WorldWideScience

Sample records for high-energy phosphate levels

  1. Is visual activation associated with changes in cerebral high-energy phosphate levels?

    Science.gov (United States)

    van de Bank, Bart L; Maas, Marnix C; Bains, Lauren J; Heerschap, Arend; Scheenen, Tom W J

    2018-03-23

    Phosphorus magnetic resonance spectroscopy ( 31 P MRS) has been employed before to assess phosphocreatine (PCr) and other high-energy phosphates in the visual cortex during visual stimulation with inconsistent results. We performed functional 31 P MRS imaging in the visual cortex and control regions during a visual stimulation paradigm at an unprecedented sensitivity, exploiting a dedicated RF coil design at a 7 T MR system. Visual stimulation in a 3 min 24 s on-off paradigm in eight young healthy adults generated a clear BOLD effect with traditional 1 H functional MRI in the visual cortex (average z score 9.9 ± 0.2). However, no significant event-related changes in any of the 31 P metabolite concentrations, linewidths (7.9 ± 1.8 vs 7.8 ± 1.9 Hz) or tissue pH (7.07 ± 0.13 vs 7.06 ± 0.07) were detectable. Overall, our study of 31 P MRSI in 15 cm 3 voxels had a detection threshold for changes in PCr, Pi and γ-ATP between stimulation and rest of 5, 17 and 10%, respectively. In individual subjects, the mean coefficients of variance for PCr and Pi levels of control voxels were 6 ± 3 and 19 ± 8% (three time point average of 3 min 24 s). Altogether this indicates that energy supply for neuronal activation at this temporal resolution does not drain global PCr resources.

  2. Brain levels of high-energy phosphate metabolites and executive function in geriatric depression.

    Science.gov (United States)

    Harper, David G; Joe, Elizabeth B; Jensen, J Eric; Ravichandran, Caitlin; Forester, Brent P

    2016-11-01

    Depression in late life has been associated with difficulties in cognitive processing, particularly in the domains of executive function, processing speed and memory, and increases the risk of developing dementia suggesting a neurodegenerative phenotype. Mitochondrial dysfunction is frequently an early event in neurodegenerative illnesses and may be operative in patients with late life depression. Phosphorus magnetic resonance spectroscopy (31P MRS) allows for the quantification of bioenergetic molecules produced by mitochondria. Ten patients with late life depression and eight normal elderly controls were studied with Stroop color and interference tests, which are widely used measures of processing speed and executive function, respectively, followed by (31P) MRS 3-dimensional chemical-shift imaging measuring levels of adenosine triphosphate, phosphocreatine, inorganic phosphate, and pH over the whole brain. In all subjects, gray matter phosphocreatine was positively associated with Stroop interference. Levels of white matter adenosine triphosphate were associated with Stroop interference in subjects with late life depression but not normal elderly. There was also a complementary association between white matter inorganic phosphate and Stroop interference in late life depression patients. These findings suggest two independent sources of executive function dependence on bioenergetic state in the aging brain. The dependence of executive function performance in subjects with late life depression on ATP in white matter may be associated with mitochondrial impairment and is consistent with predictions of the vascular depression hypothesis. Further research with wider neuropsychological testing targeting bioenergetic markers could help clarify the scope of these effects. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Skeletal muscle intracellular pH and levels of high energy phosphates during hypercapnia in intact lizards by 31P NMR

    International Nuclear Information System (INIS)

    Johnson, D.C.; Hitzig, B.M.; Elmden, K.; McFarland, E.; Koutcher, J.; Kazemi, H.

    1986-01-01

    Lizards have been shown to reduce ventilation during CO 2 breathing. This is thought to be detrimental to the maintenance of intracellular pH (pHi) and levels of high energy phosphates. The authors subjected chameleons (n=4) to 5% CO 2 breathing and made serial measurements of tail (skeletal) muscle pHi, levels of phosphocreatine (PCr), and ATP utilizing high resolution 31 P NMR. pHi was unchanged from controls (7.27 +/- 0.06 units) (mean +/- SE) during 30 minutes of hypercapnia (7.19 +/- 0.09 units) (p>.2) demonstrating effective regulation of skeletal muscle pHi; however, there were significant decreases in the PCr/ATP ratios to 65% +/- 5% (p 2 availability because there were no increases in the levels of glycolytic intermediates and inorganic phosphate which would indicate tissue hypoxia. It is possible that an active process requiring ATP is required for the maintenance of pHi in the presence of hypercapnia and that the reduction of PCr/ATP ratio is a reflection of an increased utilization of ATP

  4. Reductions in mitochondrial O(2) consumption and preservation of high-energy phosphate levels after simulated ischemia in chronic hibernating myocardium.

    Science.gov (United States)

    Hu, Qingsong; Suzuki, Gen; Young, Rebeccah F; Page, Brian J; Fallavollita, James A; Canty, John M

    2009-07-01

    We performed the present study to determine whether hibernating myocardium is chronically protected from ischemia. Myocardial tissue was rapidly excised from hibernating left anterior descending coronary regions (systolic wall thickening = 2.8 +/- 0.2 vs. 5.4 +/- 0.3 mm in remote myocardium), and high-energy phosphates were quantified by HPLC during simulated ischemia in vitro (37 degrees C). At baseline, ATP (20.1 +/- 1.0 vs. 26.7 +/- 2.1 micromol/g dry wt, P < 0.05), ADP (8.1 +/- 0.4 vs. 10.3 +/- 0.8 micromol/g, P < 0.05), and total adenine nucleotides (31.2 +/- 1.3 vs. 40.1 +/- 2.9 micromol/g, P < 0.05) were depressed compared with normal myocardium, whereas total creatine, creatine phosphate, and ATP-to-ADP ratios were unchanged. During simulated ischemia, there was a marked attenuation of ATP depletion (5.6 +/- 0.9 vs. 13.7 +/- 1.7 micromol/g at 20 min in control, P < 0.05) and mitochondrial respiration [145 +/- 13 vs. 187 +/- 11 ng atoms O(2).mg protein(-1).min(-1) in control (state 3), P < 0.05], whereas lactate accumulation was unaffected. These in vitro changes were accompanied by protection of the hibernating heart from acute stunning during demand-induced ischemia. Thus, despite contractile dysfunction at rest, hibernating myocardium is ischemia tolerant, with reduced mitochondrial respiration and slowing of ATP depletion during simulated ischemia, which may maintain myocyte viability.

  5. High-energy phosphate transfer in human muscle: diffusion of phosphocreatine

    OpenAIRE

    Gabr, Refaat E.; El-Sharkawy, AbdEl-Monem M.; Schär, Michael; Weiss, Robert G.; Bottomley, Paul A.

    2011-01-01

    The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (DPCr) is thus critical for modeling and understanding energy transport in the myocyte, but DPC...

  6. Heat- and exercise-induced hyperthermia: effects on high-energy phosphates.

    Science.gov (United States)

    Francesconi, R; Mager, M

    1979-08-01

    To assess the role of high-energy phosphate compounds in the etiology of heat injury with respect to the release of intracellular constituents, the susceptibility of selected tissues to heat injury, and the shock-like demise of the animals, rats were exercised on a treadmill (9.14 m/min) in a hot environment (34.5-35 degrees C) to a rectal temperature (Tre) of 42.5-43 degrees C. In the heart, kidney, left lateral lobe of the liver, and gastrocnemius muscle extricated from animals immediately upon termination of the treadmill run, levels of glucose-6-phosphate (G-6-P), adenosine triphosphate (ATP), and creatine phosphate (CP) were unchanged when compared with sedentary controls. In animals which had been resuscitated by infusion of isotonic saline into a jugular catheter, levels of CP were significantly (p less than 0.025) elevated in gastrocnemius muscle. In rats which were unconscious and succumbing to the effects of hyperthermic injury, levels of hepatic G-6-P and ATP were significantly reduced (p less than 0.05, p less than 0.02, respectively). These results indicate that the combination of exhaustive excercise/heat injury had the most deleterious effects upon hepatic metabolism. However, while resuscitation with physiological saline may be accompanied by an increased synthesis of CP, hyperthermic exhaustion and the concomitant efflux of cellular constituents cannot be attributed to a depletion or even a decrement of high-energy phosphates in vital tissues.

  7. High-energy phosphate transfer in human muscle: diffusion of phosphocreatine.

    Science.gov (United States)

    Gabr, Refaat E; El-Sharkawy, Abdel-Monem M; Schär, Michael; Weiss, Robert G; Bottomley, Paul A

    2011-07-01

    The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (D(PCr)) is thus critical for modeling and understanding energy transport in the myocyte, but D(PCr) has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured D(PCr) in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ∼28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ∼0.69 × 10(-3) mm(2)/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ∼66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes.

  8. Study on the kinetics of high-energy phosphates in myocardium by phosphorous nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kusuoka, Hideo; Tsuneoka, Yutaka; Inoue, Michitoshi; Abe, Hiroshi [Osaka Univ. (Japan). Faculty of Medicine; Watari, Hiroshi

    1982-12-01

    Effect of artificial blood, FC 43 (Perfluorochemicals) on the kinetics of high-energy phosphate in the myocardium was evaluated by /sup 31/P-NMR which permits a continuous and non-invasive assessment of in vivo phosphorus compounds. Cardiac perfusion was carried out on a excised rat heart with a Krebs-Henseleit modified solution and FC 43 alternately. Under the normal condition, ischemic condition, and at second perfusion amounts of intramyocardial creatine phosphoric acid, ATP, and inorganic phosphorus were determined by /sup 31/P-NMR. Coronary flow was simultaneously estimated. The ischemic state due to interruption of perfusion resulted in a decrease in creatine phosphoric acid, which was associated with an increase in inorganic phosphorus and intracellular acidosis. No change of ATP amount was observed under ischemic state. With resumption of perfusion, the levels of creatine phosphoric acid and inorganic phosphorus rapidly returned to the normal. In the group of FC 43, coronary flow was 2.68 ml/min/g of the heart weight, about 1/2 of that of the Krebs-Henseleit group (5.68 ml/min/g of the heart weight). In controls, there was no difference between the two groups concerning creatine phosphoric acid level and recovery of creatine phospohric acid level after ischemia. These results showed that FC 43 supplies sufficient oxygen, and has no effect on the kinetics of energy in the myocardium.

  9. A study on the kinetics of high-energy phosphates in myocardium by phosphorous nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Kusuoka, Hideo; Tsuneoka, Yutaka; Inoue, Michitoshi; Abe, Hiroshi; Watari, Hiroshi.

    1982-01-01

    Effect of artificial blood, FC 43 (Perfluorochemicals) on the kinetics of high-energy phosphate in the myocardium was evaluated by 31 P-NMR which permits a continuous and non-invasive assessment of in vivo phosphorus compounds. Cardiac perfusion was carried out on a excised rat heart with a Krebs-Henseleit modified solution and FC 43 alternately. Under the normal condition, ischemic condition, and at second perfusion amounts of intramyocardial creatine phosphoric acid, ATP, and inorganic phosphorus were determined by 31 P-NMR. Coronary flow was simultaneously estimated. The ischemic state due to interruption of perfusion resulted in a decrease in creatine phosphoric acid, which was associated with an increase in inorganic phosphorus and intracellular acidosis. No change of ATP amount was observed under ischemic state. With resumption of perfusion, the levels of creatine phosphoric acid and inorganic phosphorus rapidly returned to the normal. In the group of FC 43, coronary flow was 2.68 ml/min/g of the heart weight, about 1/2 of that of the Krebs-Henseleit group (5.68 ml/min/g of the heart weight). In controls, there was no difference between the two groups concerning creatine phosphoric acid level and recovery of creatine phospohric acid level after ischemia. These results showed that FC 43 supplies sufficient oxygen, and has no effect on the kinetics of energy in the myocardium. (Ueda, J.)

  10. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries

    Science.gov (United States)

    Howard, Wilmont F.; Spotnitz, Robert M.

    Lithium metal phosphates (olivines) are emerging as long-lived, safe cathode materials in Li-ion batteries. Nano-LiFePO 4 already appears in high-power applications, and LiMnPO 4 development is underway. Current and emerging Fe- and Mn-based intercalants, however, are low-energy producers compared to Ni and Co compounds. LiNiPO 4, a high voltage olivine, has the potential for superior energy output (>10.7 Wh in 18650 batteries), compared with commercial Li(Co,Ni)O 2 derivatives (up to 9.9 Wh). Speculative Co and Ni olivine cathode materials charged to above 4.5 V will require significant advances in electrolyte compositions and nanotechnology before commercialization. The major drivers toward 5 V battery chemistries are the inherent abuse tolerance of phosphates and the economic benefit of LiNiPO 4: it can produce 34% greater energy per dollar of cell material cost than LiAl 0.05Co 0.15Ni 0.8O 2, today's "standard" cathode intercalant in Li-ion batteries.

  11. Spectrophotometric Determination of Nitrate and Phosphate Levels ...

    African Journals Online (AJOL)

    Twelve drinking water samples from boreholes were collected from various sampling sites around the vicinity of Kura irrigated farmlands using polythene plastic containers and were analysed for the nitrate and phosphate levels using uV – visible spectrophotometer. From the results, it was found that all the samples had ...

  12. Noninvasive measurements of cardiac high-energy phosphate metabolites in dilated cardiomyopathy by using 31P spectroscopic chemical shift imaging

    International Nuclear Information System (INIS)

    Hansch, A.; Rzanny, R.; Heyne, J.-P.; Reichenbach, J.R.; Kaiser, W.A.; Leder, U.

    2005-01-01

    Dilated cardiomyopathy (DCM) is accompanied by an impaired cardiac energy metabolism. The aim of this study was to investigate metabolic ratios in patients with DCM compared to controls by using spectroscopic two-dimensional chemical shift imaging (2D-CSI). Twenty volunteers and 15 patients with severe symptoms (left ventricular ejection fraction, LVEF 30%) of DCM were investigated. Cardiac 31 P MR 2D-CSI measurements (voxel size: 40 x 40 x 100 mm 3 ) were performed with a 1.5 T whole-body scanner. Measurement time ranged from 15 min to 30 min. Peak areas and ratios of different metabolites were evaluated, including high-energy phosphates (PCr, ATP), 2,3-diphosphoglycerate (2,3-DPG) and phosphodiesters (PDE). In addition, we evaluated how PCr/ATP ratios correlate with LVEF as an established prognostic factor of heart failure. The PCr/γ-ATP ratio was significantly decreased in patients with moderate and severe DCM and showed a linear correlation with reduced LVEFs. PDE/ATP ratios were significantly increased only in patients with severe DCM as compared to volunteers. Applying 31 P MRS with commonly-available 2D-CSI sequences is a valuable technique to evaluate DCM by determining PCr/ATP ratios noninvasively. In addition to reduced PCr/ATP ratios observed in patients suffering from DCM, significantly-increased PDE/ATP ratios were found in patients with severe DCM. (orig.)

  13. Interleaved MRI/MRS study of muscle perfusion, oxygenation and high energy phosphate metabolism in normal subjects and Becker's myopathic patients

    International Nuclear Information System (INIS)

    Toussaint, J.F.; Brillault-Salvat, C.; Giacomini, E.; Bloch, G.; Duboc, D.; Jehenson, P.

    1998-01-01

    We present the first results of a study comparing patients suffering from Becker's myopathy and normal volunteers. We simultaneously assessed perfusion, oxygenation and high-energy phosphate metabolism using an interleaved NMR/NMRS approach. Muscle metabolism does not seem to differ in Becker's patients, except for myoglobin reoxygenation rates. (authors)

  14. X-ray absorption spectroscopy and high-energy XRD study of the local environment of copper in antibacterial copper-releasing degradable phosphate glasses

    OpenAIRE

    Pickup, David M.; Ahmed, Ifty; Fitzgerald, Victoria; Moss, Rob M.; Wetherall, Karen; Knowles, Jonathan C.; Smith, Mark E.; Newport, Robert J.

    2006-01-01

    Phosphate-based glasses of the general formula Na2O-CaO-P2O5 are degradable in an aqueous environment, and therefore can act as antibacterial materials through the inclusion of ions such as copper. In this study, CuO and Cu2O were added to Na2O-CaO-P2O5 glasses (1-20 mol% Cu) and X-ray absorption spectroscopy (XAS) and high-energy X-ray diffraction (HEXRD) used to probe the local environment of the copper ions. Copper K-edge X-ray absorption near-edge structure (XANES) spectra confirm the oxi...

  15. Structural studies of calcium phosphate doped with titanium and zirconium obtained by high-energy mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C C; Sombra, A S B [Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Physics Department, Federal University of Ceara, Campus do Pii, Postal Code 6030, 60455-760, Fortaleza-Ceara (Brazil)], E-mail: sombra@fisica.ufc.br

    2009-12-15

    In this paper, we present a new variation of the solid-state procedure on the synthesis of bioceramics with titanium (CapTi) and zirconium (CapZr), considering that zirconium (ZrO{sub 2}) and titanium oxide (TiO{sub 2}) are strengthening agents, due to their superb force and fracture toughness. The high efficiency of the calcination process opens a new way of producing commercial amounts of nanocrystalline bioceramics. In this work, a new variation of the solid-state procedure method was used to produce nanocrystalline powders of titanium and zirconium, using two different experimental chemical routes: CapTi: Ca(H{sub 2}PO{sub 4}){sub 2}+TiO{sub 2} and CapZr: Ca(H{sub 2}PO{sub 4}){sub 2}+ZrO{sub 2}. The powders were submitted to calcination processes (CapTic and CapZrc) at 800, 900 and 1000 deg. C. The calcium titanium phosphate phase, CaTi{sub 4}P{sub 6}O{sub 24}, was obtained in the CapTic reaction and the calcium zirconium phosphate, CaZr{sub 4}P{sub 6}O{sub 24}, was obtained in the CapZrc reaction. The obtained ceramics were characterized by x-ray powder diffraction (XRD), infrared (IR) spectroscopy, Raman scattering spectroscopy (RSS) and scanning electron microscopy (SEM) analysis. This method was compared with the milling process (CapTim and CapZrm), where in the last process the melting is not necessary and the powder obtained is nanocrystalline. The calcium titanium phosphate phase, CaTi{sub 4}P{sub 6}O{sub 24}, was obtained in the reaction CapTim, but in CapZrm the formation of any calcium phosphate phase even after 15 h of dry mechanical alloying was not observed.

  16. Levels of high energy cottonseed meal in multiple supplements for grazing cattle: performance and economic evaluation

    Directory of Open Access Journals (Sweden)

    Joanis Tilemahos Zervoudakis

    2015-10-01

    Full Text Available The objective was to evaluate the substitution levels of protein from soybean meal by high energy cottonseed (CS meal in multiple supplements for beef cattle grazing in the dry season on the average daily gain (ADG and economic viability. Twenty Nellore steers with initial body weight of 351.25±35.38 kg and average initial age of 24±0.8 months were used, divided into four paddocks of Brachiaria brizantha cv. Marandu with 1.6 ha each incompletely randomized design with four animals and five supplements to assess the following supplements: 0CS, 25CS and 50CS corresponding to the level of 0,25 and 50% high energy cottonseed meal to replace the meal soybean, provided the amount of 2 kg/animal/day, which were compared to mineral mixture (MM. The supplement 25CS provided higher (P<0.0001 ADG (0.75kg/animal/day-1 compared to supplement 50CS (0.60kg/animal/day-1. The ADG of animals supplemented with 0CS (0.53kg/animal/day-1 did not differ (P<0.0001 of the ADG of the bulls receiving supplementation with 25CS (0.75k /animal/day-1 and 50CS (0,60kg / animal / day-1. The 25CS supplement showed a higher economic return on invested capital in the period. The use of cottonseed meal high energy level of 25% replacement of soybean meal in multiple supplements provided greater weight gain of cattle and improved economic viability. 

  17. Influence of high energy phosphate metabolism in postischemic myocardial dysfunction using magnetic resonance spectroscopy; Influencia dos fosfatos de alta energia na funcao ventricular em pacientes com infarto do miocardio avaliada pela resonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Kalil Filho, Roberto [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Hospital das Clinicas

    1998-05-01

    The recovery of left ventricular function after reperfusion is delayed in general by several hours, days or weeks and this phenomenon is known as myocardial stunning. One of the theories to explain the pathogenesis of this postischemic myocardial dysfunction is the production of not enough energy by mitochondria, leading to decreased adenosine-triphosphate (ATP) levels. We evaluated the influence of high energy phosphate metabolism in postischemic myocardial dysfunction, using magnetic resonance spectroscopy in patients with acute anterior wall myocardial infarction, successfully reperfused, within the first six hours from the onset of the symptoms. Twenty-nine patients were studied in the acute phase (on average four days after the onset of myocardial infarction) and 21 repeated the examination in the follow-up phase (average 39 days). Regional left ventricular function was evaluated by cine-resonance and high energy phosphate metabolism by phosphorus-31 spectroscopy, using the phosphocreatine {beta} ATP (P Cr/{beta}ATP) ratio. The existence of myocardial stunning was suggested by the improvement of the related regional contractility during the follow-up. The contractility improved in the septal wall from 2.46{+-} 0.68 to 1.54 {+-} 0.78 (p<0.001), in the anteroseptal wall from 2.0 {+-} 0.89 to 1.40 {+-} 0.75 (p<0.001) and in the anterior wall from 2.37 {+-} 0.71 to 1.41 {+-} 0.59 (p<0.001). The P Cr/{beta}ATP ratio did not change from acute to follow-up phase (1.51 {+-} 0.17 vs. 1.53 {+-} 0.17; p = 0.6). This study suggests that decreased high energy phosphate metabolism after reperfusion does not have an important role in the genesis of the myocardial stunning in patients with acute anterior wall myocardial infarction. (author) 25 refs., 9 figs., 1 tab.

  18. Spectrophotometric Determination of Nitrate and Phosphate Levels ...

    African Journals Online (AJOL)

    MBI

    2013-04-09

    Apr 9, 2013 ... may help in the growth of algae (Beavington,. 1977). Determination of phosphate ion in drinking water. 50cm3 of water sample was pipetted into a 500cm3 volumetric flask, 5cm3 of Ammonium molybdate solution and 3.0cm3 of ascorbic acid were added with swirling, the mixture was diluted to the mark with ...

  19. A new device for the efficient pulverisation and extraction of myocardial biopsies for high energy phosphate analysis.

    Science.gov (United States)

    Speir, E H; Sullivan, J; Patterson, R E

    1985-07-01

    We developed a new device for processing frozen myocardial biopsies. Frozen samples of 20 to 50 mg were dropped into a 25 ml stainless steel centrifuge tube held in a custom-made aluminium container precooled in liquid nitrogen. A stainless steel pestle attached to a stainless steel disk was driven by a modified heavy-duty staple gun to pulverise the tissue rapidly at low temperatures. The tissue powder was extracted with 0.3N PCA at 0 degree C in the centrifuge tube which was then transferred to a Sorvall super-speed centrifuge. Values for adenosine triphosphate (ATP) were 5.6 +/- 0.7 mumol . g-1 wet weight (mean +/- SD). Creatine phosphate (CP) yield was 12.2 +/- 3 mumol . g-1 wet weight. The % recovery of an added internal standard for ATP was 86 +/- 18% and for CP 90 +/- 16% with the new method.

  20. Radiation exposure levels in phosphate mining activities

    International Nuclear Information System (INIS)

    Othman, I.; Al-Hushari, M.; Raja, G.

    1992-01-01

    Radon, radon daughter concentration and gamma ray exposure rate were measured at different places in the phosphate mining areas of Syria. The grab sampling method was used. For radon measurements, discrete air samples without progeny were collected over short periods of time, whereas daughters were collected on filter paper. A three-count procedure was used for the measurement of radon daughter concentrations to improve accuracy. The measurements were carried out at 37 locations selected in the mines, factories, offices and homes in the mining area. The sampling was repeated monthly for a full calendar year. Workers and their families were classified in different categories according to the nature of their jobs. The doses were estimated using proper occupancy factors. The dose equivalent from radon daughters varies from 1 mSv.y -1 to a maximum of 10 mSv.y -1 . Radon concentrations vary from 100 Bq.m -3 to several hundreds. (author)

  1. Effect of Phosphate levels on vegetables irrigated with wastewater

    Science.gov (United States)

    Oladeji, S. O.; Saeed, M. D.

    2018-04-01

    This study examined accumulation of phosphate ions in wastewater and vegetables through man-made activities. Phosphate level was determined in wastewater and vegetables collected on seasonal basis along Kubanni stream in Zaria using UV/Visible and Smart Spectro Spectrophotometers for their analyses. Results obtained show that phosphate concentrations ranged from 3.85 – 42.33 mg/L in the first year and 15.60 – 72.80 mg/L in the second year for wastewater whereas the vegetable had levels of 3.80 – 23.65 mg/kg in the year I and 7.48 – 27.15 mg/kg in the year II. Further statistical tests indicated no significant difference in phosphate levels across the locations and seasons for wastewater and vegetables evaluated. Correlation results for these two years indicated negative (r = -0.062) relationship for wastewater while low (r = 0.339) relationship noticed for vegetables planted in year I to that of year II. Phosphate concentrations obtained in this study was higher than Maximum Contaminant Levels set by Standard Organization such as WHO and FAO for wastewater whereas vegetables of the sampling sites were not contaminated with phosphate ions. Irrigating farmland with untreated wastewater has negative consequence on the crops grown with it.

  2. Excitation of high energy levels under laser exposure of suspensions of nanoparticles in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute, 38, Vavilov Street, 119991 Moscow (Russian Federation)], E-mail: shafeev@kapella.gpi.ru; Simakin, A.V. [Wave Research Center of A.M. Prokhorov General Physics Institute, 38, Vavilov Street, 119991 Moscow (Russian Federation); Bozon-Verduraz, F. [ITODYS, UMR CNRS 7086, Universite Paris 7-Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France); Robert, M. [Laboratoire d' Electrochimie Moleculaire, UMR CNRS 7591, Universite Paris 7 Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France)

    2007-12-15

    Laser exposure of suspensions of nanoparticles in liquids leads to excitation of high energy levels in both liquid and nanoparticle material. The emission spectrum of the colloidal solution under exposure of a suspension metallic nanoparticles in water to radiation of a Nd:YAG laser of a picosecond range of pulse duration is discussed. Excitation of nuclear energy levels and neutron release is experimentally studied on the model system of transmutation of Hg into Au that occurs under exposure of Hg nanodrops suspended in D{sub 2}O. The proposed mechanism involves: (i) emission of X-ray photons by Hg nanoparticles upon laser exposure, leading to neutron release from D{sub 2}O, (ii) initiation of Hg {yields} Au transmutation by the capture of neutrons. The effect of transmutation is more pronounced using {sup 196}Hg isotope instead of Hg of natural isotope composition. The influence of laser pulse duration on the degree of transmutation (from fs through ns range) is discussed.

  3. Dose levels due to neutrons in the vicinity of high energy medical accelerators

    International Nuclear Information System (INIS)

    McGinley, P.H.; Wood, M.; Sohrabi, M.; Mills, M.; Rodriguez, R.

    1976-01-01

    High energy photons are generated for use in radiation therapy by the decelleration of electrons in metal targets. Fast neutrons are also generated as a result of (γ, n) and (e, e'n) interactions in the target, beam compensator filter, and collimator material. In this work the adsorbed dose to neutrons was measured at the center of a 10 x 10 cm photon beam and 5 cm outside of the beam edge for a number of treatment units. Dose levels due to slow and fast neutrons were also established outside of the treatment rooms and a Bonner sphere neutron spectrometer system was employed to determine the neutron energy spectrum due to stray neutron radiation at each accelerator. For the linac it was found that the neutron dose at the beam center was 0.0039% of the photon dose and values of 0.049% and 0.053% were observed for the Allis Chalmers betatron and the Brown Boveri Betatron. Dose equivalent rates in the range of 0.3 to 22.5 mrem/hr were measured for points outside the treatment rooms when the accelerators were operated at a photon dose rate of 100 rad/min at the treatment position

  4. Preliminary observations on high energy phosphates and metabolic pathway and transporter potentials in extensor carpi radialis brevis and trapezius muscles of women with work-related myalgia.

    Science.gov (United States)

    Green, Howard J; Ranney, Don; Burnett, Margaret; Galvin, Patti; Kyle, Natasha; Lounsbury, David; Ouyang, Jing; Smith, Ian C; Stewart, Riley; Tick, Heather; Tupling, A Russell

    2014-11-01

    This study compared both the extensor carpi radialis brevis (ECRB) and the trapezius (TRAP) muscles of women with work-related myalgia (WRM) with healthy controls (CON) to determine whether abnormalities existed in cellular energy status and the potentials of the various metabolic pathways and segments involved in energy production and substrate transport. For both the ECRB (CON, n = 6-9; WRM, n = 13) and the TRAP (CON, n = 6-7; WRM, n = 10), no differences (P > 0.05) were found for the concentrations (in millimoles per kilogram of dry mass) of ATP, PCr, lactate, and glycogen. Similarly, with one exception, the maximal activities (in moles per milligram of protein per hour) of mitochondrial enzymes representative of the citric acid cycle (CAC), the electron transport chain (ETC), and β-oxidation, as well as the cytosolic enzymes involved in high energy phosphate transfer, glycogenolysis, glycolysis, lactate oxidation, and glucose phosphorylation were not different (P > 0.05). The glucose transporters GLUT1 and GLUT4, and the monocarboxylate transporters MCT1 and MCT4, were also normal in WRM. It is concluded that, in general, abnormalities in the resting energy and substrate state, the potential of the different metabolic pathways and segments, as well as the glucose and monocarboxylate transporters do not appear to be involved in the cellular pathophysiology of WRM.

  5. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  6. High energy x-radiographic assessment of conditioned intermediate level waste blocks

    International Nuclear Information System (INIS)

    Lewcock, A.I.; Burch, S.F.; Reynolds, W.N.; Pullen, D.A.W.; Smith, D.

    1985-07-01

    This report describes an effective technique for examining the quality of the solidification matrix material in a 500 litre waste drum, testing for homogeneity and major cracks and the confirmation of set. A high energy x-ray source, (an 8 MeV Linac) and a special x-ray TV system, were used to examine several different types of solidified waste form, with and without background radiation, simulated by the use of an uncollimated radiographic isotope. The system as tested showed no discernable image degradation when the isotope was positioned to give a representative background dose as experienced with active ILW monoliths. (author)

  7. The effects of uranium oxide high-level waste on the structure of iron phosphate glasses

    International Nuclear Information System (INIS)

    Badyal, Y.

    1998-01-01

    Because of their unusually good chemical durability, iron phosphate glasses are a natural candidate for a nuclear waste disposal glass. We have studied the effects of UO 2 high-level waste on the structure of iron phosphate glasses with both neutron and high-energy x-ray diffraction using the GLAD instrument of the Intense Pulsed Neutron Source and the 1-BM bending magnet beamline of the Advanced Photon Source, respectively. The results of neutron scattering, which is mostly sensitive to correlations involving light atoms i.e. O-O, Fe-O and P-O, suggest the main structural features of the base glass are largely unaffected by the addition of UO 2 . The nearest-neighbor P-O, Fe-O and O-O peaks remain at the same position in real space and their intensities scale approximately with concentration. These findings are consistent with the earlier results of Raman scattering and EXAFS on the Fe-K edge wherein both cases the spectra remain similar to the base glass. High-energy x-ray scattering which is sensitive to correlations involving the heavier atoms and thus complements the neutron measurements, is also consistent with uranium occupying interstitial sites in the relatively undisturbed base glass structure. However, important questions remain as to the precise local structure and oxidation state of uranium in these glasses

  8. Development of nanosensors for studying intracellular phosphate levels

    DEFF Research Database (Denmark)

    Gu, Hong

    -time monitoring of Pi metabolism in living cells, providing a new tool for fluxomics (measurement of metabolic flux), analysis of pathophysiology or changes of Pi during cell activity. Transformation of plants with FLIPs had resulted in only low expression levels. As an alternative a protein transduction domain......Abstract Inorganic phosphate (Pi) is an essential macronutrient that plays a central role in metabolism and signal transduction in plants. Uptake, compartmentation and transport are important players of cellular Pi homeostasis; however, methods to determine the cellular phosphate concentration...... of a substrate-binding protein linked to two fluorescent reporter proteins. Substrate binding changes the conformation of the nanosensor and, hence, the efficiency of fluorescence resonance energy transfer (FRET) between the reporter proteins. The aim of the present project was to develop nanosensors for Pi...

  9. Intermediate and high energy nuclear reactions at the hadronic structural level

    Energy Technology Data Exchange (ETDEWEB)

    Slowinski, B [Institute of Physics, Warsaw, University of Technology, Poland, Institute of Atomic Energy, Swierk, (Poland)

    1997-12-31

    Form tens of MeV to several hundred of GeV is stretched out quite a large interval of energy when the interaction between hadrons (for instance, pion/nucleon-nucleus and nucleus-nucleus reactions) can be described by the considerably simplified way with still acceptable accuracy. This happens because in this energy region hadrons (i.e. pions, nucleons etc.) remain quasiparticles of nuclear matter mostly without revealing any internal structure, their de Broglie`s wavelength is much shorter as compared to the average intranuclear nucleon`s distance, and the energy transfers in the reaction are, on the average, significantly greater than the binding energy of nucleons inside nuclei. Consequently an approach to the analysis of these phenomena based on simple geometric and probabilistic considerations is justifiable, especially for many practical purposes, in particular, for shielding and dosimetric estimations, material behaviour prediction, as well as for the approximate evaluation of electronuclear breeding effects in different composites of target materials, for nuclear passivation problems and so on. In this work basic physical reasons of such a simplified picture of intermediate and high energy nuclear reactions are presented. The most usual phenomenological models of hadronic multiple emission/production and recent results of the cascade evaporation type models, are also discussed. 2 figs.

  10. DART: A Functional-Level Reconfigurable Architecture for High Energy Efficiency

    Directory of Open Access Journals (Sweden)

    David Raphaël

    2008-01-01

    Full Text Available Abstract Flexibility becomes a major concern for the development of multimedia and mobile communication systems, as well as classical high-performance and low-energy consumption constraints. The use of general-purpose processors solves flexibility problems but fails to cope with the increasing demand for energy efficiency. This paper presents the DART architecture based on the functional-level reconfiguration paradigm which allows a significant improvement in energy efficiency. DART is built around a hierarchical interconnection network allowing high flexibility while keeping the power overhead low. To enable specific optimizations, DART supports two modes of reconfiguration. The compilation framework is built using compilation and high-level synthesis techniques. A 3G mobile communication application has been implemented as a proof of concept. The energy distribution within the architecture and the physical implementation are also discussed. Finally, the VLSI design of a 0.13  m CMOS SoC implementing a specialized DART cluster is presented.

  11. A Strategy for Magnifying Vibration in High-Energy Orbits of a Bistable Oscillator at Low Excitation Levels

    International Nuclear Information System (INIS)

    Wang Guang-Qing; Liao Wei-Hsin

    2015-01-01

    This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is validated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM. (paper)

  12. DART: A Functional-Level Reconfigurable Architecture for High Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Sébastien Pillement

    2007-12-01

    Full Text Available Flexibility becomes a major concern for the development of multimedia and mobile communication systems, as well as classical high-performance and low-energy consumption constraints. The use of general-purpose processors solves flexibility problems but fails to cope with the increasing demand for energy efficiency. This paper presents the DART architecture based on the functional-level reconfiguration paradigm which allows a significant improvement in energy efficiency. DART is built around a hierarchical interconnection network allowing high flexibility while keeping the power overhead low. To enable specific optimizations, DART supports two modes of reconfiguration. The compilation framework is built using compilation and high-level synthesis techniques. A 3G mobile communication application has been implemented as a proof of concept. The energy distribution within the architecture and the physical implementation are also discussed. Finally, the VLSI design of a 0.13 μm CMOS SoC implementing a specialized DART cluster is presented.

  13. A guide to radiation and radioactivity levels near high energy particle accelerators

    International Nuclear Information System (INIS)

    Sullivan, A.H.

    1992-01-01

    An estimate of likely radiation and radioactivity levels is needed at the design stage of an accelerator for deciding the radiation safety features to be incorporated in the infrastructure of the machine and for predicting where radiation damage possibilities will have to be taken into account. Both these aspects can have a significant influence on the machine layout and cost. Failure to make a reasonable assessment at the right time may have far reaching consequences for future costs. The purpose of this guide is to bring together basic data and methods that have been found useful in assessing radiation situations around accelerators and to provide a practical means of arriving at the radiation and induced radioactivity levels that could occur under a wide variety of circumstances. An attempt is made to present the information in a direct and unambiguous way with sufficient confidence that the necessity for large safety factors is avoided. In many cases assumptions and simplifications have been made and reliance placed on extrapolating from experimental data into regions where the basic physics is too complicated to make meaningful absolute calculations. Wherever possible such extrapolations have been tied to real or otherwise acceptable data originating from independent sources. (Author)

  14. Prognostic value of serum phosphate level in adult patients resuscitated from cardiac arrest.

    Science.gov (United States)

    Jung, Yong Hun; Lee, Byung Kook; Jeung, Kyung Woon; Youn, Chun Song; Lee, Dong Hun; Lee, Sung Min; Heo, Tag; Min, Yong Il

    2018-07-01

    Several studies have reported increased levels of phosphate after cardiac arrest. Given the relationship between phosphate level and the severity of ischaemic injury reported in previous studies, higher phosphate levels may be associated with worse outcomes. We investigated the prognostic value of phosphate level after the restoration of spontaneous circulation (ROSC) in adult cardiac arrest patients. This study was a retrospective observational study including adult cardiac arrest survivors treated at the Chonnam National University Hospital between January 2014 and June 2017. From medical records, data regarding clinical characteristics, outcome at hospital discharge, and laboratory parameters including phosphate levels after ROSC were collected. The primary outcome was poor outcome at hospital discharge, defined as Cerebral Performance Categories 3-5. Of the 674 included patients, 465 had poor outcome at hospital discharge. Serum phosphate level was significantly higher in patients with poor outcome than in those with good outcome (p level was correlated with time to ROSC (r = 0.350, p level. In multivariate analysis, a higher phosphate level was independently associated with poor outcome at hospital discharge (odds ratio, 1.432; 95% CI, 1.245-1.626; p level after ROSC was independently associated with poor outcome at hospital discharge in adult cardiac arrest patients. However, given its modest prognostic performance, phosphate level should be used in combination with other prognostic indicators. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Levels and behavior of natural radioactivity in the vicinity of phosphate fertilizer plants

    International Nuclear Information System (INIS)

    Garcia-Leon, M.; Martinez-Aguirre, A.; Perianez, R.; Garcia-Tenorio, R.; Bolivar, J.P.

    1995-01-01

    Phosphate rocks are used for phosphoric acid production, which is the basis of agricultural phosphate fertilizers. It is known that phosphate ores contain, due to geological reasons, important amounts of natural radioactivity, mainly U-isotopes and daughters. By studying a specific case in Southwestern Spain, it is shown that the operation of phosphate fertilizer factories clearly enhance the natural radiation levels of its close environment. Levels of U-, Th-isotopes, and other natural radionuclides are given for a wide set of different samples, which support such a conclusion. In addition, the study of isotopic ratios gives information on the environmental behavior of such radionuclides. (author). 17 refs., 3 figs., 4 tabs

  16. Evaluation of Serum Calcium and Inorganic Phosphate Levels in ...

    African Journals Online (AJOL)

    The importance of calcium and inorganic phosphate in pregnancy cannot be overemphasized. Their adequacy or otherwise amongst pregnant and lactating women in Enugu metropolis receiving their routine antenatal supplements was the focus of this study. Two hundred subjects (forty in each trimester; forty lactating and ...

  17. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  18. Effect of phosphate ion on filtration characteristics of solids generated in simulated high level liquid waste

    International Nuclear Information System (INIS)

    Kondo, Y.

    1998-01-01

    The effect of phosphate ion on the filtration characteristics of solids generated in a high level liquid waste was experimentally examined. Addition of phosphate ion into the simulated HLLW induced the formation of phosphate such as zirconium phosphate and phosphomolybdic acid. The filtration rate of zirconium phosphate abruptly dropped in the midst of filtration because of a gel-cake formation on the filter surface. The denitration of the simulated HLLW contained zirconium phosphate improved the filterability of this gelatinous solid. The filtration rates of denitrated HLLW decreased with increase of the phosphate ion concentration, since the solids formed by denitration had irregular particle size and configuration in the simulated HLLW with phosphate ion. To increase the filtration rate of denitrated HLLW, a solid suspension filtration tester was designed. The solid-suspension accelerated the filtration rate only in the simulated HLLW with more than 1500 ppm phosphate ion concentration. Under this condition, the simple agitation can easily suspend the constituent solids of filter cake in the solution and a much higher filtration rate can be obtained because the filter cake is continuously swept from the filter surface by rotation of propellers. (authors)

  19. Design and Laboratory Level Production of High Energy Survival Tablets for Athletes, Tourists and People who Faced Natural Disasters

    Directory of Open Access Journals (Sweden)

    A Nezami Asl

    2016-03-01

    Full Text Available Introduction: People affected by natural disasters like flood or earthquakes and also athletes like mountain climbers and also sailors who continuously go to jungles or deserts, might get into trouble in the nature and need help to get back to their home and therefore, they might need high energy supplements to keep them alive up to the time they find a food source. The goal of this study was to design and make these laboratory prototypes of high energy tablets. Methods: For making tablets 15 different formulations were designed and made in the laboratory and then were tested to be suit. We objected to design formulations that could provide at least 20 kcal per each tab and amount of daily protein (about 25 grams, Tablets were design to provide not only the minimum energy needed but also the minimum protein needs and daily requirements of some vitamins and minerals of a healthy male adult. Results: Laboratory samples of 5 gram high energy (21 Kcal were produced. The best formulation that had the capacity to be converted into tablets consisted of olive oil (16%, maltodextrin (36%, high biological value protein powder (25%, sesame seed (17% and wheat germ (6%. 25 tablets should be taken each day which provides 525 kcal energy, 25g protein and different vitamins and minerals, daily; therefore, they will provide the minimum energy needs for at least 10 days if provided in 1.2 kg packs.  Conclusion: The production of high energy tab rations can provide minimum energy needs for at least 7 days for athletes, tourists and people who face natural disasters when there is no access to any other food resources because they occupy the minimum volume and their production is accessible in Iran.

  20. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    Science.gov (United States)

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  1. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  2. Cyclic-2,3-diphosphoglycerate levels in Methanobacterium thermoautotrophicum reflect inorganic phosphate availability.

    Science.gov (United States)

    Seely, R J; Krueger, R D; Fahrney, D E

    1983-11-15

    Methanobacterium thermoautotrophicum was grown in phosphate-limited chemostat cultures at a dilution rate corresponding to a doubling time of 13.2 h. The cyclic-2,3-diphospho-D-glycerate content of these cells was 8 to 10-fold lower than that of cells grown in batch cultures having a doubling time of 11.5 h. This metabolite accounted for 5% of cell dry weight during batch growth on 2 mM phosphate. In the chemostat the steady-state concentration of phosphate was 4 microM, showing that this methanogen is adapted to highly efficient growth at low phosphate concentrations. Since growth rates were similar in both cultures, the growth rate clearly does not depend on intracellular levels of cyclic-2,3-diphosphoglycerate.

  3. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  4. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  5. Correlation between calcium and phosphate levels to calculus accumulation on coronary heart disease patients

    Science.gov (United States)

    Cahaya, Cindy; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni

    2017-02-01

    Coronary Artery Disease (CAD) or Coronary Heart Disease (CHD) is a disease that happened because of blood flow being blocked by atherosclerosis. Atherosclerosis is a process of hardening of the arteries which characterized by thickening and loss of elasticity of the intimal layer of vascular wall, by lipid deposit. Periodontitis is a chronic multifactorial inflammatory disease caused by microorganism and characterized by progressive destruction of the tooth supporting apparatus leading to tooth loss. Many studies use saliva as a valuable source for clinically information, as an asset for early diagnosis, prognostic and reviewer for pascatherapy status. Dental calculus had happened as a consequence of saliva supersaturation by calcium and phosphate. Salivary flow rate and its composition influence the formation of calculus. Increasing salivary calcium levels is characteristic of periodontitis patients. An important hipotesis in Cardiology is chronic infections contribute in atherosclerosis. Objective: To analyse the correlation between calcium and phosphate levels in saliva to calculus accumulation on CHD patients. Result: Correlation analysis between salivary calcium levels with calculus accumulation in patients with CHD and non-CHD showed no significant p value, p=0.59 and p=0.518. Correlation analysis between salivary phosphate levels and calculus accumulation showed no significant p value, p=0.836 for CHD patients and p=0.484 for non-CHD patients. Conclusion: There are no correlation between calcium levels and phosphate levels with calculus accumulation in CHD patients. Further research need to be done.

  6. 2,3-diphosphoglycerate, nucleotide phosophate, and organic and inorganic phosphate levels during the early phases of diabetic ketoacidosis.

    Science.gov (United States)

    Kanter, Y; Gerson, J R; Bessman, A N

    1977-05-01

    The relation between serum and red blood cell (RBC) inorganic phosphate levels, RBC 2,3-diphosphoglycerate (2,3-DPG) levels, RBC nucleotide phosphate (Pn), and RBC total phosphate (Pt) levels were studied during the early phases of treatment and recovery from diabetic ketoacidosis (DKA). A steady drop in serum inorganic phosphate was found during the first 24 hours of insulin treatment and was most profound at 24 hours. No statistically significant changes (P less than 0.05) were found in red cell inorganic phosphate or nucleotide phosphate levels during the 24-hour study period. The levels of total red cell phosphate were lower in this group of patients than in nonacidotic diabetic subjects and decreased slightly after 24 hours of treatment. The red cell 2,3-DPG levels were low at the initiation of therapy and remained low during the 24-hour study period. Glucose, bicarbonate, lactate, and ketone levels fell in linear patterns with treatment. In view of the current evidence for the effects of low 2,3-DPG on oxygen delivery and the relation of low serum phosphate levels to RBC glycolysis and 2,3-DPG formation, this study reemphasizes the need for phosphate replacement during the early phases of treatment of DKA.

  7. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    Science.gov (United States)

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  8. The effect of soilagrochemical properties on level of available phosphate in soil

    International Nuclear Information System (INIS)

    Zhang Yumei

    1985-01-01

    Superphosphate labelled with 32 P and 15 typies of soil were used to study the effect of various soil-agrochemical properties on the availability of phosphate. The level was figured with A value. The relations of A to soybean yield and soil-agro-chemical properties were analysed through Multiple regression

  9. Levels of natural radionuclides in soil samples around a phosphate fertilizer plant

    International Nuclear Information System (INIS)

    Ajmal, P.Y.; Sahu, S.K.; Bhangare, R.C.; Pandit, G.G.; Puranik, V.D.

    2010-01-01

    The present study is aimed at the determination of the activity levels of primordial radionuclides in soil from various locations around a phosphate fertilizer plant and also to figure out the external dose rate due to natural gamma background in the area by mapping the dose rates with the geographical co-ordinates within the plant premises

  10. Preliminary findings radon daughter levels in structures constructed on reclaimed Florida phosphate land

    International Nuclear Information System (INIS)

    1975-09-01

    Preliminary results are reported from a survey of the radon daughter levels in structures in Polk County, Florida, built on reclaimed phosphate tailings containing various amounts of 226 Ra. The structures surveyed consisted primarily of private dwellings although a few office buildings were also surveyed. Track-etch films and TLD air samplers were used to measure the levels of radon daughters within the structures and in structures built on non-phosphate land. Radiation levels were converted to WL units (the working level (WL) unit is defined as the potential α energy from the short-lived daughters of Rn which will produce 1.3 x 10 5 MeV in one liter of air). The highest observed level in any structure was 0.2 WL. Possible health hazards to long-time occupants are discussed

  11. Creation of the NUR mountain-level installation aimed at registration of super-high-energy showers in cosmic rays

    CERN Document Server

    Chubenko, A P; Martyanov, I S; Sadykov, K; Zastrozhnova, N N

    2002-01-01

    Description of the NUR installation aimed at registration of extensive air showers (EAS) is presented. The installation is sited near Almaty at a height of 3340 m above sea level at the Jusaly Kezen pass to the Tien Shan foothills. The distinctive characteristic of the installation from other similar existing ones is its location at a mountain slope under a 30 deg. angle relative to the horizon. Due to this orientation, the accuracy of measurement of EAS incidence angles exceeding 40 deg. increases significantly.

  12. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  13. Properties and solubility of chrome in iron alumina phosphate glasses containing high level nuclear waste

    International Nuclear Information System (INIS)

    Huang, W.; Day, D.E.; Ray, C.S.; Kim, C.W.; Reis, S.T.D.

    2004-01-01

    Chemical durability, glass formation tendency, and other properties of iron alumina phosphate glasses containing 70 wt% of a simulated high level nuclear waste (HLW), doped with different amounts of Cr 2 O 3 , have been investigated. All of the iron alumina phosphate glasses had an outstanding chemical durability as measured by their small dissolution rate (1 . 10 -9 g/(cm 2 . min)) in deionized water at 90 C for 128 d, their low normalized mass release as determined by the product consistency test (PCT) and a barely measurable corrosion rate of 2 . d) after 7 d at 200 C by the vapor hydration test (VHT). The solubility limit for Cr 2 O 3 in the iron phosphate melts was estimated at 4.1 wt%, but all of the as-annealed melts contained a few percent of crystalline Cr 2 O 3 that had no apparent effect on the chemical durability. The chemical durability was unchanged after deliberate crystallization, 48 h at 650 C. These iron phosphate waste forms, with a waste loading of at least 70 wt%, can be readily melted in commercial refractory crucibles at 1250 C for 2 to 4 h, are resistant to crystallization, meet all current US Department of Energy requirements for chemical durability, and have a solubility limit for Cr 2 O 3 which is at least three times larger than that for borosilicate glasses. (orig.)

  14. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  15. The high energy galaxy

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  16. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  17. Administering different levels of parenteral phosphate and amino acids did not influence growth in extremely preterm infants

    DEFF Research Database (Denmark)

    Thomsen, Katrine Moe; Beck-Nielsen, Signe Sparre; Lando, Ane

    2015-01-01

    AIM: When a new high amino acid parenteral nutrition (PN) solution was introduced to our hospital, a design error led to decreased phosphate levels. This prompted us to examine the effect of three different PN solutions on plasma phosphate, plasma calcium and weight increases on extremely preterm...

  18. High energy astrophysics

    International Nuclear Information System (INIS)

    Engel, A.R.

    1979-01-01

    High energy astrophysical research carried out at the Blackett Laboratory, Imperial College, London is reviewed. Work considered includes cosmic ray particle detection, x-ray astronomy, gamma-ray astronomy, gamma and x-ray bursts. (U.K.)

  19. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  20. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  1. High energy HF pulsed lasers

    International Nuclear Information System (INIS)

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  2. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus

    NARCIS (Netherlands)

    van der Meer, Rutger W.; Rijzewijk, Luuk J.; de Jong, Hugo W. A. M.; Lamb, Hildo J.; Lubberink, Mark; Romijn, Johannes A.; Bax, Jeroen J.; de Roos, Albert; Kamp, Otto; Paulus, Walter J.; Heine, Robert J.; Lammertsma, Adriaan A.; Smit, Johannes W. A.; Diamant, Michaela

    2009-01-01

    Cardiac disease is the leading cause of mortality in type 2 diabetes mellitus (T2DM). Pioglitazone has been associated with improved cardiac outcome but also with an elevated risk of heart failure. We determined the effects of pioglitazone on myocardial function in relation to cardiac high-energy

  3. High energy radiation detector

    International Nuclear Information System (INIS)

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  4. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  5. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  6. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1992-01-01

    This progress report discusses research by Columbia University staff in high energy physics. Some of the topics discussed are as follows: lattice gauge theory; quantum chromodynamics; parity doublets; solitons; baryon number violation; black holes; magnetic monopoles; gluon plasma; Chern-Simons theory; and the inflationary universe

  7. High energy astrophysics

    International Nuclear Information System (INIS)

    Shklorsky, I.S.

    1979-01-01

    A selected list of articles of accessible recent review articles and conference reports, wherein up-to-date summaries of various topics in the field of high energy astrophysics can be found, is presented. A special report outlines work done in the Soviet Union in this area. (Auth.)

  8. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  9. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  10. High energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  11. High Energy Physics

    Science.gov (United States)

    Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP

  12. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    Directory of Open Access Journals (Sweden)

    Widyasri Prananingrum

    2012-06-01

    Full Text Available Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP is a paste material containing milk protein (casein, that actually contains minerals, such as calcium and phosphate. The casein ability to stabilize calcium phosphate and enhance mineral solubility and bioavailability confers upon CPP potential to be biological delivery vehicles for calcium and phosphate. Purpose: The aim of this study was to determine the calcium levels in tooth enamel after being covered with CPP-ACP 2 times a day for 3, 14 and 28 days. Methods: Sample were bovine incisors of 3 year old cows divided into 4 groups, namely group I as control group, group II, III and IV as treatment groups covered with CPP-ACP 2 times a day. All of those teeth were then immersed in artificial saliva. Group II was immersed for 3 days, while group III was immersed for 14 days, and group IV was immersed for 28 days. One drop of CPP-ACP was used to cover the entire labial surface of teeth. The measurement of the calcium levels was then conducted by using titration method. All data were analyzed by One- Way ANOVA test with 5% degree of confidence. Results: The results showed significant difference of the calcium levels in tooth enamel of those groups after covered with CPP-ACP 2 times a day for 3, 14 and 28 days (p = 0.001. There is also significant difference of the calcium levels in tooth enamel of those treatment groups and the control group (p = 0.001. Conclusion: The calcium levels of tooth enamel are increased after covered with CPP-ACP 2 times a day for 3, 14 and 28 days.Latar belakang: Proses terjadinya karies gigi ditandai oleh adanya demineralisasi

  13. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  14. High energy medical accelerators

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1990-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (carbon, oxygen, neon), has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. These high energy medical accelerators are presented in this paper. (author) 15 refs.; 14 figs.; 8 tabs

  15. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  16. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  17. High energy dosimetry

    International Nuclear Information System (INIS)

    Ruhm, W.

    2010-01-01

    Full text: Currently, quantification of doses from high-energy radiation fields is a topical issue. This is so because high-energy neutrons play an important role for radiation exposure of air crew members and personnel outside the shielding of ion therapy facilities. In an effort to study air crew exposure from cosmic radiation in detail, two Bonner Sphere Spectrometers (BSSs) have recently been installed to measure secondary neutrons from cosmic radiation, one at the environmental research station 'Schneefernerhaus' at an altitude of 2650 m on the Zugspitze mountain, Germany, the other at the Koldewey station close to the North Pole on Spitsbergen. Based on the measured neutron fluence distributions and on fluence-to-dose conversion coefficients, mean ambient dose equivalent rate values of 75.0 ± 2.9 nSv/h and 8.7 ± 0.6 nSv/h were obtained for October 2008, respectively. Neutrons with energies above about 20 MeV contribute about 50% to dose, at 2650 m. Ambient dose equivalent rates measured by means of a standard rem counter and an extended rem counter at the Schneefernerhaus confirm this result. In order to study the response of state-of-the-art radiation instrumentation in such a high-energy radiation field, a benchmark exercise that included both measurements in and simulation of the stray neutron radiation field at the high-energy particle accelerator at GSI, Germany, were performed. This CONRAD (COordinated Network for RAdiation Dosimetry) project was funded by the European Commission, and the organizational framework was provided by the European Radiation Dosimetry Group, EURADOS. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers suggest the neutron fluence distributions to be very similar to those of secondary neutrons from cosmic radiation. The results of this intercomparison exercise in terms of ambient dose equivalent are also discussed

  18. Increased metabolite levels of glycolysis and pentose phosphate pathway in rabbit atherosclerotic arteries and hypoxic macrophage.

    Directory of Open Access Journals (Sweden)

    Atsushi Yamashita

    Full Text Available AIMS: Inflammation and possibly hypoxia largely affect glucose utilization in atherosclerotic arteries, which could alter many metabolic systems. However, metabolic changes in atherosclerotic plaques remain unknown. The present study aims to identify changes in metabolic systems relative to glucose uptake and hypoxia in rabbit atherosclerotic arteries and cultured macrophages. METHODS: Macrophage-rich or smooth muscle cell (SMC-rich neointima was created by balloon injury in the iliac-femoral arteries of rabbits fed with a 0.5% cholesterol diet or a conventional diet. THP-1 macrophages stimulated with lipopolysaccharides (LPS and interferon-γ (INFγ were cultured under normoxic and hypoxic conditions. We evaluated comprehensive arterial and macrophage metabolism by performing metabolomic analyses using capillary electrophoresis-time of flight mass spectrometry. We evaluated glucose uptake and its relationship to vascular hypoxia using (18F-fluorodeoxyglucose ((18F-FDG and pimonidazole, a marker of hypoxia. RESULTS: The levels of many metabolites increased in the iliac-femoral arteries with macrophage-rich neointima, compared with those that were not injured and those with SMC-rich neointima (glycolysis, 4 of 9; pentose phosphate pathway, 4 of 6; tricarboxylic acid cycle, 4 of 6; nucleotides, 10 of 20. The uptake of (18F-FDG in arterial walls measured by autoradiography positively correlated with macrophage- and pimonidazole-immunopositive areas (r = 0.76, and r = 0.59 respectively; n = 69 for both; p<0.0001. Pimonidazole immunoreactivity was closely localized with the nuclear translocation of hypoxia inducible factor-1α and hexokinase II expression in macrophage-rich neointima. The levels of glycolytic (8 of 8 and pentose phosphate pathway (4 of 6 metabolites increased in LPS and INFγ stimulated macrophages under hypoxic but not normoxic condition. Plasminogen activator inhibitor-1 protein levels in the supernatant were closely

  19. Do oral aluminium phosphate binders cause accumulation of aluminium to toxic levels?

    Directory of Open Access Journals (Sweden)

    Roberts Norman B

    2011-10-01

    Full Text Available Abstract Background Aluminium (Al toxicity was frequent in the 1980s in patients ingesting Al containing phosphate binders (Alucaps whilst having HD using water potentially contaminated with Al. The aim of this study was to determine the risk of Al toxicity in HD patients receiving Alucaps but never exposed to contaminated dialysate water. Methods HD patients only treated with Reverse Osmosis(RO treated dialysis water with either current or past exposure to Alucaps were given standardised DFO tests. Post-DFO serum Al level > 3.0 μmol/L was defined to indicate toxic loads based on previous bone biopsy studies. Results 39 patients (34 anuric were studied. Mean dose of Alucap was 3.5 capsules/d over 23.0 months. Pre-DFO Al levels were > 1.0 μmol/L in only 2 patients and none were > 3.0 μmol/L. No patients had a post DFO Al levels > 3.0 μmol/L. There were no correlations between the serum Al concentrations (pre-, post- or the incremental rise after DFO administration and the total amount of Al ingested. No patients had unexplained EPO resistance or biochemical evidence of adynamic bone. Conclusions Although this is a small study, oral aluminium exposure was considerable. Yet no patients undergoing HD with RO treated water had evidence of Al toxicity despite doses equivalent to 3.5 capsules of Alucap for 2 years. The relationship between the DFO-Al results and the total amount of Al ingested was weak (R2 = 0.07 and not statistically significant. In an era of financial prudence, and in view of the recognised risk of excess calcium loading in dialysis patients, perhaps we should re-evaluate the risk of using Al-based phosphate binders in HD patients who remain uric.

  20. Multiprocessors for high energy physics

    International Nuclear Information System (INIS)

    Pohl, M.

    1987-01-01

    I review the role, status and progress of multiprocessor projects relevant to high energy physics. A short overview of the large variety of multiprocessors architectures is given, with special emphasis on machines suitable for experimental data reconstruction. A lot of progress has been made in the attempt to make the use of multiprocessors less painful by creating a ''Parallel Programming Environment'' supporting the non-expert user. A high degree of usability has been reached for coarse grain (event level) parallelism. The program development tools available on various systems (subroutine packages, preprocessors and parallelizing compilers) are discussed in some detail. Tools for execution control and debugging are also developing, thus opening the path from dedicated systems for large scale, stable production towards support of a more general job mix. At medium term, multiprocessors will thus cover a growing fraction of the typical high energy physics computing task. (orig.)

  1. Macroencapsulation of low-level debris waste with the phosphate ceramic process

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Jeong, S.Y.

    1997-03-01

    Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks require disposal. The preferred method for disposing of these wastes is macroencapsulation under U.S. Environmental Protection Agency Alternative Treatment Standards. Chemically bonded phosphate ceramics serve as a novel binder, developed at Argonne National Laboratory, for stabilizing and solidifying various low-level mixed wastes. Extremely strong, dense, and impervious to water intrusion, this material was developed with support from the U.S. Department of Energy's Office of Science and Technology (DOE OST). In this investigation, CBPCs have been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, and lead-lined plastic gloves. This paper describes the processing steps for fabricating the waste forms and the results of various characterizations performed on the waste forms. The conclusion is that simple and low-cost CBPCs are excellent material systems for macroencapsulating debris wastes

  2. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  3. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  4. High energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1991-01-01

    This progress report presents a review of research done over the past five years by the Duke High Energy Physics Group. This research has been centered at Fermilab where we have had a continuing involvement with both the Tevatron collider and fixed-target programs. In 1988 we began extensive detector R ampersand D for the SSC through its Major Subsystem Program. Duke has been an active member of the Solenoidal Detector Collaboration (SDC) since its formation. These last five years has also been used to finish the analysis of data from a series of hybrid bubble chamber experiments which formed the core of Duke's research program in the early 1980's

  5. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  6. Exploring the Link between Serum Phosphate Levels and Low Muscle Strength, Dynapenia, and Sarcopenia.

    Science.gov (United States)

    Chen, Yuan-Yuei; Kao, Tung-Wei; Chou, Cheng-Wai; Wu, Chen-Jung; Yang, Hui-Fang; Lai, Ching-Huang; Wu, Li-Wei; Chen, Wei-Liang

    2018-02-23

    Emerging evidences addressed an association between phosphate and muscle function. Because little attention was focused on this issue, the objective of our study was to explore the relationship of phosphate with muscle strength, dynapenia, and sarcopenia. From the National Health and Nutrition Examination Survey, a total of 7421 participants aged 20 years or older were included in our study with comprehensive examinations included anthropometric parameters, strength of the quadriceps muscle, and appendicular lean masses. Within the normal range of serum phosphate, we used quartile-based analyses to determine the potential relationships of serum phosphate with dynapenia, and sarcopenia through multivariate regression models. After adjusting for the pertinent variables, an inverse association between the serum phosphate quartiles and muscle strength was observed and the linear association was stronger than other anthropometric parameters. Notably, the significant association between phosphate and muscle strength was existed in >65 years old age group, not in 20-65 years old. The higher quartiles of phosphate had higher likelihood for predicting the presence of dynapenia rather than sarcopenia in entire population. Our study highlighted that higher quartiles of phosphate had significant association with lower muscle strength and higher risks for predicting the presence of dynapenia.

  7. Impacts of phosphate mining on trophic level- and spatial variation of selenium and radium-226 on Florida waterbirds

    International Nuclear Information System (INIS)

    Myers, O.B.; O'Meara, T.E.

    1993-01-01

    More than 74,000 ha of the Florida landscape have been disturbed by phosphate mining operations. These operations redistribute radionuclides in the uranium-238 decay series and other potentially toxic trace elements contained in the ore matrix, making them more available for uptake by wetland birds. The authors inventoried levels of radium-226 and selenium in the tissue of wood ducks, mottled ducks, common moorhens, and double-crested cormorants collected from reference areas and from phosphate-mine wetlands. Bones of waterfowl contained from 3--4 times more radium-226 than in individuals collected at reference areas. Radium-226 in moorhen and cormorant bones were less strongly affected by mining. Waterfowl muscle tissue contained 1-2 orders of magnitude less radium-226 than in bone. Selenium concentrations were significantly higher in avian liver and kidney tissues collected from phosphate-mine wetlands compared to reference wetlands. Cormorants accumulated up to 80 ppm selenium in liver. As many as 20% of cormorants from phosphate-mine wetlands contained liver selenium concentrations at levels which have caused reproduction problems in other avian species. Waterfowl and moorhens tissues contained less selenium than cormorants, but phosphate-mine birds contained significantly more selenium than reference area birds

  8. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  9. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  10. Prospects at high energies

    International Nuclear Information System (INIS)

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs

  11. High energy physics problems

    International Nuclear Information System (INIS)

    Arbuzov, B.A.

    1977-01-01

    Described are modern views on the particle structure and particle interactions at high energies. According to the latest data recieved, all particles can be classified in three groups: 1) strong interacting hadrons; 2) leptons, having no strong interactions; 3) photon. The particle structure is described in a quark model, and with the use of gluons. The elementary particle theory is based on the quantum field theory. The energy increase of interacting particles enables to check the main theory principles, such as conventions for causality, relativistic invariance and unitarity. Investigations of weak interactions are of great importance. The progress in this field is connected with unified gauge theories of weak and electromagnetic interactions. For weak interactions promissing are the experiments with colliding electron-proton rings. The new data, especially at higher energies, will lead to a further refinement of the nature of particles and their interactions

  12. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    2000-01-01

    the academic community in Cracow at M.Sc. and Ph.D. level. Joint research, teaching and academic training in high energy physics are carried out within the M. Miesowicz Inter Institute Centre for High Energy Physics, which was formed by an agreement between the University of Mining and Metallurgy, the Jagiellonian University and our Institute to honour the late Prof. Marian Miesowicz, the founder and the long-time leader of the high energy physics community in Cracow. Since the modern high energy physics experiments require enormous technical, man-power and financial efforts, our research is mainly carried out in large international collaborations. These are listed at proper places in the following text. They were formed at the leading laboratories where large accelerators have been or will be constructed: the European Laboratory for Particle Physics CERN in Geneva (SPS, LEP, LHC), DESY in Hamburg (HERA, TESLA), Brookhaven National Laboratory (RHIC), Fermilab in Batavia, USA (TEVATRON) and KEK in Tsukuba, Japan (KEK- B). Our Institute also participates in the international Pierre Auger Project aimed at the study of extremely high energy cosmic rays. Our work in 1999 resulted in the publication of very interesting results from the e + e - experiment DELPHI at LEP, the e ± p experiments H1 and ZEUS at HERA, and on heavy ion collisions from BNL and CERN. Short reviews of some of these can be found in the following pages together with results obtained in other experiments, like e.g., the cosmic ray experiment JACEE, and also with those published by our theorists. Our computing facilities allow the application of the most advanced Monte-Carlo methods both for solving theoretical problems and for modelling the conditions of experiments. A good computer link permits e.g. a nearly on-line control of data quality in running experiments. Close research contacts in some projects such as the DELPHI, ZEUS, NA49 and LHC experiments are being maintained with the A. Soltan Institute

  13. Decreased plasma levels of the endothelial protective sphingosine-1-phosphate are associated with dengue-induced plasma leakage

    NARCIS (Netherlands)

    Michels, M.; Japtok, L.; Alisjahbana, B.; Wisaksana, R.; Sumardi, U.; Puspita, M.; Kleuser, B.; Mast, Q. de; Ven, A.J.A.M. van der

    2015-01-01

    BACKGROUND: A transient endothelial hyperpermeability is a hallmark of severe dengue infections. Sphingosine-1-phosphate (S1P) maintains vascular integrity and protects against plasma leakage. We related plasma S1P levels to dengue-induced plasma leakage and studied mechanisms that may underlie the

  14. Stabilization of low-level mixed waste in chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Singh, D.; Sarkar, A.V.

    1994-06-01

    Mixed waste streams, which contain both chemical and radioactive wastes, are one of the important categories of DOE waste streams needing stabilization for final disposal. Recent studies have shown that chemically bonded phosphate ceramics may have the potential for stabilizing these waste streams, particularly those containing volatiles and pyrophorics. Such waste streams cannot be stabilized by conventional thermal treatment methods such as vitrification. Phosphate ceramics may be fabricated at room temperature into durable, hard and dense materials. For this reason room-temperature-setting phosphate ceramic waste forms are being developed to stabilize these to ''problem waste streams.''

  15. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  16. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  17. Restoration of blood 2,3-diphosphoglycerate levels in multi-transfused patients: effect of organic and inorganic phosphate.

    Science.gov (United States)

    Iapichino, G; Radrizzani, D; Solca, M; Franzosi, M G; Pallavicini, F B; Spina, G; Scherini, A

    1984-01-01

    Blood stored in acid-citrate-dextrose (ACD) shows a progressive decrease in 2,3-diphosphoglycerate (DPG) content. Since the decrease in DPG increases hemoglobin oxygen affinity, which in turn may reduce tissue and venous PO2 and peripheral oxygen delivery, many efforts have been made to preserve or restore DPG levels in stored blood. An in vivo rejuvenating technique, employing fructose-1,6-diphosphate (FDP) at a mean dosage of 1 mmol kg-1 day-1 of phosphate, to increase the DPG circulating level in multi-transfused patients is proposed. Eighteen patients, who received at least one-third of their estimated blood volume (3990 +/- 480 (SEM) ml of ACD stored blood) in blood transfusion, were treated: nine with inorganic phosphate, and nine with FDP. Basal DPG was very low in both groups: 12.61 +/- 1.34 (SEM) and 10.42 +/- 0.98 (SEM) mumol g-1, respectively (normal value is 14.5 mumol g-1, at pH 7.40). However, DPG values increased significantly and promptly in patients receiving FDP, whereas in cases of inorganic phosphate administration, it was not significantly raised over the basal value until the third day. Phosphatemia remained normal and constant with FDP, but it rose significantly on the third day of treatment with inorganic phosphate. FDP appears to consistently and rapidly increase DPG levels after transfusion with blood stored in ACD, and to be particularly safe.

  18. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb - 1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989

  19. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10 5 Z's by the end of 1989 and 10 6 in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry

  20. High energy plasma accelerators

    International Nuclear Information System (INIS)

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  1. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1985-05-01

    The conclusions are relatively simple, but represent a considerable challenge to the machine builder. High luminosity is essential. We may in the future discover some new kind of high cross section physics, but all we know now indicates that the luminosity has to increase as the square of the center of mass energy. A reasonable luminosity to scale from for electron machines would be 10 33 cm -2 s -1 at a center of mass energy of 3 TeV. The required emittances in very high energy machines are small. It will be a real challenge to produce these small emittances and to maintain them during acceleration. The small emittances probably make acceleration by laser techniques easier, if such techniques will be practical at all. The beam spot sizes are very small indeed. It will be a challenge to design beam transport systems with the necessary freedom from aberration required for these small spot sizes. It would of course help if the beta functions at the collision points could be reduced. Beam power will be large - to paraphrase the old saying, ''power is money'' - and efficient acceleration systems will be required

  2. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Egloff, Caroline [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  3. Adsorption and desorption of Cu2+ on paddy soil aggregates pretreated with different levels of phosphate.

    Science.gov (United States)

    Dai, Jun; Wang, Wenqin; Wu, Wenchen; Gao, Jianbo; Dong, Changxun

    2017-05-01

    Interactions between anions and cations are important for understanding the behaviors of chemical pollutants and their potential risks in the environment. Here we prepared soil aggregates of a yellow paddy soil from the Taihu Lake region, and investigated the effects of phosphate (P) pretreatment on adsorption-desorption of Cu 2+ of soil aggregates, free iron oxyhydrates-removed soil aggregates, goethite, and kaolinite with batch adsorption method. The results showed that Cu 2+ adsorption was reduced on the aggregates pretreated with low concentrations of P, and promoted with high concentrations of P, showing a V-shaped change. Compared with the untreated aggregates, the adsorption capacity of Cu 2+ was reduced when P application rates were lower than 260, 220, 130 and 110mg/kg for coarse, clay, silt and fine sand fractions, respectively. On the contrary, the adsorption capacity of Cu 2+ was higher on P-pretreated soil aggregates than on the control ones when P application rates were greater than those values. However, the desorption of Cu 2+ was enhanced at low levels of P, but suppressed at high levels of P, displaying an inverted V-shaped change over P adsorption. The Cu 2+ adsorption by the aggregate particles with and without P pretreatments was well described by the Freundlich equation. Similar results were obtained on P-pretreated goethite. However, such P effects on Cu 2+ adsorption-desorption were not observed on kaolinite and free iron oxyhydrates-removed soil aggregates. The present results indicate that goethite is one of the main soil substances responsible for the P-induced promotion and inhibition of Cu 2+ adsorption. Copyright © 2016. Published by Elsevier B.V.

  4. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate glass. Vitreous lead-iron-phosphate glass appears to have substantially better chemical durability than borosilicate glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters as is presently done with borosilicate glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from borosilicate glass. Therefore, in order to realize the performance advantages of the lead-iron-phosphate material in a nuclear waste form, it would be necessary to process it so that it is rapidly cooled, thus retaining its vitreous structure. 22 refs., 4 figs., 4 tabs

  5. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  6. Effects of Balneotherapy on Serum Levels of Shingosine-1-Phosphate in Patients With Osteoarthritis.

    Science.gov (United States)

    Ustyol, Esra Aycan; Karaarslan, Fatih; Bekpinar, Seldag; Ozkuk, Kagan; Erdogan, Nergis

    2017-11-01

    Context • Balneotherapy is one of the most commonly used nonpharmacological interventions for osteoarthritis (OA), but its mechanism of action in relieving pain and stiffness and in improving physical function is not well understood. Studies have found that therapy provokes a series of neuroendocrinal reactions with anti-inflammatory and analgesic effects. Sphingosine-1-phosphate (S1P), a bioactive lipid, has been implicated as an important mediator in the maintenance of physiological processes (eg, vascular barrier integrity) and in pathophysiologic processes such as inflammatory conditions. Accordingly, targeting S1P and S1P receptors may offer a potential therapy for arthritis. Objective • The aims of the present study were to determine whether (1) balneotherapy modified the circulating levels of S1P as well as some inflammatory parameters and stress markers, in patients with OA; and (2) to assess the relationship of those parameters to therapeutic efficacy. Design • This study was designed as an uncontrolled longitudinal study. Setting • The study took place at the Bolu Physical Therapy and Rehabilitation Hospital (Bolu, Turkey). Participants • Forty patients who suffered from general OA in at least 3 positions on the body, one of which could be the vertebral column, and who fulfilled the American College of Rheumatology Classification criteria and the Kellgren-Moore radiologic criteria, were enrolled in the intervention group in the study. Intervention • During balneotherapy, the participants were fully immersed in warm thermo-mineral water for 20 min at a temperature of 38°C to 40°C. A total of 15 immersions were performed in a period of 15 d. Outcome Measures • A baseline clinical evaluation of participants' pain, stiffness, and physical function was carried out using the Western Ontario and McMaster Universities questionnaire. Baseline serum levels of S1P, cyclooxygenase 2 (COX-2), matrix metalloproteinase 3 (MMP-3), and heat shock protein

  7. Computing in high energy physics

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  8. Removal of some Fission Products from Low Level Liquid Radioactive Waste by Chemical Precipitation liquid/Co-precipitation / Phosphate Coagulant

    International Nuclear Information System (INIS)

    Borai, E.H.; Attallah, M.F.; Hilal, M.A.; Abo-Aly, M.M.; Shehata, F.A.

    2008-01-01

    In Egypt radioactive waste has been generated from various uses of radioactive materials. Presence of cesium demonstrated a major problem from the removal point of view even by conventional and advanced technologies. Selective chemical precipitation has been oriented for removal of some fission products including 137 Cs from low level liquid radioactive waste (LLLRW). The aim of the present study was focused to investigate the effectiveness of various phosphate compounds that improved the precipitation process and hence the decontamination factor. The results showed that, maximum removal of 137 Cs reaching 46.4 % using di-sodium hydrogen phosphate as a selective coagulant. It was found that significant enhancement of co-precipitation of 137 Cs (62.5 %) was obtained due to presence of Nd 3+ in the LLLRW

  9. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels

    Science.gov (United States)

    Lenfant, Claude; Torrance, John; English, Eugenia; Finch, Clement A.; Reynafarje, Cesar; Ramos, Jose; Faura, Jose

    1968-01-01

    The relationship between oxygen dissociation and 2,3-diphosphoglycerate (2,3-DPG) in the red cell has been studied in subjects moving from low to high altitude and vice versa. Within 24 hr following the change in altitude there was a change in hemoglobin affinity for oxygen; this modification therefore represents an important rapid adaptive mechanism to anoxia. A parallel change occurred in the organic phosphate content of the red cell. While this study does not provide direct evidence of a cause-effect relationship, the data strongly suggest that with anoxia, the observed rise in organic phosphate content of the red cell is responsible for increased availability of oxygen to tissues. Images PMID:5725278

  10. QED at high energies

    International Nuclear Information System (INIS)

    Gastmans, R.

    1980-01-01

    This chapter demonstrates that to establish the validity of QED at the level of a few percent requires knowledge of the cross sections of the QED processes to the same accuracy. Discusses the virtual radiative corrections to the processes. Calculates the vertex correction effect to illustrate the technique. Examines the hadronic vacuum polarization because of its numerical significance. Calculates the effects of soft real photon bremsstrahlung, and shows that they cancel infrared divergences introduced by the virtual corrections. Outlines the analytical work and introduces the dimensional regularization of the infrared divergences as for the virtual photon case. Describes the calculation of the cross section for the bremsstrahlung processes in the ultra-relativistic limit. Shows the surprising simplicity of these cross sections. Discusses the phase space and the choice of integration variables in which the selection criteria must be expressed. Concludes with a comparison of some of the latest experiments on these QED reactions

  11. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    OpenAIRE

    Widyasri Prananingrum; Puguh Bayu Prabowo

    2012-01-01

    Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP) is a paste material containing milk protein (casein), that actually contains minerals, such as calcium an...

  12. Evaluation of ammonium nitrate phosphate (Suphala) having different water soluble phosphorus levels on black soils

    International Nuclear Information System (INIS)

    Deo Dutt; Mutatkar, V.K.; Chapke, V.G.

    1974-01-01

    Efficiency of the laboratory prepared 32 P tagged ammonium nitrate phosphate (Suphala) varying in water soluble P was studied both on calcareous and non-calcareous soils of Maharashtra for bajra and wheat crops under greenhouse conditions. The results revealed a significant increase in dry matter production and uptake of total and fertilizer P with Suphala containing 30-32% water-soluble phosphorus. (author)

  13. Effect of Nitrogen and Triple Super Phosphate Levels on Physiological Characteristics of Kochia scoparia in Salinity Stress

    Directory of Open Access Journals (Sweden)

    saeed khaninejad

    2014-09-01

    Full Text Available Decreasing yield and forage quality in saline water irrigating conditions, is one of the problems of forage production. Therefore, using the chemical fertilizers can be considered as a useful solution. This study was conducted to assess the effects of different levels of phosphorus and nitrogen fertilizers with saline water on physiological characteristics of Kochia, through a split plot factorial experiments with three replications .The main experimental units consisted of the levels of salinity of irrigating water, 5.2 and 16.5 dS m-1, and the subsidiary experimental units consisted of three nitrogen levels in form of 46%N (0, 100, 200 kg ha-1 and three phosphorus levels in form of triple super phosphate (0, 75, 150 kg ha-1, arranged in factorial form in experimental units. Results showed that the effect of salinity on studied physiological properties was not significant. Green area index (GAI and membrane stability index (MSI were significantly increased with using nitrogen fertilizers on 5.2 dS/m salinity level to control group ,while phosphorus did not affect on them. In all properties, fertilizers application on 16.5 dS/m salinity level not only had no considerable effect on stress tolerance, but also increased the harmful effects of salinity. GAI had a high correlation (0.71 with dry forage yield related to the studied factors. Generally, 75 kg Triple Super Phosphate fertilizer from 100 kg Urea improved studied physiological properties without side effects.

  14. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  15. High Energy Transport Code HETC

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1985-09-01

    The physics contained in the High Energy Transport Code (HETC), in particular the collision models, are discussed. An application using HETC as part of the CALOR code system is also given. 19 refs., 5 figs., 3 tabs

  16. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  17. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  18. [Research in high energy physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  19. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  20. Problems of high energy physics

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.

    1989-01-01

    Some problems of high energy physics are discussed. The main attention is paid to describibg the standard model. The model comprises quantum chromodynamics and electroweak interaction theory. The problem of CP breaking is considered as well. 8 refs.; 1 tab

  1. Developments in high energy theory

    Indian Academy of Sciences (India)

    journal of. July 2009 physics pp. 3–60. Developments in high energy theory .... and operated by CERN (European Organization for Nuclear Research), this ma- ...... [2] S Dodelson, Modern cosmology (Academic Press, Amsterdam, 2003).

  2. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  3. Status of (US) High Energy Physics Networking

    International Nuclear Information System (INIS)

    Montgomery, H.E.

    1987-02-01

    The current status of Networking to and between computers used by the High Energy Physics community is discussed. Particular attention is given to developments over the last year and to future prospects. Comparison between the current status and that of two years ago indicates that considerable strides have been made but that much remains to be done to achieve an acceptable level of functionality

  4. A column level, low power, 1 M sample/s double ramp A/D converter for monolithic active pixel sensors in high energy physics

    International Nuclear Information System (INIS)

    Pillet, N.; Heini, S.; Hu, Y.

    2010-01-01

    Monolithic active pixel sensors (MAPS) using standard low cost CMOS technologies available from industrial manufacturers have demonstrated excellent tracking performances for minimum ionizing particles. The need for highly granular, fast, thin sensors with a full digital output drives an R and D effort, aiming to design and optimize a low power high speed A/D converter integrated at the column level. Following this main issue, a double digital ramp A/D converter has been proposed for CMOS monolithic active pixel sensors in this paper. This A/D converter responds to the constraints of size, power dissipation and precision for CMOS sensors for particle detection. It also represents a first step in order to reach the high speed of conversion needed for this kind of application. The A/D converter has a resolution of 4 bits for conversion speed of 1 M sample/s with only 264 μW of static consumption in a very particular pitch of 25 μmx900 μm.

  5. Creatine-creatine phosphate shuttle modeled as two-compartment system at different levels of creatine kinase activity

    DEFF Research Database (Denmark)

    Fedosov, Sergey

    1994-01-01

    In order to characterize ADP-ATP and creatine-creatine phosphate (Cr-CrP) shuttles a minimal mathematical model with two compartments and cyclic turnover of matter was designed. The 'mitochondrial' compartment contained 'ATP-synthase' and 'mitochondrial ereatine kinase' (mitCK). The 'cytoplasmic......' compartment consisted of 'ATPase', 'cytoplasmic creatine kinase' (cytCK) and an 'ADP-binding structure'. The exchange of metabolites between these compartments was limited. Different levels of cytCK and mitCK expression as welt as different exchange rate constants between the compartments were assigned...

  6. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor.

    Science.gov (United States)

    Sun, Fei; Liu, Xiaoyan; Wu, Hao Bin; Wang, Lijie; Gao, Jihui; Li, Hexing; Lu, Yunfeng

    2018-05-02

    To circumvent the imbalances of electrochemical kinetics and capacity between Li + storage anodes and capacitive cathodes for lithium-ion capacitors (LICs), we herein demonstrate an efficient solution by boosting the capacitive charge-storage contributions of carbon electrodes to construct a high-performance LIC. Such a strategy is achieved by the in situ and high-level doping of nitrogen atoms into carbon nanospheres (ANCS), which increases the carbon defects and active sites, inducing more rapidly capacitive charge-storage contributions for both Li + storage anodes and PF 6 - storage cathodes. High-level nitrogen-doping-induced capacitive enhancement is successfully evidenced by the construction of a symmetric supercapacitor using commercial organic electrolytes. Coupling a pre-lithiated ANCS anode with a fresh ANCS cathode enables a full-carbon LIC with a high operating voltage of 4.5 V and high energy and power densities thereof. The assembled LIC device delivers high energy densities of 206.7 and 115.4 Wh kg -1 at power densities of 0.225 and 22.5 kW kg -1 , respectively, as well as an unprecedented high-power cycling stability with only 0.0013% capacitance decay per cycle within 10 000 cycles at a high power output of 9 kW kg -1 .

  7. A decreased soluble Klotho level with normal eGFR, FGF23, serum phosphate, and FEP in an ADPKD patient with enlarged kidneys due to multiple cysts.

    Science.gov (United States)

    Kanai, Takahiro; Shiizaki, Kazuhiro; Betsui, Hiroyuki; Aoyagi, Jun; Yamagata, Takanori

    2018-05-16

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disorder. ADPKD is characterized clinically by the presence of multiple bilateral renal cysts that lead to chronic renal failure. The cysts evolve from renal tubular epithelial cells that express the Klotho gene. Notably, Klotho acts as a co-receptor for fibroblast growth factor 23 (FGF23); in this context, it induces phosphaturia and maintains serum phosphate at a normal level. Many reports have shown that decreases in the soluble Klotho level and increases in the FGF23 level are associated with glomerular filtration rate (GFR) decline, but a recent study observed these changes in patient with normal eGFR. It remains unclear whether the decrease in the Klotho level precedes the increase in FGF23. Here, we present an ADPKD patient with enlarged kidneys due to multiple cysts who had a decreased soluble Klotho level but a normal eGFR and a normal FGF23 level. The patient's serum phosphate level was normal, as was the fractional excretion of phosphate (FEP). This appears to be the first reported case to show a decreased soluble Klotho level plus normal eGFR, FGF23, and FEP. These results suggest that Klotho decreases before FGF23 increases and further suggest that Klotho is not required to maintain normal serum phosphate levels in ADPKD if the FEP and serum phosphate levels are normal.

  8. Biochemical changes correlated with blood thiamine and its phosphate esters levels in patients with diabetes type 1 (DMT1).

    Science.gov (United States)

    Al-Daghri, Nasser M; Alharbi, Mohammed; Wani, Kaiser; Abd-Alrahman, Sherif H; Sheshah, Eman; Alokail, Majed S

    2015-01-01

    Thiamine (vitamin B1) is an essential enzyme cofactor in most organisms required at several stages of anabolic and catabolic intermediary metabolism. However, little is known on the positive effects of thiamine in diabetic type 1 (DMT1) patients. The objectives of this study were to evaluate the biochemical changes related to thiamine deficiency in patients with DMT1 outcomes among Saudi adults. We hypothesized that blood thiamine deficiency in patients with DMT1 manifestations might lead to an increase in metabolic syndrome. A total of 77 patients with DMT1 (age 35.8 ± 5.5) and 81 controls (age 45.0 ± 18.1) (total N = 158) were randomly selected from the Riyadh Cohort Study for inclusion. Saudi adults with diabetes type 1, a significant decrease in systolic (P < 0.001), and diastolic blood pressure (P = 0.008) and microalbuminuria (P = 0.02). Moreover, cholesterol, glucose and triglycerides were significantly increased (P 0.001, 0.001 and 0.008, respectively) in patients with diabetes type 1 compared to controls. On the other hand, HDL, TMP, TDP and thiamine, were significantly decreased in patients with diabetes type 1 (P 0.005, 0.002, 0.005, and 0.002), respectively. A strong association between blood thiamine level and diabetes type 1 was detected in our study population. The results confirmed the role of thiamine and thiamine phosphate esters, in preventing metabolic changes and complications of diabetes type 1. The levels of these thiamine and thiamine phosphate esters were correlated with diabetes related biomarkers including HDL, glucose, triglycerides and cholesterol, as well as microalbuminuria, LDL and urine thiamine. The results support a pivotal role of blood thiamine and its phosphate esters in preventing the biochemical changes and complications in patients with DMT1.

  9. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate (Pb-Fe-P) nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate (B-Si) glass. Vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters, as is presently done with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the performance advantages of the Pb-Fe-P material in a nuclear waste form, it would be necessary to process it so that it is cooled rapidly, thus retaining its vitreous structure

  10. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  11. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  12. Future of high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  13. High energy cosmic ray astronomy

    International Nuclear Information System (INIS)

    Fonseca, V.

    1996-01-01

    A brief introduction to High Energy Cosmic Ray Astronomy is presented. This field covers a 17 decade energy range (2.10 4 -10 20 ) eV. Recent discoveries done with gamma-ray detectors on-board satellites and ground-based Cherenkov devices are pushing for a fast development of new and innovative techniques, specially in the low energy region which includes the overlapping of satellite and ground-based measurements in the yet unexplored energy range 20 keV-250 GeV. Detection of unexpected extremely high energy events have triggered the interest of the international scientific community. (orig.)

  14. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-09-01

    The lead-iron-phosphate (Pb-Fe-P) glass developed at Oak Ridge National Laboratory was evaluated for its potential as an improvement over the current reference nuclear waste form, borosilicate (B-Si) glass. The evaluation was conducted as part of the Second Generation HLW Technology Subtask of the Nuclear Waste Treatment Program at Pacific Northwest Laboratory. The purpose of this work was to investigate possible alternatives to B-Si glass as second-generation waste forms. While vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass, severe crystallization or devitrification leading to deteriorated chemical durability would result if this glass were poured into large canisters as is the procedure with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the potential performance advantages of the Pb-Fe-P material in a nuclear waste form, the processing method would have to cool the material rapidly to retain its vitreous structure

  15. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  16. Nebulized salbutamol for asthma: Effects on serum potassium and phosphate levels at the 60 min

    Directory of Open Access Journals (Sweden)

    M. Sahan

    2013-09-01

    Full Text Available Objective: We conducted this prospective study to expand available information in relation to serum phosphate levels in treatment of acute asthma. A β-adrenergic agonist, salbutamol, was used for this purpose. Material and methods: Twenty-six patients who met the inclusion criteria as; age over 16 years, asthma history, and an acute exacerbation were included. Serum blood urea nitrogen, creatinine, glucose were within normal limits in all the patients. None of the patients were on chronic theophylline therapy. Baseline serum phosphate and potassium levels were measured. Nebulized salbutamol (2.5 mg was used three times at every hour. After 60 min, serum phosphate and potassium levels were measured. Results: Serum phosphate levels decreased from 3.7 ± 0.9 mg/dL (baseline to 3.6±0.9 mg/dL at 60 min. This decrease was not statistically significant (p = 0.373. Serum potassium levels decreased significantly (p < 0.001 from 4.6 ± 0.7 mmol/L (baseline to 4.3 ± 0.7 mmol/L (60 min. Conclusion: Administration of nebulized salbutamol during the emergency treatment of acute exacerbation of asthma is not associated with a statistical decrease in serum phosphate. There was significant hypokalemia. This study indicates that a further study is needed to elucidate the clinical significance of nebulized salbutamol on serum phosphate. Resumo: Objetivo: Levámos a cabo este estudo prospetivo para ampliar a informação disponível relativamente aos níveis de fosfato sérico no tratamento de asma aguda. Foi utilizado um agonista β-adrenérgico, salbutamol, para este efeito. Materiais e métodos: Foram incluídos 26 doentes que cumpriam os critérios de inclusão de: idade superior a 16 anos, história de asma, incluindo uma exacerbação aguda. A ureia do soro sanguíneo, creatinina e glucose estavam nos limites normais em todos os doentes. Nenhum dos doentes era

  17. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli

    2017-11-01

    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  18. Influence of colloidal calcium phosphate level on the microstructure and rheological properties of rennet-induced skim milk gels

    DEFF Research Database (Denmark)

    Koutina, Glykeria; Knudsen, Jes Christian; Andersen, Ulf

    2015-01-01

    lactose, to obtain varying levels of micellar calcium and phosphorus but constant value of pH, serum and free calcium, and serum phosphorus. Bovine chymosin was added to the skim milk samples after dialysis and microstructural and rheological properties during gel formation were recorded at 30°C. Samples......Colloidal calcium phosphate is an essential part of casein micelles and being responsible for their stability. Different mineralization of casein micelles was obtained by acidification of skim milk to pH 6.5, 6.0 or 5.5, followed by a dialysis method, using simulated milk ultrafiltrate without...... after dialysis needed approximately 30min after the addition of chymosin to form rennet gels. In addition, low micellar calcium and phosphorus values were both found to correlate with slightly less time for the gels to be formed. This information highlights the importance of CCP in the primary phase...

  19. Computing in high energy physics

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Hoogland, W.

    1986-01-01

    This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume

  20. Harvard University High Energy Physics

    International Nuclear Information System (INIS)

    1993-01-01

    The mainly experimental research program in high energy physics at Harvard is summarized in a descriptive fashion according to the following outline: Proton endash antiproton colliding beam program at Fermilab -- CDF (forward/backward electromagnetic calorimeters -- FEM, central muon extension -- CMX, gas calorimetry and electronics development, front-end electronics upgrades, software development, physics analysis, timetable), electron -- positron collisions in the upsilon region -- CLEO (the hardware projects including CLEO II barrel TOF system and silicon drift detector R ampersand D, physics analysis), search for ν μ to ν τ oscillations with the NOMAD experiment at CERN, the solenoidal detector collaboration at the SSC, muon scattering at FNAL -- E665, the L3 experiment, and phenomenological analysis of high-energy bar pp cross sections. 149 refs

  1. A high energy physics perspective

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1997-01-01

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional open-quotes Hidden Symmetries close quotes are discussed. Experimental approaches to uncover open-quotes New Physicsclose quotes associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given

  2. [Research in high energy physics

    International Nuclear Information System (INIS)

    LoSecco, J.

    1989-01-01

    We review the efforts of the Notre Dame non accelerator high energy physics group. Our major effort has been directed toward the IMB deep underground detector. Since the departure of the Michigan group our responsibilities to the group have grown. We are also very active in pursuing physics with the IMB 3 detector. Currently we are studying proton decay, point neutrino sources and neutrino oscillations with the contained event sample

  3. Cosmology for high energy physicists

    International Nuclear Information System (INIS)

    Albrecht, A.

    1987-11-01

    The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs

  4. High Energy Physics in Europe

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A thorough survey of the present and possible future activities and resources in high energy physics in the CERN Member States has been carried out by a Working Group of ECFA (European Committee for Future Accelerators) under the Chairmanship of John Mulvey. The aim has been to obtain a view of the present European scene and to see whether it looks well adapted to the effective exploitation of possible future machines in Europe (particular LEP) and the rest of the world

  5. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Zhou, Changchun; Ye, Xingjiang; Fan, Yujiang; Tan, Yanfei; Qing, Fangzu; Zhang, Xingdong; Ma, Liang

    2014-01-01

    A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds. (papers)

  6. Low-temperature setting phosphate ceramics for stabilization of DOE problem low level mixed-waste: I. Material and waste form development

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.; Knox, L.; Mayberry, J.

    1994-03-01

    Chemically bonded phosphate ceramics are proposed as candidates for solidification and stabilization of some of the open-quotes problemclose quotes DOE low-level mixed wastes at low-temperatures. Development of these materials is crucial for stabilization of waste streams which have volatile species and any use of high-temperature technology leads to generation of off-gas secondary waste streams. Several phosphates of Mg, Al, and Zr have been investigated as candidate materials. Monoliths of these phosphates were synthesized using chemical routes at room or slightly elevated temperatures. Detailed physical and chemical characterizations have been conducted on some of these phosphates to establish their durability. Magnesium ammonium phosphate has shown to possess excellent mechanical and as well chemical properties. These phosphates were also used to stabilize a surrogate ash waste with a loading ranging from 25-35 wt.%. Characterization of the final waste forms show that waste immobilization is due to both chemical stabilization and physical encapsulation of the surrogate waste which is desirable for waste immobilization

  7. High energy electron positron physics

    International Nuclear Information System (INIS)

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; Υ Spectroscopy; Hadronic Decays of the Υ; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles

  8. Astrophysics at very high energies

    International Nuclear Information System (INIS)

    Aharonian, Felix; Bergstroem, Lars; Dermer, Charles

    2013-01-01

    Presents three complementary lectures on very-high-energy astrophysics given by worldwide leaders in the field. Reviews the recent advances in and prospects of gamma-ray astrophysics and of multi-messenger astronomy. Prepares readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors. With the success of Cherenkov Astronomy and more recently with the launch of NASA's Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergstroem presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.

  9. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  10. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  11. High energy materials. Propellants, explosives and pyrotechnics

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Jai Prakash

    2010-07-01

    Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defence organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer. (orig.)

  12. Long term evolution and internal architecture of high-energy banner ridges of Mer d'Iroise (Western Brittany, France) : interplay of sea-level, basement morphology, biogenic productivity and hydrodynamics

    Science.gov (United States)

    Le Roy, P., Sr.; Le Dantec, N.; Franzetti, M.; Delacourt, C.; Ehrhold, A.

    2016-12-01

    The recent completion of a coupled seismic and swath bathymetric survey, conducted across the Mer d'Iroise (Atlantic continental shelf, France), provided new data for the study of the long term evolution of deep tidal sand ridges. Three major banner sand ridges composed of biogenic sands were investigated: the Banc du Four, the Haut Fond d'Ouessant and the Banc d'Ar Men. Seismic interpretation reveals a compound internal architecture of these sand ridges with a sedimentary core forming the lower units interpreted to be shoreface deposits and overlain by sandwaves. Sandwave climbing, which combines progradation and accretion, is the major process controlling the growth of the ridges. The elevation of the preserved dune foresets reaches values of about 20 to 30 m and indicate a combination of giant dunes characterized by numerous steep (up to 20°) clinoforms corresponding to a high-energy depositional environment. All of the radiocarbon ages of the biogenic surficial deposits of the Banc du Four range from 10,036 to 2,748 cal years B.P. and suggest it has grown during the last sea-level rise. The apparent absence of recent surface deposits could be caused by a change in benthic biogenic productivity or the non-conservation of recent deposits. The multiphase accretion of the ridge is closely linked to the progressive flooding of the coastal promontories and straits that structured the igneous basement. A comparable evolutionary scheme is observed for the Haut-Fond d'Ouessant where a counter-clock wise migration of dunes characterizes the surface of the ridge. In contrast, the Banc d'Ar Men located above a regular basement displays a simpler structure with a consistent Northwestward migration of steep clinoforms. Therefore, the sand ridges of the Mer d'Iroise should be thought of as a representative example of large-scale high-energy banner banks controlled by interaction of sea-level, basement morphology, biogenic productivity, tidal and wave hydrodynamics.

  13. Participation of glyceraldehyde-3-phosphate dehydrogenase in the regulation of 2,3-diphosphoglycerate level in erythrocytes.

    Science.gov (United States)

    Fokina, K V; Yazykova, M Y; Danshina, P V; Schmalhausen, E V; Muronetz, V I

    2000-04-01

    Data are presented concerning the possible participation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in regulation of the glycolytic pathway and the level of 2,3-diphosphoglycerate in erythrocytes. Experimental support has been obtained for the hypothesis according to which a mild oxidation of GAPDH must result in acceleration of glycolysis and in decrease in the level of 2, 3-diphosphoglycerate due to the acyl phosphatase activity of the mildly oxidized enzyme. Incubation of erythrocytes in the presence of 1 mM hydrogen peroxide decreases 2,3-diphosphoglycerate concentration and causes accumulation of 3-phosphoglycerate. It is assumed that the acceleration of glycolysis in the presence of oxidative agents described previously by a number of authors could be attributed to the acyl phosphatase activity of GAPDH. A pH-dependent complexing of GAPDH and 3-phosphoglycerate kinase or 2, 3-diphosphoglycerate mutase is found to determine the fate of 1,3-diphosphoglycerate that serves as a substrate for the synthesis of 2,3-diphosphoglycerate as well as for the 3-phosphoglycerate kinase reaction in glycolysis. A withdrawal of the two-enzyme complexes from the erythrocyte lysates using Sepharose-bound anti-GAPDH antibodies prevents the pH-dependent accumulation of the metabolites. The role of GAPDH in the regulation of glycolysis and the level of 2,3-diphosphoglycerate in erythrocytes is discussed.

  14. The high energy astronomy observatories

    Science.gov (United States)

    Neighbors, A. K.; Doolittle, R. F.; Halpers, R. E.

    1977-01-01

    The forthcoming NASA project of orbiting High Energy Astronomy Observatories (HEAO's) designed to probe the universe by tracing celestial radiations and particles is outlined. Solutions to engineering problems concerning HEAO's which are integrated, yet built to function independently are discussed, including the onboard digital processor, mirror assembly and the thermal shield. The principle of maximal efficiency with minimal cost and the potential capability of the project to provide explanations to black holes, pulsars and gamma-ray bursts are also stressed. The first satellite is scheduled for launch in April 1977.

  15. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  16. Instrumentation in high energy physics

    International Nuclear Information System (INIS)

    Serin, L.

    2007-01-01

    The instrumentation in high energy physics is a wide and advanced domain which cannot be covered in a single lesson. The main basic physics processes for charged and neutral particles are recalled with the definition of a few concepts needed to understand or design a detector. The application of these principles to charged particle measurement devices (momentum), light detection or energy measurement are presented mostly with examples from collider experiments. The particle identification which is often the combination of different techniques in a same experiment is also discussed. Finally in a very short section, a few considerations about electronics/processing with their impact on the detector performance are given

  17. High-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Thomas K. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)]. E-mail: gaisser@bartol.udel.edu; Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2006-10-17

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the knee above 10{sup 15} eV and the ankle above 10{sup 18} eV. An important question is whether the highest-energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  18. Weak interactions at high energies

    International Nuclear Information System (INIS)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references

  19. Ultra high energy cosmic rays

    International Nuclear Information System (INIS)

    Watson, A.A.

    1986-01-01

    Cosmic radiation was discovered 70 years ago but its origin remains an open question. The background to this problem is outlined and attempts to discover the origin of the most energetic and rarest group above 10 15 eV are described. Measurements of the energy spectrum and arrival direction pattern of the very highest energy particles, mean energy about 6 x 10 19 eV, are used to argue that these particles originate outside our galaxy. Recent evidence from the new field of ultra high energy γ-ray astronomy are discussed in the context of a galactic origin hypothesis for lower energy cosmic rays. (author)

  20. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  1. Chemistry of high-energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Ludwig-Maximilians-Univ., Muenchen (Germany). Dept. of Chemistry; Maryland Univ., College Park, MD (US). Center of Energetic Concepts Development (CECD)

    2011-07-01

    The graduate-level textbook Chemistry of High-Energy Materials provides an introduction to and an overview of primary and secondary (high) explosives as well as propellant charges, rocket propellants and pyrotechnics. After a brief historical overview, the main classes of energetic materials are discussed systematically. Thermodynamic aspects, as far as relevant to energetic materials, are discussed, as well as modern computational approaches to predict performance and sensitivity parameters. The most important performance criteria such as detonation velocity, detonation pressure and heat of explosion, as well as the relevant sensitivity parameters suc as impact and friction sensitivity and electrostatic discharge sensitivity are explored in detail. Modern aspects of chemical synthesis including lead-free primary explosives and high-nitrogen compounds are also included in this book together with a discussion of high-energy materials for future defense needs. The most important goal of this book, based on a lecture course which has now been held at LMU Munich for over 12 years, is to increase knowledge and know-how in the synthesis and safe handling of high-energy materials. Society needs now as much as ever advanced explosives, propellant charges, rocket propellants and pyrotechnics to meet the demands in defense and engineering. This book is first and foremost aimed at advanced students in chemistry, engineering and materials sciences. However, it is also intended to provide a good introduction to the chemistry of energetic materials and chemical defense technology for scientists in the defense industry and government-run defense organizations. (orig.)

  2. Duke University High Energy Physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1993-03-01

    The research program of the Duke High Energy Physics Group is described in this Progress Report and a separate Proposal containing their plans for 1994. These two documents are supplemented by compilations of selected publications, thesis abstracts, and the curriculum vitae of the eleven Ph.D. physicists who are carrying out this research program. This Progress Report contains a review of the research which has been done over the first half (1992 and 1993 to date) of the current three-year DOE grant, plus some earlier research to establish a broader perspective of the research interests. High energy physics research at Duke has three components. The first, Task A, is based upon experiments carried out at Fermilab's Tevatron Collider. The group is finishing the analysis of data from their first collider experiment (E735), a study of inclusive particle production from bar p p collisions at √ bar s = 1.8 TeV. The second component of the research, Task B, deals primarily with heavy flavor physics. The third part of the research program, Task D, deals with preparation for research at the SSC. The authors have been active in the development of tracking detectors for the SSC since 1989, and are now concentrating on the design and construction of straw tube drift chambers for the solenoid detector

  3. Spinoff from high energy physics

    International Nuclear Information System (INIS)

    Hoffmann, Hans

    1994-01-01

    This year the CERN Courier is featuring the spinoff and technological benefits arising from research in fundamental physics. After initial illustrations in applied data processing sectors, this article by Hans Hoffman of CERN examines the rationale and underlying objectives of the 'new awareness' of the market value of basic science. He is the Chairman of a new panel on the subject set up recently by the International Committee for Future Accelerators (ICFA). The other members are: Oscar Barbalat of CERN, Hans Christian Dehne of DESY, Sin-ichi Kurakawa of KEK, Gennady Kulipanov of the Budker Institute (Novosibirsk), Anthony Montgomery, formerly of the SSC, A. H. Walenta of Siegen, Germany, and Zhongqiang Yu of IHEP Beijing. High energy physics - the quest to find and understand the structure of matter - is mainly seen as an essential part of human culture. However this basic science increasingly has to jostle for funding attention with other branches of science. Applied sciences aim for a rapid transformation of investment cash into viable market products. In times of economic difficulties this is attractive to funding agencies and governments, and economic usefulness and technological relevance also become criteria for a basic science like high energy physics.

  4. Duke University high energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and Χ meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report

  5. High energy proton PIXE [HEPP

    International Nuclear Information System (INIS)

    McKee, J.S.C.

    1993-01-01

    Studies of particle induced X-ray emission (PIXE) have been widespread and detailed in recent years and despite the fact that most data obtained are from low energy 1-3 MeV experiments, the value of higher energy proton work with its emphasis on K X-ray emission has become more marked as time has progressed. The purpose of this review paper is to outline the history of analysis using high energy protons and to compare and contrast the results obtained with those from lower energy analysis using more firmly established analytical techniques. The work described will concentrate exclusively on proton induced processes and will attempt to outline the rationale for selecting an energy, greater than 20 and up to 70 MeV protons for initiating particles. The relative ease and accuracy of the measurements obtained will be addressed. Clearly such X-ray studies should be seen as complementing low energy work in many instances rather than competing directly with them. However, it will be demonstrated that above a Z value of approximately 20, K X-ray analysis using high energy protons is the only way to go in this type of analysis. (author)

  6. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.

    1991-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics of the evolution of the early universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including studies of the nature of dark matter and the signature of annihilations in the galactic halo, where the resulting γ-ray fluxes are potentially observable, and in stars, where stellar evolution may be affects. We will develop constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon, examining the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in both flat and curved cosmological models, and implications for observations of large-scale galaxy clustering and structure formation theories. We will also study spectral distortions in the microwave background radiation that are produced by exotic particle decays in the very early universe. We expect such astrophysical considerations to provide fruitful insights both into high-energy particle physics and into possible cosmological for the early universe

  7. Levels of cyclic-2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum during phosphate limitation.

    OpenAIRE

    Seely, R J; Fahrney, D E

    1984-01-01

    Batch-grown Methanobacterium thermoautotrophicum cells grew nonexponentially in the absence of exogenous Pi until intracellular cyclic-2,3-diphosphoglycerate (cyclic DPG) had fallen below 2 mumol/g (dry weight), the limit of detection. Growth resumed immediately upon transfer to medium containing Pi Cyclic DPG levels were also below detection in Pi-limited chemostat cultures operating at a dilution rate of 0.173 h-1 (4-h doubling time), with reservoir Pi concentrations below 200 microM. At th...

  8. The Serum Level of Fibroblast Growth Factor-23 and Calcium-Phosphate Homeostasis in Obese Perimenopausal Women

    Directory of Open Access Journals (Sweden)

    M. Holecki

    2011-01-01

    Full Text Available Plasma FGF-23 concentrations and its relationship with calcium-phosphate homeostasis were evaluated in 48 perimenopausal obese women and in 29 nonobese controls. Serum parathyroid hormone, 25-hydroxyvitamin D3, CTX1, osteocalcin, total calcium, phosphorus, creatinine, and plasma intact FGF-23 concentrations were assessed. DXA of lumbar spine and femoral neck was performed to determine bone mineral density (BMD. Plasma iFGF-23 concentration was significantly higher in obese patients (by 42% and correlated with age and BMD of proximal femur (R=-0.346; R=0.285, resp. but not with markers of bone turnover. However, serum phosphorus level in obese subjects was significantly lower. iFGF-23 concentration correlated significantly with body mass index (R=0.292 and fat content (R=0.259 in all study subjects. Moreover, a significant correlation between iFGF-23 and iPTH (R=0.254 was found. No correlation between serum phosphorus or eGFR and plasma iFGF-23 and between eGFR and serum phosphorus was found. Elevated serum iFGF-23 concentration may partially explain lower phosphorus levels in the obese and seems not to reflect bone turnover.

  9. Levels of cyclic-2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum during phosphate limitation.

    Science.gov (United States)

    Seely, R J; Fahrney, D E

    1984-10-01

    Batch-grown Methanobacterium thermoautotrophicum cells grew nonexponentially in the absence of exogenous Pi until intracellular cyclic-2,3-diphosphoglycerate (cyclic DPG) had fallen below 2 mumol/g (dry weight), the limit of detection. Growth resumed immediately upon transfer to medium containing Pi Cyclic DPG levels were also below detection in Pi-limited chemostat cultures operating at a dilution rate of 0.173 h-1 (4-h doubling time), with reservoir Pi concentrations below 200 microM. At this dilution rate, the Pi concentration in the culture was 4 microM. An H2-limited steady state was achieved with 400 microM Pi in the inflowing medium (67 microM in the culture). The cyclic DPG content of these cells was 72 to 74 mumol/g, about one-third the amount in batch-grown cells. The specific growth rate accelerated immediately to 0.36 h-1 (1.9-h doubling time) under washout conditions at high dilution rate. The cellular content of cyclic DPG declined over a 2-h period, and then increased rapidly as the Pi level in the medium approached 200 microM. Expansion of the cyclic DPG pool coincided with a marked increase in Pi assimilation. These results indicated that M. thermoautotrophicum accumulated cyclic DPG only when Pi and H2 were readily available.

  10. Levels of cyclic-2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum during phosphate limitation.

    Science.gov (United States)

    Seely, R J; Fahrney, D E

    1984-01-01

    Batch-grown Methanobacterium thermoautotrophicum cells grew nonexponentially in the absence of exogenous Pi until intracellular cyclic-2,3-diphosphoglycerate (cyclic DPG) had fallen below 2 mumol/g (dry weight), the limit of detection. Growth resumed immediately upon transfer to medium containing Pi Cyclic DPG levels were also below detection in Pi-limited chemostat cultures operating at a dilution rate of 0.173 h-1 (4-h doubling time), with reservoir Pi concentrations below 200 microM. At this dilution rate, the Pi concentration in the culture was 4 microM. An H2-limited steady state was achieved with 400 microM Pi in the inflowing medium (67 microM in the culture). The cyclic DPG content of these cells was 72 to 74 mumol/g, about one-third the amount in batch-grown cells. The specific growth rate accelerated immediately to 0.36 h-1 (1.9-h doubling time) under washout conditions at high dilution rate. The cellular content of cyclic DPG declined over a 2-h period, and then increased rapidly as the Pi level in the medium approached 200 microM. Expansion of the cyclic DPG pool coincided with a marked increase in Pi assimilation. These results indicated that M. thermoautotrophicum accumulated cyclic DPG only when Pi and H2 were readily available. PMID:6480564

  11. Optimal Incorporation Level of Dietary Alternative Phosphate (MgHPO and Requirement for Phosphorus in Juvenile Far Eastern Catfish (

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Yoon

    2015-01-01

    Full Text Available A growth trial was conducted to determine the optimal incorporation level of dietary magnesium hydrogen phosphate (MHP, MgHPO4, which was manufactured from swine manure and phosphorus (P, required by juvenile far eastern catfish (Silurus asotus. Graded MHP of 0.5%, 1.0%, 1.5%, and 2.0%, and 2.0% monocalcium phosphate (MCP each was added to the basal diet (control in lieu of cellulose to become the range of available P (AP from 0.4% to 0.8% of which diets were designated as control, MHP0.5, MHP1.0, MHP1.5, MHP2.0, and MCP, respectively. Control diet contained fish meal (20%, soybean meal (40%, wheat flour (27%, corn gluten meal (5%, fish oil (2% and soy oil (2% as main ingredients. Following a 24 h fasting, 540 fish with a mean body weight of 11.8 g were randomly allotted to 6 groups in triplicate, whereby 18 tanks (0.4×0.6×0.36 cm, water volume of 66 L were prepared. The feeding experiment lasted for 8 weeks. Fish group fed the control diet showed the lowest weight gain (WG and feed efficiency (FE among treatments. The WG was, however, not significantly different (p>0.05 from that of fish group fed MHP0.5. Fish group fed MHP2.0 showed the highest WG and FE of which values were not significantly different from those of fish groups fed diets MHP1.0 and MHP1.5 as well as MCP (p>0.05 except fish groups fed control and MHP0.5. Aspartate aminotransferase was significantly decreased with an increase in available P, while alanine aminotransferase did not show a significant difference among treatment. The highest inorganic P in plasma was observed in fish fed MHP2.0. From the present results, a second-order regression analysis revealed that the optimal dietary MHP level and the AP requirement were found to be 1.62% and 0.7%, respectively.

  12. Post-prandial changes in plasma mineral levels in rainbow trout fed a complete plant ingredient based diet and the effect of supplemental di-calcium phosphate

    NARCIS (Netherlands)

    Antony Jesu Prabhu, P.; Schrama, J.W.; Mariojouls, C.; Godin, S.; Fontagné-Dicharry, S.; Geurden, I.; Surget, A.; Bouyssiere, B.; Kaushik, S.J.

    2014-01-01

    Post-prandial changes in plasma mineral levels and utilisation of minerals in rainbow trout fed complete plant ingredient based diets with or without supplemental di-calcium phosphate (DCP) were studied over an 8 week period. Three diets were used: diet M was FM and fish oil (FO) based diet

  13. Comparative Analysis of the Combined Effects of Different Water and Phosphate Levels on Growth and Biological Nitrogen Fixation of Nine Cowpea Varieties

    OpenAIRE

    Jemo, Martin; Sulieman, Saad; Bekkaoui, Faouzi; Olomide, Oluwatosin A. K.; Hashem, Abeer; Abd_Allah, Elsayed Fathi; Alqarawi, Abdulaziz A.; Tran, Lam-Son Phan

    2017-01-01

    Water deficit and phosphate (Pi) deficiency adversely affect growth and biological nitrogen fixation (BNF) of legume crops. In this study, we examined the impact of interaction between soil water conditions and available soil-Pi levels on growth, nodule development and BNF potential of nine cowpea varieties grown on dry savanna soils. In our experimental design, soils with different available soil-Pi levels, i.e., low, moderate, and high soil-Pi levels, collected from various farming fields w...

  14. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  15. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  16. High-energy particle diffraction

    International Nuclear Information System (INIS)

    Barone, V.; Predazzi, E.

    2002-01-01

    This monograph gives a comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers the general formalism (the optical analogy, the eikonal picture, high-energy kinematics, S-matrix theory) and soft hadron-hadron scattering (including the Regge theory) in a complete and mature presentation. It can be used as a textbook in particle physics classes. The remainder of the book is devoted to the 'new diffraction': the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes, jet production etc. It presents recent results and experimental findings and their phenomenological interpretations. This part addresses graduate students as well as researchers. (orig.)

  17. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  18. Developments in high energy physics

    International Nuclear Information System (INIS)

    Mukhi, Sunil; Roy, Probir

    2009-01-01

    This non-technical review article is aimed at readers with some physics background, including beginning research students. It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the standard model, and proposals - including the radical paradigm of string theory - have been made to go beyond the standard model. The list of references provided here is not intended to properly credit all original work but rather to supply the reader with a few pointers to the literature, specifically highlighting work done by Indian authors. (author)

  19. FTIR and Mössbauer spectroscopic study of sodium–aluminum–iron phosphate glassy materials for high level waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S.V., E-mail: serge.stefanovsky@yandex.ru [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Stefanovsky, O.I. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Remizov, M.B.; Belanova, E.A.; Kozlov, P.V. [FSUE PA Mayak, Central Plant Laboratory, Ozersk, Chelyabinsk Reg. (Russian Federation); Glazkova, Ya.S.; Sobolev, A.V.; Presniakov, I.A. [Lomonosov Moscow State University, Department of Radiochemistry (Russian Federation); Kalmykov, S.N. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Lomonosov Moscow State University, Department of Radiochemistry (Russian Federation); Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Laboratory of Radiochemistry, Moscow (Russian Federation); Myasoedov, B.F. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Laboratory of Radiochemistry, Moscow (Russian Federation)

    2015-11-15

    Complex sodium-aluminum-iron phosphate glassy materials with various Al{sub 2}O{sub 3} to Fe{sub 2}O{sub 3} ratio containing high level waste (HLW) surrogate were characterized by X-ray diffraction and scanning electron microscopy and studied in details by Fourier transform infrared (FTIR) spectroscopy. The samples with high Al{sub 2}O{sub 3} content and not containing Fe{sub 2}O{sub 3} were predominantly amorphous but subjected to devitrification under annealing. Addition of B{sub 2}O{sub 3} and partial Fe{sub 2}O{sub 3} substitution for Al{sub 2}O{sub 3} in the materials increases their resistance to devitrification whereas further substitution and NiO incorporation significantly increase the tendency to devitrification. FTIR spectra demonstrate changes in the structure of glassy materials caused by both structural variations in the anionic motif and occurrence of crystalline phases in the materials. According to Mössbauer spectroscopy data, iron in the glassy samples is present as octahedrally coordinated Fe{sup 3+} ions while in the partly devitrified samples iron is partitioned among vitreous and crystalline phases entering the vitreous phase mainly as Fe{sup 3+}O{sub 6} units and crystalline phases as major Fe{sup 3+} and minor Fe{sup 2+} ions in a magnetically ordered state and participating in a “fast” electronic exchange.

  20. Sphingosine-1-Phosphate (S1P) Lyase Inhibition Causes Increased Cardiac S1P Levels and Bradycardia in Rats.

    Science.gov (United States)

    Harris, Christopher M; Mittelstadt, Scott; Banfor, Patricia; Bousquet, Peter; Duignan, David B; Gintant, Gary; Hart, Michelle; Kim, Youngjae; Segreti, Jason

    2016-10-01

    Inhibition of the sphingosine-1-phosphate (S1P)-catabolizing enzyme S1P lyase (S1PL) elevates the native ligand of S1P receptors and provides an alternative mechanism for immune suppression to synthetic S1P receptor agonists. S1PL inhibition is reported to preferentially elevate S1P in lymphoid organs. Tissue selectivity could potentially differentiate S1PL inhibitors from S1P receptor agonists, the use of which also results in bradycardia, atrioventricular block, and hypertension. But it is unknown if S1PL inhibition would also modulate cardiac S1P levels or cardiovascular function. The S1PL inhibitor 6-[(2R)-4-(4-benzyl-7-chlorophthalazin-1-yl)-2-methylpiperazin-1-yl]pyridine-3-carbonitrile was used to determine the relationship in rats between drug concentration, S1P levels in select tissues, and circulating lymphocytes. Repeated oral doses of the S1PL inhibitor fully depleted circulating lymphocytes after 3 to 4 days of treatment in rats. Full lymphopenia corresponded to increased levels of S1P of 100- to 1000-fold in lymph nodes, 3-fold in blood (but with no change in plasma), and 9-fold in cardiac tissue. Repeated oral dosing of the S1PL inhibitor in telemeterized, conscious rats resulted in significant bradycardia within 48 hours of drug treatment, comparable in magnitude to the bradycardia induced by 3 mg/kg fingolimod. These results suggest that S1PL inhibition modulates cardiac function and does not provide immune suppression with an improved cardiovascular safety profile over fingolimod in rats. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Potensi “Khimelor” sebagai Tepung Komposit Tinggi Energi Tinggi Protein Berbasis Pangan Lokal (Health Potential of “Khimelor” as Composite Fluor Having Both High Energy and High Protein Level Based on Local Food

    Directory of Open Access Journals (Sweden)

    Laksmi Karunia Tanuwijaya

    2016-07-01

    The use of wheat flour as the basic ingredients of food products for high energy high protein diet is considerably high. Soybeans, mung beans, red leaf spinach and moringa leaf is local food sources of nutrients that are potential to be processed into a composite flour substituting wheat flour, which can be utilized for a variety of food products. The research was aimed to know the influence of proportion of soybeans, mung beans, red leaf spinach and moringa leaf (KhiMeLor on the quality of nutrition, protein and organoleptik quality of composite flour. This was experimental research with a complete random design. The treatment were several composition mixtures of wheat and composite flour, consisting of soybean, mung bean, red leaf spinach and moringa leaf P0 (100% : 0%; P1 (75% : 25%; P2 (50% : 50%; P3 (25% : 75%; P4 (0% : 100%. The content of carbohydrate, protein and fat was analyzed using proximate analysis. The quality of protein was examined from limiting amino acid and protein digestibility score. The sensory test was used to examine the costumer acceptance on sensory parameters. Statistical analysis used One Way Anova which  showed that substitution of  soy bean, mung bean,  moringaleaf and red spinach significantly (p=0,000 increases protein level. The limiting amino acid of P0,P1 and P2 was Lysine, but P3 and P4 was methionine. Protein digestibility of composite fluor was less than P0 (96%. The result of sensory evaluation showed that there was significant difference in aroma (p=0,000 and texture (p=0,029 which decreases as there is an increase of proportion composite flour. The conclusion was different proportion of soy bean, mung bean, moringa leaf and red spinach  influences the nutrition quality and sensory evaluation of composite flour. Keyword : composite flour, local food, KHiMelor

  2. IV. Workshop on High Energy Spin Physics

    International Nuclear Information System (INIS)

    Nurushev, S.

    1992-01-01

    In this proceedings the results on high energy spin physics are summarized. The theory of spin phenomenon and the experimental results at intermediate energy and at high energy spin physics and new technical developments in polarization experiments are presented

  3. Quantum Sensing for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Zeeshan; et al.

    2018-03-29

    Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.

  4. Lasers and future high energy colliders

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    Future high energy colliders, directions for particle physics and relationship to new technology such as lasers are discussed. Experimental approaches to explore New Physics with emphasis on the utility of high energy colliders are also discussed

  5. Radiation levels in samples of dicalcium phosphate (DCP) and bovine and poultry rations by gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Luz Filho, Isaias Venancio da; Scheibel, Viviane; Appoloni, Carlos Roberto, E-mail: isaiasfilhojr@yahoo.com.b [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica

    2009-07-01

    The objective of the present work is to determine the radiation levels found in bovine rations and in the dicalcium phosphate (DCP) feed supplement. Knowledge of the radiation levels in samples of rations and DCP for cattle is important, because they are directly and indirectly-part of the human diet. In order to obtain this data, gamma-ray spectrometry technique was used, employing a HPGe detector of 66% of relative efficiency, with an energy resolution of 2.03 KeV for the {sup 60}Co 1332.46 KeV line. The radioactive activity of the radionuclides {sup 40}K, {sup 137}Cs, {sup 238}U, {sup 232}Th and its respective decay series was measured. The accommodation recipient of the samples was a Marinelli beaker of 1 L. The {sup 238}U series activities were calculated through {sup 214}Pb and {sup 214}Bi activities, and the {sup 232}Th series' activity was calculated through the {sup 228}Ac, {sup 212}Pb, {sup 212}Bi and {sup 208}Tl values. The DCP samples and the rations measured in this work were produced in Londrina city, Brazil, in the second semester of 2007. Among the rations, the largest {sup 40}K and {sup 228}Ra activities were found in the ration sample for milk cattle, 402 +- 14 and 1.71 +- 0.10 Bq/kg, respectively. The ration for beef cattle yielded the largest activity for {sup 226}Ra, 1.51 + 0.93 Bq/kg. In the DCP sample, the activities for the {sup 238}U, {sup 40}K and {sup 232}Th were respectively 83 +- 26; 46.6 +- 2.8 and 7.79 +- 0.70 Bq/kg. The MDA values for {sup 137}Cs varied from 0.037 to 0.29 Bq/kg. (author)

  6. Radiation levels in samples of dicalcium phosphate (DCP) and bovine and poultry rations by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Luz Filho, Isaias Venancio da; Scheibel, Viviane; Appoloni, Carlos Roberto

    2009-01-01

    The objective of the present work is to determine the radiation levels found in bovine rations and in the dicalcium phosphate (DCP) feed supplement. Knowledge of the radiation levels in samples of rations and DCP for cattle is important, because they are directly and indirectly-part of the human diet. In order to obtain this data, gamma-ray spectrometry technique was used, employing a HPGe detector of 66% of relative efficiency, with an energy resolution of 2.03 KeV for the 60 Co 1332.46 KeV line. The radioactive activity of the radionuclides 40 K, 137 Cs, 238 U, 232 Th and its respective decay series was measured. The accommodation recipient of the samples was a Marinelli beaker of 1 L. The 238 U series activities were calculated through 214 Pb and 214 Bi activities, and the 232 Th series' activity was calculated through the 228 Ac, 212 Pb, 212 Bi and 208 Tl values. The DCP samples and the rations measured in this work were produced in Londrina city, Brazil, in the second semester of 2007. Among the rations, the largest 40 K and 228 Ra activities were found in the ration sample for milk cattle, 402 ± 14 and 1.71 ± 0.10 Bq/kg, respectively. The ration for beef cattle yielded the largest activity for 226 Ra, 1.51 + 0.93 Bq/kg. In the DCP sample, the activities for the 238 U, 40 K and 232 Th were respectively 83 ± 26; 46.6 ± 2.8 and 7.79 ± 0.70 Bq/kg. The MDA values for 137 Cs varied from 0.037 to 0.29 Bq/kg. (author)

  7. Dynamics of high energy reactions

    International Nuclear Information System (INIS)

    Field, R.D.

    1979-01-01

    During last several years, a new framework to describe strong interaction physics has emerged, i.e. quantum chromodynamics (QCD). It is the simplest field theory which incorporates color-dependent force among quarks. This force is generated by the exchange of colored vector gluons coupled to the quarks in gauge-invariant manner. The theory is closely related to the most successful quantum field theory, QED, and the only but very important difference is the gauge group involved. Although the theory is well defined, precisely what it predicts is not yet clearly known. However, at very high energy or momentum transfer Q, the effective coupling between quarks and gluons decreases toward zero with increasing Q 2 , and the calculation of a process involving high Q 2 is possible by the use of perturbation theory. In this paper, many applications of QCD to the processes involving high momentum transfer are examined. The effective coupling resulting from strong interaction between quarks and gluons, the scale violation in deep inelastic lepton scattering, large mass muon pair production, quark and gluon fragmentation functions, large transverse momentum meson and jet production in hadron-hadron collision, and the search for three-jet events are discussed. (Kako, I.)

  8. Hadron dynamics at high energies

    International Nuclear Information System (INIS)

    Storrow, J.K.

    1977-01-01

    The nine lectures give a very brief introduction to hadron dynamics at high energies. They concentrate on basic concepts such as Regge poles, duality and geometrical ideas, and simple applications of these ideas to the problem of understanding data. To some extent two body phenomenology is emphasized at the expense of multiparticle final states and when the latter have been considered they have concentrated on inclusive reactions. One lecture discussed data on 2-2 reactions in order to provide the motivation for Regge pole theory, then two lectures are devoted to basic concepts. Then duality is introduced and shown to provide reasonable restrictions on a pole model. A lecture is then devoted to discussing geometrical ideas i.e. the t-dependence of data is looked at from an s-channel point of view. The section on two-body phenomenology is then concluded by discussing applications of the above ideas to two reactions-pion-nucleon scattering and np charge exchange scattering. The remaining three lectures are devoted to multiparticle reactions. Exclusive reactions are considered briefly and then the remainder of the course is concerned with inclusive reactions. The concepts of scaling and limiting fragmentation are discussed and Mueller's generalised optical theorem introduced and then applied in various kinematic limits. (author)

  9. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  10. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  11. Report of the Subpanel on High Energy Physics Manpower of the High Energy Physics Advisory Panel

    International Nuclear Information System (INIS)

    1978-06-01

    A report of a study by a Subpanel which was appointed by the High Energy Physics Advisory Panel (HEPAP) to examine the production in recent years of new researchers in high energy physics and the rate at which they have moved into short term and permanent positions in the field. The Subpanel made use of the 1973 and 1975 ERDA Census data, statistics collected by others, as well as a number of surveys conducted by the Subpanel itself. Even though many uncertainties and gaps exist in the available data, several important points are presented. (1) New Ph.D. production in high energy physics has decreased in recent years even more rapidly than in physics as a whole. (2) New Ph.D.'s in experimental and theoretical high energy physics have been produced for many years in roughly equal numbers in spite of the fact that employment in the field at all levels shows a ratio of experiment-to-theory approaching two-to-one. (3) A very large fraction of the approximately 1700 Ph.D.'s in high energy physics (employed at 78 universities and 5 national laboratories) hold tenured positions (383 theorists and 640 experimentalists). (4) The age distribution of those in the tenured ranks reveals that the number of retirements will be extremely small during the next decade but will then start to have a significant impact on the opportunities for those who are seeking careers in the field. (5) Promotions to tenure at the universities during the 4 year interval AY72/73-AY76/77 have averaged about 10 per year in experiment and 10 per year in theory

  12. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  13. Caging in high energy reactions

    International Nuclear Information System (INIS)

    Ache, H.J.

    1977-01-01

    The concept of caging high energy reactions is considered. It is noted that there is no easy and unambiguous way, short of a complete and very tedious product and mechanistic analysis, which is feasible only for very few systems, to determine the contribution made by caging. It is emphasized that some products resulting from the hot reaction with a certain substrate may be formed via caging while others are not. In research on the mechanism of caging the results of Roots work on the reactions of hot 18 F with the CF 3 CH 3 system seem to provide evidence for caging, with 18 F being the caged moiety, thus proceeding via a radical--radical recombination mechanism. Their work with H 2 S additive also seems to indicate that scavenging via hydrogen abstraction from H 2 S to form does not interfere with the radical--radical recombination consistent with Bunkers molecular approach to explain the cage effects. In other research a series of observations resulting from stereochemical and combined stereochemical density variation techniques seem to favor a caged-complex. It is clear that a more conclusive answer can only be reached by more systematic studies, utilizing the whole range of nuclear reactions such as (n,2n), (n,γ) and E.C. processes in mechanistically well defined systems to elucidate the effect of variations in the recoil energies, by carrying out studies in different solvents or host substances to assess the effect of the physical parameters, such as molecule size and intermolecular interactions on the escape probability or caging efficiencies

  14. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1989-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale--free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry-breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large-scale structures whose dynamics are dominated by weakly interacting particles such as axions, massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study of the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  15. [High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1988-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry--breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large--scale structures whose dynamics are dominated by weakly interacting particles such as axions massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation in galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  16. Nitrate and Phosphate Contents on Sediments Related to The Density Levels of Mangrove Rhizophora Sp. in Mangrove Park Waters of Pekalongan, Central Java

    Science.gov (United States)

    Supriyantini, E.; Santoso, A.; Soenardjo, N.

    2018-02-01

    Mangrove Park waters area of Pekalongan City, Central Java, used to be an aquaculture field, now turning the function into a restoration-based mangrove area, and now it has undergone rehabilitation. The conditions may affect the distribution of nitrate and phosphate content. The objective of this study was to determine the content of nitrates and phosphates in sediments related to the density levels of mangrove Rhizophora sp. The method used in this research was a descriptive method, and sampling was done by purposive sampling method. Water and sediment sampling were conducted at three stations respectively, representing: no mangrove area but used as a residential and tourist area (station 1); less dense mangrove (station 2); and, the previously aquaculture field - or medium dense mangrove (station 3). The results showed that the content of nitrate and phosphate in the whole sediment showed a low fertility rate. Average nitrate content for station 1, station 2 and station 3 were 0.86 mg/100 g, 0.94 mg/100 g and 0.81 mg/100 g, respectively. The average phosphate content at each station were 1.14 mg/100 g, 0.04 mg/100 g and 0.05 mg/100 g, respectively. Except to the station 1 that was no vegetation anymore, the mangrove density levels at two other stations at study sites were relatively low to medium; at station 2 was 0.8 ind/10 m2 and at station 3 was 1.2 ind/10 m2. The role of nitrate and phosphate were for mangrove growth at the site.

  17. 210Pb and 210Po in sediments and suspended matter in the Tagus estuary, Portugal: Local enhancement of natural levels by wastes from phosphate ore processing industry

    International Nuclear Information System (INIS)

    Carvalho, Fernando P.

    1994-01-01

    Results of analyses of uranium series radionuclides in phosphate ore and in wastes released by the phosphate fertilizer industry confirm their potential for the enhancement of environmental radioactivity levels. Therefore, concentrations of 210 Pb and 210 Po were measured in bottom sediments and suspended matter in the Tagus estuary, Portugal, to assess the enhancement of radioactivity due to wastes from the phosphate industry. The concentration of 210 Pb in surface sediments in the estuary increased inversely with sediment grain-size; conversely, increased percentage of sand has a dilution effect on the concentration of 210 Pb measured in bulk sediment samples. By normalizing the data to the 210 Pb in sediments was found to be 68 ± 19 Bq kg -1 (dry wt.) in background sediments. Higher 210 Pb levels, up to 1580 Bq kg -1 (dry wt.), were measured in some bulk sediment samples. It was verified that this radionuclide has been introduced by the discharge of wastes from a phosphate fertilizer plant but enhanced concentrations are localized near the point of discharge. In other zones of the estuary, the concentrations of 210 Pb in sediments and suspended matter were generally below those measured in the zone of phosphatic releases at the Barreiro Peninsula. Concentrations higher than the predicted average concentration of unsupported 210 Pb from natural sources (atmospheric deposition, river input) were also measured in the upper estuary, both in bottom sediments and in suspended matter. It is suggested that these relatively elevated concentrations are due to the highly efficient scavenging of soluble naturally-occurring unsupported 210 Pb onto suspended matter and to co-precipitation with iron-manganese hydroxides in the fresh water-salt water mixing zone

  18. High energy physics and grid computing

    International Nuclear Information System (INIS)

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  19. The evaluation of 25-hydroxy vitamin D, calcium, phosphate and alkaline phosphatase levels in epileptic children under antiepileptic medication

    Directory of Open Access Journals (Sweden)

    Keyhani doost Z

    2011-01-01

    Full Text Available "n 800x600 Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Background: Epilepsy is a common disease in the pediatric neurology. There are frequent anti-epileptic drugs which are used in management of epilepsy. Anti-epileptic drugs may have some complications on bone and vitamin-D metabolism. In this study we aimed to evaluate vitamin-D metabolism in epileptic children."n"nMethods: The study was a prospective and cross sectional one. A total 89 epileptic children who were taking anti-epileptic drugs for longer than six months with no underlying disorder in Imam Khomeini and Bahrami Hospitals in Tehran, Iran were enrolled in our study"n"nResults: Forty nine boys and 40 girls were enrolled in this study; mean age of the patients was 7.8±2.1 years. Mean duration of anti-epileptic drug therapy was 2.3 years (SD=0.4, 70 of patients were under monotherapy and 19 were under polytherapy. None of the patients had signs of rickets. Serum calcium and phosphor levels were within normal ranges. Serum alkaline phosphates levels were increased more than two times in 43%. 42% had vitamin-D deficiency (25-OH Vit D<10 ng/ml and another 33% had vitamin-D insufficiency (10<25-oh Vit D<20 ng/ml. 29 patients (32% were taking prophylactic supplemental Vit D (200-400 IU/day. There was significant difference between patients taking supplemental vitamin-D as prophylaxis and patients who did not (p=0.04. There was no significant difference in vitamin-D levels between patients according to age, gender or different drugs."n"nConclusion: Periodic

  20. Non-critical strings at high energy

    CERN Document Server

    Aoki, Kenichiro; Aoki, Kenichiro; Hoker, Eric D'

    1996-01-01

    We consider scattering amplitudes in non-critical string theory of $N$ external states in the limit where the energy of all external states is large compared to the string tension. We argue that the amplitudes are naturally complex analytic in the matter central charge $c$ and we propose to define the amplitudes for arbitrary value of $c$ by analytic continuation. We show that the high energy limit is dominated by a saddle point that can be mapped onto an equilibrium electro-static energy configuration of an assembly of $N$ pointlike (Minkowskian) charges, together with a density of charges arising from the Liouville field. We argue that the Liouville charges accumulate on segments of curves, and produce quadratic branch cuts on the worldsheet. The electro-statics problem is solved for string tree level in terms of hyper-elliptic integrals and is given explicitly for 3- and 4-point functions. We show that the high energy limit should behave in a string-like fashion with exponential dependence on the energy sc...

  1. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  2. How changing root system architecture can help tackle a reduction in soil phosphate (P) levels for better plant P acquisition

    KAUST Repository

    HEPPELL, J.; TALBOYS, P.; PAYVANDI, S.; ZYGALAKIS, K. C.; FLIEGE, J.; WITHERS, P. J. A.; JONES, D. L.; ROOSE, T.

    2014-01-01

    © 2014 John Wiley & Sons Ltd. The readily available global rock phosphate (P) reserves may run out within the next 50-130 years, causing soils to have a reduced P concentration which will affect plant P uptake. Using a combination of mathematical

  3. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1988-01-01

    Current interest in gamma-ray astronomy at energies above 100 GeV comes from the identification of Cygnus X-3 and other X-ray binaries as sources. In addition there are reports of emission from radio pulsars and a variety of other objects. The statistical significance of many of the observations is not high and many reported effects await confirmation, but there are a sufficient number of independent reports that very high energy gamma-ray astronomy must now be considered to have an observational basis. The observations are summarized with particular emphasis on those reported since 1980. The techniques used - the detection of small air showers using the secondary photons and particles at ground level - are unusual and are described. Future prospects for the field are discussed in relation to new ground-based experiments, satellite gamma-ray studies and proposed neutrino astronomy experiments. (orig.) With 296 refs

  4. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  5. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  6. Ileal microbiota of growing pigs fed different dietary calcium phosphate levels and phytase content and subjected to ileal pectin infusion.

    Science.gov (United States)

    Metzler-Zebeli, B U; Vahjen, W; Baumgärtel, T; Rodehutscord, M; Mosenthin, R

    2010-01-01

    Two experiments with growing pigs were conducted to determine the effects of dietary P and Ca levels, phytase supplementation, and ileal pectin infusion on changes in bacterial populations in the ileum and on ileal and fecal fermentation patterns. Growing pigs (BW 30.1 +/- 1.3 kg) were fitted with simple T-cannulas at the distal ileum and were fed a low-P corn-soybean meal control diet (3 g of P/kg), or the control diet supplemented with either 15 g of monocalcium phosphate (MCP)/kg (Exp. 1) or 1,000 phytase units of phytase/kg (Exp. 2). Daily infusion treatments consisted of either 60 g of pectin dissolved in 1.8 L of demineralized water or 1.8 L of demineralized water as a control infusion, infused via the ileal cannula. In each experiment, 8 barrows were assigned to 4 dietary treatments according to a double incomplete 4 x 2 Latin square design. The dietary treatments in Exp. 1 were the control diet with water infusion, the control diet with pectin infusion, the MCP diet with water infusion, or the MCP diet with pectin infusion. In Exp. 2, the pigs received the same control treatments as in Exp. 1 and the phytase diet in combination with water or pectin infusion. Gene copy numbers of total bacteria, Lactobacillus spp., Lactobacillus reuteri, Lactobacillus amylovorus/Lactobacillus sobrius, Lactobacillus mucosae, Enterococcus spp., Enterococcus faecium, Enterococcus faecalis, bifidobacteria, the Clostridium coccoides cluster, the Clostridium leptum cluster, the Bacteroides-Prevotella-Porphyrmonas group, and Enterobacteriaceae were determined by quantitative PCR in DNA extracts of ileal digesta. In Exp. 1, addition of MCP reduced ileal gene copy numbers of Enterococcus spp. (P = 0.048), E. faecium (P = 0.015), and the C. leptum cluster (P = 0.028), whereas pectin infusion enhanced (P = 0.008) ileal d-lactate concentration. In Exp. 2, supplemental phytase led to greater ileal gene copy numbers of the C. coccoides (P = 0.041) and C. leptum (P = 0.048) clusters and

  7. Glyceraldehyde-3-phosphate dehydrogenase is largely unresponsive to low regulatory levels of hydrogen peroxide in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Sousa-Lopes Ana

    2010-12-01

    Full Text Available Abstract Background The reversible oxidation of protein SH groups has been considered to be the basis of redox regulation by which changes in hydrogen peroxide (H2O2 concentrations may control protein function. Several proteins become S-glutathionylated following exposure to H2O2 in a variety of cellular systems. In yeast, when using a high initial H2O2 dose, glyceraldehyde-3-phosphate dehydrogenase (GAPDH was identified as the major target of S-glutathionylation which leads to reversible inactivation of the enzyme. GAPDH inactivation by H2O2 functions to reroute carbohydrate flux to produce NADPH. Here we report the effect of low regulatory H2O2 doses on GAPDH activity and expression in Saccharomyces cerevisiae. Results A calibrated and controlled method of H2O2 delivery - the steady-state titration - in which cells are exposed to constant, low, and known H2O2 concentrations, was used in this study. This technique, contrary to the common bolus addition, allows determining which H2O2 concentrations trigger specific biological responses. This work shows that both in exponential- and stationary-phase cells, low regulatory H2O2 concentrations induce a large upregulation of catalase, a fingerprint of the cellular oxidative stress response, but GAPDH oxidation and the ensuing activity decrease are only observed at death-inducing high H2O2 doses. GAPDH activity is constant upon incubation with sub-lethal H2O2 doses, but in stationary-phase cells there is a differential response in the expression of the three GAPDH isoenzymes: Tdh1p is strongly upregulated while Tdh2p/Tdh3p are slightly downregulated. Conclusions In yeast GAPDH activity is largely unresponsive to low to moderate H2O2 doses. This points to a scenario where (a cellular redoxins efficiently cope with levels of GAPDH oxidation induced by a vast range of sub-lethal H2O2 concentrations, (b inactivation of GAPDH cannot be considered a sensitive biomarker of H2O2-induced oxidation in vivo

  8. Virtual photon interactions in high energy QCD

    International Nuclear Information System (INIS)

    Gieseke, S.

    2001-07-01

    We study the interactions of virtual photons in the high energy limit of quantum chromodynamics (QCD). The subject is discussed in terms of two closely linked applications: the calculation of the total cross section for γ * γ * -scattering and the description of DIS in the colour dipole model. We calculate virtual corrections in α s to the process γ * q → (qq)q and the tree level process γ * q → (qqg)q in the high energy limit. From this calculation we obtain one-loop corrections to the effective γ * -reggeon-qq-vertex in the helicity basis of the virtual photon and the qq-pair. The loop integrals for the virtual corrections have been performed and expressed in dimensional regularization in terms of logarithms and dilogarithms. We have convoluted the virtual one-loop matrix elements with tree level matrix elements and expressed the integrals over the phase space of the qq-pair explicitly in terms of a set of standard integrals. The real corrections have been calculated and, in case of the longitudinal polarization, expressed in factorized form. From these calculations, the impact factor of virtual photons will be determined, allowing for a first prediction of the total cross section for γ * γ * -scattering in the next-to-leading-log s approximation. The calculations in this thesis extend the photon wave function picture in the colour dipole model to next-to-leading order. For this purpose, the real corrections with a qqg final state are analyzed in transverse configuration space and interpreted as a first higher Fock component of the photon wave function. In addition, the matrix elements that have been calculated in this thesis are needed for the calculation of jet cross sections. (orig.)

  9. Harvard University High Energy Physics progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard's High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops

  10. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  11. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  12. Particle accelerators and lasers high energy sources

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  13. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  14. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  15. High energy physics and cloud computing

    International Nuclear Information System (INIS)

    Cheng Yaodong; Liu Baoxu; Sun Gongxing; Chen Gang

    2011-01-01

    High Energy Physics (HEP) has been a strong promoter of computing technology, for example WWW (World Wide Web) and the grid computing. In the new era of cloud computing, HEP has still a strong demand, and major international high energy physics laboratories have launched a number of projects to research on cloud computing technologies and applications. It describes the current developments in cloud computing and its applications in high energy physics. Some ongoing projects in the institutes of high energy physics, Chinese Academy of Sciences, including cloud storage, virtual computing clusters, and BESⅢ elastic cloud, are also described briefly in the paper. (authors)

  16. Plasma levels of sphingosine-1-phosphate and apolipoprotein M in patients with monogenic disorders of HDL metabolism

    NARCIS (Netherlands)

    Karuna, Ratna; Park, Rebekka; Othman, Alaa; Holleboom, Adriaan G.; Motazacker, Mohammad Mahdi; Sutter, Iryna; Kuivenhoven, Jan Albert; Rohrer, Lucia; Matile, Hugues; Hornemann, Thorsten; Stoffel, Markus; Rentsch, Katharina M.; von Eckardstein, Arnold

    2011-01-01

    Apolipoprotein M (apoM) has been identified as a specific sphingosine-1-phosphate (S1P) binding protein of HDL. To investigate the in vivo effects of disturbed apoM or HDL metabolism we quantified S1P and apoM in plasmas of wild-type, apoM-knock-out, and apoM transgenic mice as well as 50 patients

  17. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    Science.gov (United States)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  18. Phosphate Salts

    Science.gov (United States)

    ... body. They are involved in cell structure, energy transport and storage, vitamin function, and numerous other processes ... Phosphate-containing foods and beverages include cola, wine, beer, whole grain cereals, nuts, dairy products and some ...

  19. A unified treatment of high energy interactions

    International Nuclear Information System (INIS)

    Drescher, H.J.; Werner, K.; Ostapchenko, S.; Centre National de la Recherche Scientifique, 44 - Nantes

    1999-01-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author)

  20. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  1. Expectations for ultra-high energy interactions

    International Nuclear Information System (INIS)

    Feynman, R.P.

    1978-01-01

    Strong interactions at ultra-high energies are discussed with emphasis on the hadrons produced in high energy collisions. Evidence is considered that quantum chromodynamics might be the right theory, and also some estimates are given of quantum chromodynamics asymptotic-freedom phenomena, the work under discussion being very preliminary. 6 references

  2. New aspects of high energy density plasma

    International Nuclear Information System (INIS)

    Hotta, Eiki

    2005-10-01

    The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)

  3. High-energy symmetries of string theory

    International Nuclear Information System (INIS)

    Lee Jenchi.

    1990-01-01

    The author studies the high-energy symmetry structure of string theory corresponding to the massive excitations of the string. These enlarged gauge symmetries are closely related to the existence of zero-norm states in the string spectrum. He has derived these symmetries in the framework of the Hamiltonian version of the first-quantized generalized σ-model formalism. It is conjectured that these infinite space-time symmetry structures could shed light on the finiteness of string perturbation theory. Two interesting phenomena were discovered for these massive states symmetries. One is the inter-'spin' symmetry for the different 'spin' states at each fixed mass level. Specifically, the four physical propagating states with 'spins' up to six of the second massive level of the closed bosonic string are found to form a large gauge multiplet. This is demonstrated by the existence of gauge transformations induced by the type II zero-norm states at this mass level. It is argued that this is a σ-model three loop result for the second massive level and is a general feature for higher massive levels at each fixed mass. The other one is the decoupling of some degenerate positive-norm states. As an example, he explicitly demonstrates that the 'spin' two and scalar physical propagating fields of the third massive level of the open bosonic string are mere gauge artifacts of the higher 'spin' fields at the same mass level. It is conjectured that this phenomenon comes from the well-known ambiguity in defining the positive-norm states due to the existence of zero-norm states in the same Young representation

  4. Interactions between shoots and roots of two soy bean varieties at different phosphate nutritional level: Distribution of 14C-assimilates and carbohydrate status

    International Nuclear Information System (INIS)

    Burauel, P.

    1987-11-01

    The influence of the phosphate nutritional status on assimilate distribution between shoot and root was studied for two soya bean varieties (Century and Woodworth). Plants at a full nutritional level (+P variants) and those in a condition of moderate P stress (-P variants) were considered. Particular attention was paid to the following aspect: Is a modification of the assimilate distribution, conditioned by phosphate withdrawal, only associated with the reduction in the shoot/root ratio or do changes in distribution already occur before morphological parameters are influenced? Further it is known from literature that after a contemporary interruption of the phoshate supply plants display an increased phosphate uptake rate when the supply is restored in comparison to plants nourished normally. In this respect the following aspects were of interest: Does an increased uptake rate, for which sufficient energy must be made available, have a direct effect on the transport of assimilates to the root? Is the carbohydrate content of the roots possibly a parameter with which the difference in efficiency of the two varieties may be described? (orig./MG) [de

  5. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Hector [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1) Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of

  6. Determination of radioactive levels in phosphate-containing fertilizers, copper and gold ores by direct gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Constantinescu, B.; Constantin, F.; Dusoiu, M.; Pascovici, G.; Macovei, M.

    1993-01-01

    Two particular aspects of the role played by the natural radiation background in Romanian industry: phosphates-containing fertilizer processing, and copper and gold mining, are presented. U-238, Th-232, K-40, Ra-226 values (Bq/Kg) for various imported phosphorites, superphosphates, concentrated Cu and Au Romanian ores, are reported. A simple and efficient radioactivity determination procedure based on a large volume NaI (Tl) detector coupled to a Romanian-designed portable multichannel analyzer is described. Potential radiological impacts on specialized workers are discussed. (Author)

  7. Osh4p is needed to reduce the level of phosphatidylinositol-4-phosphate on secretory vesicles as they mature

    OpenAIRE

    Ling, Yading; Hayano, Scott; Novick, Peter

    2014-01-01

    Phosphatidylinositol-4-phosphate (PI4P) is produced on both the Golgi and the plasma membrane. Despite extensive vesicular traffic between these compartments, genetic analysis suggests that the two pools of PI4P do not efficiently mix with one another. Several lines of evidence indicate that the PI4P produced on the Golgi is normally incorporated into secretory vesicles, but the fate of that pool has been unclear. We show here that in yeast the oxysterol-binding proteins Osh1?Osh7 are collect...

  8. PCR nuclear composition at 1-20 PeV according to lateral distributions of all EAS and EAS accompanied high-energy-gamma rays and hadrons in EC at Tien-Shan level

    International Nuclear Information System (INIS)

    Nesterova, N.M.; Pavlyuchenko, V.P.; Chubenko, A.P.; Shaulov, S.B.

    2003-01-01

    The Tien-Shan array Adron data are presented on electron-photon component lateral distributions (age parameter S) of extensive air showers of cosmic rays. The data are given as a dependence on the electron size N e for all showers and for showers accompanied by high-energy gamma rays and hadrons in X-ray films. N e characterizes the energy of primary-cosmic-ray nuclei E 0 . Later events are generated by primary photons chiefly. That allows judging on the proton role with E 0 change. S distributions point to the considerable part of light nuclei, protons mainly, at the region above knee of the spectrum at N e > 10 6 up to N e = 5 x 10 6 (E 0 ∼ 10 PeV) at least [ru

  9. Practical neutron dosimetry at high energies

    International Nuclear Information System (INIS)

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently

  10. High energy physics in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  11. Computing in high-energy physics

    International Nuclear Information System (INIS)

    Mount, Richard P.

    2016-01-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software

  12. Computing in high-energy physics

    Science.gov (United States)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  13. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  14. High energy physics in the United States

    International Nuclear Information System (INIS)

    Month, M.

    1985-01-01

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range

  15. Ultra high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  16. High energy particle accelerators as radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  17. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  18. New accelerators in high-energy physics

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting

  19. Levels of adenine nucleotides (ATP, ADP, AMP) and of inorganic phosphate in needles of Picea abies, representing different stages of development and of pollution dependence

    Energy Technology Data Exchange (ETDEWEB)

    Benz, T; Hampp, R; Horsch, F; Filby, G; Fund, N; Gross, S; Hanisch, B; Kilz, E; Seidel, A [comps.

    1986-04-01

    Levels of adenine nucleotides (ATP, ADP, AMP) and of inorganic phosphate in needles of Picea abies, representing different stages of development and of pollution dependence. Lyophilized needles of Picea abies (Kaelbelescheuer, southern Black Forest) were analyzed for their content of adenine nucleotides (ATP, ADP, AMP: AdN) and of inorganic phosphate (Psub(i)). The metabolite levels were related to needle age, vegetation period and degree of damage (chlorophyll content). The results were as follows: 1) With increasing needle age there is a general decrease in the total AdN-pool. This decrease is most pronounced in very young needles and occurs in both healthy and damaged tissue. 2) The ATP/ADP-ratio of damaged needle is significantly higher than that of healthy ones. 3) Both phosphorylation potential (ATP.(ADP.Psub(i))/sup -1/) and adenylate energy charge ((ATP + 0.5.ADP).(AdN)/sup -1/) are significantly reduced in damaged needles. This is due to relatively higher levels of Psub(i) and of AMP. The results, although incomplete and preliminary, indicate metabolic alterations which have been described for other tissues in response to pollution by photooxidants.

  20. High energy hadron spin-flip amplitude

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    2016-01-01

    The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru

  1. Physics at high energy photon photon colliders

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  2. Organisation of high-energy physics

    CERN Document Server

    Kluyver, J C

    1981-01-01

    Tabulates details of major accelerator laboratories in western Europe, USA, and USSR, and describes the various organisations concerned with high-energy physics. The Dutch organisation uses the NIKHEF laboratory in Amsterdam and cooperates with CERN. (0 refs).

  3. New informative techniques in high energy physics

    International Nuclear Information System (INIS)

    Klimenko, S.V.; Ukhov, V.I.

    1992-01-01

    A number of new informative techniques applied to high energy physics are considered. These are the object-oriented programming, systems integration, UIMS, visualisation, expert systems, neural networks. 100 refs

  4. Multiplicity distributions in high energy collisions

    International Nuclear Information System (INIS)

    Giovannini, A.; Lupia, S.; Ugoccioni, R.

    1992-01-01

    We discuss the important phases in the evolution of our understanding of multiplicity distributions in high energy collisions with particular emphasis to intermittent behavior and shoulder structure problem. (orig.)

  5. Multiplicity distributions in high energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, A.; Lupia, S.; Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. Turin (Italy) INFN, Turin (Italy))

    1992-03-01

    We discuss the important phases in the evolution of our understanding of multiplicity distributions in high energy collisions with particular emphasis to intermittent behavior and shoulder structure problem. (orig.).

  6. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  7. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community

  8. Interferometry of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Padula, S.S.

    1990-01-01

    The interferometry is used for determining large space time dimensions of the Quark Gluon Plasma formed in high energy nuclear collisions or in high multiplicity fluctuations in p-barp collisions. (M.C.K.)

  9. High energy neutrinos: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark DE 19716 (United States)

    2006-05-15

    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.

  10. High Energy Density Polymer Film Capacitors

    National Research Council Canada - National Science Library

    Boufelfel, Ali

    2006-01-01

    High-energy-density capacitors that are compact and light-weight are extremely valuable in a number of critical DoD systems that include portable field equipment, pulsed lasers, detection equipment...

  11. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  12. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  13. Proceedings of progress in high energy physics

    International Nuclear Information System (INIS)

    Pauchy Hwang, W.Y.; Lee, S.C.; Lee, C.E.; Ernst, D.J.

    1991-01-01

    This book contains the proceedings of progress in high energy physics. Topics covered include: Particle Phenomology; Particles and Fields; Physics in 2 and 1 Dimensions; Cosmology, Astrophysics, and Gravitation; Some Perspertives on the Future of Particle Physics

  14. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  15. Scaling violations at ultra-high energies

    International Nuclear Information System (INIS)

    Tung, W.K.

    1979-01-01

    The paper discusses some of the features of high energy lepton-hadron scattering, including the observed (Bjorken) scaling behavior. The cross-sections where all hadron final states are summed over, are examined and the general formulas for the differential cross-section are examined. The subjects of scaling, breaking and phenomenological consequences are studied, and a list of what ultra-high energy neutrino physics can teach QCD is given

  16. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  17. Mineral phosphate solubilizing bacterial community in agro-ecosystem

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... patterns. Four insoluble phosphate sources; purulia rock phosphate (PRP), mussourie rock phosphate. (MRP) ... community composition analysis (Garland, 1996a) and ..... the threshold level that enabled only a few species to.

  18. Chemistry of high-energy materials. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Munich Univ. (Germany). Chair of Inorganic Chemistry; Maryland Univ., College Park, MD (United States). Center of Energetic Concepts Development (CECD)

    2012-07-01

    This graduate-level textbook treats the basic chemistry of high energy materials - primary and secondary explosives, propellants, rocket fuel and pyrotechnics - and provides a review of new research developments. Applications in both military and civil fields are discussed. The book also offers new insights into ''green'' chemistry requirements and strategies for military applications.

  19. Circulating levels of sphingosine-1-phosphate are elevated in severe, but not mild psoriasis and are unresponsive to anti-TNF-α treatment

    Science.gov (United States)

    Checa, Antonio; Xu, Ning; Sar, Daniel G.; Haeggström, Jesper Z.; Ståhle, Mona; Wheelock, Craig E.

    2015-07-01

    Sphingolipids are bioactive molecules with a putative role in inflammation. Alterations in sphingolipids, in particular ceramides, have been consistently observed in psoriatic skin. Herein, we quantified the circulating sphingolipid profile in individuals with mild or severe psoriasis as well as healthy controls. In addition, the effects of anti-TNF-α treatment were determined. Levels of sphingoid bases, including sphingosine-1-phosphate (S1P), increased in severe (P S1P response to treatment may have pathobiological implications due to its close relation to the vascular and immune systems. In particular, increased levels of sphingolipids and especially S1P in severe psoriasis patients requiring biological treatment may potentially be associated with cardiovascular comorbidities. The fact that shifts in S1P levels were not ameliorated by anti-TNF-α treatment, despite improvements in the skin lesions, further supports targeting S1P receptors as therapy for severe psoriasis.

  20. Laser fusion and high energy density science

    International Nuclear Information System (INIS)

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  1. How changing root system architecture can help tackle a reduction in soil phosphate (P) levels for better plant P acquisition

    KAUST Repository

    HEPPELL, J.

    2014-06-24

    © 2014 John Wiley & Sons Ltd. The readily available global rock phosphate (P) reserves may run out within the next 50-130 years, causing soils to have a reduced P concentration which will affect plant P uptake. Using a combination of mathematical modelling and experimental data, we investigated potential plant-based options for optimizing crop P uptake in reduced soil P environments. By varying the P concentration within a well-mixed agricultural soil, for high and low P (35.5-12.5mgL-1 respectively using Olsen\\'s P index), we investigated branching distributions within a wheat root system that maximize P uptake. Changing the root branching distribution from linear (evenly spaced branches) to strongly exponential (a greater number of branches at the top of the soil) improves P uptake by 142% for low-P soils when root mass is kept constant between simulations. This causes the roots to emerge earlier and mimics topsoil foraging. Manipulating root branching patterns, to maximize P uptake, is not enough on its own to overcome the drop in soil P from high to low P. Further mechanisms have to be considered to fully understand the impact of P reduction on plant development.

  2. Geochemical and rare earth elements distribution pattern in gaiman F M.phosphatic levels, Chubu t, Argentina

    International Nuclear Information System (INIS)

    Castro, L.; Fazio, A.; Tourn, S.; Scasso, R.

    2004-01-01

    Phosphatic concretions in the Early Miocene marine sediments of the Gaiman Formation (Miocene) were analyzed for rare earth elements (REE), in order to discuss their pattern in the context of paleoenvironmental interpretations. P2O5 in concretions is between 15,61 to 21,82%. Two types of concretions are found: Type 1 represented by in situ ones developed within transgressive-early highstand system tracts which shows little evidence for significant transportation, and Type 2 related to reworking, winnowing and mechanical concentration of resistant particles. Type 1 exhibits higher REE/P ratios and a significant enrichment in HREE than Type 2. The REE pattern in both shows a slight depletion in LREE with a weak Ce anomaly (-0.08 to 0.04), and an enrichment in high rare earth elements, in comparison to the a verage shale. Their mean content in REE (915 ppm) and Y (500 ppm) doubles the worldwide phosphorite average (462 ppm and 275 ppm). No significant correlation is found between REEs and P2O5. On the other hand, HREE enrichment (Lu/Ce) increases with the REEs bulk content. The pattern is consistent with shallow water inner shelf marine environment which is also suggested by sedimentological and paleontological evidence [es

  3. High energy physics advisory panel's subpanel on vision for the future of high-energy physics

    International Nuclear Information System (INIS)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report's own origins and development

  4. High-energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    While high energy collision experiments yield a wealth of complicated patterns, there are a few general and very striking features that stand out. Because of the universality of these features, and because of the dominating influence they have on high energy phenomena, it is the authors opinion that a physical picture of high energy collisions must address itself first of all to these features before going into specific details. In this short talk these general and striking features are stated and a physical picture developed in the last few years to specifically accommodate these features is described. The picture was originally discussed for elastic scattering. But it leads naturally, indeed inevitably as they shall discuss, to conclusions about inelastic processes, resulting in an idea called the hypothesis of limiting fragmentation

  5. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e + e - analysis, bar P decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the φ factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K L 0 → π 0 γγ and π 0 ν bar ν, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R ampersand D

  6. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  7. High energy experimental physics: Progress report

    International Nuclear Information System (INIS)

    Rosen, J.; Miller, D.

    1988-01-01

    This report contains papers of high energy physics experiments and detector equipment design. Proposals are also given for future experiments. Some of the topics covered in this report are: high energy predictions for /bar char/pp and pp elastic scattering and total cross sections; D0 forward drift chambers; polarized beam facility; analyzing power measurment in inclusive pion production at high transverse momentum; Skyrme model for baryons; string models for color flux tubes; hadronic decays for the /tau/ lepton; and meson form factors in perturbative QCD

  8. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  9. High energy physics computing in Japan

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1989-01-01

    A brief overview of the computing provision for high energy physics in Japan is presented. Most of the computing power for high energy physics is concentrated in KEK. Here there are two large scale systems: one providing a general computing service including vector processing and the other dedicated to TRISTAN experiments. Each university group has a smaller sized mainframe or VAX system to facilitate both their local computing needs and the remote use of the KEK computers through a network. The large computer system for the TRISTAN experiments is described. An overview of a prospective future large facility is also given. (orig.)

  10. Nodding syndrome in Tanzania may not be associated with circulating anti-NMDA-and anti-VGKC receptor antibodies or decreased pyridoxal phosphate serum levels-a pilot study.

    Science.gov (United States)

    Dietmann, Anelia; Wallner, Bernd; König, Rebekka; Friedrich, Katrin; Pfausler, Bettina; Deisenhammer, Florian; Griesmacher, Andrea; Seger, Christoph; Matuja, William; JilekAall, Louise; Winkler, Andrea S; Schmutzhard, Erich

    2014-06-01

    Nodding syndrome (NS) is a seemingly progressive epilepsy disorder of unknown underlying cause. We investigated association of pyridoxal-phosphate serum levels and occurrence of anti-neuronal antibodies against N-methyl-D-aspartate (NMDA) receptor and voltage gated potassium channel (VGKC) complex in NS patients. Sera of a Tanzanian cohort of epilepsy and NS patients and community controls were tested for the presence of anti-NMDA-receptor and anti-VGKC complex antibodies by indirect immunofluorescence assay. Furthermore pyridoxal-phosphate levels were measured. Auto-antibodies against NMDA receptor or VGKC (LG1 or Caspr2) complex were not detected in sera of patients suffering from NS (n=6), NS plus other seizure types (n=16), primary generalized epilepsy (n=1) and community controls without epilepsy (n=7). Median Pyridoxal-phosphate levels in patients with NS compared to patients with primary generalized seizures and community controls were not significantly different. However, these median pyridoxal-phosphate levels are significantly lower compared to the range considered normal in Europeans. In this pilot study NS was not associated with serum anti-NMDA receptor or anti-VGKC complex antibodies and no association to pyridoxal-phosphate serum levels was found.

  11. Charged current weak interactions at high energy

    International Nuclear Information System (INIS)

    Cline, D.

    1977-01-01

    We review high energy neutrino and antineutrino charged current interactions. An overview of the experimental data is given, including a discussion of the experimental status of the y anomaly. Locality tests, μ-e universality and charge symmetry invariance tests are discussed. Charm production is discussed. The experimental status of trimuon events and possible phenomenological models for these events are presented. (orig.) [de

  12. High energy electron multibeam diffraction and imaging

    International Nuclear Information System (INIS)

    Bourret, Alain.

    1980-04-01

    The different theories of dynamical scattering of electrons are firstly reviewed with special reference to their basis and the validity of the different approximations. Then after a short description of the different experimental set ups, structural analysis and the investigation of the optical potential by means of high energy electrons will be surveyed

  13. Nuclear emulsion and high-energy physics

    International Nuclear Information System (INIS)

    Sun Hancheng; Zhang Donghai

    2008-01-01

    The history of the development of nuclear emulsion and its applications in high-energy physics, from the discovery of pion to the discovery of tau neutrino, are briefly reviewed in this paper. A new stage of development of nuclear-emulsion technique is discussed

  14. High energy spin isospin modes in nuclei

    International Nuclear Information System (INIS)

    Chanfray, G.; Ericson, M.

    1984-01-01

    The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch

  15. Theoretical and experimental high energy physics

    International Nuclear Information System (INIS)

    Walsh, T.; Ruddick, K.

    1990-01-01

    This report discusses the following topics: The Soudan enterprise; study of strange quarks at Fermilab; direct photons at Fermilab; the Brookhaven programs; AMY and CLEO: studies of e + e - annihilations; cosmic ray studies with the DO muon chamber; progress report on HEP computer upgrade; muon triggering and reconstruction at SSC; and, theoretical high energy physics

  16. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1993-02-01

    The NIU high energy physics group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, members of the group participate in the SDC collaboration at the SSC

  17. High energy physics and nuclear structure

    International Nuclear Information System (INIS)

    Measday, D.F.; Thomas, A.W.

    1980-01-01

    These proceedings contain the papers presented at the named conference. These concern eletromagnetic interactions, weak interactions, strong interactions at intermediate energy, pion reactions, proton reactions, strong interactions at high energy, as well as new facilities and applications. See hints under the relevant topics. (HSI)

  18. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  19. PC database for high energy preprint collections

    International Nuclear Information System (INIS)

    Haymaker, R.

    1985-06-01

    We describe a microcomputer database used by the high energy group to keep track of preprints in our collection. It is used as a supplement to the SLAC-SPIRES database to retrieve preprints on hand. This was designed as a low overhead system for a small group

  20. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider

  1. High energy electron irradiation of flowable materials

    International Nuclear Information System (INIS)

    Offermann, B.P.

    1975-01-01

    In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated. (U.S.)

  2. Ultra high-energy cosmic ray composition

    International Nuclear Information System (INIS)

    Longley, N.P.

    1993-01-01

    The Soudan 2 surface-underground cosmic ray experiment can simultaneously measure surface shower size, underground muon multiplicity, and underground muon separation for ultra high energy cosmic ray showers. These measurements are sensitive to the primary composition. Analysis for energies from 10 1 to 10 4 TeV favors a light flux consisting of predominantly H and He nuclei

  3. Trends in experimental high-energy physics

    International Nuclear Information System (INIS)

    Sanford, T.W.L.

    1982-06-01

    Data from a scan of papers in Physical Review Letters and Physical Review are used to demonstrate that American high-energy physicists show a pattern of accelerator and instrumentation usage characteristic of that expected from the logistic-substitution model of Marchetti and of Fischer and Pry

  4. High energy radiation from neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  5. Indiana University High Energy Physics, Task A

    Energy Technology Data Exchange (ETDEWEB)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider.

  6. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-01-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN

  7. Pi-nucleon phenomenology at high energies

    International Nuclear Information System (INIS)

    Kogitz, S.

    1973-01-01

    A brief introduction to the phenomenology of strong interactions at high energy is presented. This includes discussion of the topics including absorption, finite energy sum rules, and duality. The application of these ideas to two-particle inelastic reactions is examined. (author)

  8. Synthesis and Characterization of High Energy Polymers.

    Science.gov (United States)

    1981-03-31

    and characterization of new high energy elastomers. IV. References 1. J.C.W. Chien, T. Kohara , C. P. Lillya, T. Sarubbi, B.-H. Su and R. S. Miller, J...Catalyzed Nitromercuration of Diene Polymers, J.C.W. Chien, T. Kohara , C. P. Lillya, T. Sarubbi, B.-H. Su, and R. S. Miller, J. Polm.. Sci. Polym. Chem. Ed

  9. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  10. Experiments on very high energy heavy ions

    International Nuclear Information System (INIS)

    Willis, W.J.

    1981-01-01

    In this paper I describe experimental techniques which could be used to investigate central collision of very high energy heavy ions. For my purposes, the energy range is defined by the number of pions produced, Nsub(π) >> 100, and consequently Nsub(π) >> Nsub(nucleon). In this regime we may expect that new phenomena will appear. (orig.)

  11. Theoretical and experimental high energy physics

    International Nuclear Information System (INIS)

    Gasiorowicz, S.; Ruddick, K.

    1988-01-01

    This report discusses experimental and theoretical work in High Energy Physics. Some topics discussed are: quantum field theory; supersymmetry; cosmology; superstring model; relic photinos; inflationary universe; dark matter; standard model; supernovae; semileptonic decay; quantum Langevin equation; underground neutrino detection at Soudan; strange quark systems; cosmic ray detection; superconducting super collider detectors; and studies of direct photon production

  12. Prizes reward high-energy physics

    CERN Multimedia

    2005-01-01

    The European Physical Society (EPS) has recognized four individuals and a collaboration for their work on charge-parity (CP) violation, gamma-ray astronomy, cosmology and outreach activities. Heinrich Wahl, formerly of CERN, and the NA31 collaboration share the 2005 High Energy and Particle Physics Prize for their work on CP violation at CERN (½ page)

  13. Astrophysics, cosmology and high energy physics

    International Nuclear Information System (INIS)

    Rees, M.J.

    1983-01-01

    A brief survey is given of some topics in astrophysics and cosmology, with special emphasis on the inter-relation between the properties of the early Universe and recent ideas in high energy physics, and on simple order-of-magnitude arguments showing how the scales and dimensions of cosmic phenomena are related to basic physical constants. (orig.)

  14. Heavy ion fragmentation in high energy

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    A review is made on the theoretical aspects of heavy ion collisions at high energies. A comparison with several experimental data obtained in a large variety of experiments is present. An emphasis is given on the basis of Glauber's theory of scattering. (L.C.) [pt

  15. SU(5) at very high energies

    International Nuclear Information System (INIS)

    Hueffel, H.

    1982-01-01

    By exhibiting the relationship between the full SU(5) theory in the unitary gauge and the underlying Higgs-Goldstone system in the t'Hooft-Feynman gauge the high energy limits of amplitudes (involving gauge and Higgs bosons) can be calculated easily. As an application tree unitarity bounds on Higgs parameters and masses are discussed. (Author)

  16. UNIX at high energy physics Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, Alan

    1994-03-15

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide.

  17. Studies in theorectical high energy particles physics

    International Nuclear Information System (INIS)

    Aratyn, H.; Keung, Wai-Yee; Panigrahi, P.; Sukhatme, U.

    1990-02-01

    This paper discusses the research being done at the University of Illinois in theoretical high energy physics. Some areas discussed are string models, collider physics, symmetries in gauge theories, sigma model, radiative decay of mesons, supersymmetry, superconducting, and hydroproduction of charm

  18. Activities in nuclear and high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    High energy and nuclear physics research concerning bubble chamber investigations, European hybrid system ACCMOR, WA 18, PETRA, PEP, VA 4, SING, LENA, LEP 3 and DELPHI experiments is summarized. Experiments with electron beams, and in pions and muons physics, and radiochemistry are reported on.

  19. Resume: networking in high energy physics

    International Nuclear Information System (INIS)

    Hutton, J.S.

    1985-11-01

    Networking in High Energy Physics covers communications inside the experiment and internationally. Inside the experiment the need for agreed 'codes of practice' is now accepted. Within Europe it is accepted that a common infrastructure based on the use of the ISO OSI protocols should be used. In the USA a community initiative has been proposed. The background to these approaches is discussed. (author)

  20. Microphysics, cosmology, and high energy astrophysics

    International Nuclear Information System (INIS)

    Hoyle, F.

    1974-01-01

    The discussion of microphysics, cosmology, and high energy astrophysics includes particle motion in an electromagnetic field, conformal transformations, conformally invariant theory of gravitation, particle orbits, Friedman models with k = 0, +-1, the history and present status of steady-state cosmology, and the nature of mass. (U.S.)

  1. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  2. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  3. Geometrical scaling in high energy hadron collisions

    International Nuclear Information System (INIS)

    Kundrat, V.; Lokajicek, M.V.

    1984-06-01

    The concept of geometrical scaling for high energy elastic hadron scattering is analyzed and its basic equations are solved in a consistent way. It is shown that they are applicable to a rather small interval of momentum transfers, e.g. maximally for |t| 2 for pp scattering at the ISR energies. (author)

  4. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Jeppsson, M.; Johansson, B.; Jensen, Peter Ruhdal

    2003-01-01

    production levels of G6PDH on xylose fermentation. We used a synthetic promoter library and the copper-regulated CUP1 promoter to generate G6PDH-activities between 0% and 179% of the wildtype level. G6PDH-activities of 1% and 6% of the wild-type level resulted in 2.8- and 5.1-fold increase in specific xylose...

  5. Effect of Oestrogen on Altering the Serum and Urinary Levels of Calcium, Phosphate and Magnesium in Hysterectomised Women Compared to Natural Menopausal South Indian Women: A Case Control Study.

    Science.gov (United States)

    Sonu, Yeldose; Avinash, S S; Sreekantha; Arun Kumar, K; Malathi, M; Shivashankara, A R

    2016-07-01

    Given the paucity of studies conducted to know the effect of suddenness and earlier onset of endocrinological changes associated with hysterectomy, on the serum and urinary levels of calcium, magnesium and phosphate the present study was conducted to compare the levels of calcium, magnesium and phosphate in serum and urine of hysterectomised and natural menopausal south Indian women. This is a cross-sectional observational study. The study included three groups of 30 healthy premenopausal, 30 early surgical menopausal and 30 natural post menopausal women. Women suffering from any endocrine disease were excluded. Analysis was performed in serum and urine sample. The levels of calcium, magnesium and phosphate in serum and calcium/creatinine, magnesium/creatinine and phosphate/creatinine ratio were estimated in urine by spectrophotometric method. Hysterectomised women (serum calcium: 8.7 ± 0.09 mg/dl; urine calcium/creatinine: 0.16 ± 0.02) have significantly low serum calcium (p women (serum magnesium: 2.1 ± 0.03; serum phosphate: 4.4 ± 0.16; urinary calcium/creatinine: 0.17 ± 0.02; urinary magnesium/creatinine: 0.09 ± 0.01) have significantly high serum magnesium (p = 0.016), serum phosphate (p = 0.043) and high urinary calcium/creatinine (p = 0.002), magnesium/creatinine ratio (p = 0.025) compared to healthy pre menopausal women. Post menopausal women (serum calcium: 9.1 ± 0.08) have significantly high serum calcium and phosphate compared to hysterectomised women (serum phosphate: 3.93 ± 0.11). Hysterectomised women have significantly low serum calcium, oestrogen and high urinary calcium/creatinine ratio compared to healthy premenopausal women and low serum calcium and low serum phosphate compared to natural postmenopausal women. Natural postmenopausal women had low serum oestrogen and high serum magnesium, serum phosphate, urinary calcium creatinine ratio and urinary magnesium creatinine ratio compared to healthy premenopausal

  6. The ecological effects of water level fluctuation and phosphate enrichment in mesotrophic peatlands are strongly mediated by soil chemistry

    NARCIS (Netherlands)

    Mettrop, I.S.; Rutte, M.D.; Kooijman, A.M.; Lamers, L.P.M.

    2015-01-01

    Since the re-establishment of a more natural water regime is considered by water management in wetlands with artificially stable water levels, the biogeochemical and ecological effects of water level fluctuation with different nutrient loads should be investigated. This is particularly important for

  7. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  8. AMODS and High Energy Density Sciences

    International Nuclear Information System (INIS)

    Rhee, Y.-J.

    2011-01-01

    Following a brief introduction to the Lab for Quantum Optics (LFQO) in KAERI, which has been devoted to the research on atomic spectroscopy for more than 20 years with precision measurement of atomic parameters such as isotope shift, hyperfine structures, autoionization levels and so on as well as with theoretical analysis of atomic systems by developing relativistic calculation methodologies for laser propagation and population dynamics, electron impact ionization, radiative transitions of high Z materials, etc for the application to isotope separation, the AMODS (Atomic Molecular and Optical Database Systems) which was established in 1997 and has been a member of International Data Center Network of IAEA since then is explained by giving an information on the data sources and internal structure of the compilation of AMODS. Since AMODS was explained in detail during last DCN meeting, just a brief introduction is given this time. Then more specific research themes carried out in LFQO in conjunction with A+M data are discussed, including (1) electron impact ionization processes of W, Mo, Be, C, etc, (2) spectra of highly charged ions of W, Xe, and Si, (3) dielectronic recombination process of Fe ion. Also given are the talk about research activities about the simulations of high energy density experiments such as those performed at (1) GEKKO laser facility (Japan) for X-ray photoionization of low temperature Si plasma, which can explain the unsolved arguments on the X-ray spectra of black holes and/or neutron stars, (2) VULCAN laser facility (UK) for two dimensional compression of cylindrical target and investigation of hot electron transport in the compressed target plasma to understand the fast ignition process of laser fusion, (3) LULI laser facility (France) and TITAN laser facility (USA) for one dimensional compression of aluminum targets with different laser energies, and (4) PALS facility (Czech Republic) for 'Laser Induced Cavity Pressure Acceleration' to

  9. Influence of folic acid, pyridoxal phosphate and cobalamin on plasma homocyst(e)ine levels and the susceptibility of low-density lipoprotein to ex-vivo oxidation.

    Science.gov (United States)

    Weiss, N; Feussner, A; Hailer, S; Spengel, F A; Keller, C; Wolfram, G

    1999-10-15

    Mild hyperhomocyst(e)inaemia is a risk factor for atherosclerotic vascular disease. In-vitro studies have shown that autooxidation of homocyst(e)ine is accompanied by the generation of oxygen radicals. This may lead to oxidative modification of low-density lipoproteins (LDL) and promote atherosclerotic vascular lesions. In male patients with peripheral arterial occlusive disease we determined fasting and post methionine load homocyst(e)ine levels by high performance liquid chromatography and the susceptibility of their LDL particles to ex-vivo oxidation by continously measuring the conjugated diene production induced by incubation with copper ions. Oxidation resistance (expressed as lag time), maximal oxidation rate, and extent of oxidation (expressed of total diene production) of LDL from patients with normal or mildly elevated homocyst(e)ine levels did not differ significantly. Folic acid, pyridoxal phosphate and cobalamin supplementation significantly decreased plasma homocyst(e)ine levels in hyperhomocyst(e)inaemic patients. This went along with a significant decrease in the extent of LDL oxidation and additionally increased HDL-cholesterol levels. The clinical relevance of these findings for the long-term course of atherosclerotic vascular disorders has to be determined by intervention studies.

  10. Cinacalcet reduces plasma intact parathyroid hormone, serum phosphate and calcium levels in patients with secondary hyperparathyroidism irrespective of its severity.

    LENUS (Irish Health Repository)

    2011-09-01

    To evaluate the relationship between the severity of secondary hyperparathyroidism (SHPT) - defined in terms of baseline plasma intact parathyroid hormone (iPTH) level - and the magnitude of response to cinacalcet.

  11. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Albanese, R.C.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March--December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  12. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March through December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  13. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contact AC02-87ER40368 during the period from March of 1989 to February of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a precision study of the A-dependence of massive muon-pion production and a study of low-multiplicity decay modes of charm. We are also participating in the design of detectors for the SSC. Finally, a minor effort is being given to analyzing data from Fermilab of particles with lifetime between 10 -12 and 10 -13 seconds. A more detailed description of the work of the NIU high energy physics group can be found in the narrative accompanying our grant renewal proposal. 10 refs

  14. Prospects of High Energy Laboratory Astrophysics

    International Nuclear Information System (INIS)

    Ng, Johnny S.T.; SLAC

    2006-01-01

    Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms

  15. Compilation of current high energy physics experiments

    International Nuclear Information System (INIS)

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche

  16. A Parton Shower for High Energy Jets

    CERN Document Server

    Andersen, Jeppe R; Smillie, Jennifer M

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss in detail the arising description of the soft, collinear and hard regions by examples in pure QCD jet-production.

  17. Bell inequalities in high energy physics

    International Nuclear Information System (INIS)

    Ding Yibing; Li Junli; Qiao Congfeng

    2007-01-01

    We review in this paper the research status on testing the completeness of Quantum mechanics in High Energy Physics, especially on the Bell Inequalities. We briefly introduce the basic idea of Einstein, Podolsky, and Rosen paradox and the results obtained in photon experiments. In the content of testing the Bell inequalities in high energy physics, the early attempts of using spin correlations in particle decays and later on the mixing of neutral mesons used to form the quasi-spin entangled states are covered. The related experimental results in K 0 and B 0 systems are presented and discussed. We introduce the new scheme, which is based on the non-maximally entangled state and proposed to implement in φ factory, in testing the Local Hidden Variable Theory. And, we also discuss about the possibility of realising it to the tau charm factory. (authors)

  18. Individual Dosimetry for High Energy Radiation Fields

    International Nuclear Information System (INIS)

    Spurny, F.

    1999-01-01

    The exposure of individuals on board aircraft increased interest in individual dosimetry in high energy radiation fields. These fields, both in the case of cosmic rays as primary radiation and at high energy particle accelerators are complex, with a large diversity of particle types, their energies, and linear energy transfer (LET). Several already existing individual dosemeters have been tested in such fields. For the component with high LET (mostly neutrons) etched track detectors were tested with and without fissile radiators, nuclear emulsions, bubble detectors for both types available and an albedo dosemeter. Individual dosimetry for the low LET component has been performed with thermoluminescent detectors (TLDs), photographic film dosemeters and two types of electronic individual dosemeters. It was found that individual dosimetry for the low LET component was satisfactory with the dosemeters tested. As far as the high LET component is concerned, there are problems with both the sensitivity and the energy response. (author)

  19. Origin of the universe and high energy

    International Nuclear Information System (INIS)

    Montoya Z, M.

    1994-01-01

    In this book it is briefly exposed what it is done in the world in relation with the high energy physics. Also, it is presented a brief historical description of the earth evolution, the universe and physics in general. This book counts with eight chapters. The first chapter deals with the relationship of man with science. The second chapter speaks about the origin of universe. The third chapter comments about the stars and galaxies formation. The fourth chapter treats how the scientists and researchers continue to studying the subnuclear world. The fifth chapter deals with subjects and models of nuclear physics. In the sixth chapter it is described the function of the particles accelerator. The seventh chapter comments about the multidisciplinary aspects of the research of elementary particles. Finally, the eighth chapter deals with the advances of high energy physics in the andean region of Latin America. (author)

  20. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  1. Report on high energy neutron dosimetry workshop

    International Nuclear Information System (INIS)

    Alvar, K.R.; Gavron, A.

    1993-01-01

    The workshop was called to assess the performance of neutron dosimetry per the responses from ten DOE accelerator facilities to an Office of Energy Research questionnaire regarding implementation of a personnel dosimetry requirement in DRAFT DOE 5480.ACC, ''Safety of Accelerator Facilities''. The goals of the workshop were to assess the state of dosimetry at high energy accelerators and if such dosimetry requires improvement, to reach consensus on how to proceed with such improvements. There were 22 attendees, from DOE Programs and contract facilities, DOE, Office of Energy Research (ER), Office of Environmental Safety and Health (EH), Office of Fusion Energy, and the DOE high energy accelerator facilities. A list of attendees and the meeting agenda are attached. Copies of the presentations are also attached

  2. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  3. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M.T.

    2015-05-22

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  4. ANTARES: A High Energy Neutrino Undersea Telescope

    International Nuclear Information System (INIS)

    Hernandez, J.J.

    1999-01-01

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration, formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological defects, Q-balls, etc.). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented. (author)

  5. 22nd DAE High Energy Physics Symposium

    CERN Document Server

    2018-01-01

    These proceedings gather invited and contributed talks presented at the XXII DAE-BRNS High Energy Physics (HEP) Symposium, which was held at the University of Delhi, India, on 12–16 December 2016. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Neutrino Physics, (2) Standard Model Physics (including Electroweak, Flavour Physics), (3) Beyond Standard Model Physics, (4) Heavy Ion Physics & QCD (Quantum Chromodynamics), (5) Particle Astrophysics & Cosmology, (6) Future Experiments and Detector Development, (7) Formal Theory, and (8) Societal Applications: Medical Physics, Imaging, etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the leading symposiums in the field of Elementary Particle Physics, is held every other year in India and supported by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India. As man...

  6. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  7. High energy physics at UC Riverside

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given

  8. Cosmic physics: the high energy frontier

    International Nuclear Information System (INIS)

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies 10 8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic γ-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violations of Lorentz invariance as well as Planck scale physics and quantum gravity. (topical review)

  9. Applications of SSNTD's in high energy physics

    International Nuclear Information System (INIS)

    Otterlund, I.

    1976-09-01

    Different applications of the emulsion technique in high energy physics are given. Investigations of heavy ion and proton-nucleus reactions with the conventional emulsion technique are presented together with a short interpretation of recent results. Methods of using nuclear emulsion with embedded targets will be discussed. Emulsion stacks in hybrid systems with electronic tagging suggest a new and interesting application of the emulsion technique. (Auth.)

  10. High-energy accelerators in medicine

    CERN Document Server

    Mandrillon, Pierre

    1992-05-04

    The treatment of tumours with charged particles, ranging from protons to "light ions" ( Carbon, Oxygen, Neon) has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. The rationale for this new radiotherapy, the high energy accelerators and the beam delivery systems are presented in these two lectures.

  11. An experimental high energy physics program

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.

    1988-01-01

    The theoretical and experimental high energy physics program is reviewed, including particle detectors. Topics discussed include τ and B physics, gamma-ray astronomy, neutrino oscillations in matter with three flavors applied to solar and supernova neutrinos, effective field theories, a possible fifth force, the dynamics of hadrons and superstrings, mathematics of grand unified theories, chiral symmetry breaking, physics at the Fermilab collider, and development of the TOPAZ detector

  12. Perspectives in high energy nuclear collisions

    International Nuclear Information System (INIS)

    Rafelski, J.

    1983-08-01

    This report gives an overview of some aspects of hadronic physics relevant for the conception of a research facility devoted to the study of high energy nuclear collisions. Several concepts to be studied in nuclear collisions are selected, with emphasis placed on the properties and nature of the quark-gluon plasma, the formation of the plasma state in the central region and its anticipated lifetime, and the observability, through strangeness content of this new form of nuclear matter. (orig.)

  13. High-energy capacitance electrostatic micromotors

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2003-03-01

    The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.

  14. High energy collisions of nuclei: experiments

    International Nuclear Information System (INIS)

    Heckman, H.H.

    1977-09-01

    Heavy-ion nuclear reactions with projectile energies up to 2.1 GeV/A are reviewed. The concept of ''rapidity'' is elucidated, and the reactions discussed are divided into sections dealing with target fragmentation, projectile fragmentation, and the intermediate region, with emphasis on the production of light nuclei in high-energy heavy-ion collisions. Target fragmentation experiments using nuclear emulsion and AgCl visual track detectors are also summarized. 18 figures

  15. Particle physics experiments at high energy colliders

    International Nuclear Information System (INIS)

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  16. UNIX at high energy physics Laboratories

    International Nuclear Information System (INIS)

    Silverman, Alan

    1994-01-01

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide

  17. High energy excitations in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  18. High energy transients: The millisecond domain

    Science.gov (United States)

    Rao, A. R.

    2018-02-01

    The search for high energy transients in the millisecond domain has come to the focus in recent times due to the detection of gravitational wave events and the identification of fast radio bursts as cosmological sources. Here we highlight the sensitivity limitations in the currently operating hard X-ray telescopes and give some details of the search for millisecond events in the AstroSat CZT Imager data.

  19. Quark model and high energy collisions

    International Nuclear Information System (INIS)

    Nyiri, J.; Kobrinsky, M.N.

    1982-06-01

    The aim of the present review is to show that the additive quark model describes well not only the static features of hadrons but also the interaction processes at high energies. Considerations of the hadron-hadron and hadron-nucleus interactions and of the hadron production in multiparticle production processes suggest serious arguments in favour of the nucleus-like hadron structure and show the possibility to apply the rules of quark statistics to the description of the secondary particle production. (author)

  20. Introduction to high energy cosmic ray physics

    International Nuclear Information System (INIS)

    Battistoni, G.; Grillo, A.F.

    1995-01-01

    After a few general qualitative considerations about the characteristics of primary cosmic rays arriving at the top of atmosphere, the fundamental concepts on their propagation and acceleration are discussed. The experimental situation, both from direct and indirect experiments, is presented, followed by a discussion on some concepts on hadronic interactions at high energy which are applied in a simplified and analytical model to the production of secondary particles in atmosphere

  1. High energy irradiation of bacterial membrane vesicles

    International Nuclear Information System (INIS)

    De La Rosa, M.A.M.

    1977-01-01

    The interactions of membrane components and two well-defined transport systems in the E. coli ML 308-225 membrane vesicles with 60 Co gamma radiation were investigated. The results presented show that gamma radiation can monitor membrane components and functions of varying radiosensitivities. The possible application of high-energy radiation as a physical probe of membrane structure and functions is indeed promising

  2. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  3. Proposal for a High Energy Nuclear Database

    International Nuclear Information System (INIS)

    Brown, David A.; Vogt, Ramona

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews

  4. The high energy accelerator program in Japan

    International Nuclear Information System (INIS)

    Ozaki, S.

    1987-01-01

    The author observes that in order to survey the intentions of Japanese high energy physicists and to make a recommendation to the High Energy Committee on future plans for high energy physics in Japan, including accelerators after TRISTAN, international collaboration projects and non-accelerator physics, a subcommittee of fifteen members is formed. The committee recommendation reads: A) For a new energy frontier, 1. Immediate initiation of R/D efforts for an e/sup +/e/sup -/ linear collider of TeV class, constructs a possible home-based facility, 2. Promotes international collaborative experiments using the SSC for the hadron sector, B) As projects of immediate concern: 1. The energy of the TRISTAN main ring increases further makes a possible low energy, high luminosity e/sup +/e/sup -/ collider operation in the TRISTAN complex, 2. The intensity of the 12 GeV PS at KEK increases, 3. Experiments in non-accelerator particle physics are promoted. In this contribution, the current status of the TRISTAN project and some of the R/D program on accelerator technology are reported

  5. Hadron interactions at high energy in QCD

    International Nuclear Information System (INIS)

    Levin, E.M.; Ryskin, M.G.

    1988-01-01

    Well known the typical hadronic interactions at high energy are soft processes occurring at large distances where the mysterious confinement forces should be essential. Due to this fact, discussing these processes at first sight the authors are to use and really use some models that incorporate their educated guess about the confinement and utilize the QCD degrees of freedom. But really these models use the QCD terminology rather than the explicit form of the QCD interaction. Up to now the multiparticle dynamics had been the dynamics of reggeons with some detailization coming from their hypothesis about confinement. It is the Reggeon Calculus or the reggeon phenomenology that allows them to describe the main properties of exclusive and inclusive reactions at high energy in agreement with experiment. This paper discusses this problem at this Symposium in many details. However, such pure phenomenological understanding cannot satisfy all of us at the moment. The authors would like to understand the multiparticle production and other soft processes at high energy in more microscopic way using directly the form of the QCD Lagrangian

  6. High energy behaviour of nonabelian gauge theories

    International Nuclear Information System (INIS)

    Bartels, J.

    1979-10-01

    The high energy behavior (in the Regge limit) of nonabelian gauge theories is reviewed. After a general remark concerning the question to what extent the Regge limit can be approached within perturbation theory, we first review the reggeization of elementary particles within nonabelian gauge theories. Then the derivation of a unitary high energy description of a massive (= spontaneously broken) nonabelian gauge model is described, which results in a complete reggeon calculus. There is strong evidence that the zero mass limit of this reggeon calculus exists, thus giving rise to the hope that the Regge behavior in pure Yang-Mills theories (QCD) can be reached in this way. In the final part of these lectures two possible strategies for solving this reggeon calculus (both for the massive and the massless case) are outlined. One of them leads to a geometrical picture in which the distribution of the wee partons obeys a diffusion law. The other one makes contact with reggeon field theory and predicts that QCD in the high energy limit is described by critical reggeon field theory. (orig.)

  7. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  8. Rare earth magnets with high energy products

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  9. A high-energy nuclear database proposal

    International Nuclear Information System (INIS)

    Brown, D.A.; Vogt, R.; UC Davis, CA

    2006-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews. (author)

  10. Proposal for a High Energy Nuclear Database

    International Nuclear Information System (INIS)

    Brown, D A; Vogt, R

    2005-01-01

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews

  11. Simultaneous quantification of porcine myocardial adenine nucleotides and creatine phosphate by ion-pair reverse-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Cordis, G.A.; Das, D.K.

    1987-01-01

    In order to follow the energy metabolism and the levels of high-energy phosphate compounds in porcine myocardium subjected to ischemic insult, it was necessary to develop a high-performance liquid chromatography (HPLC) method where creatine phosphate (CP) and the adenine nucleotides could be measured simultaneously in a single run. Currently available ion-pair reverse-phase HPLC methods require a separate injection with a change in wavelength and mobile phase in order to measure the creatine phosphate, while baseline separation of AMP is lacking. The ion-exchange HPLC method includes a simultaneous determination, but the baseline drifts due to the gradient and baseline separation of AMP is not achieved. In the following ion-pair reverse-phase HPLC method, simultaneous measurements of porcine myocardial adenine nucleotides and creatine phosphate were achieved along with a stable baseline and homogeneous baseline separation of each measured compound, allowing accurate quantification

  12. Deviation from normal Boltzmann distribution of high-lying energy levels of iron atom excited by Okamoto-cavity microwave-induced plasmas using pure nitrogen and nitrogen–oxygen gases

    International Nuclear Information System (INIS)

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen–oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen

  13. Experimental microdosimetry in high energy radiation fields

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Bottollier-Depois, J.-F.; Molokanov, A.G.

    2000-01-01

    To determine microdosimetric characteristics in the beams and fields of high energy panicles with the goal, also, to compare the classical method of experimental microdosimetry, a tissue equivalent low pressure proportional counter (TEPC) with the linear energy transfer (LET) spectrometer based on a chemically etched polyallyldiglycolcarbonate as a track etched detector (TED). To test the use of TED LET spectrometer in the conditions, where the use or TEPC is not possible (high energy charged particle beams at high dose rates). The results obtained with the TEPC NAUSICAA were used in this work to compare them with other data. This TEPC measures directly the linear energy in the interval between 0.15 and 1500 keV/μm in tissue, the low gas pressure (propan based TE mixture) permits to simulate a tissue element of about 3 μm. It can be used in the fields with instantaneous dose equivalent rates between 1 μSv/hour and 1 mSv/ hour. TED LET spectrometer developed to determine LET spectra between 10 and 700 keV/μm in tissue. Primarily, track-to-bulk etch rate ratios are determined through the track parameters measurements, the spectra of these ratios are convened to LET spectra using the calibration curve established by means of heavy charge panicles. The critical volume of thi spectrometer is supposed to be a few nm. There is no limit of use for the dose rate, the background tracks limit the lowest threshold to about 1 mSv, the overlapping of tracks (the highest one) to 100 mSv. Both experimental microdosimetry methods have been used in on board aircraft radiation fields, in on-Earth high energy radiation reference fields, and in the beams of protons with energies up to 300 MeV (Dubna, Moscow, Loma Linda). First, it should be emphasized, that in all high energy radiation fields studied, we concentrated our analysis on the region, where both methods overlap, i.e. between 10 and 1000 keV/μm in tissue. It should be also stressed, that the events observed in this region

  14. Novel room-temperature-setting phosphate ceramics for stabilizing combustion products and low-level mixed wastes

    International Nuclear Information System (INIS)

    Wagh, A.S.; Singh, D.

    1994-01-01

    Argonne National Laboratory, with support from the Office of Technology in the US Department of Energy (DOE), has developed a new process employing novel, chemically bonded ceramic materials to stabilize secondary waste streams. Such waste streams result from the thermal processes used to stabilize low-level, mixed wastes. The process will help the electric power industry treat its combustion and low-level mixed wastes. The ceramic materials are strong, dense, leach-resistant, and inexpensive to fabricate. The room-temperature-setting process allows stabilization of volatile components containing lead, mercury, cadmium, chromium, and nickel. The process also provides effective stabilization of fossil fuel combustion products. It is most suitable for treating fly and bottom ashes

  15. Phosphate transport by hyphae of field communities of arbuscular mycorrhizal fungi at two levels of P fertilization

    DEFF Research Database (Denmark)

    Thingstrup, I.; Kahiluoto, H.; Jakobsen, I.

    2000-01-01

    at the higher P level (77 and 49% of total P uptake, respectively). The AMF in P-fertilized soil transported less P-32 from the root-free compartment to the plant after 23 days than the AMF in unfertilized soil, but this difference disappeared in plants harvested after 27 and 32 days. The production of hyphae...... was largely similar in both fertilization treatments, indicating that the capacity for P uptake and transport by hyphae of the two AMF communities was similar....

  16. Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    CERN Document Server

    Cherkashyna, Nataliia; DiJulio, Douglas D.; Khaplanov, Anton; Pfeiffer, Dorothea; Scherzinger, Julius; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Ansell, Stuart; Iverson, Erik B.; Ehlers, Georg; Gallmeier, Franz X.; Panzner, Tobias; Rantsiou, Emmanouela; Kanaki, Kalliopi; Filges, Uwe; Kittelmann, Thomas; Extegarai, Maddi; Santoro, Valentina; Kirstein, Oliver; Bentley, Phillip M.

    2015-01-01

    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument pe...

  17. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    International Nuclear Information System (INIS)

    Moiseev, Alexander; Ormes, J.F.; Funk, Stefan

    2007-01-01

    The LAT science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to ∼1.5 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30%, the residual hadron contamination does not exceed 2-3% of the electron flux. It is expected to collect ∼ ten million of electrons with the energy above 20 GeV for one year of observation. Precise spectrum reconstruction with collected electron statistics opens the unique opportunity to investigate several important problems such as models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and search for KKDM particles decay through their contribution to the electron spectrum

  18. A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Hitoshi [Univ. of Tsukuba (Japan)

    1984-09-01

    High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower.

  19. The High-Energy Astrophysics Learning Center, Version 1. [CD-ROM].

    Science.gov (United States)

    Whitlock, Laura A.; Allen, Jesse S.; Lochner, James C.

    The High-Energy Astrophysics (HEA) Learning Center gives students, teachers, and the general public a window into the world of high-energy astrophysics. The universe is revealed through x-rays and gamma rays where matter exists under extreme conditions. Information is available on astrophysics at a variety of reading levels, and is illustrated…

  20. Liver, plasma and erythrocyte levels of thiamine and its phosphate esters in rats with acute ethanol intoxication: a comparison of thiamine and benfotiamine administration.

    Science.gov (United States)

    Portari, Guilherme Vannucchi; Vannucchi, Helio; Jordao, Alceu Afonso

    2013-03-12

    Thiamine and benfotiamine are vitamin B1 and pro-vitamin B1 substances, respectively. Vitamin B1 plays an essential role in energy metabolism, and its deficiency leads to neurologic and cardiovascular pathologies, as seen in alcoholics. This study presents new data about the effects of thiamine hydrochloride or benfotiamine treatment given to rats with acute alcohol intoxication, on the distribution of thiamine and its phosphate esters in liver, plasma and erythrocytes. The treatments were effective in increasing thiamine levels in plasma, erythrocytes and liver cells. The benfotiamine-treated group had its total plasma thiamine increased by 100%. In erythrocytes, thiamine levels were 4- and 25-fold higher in the groups treated with thiamine and benfotiamine, respectively, compared with the untreated groups. Liver thiamine was increased by 60% in the treated groups compared with the untreated groups. Thus, we verified the high bioavailability especially of benfotiamine within 6h of ethanol administration. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1994-01-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet

  2. Grid Computing in High Energy Physics

    International Nuclear Information System (INIS)

    Avery, Paul

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them.Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software resources, regardless of location); (4) collaboration (providing tools that allow members full and fair access to all collaboration resources and enable distributed teams to work effectively, irrespective of location); and (5) education, training and outreach (providing resources and mechanisms for training students and for communicating important information to the public).It is believed that computing infrastructures based on Data Grids and optical networks can meet these challenges and can offer data intensive enterprises in high energy physics and elsewhere a comprehensive, scalable framework for collaboration and resource sharing. A number of Data Grid projects have been underway since 1999. Interestingly, the most exciting and far ranging of these projects are led by collaborations of high energy physicists, computer scientists and scientists from other disciplines in support of experiments with massive, near-term data needs. I review progress in this

  3. [Experimental and theoretical high energy physics

    International Nuclear Information System (INIS)

    Boulware, D.

    1988-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled us to make the world's most accurate determination of the composition of the cosmic rays above 10 13 eV. We have the only detector that can observe interaction vertices and identify particles at energies up to 10--15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detectors will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques are also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15--200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  4. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1991-06-01

    Full Text Available The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females aged 17 to 58 years. Twenty one (53.84% of the patients presented a slow acetylatingphenotype and 18(46.16% a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD acti vity was decreased in 5(23.80% slow acetylators and in 4(22.22% fast acetylators. Glutathione reductase activity was decreased in 14 (66.66% slow acetylators and in 12 (66.66% fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p Os autores avaliaram o fenótipo acetilador da isoniazida, hematócrito, hemoglobina, atividade da glicose-6- fosfato desidrogenase, glutationa redutase e os níveis séricos de sulfadoxina de 39 doentes com paracoccidíoidomicose, senão 33 do sexo masculino e 6 do feminino, com idades compreendidas entre 17 e 58 anos. Vinte e um (53,84% doentes apresentaram fenótipo acetilador lento e 18 (46,16% rápido. A atividade da glicose-6-fosfato desidrogenase (G6PD esteve diminuída em 5 (23,80% acetiladores lentos e 4 (22,22% rápidos. A atividade da glutationa redutase esteve diminuída em 14 (66,66% acetiladores lentos e 12 (66,66% rápidos. Os níveis séricos de sulfadoxina livre e total foram maiores nos acetiladores lentos (p < 0,02. A análise dos resultados permite concluir que os níveis séricos de sulfadoxina relaciona-se com o fenótipo acetilador. Além disso, os níveis estiveram sempre acima de 50 µg/ml, níveis estes considerados terapêuticos. Por outro lado, a deficiência de glutationa redutase pode estar relacionada com a má absorção intestinal de nutrientes, entre eles riboflavina, vitamina precursora de FAD.

  5. European School of High-Energy Physics

    CERN Document Server

    2006-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures notes on field theory and the Standard Model, quantum chromodynamics, flavour physics and CP violation, experimental aspects of CP violation in K and B decays, relativistic heavy-ion physics, and the scientific programme of the Joint Institute for Nuclear Research. These core scientific topics are complemented by a lecture about the physics of ski jumping.

  6. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    1991-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract FG02-91ER40641 during the period from March 1991 to December 1991. Our group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, we are also members of the SDC collaboration at the SSC

  7. High-energy proton scattering on nuclei

    CERN Document Server

    Klovning, A; Schlüpmann, K

    1973-01-01

    High-energy proton scattering on Be, C, Cu and Pb targets is studied using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/c, the square of the four-momentum transfer varied from t=0.1 to t =4.4 GeV/sup 2/. Momentum distributions of scattered protons are recorded in the high-momentum range. An application of multiple- scattering theory yielded agreement of calculation and experimental results to within a +or-30% uncertainty of the former. (15 refs).

  8. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  9. Channeling and dechanneling at high energy

    International Nuclear Information System (INIS)

    Carrigan, R.A. Jr.

    1987-01-01

    The possibility of using channeling as a tool for high energy particle physics has now been extensively investigated. Bent crystals have been used as an accelerator extraction element and for particle deflection. Applications as accelerating devices have been discussed but appear remote. The major advantage in using a bent crystal rather than a magnet is the large deflection that can be achieved in a short length. The major disadvantage is the low transmission. A good understanding of dechanneling is important for applications. 43 refs., 1 fig., 3 tabs

  10. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  11. Radiographic imaging system for high energy radiation

    International Nuclear Information System (INIS)

    1975-01-01

    A radiographic imaging system for high energy radiation is described utilizing a detector of such radiation and a mask having regions relatively transparent to such radiation and interspersed among regions relatively opaque to such radiation. A relative motion is imparted between the mask and the detector, the detector providing a time varying signal in response to the incident radiation and in response to the relative motion. The time varying signal provides, with the aid of a decoder, an image of a source of such radiation

  12. Studies in theoretical high energy particle physics

    International Nuclear Information System (INIS)

    Aratyn, H.; Brekke, L.; Keung, Wai-Yee; Sukhatme, U.

    1993-01-01

    Theoretical work on the following topics is briefly summarized: symmetry structure of conformal affine Toda model and KP hierarchy; solitons in the affine Toda and conformal affine Toda models; classical r-matrices and Poisson bracket structures on infinite-dimensional groups; R-matrix formulation of KP hierarchies and their gauge equivalence; statistics of particles and solitons; charge quantization in the presence of an Alice string; knotting and linking of nonabelian flux; electric dipole moments; neutrino physics in gauge theories; CP violation in the high energy colliders; supersymmetric quantum mechanics; parton structure functions in nuclei; dual parton model. 38 refs

  13. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1991-01-01

    The Whipple Observatory High Resolution Camera will be used in a vigorous program of observations to search for new sources of very-high-energy gamma rays. In addition, a search for antimatter using the moon-earth system as an ion spectrometer will be begun. The first phase of GRANITE, the new 37-element 11-m camera, will be concluded with first light scheduled for September, 1991. The two cameras will operate in support of the Gamma Ray Observatory mission in the winter of 1991/2

  14. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1993-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from July of 1990 to June of 1991 and from February to March 1992. Our group has three main efforts which will be discussed in this paper. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789 which involved detection of meson decays. Finally, we discuss our work with the SDC collaboration at the SSC

  15. High energy ion implantation for IC processing

    International Nuclear Information System (INIS)

    Oosterhoff, S.

    1986-01-01

    In this thesis the results of fundamental research on high energy ion implantation in silicon are presented and discussed. The implantations have been carried out with the 500 kV HVEE ion implantation machine, that was acquired in 1981 by the IC technology and Electronics group at Twente University of Technology. The damage and anneal behaviour of 1 MeV boron implantations to a dose of 10 13 /cm 2 have been investigated as a function of anneal temperature by sheet resistance, Hall and noise measurements. (Auth.)

  16. Photomask specifications for high energy physics detectors

    CERN Document Server

    Pindo, M

    2002-01-01

    Planar technologies used for radiation detector fabrication imply an extensive use of photomasks whose characteristics are critical in determining final detector performance. Compatibly with their manufacturing process, photomasks must satisfy the application-specific requirements dictated both by wafer manufacturers and detector final users. The design and realization of microstrip and pixel detectors, widely used in high energy physics experiments, ask for intensive scientific effort, advanced technology and important economical investments. Photomask specification definition is one of the fundamental steps to optimize detector fabrication processes and fulfill experimental requirements at the most appropriate cost.

  17. Siberian Snakes in high-energy accelerators

    International Nuclear Information System (INIS)

    Mane, S R; Shatunov, Yu M; Yokoya, K

    2005-01-01

    We review modern techniques to accelerate spin-polarized beams to high energy and to preserve their polarization in storage rings. Crucial to the success of such work is the use of so-called Siberian Snakes. We explain these devices and the reason for their necessity. Closely related to Snakes is the concept of 'spin rotators'. The designs and merits of several types of Snakes and spin rotators are examined. Theoretical work with Snakes and spin rotators, and experimental results from several storage rings, are reviewed, including the so-called Snake resonances. (topical review)

  18. Application of nanotechnologies in high energy physics

    International Nuclear Information System (INIS)

    Angelucci, R.; Corticelli, F.; Cuffiani, M.; Dallavalle, G.M.; Malferraxi, L.; Montanari, A.; Montanari, C.; Odorici, F.; Rizzoli, R.; Summonte, C.

    2003-01-01

    In the past, the progressive reduction of electronics integration scale has allowed high energy physics experiments to build particle detectors with a high number of sensitive channels and high spatial granularity, down to the micron scale. Nowadays, the increasing effort towards nanoelectronics and progresses in various fields of nanotechnologies, suggests that the time for nanodetectors is not far to come. As an example of possible application of nanotechnologies in HEP, we present results on fabrication of nanochannel matrices in anodic porous alumina as a template for preparing an array of carbon nanotubes, which we believe can be a promising building block in developing particle detectors with high spatial resolution

  19. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  20. Superconductivity in high energy particle accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)

  1. Future high energy colliders. Formal report

    International Nuclear Information System (INIS)

    Parsa, Z.

    1996-01-01

    This Report includes copies of transparencies and notes from the presentations made at the Symposium on Future High Energy Colliders, October 21-25, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report

  2. Radiographic imaging system for high energy radiation

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1976-01-01

    A radiographic imaging system for high energy radiation utilizing a detector of such radiation and a mask having regions relatively transparent to such radiation interspersed among regions relatively opaque to such radiation is described. A relative motion is imparted between the mask and the detector, the detector providing a time varying signal in response to the incident radiation and in response to the relative motion. The time varying signal provides, with the aid of a decoder, an image of a source of such radiation

  3. High energy approximations in quantum field theory

    International Nuclear Information System (INIS)

    Orzalesi, C.A.

    1975-01-01

    New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt

  4. Particle identification methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    2000-01-27

    This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.

  5. Ionization of atoms by high energy photons

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Ioffe, A.F.

    1994-01-01

    Photoionization of atoms by high energy photons is considered. It is emphasized that in this frequency region the cross section and other characteristics of the process are strongly effected by electron shell polarization and rearrangement effects, including that due to inner vacancy Auger decay. In the effects of nuclear structure could be important and noticeable, i.e. of virtual or real excitation of the nucleus degrees of freedom and of the Quantum Electrodynamics vacuum. Ionization accompanied by secondary photon emission (Compton ionization) is analyzed in the considered domain of energies

  6. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  7. Improvements in high energy computed tomography

    International Nuclear Information System (INIS)

    Burstein, P.; Krieger, A.; Annis, M.

    1984-01-01

    In computerized axial tomography employed with large relatively dense objects such as a solid fuel rocket engine, using high energy x-rays, such as a 15 MeV source, a collimator is employed with an acceptance angle substantially less than 1 0 , in a preferred embodiment 7 minutes of a degree. In a preferred embodiment, the collimator may be located between the object and the detector, although in other embodiments, a pre-collimator may also be used, that is between the x-ray source and the object being illuminated. (author)

  8. High energy cosmic rays: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Gaisser, Thomas K.; Tilav, Serap

    2014-04-01

    We discuss the production of a unique energy spectrum of the high energy cosmic rays detected with air showers by shifting the energy estimates of different detectors. After such a spectrum is generated we fit the spectrum with three or four populations of cosmic rays that might be accelerated at different cosmic ray sources. We also present the chemical composition that the fits of the spectrum generates and discuss some new data sets presented this summer at the ICRC in Rio de Janeiro that may require new global fits.

  9. Models of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-06-01

    The discussion covers nuclear collisions at relativistic energies including classes of high energy nucleus--nucleus collisions, and the kinetics of a central collision; and the asymptotic hadron spectrum including known and unknown hadrons, the relevance of the spectrum and the means of its study, thermodynamics of hadronic matter, examples of hadronic spectra, the temperature, composition of the initial fireball and its expansion, isoergic expansion with no pre-freezeout radiation, isentropic expansion of the fireball, the quasi-dynamical expansion, and finally antinuclei, hypernuclei, and the quark phase. 28 references

  10. Energy peaks: A high energy physics outlook

    Science.gov (United States)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  11. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the $Sigma ^+$ charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  12. High energy multi-gluon exchange amplitudes

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1980-11-01

    We examine perturbative high energy n-gluon exchange amplitudes calculated in the Coulomb gauge. If n exceeds the minimum required by the t-channel quantum numbers, such amplitudes are non-leading in lns. We derive a closed system of coupled integral equations for the corresponding two-particle n-gluon vertices, obtained by summing the leading powers of ln(N μ psup(μ)), where psup(μ) is the incident momentum and Nsup(μ) the gauge-defining vector. Our equations are infra-red finite, provided the external particles are colour singlets. (author)

  13. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  14. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  15. High energy model for irregular absorbing particles

    International Nuclear Information System (INIS)

    Chiappetta, Pierre.

    1979-05-01

    In the framework of a high energy formulation of relativistic quantum scattering a model is presented which describes the scattering functions and polarization of irregular absorbing particles, whose dimensions are greater than the incident wavelength. More precisely in the forward direction an amplitude parametrization of eikonal type is defined which generalizes the usual diffraction theory, and in the backward direction a reflective model is used including a shadow function. The model predictions are in good agreement with the scattering measurements off irregular compact and fluffy particles performed by Zerull, Giese and Weiss (1977)

  16. Advanced Analysis Methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  17. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  18. Data Preservation in High Energy Physics

    CERN Document Server

    Mount, Richard; Le Diberder, Francois; Dubois-Felsmann, Gregory; Neal, Homer; Bellis, Matt; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; Konigsberg, Jacobo; Roser, Robert; Snider, Rick; Lucchesi, Donatella; Denisov, Dmitri; Soldner-Rembold, Stefan; Li, Qizhong; Varnes, Erich; Jonckheere, Alan; Gasthuber, Martin; Gülzow, Volker; Kemp, Yves; Ozerov, Dmitri; Diaconu, Cristinel; South, David; Lobodzinski, Bogdan; Olsson, Jan; Haas, Tobias; Wrona, Krzysztof; Szuba, Janusz; Schnell, Gunar; Sasaki, Takashi; Katayama, Nobu; Hernandez, Fabio; Mele, Salvatore; Holzner, Andre; Hemmer, Frederic; Schroeder, Matthias; Barring, Olof; Brun, Rene; Maggi, Marcello; Igo-Kemenes, Peter; Van Wezel, Jos; Heiss, Andreas; Chen, Gang; Wang, Yifang; Asner, David; Riley, Daniel; Corney, David; Gordon, John

    2009-01-01

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group.

  19. [Experimental and theoretical high energy physics program

    International Nuclear Information System (INIS)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac endash Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e + e - collisions at CERN; bar p endash p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab

  20. Potentially Prebiotic Syntheses of Condensed Phosphates

    Science.gov (United States)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.

  1. An Experimental and Theoretical High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Shipsey, Ian

    2012-07-31

    The Purdue High Energy Physics Group conducts research in experimental and theoretical elementary particle physics and experimental high energy astrophysics. Our goals, which we share with high energy physics colleagues around the world, are to understand at the most fundamental level the nature of matter, energy, space and time, and in order to explain the birth, evolution and fate of the Universe. The experiments in which we are currently involved are: CDF, CLEO-c, CMS, LSST, and VERITAS. We have been instrumental in establishing two major in-house facilities: The Purdue Particle Physics Microstructure Detector Facility (P3MD) in 1995 and the CMS Tier-2 center in 2005. The research efforts of the theory group span phenomenological and theoretical aspects of the Standard Model as well as many of its possible extensions. Recent work includes phenomenological consequences of supersymmetric models, string theory and applications of gauge/gravity duality, the cosmological implications of massive gravitons, and the physics of extra dimensions.

  2. Polarized beams in high energy storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Montague, B W [European Organization for Nuclear Research, Geneva (Switzerland)

    1984-11-01

    In recent years there has been a considerable advance in understanding the spin motion of particles in storage rings and accelerators. The survey presented here outlines the early historical development in this field, describes the basic ideas governing the kinetics of polarized particles in electromagnetic fields and shows how these have evolved into the current description of polarized beam behaviour. Orbital motion of particles influences their spin precession, and depolarization of a beam can result from excitation of spin resonances by orbit errors and oscillations. Electrons and positrons are additionally influenced by the quantized character of synchrotron radiation, which not only provides a polarizing mechanism but also enhances depolarizing effects. Progress in the theoretical formulation of these phenomena has clarified the details of the physical processes and suggested improved methods of compensating spin resonances. Full use of polarized beams for high-energy physics with storage rings requires spin rotators to produce longitudinal polarization in the interaction regions. Variants of these schemes, dubbed Siberian snakes, provide a curious precession topology which can substantially reduce depolarization in the high-energy range. Efficient polarimetry is an essential requirement for implementing polarized beams, whose utility for physics can be enhanced by various methods of spin manipulation.

  3. Theory Summary: Very High Energy Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sarkar Subir

    2013-06-01

    Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.

  4. Grid computing in high-energy physics

    International Nuclear Information System (INIS)

    Bischof, R.; Kuhn, D.; Kneringer, E.

    2003-01-01

    Full text: The future high energy physics experiments are characterized by an enormous amount of data delivered by the large detectors presently under construction e.g. at the Large Hadron Collider and by a large number of scientists (several thousands) requiring simultaneous access to the resulting experimental data. Since it seems unrealistic to provide the necessary computing and storage resources at one single place, (e.g. CERN), the concept of grid computing i.e. the use of distributed resources, will be chosen. The DataGrid project (under the leadership of CERN) develops, based on the Globus toolkit, the software necessary for computation and analysis of shared large-scale databases in a grid structure. The high energy physics group Innsbruck participates with several resources in the DataGrid test bed. In this presentation our experience as grid users and resource provider is summarized. In cooperation with the local IT-center (ZID) we installed a flexible grid system which uses PCs (at the moment 162) in student's labs during nights, weekends and holidays, which is especially used to compare different systems (local resource managers, other grid software e.g. from the Nordugrid project) and to supply a test bed for the future Austrian Grid (AGrid). (author)

  5. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  6. Cyberinfrastructure for high energy physics in Korea

    International Nuclear Information System (INIS)

    Cho, Kihyeon; Kim, Hyunwoo; Jeung, Minho

    2010-01-01

    We introduce the hierarchy of cyberinfrastructure which consists of infrastructure (supercomputing and networks), Grid, e-Science, community and physics from bottom layer to top layer. KISTI is the national headquarter of supercomputer, network, Grid and e-Science in Korea. Therefore, KISTI is the best place to for high energy physicists to use cyberinfrastructure. We explain this concept on the CDF and the ALICE experiments. In the meantime, the goal of e-Science is to study high energy physics anytime and anywhere even if we are not on-site of accelerator laboratories. The components are data production, data processing and data analysis. The data production is to take both on-line and off-line shifts remotely. The data processing is to run jobs anytime, anywhere using Grid farms. The data analysis is to work together to publish papers using collaborative environment such as EVO (Enabling Virtual Organization) system. We also present the global community activities of FKPPL (France-Korea Particle Physics Laboratory) and physics as top layer.

  7. Portable high energy gamma ray imagers

    International Nuclear Information System (INIS)

    Guru, S.V.; Squillante, M.R.

    1996-01-01

    To satisfy the needs of high energy gamma ray imagers for industrial nuclear imaging applications, three high energy gamma cameras are presented. The RMD-Pinhole camera uses a lead pinhole collimator and a segmented BGO detector viewed by a 3 in. square position sensitive photomultiplier tube (PSPMT). This pinhole gamma camera displayed an energy resolution of 25.0% FWHM at the center of the camera at 662 keV and an angular resolution of 6.2 FWHM at 412 keV. The fixed multiple hole collimated camera (FMCC), used a multiple hole collimator and a continuous slab of NaI(Tl) detector viewed by the same PSPMT. The FMCC displayed an energy resolution of 12.4% FWHM at 662 keV at the center of the camera and an angular resolution of 6.0 FWHM at 412 keV. The rotating multiple hole collimated camera (RMCC) used a 180 antisymmetric rotation modulation collimator and CsI(Tl) detectors coupled to PIN silicon photodiodes. The RMCC displayed an energy resolution of 7.1% FWHM at 662 keV and an angular resolution of 4.0 FWHM at 810 keV. The performance of these imagers is discussed in this paper. (orig.)

  8. Tibiofibula Transposition in High-Energy Fractures

    Directory of Open Access Journals (Sweden)

    Peter R. Loughenbury

    2016-01-01

    Full Text Available We report two cases of failed attempts at closed reduction of high-energy tibial fractures with an associated fibula fracture. The first case was a 39-year-old male involved in high-speed motorbike collision, while the second was a 14-year-old male who injured his leg following a fall of three metres. Emergency medical services at the scenes of the accidents reported a 90-degree valgus deformity of the injured limb and both limbs were realigned on scene and stabilized. Adequate alignment of the tibia could not be achieved by manipulation under sedation or anaesthesia. Open reduction and exposure of the fracture sites revealed that the distal fibula fragment was “transposed” and entrapped in the medulla of the proximal tibial fragment. Reduction required simulation of the mechanism of injury in order to disengage the fragments and allow reduction. Tibiofibula transposition is a rare complication of high-energy lower limb fractures which has not previously been reported and may prevent adequate closed reduction. Impaction of the distal fibula within the tibial medulla occurs as the limb is realigned by paramedic staff before transfer to hospital. We recommend that when this complication is identified the patient is transferred to the operating room for open reduction and stabilization of the fracture.

  9. High energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Chou, T.T.

    1990-01-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e + e - annihilation. The geometrical description of high-energy elastic scattering developed earlier is still in general agreement with experiments at the CERN-S bar ppS energies. A simple one-parameter expression for the blackness of bar pp system has been proposed recently which describes very well all existing data from ISR to S bar ppS energies. The geometrical description has also been extended to include processes of fragmentation and diffraction dissociation and other phenomena. In the past five years, a unified physical picture for multiparticle emission in hadron-hadron and e + e - collisions was developed. It focuses on the idea of the wide range of values for the total angular momentum in hadron-hadron collisions. An extension of this consideration yields a theory for the momentum distribution of the outgoing particles which agrees with bar pp and e + e - collision experiments. The results and conclusions of this theory have been extrapolated to higher energies and yielded many predictions which can be experimentally tested. 37 refs

  10. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  11. High Energy Physics (HEP) benchmark program

    International Nuclear Information System (INIS)

    Yasu, Yoshiji; Ichii, Shingo; Yashiro, Shigeo; Hirayama, Hideo; Kokufuda, Akihiro; Suzuki, Eishin.

    1993-01-01

    High Energy Physics (HEP) benchmark programs are indispensable tools to select suitable computer for HEP application system. Industry standard benchmark programs can not be used for this kind of particular selection. The CERN and the SSC benchmark suite are famous HEP benchmark programs for this purpose. The CERN suite includes event reconstruction and event generator programs, while the SSC one includes event generators. In this paper, we found that the results from these two suites are not consistent. And, the result from the industry benchmark does not agree with either of these two. Besides, we describe comparison of benchmark results using EGS4 Monte Carlo simulation program with ones from two HEP benchmark suites. Then, we found that the result from EGS4 in not consistent with the two ones. The industry standard of SPECmark values on various computer systems are not consistent with the EGS4 results either. Because of these inconsistencies, we point out the necessity of a standardization of HEP benchmark suites. Also, EGS4 benchmark suite should be developed for users of applications such as medical science, nuclear power plant, nuclear physics and high energy physics. (author)

  12. Prompt High Energy Dipole γ Emission

    International Nuclear Information System (INIS)

    Corsi, A.; Giaz, A; Bracco, A.

    2011-01-01

    The study of the collective properties of a nuclear system is a powerful tool to understand the structure which lies inside the nucleus. A successful technique which has been used in this field is the measurement of the γ-decay of the highly collective Giant Dipole Resonance (GDR). In fact, GDR can be used as a probe for the internal structure of hot nuclei and, in addition, constitutes a clock for the thermalization process. Using the fusion-evaporation reaction, it has been recently possible to study (i) the yield of the high-energy γ-ray emission of the Dynamical Dipole which takes place during the fusion process and (ii) the degree of isospin mixing at high temperature in the decay of 80 Zr. In the first case it is important to stress the fact that the predictions of the theoretical models might differ depending on the type of nuclear equation of state (EOS) and on the N-N in-medium cross-section used in the calculations while, in the second physics case, the data are relative to the heaviest N = Z nucleus which has been possible to populate in the I = 0 channel using fusion-evaporation reaction. Both experiments were performed at the Laboratori Nazionali di Legnaro using the HECTOR-GARFIELD array. The high-energy γ-rays were measured in coincidence with light charged particles and fusion-evaporation residues. (author)

  13. High energy neutrino astronomy and its telescopes

    International Nuclear Information System (INIS)

    Halzen, F.

    1995-01-01

    Doing astronomy with photons of energies in excess of a GeV has turned out to be extremely challenging. Efforts are underway to develop instruments that may push astronomy to wavelengths smaller than 10 -14 cm by mapping the sky using high energy neutrinos instead. Neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach outside the galaxy and make measurements relevant to cosmology. The field is immersed in technology in the domains of particle physics to which many of its research goals are intellectually connected. To mind come the search for neutrino mass, cold dark matter (supersymmetric particles?) and the monopoles of the Standard Model. While a variety of collaborations are pioneering complementary methods by building telescopes with effective area in excess of 0.01 km 2 , we show here that the natural scale of a high energy neutrino telescope is 1 km 2 . With several thousand optical modules and a price tag unlikely to exceed 100 million dollars, the scope of a kilometer-scale instrument is similar to that of experiments presently being commissioned such as the SNO neutrino observatory in Canada and the Superkamiokande experiment in Japan

  14. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  15. High energy nuclear collisions: theory review

    International Nuclear Information System (INIS)

    Fries, Rainer J.

    2009-01-01

    Full text: High Energy Nuclear Collisions are studied at the Relativistic Heavy Ion Collider (RHIC) and, starting next year, also at the Large Hadron Collider (LHC) to study the formation and properties of quark gluon plasma (QGP). This effort is driven by the prediction that above a certain critical temperature quarks and gluons are deconfined. For the past ten years of running RHIC has performed marvelously. Data from RHIC has answered many initial questions, but it has also provided new, more challenging problems to understand the nature of quark gluon plasma and the dynamics of heavy ion collisions. In this talk I review some of the basic concepts of high energy nuclear collisions and quark gluon plasma formation. We also discuss some of the novel and open questions that we are faced with. We discuss recent predictions on properties of hot quantum chromodynamics, emerging signatures for the color glass condensate, the fascinating idea of local P and CP violation in QCD, as well as ongoing research on hard probes and electromagnetic signatures

  16. GRID computing for experimental high energy physics

    International Nuclear Information System (INIS)

    Moloney, G.R.; Martin, L.; Seviour, E.; Taylor, G.N.; Moorhead, G.F.

    2002-01-01

    Full text: The Large Hadron Collider (LHC), to be completed at the CERN laboratory in 2006, will generate 11 petabytes of data per year. The processing of this large data stream requires a large, distributed computing infrastructure. A recent innovation in high performance distributed computing, the GRID, has been identified as an important tool in data analysis for the LHC. GRID computing has actual and potential application in many fields which require computationally intensive analysis of large, shared data sets. The Australian experimental High Energy Physics community has formed partnerships with the High Performance Computing community to establish a GRID node at the University of Melbourne. Through Australian membership of the ATLAS experiment at the LHC, Australian researchers have an opportunity to be involved in the European DataGRID project. This presentation will include an introduction to the GRID, and it's application to experimental High Energy Physics. We will present the results of our studies, including participation in the first LHC data challenge

  17. Variables affecting the acceptability of radappertized ground beef products. Effects of food grade phosphates, NaCl, fat level, and grinding methods

    International Nuclear Information System (INIS)

    Cohen, J.S.; Shults, G.W.; Mason, V.C.; Wierbicki, E.

    1977-01-01

    A series of experiments was conducted to determine the effect of different variables on the quality of an irradiated ground beef product. Factors studied included: different food-grade phosphates; NaCl content; fat content; and size of grind. The influence of these variables on the cooking loss (moisture retention), shear press values and sensory scores was studied. The addition of phosphates and NaCl was desirable in controlling cooking losses. The most effective phosphate was tetrasodium pyrophosphate. The addition of NaCl decreased the shear press force required to penetrate the beef patty, i.e., it tenderized the product. Phosphate addition did not affect the shear press force. Increased fat content increased the cooking losses, but did not affect the shear press force. Irradiation with sterilizing doses had a marked effect on decreasing the shear press force

  18. Environmental Risks of Nano Zerovalent Iron for Arsenate Remediation: Impacts on Cytosolic Levels of Inorganic Phosphate and MgATP2- in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Weilan; Lo, Irene M C; Hu, Liming; Voon, Chia Pao; Lim, Boon Leong; Versaw, Wayne K

    2018-04-03

    The use of nano zerovalent iron (nZVI) for arsenate (As(V)) remediation has proven effective, but full-scale injection of nZVI into the subsurface has aroused serious concerns for associated environmental risks. This study evaluated the efficacy of nZVI treatment for arsenate remediation and its potential hazards to plants using Arabidopsis thaliana grown in a hydroponic system. Biosensors for inorganic phosphate (Pi) and MgATP 2- were used to monitor in vivo Pi and MgATP 2- levels in plant cells. The results showed that nZVI could remove As(V) from growth media, decrease As uptake by plants, and mitigate As(V) toxicity to plants. However, excess nZVI could cause Pi starvation in plants leading to detrimental effects on plant growth. Due to the competitive adsorption of As(V) and Pi on nZVI, removing As(V) via nZVI treatment at an upstream site could relieve downstream plants from As(V) toxicity and Pi deprivation, in which case 100 mg/L of nZVI was the optimal dosage for remediation of As(V) at a concentration around 16.13 mg/L.

  19. The impact of carboplatin and toceranib phosphate on serum vascular endothelial growth factor (VEGF) and metalloproteinase-9 (MMP-9) levels and survival in canine osteosarcoma.

    Science.gov (United States)

    Gieger, Tracy L; Nettifee-Osborne, Julie; Hallman, Briana; Johannes, Chad; Clarke, Dawn; Nolan, Michael W; Williams, Laurel E

    2017-07-01

    In this pilot study, 10 dogs with osteosarcoma (OSA) were treated with amputation and subsequent carboplatin chemotherapy (300 mg/m 2 IV q3wk × 4 doses) followed by toceranib phosphate (2.75 mg/kg PO q48h starting at day 14 post carboplatin). Monthly clinical monitoring and serum measurements of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were acquired. No dogs were removed from the study due to toxicity. Levels of VEGF and MMP-9 did not change over time. Seven dogs died related to local recurrence and/or pulmonary or bone metastasis and the remainder died of other causes. Median OSA-free survival was 238 d with 34% 1-year progression-free survival. Median overall survival was 253 d with 30% alive at 1.5 y and 10% alive at 2 y. Although this regimen was well-tolerated, survival times did not exceed previously published data from dogs treated with amputation plus chemotherapy alone.

  20. Stress biomarkers and alkali-labile phosphate level in mussels (Mytilus galloprovincialis) collected in the urban area of Venice (Venice Lagoon, Italy)

    International Nuclear Information System (INIS)

    Pampanin, Daniela M.; Marangon, Ilenia; Volpato, Elisa; Campesan, Giancarlo; Nasci, Cristina

    2005-01-01

    In this study, a spatial and temporal survey at three sites located in the 'canals' of the Venice historic centre (Italy) and at a reference site was undertaken to evaluate stress effects on mussels sampled in the Venice urban area, where raw sewage is discharged without treatment directly into the water. A battery of biomarkers (metallothionein, micronuclei, condition index and survival in air) was used to evaluate the stress condition of the animals. At the same time the alkali-labile phosphate assay (ALP) was performed in mussel' hemolymph with the aim to find an estrogenic effect biomarker in this mussel species. Biomarker results showed an impairment of the general health condition in the mussels coming from the urban area, in agreement with the chemical analysis. Significantly higher level of the ALP was found in male mussels sampled in April in the urban area, in comparison with the ones from the reference site (P0.001). Finally, the PCA proved an easy and useful tool to summarize the obtained results, also able to classify the data to indicate a pollution gradient in the Venice urban area. - The overall biological and chemical data show a higher stress condition in the mussels (Mytilus galloprovincialis) from the urban area of Venice

  1. High levels of the type III inorganic phosphate transporter PiT1 (SLC20A1) can confer faster cell adhesion

    DEFF Research Database (Denmark)

    Kongsfelt, Iben Boutrup; Byskov, Kristina; Pedersen, Lasse Ebdrup

    2014-01-01

    overexpression led to faster cell spreading. The final total numbers of attached cells did, however, not differ between cultures of PiT1 overexpressing cells and control cells of neither cell type. We suggest that the PiT1-mediated fast adhesion potentials allow the cells to go faster out of G0/G1 and thereby......The inorganic phosphate transporter PiT1 (SLC20A1) is ubiquitously expressed in mammalian cells. We recently showed that overexpression of human PiT1 was sufficient to increase proliferation of two strict density-inhibited cell lines, murine fibroblastic NIH3T3 and pre-osteoblastic MC3T3-E1 cells......, and allowed the cultures to grow to higher cell densities. In addition, upon transformation NIH3T3 cells showed increased ability to form colonies in soft agar. The cellular regulation of PiT1 expression supports that cells utilize the PiT1 levels to control proliferation, with non-proliferating cells showing...

  2. High energy radiation in cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    Certain basic recommendations on the use of supervoltage radiation and radioisotope teletherapy in the treatment of malignant growths have been made by an expert study group which met in Vienna in August this y ear. The group, convened jointly by the International Atomic Energy Agency and the World Health Organization, was composed of 20 radiotherapists and radiation physicists from 12 countries. High energy radiation, used in the treatment of malignant tumours, can be either in the form of gamma- or X-rays or in the form of beams of accelerated electrons. The source of radiation is kept at a certain distance from the patient. The study group was agreed on the value of supervoltage radiotherapy, including gamma-ray and high voltage x-ray therapy as well as electron beam therapy. The required gamma radiation can be obtained from large sources of radioactive materials like cobalt 60 or caesium 137, while electron beams are produced by high voltage accelerators. The experts considered the sources in four broad categories: large supervoltage units, intermediate units, small isotope units and units of electron beams or very high energy x-rays. Each group of source was described including its usage. The experts made it clear that while supervoltage radiation should be a part of an organized radiotherapy department, the radiation facilities at any particular establishment should not be of the supervoltage type alone. The high energy facilities could be fruitfully used only when there was a background of general radiotherapy. The group emphasized that supervoltage radiotherapy, in common with other forms of radiotherapy, should be conducted only by adequately trained and qualified personnel, including radiation physicists, and specified the training and qualifications required of such personnel. It was felt that specialized training was one of the main requirements at the present stage and the training programmes of IAEA and WHO should be utilized extensively for this

  3. High energy radiation in cancer treatment

    International Nuclear Information System (INIS)

    1959-01-01

    Certain basic recommendations on the use of supervoltage radiation and radioisotope teletherapy in the treatment of malignant growths have been made by an expert study group which met in Vienna in August this y ear. The group, convened jointly by the International Atomic Energy Agency and the World Health Organization, was composed of 20 radiotherapists and radiation physicists from 12 countries. High energy radiation, used in the treatment of malignant tumours, can be either in the form of gamma- or X-rays or in the form of beams of accelerated electrons. The source of radiation is kept at a certain distance from the patient. The study group was agreed on the value of supervoltage radiotherapy, including gamma-ray and high voltage x-ray therapy as well as electron beam therapy. The required gamma radiation can be obtained from large sources of radioactive materials like cobalt 60 or caesium 137, while electron beams are produced by high voltage accelerators. The experts considered the sources in four broad categories: large supervoltage units, intermediate units, small isotope units and units of electron beams or very high energy x-rays. Each group of source was described including its usage. The experts made it clear that while supervoltage radiation should be a part of an organized radiotherapy department, the radiation facilities at any particular establishment should not be of the supervoltage type alone. The high energy facilities could be fruitfully used only when there was a background of general radiotherapy. The group emphasized that supervoltage radiotherapy, in common with other forms of radiotherapy, should be conducted only by adequately trained and qualified personnel, including radiation physicists, and specified the training and qualifications required of such personnel. It was felt that specialized training was one of the main requirements at the present stage and the training programmes of IAEA and WHO should be utilized extensively for this

  4. Statistical learning in high energy and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J.

    2005-06-16

    This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ''learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning methods is either motivated by the lack of knowledge about this relationship or by tight time restrictions. In the first case learning from examples is the only possibility since no theory is available which would allow to build an algorithm in the classical way. In the second case a classical algorithm exists but is too slow to cope with the time restrictions. It is therefore replaced by a pattern recognition machine which implements a fast statistical learning method. But even in applications where some kind of classical algorithm had done a good job, statistical learning methods convinced by their remarkable performance. This thesis gives an introduction to statistical learning methods and how they are applied correctly in physics analysis. Their flexibility and high performance will be discussed by showing intriguing results from high energy and astrophysics. These include the development of highly efficient triggers, powerful purification of event samples and exact reconstruction of hidden event parameters. The presented studies also show typical problems in the application of statistical learning methods. They should be only second choice in all cases where an algorithm based on prior knowledge exists. Some examples in physics analyses are found where these methods are not used in the right way leading either to wrong predictions or bad performance. Physicists also often hesitate to profit from these methods because they fear that statistical learning methods cannot

  5. Statistical learning in high energy and astrophysics

    International Nuclear Information System (INIS)

    Zimmermann, J.

    2005-01-01

    This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ''learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning methods is either motivated by the lack of knowledge about this relationship or by tight time restrictions. In the first case learning from examples is the only possibility since no theory is available which would allow to build an algorithm in the classical way. In the second case a classical algorithm exists but is too slow to cope with the time restrictions. It is therefore replaced by a pattern recognition machine which implements a fast statistical learning method. But even in applications where some kind of classical algorithm had done a good job, statistical learning methods convinced by their remarkable performance. This thesis gives an introduction to statistical learning methods and how they are applied correctly in physics analysis. Their flexibility and high performance will be discussed by showing intriguing results from high energy and astrophysics. These include the development of highly efficient triggers, powerful purification of event samples and exact reconstruction of hidden event parameters. The presented studies also show typical problems in the application of statistical learning methods. They should be only second choice in all cases where an algorithm based on prior knowledge exists. Some examples in physics analyses are found where these methods are not used in the right way leading either to wrong predictions or bad performance. Physicists also often hesitate to profit from these methods because they fear that statistical learning methods cannot be controlled in a

  6. TPCs in high-energy astronomical polarimetry

    International Nuclear Information System (INIS)

    Black, J K

    2007-01-01

    High-energy astrophysics has yet to exploit the unique and important information that polarimetry could provide, largely due to the limited sensitivity of previously available polarimeters. In recent years, numerous efforts have been initiated to develop instruments with the sensitivity required for astronomical polarimetry over the 100 eV to 10 GeV band. Time projection chambers (TPCs), with their high-resolution event imaging capability, are an integral part of some of these efforts. After a brief overview of current astronomical polarimeter development efforts, the role of TPCs will be described in more detail. These include TPCs as photoelectric X-ray polarimeters and TPCs as components of polarizationsensitive Compton and pair-production telescopes

  7. Weakly supervised classification in high energy physics

    International Nuclear Information System (INIS)

    Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; Schwartzman, Ariel

    2017-01-01

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.

  8. Sanitation methods using high energy electron beams

    International Nuclear Information System (INIS)

    Levaillant, C.; Gallien, C.L.

    1979-01-01

    Short recycling of waste water and the use of liquid or dehydrated sludge as natural manure for agriculture or animal supplement feed is of great economical and ecological interest. It implies strong biological and chemical disinfection. Ionizing radiations produced by radioactive elements or linear accelerators can be used as a complement of conventional methods in the treatment of liquid and solid waste. An experiment conducted with high-energy electron-beam linear accelerators is presented. Degradation of undesirable metabolites in water occurs for a dose of 50 kRad. Undesirable seeds present in sludge are destroyed with a 200 kRad dose. A 300 kRad dose is sufficient for parasitic and bacterial disinfection (DL 90). Destruction of polio virus (DL 90) is obtained for 400 kRad. Higher doses (1000 to 2000 kRad) produce mineralization of toxic organic mercury, reduce some chemical toxic pollutants present in sludge and improve flocculation. (author)

  9. Grid computing in high energy physics

    CERN Document Server

    Avery, P

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...

  10. High-energy evolution to three loops

    Science.gov (United States)

    Caron-Huot, Simon; Herranen, Matti

    2018-02-01

    The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to the equation in planar N = 4 super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the threeloop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in crosssection calculations in the planar limit. We compare our result in the linear regime with a recent prediction for the so-called Pomeron trajectory, and compare its collinear limit with predictions from the spectrum of twist-two operators.

  11. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  12. Database applications in high energy physics

    International Nuclear Information System (INIS)

    Jeffery, K.G.

    1982-01-01

    High Energy physicists were using computers to process and store their data early in the history of computing. They addressed problems of memory management, job control, job generation, data standards, file conventions, multiple simultaneous usage, tape file handling and data management earlier than, or at the same time as, the manufacturers of computing equipment. The HEP community have their own suites of programs for these functions, and are now turning their attention to the possibility of replacing some of the functional components of their 'homebrew' systems with more widely used software and/or hardware. High on the 'shopping list' for replacement is data management. ECFA Working Group 11 has been working on this problem. This paper reviews the characteristics of existing HEP systems and existing database systems and discusses the way forward. (orig.)

  13. Detecting ultra high energy neutrinos with LOFAR

    International Nuclear Information System (INIS)

    Mevius, M.; Buitink, S.; Falcke, H.; Hörandel, J.; James, C.W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; Veen, S. ter

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (∼150MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the cut-off in sensitivity at lower energies. A first upper limit on the UHE neutrino flux from data of the Westerbork Radio Telescope (WSRT) has been published, while a second experiment, using the new LOFAR telescope, is in preparation. The advantages of LOFAR over WSRT are the larger collecting area, the better pointing accuracy and the use of ring buffers, which allow the implementation of a sophisticated self-trigger algorithm. The expected sensitivity of LOFAR reaches flux limits within the range of some theoretical production models.

  14. High energy gravitational scattering: a numerical study

    CERN Document Server

    Marchesini, Giuseppe

    2008-01-01

    The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschild's radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.

  15. High energy hadron-nucleus collision

    International Nuclear Information System (INIS)

    Takagi, Fujio

    1983-02-01

    This is a lecture note concerning high energy hadron-nucleus collision. The lecture gives the inelastic total cross section and the Glanber approximate multiple scattering formula at first. The mechanism of nuclear spallation is described in a cylindrical image. The multiplicity, the one particle distribution and the time-space structure of particle production are discussed. Various models are presented. The attenuation of forward particles and the structure of hadrons are discussed for each model. The atomic number (A) dependence of the production of large transverse momentum particles and jet, and the A dependence of charged multiplicity are presented. The backward production of particles and many body correlation are discussed. Lepton pair production and the initial interaction of constituents, collective interaction, multi quark state and phase transition are described. (Kato, T.)

  16. Charm decays and high energy photoproduction

    International Nuclear Information System (INIS)

    1995-01-01

    The activities during the first nine months of the three-year grant period have concentrated on the development of computer resources both hardware and software as well as the design of a muon detector for Fermilab Experiment E831. An important related activity has been a successful search of funds to complement the resources provided by this grant and permit the involvement of additional personnel as well as a much-better leveraged impact of the funds provided. Grant funds were the main providers of a new computer system which is dedicated to the High Energy Physics group at Mayaguez. This system can be considered a minimum configuration to carry out the simulation and analysis loads of E831. The bulk of the software development has been directed at developing a Monte Carlo simulation for E831 in particular the E831 muon detector

  17. Dipoles for High-Energy LHC

    CERN Document Server

    Todesco, E; De Rijk, G; Rossi, L

    2014-01-01

    For the High Energy LHC, a study of a 33 TeV center of mass collider in the LHC tunnel, main dipoles of 20 T operational field are needed. In this paper we first review the conceptual design based on block coil proposed in the Malta workshop, addressing the issues related to coil fabrication and assembly. We then propose successive simplifications of this design, associating a cost estimate of the conductor. We then analyse a block layout for a 15 T magnet. Finally, we consider two layouts based on the D20 and HD2 short models built by LBL. A first analysis of the aspects related to protection of these challenging magnets is given.

  18. Entanglement and decoherence in high energy physics

    International Nuclear Information System (INIS)

    Bertlmann, R.

    2005-01-01

    Full text: The phenomenon of entanglement occurs in very heavy quantum systems of particle physics. We find analogies but also differences to the entangled spin-1/2 or photon systems. In particular we discuss the features of entangled 'strangeness', the K-meson system, where a Bell inequality exists which has a remarkable connection to CP (charge conjugation and parity) and its violation. Stability of entangled quantum states is studied by allowing the system to interact with an environment. We consider possible decoherence of entangled 'beauty', the B-meson system, produced at the particle colliders at very high energies (10 GeV). Finally, we discuss a criterion for detecting entangled/separable states, a generalized Bell inequality and entanglement witness. We illustrate its geometric features by the two-spin example Alice and Bob. (author)

  19. Nonextensive statistical mechanics and high energy physics

    Directory of Open Access Journals (Sweden)

    Tsallis Constantino

    2014-04-01

    Full Text Available The use of the celebrated Boltzmann-Gibbs entropy and statistical mechanics is justified for ergodic-like systems. In contrast, complex systems typically require more powerful theories. We will provide a brief introduction to nonadditive entropies (characterized by indices like q, which, in the q → 1 limit, recovers the standard Boltzmann-Gibbs entropy and associated nonextensive statistical mechanics. We then present somerecent applications to systems such as high-energy collisions, black holes and others. In addition to that, we clarify and illustrate the neat distinction that exists between Lévy distributions and q-exponential ones, a point which occasionally causes some confusion in the literature, very particularly in the LHC literature

  20. Baryon number violation in high energy collisions

    International Nuclear Information System (INIS)

    Farrar, G.R.; Meng, R.

    1990-08-01

    We study the phenomenology of baryon number violation induced by electroweak instantons. We find that if the naive-instanton amplitudes were valid for arbitrarily high energies, the event rate at the SSC would be a few per hour, with a typical event consisting of 3 'primary' antileptons and 7 'primary' antiquark jets, accompanied by ≅ 85 electroweak gauge bosons, having a sharp threshold in the total sub-energy at about 17 TeV. We describe how to establish their electroweak-instanton-induced origin. The naive instanton approximation is known to overestimate the rate for these processes, so this work focusses attention on the need for more accurate calculations, and for a calculational method which is appropriate when the energy of the initial particles is above the sphaleron energy. (orig.)

  1. Polarized targets in high energy physics

    International Nuclear Information System (INIS)

    Cates, G.D. Jr.

    1994-01-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous 3 He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail

  2. Unparticles: Scales and high energy probes

    International Nuclear Information System (INIS)

    Bander, Myron; Feng, Jonathan L.; Rajaraman, Arvind; Shirman, Yuri

    2007-01-01

    Unparticles from hidden conformal sectors provide qualitatively new possibilities for physics beyond the standard model. In the theoretical framework of minimal models, we clarify the relation between energy scales entering various phenomenological analyses. We show that these relations always counteract the effective field theory intuition that higher dimension operators are more highly suppressed, and that the requirement of a significant conformal window places strong constraints on possible unparticle signals. With these considerations in mind, we examine some of the most robust and sensitive probes and explore novel effects of unparticles on gauge coupling evolution and fermion production at high energy colliders. These constraints are presented both as bounds on four-fermion interaction scales and as constraints on the fundamental parameter space of minimal models

  3. Polarized targets in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, G.D. Jr. [Princeton Univ., NJ (United States)

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail.

  4. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  5. Weakly supervised classification in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dery, Lucio Mwinmaarong [Physics Department, Stanford University,Stanford, CA, 94305 (United States); Nachman, Benjamin [Physics Division, Lawrence Berkeley National Laboratory,1 Cyclotron Rd, Berkeley, CA, 94720 (United States); Rubbo, Francesco; Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA, 94025 (United States)

    2017-05-29

    As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. This paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics — quark versus gluon tagging — we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervised classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.

  6. Review of high energy heavy ion experiments

    International Nuclear Information System (INIS)

    Miake, Yasuo

    2000-01-01

    It has been proposed that in high energy heavy ion collisions a physical conditions similar to the early stage of the Universe can be established in the laboratory. New phase of matter expected to be created is called the quark gluon plasma (QGP). Based on the motivation to create the QGP in the laboratory, heavy ion beams have been accelerated at AGS of Brookhaven National Laboratory and also at CERN-SPS. Several interesting features of the data have been reported, among which are: the suppression of J/ψ production in Pb+Pb collisions, the enhancement of low mass lepton pairs, and the collective behavior of hadron production. These features are reviewed under the key words of Deconfinement, Chiral Restoration and Collectivity in the lecture. (author)

  7. High energy photon emission from wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Farinella, D. M., E-mail: dfarinel@uci.edu; Lau, C. K.; Taimourzadeh, S.; Hwang, Y.; Abazajian, K.; Canac, N.; Taborek, P.; Tajima, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Zhang, X. M., E-mail: zhxm@siom.ac.cn [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Koga, J. K., E-mail: koga.james@qst.go.jp [Kansai Photon Science Institute, Japan Atomic Energy Agency (JAEA), Kizugawa, Kyoto 619-0215 (Japan); Ebisuzaki, T., E-mail: ebisu@riken.jp [RIKEN, Wako, Saitama 351-0198 (Japan)

    2016-07-15

    Experimental evidence has accumulated to indicate that wakefield acceleration (WFA) accompanies intense and sometimes coherent emission of radiation such as from betatron radiation. The investigation of this issue has additional impetus nowadays because we are learning (1) there is an additional acceleration process of the ponderomotive acceleration; (2) WFA may become relevant in much higher density regimes; (3) WFA has been proposed as the mechanism for extreme high energy cosmic ray acceleration and gamma ray bursts for active galactic nuclei. These require us to closely examine the radiative mechanisms in WFA anew. We report studies of radiation from wakefield (self-injected betatron) and ponderomotive (laser field) mechanisms in scalings of the frequency and intensity of the driver, as well as the plasma density.

  8. High energy ion microbeams and their applications

    International Nuclear Information System (INIS)

    Bakhru, H.; Nickles, E.; Haberl, A.; Morris, W.G.

    1992-01-01

    In recent years there has been rapid growth for the development of equipment for forming a focussed beam (0.5 - 2μm) with high energy ions. The State University of New York at Albany ion scanning microprobe has been used for several applications especially in the fields of materials and biological studies. Rutherford backscattering spectroscopy (RBS) and particle-induced x-ray emission (PIXE) analysis have been performed on microelectronic circuits with a spatial resolution of approximately 2 μm. Studies on films of superconductors (YBa CuO) will be presented. Applications of microbeams for the biological studies and analytical techniques will be presented. Current and future role of microbeams and their limitations will be discussed. (author)

  9. Networking for high energy physics in Japan

    International Nuclear Information System (INIS)

    Karita, Yukio; Abe, Fumio; Hirose, Hitoshi; Goto, Hiroyuki; Ogasawara, Ryusuke; Yuasa, Fukuko; Banno, Yoshiaki; Yasu, Yoshiji

    1989-01-01

    The computer network for high energy physics in Japan has grown over the last five or six years and is still expanding. Its original purpose was to provide the collaborators in universities access to the computing resources in KEK. Adding to the remote login from terminals, VAXs or Fujitsu computers located in universities have been connected to KEK's computers by DECnet or FNA (Fujitsu's SNA) and have formed the ''Japanese HEPnet''. Since the link between LBL and KEK was established in June 1987, the Japanese HEPnet is combined with the American HEPnet and is an indispensable tool for international collaboration. The current communication media for Japanese HEPnet, leased lines and public X.25, are being replaced by Gakujo-net (Monbusho's inter-university private X.25 network). DECnet, FNA, IP and Ethernet-bridge will run on Gakujo-net for the Japanese HEPnet. (orig.)

  10. Angular correlations and high energy evolution

    International Nuclear Information System (INIS)

    Kovner, Alex; Lublinsky, Michael

    2011-01-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N c approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  11. Photodisintegration of the deuteron at high energy

    International Nuclear Information System (INIS)

    Holt, R.J.

    1992-01-01

    Measurements of the angular distribution for the γd→+pn reaction were performed at SLAC for photon energies between 0.7 and 1.8 GeV (experiment NE8) and between 1.6 and 4.4. GeV (experiment NE17). The final results for experiment NE8 will be presented, but only preliminary results for NE17 will be discussed. The data at θ cm = 90 degrees appear to follow the constituent counting rules. The angular distribution at high photon energies exhibit large values of the cross section at forward angles. There is evidence that the cross section may also be large at backward angles and high energies

  12. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P.

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  13. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  14. Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  15. Production processes at extremely high energies

    CERN Document Server

    Gastmans, R; Wu, Tai Tsun

    2013-01-01

    The production processes are identified that contribute to the rise of the total cross section in proton-proton scattering at extremely high energies, s->~. At such energies, the scattering can be described by a black disk (completely absorptive) with a radius expanding logarithmically with energy surrounded by a gray fringe (partially absorptive). For the leading term of (lns)^2 in the increasing total cross section, the gray fringe is neglected, and geometrical optics is generalized to production processes. It is known that half of the rise in the total cross section is due to elastic scattering. The other half is found to originate from the production of jets with relatively small momenta in the center-of-mass system.

  16. MINAC, portable high energy radiographic inspection system

    International Nuclear Information System (INIS)

    Lapides, M.E.; Schonberg, R.

    1985-01-01

    MINAC, a portable, high energy radiographic source (1) was recognized as a desired inspection device for nuclear generation plants during EPRI-sponsored studies of the late 1970s and rapidly transitioned from proof-of-principle (1978-1980) to field-proven hardware (1981-present date). The equipment has completed its second generation of configuration development (SHRINKAC), that has recently been used in the field for detection of pipe cracks. Important auxiliaries for image data processing and real-time, thick section radiography have been demonstrated in both laboratory and field situations. Finally, a 6 MeV accelerator alternate is in bench test. These significant developments have, and are expected to continue to upgrade the utility of radiographic inspection in power plant practice. This paper describes the development and experience with this modular system during the last three years

  17. Partons and their applications at high energies

    International Nuclear Information System (INIS)

    Drell, Sidney D.; Yan, Tung-Mow

    2000-01-01

    We discuss Feynman's parton model for deep inelastic weak or electromagnetic processes as an application of the impulse approximation to elementary particle interactions. The special features and conditions permitting this application are elaborated upon in some detail including the dependence of the parton model and the impulse treatment on an appropriate choice of coordinate frames and the role of the very soft or wee partons. Application of the parton model is made to the calculation of the cross section for massive lepton pair production in very high energy hadron-hadron collisions and compared with experiment. The conjectured role of light cone singularities in describing this and the other deep inelastic amplitudes is also discussed. (c) 2000 Academic Press, Inc

  18. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    Science.gov (United States)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  19. High Energy Astronomy Observatory (HEAO)-2

    Science.gov (United States)

    1982-01-01

    This artist's concept depicts the High Energy Astronomy Observatory (HEAO)-2 in orbit. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  20. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  1. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance1

    Science.gov (United States)

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R. Douglas; Powles, Stephen B.

    2015-01-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  2. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    Science.gov (United States)

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Multiple Jets at the LHC with High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Smillie, Jennifer M.

    2011-01-01

    We present a flexible Monte Carlo implementation of the perturbative framework of High Energy Jets, describing multi-jet events at hadron colliders. The description includes a resummation which ensures leading logarithmic accuracy for large invariant mass between jets, and is matched to tree......-level accuracy for multiplicities up to 4 jets. The resummation includes all-order hard corrections, which become important for increasing centre-of-mass energy of the hadronic collision. We discuss observables relevant for confronting the perturbative framework with 7 TeV data from the LHC, and the impact...

  4. 2014 European School of High-Energy Physics

    CERN Multimedia

    Nick Ellis, on behalf of the Organising Committee

    2014-01-01

    Dear Colleagues, I would like to draw your attention to the 2014 European School of High-Energy Physics. Details can be found here. The School will be held in the Netherlands from 18 June to 1 July 2014. PLEASE NOTE THAT THE DEADLINE FOR APPLICATIONS IS 14 FEBRUARY 2014. The lectures will cover a broad range of HEP topics at a level suitable for students working towards a PhD in experimental particle physics. Note that, as indicated on the website, one or two students from developing countries could be considered for financial support.

  5. 2014 European School of High-Energy Physics

    CERN Multimedia

    Nick Ellis, on behalf of the Organising Committee

    2014-01-01

    Dear Colleagues, I would like to draw your attention to the 2014 European School of High-Energy Physics. Details can be found here. The School will be held in the Netherlands from 18 June to 1 July 2014. PLEASE NOTE THAT THE DEADLINE FOR APPLICATIONS HAS BEEN EXTENDED TO 21 FEBRUARY 2014. The lectures will cover a broad range of HEP topics at a level suitable for students working towards a PhD in experimental particle physics. Note that, as indicated on the website, one or two students from developing countries could be considered for financial support.

  6. High-energy physics software parallelization using database techniques

    International Nuclear Information System (INIS)

    Argante, E.; Van der Stok, P.D.V.; Willers, I.

    1997-01-01

    A programming model for software parallelization, called CoCa, is introduced that copes with problems caused by typical features of high-energy physics software. By basing CoCa on the database transaction paradigm, the complexity induced by the parallelization is for a large part transparent to the programmer, resulting in a higher level of abstraction than the native message passing software. CoCa is implemented on a Meiko CS-2 and on a SUN SPARCcenter 2000 parallel computer. On the CS-2, the performance is comparable with the performance of native PVM and MPI. (orig.)

  7. Phosphate-a poison for humans?

    Science.gov (United States)

    Komaba, Hirotaka; Fukagawa, Masafumi

    2016-10-01

    Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. Vanadyl phosphates as high energy density cathode materials for rechargeable sodium battery

    Science.gov (United States)

    Zhang, Ruigang; Mizuno, Fuminori; Ling, Chen; Whittingham, Stanley M.; Zhang, Ruibo; Chen, Zehua

    2017-08-01

    A positive electrode comprising .epsilon.-VOPO.sub.4 and/or Na.sub.x(.epsilon.-VOPO.sub.4) wherein x is a value from 0.1 to 1.0 as an active ingredient, wherein the electrode is capable of insertion and release of sodium ions and a reversible sodium battery containing the positive electrode are provided.

  9. Lithium iron phosphate/carbon nanocomposite film cathodes for high energy lithium ion batteries

    International Nuclear Information System (INIS)

    Liu, Yanyi; Liu, Dawei; Zhang, Qifeng; Yu, Danmei; Liu, Jun; Cao, Guozhong

    2011-01-01

    This paper reports sol-gel derived nanostructured LiFePO4/carbon nanocomposite film cathodes exhibiting enhanced electrochemical properties and cyclic stabilities. LiFePO4/carbon films were obtained by spreading sol on Pt coated Si wafer followed by ambient drying overnight and annealing/pyrolysis at elevated temperature in nitrogen. Uniform and crack-free LiFePO4/carbon nanocomposite films were readily obtained and showed olivine phase as determined by means of X-Ray Diffractometry. The electrochemical characterization revealed that, at a current density of 200 mA/g (1.2 C), the nanocomposite film cathodes demonstrated an initial lithium-ion intercalation capacity of 312 mAh/g, and 218 mAh/g after 20 cycles, exceeding the theoretical storage capacity of conventional LiFePO4 electrode. Such enhanced Li-ion intercalation performance could be attributed to the nanocomposite structure with fine crystallite size below 20 nm as well as the poor crystallinity which provides a partially open structure allowing easy mass transport and volume change associated with Li-ion intercalation. Moreover the surface defect introduced by carbon nanocoating could also effectively facilitate the charge transfer and phase transitions.

  10. Foldable, High Energy Density Lithium Ion Batteries

    Science.gov (United States)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of

  11. Comparative Analysis of the Combined Effects of Different Water and Phosphate Levels on Growth and Biological Nitrogen Fixation of Nine Cowpea Varieties.

    Science.gov (United States)

    Jemo, Martin; Sulieman, Saad; Bekkaoui, Faouzi; Olomide, Oluwatosin A K; Hashem, Abeer; Abd Allah, Elsayed Fathi; Alqarawi, Abdulaziz A; Tran, Lam-Son Phan

    2017-01-01

    Water deficit and phosphate (Pi) deficiency adversely affect growth and biological nitrogen fixation (BNF) of legume crops. In this study, we examined the impact of interaction between soil water conditions and available soil-Pi levels on growth, nodule development and BNF potential of nine cowpea varieties grown on dry savanna soils. In our experimental design, soils with different available soil-Pi levels, i.e., low, moderate, and high soil-Pi levels, collected from various farming fields were used to grow nine cowpea varieties under well-watered and water-deficit conditions. Significant and severe water deficit-damaging effects on BNF, nodulation, growth, levels of plant-nitrogen (N) and -phosphorus (P), as well as shoot relative water content and chlorophyll content of cowpea plants were observed. Under well-watered and high available soil-Pi conditions, cowpea varieties IT07K-304-9 and Dan'Ila exhibited significantly higher BNF potential and dry biomass, as well as plant-N and -P contents compared with other tested ones. Significant genotypic variations among the cowpeas were recorded under low available soil-Pi and water-deficit conditions in terms of the BNF potential. Principal component (PC) analysis revealed that varieties IT04K-339-1, IT07K-188-49, IT07K-304-9, and IT04K-405-5 were associated with PC1, which was better explained by performance for nodulation, plant biomass, plant-N, plant-P, and BNF potential under the combined stress of water deficit and Pi deficiency, thereby offering prospects for development of varieties with high growth and BNF traits that are adaptive to such stress conditions in the region. On another hand, variety Dan'Ila was significantly related to PC2 that was highly explained by the plant shoot/root ratio and chlorophyll content, suggesting the existence of physiological and morphological adjustments to cope with water deficit and Pi deficiency for this particular variety. Additionally, increases in soil-Pi availability led

  12. Comparative Analysis of the Combined Effects of Different Water and Phosphate Levels on Growth and Biological Nitrogen Fixation of Nine Cowpea Varieties

    Science.gov (United States)

    Jemo, Martin; Sulieman, Saad; Bekkaoui, Faouzi; Olomide, Oluwatosin A. K.; Hashem, Abeer; Abd_Allah, Elsayed Fathi; Alqarawi, Abdulaziz A.; Tran, Lam-Son Phan

    2017-01-01

    Water deficit and phosphate (Pi) deficiency adversely affect growth and biological nitrogen fixation (BNF) of legume crops. In this study, we examined the impact of interaction between soil water conditions and available soil-Pi levels on growth, nodule development and BNF potential of nine cowpea varieties grown on dry savanna soils. In our experimental design, soils with different available soil-Pi levels, i.e., low, moderate, and high soil-Pi levels, collected from various farming fields were used to grow nine cowpea varieties under well-watered and water-deficit conditions. Significant and severe water deficit-damaging effects on BNF, nodulation, growth, levels of plant-nitrogen (N) and -phosphorus (P), as well as shoot relative water content and chlorophyll content of cowpea plants were observed. Under well-watered and high available soil-Pi conditions, cowpea varieties IT07K-304-9 and Dan'Ila exhibited significantly higher BNF potential and dry biomass, as well as plant-N and -P contents compared with other tested ones. Significant genotypic variations among the cowpeas were recorded under low available soil-Pi and water-deficit conditions in terms of the BNF potential. Principal component (PC) analysis revealed that varieties IT04K-339-1, IT07K-188-49, IT07K-304-9, and IT04K-405-5 were associated with PC1, which was better explained by performance for nodulation, plant biomass, plant-N, plant-P, and BNF potential under the combined stress of water deficit and Pi deficiency, thereby offering prospects for development of varieties with high growth and BNF traits that are adaptive to such stress conditions in the region. On another hand, variety Dan'Ila was significantly related to PC2 that was highly explained by the plant shoot/root ratio and chlorophyll content, suggesting the existence of physiological and morphological adjustments to cope with water deficit and Pi deficiency for this particular variety. Additionally, increases in soil-Pi availability led

  13. Comparative Analysis of the Combined Effects of Different Water and Phosphate Levels on Growth and Biological Nitrogen Fixation of Nine Cowpea Varieties

    Directory of Open Access Journals (Sweden)

    Martin Jemo

    2017-12-01

    Full Text Available Water deficit and phosphate (Pi deficiency adversely affect growth and biological nitrogen fixation (BNF of legume crops. In this study, we examined the impact of interaction between soil water conditions and available soil-Pi levels on growth, nodule development and BNF potential of nine cowpea varieties grown on dry savanna soils. In our experimental design, soils with different available soil-Pi levels, i.e., low, moderate, and high soil-Pi levels, collected from various farming fields were used to grow nine cowpea varieties under well-watered and water-deficit conditions. Significant and severe water deficit-damaging effects on BNF, nodulation, growth, levels of plant-nitrogen (N and -phosphorus (P, as well as shoot relative water content and chlorophyll content of cowpea plants were observed. Under well-watered and high available soil-Pi conditions, cowpea varieties IT07K-304-9 and Dan'Ila exhibited significantly higher BNF potential and dry biomass, as well as plant-N and -P contents compared with other tested ones. Significant genotypic variations among the cowpeas were recorded under low available soil-Pi and water-deficit conditions in terms of the BNF potential. Principal component (PC analysis revealed that varieties IT04K-339-1, IT07K-188-49, IT07K-304-9, and IT04K-405-5 were associated with PC1, which was better explained by performance for nodulation, plant biomass, plant-N, plant-P, and BNF potential under the combined stress of water deficit and Pi deficiency, thereby offering prospects for development of varieties with high growth and BNF traits that are adaptive to such stress conditions in the region. On another hand, variety Dan'Ila was significantly related to PC2 that was highly explained by the plant shoot/root ratio and chlorophyll content, suggesting the existence of physiological and morphological adjustments to cope with water deficit and Pi deficiency for this particular variety. Additionally, increases in soil

  14. Networking for High Energy and Nuclear Physics

    Science.gov (United States)

    Newman, Harvey B.

    2007-07-01

    This report gives an overview of the status and outlook for the world's research networks and major international links used by the high energy physics and other scientific communities, network technology advances on which our community depends and in which we have an increasingly important role, and the problem of the Digital Divide, which is a primary focus of ICFA's Standing Committee on Inter-regional Connectivity (SCIC). Wide area networks of sufficient, and rapidly increasing end-to-end capability are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of more than 1000 over the past decade, and the outlook is for a similar increase over the next decade. This striking exponential growth trend, outstripping the growth rates in other areas of information technology, has continued in the past year, with many of the major national, continental and transoceanic networks supporting research and education progressing from a 10 Gigabits/sec (Gbps) backbone to multiple 10 Gbps links in their core. This is complemented by the use of point-to-point "light paths" to support the most demanding applications, including high energy physics, in a growing list of cases. As we approach the era of LHC physics, the growing need to access and transport Terabyte-scale and later 10 to 100 Terabyte datasets among more than 100 "Tier1" and "Tier2" centers at universities and laboratories spread throughout the world has brought the key role of networks, and the ongoing need for their development, sharply into focus. Bandwidth itself on an increasing scale is not enough. Realizing the scientific wealth of the LHC and our other major scientific programs depends crucially on our ability to use the bandwidth efficiently and reliably, with reliable high rates of data throughput, and effectively, where many parallel large-scale data

  15. High Energy Colliders and Hidden Sectors

    Science.gov (United States)

    Dror, Asaf Jeff

    This thesis explores two dominant frontiers of theoretical physics, high energy colliders and hidden sectors. The Large Hadron Collider (LHC) is just starting to reach its maximum operational capabilities. However, already with the current data, large classes of models are being put under significant pressure. It is crucial to understand whether the (thus far) null results are a consequence of a lack of solution to the hierarchy problem around the weak scale or requires expanding the search strategy employed at the LHC. It is the duty of the current generation of physicists to design new searches to ensure that no stone is left unturned. To this end, we study the sensitivity of the LHC to the couplings in the Standard Model top sector. We find it can significantly improve the measurements on ZtRtR coupling by a novel search strategy, making use of an implied unitarity violation in such models. Analogously, we show that other couplings in the top sector can also be measured with the same technique. Furthermore, we critically analyze a set of anomalies in the LHC data and how they may appear from consistent UV completions. We also propose a technique to measure lifetimes of new colored particles with non-trivial spin. While the high energy frontier will continue to take data, it is likely the only collider of its kind for the next couple decades. On the other hand, low-energy experiments have a promising future with many new proposed experiments to probe the existence of particles well below the weak scale but with small couplings to the Standard Model. In this work we survey the different possibilities, focusingon the constraints as well as possible new hidden sector dynamics. In particular, we show that vector portals which couple to an anomalous current, e.g., baryon number, are significantly constrained from flavor changing meson decays and rare Z decays. Furthermore, we present a new mechanism for dark matter freezeout which depletes the dark sector through an

  16. High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon.

    Science.gov (United States)

    Zhang, Jie; Guo, Shaogui; Ren, Yi; Zhang, Haiying; Gong, Guoyi; Zhou, Ming; Wang, Guizhang; Zong, Mei; He, Hongju; Liu, Fan; Xu, Yong

    2017-02-01

    Chromoplast development plays a crucial role in controlling carotenoid content in watermelon flesh. Modern cultivated watermelons with colorful flesh are believed to originate from pale-colored and no-sweet progenitors. But the molecular basis of flesh color formation and regulation is poorly understood. More chromoplasts and released carotenoid globules were observed in the red-fleshed fruit of the 97103 cultivar than in the pale-colored fruits of the PI296341-FR line. Transcriptome profiles of these two materials identified Cla017962, predicted as ClPHT4;2, was dramatically up-regulated during flesh color formation. High ClPHT4;2 expression levels were closely correlated with increased flesh carotenoid contents among 198 representative watermelon accessions. Down-regulation of ClPHT4;2 expression in transgenic watermelons reduced the fruit carotenoid accumulation. ClPHT4;2 as a function of chromoplast-localized phosophate transporter was tested by heterologous expression into a yeast phosphate-uptake-defective mutant, western blotting, subcellular localization, and immunogold electron microscopy analysis. Two transcription factors, ClbZIP1 and ClbZIP2, were identified, which responded to ABA and sugar signaling to regulate ClPHT4;2 transcription only in cultivated watermelon species. Our findings suggest that elevated ClPHT4;2 gene expression is necessary for carotenoid accumulation, and may help to characterize the co-development of flesh color and sweetness during watermelon development and domestication. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Conference summary on new trends in high-energy physics

    International Nuclear Information System (INIS)

    Terazawa, H.

    2001-01-01

    Concluding remarks on over forty papers contributed to the International Conference on New Trends in High-Energy Physics, Yalta, Crimea, Ukraine, September 22 - 29, 2001 are presented. Also presented are some comments on future prospects in high energy physics

  18. Interpreting New Data from the High Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Jesse [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-26

    This is the final technical report for DOE grant DE-SC0006389, "Interpreting New Data from the High Energy Frontier", describing research accomplishments by the PI in the field of theoretical high energy physics.

  19. Predicting Induced Radioactivity at High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto

    1999-08-27

    Radioactive nuclides are produced at high-energy electron accelerators by different kinds of particle interactions with accelerator components and shielding structures. Radioactivity can also be induced in air, cooling fluids, soil and groundwater. The physical reactions involved include spallations due to the hadronic component of electromagnetic showers, photonuclear reactions by intermediate energy photons and low-energy neutron capture. Although the amount of induced radioactivity is less important than that of proton accelerators by about two orders of magnitude, reliable methods to predict induced radioactivity distributions are essential in order to assess the environmental impact of a facility and to plan its decommissioning. Conventional techniques used so far are reviewed, and a new integrated approach is presented, based on an extension of methods used at proton accelerators and on the unique capability of the FLUKA Monte Carlo code to handle the whole joint electromagnetic and hadronic cascade, scoring residual nuclei produced by all relevant particles. The radiation aspects related to the operation of superconducting RF cavities are also addressed.

  20. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  1. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S P; Jamieson, D N; Nugent, K W; Prawer, S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  2. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  3. Perspectives on future high energy physics

    International Nuclear Information System (INIS)

    Samios, N.P.

    1996-01-01

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e + e - and μ + μ - colliders. Finally, the international cooperative activities should be strengthened and maintained

  4. High Energy Electron Detectors on Sphinx

    Science.gov (United States)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  5. Supersimplicity: a Remarkable High Energy SUSY Property

    International Nuclear Information System (INIS)

    Gounaris, G.J.; Renard, F.M.

    2011-01-01

    It is known that for any 2-to-2 process in MSSM, only the helicity conserving (HC) amplitudes survive asymptotically. Studying many such processes, at the 1-loop Electroweak (EW) order, it is found that their high energy HC amplitudes are determined by just three forms: a log-squared function of the ratio of two of the (s, t, u) variables, to which a π 2 is added; and two Sudakov-like ln- and ln 2 -terms accompanied by respective mass-dependent constants. Apart from a possible additional residual constant (which is also discussed), these HC amplitudes, may be expressed as linear combinations of the above three forms, with coefficients being rational functions of the (s, t, u) variables. This 1-loop property, called supersimplicity, is of course claimed for the 2-to-2 processes considered; but no violating examples are known at present. For ug → dW, supersimplicity is found to be a very good approximation at LHC energies, provided the SUSY scale is not too high. SM processes are also discussed, and their differences are explored. (authors)

  6. Pattern recognition in high energy physics

    International Nuclear Information System (INIS)

    Tenner, A.G.

    1980-01-01

    In high energy physics experiments tracks of elementary particles are recorded by different types of equipment. Coordinates of points of these tracks have to be measured for the geometrical reconstruction and the further analysis of the observed events. Pattern recognition methods may facilitate the detection of tracks or whole events and the separation of relevant from non-relevant information. They may also serve for the automation of measurement. Generally, all work is done by digital computation. In a bubble chamber tracks appear as strings of vapour bubbles that can be recorded photographically. Two methods of pattern recognition are discussed. The flying spot digitizer encodes the pattern on the photograph into point coordinates in the memory of a computer. The computer carries out the pattern recognition procedure entirely on the basis of the stored information. Cathode ray instruments scan the photograph by means of a computer steered optical device. Data acquisition from the film is performed in a feedback loop of the computation. In electronic experimental equipment tracks are defined by the spacial distribution of hits of counters (wire counters, scintillation counters, spark chambers). Pattern recognition is generally performed in various stages both by on-line and off-line equipment. Problems in the data handling arise both from the great abundance of data and from the time limits imposed on the on-line computation by high measuring rates. The on-line computation is carried out by hardwired logic, small computers, and to an increasing extent by microprocessors. (Auth.)

  7. Using REDUCE in high energy physics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1997-01-01

    This book describes the use of the symbolic manipulation language REDUCE in particle physics. There are several general purpose mathematics packages available to physicists, including Mathematica, Maple, and REDUCE. Each has advantages and disadvantages, but REDUCE has been found to be both powerful and convenient in solving a wide range of problems. This book introduces the reader to REDUCE and demonstrates its utility as a mathematical tool in physics. The first chapter of the book describes the REDUCE system, including some library packages. The following chapters show the use of REDUCE in examples from classical mechanics, hydrodynamics, general relativity, and quantum mechanics. The rest of the book systematically presents the Standard Model of particle physics (QED, weak interactions, QCD). A large number of scattering and decay processes are calculated with REDUCE. All example programs from the book can be downloaded via Internet. The emphasis throughout is on learning through worked examples. This will be an essential introduction and reference for high energy and theoretical physicists. (author)

  8. Automatic keywording of High Energy Physics

    CERN Document Server

    Dallman, David Peter

    1999-01-01

    Bibliographic databases were developed from the traditional library card catalogue in order to enable users to access library documents via various types of bibliographic information, such as title, author, series or conference date. In addition these catalogues sometimes contained some form of indexation by subject, such as the Universal (or Dewey) Decimal Classification used for books. With the introduction of the eprint archives, set up by the High Energy Physics (HEP) Community in the early 90s, huge collections of documents in several fields have been made available on the World Wide Web. These developments however have not yet been followed up from a keywording point of view. We will see in this paper how important it is to attribute keywords to all documents in the area of HEP Grey Literature. As libraries are facing a future with less and less manpower available and more and more documents, we will explore the possibility of being helped by automatic classification software. We will specifically menti...

  9. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  10. Balance Function in High-Energy Collisions

    International Nuclear Information System (INIS)

    Tawfik, A.; Shalaby, Asmaa G.

    2015-01-01

    Aspects and implications of the balance functions (BF) in high-energy physics are reviewed. The various calculations and measurements depending on different quantities, for example, system size, collisions centrality, and beam energy, are discussed. First, the different definitions including advantages and even short-comings are highlighted. It is found that BF, which are mainly presented in terms of relative rapidity, and relative azimuthal and invariant relative momentum, are sensitive to the interaction centrality but not to the beam energy and can be used in estimating the hadronization time and the hadron-quark phase transition. Furthermore, the quark chemistry can be determined. The chemical evolution of the new-state-of-matter, the quark-gluon plasma, and its temporal-spatial evolution, femtoscopy of two-particle correlations, are accessible. The production time of positive-negative pair of charges can be determined from the widths of BF. Due to the reduction in the diffusion time, narrowed widths refer to delayed hadronization. It is concluded that BF are powerful tools characterizing hadron-quark phase transition and estimating some essential properties

  11. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  12. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  13. Precision probes of QCD at high energies

    Science.gov (United States)

    Alioli, Simone; Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.

    2017-07-01

    New physics, that is too heavy to be produced directly, can leave measurable imprints on the tails of kinematic distributions at the LHC. We use energetic QCD processes to perform novel measurements of the Standard Model (SM) Effective Field Theory. We show that the dijet invariant mass spectrum, and the inclusive jet transverse momentum spectrum, are sensitive to a dimension 6 operator that modifies the gluon propagator at high energies. The dominant effect is constructive or destructive interference with SM jet production. We compare differential next-to-leading order predictions from POWHEG to public 7 TeV jet data, including scale, PDF, and experimental uncertainties and their respective correlations. We constrain a New Physics (NP) scale of 3.5 TeV with current data. We project the reach of future 13 and 100 TeV measurements, which we estimate to be sensitive to NP scales of 8 and 60 TeV, respectively. As an application, we apply our bounds to constrain heavy vector octet colorons that couple to the QCD current. We project that effective operators will surpass bump hunts, in terms of coloron mass reach, even for sequential couplings.

  14. High energy physics at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Samios, N.P.

    1982-01-01

    The high energy plans at BNL are centered around the AGS and ISABELLE, or a variant thereof. At present the AGS is maintaining a strong and varied program. This last year a total of 4 x 10 19 protons were delivered on target in a period of approximately 20 weeks. Physics interest is very strong, half of the submitted proposals are rejected (thereby maintaining high quality experiments) and the program is full over the next two years. The future colliding beam facility will utilize the AGS as an injector and will be a dedicated facility. It will have six intersection regions, run > 10 7 sec/year, and explore a new domain of energy and luminosity. Common to all the considered alternatives is a large aperture proton ring. These possible choices involve pp, ep, and heavy ion variants. The long term philosophy is to run the AGS as much as possible, continuously to upgrade it in performance and reliability, and then to phase it down as the new collider begins operation

  15. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references

  16. An experimental high energy physics program

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.

    1989-01-01

    The CLEO detector accumulated, (∼480,000 B-mesons) the world's largest sample of B decays, before being shutdown in May 1988 for the installation of CLEO II. This data sample came from 335 pb -1 accumulated at the Υ(4S). The Cornell Electron Storage Ring set new luminosity records, reaching 3.5 pb -1 in a single day. These data are being intensively analyzed and 21 papers were given at the Baltimore APS meeting. Among the highlights are: confirmation of B 0 bar B 0 mixing; discovery of the charm-strange baryon Ξ c 0 ; limits on b → u decay; and non-observation of B → p bar pπ(π), which was reported by the ARGUS collaboration. The construction of CLEO II is proceeding on schedule. The new 1.5 T superconducting magnet has passed all tests and all of the detector elements have been installed. This includes a 7800 CsI crystals electromagnetic shower calorimeter. The data from the Gamma Ray Astrophysics experiment show a significant signal for high energy gamma ray emission from Cygnus X-3 and also confirm the previously reported anomalous period from Her X-1. Meanwhile, the old 6 mirror telescope has been refitted with 26 high resolution mirrors and improved fast electronics. GRANDE, the next generation detector based on the water Cherenkov technique, has been formally proposed to HEPAP. The detector will search for neutrino emission in the southern hemisphere and gamma radiation in the northern hemisphere

  17. Colloquia on High Energy Physics: IFAE 2012

    International Nuclear Information System (INIS)

    Barion, L.; Bozzi, C.; Fioravanti, E.; Pagliara, G; Ricci, B.

    2013-01-01

    The 2012 edition of the 'Incontri di Fisica delle Alte Energie' (IFAE2012) was held at the Aula Magna del Rettorato of the Ferrara University from April 11th to 13th. The Conference was attended by more than 150 participants, with about 75 presentations and 35 posters covering the most recent advances in High Energy Physics, Astroparticle and Neutrino Physics, Heavy Ions and Detection Techniques. Only plenary sessions were held, giving young researchers the opportunity to present their work to a large audience, either with talks or posters, which were on permanent display during the entire conference. The scientific program was organized in 7 sessions: 1-Standard Model and beyond; 2-QCD; 3-Heavy Flavour; 4-Heavy Ions; 5-Astro particles; 6-Neutrino Physics; 7-New Technologies. Introductory, state-of-the art talks, opened the Conference and each session. More detailed talks followed, stimulating lively discussions and interactions between the speakers and the participants. Three talks and two posters by young researchers (Matteo Biassoni, Roberta Cardinale, Stefano Perazzini, Federica Primavera and Laura Zotti) were selected for their high quality and awarded a prize money. It would not have been possible to held this conference without the support of INFN Sezione di Ferrara, Universita' di Ferrara and the generous contributions of Hamamatsu, Caen, National Instruments and AdvanSiD, whom we gratefully acknowledge.

  18. Spin structure in high energy processes: Proceedings

    International Nuclear Information System (INIS)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z 0 s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ( 3 HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b → sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere

  19. Topics in calorimetry for high energy physics

    International Nuclear Information System (INIS)

    Hollebeek, R.

    1992-01-01

    These lectures focus on a series of topics now of interest or which have been of interest to designes of calorimeters in the past few years. The examples concentrate on calorimeters from DESY because its focus this year is on e-P physics, and on CDF and SDC because they are best known to the author. Calorimeters are, broadly speaking, devices to measure the total energy of particles. In general, no one device will be optimal for all types of particles. The two broadest classes of calorimeters in high energy physics are the electromagnetic calorimeters used primarily for photons and electrons, and the hadronic calorimeters used for most charged mesons and baryons. Most operate by absorbing and thereby measuring a significant amount of the incoming particles energy directly. Some particles may require special devices for their interactions and observation. Modern calorimeters are characterized by energy and position resolution, and cost and size. Calorimeter cost is often a trade-off between performance desired and money available. The optimum cost will require a careful choice of materials, reduction of the overall size of the detector, elimination of labor intensive construction techniques, and careful consideration of the cost of calibration systems. Since at least some of these requirements which optimize cost and resolution are contradictory, the ideal calorimeter in seldom what one ends up building

  20. Sampling calorimeters in high energy physics

    International Nuclear Information System (INIS)

    Gordon, H.A.; Smith, S.D.

    1981-01-01

    At our current understanding of elementary particle physics, the fundamental constituents are the photon, quarks, gluons and leptons with a few highly forecasted heavy bosons. Calorimeters are essential for detecting all of these particles. Quarks and gluons fragment into many particles - at high energies, so many particles that one may not want to measure each one separately. This group of both charged and neutral particles can only be measured by calorimeters. The energy of an electron needs to be measured by a calorimeter and muon identification is enhanced by the recognition of a minimum ionizing particle passing through the calorimeter. Sampling calorimeters - those instruments in which part of the shower is sampled in an active medium sandwiched between absorbing layers - are reviewed. What follows is a very cursory overview of some fundamental aspects of sampling calorimeters. First, the properties of shower development are described for both the electromagnetic and hadronic cases. Then, examples of various readout schemes are discussed. Finally, some currently promising new ideas in calorimetry are described. 21 references