 and 3.8 m3 respectively, and were operated in thermophilic conditions (55 2 °C without any external pH control, and were fully automated. After a brief description of the requirements of the system, this contribution gives a detailed description of its components and of engineering solutions to the problems encountered during the plant realization and start-up. The paper also discusses the results obtained in a first experimental run which lead to production in the range of previous

  3. Evidence for a two-stage disability progression in multiple sclerosis (United States)

    Leray, Emmanuelle; Yaouanq, Jacqueline; Le Page, Emmanuelle; Coustans, Marc; Laplaud, David; Oger, Joël


    It is well documented that disability accumulation in multiple sclerosis is correlated with axonal injury and that the extent of axonal injury is correlated with the degree of inflammation. However, the interdependence between focal inflammation, diffuse inflammation and neurodegeneration, and their relative contribution to clinical deficits, remains ambiguous. A hypothesis might be that early focal inflammation could be the pivotal event from which all else follows, suggesting the consideration of multiple sclerosis as a two-stage disease. This prompted us to define two phases in the disease course of multiple sclerosis by using two scores on the Kurtzke Disability Status Scale as benchmarks of disability accumulation: an early phase, ‘Phase 1’, from multiple sclerosis clinical onset to irreversible Disability Status Scale 3 and a late phase, ‘Phase 2’, from irreversible Disability Status Scale 3 to irreversible Disability Status Scale 6. Outcome was assessed through five parameters: Phase 1 duration, age at Disability Status Scale 3, time to Disability Status Scale 6 from multiple sclerosis onset, Phase 2 duration and age at Disability Status Scale 6. The first three were calculated among all patients, while the last two were computed only among patients who had reached Disability Status Scale 3. The possible influence of early clinical markers on these outcomes was studied using Kaplan–Meier estimates and Cox models. The analysis was performed in the Rennes multiple sclerosis database (2054 patients, accounting for 26 273 patient-years) as a whole, and according to phenotype at onset (1609 relapsing/445 progressive onset). Our results indicated that the disability progression during Phase 2 was independent of that during Phase 1. Indeed, the median Phase 2 duration was nearly identical (from 6 to 9 years) irrespective of Phase 1 duration (multiple sclerosis, gender, age at onset, residual deficit after the first relapse and relapses during the first 2

  4. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis

    KAUST Repository

    Lalaurette, Elodie


    A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H2/mol-glucose at a rate of 0.25 L H2/L-d with a corn stover lignocellulose feed, and 1.64 mol H2/mol-glucose and 1.65 L H2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800 ± 290 mL H2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980 ± 110 mL H2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980 ± 110 mL/g-COD and 1.11 ± 0.13 L/L-d (synthetic); 900 ± 140 mL/g-COD and 0.96 ± 0.16 L/L-d (cellobiose); and 750 ± 180 mL/g-COD and 1.00 ± 0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11 ± 0.13 L H2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270 ± 20% for the synthetic effluent, 230 ± 50% for lignocellulose effluent and 220 ± 30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70-85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95 mol-H2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC

  5. Two-stage laparoscopic approaches for high anorectal malformation: transumbilical colostomy and anorectoplasty. (United States)

    Yang, Li; Tang, Shao-Tao; Li, Shuai; Aubdoollah, T H; Cao, Guo-Qing; Lei, Hai-Yan; Wang, Xin-Xing


    Trans-umbilical colostomy (TUC) has been previously created in patients with Hirschsprung's disease and intermediate anorectal malformation (ARM), but not in patients with high-ARM. The purposes of this study were to assess the feasibility, safety, complications and cosmetic results of TUC in a divided fashion, and subsequently stoma closure and laparoscopic assisted anorectoplasty (LAARP) were simultaneously completed by using the colostomy site for a laparoscopic port in high-ARM patients. Twenty male patients with high-ARMs were chosen for this two-stage procedure. The first-stage consisted of creating the TUC in double-barreled fashion colostomy with a high chimney at the umbilicus, and the loop was divided at the same time, in such a way that the two diverting ends were located at the umbilical incision with the distal end half closed and slightly higher than proximal end. In the second-stage, 3 to 7 months later, the stoma was closed through a peristomal skin incision followed by end-to-end anastomosis and simultaneously LAARP was performed by placing a laparoscopic port at the umbilicus, which was previously the colonostomy site. Umbilical wound closure was performed in a semi-opened fashion to create a deep umbilicus. TUC and LAARP were successfully performed in 20 patients. Four cases with bladder neck fistulas and 16 cases with prostatic urethra fistulas were found. Postoperative complications were rectal mucosal prolapsed in three cases, anal stricture in two cases and wound dehiscence in one case. Neither umbilical ring narrowing, parastomal hernia nor obstructive symptoms was observed. Neither umbilical nor perineal wound infection was observed. Stoma care was easily carried-out by attaching stoma bag. Healing of umbilical wounds after the second-stage was excellent. Early functional stooling outcome were satisfactory. The umbilicus may be an alternative stoma site for double-barreled colostomy in high-ARM patients. The two-stage laparoscopic

  6. Hydrogen and methane production from condensed molasses fermentation soluble by a two-stage anaerobic process

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Liang, You-Chyuan; Lay, Chyi-How [Feng Chia Univ., Taichung, Taiwan (China). Dept. of Environmental Engineering and Science; Chen, Chin-Chao [Chungchou Institute of Technology, Taiwan (China). Environmental Resources Lab.; Chang, Feng-Yuan [Feng Chia Univ., Taichung, Taiwan (China). Research Center for Energy and Resources


    The treatment of condensed molasses fermentation soluble (CMS) is a troublesome problem for glutamate manufacturing factory. However, CMS contains high carbohydrate and nutrient contents and is an attractive and commercially potential feedstock for bioenergy production. The aim of this paper is to produce hydrogen and methane by two-stage anaerobic fermentation process. The fermentative hydrogen production from CMS was conducted in a continuously-stirred tank bioreactor (working volume 4 L) which was operated at a hydraulic retention time (HRT) of 8 h, organic loading rate (OLR) of 120 kg COD/m{sup 3}-d, temperature of 35 C, pH 5.5 and sewage sludge as seed. The anaerobic methane production was conducted in an up-flow bioreactor (working volume 11 L) which was operated at a HRT of 24 -60 hrs, OLR of 4.0-10 kg COD/m{sup 3}-d, temperature of 35 C, pH 7.0 with using anaerobic granule sludge from fructose manufacturing factory as the seed and the effluent from hydrogen production process as the substrate. These two reactors have been operated successfully for more than 400 days. The steady-state hydrogen content, hydrogen production rate and hydrogen production yield in the hydrogen fermentation system were 37%, 169 mmol-H{sub 2}/L-d and 93 mmol-H{sub 2}/g carbohydrate{sub removed}, respectively. In the methane fermentation system, the peak methane content and methane production rate were 66.5 and 86.8 mmol-CH{sub 4}/L-d with methane production yield of 189.3 mmol-CH{sub 4}/g COD{sub removed} at an OLR 10 kg/m{sup 3}-d. The energy production rate was used to elucidate the energy efficiency for this two-stage process. The total energy production rate of 133.3 kJ/L/d was obtained with 5.5 kJ/L/d from hydrogen fermentation and 127.8 kJ/L/d from methane fermentation. (orig.)

  7. Two-stage revision for prosthetic joint infection: outcome and role of reimplantation microbiology in 107 cases. (United States)

    Puhto, Ari-Pekka; Puhto, Teija M; Niinimäki, Tuukka T; Leppilahti, Juhana I; Syrjälä, Hannu P T


    Two-stage revision is widely used for the treatment of prosthetic joint infections. However, the duration of antibiotic treatment between stages and role of reimplantation microbiology are controversial. The purpose of this study was to evaluate the outcome and influence of the reimplantation microbiology of two-staged revisions with 6 weeks of antibiotic treatment. We retrospectively reviewed 107 patients treated with two-stage revision between 2001 and 2009. The overall treatment success rate was 94.4%. The reimplantation cultures were positive in 5/97 (5.2%) cases, and only one of them failed. Therefore, we achieved excellent results with a 6-week course of antibiotics between stages in two-stage revision. Positive reimplantation cultures do not seem to be associated with worse outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Differentiating the persistency and permanency of some two stages DNA splicing language via Yusof-Goode (Y-G) approach (United States)

    Mudaber, M. H.; Yusof, Y.; Mohamad, M. S.


    Predicting the existence of restriction enzymes sequences on the recombinant DNA fragments, after accomplishing the manipulating reaction, via mathematical approach is considered as a convenient way in terms of DNA recombination. In terms of mathematics, for this characteristic of the recombinant DNA strands, which involve the recognition sites of restriction enzymes, is called persistent and permanent. Normally differentiating the persistency and permanency of two stages recombinant DNA strands using wet-lab experiment is expensive and time-consuming due to running the experiment at two stages as well as adding more restriction enzymes on the reaction. Therefore, in this research, by using Yusof-Goode (Y-G) model the difference between persistent and permanent splicing language of some two stages is investigated. Two theorems were provided, which show the persistency and non-permanency of two stages DNA splicing language.

  9. Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty

    National Research Council Canada - National Science Library

    Li, Zhongwen; Zang, Chuanzhi; Zeng, Peng; Yu, Haibin


    .... In this paper, a combined stochastic programming and receding horizon control (SPRHC) strategy is proposed for microgrid energy management under uncertainty, which combines the advantages of two-stage stochastic programming (SP...

  10. High-energy gas fracturing in cased and perforated wellbores

    Energy Technology Data Exchange (ETDEWEB)

    Cuderman, J.F.


    A propellant-based technology, High-Energy Gas Fracturing (HEGF), has been applied to fracturing through perforations in cased boreholes. HEGF is a tailored-pulse fracturing technique originally developed by Sandia National Laboratories for application in uncased, liquid-free gas wells in Appalachian Devonian shales. Because most oil and gas wells are liquid filled as well as cased and perforated, the potential impact of present research is significantly broader. A number of commercial tailored-pulse fracturing services, using a variety of explosives or propellants, are currently available. Present research provides valuable insight into phenomena that occur in those stimulations. The use of propellants that deflagrate or burn rather than detonate, as do high-order explosives, permits controlled buildup of pressure in the wellbore. The key to successful stimulation in cased and perforated wellbores is to control the pressure buildup of the combustion gases to maximize fracturing without destroying the casing. Eight experiments using cased and perforated wellbore were conducted in a tunnel complex at the Department of Energy's Nevada Test Site, which provides a realistic in situ stress environment (4 to 10 MPa (600 to 1500 psi)) and provides access for mineback to directly observe fracturing obtained. Primary variables in the experiments include propellant burn rate and amount of propellant used, presence or absence of liquid in the wellbore, in situ stress orientation, and perforation diameter, density, and phasing. In general, the presence of liquid in the borehole results in a much faster pressure risetime and a lower peak pressure for the same propellant charge. Fracture surfaces proceed outward along lines of perforations as determined by phasing, then gradually turn toward the hydraulic fracture direction. 8 refs., 23 figs., 3 tabs.

  11. Interpreting New Data from the High Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Jesse [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    This is the final technical report for DOE grant DE-SC0006389, "Interpreting New Data from the High Energy Frontier", describing research accomplishments by the PI in the field of theoretical high energy physics.

  12. Antennas tune in to high-energy particles

    CERN Document Server

    Gorham, P W


    After 40 years of research, physicists met at the first international workshop on the radio detection of high energy particles to discuss the detection of high-energy cosmic rays and neutrinos using radio waves. (0 refs).

  13. Opposed piston linear compressor driven two-stage Stirling Cryocooler for cooling of IR sensors in space application (United States)

    Bhojwani, Virendra; Inamdar, Asif; Lele, Mandar; Tendolkar, Mandar; Atrey, Milind; Bapat, Shridhar; Narayankhedkar, Kisan


    A two-stage Stirling Cryocooler has been developed and tested for cooling IR sensors in space application. The concept uses an opposed piston linear compressor to drive the two-stage Stirling expander. The configuration used a moving coil linear motor for the compressor as well as for the expander unit. Electrical phase difference of 80 degrees was maintained between the voltage waveforms supplied to the compressor motor and expander motor. The piston and displacer surface were coated with Rulon an anti-friction material to ensure oil less operation of the unit. The present article discusses analysis results, features of the cryocooler and experimental tests conducted on the developed unit. The two-stages of Cryo-cylinder and the expander units were manufactured from a single piece to ensure precise alignment between the two-stages. Flexure bearings were used to suspend the piston and displacer about its mean position. The objective of the work was to develop a two-stage Stirling cryocooler with 2 W at 120 K and 0.5 W at 60 K cooling capacity for the two-stages and input power of less than 120 W. The Cryocooler achieved a minimum temperature of 40.7 K at stage 2.

  14. Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp. (United States)

    Stoyanova, Elitza; Forsthuber, Boris; Pohn, Stefan; Schwarz, Christian; Fuchs, Werner; Bochmann, Günther


    Anaerobic digestion (AD) of sugar beet pressed pulp (SBPP) is a promising treatment concept. It produces biogas as a renewable energy source making sugar production more energy efficient and it turns SBPP from a residue into a valuable resource. In this study one- and two-stage mono fermentation at mesophilic conditions in a continuous stirred tank reactor were compared. Also the optimal incubation temperature for the pre-acidification stage was studied. The fastest pre-acidification, with a hydraulic retention time (HRT) of 4 days, occurred at a temperature of 55 °C. In the methanogenic reactor of the two-stage system stable fermentation at loading rate of 7 kg VS/m³ d was demonstrated. No artificial pH adjustment was necessary to maintain optimum levels in both the pre-acidification and the methanogenic reactor. The total HRT of the two-stage AD was 36 days which is considerably lower compared to the one-stage AD (50 days). The frequently observed problem of foaming at high loading rates was less severe in the two-stage reactor. Moreover the viscosity of digestate in the methanogenic stage of the two-stage fermentation was in average tenfold lower than in the one-stage fermentation. This decreases the energy input for the reactor stirring about 80 %. The observed advantages make the two-stage process economically attractive, despite higher investments for a two reactor system.

  15. A gas-loading system for LANL two-stage gas guns

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Lloyd Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bartram, Brian Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dattelbaum, Dana Mcgraw [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lang, John Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morris, John Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    A novel gas loading system was designed for the specific application of remotely loading high purity gases into targets for gas-gun driven plate impact experiments. The high purity gases are loaded into well-defined target configurations to obtain Hugoniot states in the gas phase at greater than ambient pressures.The small volume of the gas samples is challenging, as slight changing in the ambient temperature result in measurable pressure changes. Therefore, the ability to load a gas gun target and continually monitor the sample pressure prior to firing provides the most stable and reliable target fielding approach. We present the design and evaluation of a gas loading system built for the LANL 50 mm bore two-stage light gas gun. Targets for the gun are made of 6061 Al or OFHC Cu, and assembled to form a gas containment cell with a volume of approximately 1.38 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with corrosive gases. Piping and valves are stainless steel with wetted seals made from Kalrez® and Teflon®. Preliminary testing was completed to ensure proper flow rate and that the proper safety controls were in place. The system has been used to successfully load Ar, Kr, Xe, and anhydrous ammonia with purities of up to 99.999 percent. The design of the system and example data from the plate impact experiments will be shown.

  16. Automatic visual inspection of woven textiles using a two-stage defect detector (United States)

    Campbell, Jonathan G.; Murtagh, Fionn D.


    Automatic inspection of woven textile fabric is discussed. A two-stage detection process is adopted, with the second stage involving set of novel contextual decision fusion techniques. Three significant problems are addressed: (1) texture feature extraction: Fourier transform features are found to be well matched to the spatially periodic nature of the woven pattern; (2) detection of localized flaw patterns: since prior probabilities are impossible to estimate, and we cannot hope to enumerate all defect classes, a Neyman- Pearson approach is adopted, i.e., flaw detection is via measured deviation from nominal; and (3) detection of extended flaw patterns: the most common flaws are characterized by linear or other cluster shaped patterns; although these are weakly detectable by local detectors, they may be ignored when local detector sensitivity is set to achieve tolerably low false-alarm rates; a local-extended contextual decision fusion technique using morphological filtering enables us to achieve very low composite false- alarm rate. The performance of the system is evaluated on samples of denim fabric containing real defects. The predicted composite false-alarm rate is of the order 1 in 1013, or equivalent to 1 per 100 km of fabric roll. Experimental results demonstrate the compatibility of this favorably false-alarm rate with the reliable detection of flaws, which have been chosen for their subtlety and detection difficulty.


    Directory of Open Access Journals (Sweden)



    Full Text Available This paper presents a low power, high slew rate, high gain, ultra wide band two stage CMOS cascode operational amplifier for radio frequency application. Current mirror based cascoding technique and pole zero cancelation technique is used to ameliorate the gain and enhance the unity gain bandwidth respectively, which is the novelty of the circuit. In cascading technique a common source transistor drive a common gate transistor. The cascoding is used to enhance the output resistance and hence improve the overall gain of the operational amplifier with less complexity and less power dissipation. To bias the common gate transistor, a current mirror is used in this paper. The proposed circuit is designed and simulated using Cadence analog and digital system design tools of 45 nanometer CMOS technology. The simulated results of the circuit show DC gain of 63.62 dB, unity gain bandwidth of 2.70 GHz, slew rate of 1816 V/µs, phase margin of 59.53º, power supply of the proposed operational amplifier is 1.4 V (rail-to-rail ±700 mV, and power consumption is 0.71 mW. This circuit specification has encountered the requirements of radio frequency application.

  18. Integration of a Water Scrubbing Technique and Two-Stage Pressurized Anaerobic Digestion in One Process

    Directory of Open Access Journals (Sweden)

    Andreas Lemmer


    Full Text Available Two-stage pressurized anaerobic digestion is a promising technology. This technology integrates in one process biogas production with upgrading and pressure boosting for grid injection. To investigate whether the efficiency of this novel system could be further increased, a water scrubbing system was integrated into the methanogensis step. Therefore, six leach-bed reactors were used for hydrolysis/acidification and a 30-L pressurized anaerobic filter operated at 9 bar was adopted for acetogenesis/methanogenesis. The fermentation liquid of the pressurized anaerobic filter was circulated periodically via a flash tank, operating at atmospheric pressure. Due to the pressure drop, part of dissolved carbon dioxide was released from the liquid phase into the flash tank. The depressurized fermentation liquid was then recycled to the pressurized reactor. Three different flow rates (0 L·day−1, 20 L·day−1 and 40 L·day−1 were tested with three repetitions. As the daily recycled flashed liquid flow was increased from 0 to 40 L, six times as much as the daily feeding, the methane content in the biogas increased from 75 molar percent (mol% to 87 mol%. The pH value of the substrate in the methane reactor rose simultaneously from 6.5 to 6.7. The experimental data were verified by calculation.

  19. The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System

    Directory of Open Access Journals (Sweden)

    Karthik Rajendran


    Full Text Available The effect of recirculation in increasing organic loading rate (OLR and decreasing hydraulic retention time (HRT in a semi-continuous two-stage anaerobic digestion system using stirred tank reactor (CSTR and an upflow anaerobic sludge bed (UASB was evaluated. Two-parallel processes were in operation for 100 days, one with recirculation (closed system and the other without recirculation (open system. For this purpose, two structurally different carbohydrate-based substrates were used; starch and cotton. The digestion of starch and cotton in the closed system resulted in production of 91% and 80% of the theoretical methane yield during the first 60 days. In contrast, in the open system the methane yield was decreased to 82% and 56% of the theoretical value, for starch and cotton, respectively. The OLR could successfully be increased to 4 gVS/L/day for cotton and 10 gVS/L/day for starch. It is concluded that the recirculation supports the microorganisms for effective hydrolysis of polyhydrocarbons in CSTR and to preserve the nutrients in the system at higher OLRs, thereby improving the overall performance and stability of the process.

  20. Spread and Control of Mobile Benign Worm Based on Two-Stage Repairing Mechanism

    Directory of Open Access Journals (Sweden)

    Meng Wang


    Full Text Available Both in traditional social network and in mobile network environment, the worm is a serious threat, and this threat is growing all the time. Mobile smartphones generally promote the development of mobile network. The traditional antivirus technologies have become powerless when facing mobile networks. The development of benign worms, especially active benign worms and passive benign worms, has become a new network security measure. In this paper, we focused on the spread of worm in mobile environment and proposed the benign worm control and repair mechanism. The control process of mobile benign worms is divided into two stages: the first stage is rapid repair control, which uses active benign worm to deal with malicious worm in the mobile network; when the network is relatively stable, it enters the second stage of postrepair and uses passive mode to optimize the environment for the purpose of controlling the mobile network. Considering whether the existence of benign worm, we simplified the model and analyzed the four situations. Finally, we use simulation to verify the model. This control mechanism for benign worm propagation is of guiding significance to control the network security.