WorldWideScience

Sample records for high-energy neutron spectrometer

  1. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  2. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Imberti, S. [Universita degli Studi di Roma Tre, Dipartimento di Fisica ' E.Amaldi' , Rome (Italy) and CNR-INFM, Rome (Italy)]. E-mail: silvia.imberti@roma2.infn.it; Andreani, C. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Garbuio, V. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Gorini, G. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy); Pietropaolo, A. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Senesi, R. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy)

    2005-11-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1 deg. <2{theta}<5 deg. This equipment allows High-energy Inelastic Neutron Scattering (HINS) measurements to be performed in the (q,{omega}) kinematical region at low wavevector (q<10A{sup -1}) and high energy (unlimited) transfer -bar {omega}>500meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20A{sup -1}high energy transfer (-bar {omega}>1eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.

  3. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    Science.gov (United States)

    Imberti, S.; Andreani, C.; Garbuio, V.; Gorini, G.; Pietropaolo, A.; Senesi, R.; Tardocchi, M.

    2005-11-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1∘500 meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20 Å-11 eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.

  4. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N.J.; Schooneveld, E.M.

    2008-01-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10A -1 . This opens a still unexplored region of the kinematical (q,ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure

  5. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M. [Dipartimento di Fisica ' G. Occhialini' , Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Pietropaolo, A. [Dipartimento di Fisica ' G. Occhialini' , CNISM-Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); NAST Center - Nanoscienze-Nanotecnologie-Strumentazione, Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy)], E-mail: antonino.pietropaolo@mib.infn.it; Andreani, C.; Senesi, R. [Dipartimento di Fisica and Centro NAST - Nanoscienze-Nanotecnologie-Strumentazione, Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Rhodes, N.J.; Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 0QX OX11 (United Kingdom)

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10A{sup -1}. This opens a still unexplored region of the kinematical (q,{omega}) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  6. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    Science.gov (United States)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N. J.; Schooneveld, E. M.

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10Å-1. This opens a still unexplored region of the kinematical (q, ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  7. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    International Nuclear Information System (INIS)

    Imberti, S.; Andreani, C.; Garbuio, V.; Gorini, G.; Pietropaolo, A.; Senesi, R.; Tardocchi, M.

    2005-01-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1 deg. -1 ) and high energy (unlimited) transfer -bar ω>500meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20A -1 -1 ) and high energy transfer (-bar ω>1eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed

  8. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  9. Determination of workplace neutron spectra at a high energy hadron accelerator using active and passive Bonner sphere spectrometers

    International Nuclear Information System (INIS)

    Bedogni, R.; Esposito, A.; Chiti, M.

    2008-01-01

    In the framework of the 2006 experimental benchmark organized at the GSI (Darmstadt, Germany) by the EC CONRAD network, a neutron dosimetry intercomparison was performed in a workplace field around a carbon target hit by 400 MeV/u 12 C ions. The radiation protection group of the INFN-LNF participated to the intercomparison with a Bonner sphere spectrometer equipped with an active 6 LiI(Eu) scintillator and a set of passive detectors, namely MCP-6s (80mgcm -2 )/MCP-7 TLD pairs from TLD Poland. Both active and passive spectrometers, independently tested and calibrated, were used to determine the field and dosimetric quantities in the measurement point. The FRUIT unfolding code, developed at the INFN-LNF radiation protection group, was used to unfold the raw BSS data. This paper compares the results of the active or passive spectrometers, obtaining a satisfactory agreement in terms of both spectrum shape and value of the integral quantities, as the neutron fluence or the ambient dose equivalent. These results allow qualifying the BSS based on TLD pairs as a reliable passive method to be used around high energy particle accelerators even in low dose rate areas. This is particularly useful in those workplaces where the active instruments could be disturbed by the presence of pulsed fields, large photon fluence or electromagnetic noise

  10. High energy neutron dosimeter

    International Nuclear Information System (INIS)

    Rai, K.S.F.

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures

  11. High energy neutron generator

    International Nuclear Information System (INIS)

    Barjon, R.; Breynat, G.

    1987-01-01

    This patent describes a generator of fast neutrons only slightly contaminated by neutrons of energy less than 15 MeV, comprising a source of charged particles of energy equal to at least 15 MeV, a target made of lithium deuteride, and means for cooling the target. The target comprises at least two elements placed in series in the path of the charged particles and separated from each other, the thickness of each of the elements being selected as a function of the average energy of the charged particles emitted from the source and the energy of the fast neutrons to be generated such that neutrons of energy equal to at least 15 MeV are emitted in the forward direction in response to the bombardment of the target from behind by the charged particles. The target cooling means comprises means for circulating between and around the elements a gas which does not chemically react with lithium deuteride

  12. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  13. Prototype Neutron Energy Spectrometer

    International Nuclear Information System (INIS)

    Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2010-01-01

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  14. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  15. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  16. Electron volt neutron spectrometers

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Senesi, R.

    2011-01-01

    The advent of pulsed neutron sources has made available intense fluxes of epithermal neutrons (500 meV ≤E≤100 eV ). The possibility to open new investigations on condensed matter with eV neutron scattering techniques, is related to the development of methods, concepts and devices that drive, or are inspired by, emerging studies at this energy scale. Electron volt spectrometers have undergone continuous improvements since the construction of the first prototype instruments, but in the last decade major breakthroughs have been accomplished in terms of resolution and counting statistics, leading, for example, to the direct measurement of the proton 3-D Born–Oppenheimer potential in any material, or to quantitatively probe nuclear quantum effects in hydrogen bonded systems. This paper reports on the most effective methods and concepts for energy analysis and detection, as well as devices for the optimization of electron volt spectrometers for different applications. This is set in the context of the progress made up to date in instrument development. Starting from early stages of development of the technique, particular emphasis will be given to the Vesuvio eV spectrometer at the ISIS neutron source, the first spectrometer where extensive scientific, as well as research and development programmes have been carried out. The potential offered by this type of instrumentation, from single particle excitations to momentum distribution studies, is then put in perspective into the emerging fields of eV spectroscopy applied to cultural heritages and neutron irradiation effects in electronics. - Highlights: ► Neutron spectrometers at eV energies. ► Methods and techniques for eV neutrons counting at spallation sources. ► Scattering, imaging and radiation hardness tests with multi-eV neutrons.

  17. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  18. High energy radiation from neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  19. Very High Energy Neutron Scattering from Hydrogen

    International Nuclear Information System (INIS)

    Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I

    2010-01-01

    The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.

  20. Calibration of an electron volt neutron spectrometer

    International Nuclear Information System (INIS)

    Mayers, J.; Adams, M.A.

    2011-01-01

    The procedure for calibrating the VESUVIO eV neutron spectrometer at the ISIS neutron source is described. VESUVIO is used primarily to measure the momentum distribution n(p) of atoms, by inelastic scattering of very high energy (5-150 eV) neutrons. The results of the calibrations show that measurements of n(p) in atoms with masses lower than 16 amu can be measured with a resolution width ∼25% of the intrinsic peak widths in the current instrument configuration. Some suggestions as to how the instrument resolution could be significantly improved are made.

  1. Report on high energy neutron dosimetry workshop

    International Nuclear Information System (INIS)

    Alvar, K.R.; Gavron, A.

    1993-01-01

    The workshop was called to assess the performance of neutron dosimetry per the responses from ten DOE accelerator facilities to an Office of Energy Research questionnaire regarding implementation of a personnel dosimetry requirement in DRAFT DOE 5480.ACC, ''Safety of Accelerator Facilities''. The goals of the workshop were to assess the state of dosimetry at high energy accelerators and if such dosimetry requires improvement, to reach consensus on how to proceed with such improvements. There were 22 attendees, from DOE Programs and contract facilities, DOE, Office of Energy Research (ER), Office of Environmental Safety and Health (EH), Office of Fusion Energy, and the DOE high energy accelerator facilities. A list of attendees and the meeting agenda are attached. Copies of the presentations are also attached

  2. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  3. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  4. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    Lee, Changhee; Lee, C. H.; So, J. Y.; Park, S.; Han, Y. S.; Cho, S. J.; Moon, M. K.; Choi, Y. H.; Sun, G. M.

    2012-03-01

    □ Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  5. Martian Neutron Energy Spectrometer (MANES)

    Science.gov (United States)

    Maurer, R. H.; Roth, D. R.; Kinnison, J. D.; Goldsten, J. O.; Fainchtein, R.; Badhwar, G.

    2000-01-01

    High energy charged particles of extragalactic, galactic, and solar origin collide with spacecraft structures and planetary atmospheres. These primaries create a number of secondary particles inside the structures or on the surfaces of planets to produce a significant radiation environment. This radiation is a threat to long term inhabitants and travelers for interplanetary missions and produces an increased risk of carcinogenesis, central nervous system (CNS) and DNA damage. Charged particles are readily detected; but, neutrons, being electrically neutral, are much more difficult to monitor. These secondary neutrons are reported to contribute 30-60% of the dose equivalent in the Shuttle and MIR station. The Martian atmosphere has an areal density of 37 g/sq cm primarily of carbon dioxide molecules. This shallow atmosphere presents fewer mean free paths to the bombarding cosmic rays and solar particles. The secondary neutrons present at the surface of Mars will have undergone fewer generations of collisions and have higher energies than at sea level on Earth. Albedo neutrons produced by collisions with the Martian surface material will also contribute to the radiation environment. The increased threat of radiation damage to humans on Mars occurs when neutrons of higher mean energy traverse the thin, dry Martian atmosphere and encounter water in the astronaut's body. Water, being hydrogeneous, efficiently moderates the high energy neutrons thereby slowing them as they penetrate deeply into the body. Consequently, greater radiation doses can be deposited in or near critical organs such as the liver or spleen than is the case on Earth. A second significant threat is the possibility of a high energy heavy ion or neutron causing a DNA double strand break in a single strike.

  6. Practical neutron dosimetry at high energies

    International Nuclear Information System (INIS)

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently

  7. Neutron measurement by transportable spectrometer

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Two levels of neutron spectrometry are in regular use at nuclear power plants: some techniques used in the laboratory produce detailed spectra but require specialist operators, while simple instruments used by non-specialists to measure the neutron dose-rate to operators provide little spectral information. The standard portable instruments are therefore of no use when anomalous readings are obtained which require further investigation. AEA Technology at Winfrith has developed a Transportable Neutron Spectrometer (TNS) which is designed to produce reasonable spectra in routine use by staff with no specialist skill in spectroscopy, and high-quality spectra in the hands of skilled staff. The TNS provides a level of information intermediate between those currently available, and is also designed to solve the problem of imperfect dose response which is common in portable dosimeters. The TNS system consists of a power supply, a probe and a signal processing and data acquisition unit. (author)

  8. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  9. Polarized epithermal neutron spectrometer at KENS

    International Nuclear Information System (INIS)

    Kohgi, M.

    1983-01-01

    A spectrometer employing a white, epithermal, polarized neutron beam is under construction at KENS. The neutron polarization is achieved by passage through a dynamically polarized proton filter (DPPF). The results of the test experiments show that the DPPF method is promising in obtaining polarized epithermal neutron beam. The basic design of the spectrometer is described

  10. First observations of power MOSFET burnout with high energy neutrons

    International Nuclear Information System (INIS)

    Oberg, D.L.; Wert, J.L.; Normand, E.; Majewski, P.P.; Wender, S.A.

    1996-01-01

    Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage ≥400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed

  11. Research activities on dosimetry for high energy neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The external dosimetry research group of JAERI has been calculating dose conversion coefficients for high-energy radiations using particle transport simulation codes. The group has also been developing radiation dose measurement techniques for high-energy neutrons in collaboration with some university groups. (author)

  12. Investigation of high-energy inelastic neutron scattering from liquid water confined in silica xerogel

    International Nuclear Information System (INIS)

    Perelli-Cippo, E.; Andreani, C.; Casalboni, M.; Dire, S.; Fernandez-Canoto, D.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Prosposito, P.; Schutzmann, S.; Senesi, R.; Tardocchi, M.

    2006-01-01

    High-energy inelastic neutron scattering (HINS) employing epithermal neutrons is a new technique under development at the VESUVIO spectrometer at ISIS, aiming to access the high-energy and low wave-vector transfer region in neutron scattering experiments at eV energies. New neutron detectors have been developed for HINS based on the resonant detector (RD). These make use of the detection of prompt gammas after neutron absorption in an analyzer foil. The RD is used in the very low angle detector (VLAD) bank, which will extend the explored kinematical region to momentum transfer -1 , whilst still keeping energy transfer >300 meV. The final VLAD will cover the scattering range 1-5 o and will be installed by the end of 2005. The results obtained with prototype VLAD detectors on polycrystalline ice and liquid water in silica xerogels provide a demonstration of the feasibility of the measurements under realistic conditions

  13. High Energy Neutron Induced Gamma Production

    International Nuclear Information System (INIS)

    Brown, D.A.; Johnson, M.; Navratil, P.

    2007-01-01

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved

  14. High intensity TOF spectrometer for cold neutrons

    International Nuclear Information System (INIS)

    Maayouf, R.M.; Abd El-Kawy, A.; Habib, N.; Adib, M.; Hamouda, I.

    1984-01-01

    This work presents a neutron time-of-flight (TOF) spectrometer developed specially for total neutron cross-section measurements at neutron energies below 5 MeV and sample's temperature varying from the liquid nitrogen one and up to 500 0 K. The spectrometer is equipped by remote control unit, designed especially, in order to move the sample in and out of the beam during the experimental measurements. The spectrometer has proved to be useful for transmission measurements at neutron energies below 5 MeV. It has a reasonable energy resolution (4.4%) and high effect to background ratio (11.1) at 5 MeV

  15. 1987 calibration of the TFTR neutron spectrometers

    International Nuclear Information System (INIS)

    Barnes, C.W.; Strachan, J.D.; Princeton Univ., NJ

    1989-12-01

    The 3 He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs

  16. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Syracuse Univ., NY (United States)

    2016-01-01

    Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed

  17. High energy neutron recoil scattering from liquid 4He

    International Nuclear Information System (INIS)

    Holt, R.S.; Needham, L.M.; Paoli, M.P.

    1987-10-01

    The neutron recoil scattering from liquid 4 He at 4.2 K and 1.6 K has been observed for a momentum transfer of 150 A -1 using the Electron Volt Spectrometer on the pulsed neutron source, ISIS. The experiment yielded mean atomic kinetic energy values = 14.8 +- 3 K at 4.2 K and = 14.6 +- 3.2 K at 1.6 K in good agreement with values obtained at lower momentum transfers. (author)

  18. Bench mark spectra for high-energy neutron dosimetry

    International Nuclear Information System (INIS)

    Dierckx, R.

    1986-01-01

    To monitor radiation damage experiments, activation detectors are commonly used. The precision of the results obtained by the multiple foil analysis is largely increased by the intercalibration in bench-mark spectra. This technique is already used in dosimetry measurements for fission reactors. To produce neutron spectra similar to fusion reactor and high-energy high-intensity neutron sources (d-Li or spallation), accelerators can be used. Some possible solutions as p-Be and d-D 2 O neutron sources, useful as bench-mark spectra are described. (author)

  19. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  20. Fusion materials high energy-neutron studies. A status report

    International Nuclear Information System (INIS)

    Doran, D.G.; Guinan, M.W.

    1980-01-01

    The objectives of this paper are (1) to provide background information on the US Magnetic Fusion Reactor Materials Program, (2) to provide a framework for evaluating nuclear data needs associated with high energy neutron irradiations, and (3) to show the current status of relevant high energy neutron studies. Since the last symposium, the greatest strides in cross section development have been taken in those areas providing FMIT design data, e.g., source description, shielding, and activation. In addition, many dosimetry cross sections have been tentatively extrapolated to 40 MeV and integral testing begun. Extensive total helium measurements have been made in a variety of neutron spectra. Additional calculations are needed to assist in determining energy dependent cross sections

  1. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  2. Neutron spectrometer for improved SNM search.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  3. The vertex and large angle detectors of a spectrometer system for high energy muon physics

    International Nuclear Information System (INIS)

    Davis, A.; Dobinson, R.W.; Dosselli, U.; Edwards, A.; Gabathuler, E.; Kellner, G.; Montgomery, H.E.; Mueller, H.; Osborne, A.M.; Scaramelli, A.; Watson, E.; Brasse, F.W.; Falley, G.; Flauger, W.; Gayler, J.; Goessling, C.; Koll, J.; Korbel, V.; Nassalski, J.; Singer, G.; Thiele, K.; Zank, P.; Figiel, J.; Janata, F.; Rondio, E.; Studt, M.; Torre, A. de la; Bernaudin, B.; Blum, D.; Heusse, P.; Jaffre, M.; Noppe, J.M.; Pascaud, C.; Bertsch, Y.; Bouard, X. de; Broll, C.; Coignet, G.; Favier, J.; Jansco, G.; Lebeau, M.; Maire, M.; Minssieux, H.; Montanet, F.; Moynot, M.; Nagy, E.; Payre, P.; Perrot, G.; Pessard, H.; Ribarics, P.; Schneegans, M.; Thenard, J.M.; Botterill, D.; Carr, J.; Clifft, R.; Edwards, M.; Norton, P.R.; Rousseau, M.D.; Sproston, M.; Thompson, J.C.; Albanese, J.P.; Allkofer, O.C.; Arneodo, M.; Aubert, J.J.; Becks, K.H.; Bee, C.; Benchouk, C.; Bianchi, F.; Bibby, J.; Bird, I.; Boehm, E.; Braun, H.; Brown, S.; Brueck, H.; Callebaut, D.; Cobb, J.H.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G.R.; D'Agostini, G.; Dau, W.D.; Davies, J.K.; Dengler, F.; Derado, I.; Drees, J.; Dumont, J.J.; Eckardt, V.; Ferrero, M.I.; Gamet, R.; Gebauer, H.J.; Haas, J.; Hasert, F.J.; Hayman, P.; Johnson, A.S.; Kabuss, E.M.; Kahl, T.; Krueger, J.; Landgraf, U.; Lanske, D.; Loken, J.; Manz, A.; Mermet-Guyennet, M.; Mohr, W.; Moser, K.; Mount, R.P.; Paul, L.; Peroni, C.; Pettingale, J.; Poetsch, M.; Preissner, H.; Renton, P.; Rith, K.; Roehner, F.; Schlagboehmer, A.; Schmitz, N.; Schultze, K.; Shiers, J.; Sloan, T.; Smith, R.; Stier, H.E.; Stockhausen, W.; Wahlen, H.; Wallucks, W.; Whalley, M.; Williams, D.A.; Williams, W.S.C.; Wimpenny, S.; Windmolders, R.; Winkmueller, G.; Wolf, G.

    1983-01-01

    A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons. (orig.)

  4. Unique furnace system for high-energy-neutron experiments

    International Nuclear Information System (INIS)

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    1982-03-01

    The low flux of high energy neutron sources requires optimum utilization of the available neutron field. A furnace system has been developed in support of the US DOE fusion materials program which meets this challenge. Specimens positioned in two temperature zones just 1 mm away from the outside surface of a neutron window in the furnace enclosure can be irradiated simultaneously at two independent, isothermal (+- 1 0 C) temperatures. The temperature difference between these closely spaced isothermal zones is controllable from 0 to 320 0 C and the maximum temperature is 400 0 C. The design of the system also provides a controlled specimen environment, rapid heating and cooling and easy access to heaters and thermocouples. This furnace system is in use at the Rotating Target Neutron Source-II of Lawrence Livermore National Laboratory

  5. Transport of accelerator produced high energy neutrons though concrete

    International Nuclear Information System (INIS)

    Prabhakar Rao, G.; Sarkar, P.K.

    1996-01-01

    Development of a computational system for estimating the production and transport of high energy neutrons in particle accelerators is reported. The energy-angle distribution of neutrons from accelerated ions bombarding thick targets is calculated by a hybrid nuclear reaction model code, ALICE-91, modified to suit the purpose. Subsequent transmission of these neutrons through concrete slabs is treated using the anisotropic source-flux iteration technique (ASFIT) in the framework of a coupled neutron-gamma transport. Several parameters of both the codes have been optimized to obtain the transmitted dose through concrete. The calculations are found to be accurate and at the same time faster compared to the detailed Monte Carlo calculations. (author). 8 refs., 2 figs

  6. Response function measurement of plastic scintillator for high energy neutrons

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Takahashi, Kazutoshi; Takada, Masashi

    2003-01-01

    The response function and detection efficiency of 2''φ x 2''L plastic (PilotU) and NE213 liquid (2''NE213) scintillators, which were used for the measurement of secondary neutrons from high energy electron induced reactions, were measured at Heavy Ion Medical Accelerator in Chiba (HIMAC). High energy neutrons were produced via 400 MeV/n C beam bombardment on a thick graphite target. The detectors were placed at 15 deg with respect to C beam axis, 5 m away from the target. As standard, a 5''φ x 5''L NE213 liquid scintillator (5''NE213) was also placed at same position. Neutron energy was determined by the time-of-flight method with the beam pickup scintillator in front of the target. In front of the detectors, veto scintillators were placed to remove charged particle events. All detector signals were corrected with list mode event by event. We deduce neutron spectrum for each detectors. The efficiency curves for pilotU and 2''NE213 were determined on the bases of 5 N E213 neutron spectrum and its efficiency calculated by CECIL code. (author)

  7. A proposed neutron spectrometer system for JET

    International Nuclear Information System (INIS)

    Elevant, T.; Hellbom, G.; Scheffel, J.; Malmskog, S.

    1979-12-01

    A neutron spectrometer system is proposed primarily for measurements of ion temperature and density and ion beam energy distribution in extended fusion plasmas like e.g. in JET. Three different spectrometers are involved: time of flight, proton recoil and 3 He. Energy resolutions of a few percent both for DD and DT neutrons are provided. Six order of magnitudes in flux ranges will be covered by the system when employing multi-target systems. A neutron collimator and shielding system will be desirable in order to obtain relevant information. Due to the entire differences in energy and fluxes for DD and DT plasmas a flexible collimator-shielding system is recommended

  8. High energy neutron source for materials research and development

    International Nuclear Information System (INIS)

    Odera, M.

    1989-01-01

    Requirements for neutron source for nuclear materials research are reviewed and ESNIT, Energy Selective Neutron Irradiation Test facility proposed by JAERI is discussed. Its principal aims of a wide neutron energy tunability and spectra peaking at each energy to enable characterization of material damage process are demanding but attractive goals which deserve detailed study. It is also to be noted that the requirements make a difference in facility design from those of FMIT, IFMIF and other high energy intense neutron sources built or planned to date. Areas of technologies to be addressed to realize the ESNIT facility are defined and discussed. In order to get neutron source having desired spectral characteristics keeping moderate intensity, projectile and target combinations must be examined including experimentation if necessary. It is also desired to minimize change of flux density and energy spectrum according to location inside irradiation chamber. Extended target or multiple targets configuration might be a solution as well as specimen rotation and choice of combination of projectile and target which has minimum velocity of the center of mass. Though relevant accelerator technology exists, it is to be stressed that considerable efforts must be paid, especially in the area of target and irradiation devices to get ESNIT goal. Design considerations to allow hands-on maintenance and future upgrading possibility are important either, in order to exploit the facility fully for nuclear materials research and development. (author)

  9. Miniature neutron-alpha activation spectrometer

    International Nuclear Information System (INIS)

    Rhodes, Edgar; Goldsten, John; Holloway, James Paul; He, Zhong

    2002-01-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband

  10. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments

    International Nuclear Information System (INIS)

    Lee, K.W.; Sheu, R.J.

    2015-01-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with 252 Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing 252 Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6-8 extended-range sphere versus the 6'' standard sphere). (authors)

  11. Dose levels due to neutrons in the vicinity of high energy medical accelerators

    International Nuclear Information System (INIS)

    McGinley, P.H.; Wood, M.; Sohrabi, M.; Mills, M.; Rodriguez, R.

    1976-01-01

    High energy photons are generated for use in radiation therapy by the decelleration of electrons in metal targets. Fast neutrons are also generated as a result of (γ, n) and (e, e'n) interactions in the target, beam compensator filter, and collimator material. In this work the adsorbed dose to neutrons was measured at the center of a 10 x 10 cm photon beam and 5 cm outside of the beam edge for a number of treatment units. Dose levels due to slow and fast neutrons were also established outside of the treatment rooms and a Bonner sphere neutron spectrometer system was employed to determine the neutron energy spectrum due to stray neutron radiation at each accelerator. For the linac it was found that the neutron dose at the beam center was 0.0039% of the photon dose and values of 0.049% and 0.053% were observed for the Allis Chalmers betatron and the Brown Boveri Betatron. Dose equivalent rates in the range of 0.3 to 22.5 mrem/hr were measured for points outside the treatment rooms when the accelerators were operated at a photon dose rate of 100 rad/min at the treatment position

  12. High-energy neutron irradiation of superconducting compounds

    International Nuclear Information System (INIS)

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  13. Neutron emission and fragment yield in high-energy fission

    International Nuclear Information System (INIS)

    Grudzevich, O. T.; Klinov, D. A.

    2013-01-01

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of 235 U nuclei

  14. Some characteristics of a miniature neutron spectrometer

    International Nuclear Information System (INIS)

    Sekimoto, H.; Oishi, K.; Hojo, K.; Hojo, T.

    1984-01-01

    Some characteristics of an NE213 miniature spherical spectrometer for in-assembly fast-neutron spectrometry were measured. As the bubbling time changed, the pulse-height did not change appreciably, but the n-γ discrimination characteristics changed considerably. As the count rate changed, the pulse-height did not change appreciably, and the change of the n-γ discrimination characteristics was acceptable. The neutron response function was measured to be almost isotropic except for the backward direction. (orig.)

  15. J-NSE: Neutron spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Olaf Holderer

    2015-08-01

    Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.

  16. Neutron spectrometer using NE218 liquid scintillator

    International Nuclear Information System (INIS)

    Dance, J.B.; Francois, P.E.

    1976-01-01

    A neutron spectrometer has been constructed using NE218 liquid scintillator. Discrimination against electron-gamma events was obtained usng a charge-comparison pulse shape discrimination system. The resolution obtained was about 0.25 MeV F.W.H.M. at 2.0 MeV

  17. Measurements and Monte Carlo calculations with the extended-range Bonner sphere spectrometer at high-energy mixed fields

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00406842; Bay, Aurelio; Silari, Marco; Aroua, Abbas

    The use of spectrometry to provide information for neutron radiation protection has become an increasingly important activity over recent years. The need for spectral data arises because neither area survey instruments nor personal dosimeters give the correct dose equivalent results at all neutron energies. It is important therefore to know the spectra of the fields in which these devices are used. One of the systems most commonly employed in neutron spectrometry and dosimetry is the Bonner Sphere Spectrometers (BSS). The extended- range BSS that was used for this work, consists of 7 spheres with an overall response to neutrons up to 2 GeV. A 3He detector is used as a thermal counter in the centre of each sphere. In the context of this thesis the BSS was calibrated in monoenergetic neutron fields at low and intermediate energies. It was also used for measurements in several high energy mixed fields. These measurements have led to the calculation of neutron yields and spectral fluences from unshielded targets....

  18. Recent research on nuclear reaction using high-energy proton and neutron

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study

    1997-11-01

    The presently available high-energy neutron beam facilities are introduced. Then some interesting research on nuclear reaction using high-energy protons are reported such as the intermediate mass fragments emission and neutron spectrum measurements on various targets. As the important research using high-energy neutron, the (p,n) reactions on Mn, Fe, and Ni, the elastic scattering of neutrons, and the shielding experiments are discussed. (author)

  19. Experimental characterization of the neutron spectra generated by a high-energy clinical LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Amgarou, K., E-mail: khalil.amgarou@uab.e [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France); Lacoste, V.; Martin, A. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France)

    2011-02-11

    The production of unwanted neutrons by electron linear accelerators (LINACs) has attracted a special attention since the early 50s. The renewed interest in this topic during the last years is due mainly to the increased use of such machines in radiotherapy. Specially, in most of developing countries where many old teletherapy irradiators, based on {sup 60}Co and {sup 137}Cs radioactive sources, are being replaced with new LINAC units. The main objective of this work is to report the results of an experimental characterization of the neutron spectra generated by a high-energy clinical LINAC. Measurements were carried out, considering four irradiation configurations, by means of our recently developed passive Bonner sphere spectrometer (BSS) using pure gold activation foils as central detectors. This system offers the possibility to measure neutrons over a wide energy range (from thermal up to a few MeV) at pulsed, intense and complex mixed n-{gamma} fields. A two-step unfolding method that combines the NUBAY and MAXED codes was applied to derive the final neutron spectra as well as their associated integral quantities (in terms of total neutron fluence and ambient dose equivalent rates) and fluence-averaged energies.

  20. Miniature Neutron-Alpha Activation Spectrometer

    Science.gov (United States)

    Rhodes, E.; Goldsten, J.

    2001-01-01

    We are developing a miniature neutron-alpha activation spectrometer for in situ analysis of samples including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform, that would meet the severe mass, power, and environmental constraints of missions to the outer planets. In the neutron-activation mode, a gamma-ray spectrometer will first perform a penetrating scan of soil, ice, and loose material underfoot (depths to 10 cm or more) to identify appropriate samples. Chosen samples will be analyzed in bulk in neutron-activation mode, and then the sample surfaces will be analyzed in alpha-activation mode using Rutherford backscatter and x-ray spectrometers. The instrument will provide sample composition over a wide range of elements, including rock-forming elements (such as Na, Mg, Si, Fe, and Ca), rare earths (Sm and Eu for example), radioactive elements (K, Th, and U), and light elements present in water, ices, and biological materials (mainly H, C, O, and N). The instrument is expected to have a mass of about l kg and to require less than 1 W power. Additional information is contained in the original extended abstract.

  1. A technique for determining fast and thermal neutron flux densities in intense high-energy (8-30 MeV) photon fields

    International Nuclear Information System (INIS)

    Price, K.W.; Holeman, G.R.; Nath, R.

    1978-01-01

    A technique for measuring fast and thermal neutron fluxes in intense high-energy photon fields has been developed. Samples of phorphorous pentoxide are exposed to a mixed photon-neutron field. The irradiated samples are then dissolved in distilled water and their activation products are counted in a liquid scintillation spectrometer at 95-97% efficiency. The radioactive decay characteristics of the samples are then analyzed to determine fast and thermal neutron fluxes. Sensitivity of this neutron detector to high energy photons has been measured and found to be small. (author)

  2. Spectrometer for neutron inelastic scattering investigations of microsamples

    International Nuclear Information System (INIS)

    Balagurov, A.M.; Kozlenko, D.P.; Platonov, S.L.; Savenko, B.N.; Glazkov, V.P.; Krasnikov, Yu.M.; Naumov, I.V.; Pukhov, A.V.; Somenkov, V.A.; Syrykh, G.F.

    1997-01-01

    A new neutron spectrometer for investigation of inelastic neutron scattering on polycrystal microsamples under high pressure in sapphire and diamond anvils cells is described. The spectrometer is operating at the IBR-2 pulsed reactor in JINR. Parameters and methodical peculiarities of the spectrometer and the examples of experimental studies are given. (author)

  3. Modified Thomson spectrometer design for high energy, multi-species ion sources

    International Nuclear Information System (INIS)

    Gwynne, D.; Kar, S.; Doria, D.; Ahmed, H.; Hanton, F.; Cerchez, M.; Swantusch, M.; Willi, O.; Fernandez, J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Green, J. S.; Neely, D.; Najmudin, Z.; Streeter, M.; Ruiz, J. A.; Schiavi, A.; Zepf, M.; Borghesi, M.

    2014-01-01

    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection

  4. Neutron spectra measuring by magnetless hadron spectrometer

    International Nuclear Information System (INIS)

    Bayukov, Yu.D.; Buklej, A.E.; Gavrilov, V.B.

    1980-01-01

    The energy resolution, efficiency and background conditions of neutron recording in inclusive nuclear reactions by a magnetless hadron spectrometer (MHS) in the 8-300 MeV energy range. The scheme of apparatus lay-out for measuring neutron recording efficiency is shown. For recording colliding particles with the 3 GeV/c momentum four beam scintillation counters, the latter of which of 30x40 mm dimensions and 1 mm thickness defines the working beam range in the target centre, are used. Targets of the 80 mm diameter made of C and Pb (2.08 g/cm 2 and 3.04 g/cm 2 thickness, respectively) are located at the 45 deg angle in respect to the beam direction. Secondary particles escaping at the 90 deg angle are recorded by two telescopes of the scintillation counters. For neutron and γ quanta recording the special scintillation detector of the 20 cm thickness encircled by an anticoincidence counter is used. The neutron recording efficiency is determined on the basis of comparison of the neutron production differential cross sections of the π +- 12 C 6 → nX reactions and of proton production in isotopically symmetric reactions π +- 12 C 6 → pX. The experimental data are in good agreement with the calculation data [ru

  5. Microprocessor-controlled portable neutron spectrometer

    International Nuclear Information System (INIS)

    Hunt, G.F.; Kaifer, R.C.; Slaughter, D.R.; Strout, R.E. II; Rueppel, D.W.

    1979-01-01

    A neutron spectrometer that acquires and unfolds data in the field has been developed for use in the energy range from 1 to 20 MeV. The system includes an NE213 organic scintillation detector, automatic gain stabilization, automatically stabilized pulseshape discrimination, an LSl-11 microprocessor for control and data reduction, and a multichannel analyzer for data acquisition. The system, with the exception of the multichannel analyzer, is mounted in a suitcase 47 by 66 by 23.5 cm. The mass is 23.5 kg

  6. Calibration and intercomparison of neutron moderation spectrometers

    International Nuclear Information System (INIS)

    Rimpler, A.; Hermanska, J.; Prouza, Z.

    1989-01-01

    Results have been reported of comparative measurements of neutron fields from bare PuBe and Cf sources using multisphere (Bonner) spectrometers. The experiments were carried out by the Institute of Biophysics and Nuclear Medicine at Charles University in Prague and the National Board for Atomic Safety and Radiation Protection in Berlin. Both sides agreed upon uniform measuring conditions and calibration factors thus rendering possible the comparability of the dosimetric parameters which have been determined and verified, respectively, to an accuracy of ± 10%. 20 refs., 10 tabs., 2 figs. (author)

  7. Fast neutron spectrometer with pulse shape discrimination

    International Nuclear Information System (INIS)

    Verbitsky, S.S.

    1978-01-01

    A fast neutron spectrometer with a stilbene single crystal designed to operate at high pulsed count rate has been described. Making use of identification and rejection of events, accompanied by pile-up, allowed to increase permissible count rates by an order of magnitude. The results of energy dependence of signal amplitude and shape relative anisotropy in stilbene in the range 4-10 and 2-8 MeV respectively have been presented. Taking into account anisotropy of the detector-scintillation properties allowed to improve particle discrimination. (Auth.)

  8. Mechanical neutron spectrometer Chopper; Neutronski mehanicki spektrometar (coper)

    Energy Technology Data Exchange (ETDEWEB)

    Maglic, R [Institute of Nuclear Sciences Boris Kidric, Laboratorija za reaktorsku i neutronsku fiziku, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Construction of the neutron chopper was completed in 1961. This report covers both theoretical studies, calculation results and description of practical details related to design and construction of the mechanical neutron spectrometer.

  9. Response of LET spectrometer based on track etching at some neutron sources

    International Nuclear Information System (INIS)

    Spurny, Frantisek; Brabcova, Katerina; Jadrnickova, Iva

    2008-01-01

    There is still need to develop upgrade, and test further methods able to characterise the external exposure to neutrons. This contribution presents further results obtained with the goal to enlarge and upgrade the possibility of neutron dosimetry and microdosimetry with a LET spectrometer based on the chemically etched track detectors (TED). As TED we have used several types of polyallyldiglycolcarbonates (PADC). The PADC detectors have been exposed in: high energy neutron beams at iThemba facility, Cape Town, South Africa, and in monoenergetic neutron beams at JRC Geel, Belgium. The studies have been performed in the frame of the ESA supported project DOBIES. (author)

  10. Photon detector for high energy measurements in the SELEX spectrometer (Fermilab experiment E781)

    International Nuclear Information System (INIS)

    Goncharenko, Yu.M.; Grachov, O.A.; Kurshetsov, V.F.; Landsberg, L.G.; Nurushev, S.B.; Vasil'ev, A.N.

    1995-01-01

    A possibility to use one- or two-photon lead glass detectors for high energy measurements in the SELEX spectrometer with E γ up to 500 GeV is studied. It is shown that a single photon detector equipped with radiation-resistant lead glass counters is applicable for the experiment discussed. It is concluded that for the best energy resolution in the case of Primakoff effect like π - = γ * → π - + γ the combined method would be used with weighted combination of direct E γ measurement in the Photon-3 detector and the π - beam energy precise measurement. 11 refs., 4 tabs., 17 figs

  11. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, Robert, E-mail: robert.maglieri@mail.mcgill.ca; Evans, Michael; Seuntjens, Jan; Kildea, John [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada); Licea, Angel [Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  12. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

    Energy Technology Data Exchange (ETDEWEB)

    Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Savici, Andrei T [ORNL; Garlea, Vasile O [ORNL; Winn, Barry L [ORNL; Schneelock, John [Brookhaven National Laboratory (BNL); Tranquada, John M. [Brookhaven National Laboratory (BNL); Gu, G. D. [Brookhaven National Laboratory (BNL); Wang, Aifeng [Brookhaven National Laboratory (BNL); Petrovic, C [Brookhaven National Laboratory (BNL)

    2017-01-01

    We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with the full polarization analysis. Examples of the polarized neutron diffraction and the polarized inelastic neutron data obtained on single crystal samples are presented.

  13. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

    OpenAIRE

    Zaliznyak, Igor A; Savici, Andrei T.; Garlea, V. Ovidiu; Winn, Barry; Filges, Uwe; Schneeloch, John; Tranquada, John M.; Gu, Genda; Wang, Aifeng; Petrovic, Cedomir

    2016-01-01

    We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with full polarization analysis. Examples of polarized neutron diffraction and polarized inelastic neutron data obtained on single crystal samples are presented.

  14. The VESUVIO electron volt neutron spectrometer

    Science.gov (United States)

    Mayers, J.; Reiter, G.

    2012-04-01

    This paper describes the VESUVIO electron volt neutron spectrometer at the ISIS pulsed neutron source and its data analysis routines. VESUVIO is used primarily for the measurement of proton momentum distributions in condensed matter systems, but can also be used to measure the kinetic energies of heavier masses and bulk in-situ sample compositions. A series of VESUVIO runs on the same zirconium hydride sample over the past two years show that (1) kinetic energies of protons can be measured to an absolute accuracy of ˜1%. (2) Measurements of the proton momentum distribution n(p) are highly reproducible from run to run. This shows that small changes in kinetic energy and the detailed shape of n(p) with parameters such as temperature, pressure and sample composition can be reliably extracted from VESUVIO data. (3) The impulse approximation (IA) is well satisfied on VESUVIO. (4) The small deviations from the IA due to the finite momentum transfer of measurement are well understood. (5) There is an anomaly in the magnitude of the inelastic neutron cross-section of the protons in zirconium hydride, with an observed reduction of 10% ± 0.3% from that given in standard tables. This anomaly is independent of energy transfer to within experimental error. Future instrument developments are discussed. These would allow the measurement of n(p) in other light atoms, D, 3He, 4He, Li, C and O and measurement of eV electronic and magnetic excitations.

  15. The VESUVIO electron volt neutron spectrometer

    International Nuclear Information System (INIS)

    Mayers, J; Reiter, G

    2012-01-01

    This paper describes the VESUVIO electron volt neutron spectrometer at the ISIS pulsed neutron source and its data analysis routines. VESUVIO is used primarily for the measurement of proton momentum distributions in condensed matter systems, but can also be used to measure the kinetic energies of heavier masses and bulk in-situ sample compositions. A series of VESUVIO runs on the same zirconium hydride sample over the past two years show that (1) kinetic energies of protons can be measured to an absolute accuracy of ∼1%. (2) Measurements of the proton momentum distribution n(p) are highly reproducible from run to run. This shows that small changes in kinetic energy and the detailed shape of n(p) with parameters such as temperature, pressure and sample composition can be reliably extracted from VESUVIO data. (3) The impulse approximation (IA) is well satisfied on VESUVIO. (4) The small deviations from the IA due to the finite momentum transfer of measurement are well understood. (5) There is an anomaly in the magnitude of the inelastic neutron cross-section of the protons in zirconium hydride, with an observed reduction of 10% ± 0.3% from that given in standard tables. This anomaly is independent of energy transfer to within experimental error. Future instrument developments are discussed. These would allow the measurement of n(p) in other light atoms, D, 3 He, 4 He, Li, C and O and measurement of eV electronic and magnetic excitations. (paper)

  16. A multi-analyzer crystal spectrometer (MAX) for pulsed neutron sources

    International Nuclear Information System (INIS)

    Tajima, K.; Ishikawa, Y.; Kanai, K.; Windsor, C.G.; Tomiyoshi, S.

    1982-03-01

    The paper describes the principle and initial performance of a multi-analyzer crystal spectrometer (MAX) recently installed at the KENS spallation neutron source at Tsukuba. The spectrometer is able to make time of flight scans along a desired direction in reciprocal space, covering a wide range of the energy transfers corresponding to the fifteen analyzer crystals. The constant Q or constant E modes of operation can be performed. The spectrometer is particularly suited for studying collective excitations such as phonons and magnons to high energy transfers using single crystal samples. (author)

  17. High energy neutron dosimetry for the fusion program

    International Nuclear Information System (INIS)

    Barr, D.W.; Norris, A.E.

    1977-01-01

    Neutron dosimetry by the foil activation method offers a flexible technique for characterizing neutron spectra ranging from thermal energies to 30 MeV with the potential for extension to higher neutron energies as investigated by the Los Alamos Radiochemistry Group at the Los Alamos Meson Physics Facility and in the Apollo-Soyuz Test Project. The use of this method for the neutron flux description in thermal, resonance, and fission spectrum assemblies has been demonstrated. An extension of the method to environments involving thermonuclear processes was developed at Los Alamos in the early 1950's to characterize mixed fission-thermonuclear systems

  18. Detailed investigation of a time-of-flight neutron spectrometer

    International Nuclear Information System (INIS)

    Elevant, T.; Trostell, B.

    1981-02-01

    Properties of a neutron spectrometer and telescope, based on double neutron interaction in hydrogen based scintillators and neutron time-of-flight technique, have been investigated in detail. Theoretical scaling of the resolutions with the flight path length and scattering angle have been confirmed by experimental results. Important parameters in connection with calibration of the spectrometer are discussed and calculated relative resolutions of the ion temperature are shown when applied to a fusion deuterium plasma. (Auth.)

  19. MESSENGER E/V/H GRNS 3 NEUTRON SPECTROMETER CDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Neutron Spectrometer (NS) calibrated data records (CDRs). The NS experiment is a neutron spectrometer...

  20. Intercomparison of radiation protection devices in a high-energy stray neutron field, Part II: Bonner sphere spectrometry

    International Nuclear Information System (INIS)

    Wiegel, B.; Agosteo, S.; Bedogni, R.; Caresana, M.; Esposito, A.; Fehrenbacher, G.; Ferrarini, M.; Hohmann, E.; Hranitzky, C.; Kasper, A.; Khurana, S.; Mares, V.; Reginatto, M.; Rollet, S.; Ruehm, W.; Schardt, D.; Silari, M.; Simmer, G.; Weitzenegger, E.

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005-2007) called CONRAD, COordinated Network for RAdiation Dosimetry. A major task of the CONRAD Work Package 'complex mixed radiation fields at workplaces' was to organise a benchmark exercise in a workplace field at a high-energy particle accelerator where neutrons are the dominant radiation component. The CONRAD benchmark exercise took place at the Gesellschaft fuer Schwerionenforschung mbH (GSI) in Darmstadt, Germany in July 2006. In this paper, the results of the spectrometry using four extended -range Bonner sphere spectrometers of four different institutes are reported. Outside Cave A the neutron spectra were measured with three spectrometers at six selected positions and ambient dose equivalent values were derived for use in the intercomparison with other area monitors and dosemeters. At a common position all three spectrometers were used to allow a direct comparison of their results which acts as an internal quality assurance. The comparison of the neutron spectra measured by the different groups shows very good agreement. A detailed analysis presents some differences between the shapes of the spectra and possible sources of these differences are discussed. However, the ability of Bonner sphere spectrometers to provide reliable integral quantities like fluence and ambient dose equivalent is well demonstrated in this exercise. The fluence and dose results derived by the three groups agree very well within the given uncertainties, not only with respect to the total energy region present in this environment but also for selected energy regions which contribute in certain strength to the total values. In addition to the positions outside Cave A one spectrometer was used to measure the neutron spectrum at one position in the entry maze of Cave A. In this case a comparison was possible to earlier measurements.

  1. Response of CR-39 SSNTD to high energy neutrons using zirconium convertors - a Monte Carlo and experimental study

    International Nuclear Information System (INIS)

    Pal, Rupali; Sapra, B.K.; Bakshi, A.K.; Datta, D.; Biju, K.; Suryanarayana, S.V.; Nayak, B.K.

    2016-01-01

    Neutron dosimetry in ion accelerators is a challenging field as the neutron spectrum varies from thermal, to fast and high-energy neutrons usually extending beyond 20 MeV. Solid-state Nuclear Track Detectors (SSNTDs) have been increasingly used in numerous fields related to nuclear physics. Extensive work has also been carried out on determining the response characteristics of such detectors as nuclear spectrometers. In nuclear reaction studies, identification of reaction products according to their type and energy is frequently required. For normally incident particles, energy-dispersive track-diameter methods have become useful scientific tools using CR-39 SSNTD. CR-39 along with 1 mm polyethylene convertor can cover a neutron energy range from 100 keV to 10 MeV. The neutron interacts with the hydrogen in CR-39 producing recoil protons from elastic collisions. This detectable neutron energy range can be increased by modification in the radiator/convertor used along with CR-39. CR39 detectors placed in conjunction with judiciously chosen thicknesses of a polyethylene radiator and a lead absorber (or degrader) are used to increase energy range upto 19 MeV. A portable neutron counter has been proposed for high-energy neutron measurement with 1 cm thick Zirconium (Zr) as the converter outside a spherical HDPE shell of 7 inch diameter. Zr metal has been found to show (n,2n) cross section for energies above 10 MeV starting from 0.01 barns for 8 MeV upto 1 barns for 22 MeV. Above these energies, the experimental data is scarce. In this paper, Zr was used in conjunction with CR-39 which showed an enhancement of track density on the CR-39. This paper demonstrates the enhancement of neutron response using Zr on CR-39 with both theoretical and experimental studies

  2. A compound parabolic concentrator as an ultracold neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hickerson, K.P., E-mail: hickerson@gmail.com; Filippone, B.W., E-mail: bradf@caltech.edu

    2013-09-01

    The design principles of nonimaging optics are applied to ultracold neutrons (UCN). In particular a vertical compound parabolic concentrator (CPC) that efficiently redirects UCN vertically into a bounded spatial volume where they have a maximum energy mga that depends only on the initial phase space cross sectional area πa{sup 2} creates a spectrometer which can be applied to neutron lifetime and gravitational quantum state experiments. -- Highlights: • Nonimaging optics is applied to ultracold neutrons. • A novel ultracold neutron spectrometer is discussed. • New uses may include a neutron lifetime experiment.

  3. A compound parabolic concentrator as an ultracold neutron spectrometer

    International Nuclear Information System (INIS)

    Hickerson, K.P.; Filippone, B.W.

    2013-01-01

    The design principles of nonimaging optics are applied to ultracold neutrons (UCN). In particular a vertical compound parabolic concentrator (CPC) that efficiently redirects UCN vertically into a bounded spatial volume where they have a maximum energy mga that depends only on the initial phase space cross sectional area πa 2 creates a spectrometer which can be applied to neutron lifetime and gravitational quantum state experiments. -- Highlights: • Nonimaging optics is applied to ultracold neutrons. • A novel ultracold neutron spectrometer is discussed. • New uses may include a neutron lifetime experiment

  4. Two-dimensional thermometry by using neutron resonance absorption spectrometer DOG

    International Nuclear Information System (INIS)

    Kamiyama, T.; Noda, H.; Kiyanagi, Y.; Ikeda, S.

    2001-01-01

    We applied the neutron resonance absorption spectroscopy to thermometry of a bulk object. The measurement was done by using the neutron resonance absorption spectrometer, DOG, installed at KENS, High Energy Accelerator Research Organization Neutron Source, which enables us to investigate effective temperature of a particular element by analyzing line width of resonance absorption spectrum. The effective temperature becomes consistence with the sample temperature above room temperature. For the analysis we applied the computed tomography method to reconstruct the temperature distribution on the object cross section. The results and the calculated distribution by the heat conducting equation are well agreed on the temperature difference inside the object. (author)

  5. Feasibility of the Precise Energy Calibration for Fast Neutron Spectrometers

    Science.gov (United States)

    Gaganov, V. V.; Usenko, P. L.; Kryzhanovskaja, M. A.

    2017-12-01

    Computational studies aimed at improving the accuracy of measurements performed using neutron generators with a tritium target were performed. A measurement design yielding an extremely narrow peak in the energy spectrum of DT neutrons was found. The presence of such a peak establishes the conditions for precise energy calibration of fast-neutron spectrometers.

  6. Development of triple axis neutron spectrometer (Paper No. 24)

    International Nuclear Information System (INIS)

    Pal, B.C.; Wadhwa, N.R.; Goveas, S.H.

    1987-02-01

    The triple axis neutron spectrometers are the basic instruments intended for use with neutron beams from reactors. Various types of spectrometers, each devoted to different kinds of measurement can be designed and manufactured, once a prototype having all the attributes of a versatile instrument is designed and developed. With the view to achieving self reliance in this field, Central Workshops of Bhabha Atomic Research Centre (BARC), Bombay designed and developed a prototype of triple axis spectrometer meeting the specifications prepared by Nuclear Physics Division of BARC . This spectrometer, with a moving wedge system was successfully manufactured and installed at 'DHRUVA'. Another version of this spectrometer, called the 'Polarised Neutron Spectrometer' was also built and exported to South Korea and installed at Korea Advanced Energy Research Institute, Seoul. This paper deals with basic concept, development of design, engineering of mechanical assemblies, the manufacturing approach and problems encountered during manufacture. (author). 3 figs

  7. Feasibility study of a SiC sandwich neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian, E-mail: caepwujian@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Lei, Jiarong, E-mail: jiarong_lei@163.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Jiang, Yong; Chen, Yu; Rong, Ru; Zou, Dehui; Fan, Xiaoqiang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Chen, Gang; Li, Li; Bai, Song [Nanjing Electronic Devices Institute, Nanjing 210016 (China)

    2013-04-21

    Semiconductor sandwich neutron spectrometers are suitable for in-pile measurements of fast reactor spectra thanks to their compact and relatively simple design. We have assembled and tested a sandwich neutron spectrometer based on 4H-silicon carbide (4H-SiC) Schottky diodes. The SiC diodes detect neutrons via neutron-induced charged particles (tritons and alpha particles) produced by {sup 6}Li(n,α){sup 3}H reaction. {sup 6}LiF neutron converter layers are deposited on the front surface of Schottky diodes by magnetron sputtering. The responses of SiC diodes to charged particles were investigated with an {sup 241}Am alpha source. A sandwich neutron spectrometer was assembled with two SiC Schottky diodes selected based on the charged-particle-response experimental results. The low-energy neutron response of the sandwich spectrometer was measured in the neutron field of the Chinese Fast Burst Reactor-II (CFBR-II). Spectra of alpha particles and tritons from {sup 6}Li(n,α){sup 3}H reaction were obtained with two well-resolved peaks. The energy resolution of the sum spectrum was 8.8%. The primary experimental results confirmed the 4H-SiC sandwich neutron spectrometer's feasibility. -- Highlights: ► Sandwich neutron spectrometer employing 4H-SiC as a detecting material has been developed for the first time. ► {sup 6}LiF neutron converter has been deposited on the surface of 4H-SiC Schottky diode. ► Preliminary testing results obtained with the 4H-SiC sandwich neutron spectrometer are presented.

  8. Measurement of high energy neutrons via Lu(n,xn) reactions

    International Nuclear Information System (INIS)

    Henry, E.A.; Becker, J.A.; Archer, D.E.; Younes, W.; Stoyer, M.A.; Slaughter, D.

    1997-07-01

    High energy neutrons can be assayed by the use of the nuclear diagnostic material lutetium. We are measuring the (n,xn) cross sections for natural lutetium in order to develop it as a detector material. We are applying lutetium to diagnose the high energy neutrons produced in test target/blanket systems appropriate for the Accelerator Production of Tritium Project. 3 refs., 5 figs., 1 tab

  9. Application of modular neutron spectrometer to measure neutron spectra from fission of 252Cf

    International Nuclear Information System (INIS)

    Szeflinski, Z.; Osuch, S.; Popkiewicz, M.; Wilhelmi, Z.; Zelazny, Z.

    1996-01-01

    The neutron spectrometer MONA (Modular Neutron Array) and its test has been described. The spectrometers consist of eight BC-501A liquid scintillator detectors of BICRON which allow one to distinguish between the pulses from gamma quanta and neutrons using pulse shape discrimination (PSD) method. The electronic equipment for the PSD and the test result using the 252 Cf radioactive source are presented

  10. Polarized neutron spectrometer for inelastic experiments at J-PARC

    Directory of Open Access Journals (Sweden)

    Yokoo Tetsuya

    2015-01-01

    Full Text Available Construction of the newly developed polarization analysis neutron chopper spectrometer (POLANO commenced in the Japan Proton Accelerator Research Complex (J-PARC, Materials and Life Science Experimental Facility (MLF. The POLANO is a direct geometry chopper spectrometer with neutron polarization analysis capability. In the suite of inelastic spectrometers, six instruments are now in operation. POLANO will be the only spectrometer dedicated to polarization analysis experiments. The primary phase of the construction will be completed by 2014 with beam commissioning scheduled for 2015.

  11. The production of high energy neutrons by secondary reactions

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.; Roney, T.J.; Staples, D.R.; Harmon, J.F.; Burkhart, J.H.

    1994-01-01

    The potential of using binary reactions in targets containing Be is discussed. Data are presented from the use of Be and BeF 2 targets bombarded with 1.5, 1.7, 1.8 and 1.9 MeV protons. Neutron production is enhanced by the presence of the F by factors of ∼4

  12. Neutron-proton elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem (Punjab Univ., Lahore (Pakistan). Dept. of Physics)

    1980-09-06

    The most recent measurements of the differential and total cross sections of neutron-proton elastic scattering from 70 to 400 GeV/c have been explained by using rho as a simple pole and pomeron as a dipole. The predictions are also made regarding the energy dependence of dip and bump structure in angular distribution.

  13. High energy spin waves in iron measured by neutron scattering

    International Nuclear Information System (INIS)

    Boothroyd, A.T.; Paul, D.M.; Mook, H.A.

    1991-01-01

    We present new results for the spin were dispersion relation measured along the [ζζ0] direction in bcc iron (12% silicon) by time-of-flight, neutron inelastic scattering. The excitations were followed to the zone boundary, where they are spread over a range of energies around 300meV. 6 refs., 2 figs

  14. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    Science.gov (United States)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-03-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  15. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-01-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  16. Definition by modelling, optimization and characterization of a neutron spectrometry system based on Bonner spheres extended to the high-energy range

    International Nuclear Information System (INIS)

    Serre, S.

    2010-01-01

    This research thesis first describes the problematic of the effects of natural radiation on micro- and nano-electronic components, and the atmospheric-radiative stress of atmospheric neutrons from cosmic origin: issue of 'Single event upsets', present knowledge of the atmospheric radiative environment induced by cosmic rays. The author then presents the neutron-based detection and spectrometry by using the Bonner sphere technique: principle of moderating spheres, definition and mathematical formulation of neutron spectrometry using Bonner spheres, active sensors of thermal neutrons, response of a system to conventional Bonner spheres, extension to the range of high energies. Then, he reports the development of a Bonner sphere system extended to the high-energy range for the spectrometry of atmospheric neutrons: definition of a conventional system, Monte Carlo calculation of response functions, development of the response matrix, representation and semi-empirical verification of fluence response, uncertainty analysis, extension to high energies, and measurement tests of the spectrometer. He reports the use of a Monte Carlo simulation to characterize the spectrometer response in the high-energy range

  17. Spatial distribution of moderated neutrons along a Pb target irradiated by high-energy protons

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Manolopoulou, M.; Stoulos, S.; Brandt, R.; Westmeier, W.; Kulakov, B.A.; Krivopustov, M.I.; Sosnin, A.N.; Debeauvais, M.; Adloff, J.C.; Zamani Valasiadou, M.

    2006-01-01

    High-energy protons in the range of 0.5-7.4 GeV have irradiated an extended Pb target covered with a paraffin moderator. The moderator was used in order to shift the hard Pb spallation neutron spectrum to lower energies and to increase the transmutation efficiency via (n,γ) reactions. Neutron distributions along and inside the paraffin moderator were measured. An analysis of the experimental results was performed based on particle production by high-energy interactions with heavy targets and neutron spectrum shifting by the paraffin. Conclusions about the spallation neutron production in the target and moderation through the paraffin are presented. The study of the total neutron fluence on the moderator surface as a function of the proton beam energy shows that neutron cost is improved up to 1 GeV. For higher proton beam energies it remains constant with a tendency to decline

  18. MONSTER: a TOF Spectrometer for beta-delayed Neutron Spetroscopy

    CERN Document Server

    Martinez, T; Castilla, J; Garcia, A R; Marin, J; Martinez, G; Mendoza, E; Santos, C; Tera, F; Jordan, M D; Rubio, B; Tain, J L; Bhattacharya, C; Banerjee, K; Bhattacharya, S; Roy, P; Meena, J K; Kundu, S; Mukherjee, G; Ghosh, T K; Rana, T K; Pandey, R; Saxena, A; Behera, B; Penttila, H; Jokinen, A; Rinta-Antila, S; Guerrero, C; Ovejero, M C; Villamarin, D; Agramunt, J; Algora, A

    2014-01-01

    Beta-delayed neutron (DN) data, including emission probabilities, P-n, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  19. High-energy X-ray production in a boundary layer of an accreting neutron star

    International Nuclear Information System (INIS)

    Hanawa, Tomoyuki

    1991-01-01

    It is shown by Monte Carlo simulation that high-energy X-rays are produced through Compton scattering in a boundary layer of an accreting neutron star. The following is the mechanism for the high-energy X-ray production. An accreting neutron star has a boundary layer rotating rapidly on the surface. X-rays radiated from the star's surface are scattered in part in the boundary layer. Since the boundary layer rotates at a semirelativistic speed, the scattered X-ray energy is changed by the Compton effect. Some X-rays are scattered repeatedly between the neutron star and the boundary layer and become high-energy X-rays. This mechanism is a photon analog of the second-order Fermi acceleration of cosmic rays. When the boundary layer is semitransparent, high-energy X-rays are produced efficiently. 17 refs

  20. Relativistic polarized neutrons at the Laboratory of High Energy Physics, JINR

    International Nuclear Information System (INIS)

    Kirillov, A.; Komolov, L.; Kovalenko, A.; Matyushevskij, E.; Nomofilov, A.; Rukoyatkin, P.; Sharov, V.; Starikov, A.; Strunov, L.; Svetov, A.

    1996-01-01

    Using slowly extracted polarized deuterons, available at the accelerator facility of the Laboratory of High Energy Physics, JINR, polarized quasi-monochromatic neutrons with momenta from 1.1 to 4.5 GeV/c have been generated. Depending on momentum, from 10 4 to 10 6 polarized neutrons per accelerator cycle were produced. At present, the polarized neutrons are mainly intended for measuring the (n vec, p vec) total cross section differences. 6 refs., 2 figs

  1. A Pb-TLD spectrometer to measure high energy photons in z-pinch experiments on the primary test stand

    International Nuclear Information System (INIS)

    Si, Fenni; Yang, Jianlun; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Ye, Fan; Wang, Dong; Zhang, Chuanfei

    2017-01-01

    Highlights: • A Pb-TLD spectrometer has been developed to measure spectra of high energy photons in wire-array z pinches on PTS. • Energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code. • The energy of high energy x-ray on PTS is obtained to be mainly within the region of 100 keV to 1.3 MeV. - Abstract: A Pb-TLD spectrometer has been developed based on attenuation techniques to measure high energy photons in wire-array z-pinch experiments on the primary test stand (PTS). It is composed of a stack of 18 lead filters interspersed with 19 thermoluminescent dosimeters (TLD). A shield is constructed for the spectrometer and scattered radiation is reduced to less than 5% by the shield. Response functions of the spectrometer are calculated by MCNP5 for 0–2 MeV photons. Based on response functions and 19 dose data measured in experiments, energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code using iterative least square fit. Results show that energy peak locates within 200 keV and 300 keV, and the fluence decreases to background level at energy higher than 1.3 MeV.

  2. A Pb-TLD spectrometer to measure high energy photons in z-pinch experiments on the primary test stand

    Energy Technology Data Exchange (ETDEWEB)

    Si, Fenni; Yang, Jianlun; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Ye, Fan; Wang, Dong; Zhang, Chuanfei, E-mail: sifenni@163.com

    2017-05-15

    Highlights: • A Pb-TLD spectrometer has been developed to measure spectra of high energy photons in wire-array z pinches on PTS. • Energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code. • The energy of high energy x-ray on PTS is obtained to be mainly within the region of 100 keV to 1.3 MeV. - Abstract: A Pb-TLD spectrometer has been developed based on attenuation techniques to measure high energy photons in wire-array z-pinch experiments on the primary test stand (PTS). It is composed of a stack of 18 lead filters interspersed with 19 thermoluminescent dosimeters (TLD). A shield is constructed for the spectrometer and scattered radiation is reduced to less than 5% by the shield. Response functions of the spectrometer are calculated by MCNP5 for 0–2 MeV photons. Based on response functions and 19 dose data measured in experiments, energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code using iterative least square fit. Results show that energy peak locates within 200 keV and 300 keV, and the fluence decreases to background level at energy higher than 1.3 MeV.

  3. Ceramics research in a high-energy neutron source

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1989-01-01

    The studies on the irradiation effect to ceramics have added much to the basic understanding of their behavior, for example, the amorphous state of ceramics related to radiation-induced metamictization, the radiation-induced strengthening and toughening due to ultrafine defect aggregates, the in situ degradation of electrical resistivity, the role of radiation-induced defects on thermal conductivity and so on. Most of the irradiation testing on ceramics in the fields of structural and thermal properties have been carried out by using fast fission neutrons of about 1 MeV, but if this energy could be significantly changed, the size and nature of damage cascade and the quantity of transmutation gases produced would change. The significance of neutron source parameters, the special test requirement for ceramics such as the use of miniature specimens, the control of test environment, the transient reduction of electrical resistivity and so on are discussed. A special case of ceramic studies is that on new oxide superconductors. These materials can be made into amorphous state at about 1 dpa using 1 MeV electrons, and are considered to be fairly damage-sensitive. (K.I.)

  4. Cold-neutron multi-chopper spectrometer for MLF, J-PARC

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Kajimoto, Ryoich; Nakamura, Mistutaka; Arai, Masatoshi; Sato, Taku J.; Osakabe, Toyotaka; Matsuda, Masaaki; Metoki, Naoto; Kakurai, Kazuhisa; Itoh, Shinichi

    2005-01-01

    We are planning to construct a cold-neutron multi-chopper spectrometer for a new spallation neutron source at Materials and Life Science Facility (MLF) at J-PARC, which is dedicated to investigation of low energy excitations and quasi-elastic excitations in the field of solid state physics, chemistry, materials science, soft matter science and biomaterial science. The planned spectrometer will be installed at a H 2 -coupled moderator and will be equipped with a pulse-shaping disk-chopper in addition to a monochromating disk-chopper, and realizes both high-energy resolution (ΔE/E i ≥1%) and high-intensity (one order of magnitude higher than the present state-of-the-art chopper spectrometers)

  5. An improved computer controlled triple-axis neutron spectrometer

    International Nuclear Information System (INIS)

    Cooper, M.J.; Hall, J.W.; Hutchings, M.T.

    1975-07-01

    A description is given of the computer-controlled triple-axis neutron spectrometer installed at the PLUTO reactor at Harwell. The reasons for an nature of recent major improvements are discussed. Following a general description of the spectrometer, details are then given of the new computerised control system, including the functions of the various programs which are now available to the user. (author)

  6. Multichannel analyzer for the neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Vojter, A.P.; Slyisenko, V.Yi.; Doronyin, M.Yi.; Maznij, Yi.O.; Vasil'kevich, O.A.; Golyik, V.V.; Koval'ov, O.M.; Kopachov, V.Yi.; Savchuk, V.G.

    2010-01-01

    New multichannel time-of-flight spectrometer for the measurement of the energy and angular distributions of neutrons from the WWWR-M reactor is considered. This spectrometer has been developed for the replacement of the previous one to increase the number of channels and measurement precision, reduce the time of channel tuning and provide the automatic monitoring during the experiment.

  7. High resolution 14 MeV neutron spectrometer

    International Nuclear Information System (INIS)

    Pillon, M.

    1986-01-01

    A neutron spectrometer, based both on the track position identification and the energy measurement of recoiling protons from a hydrogenous radiator is proposed. The expected performance limits of this spectrometer with regard to energy resolution (deltaE/E), efficiency (epsilon) and counting rate are evaluated in five different configurations. The results show the possibility of deriving an optimized spectrometer design for applications on large fusion devices such as JET and NET with an energy resolution up 1% at 14 MeV

  8. Calibration of a compact magnetic proton recoil neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfu, E-mail: zhang_jianfu@163.com [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Ouyang, Xiaoping; Zhang, Xianpeng [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Ruan, Jinlu [Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhang, Guoguang [Applied Institute of Nuclear Technology, China Institute of Atomic Energy, Beijing 102413 (China); Zhang, Xiaodong [Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua [Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-04-21

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium–tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  9. Application of MSS-neutron spin echo spectrometer to pulsed neutron sources

    International Nuclear Information System (INIS)

    Tasaki, S.; Ebisawa, T.; Hino, M.; Kawai, T.

    2001-01-01

    A multilayer spin splitter (MSS) is a neutron device that gives phase difference between field-parallel and -antiparallel spin component of a superposing state. Since the phase difference is equivalent to the Larmor precession angle, MSS enables us to construct a new type of neutron spin echo (NSE) spectrometer. The new NSE spectrometer has its properties that 1. since the phase shift is neutron flight path length, the spectrometer can be drastically small, 2. the neutron spin echo time is proportional to the neutron wavelength. (author)

  10. Field calibration of a TLD albedo dosemeter in the high-energy neutron field of CERF

    International Nuclear Information System (INIS)

    Haninger, T.; Kleinau, P.; Haninger, S.

    2017-01-01

    The new albedo dosemeter-type AWST-TL-GD 04 has been calibrated in the CERF neutron field (CERN-EU high-energy Reference Field). This type of albedo dosemeter is based on thermoluminescent detectors (TLDs) and used by the individual monitoring service of the Helmholtz Zentrum Muenchen (AWST) since 2015 for monitoring persons, who are exposed occupationally against photon and neutron radiation. The motivation for this experiment was to gain a field specific neutron correction factor N n for workplaces at high-energy particle accelerators. N n is a dimensionless factor relative to a basic detector calibration with 137 Cs and is used to calculate the personal neutron dose in terms of H p (10) from the neutron albedo signal. The results show that the sensitivity of the albedo dosemeter for this specific neutron field is not significantly lower as for fast neutrons of a radionuclide source like 252 Cf. The neutron correction factor varies between 0.73 and 1.16 with a midrange value of 0.94. The albedo dosemeter is therefore appropriate to monitor persons, which are exposed at high-energy particle accelerators. (authors)

  11. Evaluation of response matrix of a multisphere neutron spectrometer ...

    Indian Academy of Sciences (India)

    Abstract. Neutron energy responses of water sphere spectrometers (WSS) to 30 MeV have been calculated by means of Monte Carlo calculations, using the computer code MCNP4C with ENDF/. B-VI.0 neutron cross-section. The calculations have been performed for 3He detector (typical SP9) placed inside 2, 3, 5, 8, ...

  12. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  13. Single event upset and charge collection measurements using high energy protons and neutrons

    International Nuclear Information System (INIS)

    Normand, E.; Oberg, D.L.; Wert, J.L.; Ness, J.D.; Majewski, P.P.; Wender, S.; Gavron, A.

    1994-01-01

    RAMs, microcontrollers and surface barrier detectors were exposed to beams of high energy protons and neutrons to measure the induced number of upsets as well as energy deposition. The WNR facility at Los Alamos provided a neutron spectrum similar to that of the atmospheric neutrons. Its effect on devices was compared to that of protons with energies of 200, 400, 500, and 800 MeV. Measurements indicate that SEU cross sections for 400 MeV protons are similar to those induced by the atmospheric neutron spectrum

  14. 4D space access neutron spectrometer 4SEASONS (SIKI)

    International Nuclear Information System (INIS)

    Kajimoto, Ryoichi; Nakamura, Mitsutaka

    2010-01-01

    The 4D Space Access Neutron Spectrometer (4SEASONS) is a high-intensity Fermi-chopper spectrometer. It is intended to provide high counting rate for thermal neutrons with medium resolution (ΔE/E i -6% at E=0) to efficiently collect weak inelastic signals from novel spin and lattice dynamics especially in high-T c superconductors and related materials. To achieve this goal, the spectrometer equips advanced instrumental design such as an elliptic-shaped converging neutron guide coated with high-Q c (m=3-4) supermirror, and long-length (2.5 m) 3 He position sensitive detectors (PSDs) arranged cylindrically inside the vacuum scattering chamber. Furthermore, the spectrometer is ready for multi-incident-energy measurements by the repetition rate multiplication method, which greatly improves the measurement efficiency. (author)

  15. The neutron spin-echo spectrometer: a new high resolution technique in neutron scattering

    International Nuclear Information System (INIS)

    Nicholson, L.K.

    1981-01-01

    The neutron spin-echo (NSE) spectrometer provides the highest energy resolution available in neutron scattering experiments. The article describes the principles behind the first NSE spectrometer (at the Institute Laue-Langevin, Grenoble, France) and, as an example of one of its applications, some recent results on polymer chain dynamics are presented. (author)

  16. Production of charm mesons by high energy neutrons

    International Nuclear Information System (INIS)

    Shipbaugh, C.L.

    1988-01-01

    The charmed mesons D/sup /plus minus//, D/sup 0/, and D/sub s//sup /plus minus//, have been observed in neutron-nucleus collisions at the FNAL Tevatron. A sample of 134 /plus minus/ 19 events as investigated in the decay D/sup /plus minus// /yields/ D/sup 0//pi//sup /plus minus// with the subsequent decay mode D/sup 0/ /yields/ K/sup +/K/sup /minus//. The cross section per nucleon for D/sup /plus minus//, at most probable energy /radical/s = 35 GeV, was measured to be 2.11 /plus minus/ .43 (plus minus/.63)/mu/b/nucleon for 0.0 < x/sub f/ < 0.14 (/bar x//sub f/ = .07). The branching ratio (BR) is defined as: BR /identical to/ Br(D /yields/ D/pi/) /times/ BR(D /yields/ K/sup +/K/sup /minus//). The dependence of the cross section per nucleus on number of nucleons in target was fit to a form A /sup /alpha// and it was found that /alpha/ = .96 /plus minus/ .17. A sample of 64 /plus minus/ 16 D/sub s//sup /plus minus// events was investigates for the decay D/sub s//sup /plus minus// /yields/ /phi//pi//sup /plus minus//. The differential cross section for D/sub s//sup /plus minus// production averaged over the particle and antiparticle states is: BR.[1/2](d/sigma/(D/sub s//sup +/)/dx/sub f/ + d/sigma/(D/sub s//sup /minus//) = 2.85 /plus minus/ 0.80 /plus minus/ .86 /mu/b/nucleon at x/sub f/ = 0.175 where the first errors is statistical and the second error is systematic. The branching fraction is defined as BR /equivalent to/ BR(D/sub s/ /yields/ /phi//pi/), and a linear A dependence was assumed. An estimate of relative cross section is: 0.19 /plus minus/ 0.09 at x/sub f/ = 0. 36 refs., 43 figs., 5 tabs

  17. Studies on a modular high-energy photon spectrometer of pure CsI scintillators

    International Nuclear Information System (INIS)

    Kopyto, D.

    1994-04-01

    Aim of the present thesis is the optimization of components for the construction of a high-energy photon spectrometer of pure CsI for the detection of the neutral pseudoscalar mesons π 0 , η, and η' at COSY. These mesons are distinguished by their decay into two γ quanta and can therefore be detected by means of a photon spectrometer. A concept of a 2-arm shower counter of pure CsI is presented. Conclusions on the energy resolution of such a calorimeter shall yield a test module, which is constructed of 5.5 CsI(pure) pyramide trunk, each of which possesses a length of 30 cm and an angular acceptance of 6 .6 . The geometry of the moduls is formed in such a way that its extension to a 2-arm shower counter is possible at any time. Hitherto 14 by teflon foils wrapped up crystals for the test module were tested. Their energy resolution varies at 0.66 MeV between 20 and 25 % FWHM. Furthermore a method was found, which allows to trim the position dependence to the required values. So for the position dependence of a crystal even a value of 1.1 % could be reached. The energy resolution amounted thereby to 22 % FWHM. A measurement of the energy resolution with 20 MeV protons yielded a value of 7 %. For the energy calibration of the single detector elements in a dynamic range between 1 MeV and 12 GeV with low-energy γ sources the charge response function of the photoelectron multiplier to be applied in the test module was determined in dependence on the light intensity. The measurement resulted that the photomultiplier at 40 MeV (related to a CsI(pure) reference crystal with an about twofold so high efficiency of the detectable light in comparison to the long pyramide trunks) deviates by 4 % and at 300 MeV by 38 % from the linear behaviour, while it at 500 MeV shows a deviation of 50 %

  18. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    International Nuclear Information System (INIS)

    Brunckhorst, Elin

    2009-01-01

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a 10 B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with 6 Li and 7 Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined with an

  19. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunckhorst, Elin

    2009-02-26

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined

  20. Neutron production in lead targets by high-energy light-mass heavy ions

    International Nuclear Information System (INIS)

    Daniehl', A.V.; Lyapin, V.S.; Tsvetkov, I.O.

    1992-01-01

    The characteristics of the time-of-flight spectrometer and the double different distributions of neutrons and secondary charged particles produced by 2 GeV protons and 1 GeVXA d,α, 6 Li and 12 C ions bombarding lead targets are described. Experimental data are compared with the results of calculations by codes SITHA. 17 refs.; 10 figs.; 1 tab

  1. Fast neutron scintillation spectrometer in a heavy ion accelerator

    International Nuclear Information System (INIS)

    Blinov, M.V.; Gavrilov, B.P.; Ivannikova, L.L.; Kozulin, Eh.M.; Mozhaev, A.N.; Tyurin, G.P.

    1984-01-01

    Scintillation fast neutron spectrometer in a heavy ion accelerator is described in short. The spectrometer is used to measure characteristics of neutrons emitted in heavy ion interaction with different nuclei. Experiment was performed on the base of particle flight from 0.7 up to 2 m. Within the angle range of 0-150 deg. The technique is based on recording of two-dimensional neutron spectra obtained due to combination of the time-of-flight method and the method of recoil proton energy detection. Two measuring channels were used in the spectrometer. Each channel comprise both amplitude and time tracks. Detector on the base microchannel plates (MCP) generated a signal in passing the next ion bunch was used in order to obtain the time mark. Data from the scintillation block are recorded with respect to three parameters: recoil proton amplitude, time of neutron or γ-quantum arrival in respect of MCP-sensor pulse. Apparatus is carried out within the CAMAC standard. The spectrometer calibration within the 1-20 MeV neutron range was conducted in the Van-de-Graaf accelerator, and for higher energies - with the use of lightguides. Spectrometer time resolution for neutron energies of 0.5-50 MeV constituted 1.5-1.8 ns. The above measuring of neutron spectra from 1 /H2C+ 181 Ta and sup(20, 22)Ne+sup(181)Ta reaction have revealed a possibility of the experiment organization in heavy ion accelerators in the presence of strong neutron and γ-fields. Organization of multi-dimensional analysis combining two methods allows one to separate accelerator cycle, a region of the most reliable information, free of a low-energy gamma background and limited both by a dynamic threshold and a region of permissible energy values

  2. Soil biological shield exposed to high energy neutrons; Zemlja kao bioloski stit od neutrona visokih energija

    Energy Technology Data Exchange (ETDEWEB)

    Simovic, R; Marinkovic, N [Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1993-04-15

    Shielding efficiency of soil biological shield exposed to high energy neutrons was investigated. Dose rate equivalents for neutrons, secondary gamma and gamma radiation were computed on the surface of soil slabs having different thicknesses. Yields of primary and secondary nuclear radiation in the total dose were evaluated. Influence of the incident neutron spectrum, water content and chemical composition of the material on its shielding efficiency was examined. It was found that the soil density and the water content determine the quality of biological shield, the influence of other factors being less important. Comparison of shielding efficiencies for soil with sand, brick and ordinary concrete shields was done.

  3. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2005-01-01

    Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of these data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality factors to consider the consistency between radiation weighting factors and Q-L relationship. The effective dose conversion coefficients obtained in this work were in good agreement with those recently evaluated by using FLUKA code for photons and electrons with all energies, and neutrons and protons below 500 MeV. There were some discrepancy between two data owing to the difference of cross sections in the nuclear reaction models. The dose conversion coefficients of effective dose equivalents for high energy radiations based on Q-L relation in ICRP Publication 60 were evaluated only in this work. The previous comparison between effective dose and effective dose equivalent made it clear that the radiation weighting factors for high energy neutrons and protons were overestimated and the modification was required. (author)

  4. Characterisation of neutron fields around high-energy x-ray radiotherapy machines

    Czech Academy of Sciences Publication Activity Database

    Králík, M.; Turek, Karel

    2004-01-01

    Roč. 110, 1-4 (2004), s. 503-507 ISSN 0144-8420 Institutional research plan: CEZ:AV0Z1048901 Keywords : radiotherapy machines * neutron fields * high-energy Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 0.617, year: 2003

  5. The neutron dose equivalent around high energy medical electron linear accelerators

    Directory of Open Access Journals (Sweden)

    Poje Marina

    2014-01-01

    Full Text Available The measurement of neutron dose equivalent was made in four dual energy linear accelerator rooms. Two of the rooms were reconstructed after decommissioning of 60Co units, so the main limitation was the space. The measurements were performed by a nuclear track etched detectors LR-115 associated with the converter (radiator that consist of 10B and with the active neutron detector Thermo BIOREM FHT 742. The detectors were set at several locations to evaluate the neutron ambient dose equivalent and/or neutron dose rate to which medical personnel could be exposed. Also, the neutron dose dependence on collimator aperture was analyzed. The obtained neutron dose rates outside the accelerator rooms were several times smaller than the neutron dose rates inside the accelerator rooms. Nevertheless, the measured neutron dose equivalent was not negligible from the aspect of the personal dosimetry with almost 2 mSv a year per person in the areas occupied by staff (conservative estimation. In rooms with 15 MV accelerators, the neutron exposure to the personnel was significantly lower than in the rooms having 18 MV accelerators installed. It was even more pronounced in the room reconstructed after the 60Co decommissioning. This study confirms that shielding from the neutron radiation should be considered when building vaults for high energy linear accelerators, especially when the space constraints exist.

  6. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy

    International Nuclear Information System (INIS)

    Irazola, L.; Terrón, J.A.; Bedogni, R; Pola, A.; Lorenzoli, M.; Sánchez-Nieto, B.; Gómez, F.; Sánchez-Doblado, F.

    2016-01-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. - Highlights: • Neutron-to-photon discrimination of a thermal neutron detector used in radiotherapy. • Photon and anisotropic response study with distance and beam incidence of thermal neutron detector. • Borated rubber for estimating photon contribution in any thermal neutron detector.

  7. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  8. High energy fast neutrons from the Harwell variable energy cyclotron. II. Biologic studies in mammalian systems

    International Nuclear Information System (INIS)

    Berry, R.J.; Bance, D.A.; Barnes, D.W.H.; Cox, R.; Goodhead, D.T.; Sansom, J.M.; Thacker, J.

    1977-01-01

    A high energy fast neutron beam potentially suitable for radiotherapy has been described in a companion paper. Its biologic effects have been studied in the following experimental systems: clonal survival and mutation induction after irradiation in vitro in Chinese hamster cells and human diploid fibroblasts; survival of reproductive capacity in vivo of murine hemopoietic colony-forming cells and murine intestinal crypts after irradiation in vivo; survival of reproductive capacity in vivo after irradiation in vitro or in vivo of murine lymphocytic leukemia cells; acute intestinal death following total body irradiation of mice and guinea pigs; and hemopoietic death following total body irradiation of mice and guinea pigs. The relative biologic effectiveness of these high energy neutrons varied among the different biologic systems, and in several cases varied with the size of the radiation dose. The oxygen enhancement ratio was studied in murine lymphocytic leukemia cells irradiated under aerobic or hypoxic conditions in vitro and assayed for survival of reproductive capacity in vivo. Compared with x-rays, the potential therapeutic gain factor for these neutrons was about 1.5. This work represents a ''radiobiologic calibration'' program which it is suggested should be undertaken before new and unknown fast neutron spectra are used for experimental radiotherapy. The results are compared with biologic studies carried out at high energy fast neutron generators in the United States

  9. Neutron dose to patients treated with high-energy medical accelerators

    International Nuclear Information System (INIS)

    McGinley, P.H.

    2001-01-01

    The neutron dose equivalent received by patients treated with high energy x-ray beams was measured in this research. A total of 13 different medical accelerators were evaluated in terms of the neutron dose equivalent in the patient plane and at the beam center. The neutron dose equivalent at the beam center was found to ranged from 0.02 to 9.4 mSv per Sv of x-ray dose and values from 0.029 to 2.58 mSv per Sv of x-ray were measured in the patient plane. It was concluded that the neutron levels meet the International Electrotechnical Commission standard for the patient plane. It was also concluded that when intensity modulated radiation treatment is conducted the neutron dose equivalent received by the patient will increase by a factor of 2 to 10. (author)

  10. High-pressure 3He gas scintillation neutron spectrometer

    International Nuclear Information System (INIS)

    Derzon, M.S.; Slaughter, D.R.; Prussin, S.G.

    1985-10-01

    A high-pressure, 3 He-Xe gas scintillation spectrometer has been developed for neutron spectroscopy on D-D fusion plasmas. The spectrometer exhibits an energy resolution of (121 +- 20 keV) keV (FWHM) at 2.5 MeV and an efficiency of (1.9 +- 0.4) x 10 -3 (n/cm 2 ) -1 . The contribution to the resolution (FWHM) from counting statistics is only (22 +- 3 keV) and the remainder is due predominantly to the variation of light collection efficiency with location of neutron events within the active volume of the detector

  11. Neutron dose measurements with the GSI ball at high energy accelerators

    International Nuclear Information System (INIS)

    Fehrenbacher, G.; Gutermuth, F.; Radon, T.; Kozlova, E.

    2005-01-01

    Full text: At high energy particle accelerators the production of neutron radiation dominates radiation protection. For the radiation survey at accelerators there is a need for reliable detection systems (passive radiation monitors), which can measure the dose for a wide range of neutron energies independently on the beam pulse structure of the produced radiation. In this work a passive neutron dosemeter for the measurement of the ambient dose equivalent is presented. The dosemeter is suitable for measurements of the emerging neutron radiation at accelerators for the whole energy range up to about 10 GeV. The dosemeter consists of a polyethylene sphere, TL elements (pairs of TLD600/700) and an additional lead layer (PE/Pb) in neutron fields at high energy accelerators is investigated in this work. Results of dose measurements which were performed in realistic neutron fields at the high energy accelerator SPS at CERN (CERF facility) and in Cave A at the heavy ion synchrotron SIS at GSI are presented. The results of these measurements are compared with the expected dose values from the neutron spectra determined for the measurement positions at CERF and in Cave A (FLUKA) and with the dosemeter response derived by the calculated response functions (FLUKA) folded with the neutron spectra. The comparisons show that the additional lead layer in the PE/Pb-sphere improves significantly the response of the dosemeter. The response of the PE/Pb-sphere is 40 to 50 % higher at CERF and Cave A in comparison to the bare PE-sphere. At CERF the dose values of the PE/Pb-sphere is about 25 % lower than the expected dose value, whilst for Cave A, a rather good agreement was found (2 % deviation). (author)

  12. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  13. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  14. High-energy neutron dosimetry at the Clinton P. Anderson Meson Physics Facility

    International Nuclear Information System (INIS)

    Mallett, M.W.; Vasilik, D.G.; Littlejohn, G.J.; Cortez, J.R.

    1990-01-01

    Neutron energy spectrum measurements performed at the Clinton P. Anderson Meson Physics Facility indicated potential areas for high energy neutron exposure to personnel. The low sensitivity of the Los Alamos thermoluminescent dosimeter (TLD) to high energy neutrons warranted issuing a NTA dosimeter in addition to the TLD badge to employees entering these areas. The dosimeter consists of a plastic holder surrounding NTA film that has been desiccated and sealed in a dry nitrogen environment. A study of the fading of latent images in NTA film demonstrated the success of this packaging method to control the phenomenon. The Los Alamos NTA dosimeter is characterized and the fading study discussed. 10 refs., 4 figs., 2 tabs

  15. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  16. Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: Instrument response

    CERN Document Server

    Silari, M; Beck, P; Bedogni, R; Cale, E; Caresana, M; Domingo, C; Donadille, L; Dubourg, N; Esposito, A; Fehrenbacher, G; Fernández, F; Ferrarini, M; Fiechtner, A; Fuchs, A; García, M J; Golnik, N; Gutermuth, F; Khurana, S; Klages, Th; Latocha, M; Mares, V; Mayer, S; Radon, T; Reithmeier, H; Rollet, S; Roos, H; Rühm, W; Sandri, S; Schardt, D; Simmer, G; Spurný, F; Trompier, F; Villa-Grasa, C; Weitzenegger, E; Wiegel, B; Wielunski, M; Wissmann, F; Zechner, A; Zielczyński, M

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005–2007) called CONRAD, COordinated Network for RAdiation Dosimetry. The organizational framework for this project was provided by the European radiation Dosimetry Group EURADOS. Work Package 6 of CONRAD dealt with “complex mixed radiation fields at workplaces” and in this context it organised a benchmark exercise, which included both measurements and calculations, in a stray radiation field at a high-energy particle accelerator at GSI, Germany. The aim was to intercompare the response of several types of active detectors and passive dosemeters in a well-characterised workplace field. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers are discussed in Rollet et al. (2008) and in Wiegel et al. (2008). This paper focuses on the intercomparison of the response of the dosemeters in terms of ambient dose equivalent. Th...

  17. An Advanced Neutron Spectrometer for Future Manned Exploration Missions

    Science.gov (United States)

    Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.; hide

    2014-01-01

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators

  18. Wide-range scintillation spectrometer of fast neutrons

    International Nuclear Information System (INIS)

    Blinov, M.V.; Gavrilov, B.P.; Ivannikova, L.L.; Kozulin, Eh.M.; Mozhaev, A.N.; Saidgareev, V.M.; Tyurin, G.P.

    1984-01-01

    A spectrometer of fast neutrons developed on the base of stilbene crystas and permitting to detect neutrons simultaneously by time-of-flight and recoil protons with analysis of pulse shape in the 0.5-50 MeV energy range is described. The detecting part is performed in the CAMAC standard. The ''Minsk-32'' computer was used for data storage and preliminary processing

  19. Dose determination of Neutron contamination in radiothrapy rooms equiped with high energy linear accelerators

    International Nuclear Information System (INIS)

    Shweikani, R.; Anjak, O.

    2014-03-01

    Radiotherapy represents the most widely spread technique to control and treat cancer. To increase the treatment efficiency, high-energy linear accelerators are used. However, applying high energy photon beams leads to a non-negligible dose of neutrons contaminating therapeutic beams. A high-energy (23 MV) linear accelerator (Varian 21EX) was studied. The CR-39 nuclear track detectors (NTDs) were used to study the variation of fast neutron relative intensities around a linear accelerator high energy photon beam and to determined the its variation on the patient plane at 0, 50, 100, 150 and 200 cm from the center of the photon beam was. By increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreased rapidly for the fields. Photoneutron intensity and distributions at isocenter level with the field sizes of 40*40 cm'2 at SSD=100cm around 23 MV photon beam using Nuclear Track Detectors were determined. The advantages of CR-39 NTD s over active detectors: 1- there is no pulse pileup problem. 2- no photon interference with neutron measurement. 3- no electronics are required. 4 - less prone to noise and interference. The photoneutron intensities were rapidly decreased as we move away from the isocenter of linear accelerators. As the use of simulation software MCNP match in the results we have obtained through direct measurements and the modeling results using the code MCNP (author).

  20. A real time scintillating fiber Time of Flight spectrometer for LINAC photoproduced neutrons

    Science.gov (United States)

    Maspero, M.; Berra, A.; Conti, V.; Giannini, G.; Ostinelli, A.; Prest, M.; Vallazza, E.

    2015-03-01

    The use of high-energy (> 8 MeV) LINear ACcelerators (LINACs) for medical cancer treatments causes the photoproduction of secondary neutrons, whose unwanted dose to the patient has to be calculated. The characterization of the neutron spectra is necessary to allow the dosimetric evaluation of the neutron beam contamination. The neutron spectrum in a hospital environment is usually measured with integrating detectors such as bubble dosimeters, Thermo Luminescent Dosimeters (TLDs) or Bonner Spheres, which integrate the information over a time interval and an energy one. This paper presents the development of a neutron spectrometer based on the Time of Flight (ToF) technique in order to perform a real time characterization of the neutron contamination. The detector measures the neutron spectrum exploiting the fact that the LINAC beams are pulsed and arranged in bunches with a rate of 100-300 Hz depending on the beam type and energy. The detector consists of boron loaded scintillating fibers readout by a MultiAnode PhotoMultiplier Tube (MAPMT). A detailed description of the detector and the acquisition system together with the results in terms of ToF spectra and number of neutrons with a Varian Clinac iX are presented.

  1. Verification of the DUCT-III for calculation of high energy neutron streaming

    Energy Technology Data Exchange (ETDEWEB)

    Masukawa, Fumihiro; Nakano, Hideo; Nakashima, Hiroshi; Sasamoto, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tayama, Ryu-ichi; Handa, Hiroyuki; Hayashi, Katsumi [Hitachi Engineering Co., Ltd., Hitachi, Ibaraki (Japan); Hirayama, Hideo [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Shin, Kazuo [Kyoto Univ., Kyoto (Japan)

    2003-03-01

    A large number of radiation streaming calculations under a variety of conditions are required as a part of shielding design for a high energy proton accelerator facility. Since sophisticated methods are very time consuming, simplified methods are employed in many cases. For accuracy evaluation of a simplified code DUCT-III for high energy neutron streaming calculations, two kinds of benchmark problems based on the experiments were analyzed. Through comparison of the DUCT-III calculations with both the measurements and the sophisticated Monte Carlo calculations, DUCT-III was seen reliable enough for applying to the shielding design for the Intense Proton Accelerator Facility. (author)

  2. Verification of the DUCT-III for calculation of high energy neutron streaming

    CERN Document Server

    Masukawa, F; Hayashi, K; Hirayama, H; Nakano, H; Nakashima, H; Sasamoto, N; Shin, K; Tayama, R I

    2003-01-01

    A large number of radiation streaming calculations under a variety of conditions are required as a part of shielding design for a high energy proton accelerator facility. Since sophisticated methods are very time consuming, simplified methods are employed in many cases. For accuracy evaluation of a simplified code DUCT-III for high energy neutron streaming calculations, two kinds of benchmark problems based on the experiments were analyzed. Through comparison of the DUCT-III calculations with both the measurements and the sophisticated Monte Carlo calculations, DUCT-III was seen reliable enough for applying to the shielding design for the Intense Proton Accelerator Facility.

  3. Considerations in the design of an improved transportable neutron spectrometer

    CERN Document Server

    Williams, A M; Brushwood, J M; Beeley, P A

    2002-01-01

    The Transportable Neutron Spectrometer (TNS) has been used by the Ministry of Defence for over 15 years to characterise neutron fields in workplace environments and provide local correction factors for both area and personal dosimeters. In light of advances in neutron spectrometry, a programme to evaluate and improve TNS has been initiated. This paper describes TNS, presents its operation in known radioisotope fields and in a reactor environment. Deficiencies in the operation of the instrument are highlighted, together with proposals for updating the response functions and spectrum unfolding methodologies.

  4. Beam-transport optimization for cold-neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Nakajima Kenji

    2015-01-01

    Full Text Available We report the design of the beam-transport system (especially the vertical geometry for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  5. Time recording unit for a neutron time of flight spectrometer

    International Nuclear Information System (INIS)

    Puranik, Praful; Ajit Kiran, S.; Chandak, R.M.; Poudel, S.K.; Mukhopadhyay, R.

    2011-01-01

    Here the architecture and design of Time Recording Unit for a Neutron Time of Flight Spectrometer have been described. The Spectrometer would have an array of 50 Nos. of one meter long linear Position Sensitive Detector (PSD) placed vertically around the sample at a distance of 2000 mm. The sample receives periodic pulsed neutron beam coming through a Fermi chopper. The time and zone of detection of a scattered neutron in a PSD gives information of its flight time and path length, which will be used to calculate its energy. A neutron event zone (position) and time detection module for each PSD provides a 2 bit position/zone code and an event timing pulse. The path length assigned to a neutron detected in a zone (Z1, Z2 etc) in the PSD is the mean path length seen by the neutrons detected in that zone of the PSD. A Time recording unit described here receives event zone code and timing pulse for all the 50 detectors, tags a proper time window code to it, before streaming it to computer for calculation of the energy distribution of neutrons scattered from the sample

  6. Development and evaluation of the Combined Ion and Neutron Spectrometer (CINS)

    International Nuclear Information System (INIS)

    Zeitlin, C.; Maurer, R.; Roth, D.; Goldsten, J.; Grey, M.

    2009-01-01

    The Combined Ion and Neutron Spectrometer, CINS, is designed to measure the charged and neutral particles that contribute to the radiation dose and dose equivalent received by humans in spaceflight. As the depth of shielding increases, either onboard a spacecraft or in a surface habitat, the relative contribution of neutrons increases significantly, so that obtaining accurate neutron spectra becomes a critical part of any dosimetric measurements. The spectrometer system consists of high- and medium-energy neutron detectors along with a charged-particle detector telescope based on a standard silicon stack concept. The present version of the design is intended for ground-based use at particle accelerators; future iterations of the design can easily be streamlined to reduce volume, mass, and power consumption to create an instrument package suitable for spaceflight. The detector components have been tested separately using high-energy heavy ion beams at the NASA Space Radiation Laboratory at the Brookhaven National Laboratory and neutron beams at the Radiological Research Accelerator Facility operated by Columbia University. Here, we review the progress made in fabricating the hardware, report the results of several test runs, and discuss the remaining steps necessary to combine the separate components into an integrated system. A custom data acquisition system built for CINS is described in an accompanying article.

  7. Neutron spin echo spectrometer at JRR-3M

    International Nuclear Information System (INIS)

    Takeda, Takayoshi; Komura, Shigehiro; Seto, Hideki; Nagai, Michihiro; Kobayashi, Hideki; Yokoi, Eiji; Ebisawa, Tooru; Tasaki, Seiji.

    1993-01-01

    We have designed and have been constructing at C 2-2 cold neutron guide port of JRR-3M, JAERI, a neutron spin echo spectrometer (NSE) which is equipped with two optimized magnets for neutron spin precession, a position sensitive detector (PSD), a converging polarizer and a wide area analyzer. The dynamic range of scattering vector Q covers from 0.01 A -1 to 0.3 A -1 and that of energy E from 30neV to 0.1meV. This spectrometer makes it possible to study a mesoscopic spatial structure of the order of 1-100nm combined with a nanosecond temporal structure of the order of 0.1-100ns corresponding to dynamical behavior of large molecules such as polymer. A test experiment shows that the homogeneity condition of the precession magnet is loosened by means of PSD. (author)

  8. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  9. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a 3 He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose

  10. Simulation of a high energy neutron irradiation facility at beamline 11 of the China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Tairan, Liang [School of Physics and Electronic Information Inner Mongolia University for the Nationalities, Tongliao 028043 (China); Zhiduo, Li [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Wen, Yin, E-mail: wenyin@aphy.iphy.ac.cn [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Fei, Shen [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Quanzhi, Yu [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Tianjiao, Liang [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China)

    2017-07-11

    The China Spallation Neutron Source (CSNS) will accommodate 20 neutron beamlines at its first target station. These beamlines serve different purposes, and beamline 11 is designed to analyze the degraded models and damage mechanisms, such as Single Event Effects in electronic components and devices for aerospace electronic systems. This paper gives a preliminary discussion on the scheme of a high energy neutron irradiation experiment at the beamline 11 shutter based on the Monte Carlo simulation method. The neutron source term is generated by calculating the neutrons scattering into beamline 11 with a model that includes the target-moderator-reflector area. Then, the neutron spectrum at the sample position is obtained. The intensity of neutrons with energy of hundreds of MeV is approximately 1E8 neutron/cm{sup 2}/s, which is useful for experiments. The displacement production rate and gas productions are calculated for common materials such as tungsten, tantalum and SS316. The results indicate that the experiment can provide irradiation dose rate ranges from 1E-5 to 1E-4 dpa per operating year. The residual radioactivity is also calculated for regular maintenance work. These results give the basic reference for the experimental design.

  11. Prismatic analyzer concept for neutron spectrometers

    DEFF Research Database (Denmark)

    Birk, Jonas O.; Marko, M.; Freeman, P.G.

    2014-01-01

    readily be combined with advanced focussing geometries and with multiplexing instrument designs. We present a combination of simulations and data showing three different energies simultaneously reflected from one analyser. Experiments were performed on a cold triple axis instrument and on a prototype...... inverse geometry Time-of-flight spectrometer installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2.0 times finer resolution and a factor of 1.9 in flux gain compared to a focussing Rowland geometry, or of 3.3 times finer resolution and a factor...

  12. A wide-range direction neutron spectrometer

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; D'Errico, F.; Hecker, O.; Matzke, M.

    2002-01-01

    A new device is presented which has been developed for measuring the energy and direction of distribution of neutron fluence in fields of broad energy spectra (thermal to 100 MeV) and with a high background of photon, electron and muon radiation. The device was tested in reference fields with different energy and direction distributions of neutron fluence. The direction-integrated fluence spectra agree fairly well with reference spectra. In all cases, the ambient and personal dose equivalent values calculated from measured direction-differential spectra are within 35% of the reference values. Independent measurements of the directional dose equivalent were performed with a directional dose equivalent monitor based on superheated drop detectors

  13. CdZnTe γ detector for deep inelastic neutron scattering on the VESUVIO spectrometer

    Science.gov (United States)

    Andreani, C.; D'Angelo, A.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Rhodes, N. J.; Schooneveld, E. M.; Senesi, R.; Tardocchi, M.

    In this paper it is shown that solid-state cadmium-zinc-telluride (CZT) is a promising photon detector for neutron spectroscopy in a wide energy interval, ranging from thermal ( 25 meV) to epithermal ( 70 eV) neutron energies. In the present study two CZT detectors were tested as part of the inverse-geometry neutron spectrometer VESUVIO operating at the ISIS pulsed neutron source. The response of the CZT detector to photon emission from radiative neutron capture in 238U was determined by biparametric measurements of neutron time of flight and photon energy. The scattering response function F(y) from a Pb sample has been derived using both CZT and conventional 6Li-glass scintillator detectors. The former showed both an improved signal to background ratio and higher efficiency as compared to 6Li glass, allowing us to measure F(y) up to the fourth 238U absorption energy (Er=66.02 eV). Due to the small size of CZT detectors, their use is envisaged in arrays, with high spatial resolution, for neutron-scattering studies at high energy (ω>1 eV) and low wavevector (q <10 Å-1) transfers.

  14. CdZnTe γ detector for deep inelastic neutron scattering on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Andreani, C.; Pietropaolo, A.; Senesi, R.; D'Angelo, A.; Gorini, G.; Imberti, S.; Tardocchi, M.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    In this paper it is shown that solid-state cadmium-zinc-telluride (CZT) is a promising photon detector for neutron spectroscopy in a wide energy interval, ranging from thermal (∝25 meV) to epithermal (∝70 eV) neutron energies. In the present study two CZT detectors were tested as part of the inverse-geometry neutron spectrometer VESUVIO operating at the ISIS pulsed neutron source. The response of the CZT detector to photon emission from radiative neutron capture in 238 U was determined by biparametric measurements of neutron time of flight and photon energy. The scattering response function F(y) from a Pb sample has been derived using both CZT and conventional 6 Li-glass scintillator detectors. The former showed both an improved signal to background ratio and higher efficiency as compared to 6 Li glass, allowing us to measure F(y) up to the fourth 238 U absorption energy (E r =66.02 eV). Due to the small size of CZT detectors, their use is envisaged in arrays, with high spatial resolution, for neutron-scattering studies at high energy (ℎω>1 eV) and low wavevector (q -1 ) transfers. (orig.)

  15. CdZnTe {gamma} detector for deep inelastic neutron scattering on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, C.; Pietropaolo, A.; Senesi, R. [Dipartimento di Fisica, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133, Roma (Italy); Istituto Nazionale per la Fisica della Materia, UdR, Tor Vergata (Italy); D' Angelo, A. [Dipartimento di Fisica, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133, Roma (Italy); Istituto Nazionale di Fisica Nucleare, Sezione, Roma II (Italy); Gorini, G.; Imberti, S.; Tardocchi, M. [Dipartimento di Fisica G. Occhialini, Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano (Italy); Istituto Nazionale per la Fisica della Materia, UdR, Milano-Bicocca (Italy); Rhodes, N.J.; Schooneveld, E.M. [Isis Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, Oxfordshire (United Kingdom)

    2004-03-01

    In this paper it is shown that solid-state cadmium-zinc-telluride (CZT) is a promising photon detector for neutron spectroscopy in a wide energy interval, ranging from thermal ({proportional_to}25 meV) to epithermal ({proportional_to}70 eV) neutron energies. In the present study two CZT detectors were tested as part of the inverse-geometry neutron spectrometer VESUVIO operating at the ISIS pulsed neutron source. The response of the CZT detector to photon emission from radiative neutron capture in {sup 238}U was determined by biparametric measurements of neutron time of flight and photon energy. The scattering response function F(y) from a Pb sample has been derived using both CZT and conventional {sup 6}Li-glass scintillator detectors. The former showed both an improved signal to background ratio and higher efficiency as compared to {sup 6}Li glass, allowing us to measure F(y) up to the fourth {sup 238}U absorption energy (E{sub r}=66.02 eV). Due to the small size of CZT detectors, their use is envisaged in arrays, with high spatial resolution, for neutron-scattering studies at high energy ({Dirac_h}{omega}>1 eV) and low wavevector (q <10 A{sup -1}) transfers. (orig.)

  16. Field neutron spectrometer using 3He, TEPC, and multisphere detectors

    International Nuclear Information System (INIS)

    Brackenbush, L.W.

    1991-01-01

    Since the last DOE Neutron Dosimetry Workshop, there have been a number of changes in radiation protection standards proposed by national and international advisory bodies. These changes include: increasing quality factors for neutrons by a factor of two, defining quality factors as a function of lineal energy rather than linear energy transfer (see ACCRUE-40; Joint Task Group 1986), and adoption of effective dose equivalent methodologies. In order to determine the effects of these proposed changes, it is necessary to know the neutron energy spectrum in the work place. In response to the possible adoption of these proposals, the Department of Energy (DOE) initiated a program to develop practical neutron spectrometry systems for use by health physicists. One part of this program was the development of a truly portable, battery operated liquid scintillator spectrometer using proprietary electronics developed at Lawrence Livermore National Laboratory (LLNL); this instrument will be described in the following paper. The second part was the development at PNL of a simple transportable spectrometer based on commercially available electronics. This open-quotes field neutron spectrometerclose quotes described in this paper is intended to be used over a range of neutron energies extending from thermal to 20 MeV

  17. An automatic control unit for A neutron diffraction crystal spectrometer

    International Nuclear Information System (INIS)

    Adib, M.; Abbas, Y.; Mostafa, M.; Hamouda, I.

    1982-01-01

    An automatic transistorized unit has been designed and constructed to control the operation of the double axis crystal spectrometer installed in front of one of the horizontal channels of the ET-RR-1 reactor. The function of the automatic unit is to store the diffracted neutrons at a certain angle with respect to the direction of the incident neutron beam in a selected channel of a 1024-multichannel analyzer for a certain preadjusted time period. AT the end of this time period the unit rotates the spectrometer's arm to another angle, selects the next channel of the MCA and provides the measurement of the diffracted neutron for the same time period. Such a sequence is repeated automatically over all angles required for the neutron diffraction pattern of the sample under investigation. As a result, the stored information at the MCA provides the neutron diffraction pattern as a function of channel number, where each channel corresponds to a certain scattering angle. The stored distribution at MCA can be obtained through the analyzer read out unit. The designed automatic unit has the possibility of providing the neutron diffraction pattern using a 6-digit scaler and a printer

  18. Automatic control unit for A neutron diffraction crystal spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Abbas, Y.; Mostafa, M.; Hamouda, I.

    1982-01-01

    An automatic transistorized unit has been designed and constructed to control the operation of the double axis crystal spectrometer installed in front of one of the horizontal channels of the ET-RR-1 reactor. The function of the automatic unit is to store the diffracted neutrons at a certain angle with respect to the direction of the incident neutron beam in a selected channel of a 1024-multichannel analyzer for a certain preadjusted time period. AT the end of this time period the unit rotates the spectrometer's arm to another angle, selects the next channel of the MCA and provides the measurement of the diffracted neutron for the same time period. Such a sequence is repeated automatically over all angles required for the neutron diffraction pattern of the sample under investigation. As a result, the stored information at the MCA provides the neutron diffraction pattern as a function of channel number, where each channel corresponds to a certain scattering angle. The stored distribution at MCA can be obtained through the analyzer read out unit. The designed automatic unit has the possibility of providing the neutron diffraction pattern using a 6-digit scaler and a printer.

  19. Study of the ATLAS MDT spectrometer using high energy CERN combined test beam data

    NARCIS (Netherlands)

    Adorisio, C.; et al., [Unknown; Barisonzi, M.; Bobbink, G.; Boterenbrood, H.; Brouwer, G.; Groenstege, H.; Hart, R.; Konig, A.; Linde, F.; van der Graaf, H.; Vermeulen, J.; Vreeswijk, M.; Werneke, P.

    2009-01-01

    In 2004, a combined system test was performed in the H8 beam line at the CERN SPS with a setup reproducing the geometry of sectors of the ATLAS Muon Spectrometer, formed by three stations of Monitored Drift Tubes (MDT). The full ATLAS analysis chain was used to obtain the results presented in this

  20. Development of new neutron spin echo spectrometer using multi-layer film spin splitter

    International Nuclear Information System (INIS)

    Tasaki, Seiji; Ebisawa, Toru; Hino, Masahiro; Achiwa, Norio

    2001-01-01

    Neutron spin echo spectrometry is a method using neutron Larmor precession motion in magnetic field, for the measurement of velocity change before and after quasi-elastic scattering of neutron by a sample, such as macromolecules, with high accuracy. The neutron spin echo spectrometer is an interferometer in quantum mechanics, which a neutron is arranged with a parallel or an antiparallel state against magnetic field direction. Intensities of neutron interaction with matters are measured by the superposition of the both spin state components. The contrast losses of interference fringes caused from velocity diversion of incident neutrons are protected by spin echo method, in which a phase shift between the parallel and anti-parallel state neutrons is reduced by reversion of the spin state on the way of neutron path. Neutron beam of high intensity can be measured with a high energy resolution. Strong magnetic field is usually needed to introduce the phase shift between the both spin state components. A multi-layer film spin splitter (MSS) is developed for introducing the phase shift instead of the strong magnetic fields. The MSS consists of three layers, non-magnetic mirror of Ni/Ti, gap layer of Ti (∼1 μm), and magnetic mirror of Permalloy/Ge. Surface roughness of the gap layer leads to diversions of the phase shift, because that the fluctuation of thickness of gap layer is proportional to the phase shift. Characteristics of the MSS are tested as follow: (1) reflectivity of polarized neutron, (2) function check of the MSS, (3) uniformity check of the gap layer, (4) evaluation of the gap layer-thickness. (Suetake, M.)

  1. Design, construction, and calibration of a nonfocusing neutron spectrometer

    International Nuclear Information System (INIS)

    Storey, W.

    1974-12-01

    A fourteen-channel time-resolved neutron spectrometer with associated Faraday cup has been designed and constructed for use in the field. A neutron energy range of 9.5 to 15 MeV is covered. Both instruments detect protons elastically scattered from a thin hydrogenous foil in interaction with the neutron beam, with magnetic analysis of the protons by the spectrometer. The design requirements of small size and weight and 0.6 to 0.7 MeV resolution have been met. Following a description of the instrument and of its geometry, there is a detailed presentation of the design and construction of the instrument. The section on instrument performance is concerned with the comparison between predicted performance based upon computation, in which the magnet is of primary interest, and upon measured performance based upon a calibration experiment, which is given a general description in Appendix A. Software used mainly for signal prediction and unfolding, for both the neutron spectrometer and Faraday cup, is described

  2. Characteristics of GaAs MESFET inverters exposed to high energy neutrons

    International Nuclear Information System (INIS)

    Bloss, W.L.; Yamada, W.E.; Young, A.M.; Janousek, B.K.

    1988-01-01

    GaAs MESFET circuits have been exposed to high energy neutrons with fluences ranging from 1x10/sup 14/ n/cm/sup 2/ to 2x10/sup 15/ m/cm/sup 2/. Discrete transistors, inverters, and ring oscillators were characterized at each fluence. While the MESFETs exhibit significant threshold voltage shifts and transconductance and saturation current degradation over this range of neutron fluences, the authors have observed improvement in the DC characteristics of Schottky Diode FET Logic (SDFL) inverters. This unusual result has been successfully simulated using device parameters extracted from FETs damaged by exposure to high energy neutrons. Although the decrease in device transconductance results in an increase in inverter gate delay, as reflected in ring oscillator frequency measurements, the authors conclude that GaAs ICs fabricated from this logic family will remain functional after exposure to extreme neutron fluences. This is a consequence of the observed improvement in inverter noise margin evident in both measured and simulated circuit performance

  3. Neutron-induced electronic failures around a high-energy linear accelerator

    International Nuclear Information System (INIS)

    Kry, Stephen F.; Johnson, Jennifer L.; White, R. Allen; Howell, Rebecca M.; Kudchadker, Rajat J.; Gillin, Michael T.

    2011-01-01

    Purpose: After a new in-vault CT-on-rails system repeatedly malfunctioned following use of a high-energy radiotherapy beam, we investigated the presence and impact of neutron radiation on this electronic system, as well as neutron shielding options. Methods: We first determined the CT scanner's failure rate as a function of the number of 18 MV monitor units (MUs) delivered. We then re-examined the failure rate with both 2.7-cm-thick and 7.6-cm-thick borated polyethylene (BPE) covering the linac head for neutron shielding. To further examine shielding options, as well as to explore which neutrons were relevant to the scanner failure, Monte Carlo simulations were used to calculate the neutron fluence and spectrum in the bore of the CT scanner. Simulations included BPE covering the CT scanner itself as well as covering the linac head. Results: We found that the CT scanner had a 57% chance of failure after the delivery of 200 MUs. While the addition of neutron shielding to the accelerator head reduced this risk of failure, the benefit was minimal and even 7.6 cm of BPE was still associated with a 29% chance of failure after the delivery of 200 MU. This shielding benefit was achieved regardless of whether the linac head or CT scanner was shielded. Additionally, it was determined that fast neutrons were primarily responsible for the electronic failures. Conclusions: As illustrated by the CT-on-rails system in the current study, physicists should be aware that electronic systems may be highly sensitive to neutron radiation. Medical physicists should therefore monitor electronic systems that have not been evaluated for potential neutron sensitivity. This is particularly relevant as electronics are increasingly common in the therapy vault and newer electronic systems may exhibit increased sensitivity.

  4. Performance of a MICROMEGAS-based TPC in a high-energy neutron beam

    Science.gov (United States)

    Snyder, L.; Manning, B.; Bowden, N. S.; Bundgaard, J.; Casperson, R. J.; Cebra, D. A.; Classen, T.; Duke, D. L.; Gearhart, J.; Greife, U.; Hagmann, C.; Heffner, M.; Hensle, D.; Higgins, D.; Isenhower, D.; King, J.; Klay, J. L.; Geppert-Kleinrath, V.; Loveland, W.; Magee, J. A.; Mendenhall, M. P.; Sangiorgio, S.; Seilhan, B.; Schmitt, K. T.; Tovesson, F.; Towell, R. S.; Walsh, N.; Watson, S.; Yao, L.; Younes, W.

    2018-02-01

    The MICROMEGAS (MICRO-MEsh GAseous Structure) charge amplification structure has found wide use in many detection applications, especially as a gain stage for the charge readout of Time Projection Chambers (TPCs). Here we report on the behavior of a MICROMEGAS TPC when operated in a high-energy (up to 800 MeV) neutron beam. It is found that neutron-induced reactions can cause discharges in some drift gas mixtures that are stable in the absence of the neutron beam. The discharges result from recoil ions close to the MICROMEGAS that deposit high specific ionization density and have a limited diffusion time. For a binary drift gas, increasing the percentage of the molecular component (quench gas) relative to the noble component and operating at lower pressures generally improves stability.

  5. Tolerance of human spinal cord to high-energy p(66)Be(49) neutrons

    International Nuclear Information System (INIS)

    Cohen, L.; Haken, R.K.T.; Mansell, J.A.; Yalavarthi, D.; Hendrickson, F.R.; Awschalom, M.

    1985-01-01

    A total of 76 patients with cancer of the head and neck have been irradiated at the Fermilab Neutron Therapy Facility using high-energy neutrons. Dose, time and cord-length factors were determined for each patient from their individual treatment plans. Cord doses ranged from 5 to 16 Gy in 8 to 24 fractions over 6 to 70 days. The treated lengths were between 5 and 15 cm. No myelopathy was seen during follow-up periods ranging from 2 to 6 years. By comparing these observations with published data, the upper and lower limits for spinal cord tolerance to neutrons can be determined. There is no apparent risk of injury with cord doses under 13 Gy

  6. Radiation protection metrology at a high-energy neutron therapy facility

    International Nuclear Information System (INIS)

    Bonnett, D.E.; Sherwin, A.G.; More, B.R.

    1991-01-01

    A radiation protection survey has been carried out at a high-energy neutron therapy facility using a combination of different detectors and counters. Included in the survey were measurements with a tissue equivalent proportional counter (TEPC), a rem meter, a large volume ionisation chamber (LVI) and a Geiger counter. Dose equivalent rates, normalised to a proton beam current of 25 μA, of between 1 μSv.h -1 and 0.7 Sv.h -1 were recorded depending on the location. In general the results confirm the tendency of the rem meter to over-read in fields consisting mainly of low energy neutrons and illustrate the advantages of the diagnostic and gamma discriminating properties of the TEPC. The LVI-Geiger system was found to be the least favourable combination of dosemeters, substantially under-reading and being unable to estimate the neutron dose rate at levels below about 32 μGy.h -1 . (author)

  7. The Clatterbridge high-energy neutron therapy facility: specification and performance

    International Nuclear Information System (INIS)

    Bonnett, D.E.; Blake, S.W.; Shaw, J.E.; Bewley, D.K.

    1988-01-01

    A high energy neutron therapy facility has been installed at the Douglas Cyclotron Centre, Clatterbridge Hospital Merseyside, to extend M.R.C. clinical trials of fast neutrons. The neutron beam is produced by bombarding a beryllium target with 62 MeV protons. The target is isocentrically mounted with potential for 360 0 rotation, with a fully variable collimator, giving a range of rectilinear field sizes from 5 cm x 5 cm to 30 cm x 30 cm. Basic neutron beam data including output, field flatness, penumbra and depth-dose data have been measured. For a 10 cm x 10 cm field, 50% depth dose occurs at 16.2 cm in water and output is 1.63 cGy μ A -1 min -1 at maximum dose depth. Effectiveness of the target shielding and neutron-induced radioactivity in the treatment head were also measured. It is concluded that the equipment meets design specifications and fully satisfies criticisms of earlier neutron therapy equipment. A full radiation survey showed that radiation levels present no significant staff hazard. (UK)

  8. Neutron yield from thick lead target by the action of high-energy electrons

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.; Sorokin, P.V.

    1978-01-01

    The results are presented of studying the complete neutron yield from a lead target bombarded by high-energy electrons. Neutrons were recorded by the method of radio-active indicators. The dependence of the neutron yield on the target thickness varying from 0.2 to 8 cm was obtained at the energies of electrons of 230 and 1200 MeV. The neutron yield for the given energies with the target of 6 cm in thickness is in the range of saturation and is 0.1 +-0.03 and 0.65+-0.22 (neutr./MeV.el.), respectively. The neutron angular distributions were measured for different thicknesses of targets at the 201, 230 and 1200 MeV electrons. Within the error limits the angular distributions are isotropic. The dependence of neutron yield on the electron energy was examined for a 3 cm thick target. In the energy range of 100-1200 MeV these values are related by a linear dependence with the proportionality coefficient C=3x10 -4 (neutr./MeV.el.)

  9. Monitor units are not predictive of neutron dose for high-energy IMRT

    Directory of Open Access Journals (Sweden)

    Hälg Roger A

    2012-08-01

    Full Text Available Abstract Background Due to the substantial increase in beam-on time of high energy intensity-modulated radiotherapy (>10 MV techniques to deliver the same target dose compared to conventional treatment techniques, an increased dose of scatter radiation, including neutrons, is delivered to the patient. As a consequence, an increase in second malignancies may be expected in the future with the application of intensity-modulated radiotherapy. It is commonly assumed that the neutron dose equivalent scales with the number of monitor units. Methods Measurements of neutron dose equivalent were performed for an open and an intensity-modulated field at four positions: inside and outside of the treatment field at 0.2 cm and 15 cm depth, respectively. Results It was shown that the neutron dose equivalent, which a patient receives during an intensity-modulated radiotherapy treatment, does not scale with the ratio of applied monitor units relative to an open field irradiation. Outside the treatment volume at larger depth 35% less neutron dose equivalent is delivered than expected. Conclusions The predicted increase of second cancer induction rates from intensity-modulated treatment techniques can be overestimated when the neutron dose is simply scaled with monitor units.

  10. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Esposito, Adolfo; Andreani, Carla; Senesi, Roberto; De Pascale, Maria Pia; Picozza, Piergiorgio; Pietropaolo, Antonino; Gorini, Giuseppe; Frost, Christopher D.; Ansell, Stewart

    2009-01-01

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) ((http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm)), a spectrometric characterization was performed on the VESUVIO beamline (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  11. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, Roberto; Esposito, Adolfo [INFN-LNF Via E. Fermi n. 40-00044 Frascati (RM) (Italy); Andreani, Carla [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); Senesi, Roberto, E-mail: roberto.senesi@roma2.infn.i [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); De Pascale, Maria Pia; Picozza, Piergiorgio [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); Pietropaolo, Antonino; Gorini, Giuseppe [CNISM and Universita degli Studi di Milano Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Frost, Christopher D. [INFN-LNF Via E. Fermi n. 40-00044 Frascati (RM) (Italy); Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via R. Scientifica 1, 00133 Roma (Italy); CNISM and Universita degli Studi di Milano Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); STFC Rutherford Appleton Laboratory, ISIS Facility, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX (United Kingdom); Ansell, Stewart [STFC Rutherford Appleton Laboratory, ISIS Facility, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX (United Kingdom)

    2009-12-21

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) ((http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm)), a spectrometric characterization was performed on the VESUVIO beamline (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  12. High energy dosimetry

    International Nuclear Information System (INIS)

    Ruhm, W.

    2010-01-01

    Full text: Currently, quantification of doses from high-energy radiation fields is a topical issue. This is so because high-energy neutrons play an important role for radiation exposure of air crew members and personnel outside the shielding of ion therapy facilities. In an effort to study air crew exposure from cosmic radiation in detail, two Bonner Sphere Spectrometers (BSSs) have recently been installed to measure secondary neutrons from cosmic radiation, one at the environmental research station 'Schneefernerhaus' at an altitude of 2650 m on the Zugspitze mountain, Germany, the other at the Koldewey station close to the North Pole on Spitsbergen. Based on the measured neutron fluence distributions and on fluence-to-dose conversion coefficients, mean ambient dose equivalent rate values of 75.0 ± 2.9 nSv/h and 8.7 ± 0.6 nSv/h were obtained for October 2008, respectively. Neutrons with energies above about 20 MeV contribute about 50% to dose, at 2650 m. Ambient dose equivalent rates measured by means of a standard rem counter and an extended rem counter at the Schneefernerhaus confirm this result. In order to study the response of state-of-the-art radiation instrumentation in such a high-energy radiation field, a benchmark exercise that included both measurements in and simulation of the stray neutron radiation field at the high-energy particle accelerator at GSI, Germany, were performed. This CONRAD (COordinated Network for RAdiation Dosimetry) project was funded by the European Commission, and the organizational framework was provided by the European Radiation Dosimetry Group, EURADOS. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers suggest the neutron fluence distributions to be very similar to those of secondary neutrons from cosmic radiation. The results of this intercomparison exercise in terms of ambient dose equivalent are also discussed

  13. Neutron guide shielding for the BIFROST spectrometer at ESS

    DEFF Research Database (Denmark)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C.P.

    2016-01-01

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding...... solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. The same approach is used to study the efficiencies of the steel wall a flat cylinder pierced by the guide...... in the middle and the polyethylene layer. The final model presented here has a 3 cm thick steel shielding around the guide, 30 cm of polyethylene around the shielding, two 5 mm thick B4C layers and a steel wall at position Z = 38 m, being 1 m thick and 10 m in radius. The final model finally proves...

  14. High-energy resolution Thomson Parabola spectrometer for laser plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G. A. P.; Schillaci, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, G.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague, Czech Republic and Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy); Ter-Avetisyan, S. [Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy); Tramontana, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and School of Mathematics and Physics, The Queen' s University Belfast, BT7 1NN (United Kingdom); Velyhan, A. [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic)

    2013-07-26

    Thomson Parabola (TP) spectrometers are widely used devices for laser-driven beam diagnostics as they provide a complete set of information on the accelerated particles. A novel TP has been developed at LNS with a design able to detect protons up to 20 MeV. The layout design and some results obtained during the experimental campaign at PALS laboratory will be reported in the following.

  15. An active pixels spectrometers for neutronic fields metrology

    International Nuclear Information System (INIS)

    Taforeau, Julien

    2013-01-01

    The fundamental metrology is responsible for the sustainability of the measurement systems and handles to supply the reference standards. Concerning the metrology of ionizing radiations and, in particular the neutron metrology, detectors standards are used to characterize reference fields, in terms of energy and fluence. The dosimeters or particle detectors are calibrated on these reference fields. This thesis presents the development of a neutron spectrometer neutron candidate to the status of primary standard for the characterization of neutron fields in the range from 5 to 20 MeV. The spectrometer uses the recoil proton telescope as detection principle; the CMOS technology, through three sensor positions, is taking advantage to realize the tracking of protons. A Si(Li) detector handles the measure of the residual proton energy. The device simulations, realized under MCNPX, allow to estimate its performances and to validate the neutron energy reconstruction. An essential step of characterization of the telescope elements and in particular of CMOS sensors is also proposed to guarantee the validity of posterior experimental measurements. The tests realized as well in mono-energy fields as in radionuclide source show the very good performances of the system. The quantification of uncertainties indicates an energy estimation with 1.5 % accuracy and a resolution of less than 6 %. The fluence measurement is performed with an uncertainty about 4 to 6%. (author)

  16. A combined cosmic ray muon spectrometer and high energy air shower array

    International Nuclear Information System (INIS)

    Cherry, M.L.; Ayres, D.S.; Halzen, F.

    1986-01-01

    Cosmic rays have been detected at energies in excess of 10 20 eV, and individual sources have been conclusively identified as intense emitters of gamma rays at energies up to 10 16 eV. There is clearly a great deal of exciting astrophysics to be learned from such studies, but it has been suggested that there may be particle physics to be learned from the cosmic beam as well. Based in particular on the reports of surprisingly high fluxes of underground muons from the direction of Cygnus X-3 modulated by the known orbital period, there have been several suggestions recently invoking stable supersymmetric particles produced at Cygnus X-3, enhanced muon production from high energy photons, quark matter, and ''cygnets.'' Although the underground muon results have been questioned, it may still be worthwhile to consider the possibility of new physics beyond the standard model with energy scale (G/sub F/)/sup -1/2/ ≥ 0.25 TeV. For example, there have been recent discussions on the experimental signatures to be observed from new high energy photon couplings to matter, exchanges between constituent quarks and leptons, and stable gluinos and photinos mixed in with the cosmic gamma ray flux. We describe here a possible detector to search for such effects. We utilize the possibility that point sources like Cygnus X-3 can be used to provide a directional time-modulated ''tagged'' high energy photon beam

  17. Characterisation of neutron beam and gamma spectrometer for PGAA

    International Nuclear Information System (INIS)

    Revay, Zs.; Molnar, G.L.

    2001-01-01

    In the second project year great efforts have been devoted in Budapest to the development of methods and procedures for neutron beam characterisation and spectrometer calibration. These are described here to provide recipes for other laboratories. Some illustrative results obtained on the former thermal guide, and partly on the new cold neutron guide are also given. Preliminary results from the benchmark experiments on flux monitors titanium standard and an unknown sample are also reported. New k o factors for elements of highest priority will be measured on the cold beam only in the near future. (author)

  18. Properties of a large NaI(Tl) spectrometer for the energy measurement of high-energy gamma rays on the Gamma Ray Observatory

    International Nuclear Information System (INIS)

    Hughes, E.B.; Finman, L.C.; Hofstadter, R.; Lepetich, J.E.; Lin, Y.C.; Mattox, J.R.; Nolan, P.L.; Parks, R.; Walker, A.H.

    1986-01-01

    A large NaI(T1) spectrometer is expected to play a crucial role in the measurement of the energy spectra from an all-sky survey of high-energy celestial gamma rays on the Gamma Ray Observatory. The crystal size and requirements of space flight have resulted in a novel crystal-packaging and optics combination. The structure of this spectrometer and the operating characteristics determined in a test program using high energy positrons are described

  19. Time coder for slow neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Grashilin, V.A.; Ofengenden, R.G.

    1988-01-01

    Time coder for slow neutron time-of-flight spectrometer is described. The time coder is of modular structure, is performed in the CAMAC standard and operates on line with DVK-2 computer. The main coder units include supporting generator, timers, time-to-digital converter, memory unit and crate controller. Method for measuring background symmetrically to the effect is proposed for a more correct background accounting. 4 refs.; 1 fig

  20. Neutron Detection with a Cryogenic Spectrometer

    CERN Document Server

    Bell, Z W; Cristy, S S; Lamberti, V E

    2003-01-01

    Cryogenic calorimeters are used for x-ray detection because of their exquisite energy resolution and have found application in x-ray astronomy, and the search for dark matter. These devices operate by detecting the heat pulse produced by ionization in an absorber cooled to temperatures below 1 K. Such temperatures are needed to lower the absorber's heat capacity to the point that the deposition of even a few eV results in a measurable temperature excursion. Typical absorbers for dark matter measurements are massive Si or Ge crystals, and, with Ge, have achieved a resolution of 650 eV at 10 keV. Chow, et al., report the measurement of the 60 keV emission from sup 2 sup 4 sup 1 Am with 230 eV resolution using a superconducting tin absorber. Cunningham, et al., also using a superconducting tin absorber, have recently reported a four-fold improvement over Chow. With such results being reported from the x- and gamma-ray world it is natural to examine the possibilities for cryogenic neutron spectroscopy. Such a det...

  1. Localized Unresectable Pancreatic Cancer Treated with High Energy Neutrons and Chemotherapy at Fermilab - Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Saroja, K. R. [Unlisted, US, IL; Cohen, Lionel [Unlisted, US, IL; Hendrickson, Frank R. [Unlisted, US, IL; Mansell, JoAnne [Fermilab

    1990-01-01

    Between January 1985 and July 1989 a total of thirty-eight patients with locally advanced pancreatic cancer were treated with high energy neutrons at Fermilab. Twenty-one patients received only neutrons and seventeen were given chemotherapy in addition, either concurrently or subsequently following the completion of neutron irradiation. This is a retrospective study. Data were analyzed for tolerance, complications and survival. Three of the twenty-one (14%) patients who received only neutron beam therapy developed Grade ID or greater complications in the RTOG/EORTC scale. The median survival was 6.4 months. One of these patients is alive 10 months post treatment. Of seventeen patients who also received chemotherapy, five (29%) had severe complications. However, median survival was 13.5 months. Four of these seventeen patients are still alive at the time of this analysis. The preliminary results show that there is improvement in the survival of patients treated with combined neutron irradiation and chemotherapy. A pilot study to further evaluate these results in a larger group of patients is underway. Details of complications and chemotherapy regimen will be preseqted.

  2. FLUKA simulations of a moderated reduced weight high energy neutron detection system

    Energy Technology Data Exchange (ETDEWEB)

    Biju, K., E-mail: bijusivolli@gmail.com [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tripathy, S.P.; Sunil, C.; Sarkar, P.K. [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2012-08-01

    Neutron response of the systems containing high density polyethylene (HDPE) spheres coupled with different external metallic converters has been studied using the FLUKA Monte Carlo simulation code. A diameter of 17.8 cm (7 in.) of the moderating sphere is found to be optimum to obtain the maximum response when used with the neutron converter shells like W, Pb and Zr. Enhancement ratios of the neutron response due to the induced (n, xn) reactions in the outer converters made of W, Pb and Zr are analyzed. It is observed that the enhancement in the response by 1 cm thick Zr shell is comparable to that of 1 cm thick Pb in the energy region of 10-50 MeV. An appreciable enhancement is observed in the case of Zr converter for the higher energy neutrons. Thus, by reducing the dimension of the moderating sphere and using a Zr converter shell, the weight of the system reduces to 10 kg which is less compared to the presently available extended high energy neutron rem meters. The normalized energy dependent ambient dose equivalent response of the zirconium based rem counter (ZReC) at high energies is found to be in good agreement with the energy differential H{sup Low-Asterisk }(10) values suggested by the International Commission on Radiological Protection (ICRP). Based on this study, it is proposed that a rem meter made of 17.8 cm diameter HDPE sphere with 1 cm thick Zr can be used effectively and conveniently for routine monitoring in the accelerator environment.

  3. The DEIS high energy muon spectrometer. II. The data acquisition system

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Dau, W.D.; Faehnders, E.; Jokisch, H.; Kaleschke, G.P.; Klemke, G.; Sauerland, K.; Schmidtke, G.; Uhr, R.C.; Bella, G.; Oren, Y.; Virni, U.; Seidman, A.

    1977-01-01

    The whole spectrometer is read out and controlled on-line via a CAMAC-system by a minicomputer. The magnetostrictive read out signals of 66 magnetostrictive read out wands of the wire spark chambers are digitized by 20-MHz-scalers which can store up to 8 sparks per chamber. The time-of-flight of the muon, the pulse heights of the scintillation counters, the time of event are also recorded. The on-line-computer makes reliability checks of the data and stores them together with monitor data about magnetic field, gas and high voltage system, etc. on magnetic tape for off-line analysis. (author)

  4. Upgrade of the compact neutron spectrometer for high flux environments

    Science.gov (United States)

    Osipenko, M.; Bellucci, A.; Ceriale, V.; Corsini, D.; Gariano, G.; Gatti, F.; Girolami, M.; Minutoli, S.; Panza, F.; Pillon, M.; Ripani, M.; Trucchi, D. M.

    2018-03-01

    In this paper new version of the 6Li-based neutron spectrometer for high flux environments is described. The new spectrometer was built with commercial single crystal Chemical Vapour Deposition diamonds of electronic grade. These crystals feature better charge collection as well as higher radiation hardness. New metal contacts approaching ohmic conditions were deposited on the diamonds suppressing build-up of space charge observed in the previous prototypes. New passive preamplification of the signal at detector side was implemented to improve its resolution. This preamplification is based on the RF transformer not sensitive to high neutron flux. The compact mechanical design allowed to reduce detector size to a tube of 1 cm diameter and 13 cm long. The spectrometer was tested in the thermal column of TRIGA reactor and at the DD neutron generator. The test results indicate an energy resolution of 300 keV (FWHM), reduced to 72 keV (RMS) excluding energy loss, and coincidence timing resolution of 160 ps (FWHM). The measured data are in agreement with Geant4 simulations except for larger energy loss tail presumably related to imperfections of metal contacts and glue expansion.

  5. High energy proton simulation of 14-MeV neutron damage in Al2O3

    International Nuclear Information System (INIS)

    Muir, D.W.; Bunch, J.M.

    1975-01-01

    High-energy protons are a potentially useful tool for simulating the radiation damage produced by 14-MeV neutrons in CTR materials. A comparison is given of calculations and measurements of the relative damage effectiveness of these two types of radiation in single-crystal Al 2 O 3 . The experiments make use of the prominent absorption band at 206 nm as an index to lattice damage, on the assumption that peak absorption is proportional to the concentration of lattice vacancies. The induced absorption is measured for incident proton energies ranging from 5 to 15 MeV and for 14-MeV neutrons. Recoil-energy spectra are calculated for elastic and inelastic scattering using published angular distributions. Recoil-energy spectra also are calculated for the secondary alpha particles and 12 C nuclei produced by (p,p'α) reactions on 16 O. The recoil spectra are converted to damage-energy spectra and then integrated to yield the damage-energy cross section at each proton energy and for 14 MeV neutrons. A comparison of the calculations with experimental results suggests that damage energy, at least at high energies, is a reasonable criterion for estimating this type of radiation damage. (auth)

  6. α spectrometer of parallel plate grid ionization chamber of high energy resolution

    International Nuclear Information System (INIS)

    Tong Boting; Wang Jianqing; Dong Mingli; Tang Peijia; Wang Xiaorong; Lin Cansheng

    2000-01-01

    Parallel plate grid ionization chamber with cathode area of 300 cm 2 was developed and applied to detect minimum α-emitters. It consist of a vacuum system, a gas cycle system of the parallel plate grid ionization chamber, electronics (a high voltage supply, a pre-amplifier and a main amplifier) and a computer-multichannel analyzer. The energy resolution is 23 keV FWHM for the 244 Cm electrostatic precipitated source. The integral background is typically 10 counts/h between 4 and 6 MeV. The detector efficiency is 50%. The minimum detecting activity is 3 x 10 -4 Bq (3σ, 30 hours). This spectrometer is suitable for detecting various samples, such as samples of the soil, water, air, bion, food, structural material, geology, archaeology, α-emitters of after processing and measuring α activity of accounting for and control of nuclear material and monitoring the artificial radioactivity nuclides of environment samples around nuclear facilities. The spectrometer is equipped with apparatus for preparing large area α source by using vacuum deposition or ultrasonic pulverization. The operating program of preparing source is simple. The source thickness can be kept in 40-60 μm/cm 2

  7. High-energy e- /e+ spectrometer via coherent interaction in a bent crystal

    Science.gov (United States)

    Bagli, Enrico; Guidi, Vincenzo; Howard, Alexander

    2018-01-01

    We propose a novel spectrometer based on the crystal channeling effect capable of discriminating between positive and negative particles well beyond the TeV energy scale. The atomic order of a crystalline structure generates an electrostatic field built up by all the atoms in the crystals, which confines charged particle trajectories between neighbouring atomic planes. Through such an interaction in a tiny curved crystal, the same dynamical action on the highest energy particles as that of a huge superconducting magnet is achieved. Depending on the charge sign, points of equilibrium of the oscillatory motion under channeling lie between or on atomic planes for positive and negative particles, respectively, forcing positive particles to stably oscillate far from the planes, while negative ones repeatedly cross them. The different interaction rate with atomic planes causes a tremendous discrepancy between the deflection efficiency of positive and negative particles under channeling. We suggest the use of interactions between charged particles and oriented bent crystals as a novel non-cryogenic passive charge spectrometer to aid the search for dark matter in the Universe in satellite-borne experiment. The limited angular acceptance makes this technique particularly suited for directional local sources of energetic charged particles.

  8. High-efficiency improvement for high energy resolution experimental mode of DIANA spectrometer at materials and life science facility (MLF) of J-PARC

    International Nuclear Information System (INIS)

    Takahashi, Nobuaki; Shibata, Kaoru; Arai, Masatoshi; Sato, Taku J.

    2006-09-01

    DIANA is an indirect-geometry time-of-flight (TOF) spectrometer which is planed to install at Materials and Life science Facility (MLF) of Japan Proton Accelerator Research Complex (J-PARC). It has three exchangeable analyzer crystals, such as PG(002), Ge(311) and Si(111) for different energy transfer, momentum transfer and energy-resolution experiments. Normal experimental mode, either PG(002) or Ge(311) analyzer is used, shows moderate energy resolutions of 15μeV or 41λeV, respectively. We are especially aiming very high energy-resolution of 2 μeV by using Si(111) analyzer crystal together with high speed counter-rotating pulse-shaping choppers with each rotation frequency of 300 Hz as an optional setting for the spectrometer. Although such a high energy-resolution is attained, it is considerably inefficient having a very narrow incident energy (E i ) band if the pulse shaping chopper has only one slit. Therefore, we have designed multiple-slit chopper and have performed Monte-Carlo simulation to study Repetition Rate Multiplication (RRM) capability. RRM has been shown to be achievable by using multiple-slit pulse-shaping choppers. By the consideration of the contamination appeared between the neighbor two pulse-shaped bands, the number of slits has been optimized to eight. By using the 8-slit choppers, 23 pulse-shaped neutron energy bands have been available simultaneously within one measurements. Minimum 10 measurements with different phases of the choppers provide the continuous S(Q, ℎω) spectrum of -1.0 meV<ℎω<+3.4 meV. (author)

  9. Trial fabrication of a secondary x-ray spectrometer with high energy resolution for use in x-ray resonant inelastic scattering experiments

    International Nuclear Information System (INIS)

    Iwazumi, Toshiaki

    2004-01-01

    An instrument was fabricated for use of x-ray resonant inelastic scattering with high-energy resolution in expectation of finding new physical phenomena in strongly correlated electron systems. In the scattering x-ray spectrometer, an asymmetric Johanson crystal spectrometer, which was deployed in an asymmetric Rowland configuration, was designed, fabricated and assessed. The performance expected theoretically for the Johanson spectrometer was recognized from experiments by use of synchrotron radiation. (Y. Kazumata)

  10. Production of the $\\Sigma^0_c$ and $\\Sigma^{++}_c$ by High-Energy Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ladbury, Raymond, Jr. [Colorado U.

    1988-01-01

    We present the first observation of hadroproduction of the $\\Sigma^{++}_C$ and $\\Sigma^0_c$ , decaying into $\\Lambda_{c\\pi}$. The daughter $\\Lambda_c$ is observed in the decay modes $pK \\pi$ and $pK_s\\pi\\pi$. The Experiment was conducted at a broadband neutron beam in the Proton East area of the Fermi National Accelerator Laboratory. A two - magnet multiparticle spectrometer equipped with proportional wire chambers and a high resolution MWPC vertex detector was used to momentum analyze charged particles produced in the interactions of neutrons on targets of beryllium, silicon and tungsten. Particles were identified using three Cerenkov counters. The beam energy for each event was reconstructed using hadronic and electromagnetic calorimetry....

  11. Development of integrated-type dosimeter responsive to high energy neutrons (2)

    Energy Technology Data Exchange (ETDEWEB)

    Sawamura, Teruko; Murai, Ikuo; Abe, Masashi; Uoyama, Kazuya; Das, Mala [Hokkaido Univ., Sapporo, Hokkaido (Japan); Tuda, Shuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The response of superheated drop detectors or bubble detectors (BDs) was measured for quasi-monoenergetic neutron beams in the 40-75 MeV range. The experiments were performed at the AVF cyclotron facility, TAKASAKI Ion Accelerator for Advanced Radiation Application (TIARA) of Japan Atomic Energy Research Institute (JAERI). The measured dose sensitivities showed to be lowered to about a half the nominal sensitivity. A lead-breeder introduced to extend response to the high energy region were investigated and compared with Monte Carlo calculations by MCNPX code. (author)

  12. A new Thomson Spectrometer for high energy laser-driven beams diagnostic

    International Nuclear Information System (INIS)

    Cirrone, G A P; Tramontana, A; Candiano, G; Cavallaro, S; Cutroneo, M; Cuttone, G; Pisciotta, P; Romano, F; Schillaci, F; Scuderi, V; Torrisi, L; Carpinelli, M; Martinis, C De; Giove, D; Krása, J; Korn, G; Margarone, D; Prokůpek, J; Velyhan, A; Maggiore, M

    2014-01-01

    Thomson Spectrometers (TPs) are widely used for beam diagnostic as they provide simultaneous information on charge over mass ratio, energy and momentum of detected ions. A new TP design has been realized at INFN-LNS within the LILIA (Laser Induced Light Ion Acceleration) and ELIMED (MEDical application at ELI-Beamlines) projects. This paper reports on the construction details of the TP and on its experimental tests performed at PALS laboratory in Prague, with the ASTERIX IV laser system. Reported data are obtained with polyethylene and polyvinyl alcohol solid targets, they have been compared with data obtained from other detectors. Consistency among results confirms the correct functioning of the new TP. The main features, characterizing the design, are a wide acceptance of the deflection sector and a tunability of the, partially overlapping, magnetic and electric fields that allow to resolve ions with energy up to about 40 MeV for protons

  13. FOCUS: neutron time-of-flight spectrometer at SINQ: recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Mesot, J.; Holitzner, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Hempelmann, R. [Saarbruecken Univ. (Germany)

    1997-09-01

    At the Swiss neutron spallation source SINQ a time-of-flight spectrometer for cold neutrons is under construction. The design foresees a Hybrid solution combining a Fermi chopper with a doubly focusing crystal monochromator. During 1996 important progress has been made concerning the main spectrometer components such as the spectrometer housing and the detector system. (author) 2 figs., 3 refs.

  14. Contribution to the development of a primary standard for high energy neutron beams

    International Nuclear Information System (INIS)

    Mancaux, M.

    1983-12-01

    A tissue equivalent calorimeter, made of Shonka A-150 plastic, has been constructed in order to create a primary standard for high energy neutrons and to establish a calibration procedure for ionization chambers used in neutrontherapy. After a detailed description of the calorimeter and the associated measuring system, the preliminary tests are presented, in particular, the evolution of the response as a function of accumulated dose. The measurements of the total absorbed dose (n + γ) by calorimetry in a neutron beam, in order to determine chambers' calibration factors in terms of absorbed dose to A-150 plastic, have been performed at the Neutrontherapy Unit of the Centre Hospitalier Regional d'Orleans. The uncertainty in the determination of the total absorbed dose to the tissu equivalent material using the new procedure is 3% lower than that obtained with the usual procedure, derived from an exposure calibration [fr

  15. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  16. High energy nuclear data evaluations for neutron-, proton-, and photon-induced reactions at KAERI

    International Nuclear Information System (INIS)

    Lee, Young Ouk; Chang, Jong Hwa; Kim, Doo Hwan; Lee, Jeong Yeon; Han, Yinlu; Sukhovitski, Efrem Sh.

    2001-01-01

    The Korea Atomic Energy Research Institute (KAERI) is building high energy neutron-, proton-, and photon-induced nuclear data libraries for energies up to hundreds MeV in response to nuclear data needs from various R and Ds and applications. The librares provide nuclear data needed for the accelerator-driven transmutation of nuclear waste and radiation transport simulations of cancer radiotherapy. The neutron library currently has 10 isotopes such as C-12, N-14, O-16, Al-27, Si-28, Ca-40, Fe-56, Ni-58, Zr-90, Sn-120, and Pb-208 for energies from 20 up to 400 MeV. The proton nuclear data were evaluated in a consistent manner with the neutron case, using the same nuclear model parameters. In addition to the same isotopes included in the neutron library, the proton library has 70 extra isotopes of 24 elements ranging from nitrogen to lead up to 150 MeV for which the evaluations are focused on the medical and activation analyses applications. The photonuclear data library has been built along with international collaboration by participating in the IAEA's Coordinated Research Project (CRP) which ended last year. Currently the KAERI photonuclear library includes 143 isotopes of 39 elements

  17. Monte Carlo simulation for neutron yield produced by bombarding thick targets with high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Yoon, Moo Hyun; Lee, Hee Seock [POSTECH, Pohang (Korea, Republic of)

    2013-04-15

    One of radiation shielding issues at heavy-ion accelerator facilities is to estimate neutron production by primary heavy ions. A few Monte Carlo transport codes such as FLUKA and PHITS can work with primary heavy ions. Recently IBS/RISP((Rare Isotope Science Project) started to design a high-energy, high-power rare isotope accelerator complex for nuclear physics, medical and material science and applications. There is a lack of experimental and simulated data about the interaction of major beam, {sup 238}U with materials. For the shielding design of the end of first accelerating section section, we calculate a differential neutron yield using the FLUKA code for the interaction of 18.5 MeV/u uranium ion beam with thin carbon stripper of 1.3 μm). The benchmarking studies were also done to prove the yield calculation for 400 MeV/n {sup 131}Xe and other heavy ions. In this study, the benchmarking for Xe-C, Xe-Cu, Xe-Al, Xe-Pb and U-C, other interactions were performed using the FLUKA code. All of results show that the FLUKA can evaluate the heavy ion induced reaction with good uncertainty. For the evaluation of neutron source term, the calculated neutron yields are shown in Fig. 2. The energy of Uranium ion beam is only 18.5 MeV/u, but the energy of produced secondary neutrons was extended over 100 MeV. So the neutron shielding and the damage by those neutrons is expected to be serious. Because of thin stripper, the neutron intensity at forward direction was high. But the the intensity of produced secondary photons was relatively low and mostly the angular property was isotropic. For the detail shielding design of stripper section of RISP rare istope accelerator, the benchmarking study and preliminary evaluation of neutron source term from uranium beam have been carried out using the FLUKA code. This study is also compared with the evaluation results using the PHITS code performed coincidently. Both studies shows that two monte carlo codes can give a good results for

  18. Study of high-energy nucleus-nucleus interactions with the enlarged NA10 dimuon spectrometer

    CERN Multimedia

    Dimuon production is studied in $^{16}$0 - $^{238}$U and $^{32}$S - $^{238}$U collisions at the maximum possible luminosity of $\\sim10^{7}$ interactions per pulse using the NA10 spectrometer to which beam counters, an active segmented target and an electromagnetic calorimeter have been added. Thermal dimuons are expected to be emitted from a quark-gluon plasma at a detectable rate in the 1-3 GeV/c$^{2}$ transverse mass range, and to differ from ordinary dimuons by their $P_{T}$ and rapidity distribution. Particular emphasis is put on the $J/\\psi$ meson whose $\\mu\\mu$ decays are studied in detail. It is expected to be suppressed when a quark-gluon plasma is formed (Debye screening of the colour field). The correlations of the dimuon variables with charged multiplicity and neutral energy flow distributions are studied event by event. The energy density is estimated from the measured transverse neutral energy. Also $p$ - $^{228}$U collisions are studied in the same apparatus with the purpose of establishing a da...

  19. Inter-comparison of High Energy Files (neutron-induced, from 20 to 150 MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Recent new applications using accelerator-driven system require well-tested nuclear data when modeling the interaction of neutrons above 20 MeV. This work is aimed to review evaluation methods applied in currently available neutron high energy files above 20 to 150 MeV, to inter-compare their evaluated cross sections on some important isotopes, and to analyze resulting discrepancies. Through out these, integrities and consistencies of the high energy files are checked, applicability of physics models and evaluation methodologies are assessed, and some directions are derived to improve and expand current JENDL High Energy File. (author)

  20. Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: Instrument response

    International Nuclear Information System (INIS)

    Silari, M.; Agosteo, S.; Beck, P.; Bedogni, R.; Cale, E.; Caresana, M.; Domingo, C.; Donadille, L.; Dubourg, N.; Esposito, A.; Fehrenbacher, G.; Fernandez, F.; Ferrarini, M.; Fiechtner, A.; Fuchs, A.; Garcia, M.J.; Golnik, N.; Gutermuth, F.; Khurana, S.; Klages, Th.

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005-2007) called CONRAD, COordinated Network for RAdiation Dosimetry. The organizational framework for this project was provided by the European radiation Dosimetry Group EURADOS. Work Package 6 of CONRAD dealt with 'complex mixed radiation fields at workplaces' and in this context it organised a benchmark exercise, which included both measurements and calculations, in a stray radiation field at a high-energy particle accelerator at GSI, Germany. The aim was to intercompare the response of several types of active detectors and passive dosemeters in a well-characterised workplace field. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers are discussed in Rollet et al. (2008) and in Wiegel et al. (2008). This paper focuses on the intercomparison of the response of the dosemeters in terms of ambient dose equivalent. The paper describes in detail the detectors employed in the experiment, followed by a discussion of the results. A comparison is also made with the H*(10) values predicted by the Monte Carlo simulations and those measured by the BSS systems.

  1. In vivo transcriptome modulation after low dose of high energy neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Amendola, R; Fratini, E; Piscitelli, M; Sallustio, D E [ENEA, BAS BIOTEC MED, Roma (Italy); Angelone, M; Pillon, M [ENEA, FUS TEC, Frascati (Italy); Chiani, F; Licursi, V; Negri, R [Universita La Sapienza, Roma (Italy). Dip. Biologia Cellulare e dello Sviluppo

    2007-07-01

    Complete text of publication follows. Objective: This project aims to the identification of an hypothetical transcriptome modulation of mouse peripheral blood lymphocytes and skin after exposure to high energy neutron in vivo. Positive candidate genes isolated from mice in in vivo experiments will be selected and evaluated for both radioprotection issues dealing with cosmic ray exposure, and for biomedical issues mainly for low doses and non-cancer effects. Methods: High energy neutron irradiation is performed at the ENEA Frascati, neutron generator facilities (FNG), specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 x 10{sup 11} n/s 14 MeV neutrons via the D-T nuclear reaction. The dose-rate applied for this study is of 0.7 cGy/min. The functional genomic approach has been performed on six animals for each experimental points: un-irradiated; 20 cGy, 6 hours and 24 hours delayed time after exposure. Preliminarily, a pool of total RNA is evaluated on commercial micro-arrays containing large collections of mus musculus cDNAs. Statistical filtering and functional clustering of the data is carried out using dedicated software packages. Results: Candidate genes are selected on the basis of responsiveness to 20 cGy of exposure, with a defined temporal regulation. We plan to organize a systematic screen focused on genes responding to our selection criteria, in in vivo mouse experiments, and correlate their differential expression to the human counterparts. A specific cross species database will be created with all the functional information available in standardized format (MIAME: minimal information about micro-arrays experiments). Conclusions: A lack of information on in vivo experiments is still evident for low doses exposure, especially for neutron of cosmic interest. Individual susceptibility, extensive number of animals to be processed, lack of standardization methodologies are among problems to be solved

  2. Pilot study for the implantation of a high-energy neutrons field

    International Nuclear Information System (INIS)

    Pinto, Jose Julio de O.; Mendes, Adriane C.; Federico, Claudio A.; Passaro, Angelo; Gaspar, Felipe de B.; Pazianotto, Mauricio T.

    2013-01-01

    In this work a theoretical study is presented for the implementation of a high-energy neutron field (14.1 MeV) produced by a neutron generator type DT (deuterium-tritium), to be installed in the premises of the Laboratorio de Radiacoes Ionizantes (LRI) of the Instituto de Estudos Avancados (IEAv). This evaluation was performed by means of computer simulation by Monte Carlo method, using the computer code MCNP5 (Monte Carlo N-Particle). The neutron spectra were simulated computationally for pre-selected points of the installation, allowing to estimate the beam quality in the positions provided for use of the direct beam. These simulations also allow assist the basement of a project to install the consistent D-T generator with the guidelines for radiation protection and radiation safety standards determined by the Comissao Nacional de Energia Nuclear (CNEN), by estimating the dose rates provided in accessible points to Individuals Occupationally Exposed (IOE) in the facility. The computational determination of spectra, fluxes and doses produced in different positions previously selected within and outside the laboratory, will serve as guidance from previous studies for the future installation of this generator in the physical facilities of the LRI

  3. Development of inelastic neutron spectrometer (DC-TOF) and utilization

    International Nuclear Information System (INIS)

    Park, Je Geun; So, J. Y.; Moon, M. K.; Choi, Y. H.; Cho, S. J.; Lee, C. H.; Nam, U. W.; Kim, H. Y.; Kim, H. J.

    2010-08-01

    DC-TOF is an inelastic neutron spectrometer with potentially very wide applications to areas such as physics, chemistry, biology, and material engineering. And it is the most technically challenging and advanced instrument by using high speed choppers rotating up to 20,000 RPM and wide detector of steradian producing data in the order of a few hundred Mbyte. Through this project, we have successfully developed DC-TOF at KAERI with the development of the following key technologies : - Detector Electronics - Data acquisition software - Data reduction software. We believe that DC-TOF will become a workhorse instrument for the wide community of sciences in Korea

  4. Determination of the Jet Neutron Rate and Fusion Power using the Magnetic Proton Recoil Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Sjoestrand, Henrik

    2003-01-01

    In this thesis a new independent method has been developed to enable precise measurements of neutron yields and rates from fusion plasmas and thereby determining the fusion power and fusion energy. The new method, together with the associated diagnostics, can provide information of great importance to present and future high fusion yield experiments, such as the Joint European Torus (JET) tokamak and the International Thermonuclear Experiment Reactor (ITER). The method has been applied to data from high fusion rate experiments from the tritium campaign at JET. By using the count-rate from the Magnetic Proton Recoil (MPR) neutron spectrometer the number of neutrons in the spectrometer's line of sight has been calculated. To be able to do this, all relevant factors between the plasma and the instrument have been evaluated. The number of neutrons in the MPR line of sight has been related to the total number of produced neutrons in the plasma by using information on the neutron emission profile. The achieved results have been compared with other JET neutron diagnostic data and the agreement is shown to be very good.

  5. NEMUS--the PTB Neutron Multisphere Spectrometer Bonner spheres and more

    CERN Document Server

    Wiegel, B

    2002-01-01

    The original Bonner sphere spectrometer as it is used and characterized by PTB consists of 12 polyethylene spheres with diameters from 7.62 cm (3'') to 45.72 cm (18'') and a sup 3 He-filled spherical proportional counter used as a central thermal-neutron-sensitive detector and as a bare or cadmium-shielded bare detector. In this paper, a set of four new spheres made of polyethylene with copper or lead inlets is introduced. All spheres are less than 18 kg in mass and their responses to high energy neutrons increase with energy as a result of the increasing (n,xn) cross-sections of copper and lead. The fluence response matrix was calculated up to 10 GeV using an extended neutron cross-section library (LA150) and the MCNP(X) Monte Carlo code. Calibration measurements with neutron energies up to 60 MeV were used to compare the calculated response functions to measured values. For measurements outside the laboratory, a miniaturized, battery-powered electronic set-up was developed. This system with the additional, ...

  6. Proposed 14-MeV neutron spectrometer system for jet

    International Nuclear Information System (INIS)

    Elevant, T.

    1983-09-01

    In order to cover a broad range of neutron spectra and fluxes during D-T operation in JET we propose the use of two different detector techniques neutron induced reactions in a silicon surface barrier detector and neutron-proton elastic scattering in a liquid scintillator. Experimental investigations of 28 Si(n,α) 25 Mg reactions have resulted in resolutions of ΔE(FWHM)/E=0.02 with intrinsic efficiency equal to 10 -4 and a maximum useful countrate equal to 1600 c.p.s. However, due to overlap of adjacent peaks, caused by excited states of 25 Mg, this spectrometer has an operation range limited to FWHM/E=0.04. For broader neutron distributions we propose the use of a conventional liquid scintillator system with a light guide, photomultiplier tube and modified conventional electronics. Experiments have demonstrated a resolution equal to 0.05 and a n/γ separation better than 90percent at total countrates equal to 2times10 5 c.p.s. (author)

  7. Fan analyzer of neutron beam polarization on REMUR spectrometer at IBR-2 pulsed reactor

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.; Ul'yanov, V.A.; Pusenkov, V.M.; Kozhevnikov, S.V.; Jernenkov, K.N.; Pleshanov, N.K.; Peskov, B.G.; Petrenko, A.V.; Proglyado, V.V.; Syromyatnikov, V.G.; Schebetov, A.F.

    2006-01-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation in the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multiplayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 A. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (fan-like polarization analyzer) with a solid angle of neutron detection of 2.2x10 -4 rad. This article describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of its tests on a polarized neutron beam

  8. Personal dosimetry in a mixed field of high energy muons and neutrons

    International Nuclear Information System (INIS)

    Cossairt, J.D.; Elwyn, A.J.

    1986-11-01

    High energy accelerators quite often emit muons. These particles behave in matter as would heavy electrons and are thus difficult to attenuate with shielding in many situations. Hence, these muons can be a source of radiation exposure to personnel and suitable methods of measuring the absorbed dose received to these people is obviously required. In practical situations, such muon radiation fields are often mixed with neutrons, well-known to be an even more troublesome particle species with respect to dosimetry. In this paper, we report on fluence measurements made in such a mixed radiation field and a comparison of dosimeter responses. We conclude that commercial self-reading dosimeters and film badges provided an adequate measure of the absorbed dose due to muons

  9. The Biological Effect of Fast Neutrons and High-Energy Protons

    International Nuclear Information System (INIS)

    Moskalev, Ju.I.; Petrovich, I.K.; Strel'cova, V.N.

    1964-01-01

    The paper gives the results of comparative experiments on the effects of fast neutrons and high-energy protons (500 MeV) on life expectancy, peripheral blood, incidence and rate of appearance of tumours in the rat as a function of administered dose and time of observation. The neutron experiment was performed on 573 and the proton experiment on 490 white rats. The animals irradiated with fast neutrons were given doses between 8.5 and 510 rad, and those irradiated with protons received doses between 28 and 1008 rad. The effective doses for the acute, sub-acute and chronic forms of sickness were established for fast neutrons and for protons. LD 50/30 for neutrons was 408 and for protons 600 rad, and the corresponding LD 50 / 120 values were 380 and 600 rad. The conditions governing rat mortality were analysed both in the early and the later stages of the experiment. It is shown that the average life expectancy of rats irradiated with fast neutrons does not depend on sex. The shape of the dose-effect curve for the various peripheral-blood indexes is strongly dependent not only on the radiosensitivity of the blood cells in question but also on the time of observation. It may change greatly in time for one and the same index. A considerable time after irradiation with either fast neutrons or protons, benign and malignant tumours appear in different tissues of the rats, including the haemopoeitic tissues, mammary glands, pituitary, uterus, ovaries, prostate gland, testicles, liver, kidneys, lungs, gastro-intestinal tract, subcutaneous tissue, lymph nodes, urinary bladder, etc. The over-all incidence of tumours and the number of cases of multi centred neoplasms in females are two to three times higher than in males. The minimum tumour dose for the mammary glands with neutron irradiation is apparently rather less than 42.5 rad. The maximum incidence of tumours of the pituitary is found after irradiation with a dose of 42.5 rad.- At this same dose leucosis and tumour of the

  10. Development of an ion time-of-flight spectrometer for neutron depth profiling

    Science.gov (United States)

    Cetiner, Mustafa Sacit

    Ion time-of-flight spectrometry techniques are investigated for applicability to neutron depth profiling. Time-of-flight techniques are used extensively in a wide range of scientific and technological applications including energy and mass spectroscopy. Neutron depth profiling is a near-surface analysis technique that gives concentration distribution versus depth for certain technologically important light elements. The technique uses thermal or sub-thermal neutrons to initiate (n, p) or (n, alpha) reactions. Concentration versus depth distribution is obtained by the transformation of the energy spectrum into depth distribution by using stopping force tables of the projectiles in the substrate, and by converting the number of counts into concentration using a standard sample of known dose value. Conventionally, neutron depth profiling measurements are based on charged particle spectrometry, which employs semiconductor detectors such as a surface barrier detector (SBD) and the associated electronics. Measurements with semiconductor detectors are affected by a number of broadening mechanisms, which result from the interactions between the projectile ion and the detector material as well as fluctuations in the signal generation process. These are inherent features of the detection mechanism that involve the semiconductor detectors and cannot be avoided. Ion time-of-flight spectrometry offers highly precise measurement capabilities, particularly for slow particles. For high-energy low-mass particles, measurement resolution tends to degrade with all other parameters fixed. The threshold for more precise ion energy measurements with respect to conventional techniques, such as direct energy measurement by a surface barrier detector, is directly related to the design and operating parameters of the device. Time-of-flight spectrometry involves correlated detection of two signals by a coincidence unit. In ion time-of-flight spectroscopy, the ion generates the primary input

  11. A solenoidal electron spectrometer for a precision measurement of the neutron β-asymmetry with ultracold neutrons

    International Nuclear Information System (INIS)

    Plaster, B.; Carr, R.; Filippone, B.W.; Harrison, D.; Hsiao, J.; Ito, T.M.; Liu, J.; Martin, J.W.; Tipton, B.; Yuan, J.

    2008-01-01

    We describe an electron spectrometer designed for a precision measurement of the neutron β-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-T solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-T field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported

  12. A solenoidal electron spectrometer for a precision measurement of the neutron {beta}-asymmetry with ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Plaster, B. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)], E-mail: plaster@pa.uky.edu; Carr, R.; Filippone, B.W. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Harrison, D. [Physics Department, University of Winnipeg, Manitoba, Canada R3B 2E9 (Canada); Hsiao, J. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Ito, T.M. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, J. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Martin, J.W. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Physics Department, University of Winnipeg, Manitoba, R3B 2E9 (Canada); Tipton, B.; Yuan, J. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2008-10-11

    We describe an electron spectrometer designed for a precision measurement of the neutron {beta}-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-T solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-T field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  13. High-energy neutron yields in interactions of carbon ions with 114Sn and 124Sn nuclei

    International Nuclear Information System (INIS)

    Blinov, M.B.; Gavrilov, B.P.; Kovalenko, S.S.; Kozulin, Eh.M.; Mozhaev, A.N.; Oganesyan, Yu.Ts.; Penionzhkevich, Yu.Eh.

    1984-01-01

    The measurements of the yields of neutrons (energy more than 5 MeV) emitted in the interactions of carbon-12 ions (9 MeV/nucl.) with nuclei of two tin isotopes are conducted. The results obtained prove the effect of nucleon composition of a nucleus on the process of formation of high-energy neutrons. To clarify the concrete interaction mechanism it is necessary to perform systematic research for a number of isotopes differing in the relation of the number of neutrons and protons and binding energies of the last neutron

  14. A Benchmarking Study of High Energy Carbon Ion Induced Neutron Using Several Monte Carlo Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Oh, J. H.; Jung, N. S.; Lee, H. S. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Shin, Y. S.; Kwon, D. Y.; Kim, Y. M. [Catholic Univ., Gyeongsan (Korea, Republic of); Oranj, L. Mokhtari [POSTECH, Pohang (Korea, Republic of)

    2014-10-15

    In this study, the benchmarking study was done for the representative particle interaction of the heavy ion accelerator, especially carbon-induced reaction. The secondary neutron is an important particle in the shielding analysis to define the source term and penetration ability of radiation fields. The performance of each Monte Carlo codes were verified for selected codes: MCNPX 2.7, PHITS 2.64 and FLUKA 2011.2b.6. For this benchmarking study, the experimental data of Kurosawa et al. in the SINBAD database of NEA was applied. The calculated results of the differential neutron yield produced from several materials irradiated by high energy carbon beam reproduced the experimental data well in small uncertainty. But the MCNPX results showed large discrepancy with experimental data, especially at the forward angle. The calculated results were lower a little than the experimental and it was clear in the cases of lower incident carbon energy, thinner target and forward angle. As expected, the influence of different model was found clearly at forward direction. In the shielding analysis, these characteristics of each Monte Carlo codes should be considered and utilized to determine the safety margin of a shield thickness.

  15. A Benchmarking Study of High Energy Carbon Ion Induced Neutron Using Several Monte Carlo Codes

    International Nuclear Information System (INIS)

    Kim, D. H.; Oh, J. H.; Jung, N. S.; Lee, H. S.; Shin, Y. S.; Kwon, D. Y.; Kim, Y. M.; Oranj, L. Mokhtari

    2014-01-01

    In this study, the benchmarking study was done for the representative particle interaction of the heavy ion accelerator, especially carbon-induced reaction. The secondary neutron is an important particle in the shielding analysis to define the source term and penetration ability of radiation fields. The performance of each Monte Carlo codes were verified for selected codes: MCNPX 2.7, PHITS 2.64 and FLUKA 2011.2b.6. For this benchmarking study, the experimental data of Kurosawa et al. in the SINBAD database of NEA was applied. The calculated results of the differential neutron yield produced from several materials irradiated by high energy carbon beam reproduced the experimental data well in small uncertainty. But the MCNPX results showed large discrepancy with experimental data, especially at the forward angle. The calculated results were lower a little than the experimental and it was clear in the cases of lower incident carbon energy, thinner target and forward angle. As expected, the influence of different model was found clearly at forward direction. In the shielding analysis, these characteristics of each Monte Carlo codes should be considered and utilized to determine the safety margin of a shield thickness

  16. Neutron-damaged GaAs detectors for use in a Compton spectrometer

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Sale, K.E.; Wang, C.L.; Baltrusaitis, R.M.

    1992-01-01

    Detectors made of GaAs are being studies for use on the focal plane of a Compton spectrometer which measures 1-MeV to 25-MeV gamma rays with high energy resolution (1% or 100 keV, whichever is greater) and 200-ps time resolution. The detectors are GaAs chips that have been neutron-damaged to improve the time response. The detectors will be used to measure fast transient signals in the current mode. The properties of various GaAs detector configurations are being studied by bombarding sample detectors with short pulses of 4-MeV to 16-MeV electrons at the Linac Facility at EG ampersand G Energy Measurements, Inc., Santa Barbara Operations. Measurements of detector sensitivity and impulse response versus detector bias, thickness, and electron beam energy and intensity have been performed and are presented. 5 refs

  17. Characterization of the neutron field at the ISIS-VESUVIO facility by means of a bonner sphere spectrometer

    Science.gov (United States)

    Bedogni, Roberto; Esposito, Adolfo; Andreani, Carla; Senesi, Roberto; De Pascale, Maria Pia; Picozza, Piergiorgio; Pietropaolo, Antonino; Gorini, Giuseppe; Frost, Christopher D.; Ansell, Stewart

    2009-12-01

    One of the more actual and promising fields of applied neutron physics is the investigation of the malfunctions induced by high-energy neutrons naturally present in the atmosphere in electronic devices, called single event effects (SEE). These studies are of primary importance for the design of devices that have to fulfill high reliability requirements and those that are likely to be exposed to enhanced levels of cosmic rays background, e.g. in aerospace and avionic applications. Particle accelerators-driven neutron sources constitute valuable irradiation facilities for these purposes as they provide an opportunity for accelerated testing of the effects of these naturally occurring neutrons, provided the neutron spectrum is comparable with the atmospheric one and the neutron fields are known with high accuracy. The latter can be achieved through the use of appropriate radiation transport codes and neutron spectrometry techniques. In view of the design and construction of CHIPIR, a dedicated beam line for SEE studies at the ISIS pulsed neutron source second target station (UK) [1] ( http://ts-2.isis.rl.ac.uk/instruments/phase2/index.htm), a spectrometric characterization was performed on the VESUVIO beamline [2] (Senesi et al.,2000). The spectrometric technique was the bonner sphere spectrometer (BSS), widely used to determine neutron spectra and dose quantities around high-energy accelerators. The experimental campaign provided a complete spectrometric investigation of the VESUVIO neutron beam, allowing the integral quantities (total fluence rate, fraction of fluence in given energy intervals) to be estimated with uncertainties lower than 10%.

  18. A neutron spin echo spectrometer with two optimal field shape coils for neutron spin precession

    International Nuclear Information System (INIS)

    Takeda, T.; Ebisawa, T.; Tasaki, S.; Ito, Y.; Takahashi, S.; Yoshizawa, H.

    1995-01-01

    We have designed and have been constructing at the C 2-2 cold neutron guide port of JRR-3M, JAERI, a neutron spin echo spectrometer (NSE) which is equipped with two optimal field shape (OFS) coils for neutron spin precession with the maximum field integral of 0.22 T m, an assembly of position sensitive detectors (PSD), a converging polarizer and a wide area analyzer. The dynamic range of scattering vector Q covers from 0.005 A -1 to 0.2 A -1 and that of energy hω from 10 neV to 30 μeV. Performance tests of the OFS coils show that the inhomogeneity of the magnetic field integral in the OFS coils with the spiral coils is so small that the NSE signal amplitude decreases little even for the neutron cross section of 30 mm diameter as the Fourier time t increases up to 25 ns, though the precession coils are close to iron covers of the neighboring neutron guide. This verifies that the OFS precession coils are appropriate for this NSE spectrometer. Another test experiment shows that the homogeneity condition of the precession magnet is loosened by use of PSD. (orig.)

  19. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  20. Small angle neutron scattering using a triple axis spectrometer

    International Nuclear Information System (INIS)

    Ahmed, F.U.; Goyal, P.S.; Kamal, L.; Yunus, S.M.; Datta, T.K.; Rahman, M.O.; Azad, A.K.; Begum, S.; Zakaria, A.K.

    1994-01-01

    SANS techniques has been developed on a triple axis neutron spectrometer at TRIGA Mark II (3 MW) research reactor, AERE, Savar, Dhaka, Bangladesh. Double crystal (with very small mosaic spread ∼ 1 min.) diffraction known as Bonse and Hart's method has been employed. Such a device is a useful tool for small angle scattering in the Q range between 10 -5 and 10 -1 Angstroms -1 and for real time experiments at short time scales. Therefore, large objects and large distance interparticle correlations can be easily investigated. The results of SANS' measurements using alumina (A1 2 0 3 ) sample are presented. The radius of gyration has been determined and the data has been fitted to the scattering function of a sphere. 9 refs., 6 figs.,

  1. A new/old type of neutron spectrometer

    International Nuclear Information System (INIS)

    Vylet, V.; Fasso, A.; Luckau, N.

    1998-01-01

    The proposed portable spectrometer is a large sphere made of a plastic scintillator loaded with boron, possibly enriched with boron 10. The sphere is divided into spherical shells coated with a reflective or opaque material. Each shell is made of two hemispherical shells or smaller segments. Each segment is connected by a light-guide to a photomultiplier or a photodiode. It might be possible to use miniature photomultipliers directly embedded in detector layers. Each shell measures the thermal fluence at a different moderator depth and the set of shell responses can be used to unfold the original neutron spectrum, covering the range of energies from thermal to 20 MeV. (M.D.)

  2. A neutron spectrometer for studying giant resonances with (p,n) reactions in inverse kinematics

    International Nuclear Information System (INIS)

    Stuhl, L.; Krasznahorkay, A.; Csatlós, M.; Algora, A.; Gulyás, J.; Kalinka, G.; Timár, J.; Kalantar-Nayestanaki, N.; Rigollet, C.; Bagchi, S.; Najafi, M.A.

    2014-01-01

    A neutron spectrometer, the European Low-Energy Neutron Spectrometer (ELENS), has been constructed to study exotic nuclei in inverse-kinematics experiments. The spectrometer, which consists of plastic scintillator bars, can be operated in the neutron energy range of 100 keV–10 MeV. The neutron energy is determined using the time-of-flight technique, while the position of the neutron detection is deduced from the time-difference information from photomultipliers attached to both ends of each bar. A novel wrapping method has been developed for the plastic scintillators. The array has a larger than 25% detection efficiency for neutrons of approximately 500 keV in kinetic energy and an angular resolution of less than 1°. Details of the design, construction and experimental tests of the spectrometer will be presented

  3. Charged-particle magnetic-quadrupole spectrometer for neutron induced reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; Grimes, S.M.; Tuckey, B.J.; Anderson, J.D.

    1975-01-01

    A spectrometer has been developed for measuring the charged particle production cross sections and spectra in neutron-induced reactions. The spectrometer consists of a magnetic quadrupole doublet which focuses the charged particles onto a silicon surface barrier detector telescope which is 2 meters or more from the irradiated sample. Collimators, shielding, and the large source-to-detector distance reduce the background enough to use the spectrometer with a 14-MeV neutron source producing 4 . 10 12 n/s. The spectrometer has been used in investigations of proton, deuteron, and alpha particle production by 14-MeV neutrons incident on various materials. Protons with energies as low as 1.1 MeV have been measured. The good resolution of the detectors has also made possible an improved measurement of the neutron- neutron scattering length from the 0 0 proton spectrum from deuteron breakup by 14-MeV neutrons

  4. Design, construction and description of a triple axis neutron crystal spectrometer

    International Nuclear Information System (INIS)

    Fulfaro, R.; Vinhas, L.A.; Fuhrmann, C.; Liguori Neto, R.; Parente, C.B.R.

    1977-01-01

    Integrating the neutron inelastic scattering plan in IEA (Sao Paulo, Brazil) it was completely designed and constructed there, a triple axis neutron spectrometer. The details about construction and design of the spectrometer are described. Basic principles about the experimental method which utilizes neutron coherent inelastic scattering in order to determine the relation dispersion between frequency and wave vector of the crystalline vibrations, are presented [pt

  5. The TOFOR Neutron Spectrometer For High-Performance Measurements of D Plasma Fuel Ion Properties

    International Nuclear Information System (INIS)

    Johnson, M. Gatu; Giacomelli, L.; Hjalmarsson, A.; Weiszflog, M.; Sunden, E. Andersson; Conroy, S.; Ericsson, G.; Hellesen, C.; Ronchi, E.; Sjoestrand, H.; Kaellne, J.; Gorini, G.; Tardocch, M.

    2008-01-01

    The impact of scattered neutrons on the total flux reaching the TOFOR spectrometer at JET has been studied to allow for improvement of the data analysis. The scattered neutrons are demonstrated to contribute significantly to the flux. This will have implications for any neutron diagnostic on ITER

  6. Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Akihiko, E-mail: aki-masuda@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Matsumoto, Tetsuro [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Iwamoto, Yosuke [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Hagiwara, Masayuki [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Satoh, Daiki; Sato, Tatsuhiko [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Iwase, Hiroshi [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yashima, Hiroshi [Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Nakane, Yoshihiro [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Nishiyama, Jun [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan); Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Harano, Hideki [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Nakamura, Takashi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578 (Japan)

    2017-03-21

    Quasi-monoenergetic high-energy neutron fields induced by {sup 7}Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96–387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

  7. Calculation of Multisphere Neutron Spectrometer Response Functions in Energy Range up to 20 MeV

    CERN Document Server

    Martinkovic, J

    2005-01-01

    Multisphere neutron spectrometer is a basic instrument of neutron measurements in the scattered radiation field at charged-particles accelerators for radiation protection and dosimetry purposes. The precise calculation of the spectrometer response functions is a necessary condition of the propriety of neutron spectra unfolding. The results of the response functions calculation for the JINR spectrometer with LiI(Eu) detector (a set of 6 homogeneous and 1 heterogeneous moderators, "bare" detector within cadmium cover and without it) at two geometries of the spectrometer irradiation - in uniform monodirectional and uniform isotropic neutron fields - are given. The calculation was carried out by the code MCNP in the neutron energy range 10$^{-8}$-20 MeV.

  8. The development of a spectrometer for 14 MeV neutrons from fusion

    International Nuclear Information System (INIS)

    Aronsson, D.

    1991-01-01

    A spectrometer for 14 MeV neutrons, to be used for fusion plasma diagnostics at JET, was developed. The spectrometer utilizes neutron scattering in a polyethylene foil with the detection of the scattered neutron and its associated recoil proton. For the detection of 12 MeV protons we have tested silicon surface barrier detectors, lithium-drifted silicon detectors and high purity germanium detectors. The lithium-drifted detectors were finally selected for use in the spectrometer. The lithium-drifted silicon diodes have also been used for direct spectrometry, utilizing the neutron induced charged particle reactions in silicon. The methods used for the energy calibration and the timing calibration of the diodes, both during the installation of the spectrometer and during operation, are described. The detection of 2 MeV neutrons is done by fast plastic scintillators. Since the neutron generator which was used to test the detectors supplies 14 MeV or 2.5 MeV neutrons only, a neutron energy converter has to be constructed to study the detectors at other neutron energies. In the actual spectrometer an array of scintillation neutron detectors is used. A method of calibrating such an array of detectors with a gamma source was elaborated and is also described here. The result of the calibration is a set of parameters than can be used to determine the high voltage settings and the discriminator levels that are needed to achieve homogeneous sensitivity for all the detectors of the array. The energy scale itself was then calibrated by using gamma sources of various energies. To test the spectrometer as a whole at a neutron generator, a test bed was constructed. A lithium-drifted silicon diode was used to measure the neutron flux and the neutron energy resolution in the test bed. (au)

  9. Neutronic calculations in support of the design of the ITER High Resolution Neutron Spectrometer

    International Nuclear Information System (INIS)

    Moro, F.; Esposito, B.; Marocco, D.; Villari, R.; Petrizzi, L.; Sunden, E. Andersson; Conroy, S.; Ericsson, G.; Johnson, M. Gatu; Dapena, M.

    2011-01-01

    This paper presents the results of neutronic calculations performed to address important issues related to the optimization of the ITER HRNS (High resolution Neutron Spectrometer) design, in particular concerning the definition of the collimator and the choice of the detector system. The calculations have been carried out using the MCNP5 Monte Carlo code in a full 3-D geometry. The HRNS collimation system has been included in the latest MCNP ITER 40 o model (Alite-4). The ITER scenario 2 reference DT plasma fusion neutron source peaked at 14.1 MeV with Gaussian energy distribution has been used. Neutron fluxes and energy spectra (>1 MeV) have been evaluated at different positions along the HRNS collimator and at the detector location. The noise-to-signal ratio (i.e. the ratio of collided to uncollided neutrons), the breakdown of the collided spectrum into its components, the dependency on the first wall aperture and the gamma-ray spectra at the detector position have also been analyzed. The impact of the results on the design of the HRNS diagnostic system is discussed.

  10. Influence of nuclear cross section data at efficiency calculation of the 3He semiconductor neutron spectrometer

    International Nuclear Information System (INIS)

    Avdic, S.; Pesic, M.

    1992-01-01

    The ORTEC 580 Neutron Spectrometer system contains a detector unit in diode coincidence arrangement for measurement of fast neutron spectrum in the energy range from 1 MeV to 14 MeV. Numerical code HE3 for computation of semiconductor 3 He detector efficiency in a collimated neutron beam is based on analytical method in infinite diode approximation and Monte Carlo method for real spectrometer geometry. Calculations are performed in the first collision approximation in the detector active volume including evaluation of correction factors. Accuracy of relative detector efficiency calculation is improved by using neutron cross section from nuclear library ENDF/B-6. (author)

  11. The polarized neutron spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Zhernenkov, K.N.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.; Lauter, H.J.; Lauter-Pasyuk, V.

    2004-01-01

    At the Laboratory of Neutron Physics (JINR, Dubna) the new polarized neutron spectrometer REMUR has been constructed and commissioned. The spectrometer REMUR is dedicated to investigations of multilayers and surfaces by polarized neutron reflection and of the inhomogeneous state of solids by diffuse small-angle polarized neutron scattering. The spectrometer operates in the neutron wavelength interval 1-10 Angstroem. In the reflectometry mode it allows one to complete polarization analysis and neutron position-sensitive detection within the solid angle of scattering 2.2·10 -4 rad. The spectrometer ensures good statistics of the reflectometric data in the scattering wave vector interval 3·10 -3 - 5·10 -1 Angstroem -1 . In the small-angle scattering mode the spectrometer allows the investigation of neutron scattering processes without spin-flip over the detector's neutron registration solid angle interval from 4·10 -3 to 10 -1 rad and the scattering wave vector interval from 0.006-0.15 to 0.03-0.7 Angstroem -1 , respectively

  12. Design and validation of a photon insensitive multidetector neutron spectrometer based on Dysprosium activation foils

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.; Bedogni, R.; Palermo, I.; Esposito, A.; Delgado, A.; Angelone, M.; Pillon, M.

    2011-01-01

    This communication describes a photon insensitive passive neutron spectrometer consisting of Dysprosium (Dy) activation foils located along three perpendicular axes within a single moderating polyethylene sphere. The Monte Carlo code MCNPX 2.6 was used to optimize the spatial arrangement of the detectors and to derive the spectrometer response matrix. Nearly isotropic response in terms of neutron fluence for energies up to 20 MeV was obtained by combining the readings of the detectors located at the same radius value. The spectrometer was calibrated using a previously characterized 14 MeV neutron beam produced in the ENEA Frascati Neutron Generator (FNG). The overall uncertainty of the spectrometer response matrix at 14 MeV, assessed on the basis of this experiment, was ±3%.

  13. Multipolarity analysis for 14C high-energy resonance populated by (18O,16O) two-neutron transfer reaction

    International Nuclear Information System (INIS)

    Carbone, D.; Cavallaro, M.; Bondì, M.; Agodi, C.; Cunsolo, A.; Cappuzzello, F.; Azaiez, F.; Franchoo, S.; Khan, E.; Bonaccorso, A.; Fortunato, L.; Foti, A.; Linares, R.; Lubian, J.; Scarpaci, J. A.; Vitturi, A.

    2015-01-01

    The 12 C( 18 O, 16 O) 14 C reaction at 84 MeV incident energy has been explored up to high excitation energy of the residual nucleus thanks to the use of the MAGNEX spectrometer to detect the ejectiles. In the region above the two-neutron separation energy, a resonance has been observed at 16.9 MeV. A multipolarity analysis of the cross section angular distribution indicates an L = 0 character for such a transition

  14. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    Science.gov (United States)

    Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.

    2011-03-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  15. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F. [CEA, DEN, Cadarache, SPEx/LDCI, F-13108 Saint-Paul-lez-Durance (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lopez, A. Legrand [CEA, DEN, Saclay, SIREN/LECSI, F-91400 Saclay (France)

    2011-03-15

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10{sup 20} n/cm{sup 2}. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  16. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    International Nuclear Information System (INIS)

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F.; Vermeeren, L.; Lopez, A. Legrand

    2011-01-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10 20 n/cm 2 . A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  17. Direct observation of effective temperature of Ta atom in layer compound TaS2 by neutron resonance absorption spectrometer

    International Nuclear Information System (INIS)

    Tokuda, Koji; Kamiyama, Takashi; Kiyanagi, Yoshiaki; Moreh, R.; Ikeda, Susumu

    2001-01-01

    A neutron resonance absorption spectrometer, DOG has been installed at KENS, High Energy Accelerator Research Organization Neutron Source, which enables us to investigate the motions of a particular element by analyzing the line width of resonance absorption spectrum. We measured the temperature dependence of the effective temperature of Ta motion in TaS 2 as well as in Ta metal using DOG. The effective temperatures extracted from the observed absorption spectrum agree well with the calculated values from the phonon density of states of Ta metal over a wide temperature range of 10 to 300 K. We also succeeded in measuring both the angular dependence and the temperature dependence of effective temperatures of Ta in a layer compound TaS 2 . Based on the temperature dependence of the effective temperature, the partial phonon density of states of Ta in TaS 2 was discussed. (author)

  18. Time-of-flight spectrometer for the measurement of gamma correlated neutron spectra

    International Nuclear Information System (INIS)

    Andriashin, A.V.; Devkin, B.V.; Lychagin, A.A.; Minko, J.V.; Mironov, A.N.; Nesterenko, V.S.; Sztaricskai, T.; Petoe, G.; Vasvary, L.

    1986-01-01

    A time-of-flight spectrometer for the measurement of gamma correlated neutron spectra from (n,xnγ) reactions is described. The operation and the main parameters are discussed. The resolution in the neutron channel is 2.2 ns/m at the 150 keV neutron energy threshold. A simultaneous measurement of the time-of-flight and amplitude distributions makes it possible to study gamma correlated neutron spectra as well as the prompt gamma spectra in coincidence with selected energy neutrons. In order to test the spectrometer, measurements of the neutron spectrum in coincidence with the 846 keV gamma line of 56 Fe were carried out at an incident neutron energy of 14.1 MeV. (Auth.)

  19. Time-of-flight spectrometer for the measurement of gamma correlated neutron spectra

    International Nuclear Information System (INIS)

    Andryashin, A.V.; Devlein, B.V.; Lychagin, A.A.; Minko, Y.V.; Mironov, A.N.; Nesterenko, V.S.

    1986-01-01

    A time-of-flight spectrometer for the measurement of gamma correlated neutron spectra form (n,xnγ) reactions is described. The operation and the main parameters are discussed. The resolution in the neutron channel is 2.2 ns/m at the 150 keV neutron energy threshold. A simultaneous measurement of the time-of-flight and amplitude distributions makes it possible to study gamma correlated neutron spectra as well as the prompt gamma spectra in coincidence with selected energy neutrons. In order to test the spectrometer, measurements of the neutron spectrum in coincidence with the 846 keV gamma line of 56 Fe were carried out at an incident neutron energy of 14.1 MeV. (author). 3 figs., 6 refs

  20. The Efficiency of the BC-720 Scintillator in a High-Energy (20--800 MeV) Accelerator Neutron Field

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Leslie H. [Univ. of Missouri, Columbia, MO (United States)

    2005-12-01

    High-energy neutron doses (>20 MeV) are of little importance to most radiation workers. However, space and flight crews, and people working around medical and scientific accelerators receive over half of their radiation dose from high-energy neutrons. Unfortunately, neutrons are difficult to measure, and no suitable dosimetry has yet been developed to measure this radiation. In this paper, basic high-energy neutron interactions, characteristics of high-energy neutron environments, present neutron dosimetry, and quantities used in neutron dosimetry are discussed before looking into the potential of the BC-720 scintillator to improve dosimetry. This research utilized 800 MeV protons impinging upon the WNR Facility spallation neutron source at Los Alamos National Laboratory. Time-of-flight methods and a U-238 Fission Chamber were used to aid evaluation of the efficiency of the BC-720. Results showed that the efficiency is finite over the 20–650 MeV energy region studied, although it decreases by a factor of ten between 40 and 100 MeV. This limits the use of this dosimeter to measure doses at sitespecific locations. It also encourages modifications to use this dosimeter for any unknown neutron field. As such, this dosimeter has the potential for a small, lightweight, real-time dose measurement, which could impact neutron dosimetry in all high-energy neutron environments.

  1. Measurements and Monte Carlo calculations with the extended-range Bonner sphere spectrometer at high-energy mixed fields

    OpenAIRE

    Dimovasili, Evangelia; Valley, Jean-Francois; Bay, Aurelio; Silari, Marco; Aroua, Abbas

    2016-01-01

    The use of spectrometry to provide information for neutron radiation protection has become an increasingly important activity over recent years. The need for spectral data arises because neither area survey instruments nor personal dosimeters give the correct dose equivalent results at all neutron energies. It is important therefore to know the spectra of the fields in which these devices are used. One of the systems most commonly employed in neutron spectrometry and dosimetry is the Bonner S...

  2. Study of particle size distribution and formation mechanism of radioactive aerosols generated in high-energy neutron fields

    CERN Document Server

    Endo, A; Noguchi, H; Tanaka, S; Iida, T; Furuichi, S; Kanda, Y; Oki, Y

    2003-01-01

    The size distributions of sup 3 sup 8 Cl, sup 3 sup 9 Cl, sup 8 sup 2 Br and sup 8 sup 4 Br aerosols generated by irradiations of argon and krypton gases containing di-octyl phthalate (DOP) aerosols with 45 MeV and 65 MeV quasi-monoenergetic neutrons were measured in order to study the formation mechanism of radioactive particles in high energy radiation fields. The effects of the size distribution of the radioactive aerosols on the size of the added DOP aerosols, the energy of the neutrons and the kinds of nuclides were studied. The observed size distributions of the radioactive particles were explained by attachment of the radioactive atoms generated by the neutron-induced reactions to the DOP aerosols. (author)

  3. Polarisation analysis of elastic neutron scattering using a filter spectrometer on a pulsed source

    International Nuclear Information System (INIS)

    Mayers, J.; Williams, W.G.

    1981-05-01

    The experimental and theoretical aspects of the polarisation analysis technique in elastic neutron scattering are described. An outline design is presented for a filter polarisation analysis spectrometer on the Rutherford Laboratory Spallation Neutron Source and estimates made of its expected count rates and resolution. (author)

  4. Experiments at the time-of-flight neutron spectrometer GNEIS in Gatchina

    International Nuclear Information System (INIS)

    Shcherbakov, O.A.

    1990-01-01

    A brief description of the Gatchina neutron time-of-flight spectrometer GNEIS at the 1 GeV proton synchrocyclotron and its main characteristics are given. Some results of the nuclear fission experiments and neutron cross section measurements are presented not only to illustrate the facility performance but to outline the basic directions of the researches as well. 28 refs.; 10 figs

  5. Measurement of fast neutron spectra inside reactors with a Li{sup 6} semiconductor counter spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ajdacic, V S; Lalovic, B I; Petrovic, B P [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1963-12-15

    The possibility of using the Li{sup 6} semiconductor counter spectrometer for measuring fast neutron spectra inside reactors has been investigated in details and some solutions of the difficulties associated with the high interference of thermal neutrons in well-moderated reactors are suggested and checked experimentally (author)

  6. Direct mass measurements of light neutron-rich nuclei using fast recoil spectrometers

    International Nuclear Information System (INIS)

    Vieira, D.J.; Wouters, J.M.

    1987-01-01

    Extensive new mass measurement capabilities have evolved with the development of recoil spectrometers. In the Z = 3 to 9 neutron-rich region alone, 12 neutron-rich nuclei have been determined for the first time by the fast-recoil direct mass measurement method. A recent experiment using the TOFI spectrometer illustrates this technique. A systematic investigation of nuclei that lie along or near the neutron-drip line has provided a valuable first glimpse into the nuclear structure of such nuclei. No evidence for a large single-particle energy gap at N = 14 is observed; however, a change in the two-neutron separation model calculations, and is interpreted in terms of the smaller 1s/sub 1/2/ - 1s/sub 1/2/ interaction compared to that of the 0d/sub 5/2/ - 0d/sub 5/2/ neutron-neutron interaction. 18 refs., 7 figs., 1 tab

  7. Calculation of efficiency of high-energy neutron detection by plastic scintillators

    International Nuclear Information System (INIS)

    Telegin, Yu.N.

    1977-01-01

    A computer was used to calculate neutron (5-30O MeV) registration effeciencies with plastic scintillators 2,5,10, 20,30,40 and 50 cm thick. The results are shown in the form of tables. The contributions to efficiency of various processes have been analysed. The calculation results may be used in planning experiments with neutron counters

  8. A neutron time of flight spectrometer appropriate for D-T plasma diagnostics

    International Nuclear Information System (INIS)

    Elevant, T.

    1984-02-01

    A neutron time-of-flight spectrometer with 2 m flight path for diagnostics of deuterium plasmas in JET is presently under construction. An upgrade of this spectrometer to make it appropriate for 14-MeV neutron spectroscopy is presented here. It is suggested to use backscattering in a deuterium based scintillator. The flight path length is 1-2 m and the efficiency is of the order of 2.10 -5 cm -5 . Results from test of principle are presented with estimates for neutron and gamma backgrounds

  9. The relative biological effectiveness of a high energy neutron beam for micronuclei induction in T-lymphocytes of different individuals

    Energy Technology Data Exchange (ETDEWEB)

    Slabbert, J.P., E-mail: jps@tlabs.ac.z [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West (South Africa); Dept. of Medical Imaging and Clinical Oncology, University of Stellenbosch (South Africa); August, L. [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West (South Africa); Vral, A. [Dept. of Basic Medical Sciences, Ghent University (Belgium); Symons, J. [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West (South Africa)

    2010-12-15

    In assessing the radiation risk of personnel exposed to cosmic radiation fields as it pertains to radiological damage during travel in civilian aircrafts, it is particularly important to know the relative biological effectiveness (RBE) for high energy neutrons. It has been the subject of numerous investigations in recent years using different neutron energies and cytogenetic examinations. Variations in the radiosensitivity of white blood cells for different individuals are likely to influence the estimate of the relative biological effectiveness for high energy neutrons. This as such observations have been noted in the response of different cancer cell lines with varying inherent sensitivities. In this work the radiosensitivities of T-lymphocytes of different individuals to the p(66)/Be neutron beam at iThemba LABS were measured using micronuclei formations and compared to that noted following exposure to {sup 60}Co {gamma}-rays. The principle objective of this investigation was to establish if a relationship between neutron RBE and variation in biological response to {sup 60}Co {gamma}-rays for lymphocytes from different individuals could be determined. Peripheral blood samples were collected from four healthy donors and isolated lymphocytes were exposed to different doses of {sup 60}Co {gamma}-rays (1-5 Gy) and p(66)/Be neutrons (0.5-2.5 Gy). One sample per donor was not exposed to radiation and served as a control. Lymphocytes were stimulated using PHA and cultured to induce micronuclei in cytokinesis-blocked cells. Micronuclei yields were numerated using fluorescent microscopy. Radiosensitivities and RBE values were calculated from the fitted parameters describing the micronuclei frequency dose response data. Dissimilar dose response curves for different donors were observed reflecting varying inherent sensitivities to both neutron and gamma radiation. A clear reduction in the dose limiting RBE{sub M} is noted for donors with lymphocytes more sensitive to

  10. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-06-15

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ∼±10% accuracy, and mean neutron energy to ∼±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15−20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ∼±25−40 km/s.

  11. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF.

    Science.gov (United States)

    Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  12. Neutron guide shielding for the BIFROST spectrometer at ESS

    OpenAIRE

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, Carsten P.; Lefmann, K.; Klinkby, E. B.

    2016-01-01

    We report on the study of fast-neutron background for the BIFROST spectrometerat ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. T...

  13. Bertram Brockhouse, the Triple-axis Spectrometer, and Neutron Spectroscopy

    Science.gov (United States)

    Neutron Spectroscopy Resources with Additional Information Bertram Brockhouse Courtesy of McMaster was awarded the 1994 Nobel Prize in Physics for his development of neutron spectroscopy. Bert Physicist, Dies, The New York Times, October 16, 2003 1994: Development of Neutron Spectroscopy, Brookhaven

  14. A Double Slow Neutron Spectrometer; Spectrometre double pour neutrons lents; Dvojnoj spektrometr medlennykh nejtronov; Espectrometro doble para neutrones lentos

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, I I; Liforov, V G; Nikolaev, M N; Orlov, V V; Parfenov, V A; Semenov, V A; Smirnov, V I; Turchin, V F [Fehi, Moscow, SSSR (Russian Federation)

    1963-01-15

    The neutron spectrometer described in the paper is intended for measurements of the angular and energy distribution of monochromatic slow neutrons, inelasticaily scattered by liquid and solid bodies. Experiments of this type permit detailed information to be obtained concerning the dynamics of the atoms in various aggregate states of a substance. The spectromeeter is based on the time-of-flight method. The pulse source of neutrons is the IBR (1) reactor. A mechanical interrupter, rotating synchronously with the disc of the IBR and having a prescribed phase shift, serves as the monochromator. A special phasing system ensures a phasee stability better than 0.5{sup o}. The neutrons scattered by the sample are recorded by a scintillation detector set at a given angle to the neutron beam. The resolving power of the spectrometer is - 15 {mu}s/m. The paper gives a detailed description of the construction of the spectroscope and its characteristics. (author) [French] Le spectrometre neutronique decrit dans le memoire est destine a mesurer la distribution en energie, la distribution angulaire et la diffusion inelastique des neutrons lents monochromatiques dans des liquides et des solides. Les experiences de ce genre permettent d'obtenir des renseignements detailles sur la dynamique des atomes dans de divers etats de la matiere. Le spectrometre est fonde sur la mesure du temps de vol. Comme source puisee de neutrons on a utilise le reacteur IBR-1. Le systeme monochromateur etait constitue par un interrupteur mecanique en rotation synchronisee avec celle du disque du reacteur IBR, avec un dephasage determine. Un dispositif special de dephasage assure la stabilite de la phase a 0,5{sup o} pres. La diffusion des neutrons par l'echantillon est enregistree a l'aide d'un detecteur a scintillations dispose sous un angle determine par rapport au faisceau de neutrons. Le pouvoir de resolution du spectrometre est d'environ 15 {mu}s/m. Les auteurs decrivent en detail la construction du

  15. High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209

    CERN Document Server

    Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C

    2011-01-01

    The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.

  16. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  17. High-altitude cosmic ray neutrons: probable source for the high-energy protons of the earth's radiation belts

    International Nuclear Information System (INIS)

    Hajnal, F.; Wilson, J.

    1992-01-01

    'Full Text:' Several High-altitude cosmic-ray neutron measurements were performed by the NASA Ames Laboratory in the mid-to late-1970s using airplanes flying at about 13km altitude along constant geomagnetic latitudes of 20, 44 and 51 degrees north. Bonner spheres and manganese, gold and aluminium foils were used in the measurements. In addition, large moderated BF-3 counters served as normalizing instruments. Data analyses performed at that time did not provide complete and unambiguous spectral information and field intensities. Recently, using our new unfolding methods and codes, and Bonner-sphere response function extensions for higher energies, 'new' neutron spectral intensities were obtained, which show progressive hardening of neutron spectra as a function of increasing geomagnetic latitude, with substantial increases in the energy region iron, 1 0 MeV to 10 GeV. For example, we found that the total neutron fluences at 20 and 51 degrees magnetic north are in the ratio of 1 to 5.2 and the 10 MeV to 10 GeV fluence ratio is 1 to 18. The magnitude of these ratios is quite remarkable. From the new results, the derived absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the main source of the high-energy protons trapped in the Earth's inner radiation belt. In addition, the results, depending on the extrapolation scheme used, indicate that the neutron dose equivalent rate may be as high as 0.1 mSv/h near the geomagnetic north pole and thus a significant contributor to the radiation exposures of pilots, flight attendants and the general public. (author)

  18. Cross Sections for High-Energy Gamma Transitions from MeV Neutron Capture in {sup 206}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, I; Lundberg, B; Nilsson, L

    1970-03-15

    Gamma-ray spectra from neutron capture in Pb (radiogenic lead) in the energy range 1.5 to 8.5 MeV were recorded using time-of-flight techniques. The spectrometer was a Nal (Tl) crystal, 20.8 cm long and 22.6 cm in diameter. The spectra are dominated by gamma transitions to levels with large single-particle strength, in agreement with predictions of semi-direct capture theories. The theories predict enhancements of the direct capture cross section by a factor of 10 - 15 in the region of the giant dipole resonance. The observed enhancement is about 50.

  19. A new small-angle neutron scattering spectrometer at China Mianyang research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mei, E-mail: pm740509@163.com; Sun, Liangwei; Chen, Liang; Sun, Guangai; Chen, Bo; Xie, Chaomei; Xia, Qingzhong; Yan, Guanyun; Tian, Qiang; Huang, Chaoqiang; Pang, Beibei; Zhang, Ying; Wang, Yun; Liu, Yaoguang; Kang, Wu; Gong, Jian

    2016-02-21

    A new pinhole small-angle neutron scattering (SANS) spectrometer, installed at the cold neutron source of the 20 MW China Mianyang Research Reactor (CMRR) in the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, has been put into use since 2014. The spectrometer is equipped with a multi-blade mechanical velocity selector, a multi-beam collimation system, and a two-dimensional He-3 position sensitive neutron detector. The q-range of the spectrometer covers from 0.01 nm{sup −1} to 5.0 nm{sup −1}. In this paper, the design and characteristics of the SANS spectrometer are described. The q-resolution calculations, together with calibration measurements of silver behenate and a dispersion of nearly monodisperse poly-methyl-methacrylate nanoparticles indicate that our SANS spectrometer has a good performance and is now in routine service. - Highlights: • A new SANS spectrometer has been put into use since 2014 in China. • One MBR selector possesses a higher resolution compared with traditional selector is used. • The spectrometer has a good performance and is now in routinely service.

  20. A fan analyzer of neutron beam polarization on the spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Ul'yanov, V.A.; Pusenkov, V.M.; Pleshanov, N.K.

    2004-01-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation at the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multilayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 Angstroem. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (the fan-like polarization analyzer) with a solid angle of polarized neutron detection of 2.2·10 -4 rad. This paper describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of the fan tests on a polarized neutron beam

  1. Superconducting Gamma/Neutron Spectrometer Task 1 Completion Report Evaluation of Candidate Neutron-Sensitive Materials

    CERN Document Server

    Bell, Z W

    2002-01-01

    A review of the scientific literature regarding boron- and lithium-containing compounds was completed. Information such as Debye temperature, heat capacity, superconductivity properties, physical and chemical characteristics, commercial availability, and recipes for synthesis was accumulated and evaluated to develop a list of neutron-sensitive materials likely to perform properly in the spectrometer. The best candidate borides appear to be MgB sub 2 (a superconductor with T sub c = 39 K), B sub 6 Si, B sub 4 C, and elemental boron; all are commercially available. Among the lithium compounds are LiH, LiAl, Li sub 1 sub 2 Si sub 7 , and Li sub 7 Sn sub 2. These materials have or are expected to have high Debye temperatures and sufficiently low heat capacities at 100 mK to produce a useful signal. The responses of sup 1 sup 0 B and sup 6 Li to a fission neutron spectrum were also estimated. These demonstrated that the contribution of scattering events is no more than 3% in a boron-based system and 1.5% in a lith...

  2. Systematic determination of the JET absolute neutron yield using the MPR spectrometer

    International Nuclear Information System (INIS)

    Kronborg-Pettersson, N.

    2003-04-01

    This thesis describes the first high-statistics systematic analysis of JET neutron yield and rate measurements obtained by using data acquired with the Magnetic Proton Recoil (MPR) neutron spectrometer. The neutron yield and rate were determined by using the count-rate from the MPR neutron spectrometer together with neutron profile information from other neutron diagnostic systems. This has previously been done manually for a few pulses. To be able to do this in a more systematic way a part of the neutron spectrum evaluation code was extracted and put into a separate custom-made program and modifications were done to extract sets of MPR data automatically. The codes have been used for analysis of a large set of pulses from the deuterium-tritium campaign at JET in 1997. Several results were obtained, the most significant of which was the clear improvement seen when neutron profile corrections were applied. Neutron yield-rates derived from MPR count-rate are shown to be in excellent agreement with other JET neutron diagnostic data

  3. Systematic determination of the JET absolute neutron yield using the MPR spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kronborg-Pettersson, N

    2003-04-01

    This thesis describes the first high-statistics systematic analysis of JET neutron yield and rate measurements obtained by using data acquired with the Magnetic Proton Recoil (MPR) neutron spectrometer. The neutron yield and rate were determined by using the count-rate from the MPR neutron spectrometer together with neutron profile information from other neutron diagnostic systems. This has previously been done manually for a few pulses. To be able to do this in a more systematic way a part of the neutron spectrum evaluation code was extracted and put into a separate custom-made program and modifications were done to extract sets of MPR data automatically. The codes have been used for analysis of a large set of pulses from the deuterium-tritium campaign at JET in 1997. Several results were obtained, the most significant of which was the clear improvement seen when neutron profile corrections were applied. Neutron yield-rates derived from MPR count-rate are shown to be in excellent agreement with other JET neutron diagnostic data.

  4. Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.

    2003-01-01

    The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6 Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the (n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6 Li-glass neutron detector and γ detector configurations

  5. Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer

    Science.gov (United States)

    Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.

    2003-02-01

    The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the ( n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6Li-glass neutron detector and γ detector configurations.

  6. Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A. E-mail: antonino.pietropaolo@roma2.infn.it; Senesi, R

    2003-02-01

    The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH{sub 2} samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing {sup 6}Li-glass neutron detectors and NaI {gamma} detectors revealing the {gamma}-ray cascade from the (n,{gamma}) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both {sup 6}Li-glass neutron detector and {gamma} detector configurations.

  7. The importance of anisotropic scattering in high energy neutron transport problems

    International Nuclear Information System (INIS)

    Prillinger, G.; Mattes, M.

    1984-01-01

    To describe the highly anisotropic scattering of very fast neutrons adequately the transport code ANISN has been improved. Fokker-Planck terms have been introduced into the transport equation which accurately describe the small changes in energy and angle. The new code has been tested for a d(50)-Be neutron source in a deep penetration iron problem. The influence of the forward peaked elastic scattering on the fast neutron spectrum is shown to be significant and can be handled efficiently in the new ANISN version. Since common cross-section libraries are limited by Legendre expansion, or by their upper energy boundary, or exclude elastic scattering above 20 MeV a special library has been created. (Auth.)

  8. The use of vanadium as a scattering standard for pulsed source neutron spectrometers

    International Nuclear Information System (INIS)

    Mayers, J.

    1983-06-01

    The Gaussian approximation for multiphonon cross-sections has been used in a calculation of the variation of vanadium cross-sections with incident neutron energy. The results show that vanadium behaves as an elastic scatterer to within a few percent on pulsed neutron spectrometers with incident neutron energies up to 1 eV. There is a calculated anisotropy in the scattering of 8%. It is found that the scattering properties of vanadium at 77K and 293K differ by a maximum of 1% except for neutron energies < 15 meV. (author)

  9. 7Li neutron-induced elastic scattering cross section measurement using a slowing-down spectrometer

    Directory of Open Access Journals (Sweden)

    Heusch M.

    2010-10-01

    Full Text Available A new integral measurement of the 7Li neutron induced elastic scattering cross section was determined in a wide neutron energy range. The measurement was performed on the LPSC-PEREN experimental facility using a heterogeneous graphite-LiF slowing-down time spectrometer coupled with an intense pulsed neutron generator (GENEPI-2. This method allows the measurement of the integral elastic scattering cross section in a slowing-down neutron spectrum. A Bayesian approach coupled to Monte Carlo calculations was applied to extract naturalC, 19F and 7Li elastic scattering cross sections.

  10. Design study of a time-of-flight neutron spectrometer for JT-60U

    International Nuclear Information System (INIS)

    Elevant, T.; Hoek, M.; Nishitani, Takeo.

    1993-06-01

    A time-of-flight neutron spectrometer is proposed for measurements of neutron energy spectra from deuterium-deuterium reactions in JT-60U tokamak plasmas. The sensitivity of the instrument is 2 · 10 -2 cm 2 , energy resolution is 4.5 % (FWHM) and maximum useful count-rate is 6 kHz. Analysis of neutron energy spectra will provide information on central ion temperatures larger than ∼ 4 keV with an accuracy of ± 10 %, and neutron source fraction from reactions between thermal ions with an accuracy of ± 15 %. The minimum time required for data acquisition is 0.1 s. (author)

  11. High-energy two-neutron removal from Be{sup 10}

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, N.I.; Freer, M.; Ahmed, S.; Clarke, N.M.; Curtis, N.; Soic, N.; Ziman, V.A. [Birmingham Univ., School of Physics and Astronomy, (United Kingdom); Millener, D.J. [Brookhaven National Lab., Upton, NY (United States); Orr, N.A.; Carstoiu, F.; Angelique, J.C.; Catford, W.N.; Lecouey, J.L.; Marques, F.M.; Normand, G.; Timis, C. [Caen Univ., Lab. de Physique Corpusculaire, ISMRA, IN2P3-CNRS, 14 (France); Carsoiu, F. [Horia Hulubei National institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest-Magurele (Romania); Bouchat, V.; Hanappe, F.; Kerckx, Y.; Materna, T. [Universite Libre de Bruxelles (Belgium); Catford, W.N.; Pain, S.; Timis, C. [Surrey Univ., School of Electronics and Physical Sciences, Guildford (United Kingdom); Horoi, M. [Central Michigan Univ., Physics Dept., Mount Pleasant, MI (United States); Unshakova, A. [Joint Institute for Nuclear Research Dubna (Russian Federation)

    2005-09-15

    A kinetically complete measurement of the {sup 12}C({sup 10}Be, {alpha}+{alpha}+n) and ({sup 10}Be, {alpha}+{alpha}) reactions has been performed at a beam energy of 30 MeV/nucleon. The charged beam velocity particles were detected in an array of Si-CsI detectors placed at zero degrees, and the neutrons in an 81-element neutron array. The coincident detection of the final-state particles, produced in the breakup of {sup 10}Be, allowed the reconstruction of the excitation energy in the {sup 8}Be and {sup 9}Be systems. States in {sup 8}Be were identified, in particular the ground and first-excited states; and in {sup 9}Be, states at 1.68, 2.43, and (2.78, 3.05) MeV were observed. The population of these levels, in particular the 2.43 MeV 5/2- level, suggests that collective excitations play an important role in the neutron removal process. Distorted wave Born approximation and Glauber-type calculations have been used to model the direct neutron removal from the {sup 10}Be ground state and the two-step removal via inelastic excitations of the {sup 10}Be(2{sup +}) and {sup 9}Be(5/2{sup -}) excited states. (authors)

  12. Backward emitted high-energy neutrons in hard reactions of p and π+ on carbon

    Science.gov (United States)

    Malki, A.; Alster, J.; Asryan, G.; Averichev, Y.; Barton, D.; Baturin, V.; Bukhtoyarova, N.; Carroll, A.; Heppelmann, S.; Kawabata, T.; Leksanov, A.; Makdisi, Y.; Minina, E.; Navon, I.; Nicholson, H.; Ogawa, A.; Panebratsev, Yu.; Piasetzky, E.; Schetkovsky, A.; Shimanskiy, S.; Tang, A.; Watson, J. W.; Yoshida, H.; Zhalov, D.

    2002-01-01

    Beams of protons and pions of 5.9 GeV/c were incident on a C target. Neutrons emitted into the backward hemisphere, in the laboratory system, were detected in (triple) coincidence with two emerging particles of tranverse momenta pt>0.6 GeV/c. We determined that for (46.5+/-3.7)% of the proton-induced events and for (40.8+/-4.5)% of the pion-induced events with the two high-pt particles, there is also at least one backward emitted neutron with momentum greater than 0.32 GeV/c. This observation is in sharp contrast to a well- established universal pattern from a large variety of earlier inclusive measurements with hadrons, electrons, photons, neutrinos, and antineutrinos where the probability for backward nucleon emission was in the 5 to 10 % range. We present also a measurement of the momentum spectra for the backward going neutrons. The spectra have the same universal shape observed in the inclusive reactions. We speculate that the enhanced backward neutron emission in this semi-inclusive region could be an indication for a strong dependence of the cross section on the squared total center-of-mass energy (s) and for the importance of short-range nucleon-nucleon correlations.

  13. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    Science.gov (United States)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.

  14. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    SHAPIRO, S.M.; ZALIZNYAK, I.A.

    2002-01-01

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  15. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  16. 90 deg.Neutron emission from high energy protons and lead ions on a thin lead target

    CERN Document Server

    Agosteo, S; Foglio-Para, A; Mitaroff, W A; Silari, Marco; Ulrici, L

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: sup 2 sup 0 sup 8 Pb sup 8 sup 2 sup + lead ions at 40 GeV/c per nucleon and 158 GeV/c per nucleon, and 40 GeV/c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90 deg.with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that--for such high energy heavy ion beams--a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0...

  17. A search for flaring Very-High-Energy cosmic-ray sources with the L3+C muon spectrometer

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Van den Akker, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Bähr, J; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, M; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiarusi, T; Chiefari, G; Cifarelli, L; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; De Asmundis, R; Dglon, P; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Ding, L K; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Durán, I; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Faber, G; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, K; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, H; Grabosch, G; Grimm, O; Groenstege, H; Grünewald, M W; Guida, M; Guo, Y N; Gupta, S K; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Haller, C; Hatzifotiadou, D; Hayashi, Y; He, Z X; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Huo, A X; Ito, N; Jin, B N; Jindal, P; Jing, C L; Jones, L W; de Jong, P; Josa-Mutuberría, M I; Kantserov, V A; Kaur, i; Kawakami, S; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, W; Klimentov, A; König, A C; Kok, E; Korn, A; Kopal, M; Koutsenko, V F; Kräber, M; Kuang, H H; Krämer, R W; Krüger, A; Kuijpers, J; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Lei, Y; Leich, H; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Li, L; Li, Z C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma, W G; Ma, X H; Ma, Y Q; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Meng, X W; Merola, L; Meschini, M; Metzger, W J; Mihul, A; van Mil, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Monteleoni, B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Nahnhauer, R; Naumov, V A; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Parriaud, J F; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, F; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Qing, C R; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Ravindran, K C; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Rewiersma, P A M; Riemann, S; Riles, K; Roe, B P; Rojkov, A; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Saidi, R; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schmitt, V; Schöneich, B; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shen, C Q; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sulanke, H; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Trowitzsch, G; Tully, C; Tung, K L; Ulbricht, J; Unger, M; Valente, E; Verkooijen, H; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, G; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Weber, M; Van Wijk, R F; Wijnen, T A M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Y P; Xu, J S; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J

    2006-01-01

    The L3+C muon detector at the Cern electron-position collider, LEP, is used for the detection of very-high-energy cosmic \\gamma-ray sources through the observation of muons of energies above 20, 30, 50 and 100 GeV. Daily or monthly excesses in the rate of single-muon events pointing to some particular direction in the sky are searched for. The periods from mid July to November 1999, and April to November 2000 are considered. Special attention is also given to a selection of known \\gamma-ray sources. No statistically significant excess is observed for any direction or any particular source.

  18. Spectral correction factors for conventional neutron dose meters used in high-energy neutron environments improved and extended results based on a complete survey of all neutron spectra in IAEA-TRS-403

    International Nuclear Information System (INIS)

    Oparaji, U.; Tsai, Y. H.; Liu, Y. C.; Lee, K. W.; Patelli, E.; Sheu, R. J.

    2017-01-01

    This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (E n > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252 Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252 Cf, 241 Am-Be and 239 Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6''-9'') are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. (authors)

  19. Q resolution calculation of small angle neutron scattering spectrometer and analysis of form factor

    International Nuclear Information System (INIS)

    Chen Liang; Peng Mei; Wang Yan; Sun Liangwei; Chen Bo

    2011-01-01

    The calculational methods of Small Angle Neutron Scattering (SANS) spectrometer Q resolution function and its correlative Q standard difference were introduced. The effects of Q standard difference were analysed with the geometry lay out of spectrometer and the spread of neutron wavelength. The one dimension Q resolution Gaussian function were analysed. The form factor curve of ideal solid sphere and two different instrument arrangement parameter was convoluted respectively and the different smearing curve of form factor was obtained. The combination of using the Q resolution function to more accurately analysis SANS data. (authors)

  20. Measurements of double differential charged particle emission cross sections and development of a wide range charged particles spectrometer for ten`s MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nauchi, Yasushi; Baba, Mamoru; Kiyosumi, Takehide [Tohoku Univ., Sendai (Japan). Faculty of Engineering] [and others

    1997-03-01

    We measured (n,xp), (n,xd) cross sections of C and Al for En=64.3 MeV neutrons at the {sup 7}Li(p,n) neutron sources facility at TIARA (Takasaki Establishment, JAERI) by using a conventional SSD-NaI telescope placed in the air. They show characteristic energy and angular dependence in high energy regions. In order to extend the measurements to low energy protons and {alpha} particles, a new spectrometer consisting of low pressure gas counters and BaF{sub 2} scintillators is now under development. A low threshold for low energy {alpha} particles will be achieved by using the gas counters. The particle identification over a wide energy range will be achieved by combining the {Delta}E-E method for low energy particles with the pulse shape discrimination (PSD) method of BaF{sub 2} for high energy particles. (author)

  1. Development and Characterization of a High Sensitivity Segmented Fast Neutron Spectrometer (FaNS-2).

    Science.gov (United States)

    Langford, T J; Beise, E J; Breuer, H; Heimbach, C R; Ji, G; Nico, J S

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3 He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3 He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252 Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.

  2. Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF

    Science.gov (United States)

    Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.

    2017-10-01

    A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  3. Neutron dosimetry at a high-energy electron-positron collider

    Science.gov (United States)

    Bedogni, Roberto

    Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.

  4. Damage parameters for non-metals in a high energy neutron environment

    International Nuclear Information System (INIS)

    Dell, G.F.; Berry, H.C.; Lazareth, O.W.; Goland, A.N.

    1980-01-01

    Simulation of radiation damage induced in monatomic and binary non-metals by FMIT and fusion neutrons is described. Damage produced by elastic scattering of recoil atoms and by ionization-assisted processes has been evaluated using the damage program DON. Displacement damage from gamma rays has been evaluated by using the technique of Oen and Holmes. A comparison of damage for an anticipated FMIT radiation environment generated by a coupled n-γ transport calculations and a fusion spectrum is made. Gamma-induced displacement damage is sufficiently small that it is dominated by neutron-induced recoil processes. Ionization-assisted displacements may be important depending upon the ionization cross section of the particular non-metal under consideration

  5. Response of pancreatic cancer to local irradiation with high-energy neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Lionel; Woodruff, Katherine H.; Hendrickson, Frank R.; Kurup, Parvathy D.; Mansell, Joanne; Awschalom, Miguel; Rosenberg, Ivan; Ten Haken, Randall K.

    1985-09-15

    Seventy-seven patients with locally advanced, nonresectable, biopsy-proven adenocarcinoma of the pancreas were treated by palliative bypass surgery followed by intensive neutron beam irradiation of the primary tumor site. Three dose levels, under 20, 21 to 23, and 24 to 25 Gy, were studied with the use of a treatment plan that included all known disease within a limited target volume, generally under 21. Symptomatic palliation was achieved in the majority of patients. The median survival time was 6 months. One patient remained alive and well without evidence of tumor 5 years after irradiation. Two were free of tumor at autopsy (one had died of intercurrent disease and one of radiation-related complications). A common cause of death was metastatic dissemination. Complication rates were dosedependent; life-threatening complications did not exceed 12% with doses of less than 23 Gy. Autopsies from 19 patients were reviewed. In all, the pancreatic tumor site showed extensive reactive fibrosis. Local control was achieved in two patients, but most had both residual tumor in the pancreas and metastases. Six patients had centrolobular veno-occlusive liver disease. These patients had all received the higher (22–24 Gy) neutron doses. Six patients had hemorrhagic radiation gastroenteritis. Mild skin atrophy and bone marrow hypoplasia were seen in the irradiated volumes. The kidneys and spinal cord showed no radiation effects. The authors conclude that neutron irradiation can provide a good local response with marked regression and fibrosis of the tumor. This response, coupled with many deaths due to metastases, suggests that combined treatment with neutrons and chemotherapy would be worth exploring.

  6. The upgraded cold neutron triple-axis spectrometer FLEXX – enhanced capabilities by new instrumental options

    Directory of Open Access Journals (Sweden)

    Habicht Klaus

    2015-01-01

    Full Text Available The upgrade of the cold neutron triple axis spectrometer FLEXX, a work-horse instrument for inelastic neutron scattering matching the sample environment capabilities at Helmholtz-Zentrum Berlin, has been successfully accomplished. Experiments confirmed an order of magnitude gain in flux now allowing for intensity demanding options to be fully exploited at FLEXX. In this article, we describe the layout and design of two newly available FLEXX instrument options in detail. The new Heusler analyzer gives an increase of the detected polarized neutron flux due to its superior focusing properties, significantly improving the feasibility of future polarized and neutron resonance spin echo experiments. The MultiFLEXX option provides simultaneous access to large regions in wavevector and energy space for inelastic excitations thus adding mapping capabilities to the spectrometer.

  7. The new JET 2.5-MeV neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Elevant, T.; Belle, P.v.; Grosshoeg, G.; Hoek, M.; Jarvis, O.N.; Olsson, M.; Sadler, G.

    1992-01-01

    A major upgrade of the JET 2.5-MeV neutron time-of-flight spectrometer has been completed. The improvement has permitted ion temperature measurements for Maxwellian deuterium plasmas with T i >4 keV to be obtained in 0.5-s intervals. By combining observations of neutron and x-ray energy spectra with studies of γ-ray emission from reactions between fast deuterons and impurities, the effects of ICRF heating on the deuterium energy distribution have been studied. The time evolution of neutron energy spectra from deuterium-beam heated deuterium plasmas is illustrated and a method for evaluating the ion temperature from such sequences is indicated. Furthermore, the spectrometer has shown stable performance during high neutron fluxes

  8. The triple-axis neutron spectrometer KANDI III and measurement of phonons in copper

    International Nuclear Information System (INIS)

    Melamud, M.; Pinto, H.; Shaked, H.

    1976-12-01

    The acoustic phonon dispersion relations of copper were measured using the recently installed triple-axis neutron spectrometer KANDI III. A description of KANDI III and its peripherals is given in this work. The theory of dispersion relations and their measurement using neutron inelastic diffraction are briefly discussed. Raw data and results for copper are presented and compared with the data and results found in the literature

  9. Spectrometry using the PTB neutron multisphere spectrometer (NEMUS) at flight altitudes and at ground level

    CERN Document Server

    Wiegel, B; Matzke, M; Schrewe, U J; Wittstock, J

    2002-01-01

    Bonner sphere measurements are presented for flights at altitudes of up to 12 km and geomagnetic latitudes between 26 deg.N and 86 deg.N and compared with results obtained by several survey meters. As an example of the natural neutron background near sea level, results from a recent longterm measurement campaign performed at the PTB site using an extended spectrometer are presented. The dependence of neutron fluence and ambient dose equivalent on the atmospheric pressure is demonstrated.

  10. Thermal neutron spectra measurements in IEAR-1 Reactor, by using a crystal spectrometer

    International Nuclear Information System (INIS)

    Fulfaro, R.; Figueiredo Neto, A.M.; Stasiulevicius, E.; Vinhas, L.A.

    1975-01-01

    The thermal neutron spectrum of the IEN Argonauta reactor has been measured in the wavelength from 0.7 to 1.9A, using a neutron crystal spectrometer. An aluminium single crystal, in transmission, was used as monochromator. The aluminium crystal reflectivity employed in the analysis of the data was calculated for the first five permitted orders. An effective absorption coefficient of the crystal was used to perform the calculations instead of the macroscopic cross section of the element

  11. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  12. A Time of flight spectrometer for measurements of double differential neutron scattering cross sections

    International Nuclear Information System (INIS)

    Padron, I.; Dominguez, O.; Sarria, P. Sandin, C.

    1996-01-01

    The time -of-Flight neutron spectrometry technique by associated particle method was improved using a D-T neutron generator at Laboratory of Nuclear Analysis. This technique was implemented for double differential cross section measurements and supported by the IAEA Project CUB/01/005. An stilbene scintillation detector (dia=100 mm, length=50 mm) was used as principal neutron detector detector and was situated outside a hole in the concrete wall. This way the fligth path was extended and the scattered neutron cone accurate collimated throught the 2 m concrete wall. For the associated particle α detection a thin plastic NE-102 scint illator was used, as well as, two scintilation detectors and a long counter for the neutron flux monitoring. In this TOF neutron spectrometer (3.40 m flight path) a 1.7 nseg. temporal resolution was obtained

  13. Evaluation of Neutron Component in Patients under High Energy Radiotherapy By Means of an On Line and In Vivo procedure

    International Nuclear Information System (INIS)

    Exposito, M. R.; Palma, B. A.; Terron, J. A.; Gomez, F.; Domingo, C.; Barquero, R.; Sanchez-Doblado, F.

    2010-01-01

    The use of improved radiotherapy methods has raised the concern about second cancer induction. Epidemiological studies have shown a major incidence of secondary cancer in radiotherapy patients compared to patients subjected to another type of treatment. In this regard, it is important to determine the peripheral dose received by the patient during the treatment. While photon doses have been deeply contemplated, neutron contamination in high energy photon beams is still a subject of research and discussion. In the present work, we introduce a new procedure based on a digital device that allows real time neutron contamination evaluation. Several irradiations of an anthropomorphic phantom have been carried out in a variety of facilities and treatments. The purpose was to correlate the measurements from the digital detector with the neutron doses obtained in the phantom by Monte Carlo simulations and experimental measurements. A model has been designed to calculate the organ equivalent dose and risk estimates during any therapeutic session. The procedure has been used to monitor more than 1000 patients showing its applicability in clinical routine. It can be used both for inductive and retrospective studies with a reasonable uncertainty. Thus, this could provide the necessary information to complement the dosimetry of patient and estimate the treatment risk.

  14. Fusion Power Measurement Using a Combined Neutron Spectrometer-Camera System at ITER

    International Nuclear Information System (INIS)

    Sjoestrand, Henrik; Sunden, E. Andersson; Conroy, S.; Ericsson, G.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Weiszflog, M.; Kaellne, J.

    2008-01-01

    A central task for fusion plasma diagnostics is to measure the 2.5 and 14 MeV neutron emission rate in order to determine the fusion power. A new method for determining the neutron yield has been developed at JET. It makes use of the magnetic proton recoil neutron spectrometer and a neutron camera and provides the neutron yield with small systematic errors. At ITER a similar system could operate if a high-resolution, high-performance neutron spectrometer similar to the MPR was installed. In this paper, we present how such system could be implemented and how well it would perform under different assumption of plasma scenarios and diagnostic capabilities. It is found that the systematic uncertainty for using such a system as an absolute calibration reference is as low as 3% and hence it would be an excellent candidate for the calibration of neutron monitors such as fission chambers. It is also shown that the system could provide a 1 ms time resolved estimation of the neutron rate with a total uncertainty of 5%

  15. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias

    2016-01-01

    A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 theta-segments) each containing five vertically scattering analyzers (energy channels...... to the energy resolution of a standard cTAS. The dispersion relation of the antiferromagnetic excitations in MnF2 has been mapped out by performing constant energy transfer maps. These results show that the tested setup is virtually spurion free. In addition, focusing effects due to (mis...

  16. High-energy quasi-monoenergetic neutron fields: existing facilities and future needs

    CERN Document Server

    Pomp, S; Mayer, S; Reitz, G; Rottger, S; Silari, M; Smit, F D; Vincke, H; Yasuda, H

    2014-01-01

    The argument that well-characterised quasi-monoenergetic neutron (QMN) sources reaching into the energy domain >20 MeV are needed is presented. A brief overview of the existing facilities is given, and a list of key factors that an ideal QMN source for dosimetry and spectrometry should offer is presented. The authors conclude that all of the six QMN facilities currently in existence worldwide operate in sub-optimal conditions for dosimetry. The only currently available QMN facility in Europe capable of operating at energies >40 MeV, TSL in Uppsala, Sweden, is threatened with shutdown in the immediate future. One facility, NFS at GANIL, France, is currently under construction. NFS could deliver QMN beams up to about 30 MeV. It is, however, so far not clear if and when NFS will be able to offer QMN beams or operate with only so-called white neutron beams. It is likely that by 2016, QMN beams with energies >40 MeV will be available only in South Africa and Japan, with none in Europe.

  17. Neutron cross sections for defect production by high-energy displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Mann, F.M.

    1983-08-01

    Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after shortterm annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after shortterm annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects

  18. Neutron cross sections for defect production by high energy displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Mann, F.M.

    1984-01-01

    Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after short-term annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after short-term annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects. (orig.)

  19. Combined proton-recoil and neutron time-of-flight spectrometer for 14 MeV neutrons

    International Nuclear Information System (INIS)

    Grosshoeg, G.; Aronsson, D.; Arvidsson, E.; Beimer, K.-H.; Pekkari, L.-O.; Rydz, R.; Sjoestrand, N.G.

    1983-05-01

    The main effort put into this work is the foundation of a reliable physical basis for a 12-16 MeV neutron-spectrometer at JET. The essential problem is the amount of scatterer that can be incorporated without losing resolution. We have found two possible methods, the use of a pure hydrogen scatterer and the use of a polyethylene foil scatterer. The pure hydrogen solution gives a very complicated spectrometer with large detectors. The polyethylene solution is limited by the thickness and the width of the foil. We judge the solution with the polyethylene foil to be the most promising one for a reliable spectrometer. However, a large foil area is needed. This gives a spectrometer design with an annular foil, an annular neutron detection system, and a central proton-detector. An efficiency of 10 - 6 counts/s per n/cm 2 ,s at the foil can be obtained with a resolution in the order of 100 keV for 14 MeV neutrons. Following the General Requirements given in the contract of this work, we concluded that an instrument with the desired properties can be made. The instruments is able to give useful information about the plasma from plasma temperatures of about 5 keV. (Authors)

  20. Basic Design Report of DC-TOF Inelastic Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    So, Ji Yong; Park, Je Geun; Moon, Myung Kook; Cho, Sang Jin; Choi, Yung Hyun; Lee, Chang Hee

    2006-04-15

    We made Basic designs of neutron guide, choppers, and detectors in order to optimize the design parameters of DC-TOF to be built in the HANARO Cold Neutron Guide Hall. In addition, we calculated the expected performance of DC-TOF using Monte Carlo simulations and evaluated the properties of neutron beam. Based on the results we obtained, we have compared the expected performance of the DC-TOF with those of existing instruments overseas. In conclusion, we believe that we will be able to construct the DC-TOF at HANARO as one of the best instruments of its kinds and it will become an invaluable instrument to researchers in the related field.

  1. Computer-controlled neutron time-of-flight spectrometer. Part II

    International Nuclear Information System (INIS)

    Merriman, S.H.

    1979-12-01

    A time-of-flight spectrometer for neutron inelastic scattering research has been interfaced to a PDP-15/30 computer. The computer is used for experimental data acquisition and analysis and for apparatus control. This report was prepared to summarize the functions of the computer and to act as a users' guide to the software system

  2. Simulations of chopper jitter at the LET neutron spectrometer at the ISIS TS2

    DEFF Research Database (Denmark)

    Klenø, Kaspar Hewitt; Lefmann, Kim; Willendrup, Peter Kjær

    2014-01-01

    The effect of uncertainty in chopper phasing (jitter) has been investigated for the high-resolution time-of-flight spectrometer LET at the ISIS second target station. The investigation is carried out using virtual experiments, with the neutron simulation package McStas, where the chopper jitter i...

  3. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Lefmann, Kim; Abrahamsen, Asger Bech

    2006-01-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator...

  4. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation); Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Geltenbort, P.; Ivanov, S. N.; Zimmer, O. [Institut Max von Laue–Paul Langevin (France)

    2015-12-15

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM vertical bar d{sub n} vertical bar < 5.5 × 10{sup –26}e cm at the 90% confidence level.

  5. Simulation report for neutron guide and spectrometer layout at HANARO

    International Nuclear Information System (INIS)

    Cho, S. J.; Cho, Y. G.; Ryu, J. S.; Seong, B. S.; Lee, C. H.; Shin, J. W.

    2006-01-01

    A project called 'infrastructure construction for cold neutron research and utilization technique development' was launched in KAERI in July 2003, in order to raise a domestic basic science with an international level and elevate a international competitiveness for the bio-, nano- and informatics technology area. At the end of this project, 3 new instruments and 3 instruments to be moved will be installed in the guide hall. In order to accomplish this project until 2008, guide simulation should be performed for an effective use of expensive neutron to meet the requirements such as wavelengths and type of instruments, experimental space, interferences with other instruments

  6. DNS: Diffuse scattering neutron time-of-flight spectrometer

    Directory of Open Access Journals (Sweden)

    Yixi Su

    2015-08-01

    Full Text Available DNS is a versatile diffuse scattering instrument with polarisation analysis operated by the Jülich Centre for Neutron Science (JCNS, Forschungszentrum Jülich GmbH, outstation at the Heinz Maier-Leibnitz Zentrum (MLZ. Compact design, a large double-focusing PG monochromator and a highly efficient supermirror-based polarizer provide a polarized neutron flux of about 107 n cm-2 s-1. DNS is used for the studies of highly frustrated spin systems, strongly correlated electrons, emergent functional materials and soft condensed matter.

  7. Neutron time-of-flight counters and spectrometers for diagnostics of burning fusion plasmas

    International Nuclear Information System (INIS)

    Elevant, T.; Olsson, M.

    1991-02-01

    Experiment with burning fusion plasmas in tokamaks will place particular requirements on neutron measurements from radiation resistance-, physics-, burn control- and reliability considerations. The possibility to meet these needs by measurements of neutron fluxes and energy spectra by means of time-of-flight techniques are described. Reference counters and spectrometers are proposed and characterized with respect to efficiency, count-rate capabilities, energy resolution and tolerable neutron and γ-radiation background levels. The instruments can be used in a neutron camera and are capable to operate in collimated neutron fluxes up to levels corresponding to full nuclear output power in the next generation of experiments. Energy resolutions of the spectrometers enables determination of ion temperatures from 3 (keV) through analysis of the Doppler broadening. Primarily, the instruments are aimed for studies of 14 (MeV) neutrons produced in (d,t)-plasmas but can, after minor modifications, be used for analysis of 2.45 (MeV) neutrons produced in (d,d)-plasma. (au) (33 refs.)

  8. Development and benchmark of high energy continuous-energy neutron cross Section library HENDL-ADS/MC

    International Nuclear Information System (INIS)

    Chen Chong; Wang Minghuang; Zou Jun; Xu Dezheng; Zeng Qin

    2012-01-01

    The ADS (accelerator driven sub-critical system) has great energy spans, complex energy spectrum structures and strong physical effects. Hence, the existing nuclear data libraries can't fully meet the needs of nuclear analysis in ADS. In order to do nuclear analysis for ADS system, a point-wise data library HENDL-ADS/MC (hybrid evaluated nuclear data library) was produced by FDS team. Meanwhile, to test the availability and reliability of the HENDL-ADS/MC data library, a series of shielding and critical safety benchmarks were performed. To validate and qualify the reliability of the high-energy cross section for HENDL-ADS/MC library further, a series of high neutronics integral experiments have been performed. The testing results confirm the accuracy and reliability of HENDL-ADS/MC. (authors)

  9. Fast Neutron Detection Using Pixelated CdZnTe Spectrometers

    Science.gov (United States)

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; Brown, Steven; Kiff, Scott; He, Zhong

    2017-07-01

    Fast neutrons are an important signature of special nuclear materials (SNMs). They have a low natural background rate and readily penetrate high atomic number materials that easily shield gamma-ray signatures. Therefore, they provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the small signals from these recoils. In this paper, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9-keV X-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.

  10. MAXED, a computer code for the deconvolution of multisphere neutron spectrometer data using the maximum entropy method

    International Nuclear Information System (INIS)

    Reginatto, M.; Goldhagen, P.

    1998-06-01

    The problem of analyzing data from a multisphere neutron spectrometer to infer the energy spectrum of the incident neutrons is discussed. The main features of the code MAXED, a computer program developed to apply the maximum entropy principle to the deconvolution (unfolding) of multisphere neutron spectrometer data, are described, and the use of the code is illustrated with an example. A user's guide for the code MAXED is included in an appendix. The code is available from the authors upon request

  11. The spectrometer PERKEO III and the decay of free neutrons; Das Spektrometer PERKEO III und der Zerfall des freien Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Maerkisch, B.M.

    2006-10-18

    The Standard Model of particle physics describes neutron decay with three parameters. In contrast to that, a multitude of observables are accessible experimentally. With precision measurements sensitive tests of the Standard Model are thus possible. The neutron decay spectrometer PERKEO III was designed and built as part of this work. It will replace its predecessor PERKEO II, which has reached its systematical and statistical limits. With the new instrument measurements with continuous and pulsed neutron beams become feasible. This either provides an increase in statistics of up to two orders of magnitude, or eliminates the two major instrument specific sources of systematical corrections. In our first measurement in winter 2006/2007, the available event rate will be used to determine weak magnetism from the electron asymmetry A. Previously, this value was not statistically accessible in neutron decay. Systematics are analyzed with the help of our measurement with PERKEO II. For this measurement PERKEO III will be installed at the neutron guide H113 at the Institute Laue-Langevin, Grenoble. The neutron beam from this guide is characterized and a model is given, which allows the rapid calculation of beam profiles and absolute event rates from such a beam. In preparation of a future neutron decay instrument the reflective properties of two non-magnetic neutron mirrors were measured. (orig.)

  12. Analysis of trace element compositions in adhesive cloth tapes using high-energy x-ray fluorescence spectrometer with three-dimensional polarization optics for forensic discrimination

    International Nuclear Information System (INIS)

    Goto, Akiko; Hokura, Akiko; Nakai, Izumi

    2008-01-01

    The forensic discrimination of adhesive cloth tapes often used in crimes was developed using a high-energy energy-dispersive X-ray fluorescence spectrometer with 3-dimensional polarization optics. The best measurement condition for discrimination of the tape was as follows: secondary targets, Rh and Al 2 O 3 ; measurement time, 300 s for Rh and 600 s for Al 2 O 3 ; 14 elements (Ca, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Zr, Nb, Mo, Sb, Ba and Pb) were used for discrimination. It is found that the combined information of yarn density and the XRF peak intensity of the 14 elements successfully discriminated 29 out of 31 samples, of which 2 probably had the same origin. This technique is useful for forensic analysis, because it is nondestructive, rapid and easy. Therefore, it can be applied to actual forensic identification. (author)

  13. Observations of celestial X-ray sources above 20 keV with the high-energy scintillation spectrometer on board OSO-8

    International Nuclear Information System (INIS)

    Crannell, C.J.; Dennis, B.R.; Dolan, J.F.; Frost, K.J.; Orwig, L.E.; Maurer, G.S.

    1977-01-01

    High-energy x-ray spectra of the Crab Nebula, Cyg XR-1, and Cen A have been determined from observations with the scintillation spectrometer on board the OSO-8 satellite, launched in June, 1975. Each of these sources was observed over two periods of 8 days or more, enabling a search for day-to-day and year-to-year variations in the spectral and temporal characteristics of the x-ray emission. No variation in the light curve of the Crab pulsar has been found from observations which span a 15-day period in March 1976, with demonstrable phase stability. Transitions associated with the binary phase of Cyg XR-1 and a large change in the emission from Cen A are reported

  14. Design Principle of A Small Angle Neutron Scattering Spectrometer. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ashry, A [Dept. of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt)

    1996-03-01

    The design principle of a small angle neutron scattering (SANS) spectrometer is based on producing monochromatic neutron bursts using two phased rotors. The rotors have a number of slots to achieve the highly available intensity of monoenergetic neutrons at the required resolution. The design principle was applied to improve the performance of the pulsed monochromatic double rotor system at ET-RR-1 to operate as SANS spectrometer. It is shown that for rotors having 19 slots each with radius of curvature 96.8 cm, the intensity gain factor is 13. The proposed SANS spectrometer could cover the neutron wavelength range from 2 A{sup {omicron}} up to 6 A{sup {omicron}} through small angles of scattering from 5 x 10{sup -3} rad. to 0.1 rad. i.e, the scattering wavevector transfer between 0.6 A{sup {omicron}-1} and 0.01 A{sup {omicron}-1}. The maximum neutron flux density on the specimen is 5 x 10{sup 5} n cm{sup -2} s{sup -1}. 8 figs.

  15. A neutron spectrometer based on temperature variations in superheated drop compositions

    CERN Document Server

    Apfel, R E

    2002-01-01

    The response of superheated drop detectors (SDDs) to neutron radiation varies in a self-consistent manner with variations in temperature and pressure, making such compositions suitable for neutron spectrometry. The advantage of this approach is that the response functions of candidate materials versus energy as the temperature or pressure is varied are nested and have distinct thresholds, with no thermal neutron response. These characteristics permit unfolding without the uncertainties associated with other spectrometry techniques, where multiple solutions are possible, thus requiring an initial guess of the spectrum. A spectrometer was developed based on the well-established technology for acoustic sensing of bubble events interfaced with a proportional-integral-derivative temperature controller. The active monitor for neutrons, called REMbrandt sup T sup M , was used as the platform for controlling temperature on a SDD probe and for data acquisition, thereby automating the process of measuring the neutron e...

  16. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    Directory of Open Access Journals (Sweden)

    Ersez Tunay

    2017-01-01

    Full Text Available The shielding for the neutron high-resolution backscattering spectrometer (EMU located at the OPAL reactor (ANSTO was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  17. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    Science.gov (United States)

    Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de

    2017-09-01

    The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  18. A multi-detector neutron spectrometer with nearly isotropic response for environmental and workplace monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ros, J.M., E-mail: jm.gomezros@ciemat.e [CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Bedogni, R. [INFN-LNF Frascati National Laboratory-U.F. Fisica Sanitaria, via E. Fermi n. 40, 00044 Frascati (Italy); Moraleda, M.; Delgado, A.; Romero, A. [CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Esposito, A. [INFN-LNF Frascati National Laboratory-U.F. Fisica Sanitaria, via E. Fermi n. 40, 00044 Frascati (Italy)

    2010-01-21

    This communication describes an improved design for a neutron spectrometer consisting of {sup 6}Li thermoluminescent dosemeters located at selected positions within a single moderating polyethylene sphere. The spatial arrangement of the dosemeters has been designed using the MCNPX Monte Carlo code to calculate the response matrix for 56 log-equidistant energies from 10{sup -9} to 100 MeV, looking for a configuration that permits to obtain a nearly isotropic response for neutrons in the energy range from thermal to 20 MeV. The feasibility of the proposed spectrometer and the isotropy of its response have been evaluated by simulating exposures to different reference and workplace neutron fields. The FRUIT code has been used for unfolding purposes. The results of the simulations as well as the experimental tests confirm the suitability of the prototype for environmental and workplace monitoring applications.

  19. Single-sphere multiple-detector neutron spectrometer. Final report on Phase 1

    International Nuclear Information System (INIS)

    Sinclair, F.; Stern, I.; Hahn, R.W.; Entine, G.

    1987-07-01

    To address the problem of accurate, timely estimates of the neutron spectral flux, researchers are developing a monitoring instrument based on a single moderating sphere with a large number of independent sensors. Such a single-sphere spectrometer would allow easy measurement of quality factors. This is made possible by the recent development of a novel digital sensor which detects radiation induced errors in a dynamic random-access memory. During Phase I of the SBIR program, researchers constructed a first prototype of the single-sphere spectrometer, measured its response in a neutron flux from an isotopic Am-Be source in several geometries, and compared these with the results of Monte Carlo simulations of neutron transport. The preliminary results show that the approach is feasible and relatively straightforward

  20. (3He,α) reaction mechanism at high energy and neutron inner shell structure

    International Nuclear Information System (INIS)

    Wiele, J. van de.

    1980-01-01

    The ( 3 He,α) reaction on 12 C, 16 O, 28 Si, 58 Ni, 90 Zr, 118 Sn, 124 Sn and 208 Pb targets has been studied at Esub( 3 He) = 217 MeV (or 205 MeV) in order to investigate the reaction mechanism at high energy and large momentum transfer. The reaction yields large cross sections at very forward angles and strongly enhances the largest orbital momentum transfer. The angular distribution shapes are well reproduced in the frame-work of the Z-R- D.W.B.A. analysis if we use a unique empirical α-potential: Vsub(α)(Esub(α)) = Vsub( 3 He)(3/4 Esub(α)) + Vsub(n)(1/4 Esub(α)). The excitation energy spectra have been measured up to 100 MeV in the residual light and medium nuclei and up to about 16 MeV in heavy nuclei. In addition to the well-known low-lying levels, peaks or broad structures are observed for each nucleus at higher excitation energies. They are attributed to pick up from inner shells: 1s( 11 C and 15 O), 1p( 27 Si), 1d5/2 + 1p( 57 Ni), 1f7/2( 89 Zr) 1g9/2 117 Sn, 123 Sn and 1h11/2( 207 Pb). Selectivity and localization of direct and indirect pick up ( 3 He,α) reactions were studied. Finite range calculations show that this reaction is not very sensitive to the details of the range from function but only to D 0 coefficient and range R. A microscopic α-nucleus optical potential calculated with n-n dependent and independent density forces is able to reproduce both elastic scattering and pick up reaction angular distributions [fr

  1. Upgrade of neutron energy spectrometer with single multilayer bonner sphere using onion-like structure

    International Nuclear Information System (INIS)

    Mizukpshi, Tomoaki; Watanabe, Kenichi; Yamazaki, Atsushi; Uritan, Akira; Iguchi, Tetsuo; Ogata, Tomohiro; Muramatsu, Takashi

    2016-01-01

    In order to measure neutron energy spectra, the conventional Bonner Sphere Spectrometers (BSS) are widely used. In this spectrometer, several measurements with different size Bonner spheres are required. Operators should, therefore, place these spheres in several times to a measurement point where radiation dose might be relatively high. In order to reduce this effort, novel neutron energy spectrometer using an onion-like single Bonner sphere was proposed in our group. This Bonner sphere has multiple sensitive spherical shell layers in the single sphere. In this spectrometer, a band-shaped thermal neutron detection medium, which consists of a LiF-ZnS mixed powder scintillator sheet and a wavelength-shifting (WLS) fiber readout, was looped to each sphere at equal angular intervals. Amount of LiF neutron converter is reduced near polar region, where the band-shaped detectors are concentrated, in order to uniform the directional sensitivity. The LiF-ZnS mixed powder has an advantage of extremely high light yield. However, since it is opaque, scintillation photons cannot be collect uniformly. This type of detector shows no characteristic shape in the pulse height spectrum. Subsequently, it is difficult to set the pulse height discrimination level. This issue causes sensitivity fluctuation due to gain instability of photodetectors and/or electric modules. In order to solve this problem, we propose to replace the LiF-ZnS mixed powder into a flexible and Transparent RUbber SheeT type LiCaAlF6 (TRUST LiCAF) scintillator. TRUST LiCAF scintillator can show a peak shape corresponding to neutron absorption events in the pulse height spectrum. We fabricated the prototype detector with five sensitive layers using TRUST LiCAF scintillator and conducted basic experiments to evaluate the directional uniformity of the sensitivity. The fabricated detector shows excellent directional uniformity of the neutron sensitivity

  2. Tests of the space gamma spectrometer prototype at the JINR experimental facility with different types of neutron generators

    Science.gov (United States)

    Litvak, M. L.; Vostrukhin, A. A.; Golovin, D. V.; Dubasov, P. V.; Zontikov, A. O.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Mitrofanov, I. G.; Mokrousov, M. I.; Repkin, A. N.; Timoshenko, G. N.; Udovichenko, K. V.; Shvetsov, V. N.

    2017-07-01

    The results of the tests of the HPGe gamma spectrometer performed with a planetary soil model and different types of pulse neutron generators are presented. All measurements have been performed at the experimental nuclear planetary science facility (Joint Institute for Nuclear Research) for the physical calibration of active gamma and neutron spectrometers. The aim of the study is to model a space experiment on determining the elemental composition of Martian planetary matter by neutron-induced gamma spectroscopy. The advantages and disadvantages of a gas-filled neutron generator in comparison with a vacuum-tube neutron generator are examined.

  3. The High-Energy Polarization-Limiting Radius of Neutron Star Magnetospheres 1, Slowly Rotating Neutron Stars

    CERN Document Server

    Heyl, J S; Lloyd, D; CERN. Geneva; Heyl, Jeremy S.; Shaviv, Nir J.; Lloyd, Don

    2003-01-01

    In the presence of strong magnetic fields, the vacuum becomes a birefringent medium. We show that this QED effect decouples the polarization modes of photons leaving the NS surface. Both the total intensity and the intensity in each of the two modes is preserved along a ray's path through the neutron-star magnetosphere. We analyze the consequences that this effect has on aligning the observed polarization vectors across the image of the stellar surface to generate large net polarizations. Counter to previous predictions, we show that the thermal radiation of NSs should be highly polarized even in the optical. When detected, this polarization will be the first demonstration of vacuum birefringence. It could be used as a tool to prove the high magnetic field nature of AXPs and it could also be used to constrain physical NS parameters, such as $R/M$, to which the net polarization is sensitive.

  4. Fast and high-energy neutron detection with nuclear track detectors: Results of the European joint experiments 1992/93

    Energy Technology Data Exchange (ETDEWEB)

    Schraube, H. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany); Alberts, W.G. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Weeks, A.R. [comps.] [Nuclear Electric plc, Berkeley (United Kingdom). Berkeley Technology Centre

    1997-12-31

    Under the auspices of EURADOS, the European radiation dosimetry group, seventeen recognised laboratories engaged in the field of individual neutron dosimetry with passive track detectors participated in an international comparative experiment. A number of twenty-seven detector systems, predominantly etched track detectors with the material PADC (poly allyl diglycol carbonate), were employed by the participating laboratories. Quasi-monoenergetic neutrons were provided for irradiations free-in-air and on front of a PMMA phantom by the GSF (Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg, Germany) and by the PTB (Physikalisch-Technische Bundesanstalt, Braunschweig, Germany). High energy irradiations were conducted by the PSI (Paul-Scherrer Institut, Villigen, Switzerland). The results of the on-phantom irradiations were used to derive energy and angular responses of the track detectors, those of the free-in-air irradiations to obtain data for the linearity characteristics of the response with dose. The report contains a short description and the original data of the participating laboratories, displays the irradiation and reference conditions, and provides an over-all evaluation. Emphasis is placed on the quantitative evaluation of the background characteristics and of the non-linearity observed with most of the systems employed which limits their useful dose-range of application. (orig.)

  5. Characterization of neutron-irradiated HT-UPS steel by high-energy X-ray diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan, E-mail: xuanzhang@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Park, Jun-Sang; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Li, Meimei [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2016-04-01

    This paper presents the first measurement of neutron-irradiated microstructure using far-field high-energy X-ray diffraction microscopy (FF-HEDM) in a high-temperature ultrafine-precipitate-strengthened (HT-UPS) austenitic stainless steel. Grain center of mass, grain size distribution, crystallographic orientation (texture), diffraction spot broadening and lattice constant distributions of individual grains were obtained for samples in three different conditions: non-irradiated, neutron-irradiated (3dpa/500 °C), and irradiated + annealed (3dpa/500 °C + 600 °C/1 h). It was found that irradiation caused significant increase in grain-level diffraction spot broadening, modified the texture, reduced the grain-averaged lattice constant, but had nearly no effect on the average grain size and grain size distribution, as well as the grain size-dependent lattice constant variations. Post-irradiation annealing largely reversed the irradiation effects on texture and average lattice constant, but inadequately restored the microstrain.

  6. Detailed characterisation of the incident neutron beam on the TOSCA spectrometer

    Science.gov (United States)

    Pinna, Roberto S.; Rudić, Svemir; Capstick, Matthew J.; McPhail, David J.; Pooley, Daniel E.; Howells, Gareth D.; Gorini, Giuseppe; Fernandez-Alonso, Felix

    2017-10-01

    We report a detailed characterisation of the incident neutron beam on the TOSCA spectrometer. A bespoke time-of-flight neutron monitor has been designed, constructed and used to perform extensive spatially resolved measurements of the absolute neutron flux and its underlying time structure at the instrument sample position. The obtained data give a quantitative understanding of the current instrument beyond neutronic simulations and provide a baseline in order to assess the performance of the upgraded instrument. At an average proton current-on-target of 153 μA (ISIS Target Station 1; at the time of measurements) we have found that the wavelength-integrated neutron flux (from 0.28 Å to 4.65 Å) at the position of the TOSCA instrument sample (spatially averaged across the 3 × 3cm2 surface centred around (0,0) position) is approximately 1 . 2 × 106 neutrons cm-2s-1, while the whole beam has a homogeneous distribution across the 3 . 0 × 3 . 5cm2 sample surface. The spectra reproduced the well-known shape of the neutrons moderated by the room temperature water moderator and exhibit a neutron flux of 7 . 3 × 105 neutrons cm-2s-1Å-1 at 1 Å.

  7. Response matrix of a multisphere neutron spectrometer with an 3 He proportional counter

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado S, G.A.

    2005-01-01

    The response matrix of a Bonner sphere spectrometer was calculated by use of the MCNP code. As thermal neutron counter, the spectrometer has a 3.2 cm-diameter 3 He-filled proportional counter which is located at the center of a set of polyethylene spheres. The response was calculated for 0, 3, 5, 6, 8, 10, 12, and 16 inches-diameter polyethylene spheres for neutrons whose energy goes from 10 -9 to 20 MeV. The response matrix was compared with a set of responses measured with several monoenergetic neutron sources. In this comparison the calculated matrix agrees with the experimental results. The matrix was also compared with the response matrix calculated for the PTB C spectrometer. Even though that calculation was carried out using a detailed model to describe the proportional counter; both matrices do agree, but small differences are observed in the bare case because of the difference in the model used during calculations. Other differences are in some spheres for 14.8 and 20 MeV neutrons, probably due to the differences in the cross sections used during both calculations. (Author) 28 refs., 1 tab., 6 figs

  8. Superresolution of a compact neutron spectrometer at energies relevant for fusion diagnostics

    International Nuclear Information System (INIS)

    Reginatto, M.; Zimbal, A.

    2011-01-01

    The ability to achieve resolution that is better than the instrument resolution (i.e., superresolution) is well known in optics, where it has been extensively studied. Unfortunately, there are only a handful of theoretical studies concerning superresolution of particle spectrometers, even though experimentalists are familiar with the enhancement of resolution that is achievable when appropriate methods of data analysis are used, such as maximum entropy and Bayesian methods. Knowledge of the superresolution factor is in many cases important. For example, in applications of neutron spectrometry to fusion diagnostics, the temperature of a burning plasma is an important physical parameter which may be inferred from the width of the peak of the neutron energy spectrum, and the ability to determine this width depends on the superresolution factor. Kosarev has derived an absolute limit for resolution enhancement using arguments based on a well known theorem of Shannon. Most calculations of superresolution factors in the literature, however, are based on the assumption of Gaussian, translationally invariant response functions and therefore not directly applicable to neutron spectrometers which typically have response functions not satisfying these requirements. In this work, we develop a procedure that allows us to overcome these difficulties and we derive estimates of superresolution for liquid scintillator spectrometers of a type commonly used for neutron measurements. Theoretical superresolution factors are compared to experimental results.

  9. The thin-foil magnetic proton recoil neutron spectrometer MPRu at JET

    International Nuclear Information System (INIS)

    Andersson Sunden, E.; Sjoestrand, H.; Conroy, S.; Ericsson, G.; Gatu Johnson, M.; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Weiszflog, M.; Kaellne, J.; Gorini, G.; Tardocchi, M.; Combo, A.; Cruz, N.; Batista, A.; Pereira, R.; Fortuna, R.; Sousa, J.; Popovichev, S.

    2009-01-01

    Neutrons are produced in fusion energy experiments with both deuterium (D) and deuterium-tritium (DT) plasmas. Neutron spectroscopy is a valuable tool in the study of the underlying fuel ion populations. The magnetic proton recoil neutron spectrometer, originally installed at JET in 1996 for 14-MeV neutron measurements, has been upgraded, with the main aim of improving its signal-to-background ratio (S/B), making measurements of the 2.5-MeV neutron emission in D plasmas possible. The upgrade includes a new focal-plane detector, based on the phoswich technique and consequently less sensitive to background, and a new custom-designed digital data acquisition system based on transient recorder cards. Results from JET show that the upgraded MPRu can measure 2.5-MeV neutrons with S/B=5, an improvement by a factor of 50 compared with the original MPR. S/B of 2.8x10 4 in future DT experiments is estimated. The performance of the MPRu is exemplified with results from recent D plasma operations at JET, concerning both measurements with Ohmic, ion cyclotron resonance (ICRH) and neutral beam injection (NBI) plasma heating, as well as measurements of tritium burn-up neutrons. The upgraded instrument allows for 2.5-MeV neutron emission and deuterium ion temperature measurements in plasmas with low levels of tritium, a feature necessary for the ITER experiment.

  10. Neutron spectrometer for DD/DT burning ratio measurement in fusion experimental reactor

    International Nuclear Information System (INIS)

    Asai, Keisuke; Naoi, Norihiro; Iguchi, Tetsuo; Watanabe, Kenichi; Kawarabayashi, Jun; Nishitani, Takeo

    2006-01-01

    The most feasible fuels for a fusion reactor are D (Deuterium) and T (Tritium). DD and/or DT fusion reaction or nuclear burning reaction provides two kinds of neutrons, DD neutron and DT neutron, respectively. DD/DT burning ratio, which can be estimated by DD/DT neutron ratio in the burning plasma, is essential for burn control, alpha particle emission rate monitoring and tritium fuel cycle estimation. Here we propose a new neutron spectrometer for the absolute DD/DT burning ratio measurement. The system consists of a Proton Recoil Telescope (PRT) and a Time-of-Flight (TOF) technique. We have conducted preliminary experiments with a prototype detector and a DT neutron beam (φ20 mm) at the Fusion Neutronics Source, Japan Atomic Energy Agency (JAEA), to assess its basic performance. The detection efficiency obtained by the experiment is consistent with the calculation results in PRT, and sufficient energy resolution for the DD/DT neutron discrimination has been achieved in PRT and TOF. The validity of the Monte Carlo calculation has also been confirmed by comparing the experimental results with the calculation results. The design consideration of this system for use in ITER (International Thermonuclear Experimental Reactor) has shown that this system is capable of monitoring the line-integrated DD/DT burning ratio for the plasma core line of sight with the required measurement accuracy of 20% in the upper 4 decades of the ITER operation (fusion power: 100 kW-700 MW). (author)

  11. Presentation of a semiempirical method for the calculation of doses due to neutrons and capture gamma rays inside high energy accelerators rooms

    International Nuclear Information System (INIS)

    Larcher, A.M.; Bonet Duran, S.M.

    1998-01-01

    Full text: Medical electron accelerators operating above 10 MeV produce radiation beams that are contaminated with neutrons. Therefore, shielding design for high energy accelerator rooms must consider the neutron component of the radiation field. In this paper a semiempirical method is presented to calculate doses due to neutrons and capture gamma rays inside the room and the maze. The calculation method is based on the knowledge of the neutron yield Q (neutrons/Gy of photons at isocenter) and the average energy of the primary beam of neutrons Eo (MeV). The method constitutes an appropriate tool for shielding facilities evaluation. The accuracy of the method has been contrasted with data obtained from the literature and an excellent correlation among the calculations and the measured values was achieved. In addition, the method has been used in the verification of experimental data corresponding to a 15 MeV linear accelerator installed in the country with similar results. (author) [es

  12. 4π-spectrometer technique for measurements of secondary neutron average number in nuclear fission by 252Cf neutrons

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.A.; Barashkov, Yu.A.; Golovanov, O.A.; Sidorov, L.V.

    1977-01-01

    A method for determining the average number of secondary neutrons anti ν produced in nuclear fission by the neutrons of the 252 Cf fission spectra by means of a 4π time-of-flight spectrometer is described. Layers of 252 Cf and an isotope studied are placed close to each other; if the isotope layer density is 1 mg/cm 2 probability of its fission is about 10 -5 per one spontaneous fission of californium. Fission fragments of 252 Cf and the isotope investigated have been detected by two surface-barrier counters with an efficiency close to 100%. The layers and the counters are situated in a measuring chamber placed in the center of the 4π time-of-flight spectrometer. The latter is utilized as a neutron counter because of its fast response. The method has been verified by carrying out measurements for 235 U and 239 Pu. A comparison of the experimental and calculated results shows that the method suggested can apply to determine the number of secondary neutrons in fission of isotopes that have not been investigated yet

  13. A neutron spectrometer based on the combination of time-of-flight and Larmor modulation

    International Nuclear Information System (INIS)

    Mulder, F.M.; Kreuger, R.; Grigoriev, S.V.; Kraan, W.H.; Rekveldt, M.Th.; Van Well, A.A.

    1999-01-01

    A study on the feasibility of neutron beam instrumentation that applies Larmor modulation for incoming, and time-of-flight for scattered wavelength determination (or vice versa) is currently under way at IRI. The instrument resulting from this combination can in principle measure quasi elastic and inelastic scattering with a flexible resolution and dynamic range. An important difference with current spectrometers is that there is no selection of neutron wavelengths for either the incoming beam (direct geometry) or scattered beam (inverted geometry). Therefore much of the available flux is used and there is no a priory selection of the energy transfer range and resolution. This instrument will be mainly applicable for quasi-elastic scattering and complex line shapes that are extended over a broad range in energy transfer. Line shapes can be measured directly in Fourier space, which is often advantageous. Due to signal to noise considerations, this instrument will be less suitable for the determination of weak, discrete energy transfer signals. A requirement for the Larmor modulator is that it can work with a white neutron beam. This can be realised for neutrons having a wavelength above ∼ 0.1 nm by use of 'adiabatic resonance π flippers'. This type of instrument may be applied at the future ESS pulsed neutron source in order to complement current spectrometers. (author)

  14. A portable and wide energy range semiconductor-based neutron spectrometer

    International Nuclear Information System (INIS)

    Hoshor, C.B.; Oakes, T.M.; Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R.; Miller, W.H.; Bellinger, S.L.; Sobering, T.J.; Fronk, R.G.; Shultis, J.K.; McGregor, D.S.; Caruso, A.N.

    2015-01-01

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation—either bare or obscured by neutron moderating and/or absorbing material(s)—in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  15. A portable and wide energy range semiconductor-based neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hoshor, C.B. [Department of Physics, University of Missouri, Kansas City, MO (United States); Oakes, T.M. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R. [Department of Physics, University of Missouri, Kansas City, MO (United States); Miller, W.H. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Missouri University Research Reactor, Columbia, MO (United States); Bellinger, S.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Sobering, T.J. [Electronics Design Laboratory, Kansas State University, Manhattan, KS (United States); Fronk, R.G.; Shultis, J.K.; McGregor, D.S. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Caruso, A.N., E-mail: carusoan@umkc.edu [Department of Physics, University of Missouri, Kansas City, MO (United States)

    2015-12-11

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation—either bare or obscured by neutron moderating and/or absorbing material(s)—in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  16. The multiple disk chopper neutron time-of-flight spectrometer at NIST

    International Nuclear Information System (INIS)

    Altorfer, F.B.; Cook, J.C.; Copley, J.R.D.

    1995-01-01

    A highly versatile multiple disk chopper neutron time-of-flight spectrometer is being installed at the Cold Neutron Research Facility of the National institute of Standards and Technology. This new instrument will fill an important gap in the portfolio of neutron inelastic scattering spectrometers in North America. It will be used for a wide variety of experiments such as studies of magnetic and vibrational excitations, tunneling spectroscopy, and quasielastic neutron scattering investigations of local and translational diffusion. The instrument uses disk choppers to monochromate and pulse the incident beam, and the energy changes of scattered neutrons are determined from their times-of-flight to a large array of detectors. The disks and the guide have been designed to make the instrument readily adaptable to the specific performance requirements of experimenters. The authors present important aspects of the design, as well as estimated values of the flux at the sample and the energy resolution for elastic scattering. The instrument should be operational in 1996

  17. Improved performances of 36 m small-angle neutron scattering spectrometer BATAN in Serpong Indonesia

    International Nuclear Information System (INIS)

    Putra, Edy Giri Rachman; Bharoto; Santoso, Eddy; Ikram, Abarrul

    2009-01-01

    SMARTer, a 36 m small-angle neutron scattering (SANS) spectrometer owned by the National Nuclear Energy Agency of Indonesia (BATAN) was installed at the Neutron Scattering Laboratory (NSL) in Serpong, Indonesia. Lots of works on replacing, upgrading and improving the control system, experimental methods, data collection and reduction in the last two years have been carried out to optimize the performance of SMARTer. Some standard samples such as silver behenate, monodisperse polystyrene nanoparticle, porous silica and block copolymer PS-PEP film were measured for the inter-laboratory comparison.

  18. Virtual design of the neutron guide for the TOF spectrometer NEAT

    International Nuclear Information System (INIS)

    Izaola, Zunbeltz; Russina, Margarita

    2010-01-01

    We present the results of a virtual design study based on Monte-Carlo neutron ray tracing techniques for the neutron guide of the time of flight (TOF) spectrometer NEAT. We studied several configurations with linearly or elliptically tapered compressors with different degrees of focusing and different guide coatings. The calculations were performed and crosschecked using two software packages which produced similar results. The geometrical arrangement of selected guide components was optimised with the Particle Swarm Optimisation algorithm. The results of the Monte Carlo simulations confirm an expected intensity gain factor of approximately 5, that can be achieved by the optimal configuration.

  19. Virtual design of the neutron guide for the TOF spectrometer NEAT

    Science.gov (United States)

    Izaola, Zunbeltz; Russina, Margarita

    2010-11-01

    We present the results of a virtual design study based on Monte-Carlo neutron ray tracing techniques for the neutron guide of the time of flight (TOF) spectrometer NEAT. We studied several configurations with linearly or elliptically tapered compressors with different degrees of focusing and different guide coatings. The calculations were performed and crosschecked using two software packages which produced similar results. The geometrical arrangement of selected guide components was optimised with the Particle Swarm Optimisation algorithm. The results of the Monte Carlo simulations confirm an expected intensity gain factor of approximately 5, that can be achieved by the optimal configuration.

  20. Design and experimental tests of a novel neutron spin analyzer for wide angle spin echo spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Peter; Farago, Bela; Andersen, Ken H.; Bentley, Phillip M.; Pastrello, Gilles; Sutton, Iain; Thaveron, Eric; Thomas, Frederic [Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Moskvin, Evgeny [Helmholtzzentrum Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany); Pappas, Catherine [Helmholtzzentrum Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany); Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2009-09-15

    This paper describes the design and experimental tests of a novel neutron spin analyzer optimized for wide angle spin echo spectrometers. The new design is based on nonremanent magnetic supermirrors, which are magnetized by vertical magnetic fields created by NdFeB high field permanent magnets. The solution presented here gives stable performance at moderate costs in contrast to designs invoking remanent supermirrors. In the experimental part of this paper we demonstrate that the new design performs well in terms of polarization, transmission, and that high quality neutron spin echo spectra can be measured.

  1. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    International Nuclear Information System (INIS)

    Bahl, C.R.H.; Lefmann, K.; Abrahamsen, A.B.; Ronnow, H.M.; Saxild, F.; Jensen, T.B.S.; Udby, L.; Andersen, N.H.; Christensen, N.B.; Jakobsen, H.S.; Larsen, T.; Haefliger, P.S.; Streule, S.; Niedermayer, Ch.

    2006-01-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode

  2. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, C.R.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark) and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)]. E-mail: christian.bahl@risoe.dk; Lefmann, K. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)]. E-mail: kim.lefmann@risoe.dk; Abrahamsen, A.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Ronnow, H.M. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Saxild, F. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Jensen, T.B.S. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Udby, L. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Andersen, N.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Christensen, N.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Jakobsen, H.S. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Larsen, T. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Haefliger, P.S. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Streule, S.; Niedermayer, Ch. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2006-05-15

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode.

  3. A time-of-flight spectrometer for neutron diffraction under high pressure or at high temperature

    International Nuclear Information System (INIS)

    Roult, G.; Buevoz, J.L.

    1975-01-01

    For high pressure neutron diffraction studies (40 kilobars) the sample is placed in a very thick cell. In order to allow the neutron beam to go through the cell loosing as little intensity as possible, the inner part is kept solid while the external part has some windows facing the incident and reflected beam. The window dimensions are small (a few millimeters wide and a few centimeters long). There are two alternatives: to have the window either in a perpendicular plane or in a plane parallel to the axis. In the first case a fixed wavelength spectrometer can be used but the sample is small and the contribution of the cell to the diffraction pattern is relatively great. In the second case samples can be something like ten times greater and the cell contribution can be eliminated but a fixed wavelength spectrometer cannot be used. Thus the time-of-flight method is very convenient. The second alternative was chosen

  4. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A. [Adelphi Technology, Inc., 2003 East Bayshore Rd., Redwood City, California 94063 (United States); Pantell, R. H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B. [Davis McClellan Nuclear Radiation Center, University of California, McClellan, California 95652 (United States)

    2010-01-15

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  5. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    Science.gov (United States)

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  6. Using the transportable, computer-operated, liquid-scintillator fast-neutron spectrometer system

    International Nuclear Information System (INIS)

    Thorngate, J.H.

    1988-01-01

    When a detailed energy spectrum is needed for radiation-protection measurements from approximately 1 MeV up to several tens of MeV, organic-liquid scintillators make good neutron spectrometers. However, such a spectrometer requires a sophisticated electronics system and a computer to reduce the spectrum from the recorded data. Recently, we added a Nuclear Instrument Module (NIM) multichannel analyzer and a lap-top computer to the NIM electronics we have used for several years. The result is a transportable fast-neutron spectrometer system. The computer was programmed to guide the user through setting up the system, calibrating the spectrometer, measuring the spectrum, and reducing the data. Measurements can be made over three energy ranges, 0.6--2 MeV, 1.1--8 MeV, or 1.6--16 MeV, with the spectrum presented in 0.1-MeV increments. Results can be stored on a disk, presented in a table, and shown in graphical form. 5 refs., 51 figs

  7. Optimal shape of a cold-neutron triple-axis spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, K., E-mail: lefmann@fys.ku.d [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); European Spallation Source, University of Lund, St. Algatan 4, Lund (Sweden); Filges, U. [Laboratory for Development and Methods, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Treue, F. [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Kirkensgard, J.J.K. [Institute of Nature and Models, Roskilde University (Denmark); Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen (Denmark); Plesner, B. [Institute of Nature and Models, Roskilde University (Denmark); Hansen, K.S. [Institute of Nature and Models, Roskilde University (Denmark); Mid-Greenland High School, Nuuk, Greenland (Denmark); Kleno, K.H. [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); European Spallation Source, University of Lund, St. Algatan 4, Lund (Sweden)

    2011-04-01

    We have performed a McStas optimization of the primary spectrometer for a generic 40 m long, cold-neutron triple-axis spectrometer with a doubly focusing monochromator. The optimal design contains an elliptically focusing guide, a virtual source point before a low-grade PG monochromator, and non-equidistant focusing at the monochromator. The flux at 5 meV shows a gain factor 12 over the 'classical' design with a straight 12x3cm{sup 2}, m=2 guide and a vertically focusing PG monochromator. In addition, the energy resolution was found to be improved. This unexpectedly large design improvement agrees with the Liouville theorem and can be understood as the product of many smaller gain factors, combined with a more optimal utilization of the beam divergence within the guide. Our results may be relevant for a possible upgrade of a number of cold-neutron triple-axis spectrometers-and for a possible triple-axis spectrometer at the European Spallation Source.

  8. Measurement of the proton recoil spectrum in neutron beta decay with the spectrometer aSPECT. Study of systematic effects

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Gertrud Emilie

    2012-01-24

    Free neutron decay, n{yields}pe anti {nu}{sub e}, is the simplest nuclear beta decay, well described as a purely left-handed, vector minus axial-vector interaction within the framework of the Standard Model (SM) of elementary particles and fields. Due to its highly precise theoretical description, neutron beta decay data can be used to test certain extensions to the SM. Possible extensions require, e.g., new symmetry concepts like left-right symmetry, new particles, leptoquarks, supersymmetry, or the like. Precision measurements of observables in neutron beta decay address important open questions of particle physics and cosmology, and are generally complementary to direct searches for new physics beyond the SM in high-energy physics. In this doctoral thesis, a measurement of the proton recoil spectrum with the neutron decay spectrometer aSPECT is described. From the proton spectrum the antineutrinoelectron angular correlation coefficient a can be derived. In our first beam time at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany (2005-2006), background instabilities due to particle trapping and the electronic noise level of the proton detector prevented us from presenting a new value for a. In the latest beam time at the Institut Laue-Langevin (ILL) in Grenoble, France (2007-2008), the trapped particle background has been reduced sufficiently and the electronic noise problem has essentially been solved. For the first time, a silicon drift detector was used. As a result of the data analysis, we identified and fixed a problem in the detector electronics which caused a significant systematic error. The target figure of the latest beam time was a new value for a with a total relative error well below the present literature value of 4 %. A statistical accuracy of about 1.4% was reached, but we could only set upper limits on the correction of the problem in the detector electronics, which are too high to determine a meaningful result. The present

  9. Measurement of the proton recoil spectrum in neutron beta decay with the spectrometer aSPECT. Study of systematic effects

    International Nuclear Information System (INIS)

    Konrad, Gertrud Emilie

    2012-01-01

    Free neutron decay, n→pe anti ν e , is the simplest nuclear beta decay, well described as a purely left-handed, vector minus axial-vector interaction within the framework of the Standard Model (SM) of elementary particles and fields. Due to its highly precise theoretical description, neutron beta decay data can be used to test certain extensions to the SM. Possible extensions require, e.g., new symmetry concepts like left-right symmetry, new particles, leptoquarks, supersymmetry, or the like. Precision measurements of observables in neutron beta decay address important open questions of particle physics and cosmology, and are generally complementary to direct searches for new physics beyond the SM in high-energy physics. In this doctoral thesis, a measurement of the proton recoil spectrum with the neutron decay spectrometer aSPECT is described. From the proton spectrum the antineutrinoelectron angular correlation coefficient a can be derived. In our first beam time at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany (2005-2006), background instabilities due to particle trapping and the electronic noise level of the proton detector prevented us from presenting a new value for a. In the latest beam time at the Institut Laue-Langevin (ILL) in Grenoble, France (2007-2008), the trapped particle background has been reduced sufficiently and the electronic noise problem has essentially been solved. For the first time, a silicon drift detector was used. As a result of the data analysis, we identified and fixed a problem in the detector electronics which caused a significant systematic error. The target figure of the latest beam time was a new value for a with a total relative error well below the present literature value of 4 %. A statistical accuracy of about 1.4% was reached, but we could only set upper limits on the correction of the problem in the detector electronics, which are too high to determine a meaningful result. The present doctoral

  10. Synthetic neutron camera and spectrometer in JET based on AFSI-ASCOT simulations

    Science.gov (United States)

    Sirén, P.; Varje, J.; Weisen, H.; Koskela, T.; contributors, JET

    2017-09-01

    The ASCOT Fusion Source Integrator (AFSI) has been used to calculate neutron production rates and spectra corresponding to the JET 19-channel neutron camera (KN3) and the time-of-flight spectrometer (TOFOR) as ideal diagnostics, without detector-related effects. AFSI calculates fusion product distributions in 4D, based on Monte Carlo integration from arbitrary reactant distribution functions. The distribution functions were calculated by the ASCOT Monte Carlo particle orbit following code for thermal, NBI and ICRH particle reactions. Fusion cross-sections were defined based on the Bosch-Hale model and both DD and DT reactions have been included. Neutrons generated by AFSI-ASCOT simulations have already been applied as a neutron source of the Serpent neutron transport code in ITER studies. Additionally, AFSI has been selected to be a main tool as the fusion product generator in the complete analysis calculation chain: ASCOT - AFSI - SERPENT (neutron and gamma transport Monte Carlo code) - APROS (system and power plant modelling code), which encompasses the plasma as an energy source, heat deposition in plant structures as well as cooling and balance-of-plant in DEMO applications and other reactor relevant analyses. This conference paper presents the first results and validation of the AFSI DD fusion model for different auxiliary heating scenarios (NBI, ICRH) with very different fast particle distribution functions. Both calculated quantities (production rates and spectra) have been compared with experimental data from KN3 and synthetic spectrometer data from ControlRoom code. No unexplained differences have been observed. In future work, AFSI will be extended for synthetic gamma diagnostics and additionally, AFSI will be used as part of the neutron transport calculation chain to model real diagnostics instead of ideal synthetic diagnostics for quantitative benchmarking.

  11. An in-beam Compton-suppressed Ge spectrometer for nondestructive neutron activation analysis

    International Nuclear Information System (INIS)

    Zaghloul, R.; Abd El-Haleam, A.; Mostafa, M.; Gantner, E.; Ache, H.J.

    1993-04-01

    A high-efficiency compton background suppressed gamma-ray spectrometer by anti-coincidence counting with a NaI(Tl)-shield around a central HPGe-detector for in-beam prompt gamma-ray neutron activation analysis (AC-PGNAA) using a Cf-252 neutron source has been designed and built to provide simultaneous anti-coincidence spectrometry of natural, industrial and environmental samples. The spectrometer consists of a high-purity germanium detector as the main detector and a large volume cylindrical NaI(Tl) detector as a guard detector. The assembly has the ability to measure instantaneously, simultaneously and nondestructively bulk samples up to about 50 cm 3 . Major constituent elements in several rocks and minerals such as H, B, N, Na, Mg, Al, Si, Cl, K, Ca, P, S, Ti, Fe, Sm, Nd, Mn and Gd can be determined, while oxygen cannot be measured due to its small capture cross section (0.27 mb). Several important minor and trace elements such as B, Cd and Hg beside the low residual activity, rare earths and short-lived isotopes could be detected. The sensitivity of the AC-PGNAA technique is limited by the available neutron flux at the target matrix and the neutron absorption cross section of the elements of interest. PGNAA has the advantage to estimate the constituent elements which are difficult to be measured through the delayed gamm-ray measurements such as B, Bi, C, H, P, Tl, Be, Cl and S in industrial and reference materials and those elements which are transformed into other stable isotopes when undergoing neutron capture. The design of the spectrometer assembly, its properties and performance are described

  12. Characterization of the PTW 34031 ionization chamber (PMI) at RCNP with high energy neutrons ranging from 100 - 392 MeV

    Science.gov (United States)

    Theis, C.; Carbonez, P.; Feldbaumer, E.; Forkel-Wirth, D.; Jaegerhofer, L.; Pangallo, M.; Perrin, D.; Urscheler, C.; Roesler, S.; Vincke, H.; Widorski, M.; Iwamoto, Y.; Hagiwara, M.; Satoh, D.; Iwase, H.; Yashima, H.; Matsumoto, T.; Masuda, A.; Nishiyama, J.; Harano, H.; Itoga, T.; Nakamura, T.; Sato, T.; Nakane, Y.; Nakashima, H.; Sakamoto, Y.; Taniguchi, S.; Nakao, N.; Tamii, A.; Shima, T.; Hatanaka, K.

    2017-09-01

    Radiation monitoring at high energy proton accelerators poses a considerable challenge due to the complexity of the encountered stray radiation fields. These environments comprise a wide variety of different particle types and span from fractions of electron-volts up to several terra electron-volts. As a consequence the use of Monte Carlo simulation programs like FLUKA is indispensable to obtain appropriate field-specific calibration factors. At many locations of the LHC a large contribution to the particle fluence is expected to originate from high-energy neutrons and thus, benchmark experiments with mono-energetic neutron beams are of high importance to verify the aforementioned detector response calculations. This paper summarizes the results of a series of benchmark experiments with quasi mono-energetic neutrons of 100, 140, 200, 250 and 392 MeV that have been carried out at RCNP - Osaka University, during several campaigns between 2006 and 2014.

  13. The response of a Bonner Sphere spectrometer to charged hadrons

    OpenAIRE

    Agosteo, S; Dimovasili, E; Fassò, A; Silari, M

    2004-01-01

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy ...

  14. Time-of-flight small-angle scattering spectrometers on pulsed neutron sources

    International Nuclear Information System (INIS)

    Ostanevich, Yu.M.

    1987-01-01

    The operation principles, constructions, advantages and shortcomings of known time-of-flight small angle neutron scattering (TOF SANS) spectrometers built up with pulsed neutron sources are reviewed. The most important characteristics of TOF SANS apparatuses are rather a high luminosity and the possibility for the measurement in an extremely wide range of scattering vector at a single exposure. This is achieved by simultaneous employment of white beam, TOF technique for wave length-scan and the commonly known angle-scan. However, the electronic equipment, data-matching programs, and the measurement procedure, necessary for accurate normalization of experimental data and their transformation into absolute cross-section scale, they all become more complex, as compared with those for SANS apparatuses operating on steady-state neutron sources, where only angle-scan is used

  15. Calculation of background effects on the VESUVIO eV neutron spectrometer

    International Nuclear Information System (INIS)

    Mayers, J

    2011-01-01

    The VESUVIO spectrometer at the ISIS pulsed neutron source measures the momentum distribution n(p) of atoms by 'neutron Compton scattering' (NCS). Measurements of n(p) provide a unique window into the quantum behaviour of atomic nuclei in condensed matter systems. The VESUVIO 6 Li-doped neutron detectors at forward scattering angles were replaced in February 2008 by yttrium aluminium perovskite (YAP)-doped γ-ray detectors. This paper compares the performance of the two detection systems. It is shown that the YAP detectors provide a much superior resolution and general performance, but suffer from a sample-dependent gamma background. This report details how this background can be calculated and data corrected. Calculation is compared with data for two different instrument geometries. Corrected and uncorrected data are also compared for the current instrument geometry. Some indications of how the gamma background can be reduced are also given

  16. Calculation of background effects on the VESUVIO eV neutron spectrometer

    Science.gov (United States)

    Mayers, J.

    2011-01-01

    The VESUVIO spectrometer at the ISIS pulsed neutron source measures the momentum distribution n(p) of atoms by 'neutron Compton scattering' (NCS). Measurements of n(p) provide a unique window into the quantum behaviour of atomic nuclei in condensed matter systems. The VESUVIO 6Li-doped neutron detectors at forward scattering angles were replaced in February 2008 by yttrium aluminium perovskite (YAP)-doped γ-ray detectors. This paper compares the performance of the two detection systems. It is shown that the YAP detectors provide a much superior resolution and general performance, but suffer from a sample-dependent gamma background. This report details how this background can be calculated and data corrected. Calculation is compared with data for two different instrument geometries. Corrected and uncorrected data are also compared for the current instrument geometry. Some indications of how the gamma background can be reduced are also given.

  17. High flux polarized neutrons triple-axis spectrometer: 2T (LLB-Saclay)

    International Nuclear Information System (INIS)

    Bourges, Ph.; Hennion, B.; Sidis, Y.; Boutrouille, Ph.; Baroni, P.

    1999-01-01

    A description of the performance of the newly designed thermal beam triple-axis spectrometer, 2T at LLB (Saclay) is given. The beam tube will be increased to 50 x 120 mm 2 (HxV) before the monochromator. A gain of about a factor 2 on the neutron flux at the monitor position is expected after this operation, scheduled on April/May 1999. Polarized neutrons beam option will be installed on this triple axis. The polarization is obtained using high quality heusler crystals recently grown at ILL. The size of both heusler monochromator and analyzer have been chosen to fully cover the beam size. The monochromator (analyzer) will be equipped with a vertical (horizontal) curvature. The flux of the polarized beam on the detector is then expected to be 5 times better than IN20 at ILL (best existing polarized neutrons triple-axis on thermal beam) with incident energy upto 75 MeV. (author)

  18. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    Science.gov (United States)

    Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.

    2017-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.

  19. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    International Nuclear Information System (INIS)

    Bedogni, R.; Gómez-Ros, J.M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-01-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  20. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Science.gov (United States)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  1. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN-LNF (Frascati National Laboratories), Via E. Fermi n. 40-00044 Frascati (Italy); Gomez-Ros, J.M. [INFN-LNF (Frascati National Laboratories), Via E. Fermi n. 40-00044 Frascati (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Perez, L. [INFN-LNF (Frascati National Laboratories), Via E. Fermi n. 40-00044 Frascati (Italy); Angelone, M. [ENEA C.R. Frascati, C.P. 65, 00044 Frascati (Italy); Tana, L. [A.O. Universitaria Pisana-Ospedale S. Chiara, Via Bonanno Pisano, Pisa (Italy)

    2012-08-21

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  2. Experimental study on neutronics in bombardment of thick targets by high energy proton beams for accelerator-driven sub-critical system

    CERN Document Server

    Guo Shi Lun; Shi Yong Qian; Shen Qing Biao; Wan Jun Sheng; Brandt, R; Vater, P; Kulakov, B A; Krivopustov, M I; Sosnin, A N

    2002-01-01

    The experimental study on neutronics in the target region of accelerator-driven sub-critical system is carried out by using the high energy accelerator in Joint Institute for Nuclear Research, Dubna, Russia. The experiments with targets U(Pb), Pb and Hg bombarded by 0.533, 1.0, 3.7 and 7.4 GeV proton beams show that the neutron yield ratio of U(Pb) to Hg and Pb to Hg targets is (2.10 +- 0.10) and (1.76 +- 0.33), respectively. Hg target is disadvantageous to U(Pb) and Pb targets to get more neutrons. Neutron yield drops along 20 cm thick targets as the thickness penetrated by protons increases. The lower the energy of protons, the steeper the neutron yield drops. In order to get more uniform field of neutrons in the targets, the energy of protons from accelerators should not be lower than 1 GeV. The spectra of secondary neutrons produced by different energies of protons are similar, but the proportion of neutrons with higher energy gradually increases as the proton energy increases

  3. Evaluation of the fluence to dose conversion coefficients for high energy neutrons using a voxel phantom coupled with the GEANT4 code

    CERN Document Server

    Paganini, S

    2005-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from Galactic cosmic radiation. Crews of future high-speed commercial flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the male adult voxels phantom MAX, developed in the Nuclear Energy Department of Pernambuco Federal University in Brazil, has been coupled with the Monte Carlo simulation code GEANT4. This toolkit, distributed and upgraded from the international scientific community of CERN/Switzerland, simulates thermal to ultrahigh energy neutrons transport and interactions in the matter. The high energy neutrons are pointed as the component that contribute about 70% of the neutron effective dose that represent the 35% to 60% total dose at aircraft altitude. In this research calculations of conversion coefficients from fluence to effective dose are performed for neutrons of energies from 100 MeV ...

  4. Development and performance test of small angle neutron spectrometer at HANARO

    International Nuclear Information System (INIS)

    Han, Young Soo; Seong, Baek Seok; Lee, Chang Hee; Lee, Jeong Soo; Hong, Kwang Pyo; Choi, Byung Hoon; Choi, Young Hyun; Shin, Eun Joo; Park, Kook Nam

    2004-12-01

    The construction of Small Angle Neutron Spectrometer(SANS) at the CN beam port in HANARO was completed and has been opened to users in July 2001. the 2-D PSD (two dimensional position sensitive detector), the NVS (neutron velocity selector), the detector chamber rotation system, the detector horizontal moving system, the stepping motors, the beam shutter and the attenuator were fully tested and installed. The performance test of all the components was also completed. Wavelengths and resolutions of the neutron beam monochromatized by the NVS were calibrated using both the time-of-flight method and the diffraction measurement on standard material, the silver behenate. The relationship between the selector speed U[rpm] and the neutron wavelength λ[A] was obtained as λ[A]=0.11077+107171/U[rpm]. The controllers for the sample environments, the beam shutter and the stepping motors were constructed and its control programs for those controllers were also developed. The Beam test for the SANS has been finished and the characteristics of neutron beam was analyzed. The experimental methods of SANS and its data treatment method were established. The performance test of the HANARO SANS compared with that of foreign SANS's. shows that the HANARO SANS is quite well comparable with foreign SANS facilities

  5. Distinguishing new science from calibration effects in the electron-volt neutron spectrometer VESUVIO at ISIS

    Energy Technology Data Exchange (ETDEWEB)

    Chatzidimitriou-Dreismann, C.A., E-mail: dreismann@chem.tu-berlin.de [Institute of Chemistry (Sekr. C2), Technical University of Berlin, D-10623 Berlin (Germany); Gray, E. MacA., E-mail: e.gray@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane 4111 (Australia); Blach, T.P., E-mail: t.blach@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane 4111 (Australia)

    2012-06-01

    The 'standard' procedure for calibrating the Vesuvio eV neutron spectrometer at the ISIS neutron source, forming the basis for data analysis over at least the last decade, was recently documented in considerable detail by the instrument's scientists. Additionally, we recently derived analytic expressions of the sensitivity of recoil peak positions with respect to fight-path parameters and presented neutron-proton scattering results that together called into question the validity of the 'standard' calibration. These investigations should contribute significantly to the assessment of the experimental results obtained with Vesuvio. Here we present new results of neutron-deuteron scattering from D{sub 2} in the backscattering angular range ({theta}>90 Degree-Sign ) which are accompanied by a striking energy increase that violates the Impulse Approximation, thus leading unequivocally the following dilemma: (A) either the 'standard' calibration is correct and then the experimental results represent a novel quantum dynamical effect of D which stands in blatant contradiction of conventional theoretical expectations; (B) or the present 'standard' calibration procedure is seriously deficient and leads to artificial outcomes. For Case (A), we allude to the topic of attosecond quantum dynamical phenomena and our recent neutron scattering experiments from H{sub 2} molecules. For Case (B), some suggestions as to how the 'standard' calibration could be considerably improved are made.

  6. Distinguishing new science from calibration effects in the electron-volt neutron spectrometer VESUVIO at ISIS

    Science.gov (United States)

    Chatzidimitriou-Dreismann, C. A.; Gray, E. MacA.; Blach, T. P.

    2012-06-01

    The "standard" procedure for calibrating the Vesuvio eV neutron spectrometer at the ISIS neutron source, forming the basis for data analysis over at least the last decade, was recently documented in considerable detail by the instrument's scientists. Additionally, we recently derived analytic expressions of the sensitivity of recoil peak positions with respect to fight-path parameters and presented neutron-proton scattering results that together called into question the validity of the "standard" calibration. These investigations should contribute significantly to the assessment of the experimental results obtained with Vesuvio. Here we present new results of neutron-deuteron scattering from D2 in the backscattering angular range (θ>90°) which are accompanied by a striking energy increase that violates the Impulse Approximation, thus leading unequivocally the following dilemma: (A) either the "standard" calibration is correct and then the experimental results represent a novel quantum dynamical effect of D which stands in blatant contradiction of conventional theoretical expectations; (B) or the present "standard" calibration procedure is seriously deficient and leads to artificial outcomes. For Case (A), we allude to the topic of attosecond quantum dynamical phenomena and our recent neutron scattering experiments from H2 molecules. For Case (B), some suggestions as to how the "standard" calibration could be considerably improved are made.

  7. Comparison of Americium-Beryllium neutron spectrum obtained using activation foil detectors and NE-213 spectrometer

    International Nuclear Information System (INIS)

    Sunny, Sunil; Subbaiah, K.V.; Selvakumaran, T.S.

    1999-01-01

    Neutron spectrum of Americium - Beryllium (α,n) source is measured with two different spectrometers vis-a-vis activation foils (foil detectors) and NE-213 organic scintillator. Activity induced in the foils is measured with 4π-β-γ sodium iodide detector by integrating counts under photo peak and the saturation activity is found by correcting to elapsed time before counting. The data on calculated activity is fed into the unfolding code, SAND-II to obtain neutron spectrum. In the case of organic scintillator, the pulse height spectrum is obtained using MCA and this is processed with unfolding code DUST in order to get neutron spectrum. The Americium - Beryllium (α,n) neutron spectrum thus obtained by two different methods is compared. It is inferred that the NE-213 scintillator spectrum is in excellent agreement with the values beyond 1MeV. Neutron spectrum obtained by activation foils depends on initial guess spectrum and is found to be in reasonable agreement with NE-213 spectrum. (author)

  8. Mounting and testing of a 'sandwich' type neutron spectrometer with semiconductor detectors and 6Li

    International Nuclear Information System (INIS)

    Fabro, M.A.

    1973-01-01

    Commercial surface barrier detectors (Si(Au)) were used to construct the spectrometer; the 6 LiF was evaporated by vacuum onto a film of Formvar and afterwards over the surface of one of the detectors, with a 6 LiF thickness of 0,2 μm (50 μg/cm 2 ) and 1,5 μm(400 μg/cm 2 ) respectively. Tests were made with slow neutrons and with neutrons from the reactions D(d,n) 3 He (2,65 MeV) and T(d,n) 4 He (14 MeV). The energy resolution for thermal neutrons was about 200 keV (FWHM) for the sum (E sub(t) + E sub(α)) and about 7 keV (FWHM) for the difference (E sub(t) - E sub(α)) with an evaluated efficiency of 5,5x10 -4 , for the sum. For the 2,65 MeV neutrons, the energy resolution was about 240 keV (FWHM) and an evaluated efficiency of 2,1 x 10 -7 . It was not possible to detect 14 MeV neutrons [pt

  9. The performance of neutron scattering spectrometers at a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.

    1995-01-01

    The first conclusion the author wants to draw is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons

  10. Optimized design of the chopper disks and the neutron guide in a disk chopper neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Copley, J.R.D.

    1990-01-01

    We consider important aspects of the performance of a disk chopper neutron time-of-flight spectrometer. The intensity at the sample position, and the contributions of the choppers to the resolution of the instrument, are evaluated as a function of the widths of the slots in the chopper disks and the width of the neutron guide between the disks. We find that there is an optimum choice of the ratios of these widths and that this choice depends on a single parameter which, for elastic scattering, is a simple ratio of distances. When pairs of counter-rotating disks are employed, the widths of the slots can be modified by grossly changing the phase relationship between the members of a chopper pair. If the slot widths are changed, the width of the guide should also be altered in order to maintain the spectrometer in an optimized state. This change in the guide width may be effectively achieved using an arrangement of nested guides. Resolution and intensity calculations demonstrate the important gains which may be realized using this approach. (orig.)

  11. spectrometer

    Directory of Open Access Journals (Sweden)

    J. K. Hedelius

    2016-08-01

    Full Text Available Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON. However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of Xgas within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of XCO2, XCH4, XCO, and XN2O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for XCO2, XCH4, XCO, and XN2O respectively, with 1σ running precisions of 0.08 and 0.06 % for XCO2 and XCH4 from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N2O.

  12. Upgrading of the triple axis neutron spectrometer TKSN-400 installed at Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Bashir, J; Khan, R.T.A.; Khan, M.M.; Iqbal, N.; Waheed, A.; Hussain, A.; Khan, A.U.; Zaman, Q.

    2000-01-01

    The triple axis neutron spectrometer TKSN-400 installed at 10MW Pakistan Research Reactor has been upgraded. The upgrading included the development of a multi-counter assembly, a PC based spectrometer control and data acquisition system. The multi-counter assembly consists of an embankment of 8 pairs of /sup 3/He counter and 40' collimator. This system is more auspicious than the original arrangement because each of the collimator/counter pair is virtually identical, permitting automatic addition of the intensities and consequently a single high resolution profile as obtained with single counter machine. With these modifications, it has now become possible to measure the complete diffraction pattern in about 24 hours. Finally, the results obtained from the latest system are compared with the results reported in literature. (author)

  13. The upgrade of the cold neutron three-axis spectrometer IN12 at the ILL

    Energy Technology Data Exchange (ETDEWEB)

    Schmalzl, K., E-mail: schmalzl@ill.fr [Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at ILL, BP 156, 38042 Grenoble (France); Schmidt, W. [Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at ILL, BP 156, 38042 Grenoble (France); Raymond, S. [Université Grenoble Alpes and CEA Grenoble, INAC MEM, 38054 Grenoble (France); Feilbach, H. [Forschungszentrum Jülich, Peter Grünberg Institut PGI 6, D-52425 Jülich (Germany); Mounier, C. [Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Vettard, B. [Université Grenoble Alpes and CEA Grenoble, INAC MEM, 38054 Grenoble (France); Brückel, T. [Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2016-05-21

    After nearly 40 years of successful operation the cold three-axis spectrometer IN12 at the Institut Laue-Langevin, Grenoble, France, has been relocated to a new position and the primary spectrometer has been upgraded. Latest modern optical components are employed. A new guide in combination with a virtual source concept and a double focusing monochromator guarantee highest flux. With its high unpolarized and polarized neutron flux IN12 allows for demanding experiments. A velocity selector in the guide ensures a clean beam and a very low background. A gain in flux of about an order of magnitude at the sample position has been achieved compared to the previous instrument and IN12's wavelength range now extends far into the warmish region.

  14. PRISMA - a spectrometer for the measurement of coherent excitations on a pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Andreani, C.; Cilloco, F.; Petrillo, C.; Sacchetti, F.; Windsor, C.G.

    1986-04-01

    The measurement of nuclear and magnetic excitation spectra from single crystal samples remains central to condensed matter physics. The requirements in terms of the range and resolution of the scattering vector Q and energy transfer h/2πω are reviewed and typical experiments with a well defined cross-section are chosen. The performance and limitations of existing instruments are reviewed. A design for a new spectrometer, PRISMA, to be installed on the UK spallation neutron source, ISIS, is presented. Its performance for chosen experiments is given in terms of the Q and h/2πω range covered in a single scan, the resolution and the count rate. (author)

  15. BUMS--Bonner sphere Unfolding Made Simple an HTML based multisphere neutron spectrometer unfolding package

    CERN Document Server

    Sweezy, J; Veinot, K

    2002-01-01

    A new multisphere neutron spectrometer unfolding package, Bonner sphere Unfolding Made Simple (BUMS) has been developed that uses an HTML interface to simplify data input and code execution for the novice and the advanced user. This new unfolding package combines the unfolding algorithms contained in other popular unfolding codes under one easy to use interface. The interface makes use of web browsing software to provide a graphical user interface to the unfolding algorithms. BUMS integrates the SPUNIT, BON, MAXIET, and SAND-II unfolding algorithms into a single package. This package also includes a library of 14 response matrices, 58 starting spectra, and 24 dose and detector responses. BUMS has several improvements beyond the addition of unfolding algorithms. It has the ability to search for the most appropriate starting spectra. Also, plots of the unfolded neutron spectra are automatically generated. The BUMS package runs via a web server and may be accessed by any computer with access to the Internet at h...

  16. The principle,technology and applications of the neutron triple-axis spectrometer

    International Nuclear Information System (INIS)

    Li Shiliang; Dai Pengcheng

    2011-01-01

    As a subatomic particle, the neutron has unique properties which allow it to play an important and irreplaceable role in many research fields. Based on the principle of momentum and energy conservation, a neutron triple-axis spectrometer (TAS) can measure the elastic and inelastic scattering of a system to obtain structural and dynamical information. The TAS was given its name for its three major parts: the monochromator, sample holder, and analyzer, each of which can rotate independently. Because of the important role that the TAS plays in physics, especially in condensed matter physics, the Institute of Physics of the Chinese Academy of Sciences has decided to collaborate with the China Institute of Atomic Energy to build a modern TAS in the newly-built Chinese Research Reactor. This paper will describe the principle, technology and applications of the TAS. (authors)

  17. The Magnetic Recoil Spectrometer for time-resolved neutron measurements (MRSt) at the NIF

    Science.gov (United States)

    Parker, C. E.; Frenje, J. A.; Wink, C. W.; Gatu Johnson, M.; Lahmann, B.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Hilsabeck, T. J.; Kilkenny, J. D.; Bionta, R.; Casey, D. T.; Khater, H. Y.; Forrest, C. J.; Glebov, V. Yu.; Sorce, C.; Hares, J. D.; Siegmund, O. H. W.

    2017-10-01

    The next-generation Magnetic Recoil Spectrometer, called MRSt, will provide time-resolved measurements of the DT-neutron spectrum. These measurements will provide critical information about the time evolution of the fuel assembly, hot-spot formation, and nuclear burn in Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). The neutron spectrum in the energy range 12-16 MeV will be measured with high accuracy ( 5%), unprecedented energy resolution ( 100 keV) and, for the first time ever, time resolution ( 20 ps). An overview of the physics motivation, conceptual design for meeting these performance requirements, and the status of the offline tests for critical components will be presented. This work was supported in part by the U.S. DOE, LLNL, and LLE.

  18. Total cross section measurement of radioactive isotopes with a thin beam neutron spectrometer

    International Nuclear Information System (INIS)

    Razbudej, V.F.; Vertebnyj, V.P.; Padun, G.S.; Muravitskij, A.V.

    1975-01-01

    The method for measuring the neutron total cross sections of radioactive isotopes by a time-of-flight spectrometer with a narrow (0.17 mm in diameter) beam of thermal neutrons is described. The distinguishing feature of this method is the use of capillary samples with a small amount of substance (0.05-1.0 mg). The energy range is 0.01-0.3 eV. The total cross sections of irradiated samples of sub(153)Eu and sub(151)Eu are measured. From them are obtained the cross sections of sub(152)Eu (Tsub(1/2)=12.4 g) and of sub(154)E (Tsub(1/2)=8.6 yr); they equal 11400+-1400 and 1530+-190 barn at E=0.0253 eV. The cross section of the sub(152)Eu absorption for the thermal spectrum (T=333 K) is determined by the activation method; it is 8900+-1200 barn

  19. Thermal neutron detector and gamma-ray spectrometer utilizing a single material

    Science.gov (United States)

    Stowe, Ashley; Burger, Arnold; Lukosi, Eric

    2017-05-02

    A combined thermal neutron detector and gamma-ray spectrometer system, including: a detection medium including a lithium chalcopyrite crystal operable for detecting thermal neutrons in a semiconductor mode and gamma-rays in a scintillator mode; and a photodetector coupled to the detection medium also operable for detecting the gamma rays. Optionally, the detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the detection medium comprises a compound formed by the process of: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound and heating; wherein the Group I element includes lithium.

  20. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    International Nuclear Information System (INIS)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.

    2013-01-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  1. γ-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Schooneveld, E.M.; Andreani, C.; Senesi, R.

    2009-01-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  2. γ-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    Science.gov (United States)

    Pietropaolo, A.; Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Schooneveld, E. M.; Andreani, C.; Senesi, R.

    2009-09-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  3. {gamma}-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Pietropaolo, A. [CNISM Milano-Bicocca, Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy)], E-mail: antonino.pietropaolo@mib.infn.it; Perelli Cippo, E. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Gorini, G. [CNISM Milano-Bicocca, Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 0QX OX11 (United Kingdom); Andreani, C.; Senesi, R. [Universia degli Studi di Roma Tor Vergata, Dipartimento di Fisica and NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2009-09-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  4. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  5. The monochromatic imaging mode of a RITA-type neutron spectrometer

    International Nuclear Information System (INIS)

    Bahl, C.R.H.; Andersen, P.; Klausen, S.N.; Lefmann, K.

    2004-01-01

    The imaging monochromatic mode of a neutron spectrometer with a multi-bladed RITA analyser system is so far unexplored. We present analytical calculations that define the mode. It is shown that the mode can be realised for PG (0 0 2) analyser crystals, from incident energies of about 3.2 meV and up, allowing the important cases of 3.7, 5.0 and 13.7 meV. Due to beam divergence, the neutron rays from neighbouring analyser blades are found to overlap slightly. Hence, the optimal use of the monochromatic imaging mode would be found by employing an adjustable radial collimator to limit the spread of the ray from each analyser blade

  6. The monochromatic imaging mode of a RITA-type neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, C.R.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark) and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)]. E-mail: christian.bahl@risoe.dk; Andersen, P. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Klausen, S.N. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Lefmann, K. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2004-12-01

    The imaging monochromatic mode of a neutron spectrometer with a multi-bladed RITA analyser system is so far unexplored. We present analytical calculations that define the mode. It is shown that the mode can be realised for PG (0 0 2) analyser crystals, from incident energies of about 3.2 meV and up, allowing the important cases of 3.7, 5.0 and 13.7 meV. Due to beam divergence, the neutron rays from neighbouring analyser blades are found to overlap slightly. Hence, the optimal use of the monochromatic imaging mode would be found by employing an adjustable radial collimator to limit the spread of the ray from each analyser blade.

  7. Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS

    Science.gov (United States)

    Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.-C.; Clergeau, J.-F.; Deen, P. P.; Ehlers, G.; van Esch, P.; Everett, S. M.; Guerard, B.; Hall-Wilton, R.; Herwig, K.; Hultman, L.; Höglund, C.; Iruretagoiena, I.; Issa, F.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Lopez Higuera, I.; Piscitelli, F.; Robinson, L.; Schmidt, S.; Stefanescu, I.

    2017-04-01

    The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.

  8. The performance of neutron scattering spectrometers at a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.

    1997-01-01

    In this document the author considers the performance of a long pulse spallation source for those neutron scattering experiments that are usually performed with a monochromatic beam at a continuous wave (CW) source such as a nuclear reactor. The first conclusion drawn is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons

  9. The impact of ICRP 60 recommendations on the dose equivalent in low- and high energy neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Jakes, J; Schraube, H [GSF-Forschungszentrum Neuberg, D-85758 Oberschleissheim (Germany). Inst. fuer Strahlenschutz

    1996-12-31

    The objectives of this study was to determine the impact of the increased risk factors for neutrons after ICRP 60 on the operational dose equivalent quantities at a few neutron fields selected with the respect to cover the broad variety of neutron spectra: (1) Cadarache calibration assembly, with average neutron energy around 0.6 MeV, designed to simulate realistic neutron spectra at workplaces. This assembly is basically composed of an almost spherical {sup 238}U converter irradiated by 14.6 MeV neutrons from an accelerator target, placed at its center, and a scattering chamber consisting of a cylindrical polyethylene duct and a series of additional shieldings; (2) Neutron spectra at exposed workplaces in nuclear power plants; (3) Moderated spectra of {sup 252}Cf fission source; (4) Neutron spectra behind a shielding made of the iron (the average energy 5.,89 MeV) and concrete (the average energy 46.51 MeV), respectively; (5) Cosmic rays induced neutron spectra measured on the top of the Zugspitze (2968 m) where there is the average neutron energy around 40 MeV. From the derived neutron spectra, the mean quality factors and conversion factors h after ICRP 21 and ICRP 60, respectively, were calculated. The dose equivalent conversion factors were taken for the region below 20 MeV, and the energy region above 20 MeV. The results show that the operational quantities were affected predominately in the low energy fields, where the changes are given by a factor of 1,3 for the neutron fields given above. As has been expected, the impact of the new recommendations depends on the shape of the neutron spectra. Therefore, this factor can be much higher in the fields where the intermediate energy region is dominant, which is the case of moderated and scattered spectra at some places in the nuclear power plant and around containers with the spent fuel elements. (J.K.) 9 refs.

  10. Measurement of neutron-production double-differential cross sections for high-energy pion-incident reaction

    International Nuclear Information System (INIS)

    Iwamoto, Yousuke; Iga, Kiminori; Kitsuki, Hirohiko

    2000-01-01

    Double-differential neutron-production yields for 870-MeV π + , π - and 2.1-GeV π + incident on iron and lead targets were measured with NE213 liquid scintillators by time-of-flight technique. The two-gate integration method was used for the pulse shape discrimination between neutrons and gamma-rays. Neutron detection efficiencies were derived from the calculation results of SCINFUL and CECIL codes. The experimental results were compared with the calculation including the neutron transport in the actual thickness target by the contribution use of both NMTC/JAERI97 and MCNPX. (author)

  11. First Magnon of BATAN’s Neutron Triple-Axis Spectrometer

    Directory of Open Access Journals (Sweden)

    I. Sumirat

    2016-08-01

    Full Text Available The National Nuclear Energy Agency of Indonesia (BATAN has one dedicated spectrometer for inelastic neutron scattering experiments. The instrument is a thermal neutron triple-axis spectrometer known as SN1. SN1 was installed in 1992 in the experimental hall of G. A. Siwabessy Research Reactor, Serpong, Banten. Malfunctions of the hardware and software have prevented the instrument from performing inelastic scattering measurements since 1996. The 2011-2015 five years project has been initiated to revitalize and optimize the SN1. The project serves as a preparation for the utilization of SN1 for the investigation of lattice dynamics, spin wave and magnetic excitations in condensed matters that will be started in 2016. In 2013, SN1 has successfully been repaired and was able to measure phonon dispersion relation of available single crystals, i.e., Cu, pyrolytic graphite (PG, Ge, and Al. In 2015, the first experiment on magnetic excitation to investigate magnon dispersion relation of a known Fe single crystal has been carried out. Standard methods of inelastic scattering measurements, i.e., a constant-energy transfer hω with either fixed final neutron energy Ef = 14.7 meV or fixed incoming neutron energy Ei = 30.59 meV, and a constant momentum transfer Q with fixed incoming neutron energy Ei = 30.59 meV, were applied to measure the low-energy magnetic excitations. For fixed Ef measurement, a 5-cm thick PG filter was set between the sample and the analyzer to eliminate λ/n harmonics. To limit the energy and momentum spreads of the beam, collimations of 40 minutes were applied before and after the sample. The spin waves were measured along the three principal symmetry directions of [00ζ], [ζζ0], and [ζζζ]. The measured magnons were compared to values in reference and were found to be in a good agreement with them. With such accomplishments, we are convinced that SN1 is now ready for its inelastic scattering application and will become one of

  12. Neutron reference spectra measurements with the Bonner multi-spheres spectrometer

    International Nuclear Information System (INIS)

    Lemos Junior, Roberto Mendonca de

    2004-01-01

    This paper aims to define a procedure to use the Bonner Multisphere Spectrometer with a 6 LiI(Eu) detector in order to determine of neutron spectra. It was measured 238 PuBe spectra and same of reference ( 241 AmBe, 252 Cf e 252 Cf+D 2 O) published in ISO 8529-1 (2001) Norm. The data were processed by a computer program (BUNKI), which presents the results in neutrons energy fluency. Each input parameter of the program was studied in order to establish their influence in the adjustment result. The environment dose equivalent rate obtained placing the detector 1 m from the 241 AmBe source was 122 ± 4 μSv/h with 7% of uncertainty and 95% of confidence level. The procedure established in this work was tested with the 238 PuBe spectrum, obtaining an environment dose equivalent rate of 286 ± 9 μSv/h, 8% lower than the value measured experimentally used as reference. Through this procedure will be possible to measure neutron spectra in different work places where neutrons sources are used. Knowing these spectra, it will be possible to evaluate which area monitors, are more suitable, as well as, to study better the response of individual neutron monitors, as for instance, to obtain a conversion coefficient more appropriate to the albedo dosimeter used in different work places. As the measurements need a long time to be accomplished, the work optimization is fundamental to reduce the exposing time of the Bonner spectrometer operator. For this reason, an important parameter examined in this paper was the possibility of reducing the number of spheres used during the measurement without changing the final result. Considering the radiation protection standards, this parameter has a huge importance when the measurements are performed in work places where the neutron fluency and gamma rate offer risks to the operator's health, as for instance, in nuclear centrals. Studying this parameter, it was possible to conclude that removing the 20,32 cm diameter sphere it will be

  13. First magnon of BATAN's neutron triple-axis spectrometer

    International Nuclear Information System (INIS)

    I Sumirat

    2016-01-01

    The National Nuclear Energy Agency of Indonesia (BATAN) has one dedicated spectrometer for inelastic neutron scattering experiments. The instrument is a thermal neutron triple-axis spectrometer known as SN1. SN1 was installed in 1992 in the experimental hall of G. A. Siwabessy Research Reactor, Serpong, Banten. Malfunctions of the hardware and software have prevented the instrument from performing inelastic scattering measurements since 1996. The 2011-2015 five years project has been initiated to revitalize and optimize the SN1. The project serves as a preparation for the utilization of SN1 for the investigation of lattice dynamics, spin wave and magnetic excitations in condensed matters that will be started in 2016. In 2013, SN1 has successfully been repaired and was able to measure phonon dispersion relation of available single crystals, i.e., Cu, pyrolytic graphite (PG), Ge, and Al. In 2015, the first experiment on magnetic excitation to investigate magnon dispersion relation of a known Fe single crystal has been carried out. Standard methods of inelastic scattering measurements, i.e., a constant-energy transfer hω with either fixed final neutron energy E f = 14.7 MeV or fixed incoming neutron energy E i = 30.59 MeV, and a constant momentum transfer Q with fixed incoming neutron energy E i = 30.59 MeV, were applied to measure the low-energy magnetic excitations. For fixed E f measurement, a 5-cm thick PG filter was set between the sample and the analyzer to eliminate λ/n harmonics. To limit the energy and momentum spreads of the beam, collimations of 40 minutes were applied before and after the sample. The spin waves were measured along the three principal symmetry directions of [00ζ], [ζζ0], and [ζζζ] . The measured magnons were compared to values in reference and were found to be in a good agreement with them. With such accomplishments, we are convinced that SN1 is now ready for its inelastic scattering application and will become one of BATAN

  14. Large solid-angle spectrometers for studies of double-differential charged-particle and neutron emission cross sections

    International Nuclear Information System (INIS)

    Baba, M.; Matsuyama, S.; Sanami, T.; Soda, D.; Matsuyama, I.; Ohkubo, T.; Iwasaki, S.; Hirakawa, N.

    1995-01-01

    The large solid-angle spectrometer developed for studies of double-differential cross sections of (n, charged particle) and (n, xn') reactions using a gas-filled gridded-ionization chamber and an 80-cm long liquid scintillator is described. The charged particle spectrometer is a twin gas-filled gridded-ionization chamber with solid angle close to 4 π designed to achieve high stopping power and background suppression. The neutron spectrometer is a long NE213 liquid scintillation detector having position sensitivity. It is used as a large single spectrometer or a position sensitive detector covering wide scattering angle. The facility design, performance and examples of application are discussed. The conclusion is made that the facility provides a useful mean for studies in particular for reactions with small cross sections and/or for neutron sources with low intensity. 15 refs., 15 figs

  15. A prototype fully digital data acquisition system upgrade for the TOFOR neutron spectrometer at JET

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, Mateusz, E-mail: mateusz.skiba@physics.uu.se [Department of Physics and Astronomy, Uppsala University (Sweden); Ericsson, Göran; Hjalmarsson, Anders; Hellesen, Carl; Conroy, Sean; Andersson-Sundén, Erik; Eriksson, Jacob [Department of Physics and Astronomy, Uppsala University (Sweden); JET Contributors [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-10-11

    A prototype of a fully digital data acquisition system upgrade for the TOFOR time-of-flight fusion neutron spectrometer at JET has been implemented and evaluated. The core of the system is composed of five fast PXIe waveform digitisers (1 GSPS, 12 bits) with large internal fast memory (1 GB). Due to the complexity and high requirements on timing precision of the spectrometer, the design and implementation of such a system poses numerous technical challenges, in particular regarding time alignment and synchronisation of signal paths and digitiser modules. These issues and their solutions, as pertaining to the TOFOR spectrometer, are presented in detail in the present paper. As a final assessment of the ability of the new data acquisition system to reproduce the capabilities of the original TOFOR system, a thorough comparison of results produced using both systems is presented. The comparison with TOFOR has been performed with satisfying results. Two immediate advantages of the new data acquisition system are significantly improved triggering dead time (from about 70 ns to 10 ns) and the ability to adjust the triggering thresholds as needed during the analysis step. The enhanced spectroscopic capabilities of the new data acquisition system will be reported on in future publications.

  16. High energy resolution measurement of the sup 238 U neutron capture yield from 1 to 100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, R.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering); Perez, R.B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (United States)); De Saussure, G.; Ingle, R.W. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    The purpose of this work is the precise determination of the {sup 238}U neutron capture yield (i.e. the probability of neutron capture) as a function of neutron energy with the highest available neutron energy resolution. The motivation for this undertaking arises from the central role played by the {sup 238}U neutron capture process in the neutron balance of both thermal reactors and fast breeder reactors. The present measurement was performed using the Oak Ridge Electron Linear Accelerator (ORELA) facility. The pulsed beam of neutrons from the ORELA facility is collimated on a sample of {sup 238}U. The neutron capture rate in the sample is measured, as a function of neutron time-of-flight (TOF) by detecting the {gamma}-rays from the {sup 238}U(n, {gamma}){sup 239}U reaction with a large {gamma}-ray detector surrounding the {sup 238}U sample. At each energy, the capture yield is proportional to the observed capture rate divided by the measured intensity of the neutron beam. The constant of proportionality (the normalization constant) is obtained from the ratio of theoretical to experimentally measured areas under small {sup 238}U resonances where the resonance parameters have been determined from high-resolution {sup 238}U transmission measurements. The cross section for the reaction {sup 238}U(n,{gamma}){sup 239}U can be derived from the measured capture yield if one applies appropriate corrections for multiple scattering and resonance self-shielding. Some 200 {sup 238}U neutron resonances in the energy range from 250 eV to 10 keV have been observed which had not been detected in previous measurements. (author).

  17. Pulse-shape discrimination of high-energy neutrons and gamma rays in NaI(Tl)

    International Nuclear Information System (INIS)

    Share, G.H.; Kurfess, J.D.; Theus, R.B.

    1978-01-01

    Pulse-shape discrimination can be used to separate neutron and gamma-ray interactions depositing energies up to in excess of 50 MeV in NaI(Tl) crystals. The secondary alpha particles, deuterons and protons produced in the neutron interactions are also resolvable. (Auth.)

  18. An organic scintillator neutron spectrometer suitable for in-phantom studies

    International Nuclear Information System (INIS)

    Harrison, K.G.

    1981-07-01

    A transportable organic scintillator spectrometry system based on a 1 cm high x 1 cm dia. cylindrical stilbene scintillator with a 30 cm light-pipe has been developed for neutron spectrometry inside anthropomorphic phantoms in order to improve knowledge of dose and dose-equivalent distributions in the body. Electronic pulse-shape discrimination is used to discriminate between neutron and gamma-ray events in the scintillator. The spectrometer is shown to give excellent results in the range of neutron energies from 1.5 to 7 MeV when used with an unfolding program based on differentiation of the pulse-height distribution. Below 1 MeV problems are experienced with pulse-shape discrimination, and below 2 MeV there are found to be some shortcomings in the differentiation method for this size of scintillator. Above about 9 MeV more sophisticated unfolding methods are shown to be desirable. Problems of stability of the system, difficulties in the measurement and calculation of the response functions, and disadvantages of using stilbene are discussed. (author)

  19. Distinguishing new science from calibration effects in the electron-volt neutron spectrometer VESUVIO at ISIS

    International Nuclear Information System (INIS)

    Chatzidimitriou-Dreismann, C.A.; Gray, E. MacA.; Blach, T.P.

    2012-01-01

    The “standard” procedure for calibrating the Vesuvio eV neutron spectrometer at the ISIS neutron source, forming the basis for data analysis over at least the last decade, was recently documented in considerable detail by the instrument's scientists. Additionally, we recently derived analytic expressions of the sensitivity of recoil peak positions with respect to fight-path parameters and presented neutron–proton scattering results that together called into question the validity of the “standard” calibration. These investigations should contribute significantly to the assessment of the experimental results obtained with Vesuvio. Here we present new results of neutron–deuteron scattering from D 2 in the backscattering angular range (θ>90°) which are accompanied by a striking energy increase that violates the Impulse Approximation, thus leading unequivocally the following dilemma: (A) either the “standard” calibration is correct and then the experimental results represent a novel quantum dynamical effect of D which stands in blatant contradiction of conventional theoretical expectations; (B) or the present “standard” calibration procedure is seriously deficient and leads to artificial outcomes. For Case (A), we allude to the topic of attosecond quantum dynamical phenomena and our recent neutron scattering experiments from H 2 molecules. For Case (B), some suggestions as to how the “standard” calibration could be considerably improved are made.

  20. Experimental verification of a new neutron spectrometer for environmental dosimetry and area; Verficiacion experimental de un nuevo espectrometro de neutrones para dosimetria ambiental y de area

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ros, J. M.; Romero, A.; Begogini, R.; Esposito, A.; Moraleda, M.; Lagares, J. I.; Sansaloni, F.; Arce, P.; Llop, J.

    2011-07-01

    In this communication, we present experimental results with a new neutron spectrometer, developed jointly by the Radiation Dosimetry Unit of CIEMAT Unita di Fisica and INFN-LNF Sanitary (Italy), consisting of a polyethylene moderating sphere detectors thermal neutrons (paired thermoluminescent dosimeters and activation foils) located in different positions. The device configuration and distribution of dosimeters are designed to elicit a response in a nearly isotropic up to 20 MeV energy range. (Author)

  1. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  2. Neutron transmission benchmark problems for iron and concrete shields in low, intermediate and high energy proton accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Katsumi [and others

    1996-09-01

    Benchmark problems were prepared for evaluating the calculation codes and the nuclear data for accelerator shielding design by the Accelerator Shielding Working Group of the Research Committee on Reactor Physics in JAERI. Four benchmark problems: transmission of quasi-monoenergetic neutrons generated by 43 MeV and 68 MeV protons through iron and concrete shields at TIARA of JAERI, neutron fluxes in and around an iron beam stop irradiated by 500 MeV protons at KEK, reaction rate distributions inside a thick concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and hadron fluxes inside an iron beam stop irradiated by 24 GeV protons at CERN are compiled in this document. Calculational configurations and neutron reaction cross section data up to 500 MeV are provided. (author)

  3. Extracting the cross section angular distributions for 15C high-energy resonance excited via the (18O,16O two-neutron transfer reaction

    Directory of Open Access Journals (Sweden)

    Carbone D.

    2016-01-01

    Full Text Available The 13C(18O,16O15C reaction has been studied at 84 MeV incident energy. The ejectiles have been momentum analized by the MAGNEX spectrometer and 15C excitation energy spectra have been obtained up to about 20 MeV. In the region above the two-neutron separation energy, a bump has been observed at 13.7 MeV. The extracted cross section angular distribution for this structure, obtained by using different models for background, displays a clear oscillating pattern, typical of resonant state of the residual nucleus.

  4. Multipolarity analysis for {sup 14}C high-energy resonance populated by ({sup 18}O,{sup 16}O) two-neutron transfer reaction

    Energy Technology Data Exchange (ETDEWEB)

    Carbone, D., E-mail: carboned@lns.infn.it; Cavallaro, M.; Bondì, M.; Agodi, C.; Cunsolo, A. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Cappuzzello, F. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Azaiez, F.; Franchoo, S.; Khan, E. [Institut de Physique Nucleaire, Universitè Paris-Sud, Orsay (France); Bonaccorso, A. [INFN-Sezione di Pisa, Pisa (Italy); Fortunato, L. [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); INFN-Sezione di Padova, Padova (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); INFN-Sezione di Catania, Catania (Italy); Linares, R.; Lubian, J. [Instituto de Fisica, Universidade Federal Fluminense, Niteroi (Brazil); Scarpaci, J. A. [Centre de Sciences Nucleaires et de Sciences de Matieres, Universitè Paris-Sud, Orsay (France); Vitturi, A. [INFN-Sezione di Padova, Padova (Italy); INFN-Sezione di Catania, Catania (Italy)

    2015-10-15

    The {sup 12}C({sup 18}O,{sup 16}O){sup 14}C reaction at 84 MeV incident energy has been explored up to high excitation energy of the residual nucleus thanks to the use of the MAGNEX spectrometer to detect the ejectiles. In the region above the two-neutron separation energy, a resonance has been observed at 16.9 MeV. A multipolarity analysis of the cross section angular distribution indicates an L = 0 character for such a transition.

  5. Independent measuring station for the GNEJS neutron spectrometer information and measurement system

    International Nuclear Information System (INIS)

    Gorokhov, I.S.; Laptev, A.B.; Marchenkov, V.V.; Tubol'tsev, Yu.V.; Fokin, E.Yu.; Shcherbakov, O.A.

    1984-01-01

    An independent measuring station (IMS) being a part of the information and measuring system of the neutron time-of-flight spectrometer is described. IMS represents the time (time-to-amplitude or time-to-angular) module analyzer assembled on the base of one or several CAMAC crates. The station permits to perform time measurements as well as the time measurements with amplitude weighing in an independent mode with subseqUent data transmission the central PDP-11/05 computer. The station processor unit is an independent controller. The software consists of the programming langUage of the controller from local terminal and programs ensuring measuring and shaping the spectra with their output on TV display devic. communication with the computer and dialogue with the operator

  6. A PCI time digitizer for the new JET time-of-flight neutron spectrometer

    International Nuclear Information System (INIS)

    Sousa, J.; Batista, A.J.N.; Combo, A.; Pereira, R.; Cruz, N.; Carvalho, P.; Varandas, C.A.F.; Conroy, S.; Ericsson, G.; Kaellne, J.

    2004-01-01

    A PCI time digitizer module with eight independent time-to-digital converter (TDC) channels is being developed for the new time-of-flight spectrometer designed for optimized rate (TOFOR) which diagnoses deuterium plasmas of the EFDA-JET tokamak. The module shall measure with high accuracy the flight-times of 2.5 MeV neutrons in the 100 ns range as given by two groups of scintillation detectors operating at average event rates from the expected 500 kHz up to 5 MHz. The module stores up to 64 million hit-times with a resolution of 0.4 ns and incorporates a digital signal processor and a system-on-chip device which performs the data transfer, the device control/monitoring and may perform statistical, data reduction or control algorithms in real-time

  7. Choppers to optimise the repetition rate multiplication technique on a direct geometry neutron chopper spectrometer

    International Nuclear Information System (INIS)

    Vickery, A.; Deen, P. P.

    2014-01-01

    In recent years the use of repetition rate multiplication (RRM) on direct geometry neutron spectrometers has been established and is the common mode of operation on a growing number of instruments. However, the chopper configurations are not ideally optimised for RRM with a resultant 100 fold flux difference across a broad wavelength band. This paper presents chopper configurations that will produce a relative constant (RC) energy resolution and a relative variable (RV) energy resolution for optimised use of RRM. The RC configuration provides an almost uniform ΔE/E for all incident wavelengths and enables an efficient use of time as the entire dynamic range is probed with equivalent statistics, ideal for single shot measurements of transient phenomena. The RV energy configuration provides an almost uniform opening time at the sample for all incident wavelengths with three orders of magnitude in time resolution probed for a single European Spallation Source (ESS) period, which is ideal to probe complex relaxational behaviour. These two chopper configurations have been simulated for the Versatile Optimal Resolution direct geometry spectrometer, VOR, that will be built at ESS

  8. High-sensitive spectrometer of fast neutrons and the results of fast neutron background flux measurements at the gallium-germanium solar neutrino experiment (SAGE)

    International Nuclear Information System (INIS)

    Abdurashitov, D.N.; Gavrin, V.N.; Kalikhov, A.V.; Matushko, V.L.; Shikhin, A.A.; Yants, V.E.; Zaborskaya, O.S.

    2001-01-01

    The principle of operation, design, registration system and main characteristics of a fast neutron spectrometer are described. The spectrometer is intended for direct measurements of ultra-low fluxes of fast neutrons. It is sensitive to neutron fluxes of 10 -7 cm -2 · s -1 and lower. The detection efficiency of fast neutrons with simultaneous energy measurement was determined from Monte-Carlo simulation to be equal to 0.11 ± 0.01. The background counting rate in the detector corresponds to a neutron flux of (6.5 ± 2.1) · 10 -7 cm -2 · s -1 in the range of 1.0-11.0 MeV. The natural neutron flux from the surrounding mine rock at the depth of 4600 meters of water equivalent was measured to be (7.3 ± 2.4) · 10 -7 cm -2 · s -1 in the interval 1.0 -11.0 MeV. The flux of fast neutrons in the SAGE main room was measured to be 2.3 · 10 -7 cm -2 · s -1 in 1.0 - 11.0 MeV energy range

  9. High-sensitive spectrometer of fast neutrons and the results of fast neutron background flux measurements at the Gallium-Germanium Solar Neutrino Experiment

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S

    2002-01-01

    The principle of operation, design, registration system and main characteristics of a fast neutron spectrometer are described. The spectrometer is intended for direct measurements of ultra low fluxes of fast neutrons. It is sensitive to neutron fluxes of 10 sup - sup 7 cm sup - sup 2 s sup - sup 1 and lower. The detection efficiency of fast neutrons with simultaneous energy measurement was determined from Monte-Carlo simulation to be equal to 0.11+-0.01. The background counting rate in the detector corresponds to a neutron flux of (6.5+-2.1)x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The natural neutron flux from the surrounding mine rock at the depth of 4600 m of water equivalent was measured to be (7.3+-2.4)x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in the range 1.0-11.0 MeV. The flux of fast neutrons in the SAGE main room was measured to be <2.3x10 sup - sup 7 cm sup - sup 2 s sup - sup 1 in 1.0-11.0 MeV energy range.

  10. Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Do-Kun Yoon; Joo-Young Jung; Tae Suk Suh; Seong-Min Han

    2015-01-01

    The purpose of this research is a statistical analysis for discrimination of prompt gamma ray peak induced by the 14.1 MeV neutron particles from spectra using Monte Carlo simulation. For the simulation, the information of 18 detector materials was used to simulate spectra by the neutron capture reaction. The discrimination of nine prompt gamma ray peaks from the simulation of each detector material was performed. We presented the several comparison indexes of energy resolution performance depending on the detector material using the simulation and statistics for the prompt gamma activation analysis. (author)

  11. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    DEFF Research Database (Denmark)

    Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.

    2016-01-01

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (a...... than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum....

  12. A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-flight neutron spectrometer

    Science.gov (United States)

    Wei, ZHANG; Tongyu, WU; Bowen, ZHENG; Shiping, LI; Yipo, ZHANG; Zejie, YIN

    2018-04-01

    A new neutron-gamma discriminator based on the support vector machine (SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination (PSD) property. The SVM algorithm is implemented in field programmable gate array (FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.

  13. Integral test of niobium differential elastic scattering cross-sections of 60 and 120 degrees for high-energy neutrons

    International Nuclear Information System (INIS)

    Selvi, Saim; Shin, Kazuo; Hyodo, Tomonori

    1984-01-01

    Spectra of scattered neutrons from a niobium disc were measured at the scattering angles of 60 deg and 120 deg by an NE-213 scintillator. Comparison of the experimental data with the point-to-point Monte Carlo calculations, using the evaluated data from the ENDF/B-IV file, showed good agreement at 60 deg, but considerable discrepancy at 120 deg. (author)

  14. Simulation for developing new pulse neutron spectrometers I. Creation of new McStas components of moderators of JSNS

    CERN Document Server

    Tamura, I; Arai, M; Harada, M; Maekawa, F; Shibata, K; Soyama, K

    2003-01-01

    Moderators components of the McStas code have been created for the design of JSNS instruments. Three cryogenic moderators are adopted in JSNS, one is coupled H sub 2 moderators for high intensity experiments and other two are decoupled H sub 2 with poisoned or unpoisoned for high resolution moderators. Since the characteristics of neutron beams generated from moderators make influence on the performance of pulse neutron spectrometers, it is important to perform the Monte Carlo simulation with neutron source component written precisely. The neutron spectrum and time structure were calculated using NMTC/JAERI97 and MCNP4a codes. The simulation parameters, which describe the pulse shape over entire spectrum as a function of time, are optimized. In this paper, the creation of neutron source components for port No.16 viewed to coupled H sub 2 moderator and for port No.11 viewed to decoupled H sub 2 moderator of JSNS are reported.

  15. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Frenje, J. A., E-mail: jfrenje@psfc.mit.edu; Wink, C. W.; Gatu Johnson, M.; Li, C. K.; Séguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hilsabeck, T. J.; Kilkenny, J. D. [General Atomics, San Diego, California 92186 (United States); Bell, P.; Bionta, R.; Cerjan, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T{sub i}), yield (Y{sub n}), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10{sup 16}. At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

  16. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF).

    Science.gov (United States)

    Frenje, J A; Hilsabeck, T J; Wink, C W; Bell, P; Bionta, R; Cerjan, C; Gatu Johnson, M; Kilkenny, J D; Li, C K; Séguin, F H; Petrasso, R D

    2016-11-01

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T i ), yield (Y n ), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10 16 . At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

  17. Spin exchange optical pumping based polarized 3He filling station for the Hybrid Spectrometer at the Spallation Neutron Source.

    Science.gov (United States)

    Jiang, C Y; Tong, X; Brown, D R; Culbertson, H; Graves-Brook, M K; Hagen, M E; Kadron, B; Lee, W T; Robertson, J L; Winn, B

    2013-06-01

    The Hybrid Spectrometer (HYSPEC) is a new direct geometry spectrometer at the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is equipped with polarization analysis capability with 60° horizontal and 15° vertical detector coverages. In order to provide wide angle polarization analysis for this instrument, we have designed and built a novel polarized (3)He filling station based on the spin exchange optical pumping method. It is designed to supply polarized (3)He gas to HYSPEC as a neutron polarization analyzer. In addition, the station can optimize the (3)He pressure with respect to the scattered neutron energies. The depolarized (3)He gas in the analyzer can be transferred back to the station to be repolarized. We have constructed the prototype filling station. Preliminary tests have been carried out demonstrating the feasibility of the filling station. Here, we report on the design, construction, and the preliminary results of the prototype filling station.

  18. BUMS--Bonner sphere Unfolding Made Simple: an HTML based multisphere neutron spectrometer unfolding package

    International Nuclear Information System (INIS)

    Sweezy, Jeremy; Hertel, Nolan; Veinot, Ken

    2002-01-01

    A new multisphere neutron spectrometer unfolding package, Bonner sphere Unfolding Made Simple (BUMS) has been developed that uses an HTML interface to simplify data input and code execution for the novice and the advanced user. This new unfolding package combines the unfolding algorithms contained in other popular unfolding codes under one easy to use interface. The interface makes use of web browsing software to provide a graphical user interface to the unfolding algorithms. BUMS integrates the SPUNIT, BON, MAXIET, and SAND-II unfolding algorithms into a single package. This package also includes a library of 14 response matrices, 58 starting spectra, and 24 dose and detector responses. BUMS has several improvements beyond the addition of unfolding algorithms. It has the ability to search for the most appropriate starting spectra. Also, plots of the unfolded neutron spectra are automatically generated. The BUMS package runs via a web server and may be accessed by any computer with access to the Internet at http://nukeisit.gatech.edu/bums

  19. Constant-q data representation in Neutron Compton scattering on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Senesi, R.; Pietropaolo, A.; Andreani, C.

    2008-01-01

    Standard data analysis on the VESUVIO spectrometer at ISIS is carried out within the Impulse Approximation framework, making use of the West scaling variable y. The experiments are performed using the time-of-flight technique with the detectors positioned at constant scattering angles. Line shape analysis is routinely performed in the y-scaling framework, using two different (and equivalent) approaches: (1) fitting the parameters of the recoil peaks directly to fixed-angle time-of-flight spectra; (2) transforming the time-of-flight spectra into fixed-angle y spectra, referred to as the Neutron Compton Profiles, and then fitting the line shape parameters. The present work shows that scattering signals from different fixed-angle detectors can be collected and rebinned to obtain Neutron Compton Profiles at constant wave vector transfer, q, allowing for a suitable interpretation of data in terms of the dynamical structure factor, S(q,ω). The current limits of applicability of such a procedure are discussed in terms of the available q-range and relative uncertainties for the VESUVIO experimental set up and of the main approximations involved

  20. Constant-q data representation in Neutron Compton scattering on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Senesi, R. [Dipartimento di Fisica, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Roma (Italy); Centro NAST, Nanoscienze and Nanotecnologie and Strumentazione, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Roma (Italy)], E-mail: roberto.senesi@roma2.infn.it; Pietropaolo, A.; Andreani, C. [Dipartimento di Fisica, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Roma (Italy); Centro NAST, Nanoscienze and Nanotecnologie and Strumentazione, Universita degli Studi di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2008-09-01

    Standard data analysis on the VESUVIO spectrometer at ISIS is carried out within the Impulse Approximation framework, making use of the West scaling variable y. The experiments are performed using the time-of-flight technique with the detectors positioned at constant scattering angles. Line shape analysis is routinely performed in the y-scaling framework, using two different (and equivalent) approaches: (1) fitting the parameters of the recoil peaks directly to fixed-angle time-of-flight spectra; (2) transforming the time-of-flight spectra into fixed-angle y spectra, referred to as the Neutron Compton Profiles, and then fitting the line shape parameters. The present work shows that scattering signals from different fixed-angle detectors can be collected and rebinned to obtain Neutron Compton Profiles at constant wave vector transfer, q, allowing for a suitable interpretation of data in terms of the dynamical structure factor, S(q,{omega}). The current limits of applicability of such a procedure are discussed in terms of the available q-range and relative uncertainties for the VESUVIO experimental set up and of the main approximations involved.

  1. Constant- q data representation in Neutron Compton scattering on the VESUVIO spectrometer

    Science.gov (United States)

    Senesi, R.; Pietropaolo, A.; Andreani, C.

    2008-09-01

    Standard data analysis on the VESUVIO spectrometer at ISIS is carried out within the Impulse Approximation framework, making use of the West scaling variable y. The experiments are performed using the time-of-flight technique with the detectors positioned at constant scattering angles. Line shape analysis is routinely performed in the y-scaling framework, using two different (and equivalent) approaches: (1) fitting the parameters of the recoil peaks directly to fixed-angle time-of-flight spectra; (2) transforming the time-of-flight spectra into fixed-angle y spectra, referred to as the Neutron Compton Profiles, and then fitting the line shape parameters. The present work shows that scattering signals from different fixed-angle detectors can be collected and rebinned to obtain Neutron Compton Profiles at constant wave vector transfer, q, allowing for a suitable interpretation of data in terms of the dynamical structure factor, S(q,ω). The current limits of applicability of such a procedure are discussed in terms of the available q-range and relative uncertainties for the VESUVIO experimental set up and of the main approximations involved.

  2. A proton-recoil neutron spectrometer for time-dependent ion temperatures on the National Ignition Facility

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1995-01-01

    Ion temperatures from inertial confinement fusion targets are usually determined by measuring the Doppler broadening of the neutron spectrum using the time-of-flight method. Measurement systems are generally designed so that the contribution of the duration of neutron production (∼100 ps) to the width of the neutron signal is negligible. This precludes the possibility of time-dependent ion temperature. If, however, one could measure the neutron energy and arrival time at a detector independently, then time-dependent neutron spectra could be obtained, and ion temperature information deduced. A concept utilizing a proton-recoil neutron spectrometer has been developed in which recoil protons from a small plastic foil are measured. From the energy, arrival time, and recoil angle of the recoil proton, the birth time and energy of the incident neutron can be deduced. The sensitivity of the system is low, but the higher anticipated neutron yields from the proposed National Ignition Facility may make the technique feasible. Large scintillator arrays currently in use on the Nova facility for neutron spectral measurements consist of ∼1,000 channels and detect between 50 and 500 counts for typical time-integrated data. Time-dependent results would then require about an order of magnitude larger system. Key issues for making this system feasible will be keeping the cost per channel low while allowing adequately time (∼ 50 ps), energy (20 keV), and angular resolution (2 mrad) for each of the proton detectors

  3. High-energy-neutron damage in Nb3Sn: changes in critical properties, and damage-energy analysis

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Parkin, D.M.; Guinan, M.W.

    1981-01-01

    Filamentary wires of Nb 3 Sn have been irradiated with fission-reactor, 14.8-MeV, and d-Be neutrons and the changes in critical properties measured. The changes observed scale reasonably well with the calculated damage energies for the irradiations. A critical dose for operation of these conductors in fusion-magnet applications is determined to be 0.19 eV/atom damage energy or 0.0019 dpa

  4. HIGH ENERGY NEUTRINOS PRODUCED IN THE ACCRETION DISKS BY NEUTRONS FROM NUCLEI DISINTEGRATED IN THE AGN JETS

    Energy Technology Data Exchange (ETDEWEB)

    Bednarek, W., E-mail: bednar@uni.lodz.pl [Department of Astrophysics, The University of Lodz, 90-236 Lodz, ul. Pomorska 149/153 (Poland)

    2016-12-20

    We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed toward the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such a hadronic cascade within the accretion disk. We propose that the neutrinos produced in such a scenario, from the whole population of super-massive black holes in active galaxies, can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that a 5% fraction of galaxies have an active galactic nucleus and a few percent of neutrons reach the accretion disk. We predict that the neutrino signals in the present neutrino detectors, produced in terms of such a model, will not be detectable even from the nearby radio galaxies similar to M87.

  5. SEARCH FOR SOURCES OF HIGH-ENERGY NEUTRONS WITH FOUR YEARS OF DATA FROM THE ICETOP DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Abraham, K. [Physik-department, Technische Universität München, D-85748 Garching (Germany); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A.; Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Altmann, D.; Anton, G. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Andeen, K. [Department of Physics, Marquette University, Milwaukee, WI 53201 (United States); Anderson, T. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Archinger, M.; Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Argüelles, C.; Axani, S. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Collaboration: IceCube Collaboration; and others

    2016-10-20

    IceTop is an air-shower array located on the Antarctic ice sheet at the geographic South Pole. IceTop can detect an astrophysical flux of neutrons from Galactic sources as an excess of cosmic-ray air showers arriving from the source direction. Neutrons are undeflected by the Galactic magnetic field and can typically travel 10 ( E /PeV) pc before decay. Two searches are performed using 4 yr of the IceTop data set to look for a statistically significant excess of events with energies above 10 PeV (10{sup 16} eV) arriving within a small solid angle. The all-sky search method covers from −90° to approximately −50° in declination. No significant excess is found. A targeted search is also performed, looking for significant correlation with candidate sources in different target sets. This search uses a higher-energy cut (100 PeV) since most target objects lie beyond 1 kpc. The target sets include pulsars with confirmed TeV energy photon fluxes and high-mass X-ray binaries. No significant correlation is found for any target set. Flux upper limits are determined for both searches, which can constrain Galactic neutron sources and production scenarios.

  6. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    Science.gov (United States)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  7. A new three-tier architecture design for multi-sphere neutron spectrometer with the FLUKA code

    Science.gov (United States)

    Huang, Hong; Yang, Jian-Bo; Tuo, Xian-Guo; Liu, Zhi; Wang, Qi-Biao; Wang, Xu

    2016-07-01

    The current commercially, available Bonner sphere neutron spectrometer (BSS) has high sensitivity to neutrons below 20 MeV, which causes it to be poorly placed to measure neutrons ranging from a few MeV to 100 MeV. The paper added moderator layers and the auxiliary material layer upon 3He proportional counters with FLUKA code, with a view to improve. The results showed that the responsive peaks to neutrons below 20 MeV gradually shift to higher energy region and decrease slightly with the increasing moderator thickness. On the contrary, the response for neutrons above 20 MeV was always very low until we embed auxiliary materials such as copper (Cu), lead (Pb), tungsten (W) into moderator layers. This paper chose the most suitable auxiliary material Pb to design a three-tier architecture multi-sphere neutron spectrometer (NBSS). Through calculating and comparing, the NBSS was advantageous in terms of response for 5-100 MeV and the highest response was 35.2 times the response of polyethylene (PE) ball with the same PE thickness.

  8. Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Abernathy, D. L.; Stone, M. B.; Loguillo, M. J.; Lucas, M. S.; Delaire, O.; Tang, X.; Lin, J. Y. Y.; Fultz, B.

    2012-01-01

    The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically focused neutron guide, high speed magnetic bearing choppers, and a massive array of 3 He linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and sample environment equipment. ARCS views the SNS decoupled ambient temperature water moderator, using neutrons with incident energy typically in the range from 15 to 1500 meV. This range, coupled with the large detector coverage, allows a wide variety of studies of excitations in condensed matter, such as lattice dynamics and magnetism, in both powder and single-crystal samples. Comparisons of early results to both analytical and Monte Carlo simulation of the instrument performance demonstrate that the instrument is operating as expected and its neutronic performance is understood. ARCS is currently in the SNS user program and continues to improve its scientific productivity by incorporating new instrumentation to increase the range of science covered and improve its effectiveness in data collection.

  9. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons

    International Nuclear Information System (INIS)

    Mukherjee, B.; Simrock, S.; Khachan, J.; Rybka, D.; Romaniuk, R.

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a 60 Co source up to a dose level in excess of 1.0 kGy (1.0 x 10 5 rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong Bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted. (authors)

  10. 'aspect' - a new spectrometer for the measurement of the angular correlation coefficient a in neutron beta decay

    CERN Document Server

    Zimmer, O; Grinten, M G D; Heil, W; Glück, F

    2000-01-01

    The combination of the coefficient a of the antineutrino/electron angular correlation with the beta asymmetry of the neutron provides a sensitive test for scalar and tensor contributions to the electroweak Lagrangian, as well as for right-handed currents. A method is given for measuring a with high sensitivity from the proton recoil spectrum. The method is based on a magnetic spectrometer with electrostatic retardation potentials such as used for searches of the neutrino mass in tritium beta decay. The spectrometer can also be used for similar studies using radioactive nuclei.

  11. Design and construction of a triple-axis crystal neutron spectrometer and performance testing by means of measurements of dispersion relations in copper

    International Nuclear Information System (INIS)

    Fuhrmann, C.

    1979-01-01

    The Triple-Axis Crystal Neutron Spectrometer is the best instrument for the study of lattice dynamics, when the neutron inelastic scattering technique is used. Design, construction and operation of a triple-axis crystal neutron spectrometer, whose construction was recently finished at IEA are described. The design principles employed are directed to mechanical simplicity, facility of construction and flexibility in operation, with no adapted components to industrial applications were used in the construction. The operational characteristics of the spectrometer, such as the neutron wavelenght of the incoming beam and the resolution have been determined. With the purpose to check the performance of IEA Triple-Axis Crystal Neutron Spectrometer, dispersion relation curves for copper, at room temperature, have been measured. The frequency of phonons propagating along three major symmetry directions have been determined. The measurements were carried out operating the Triple-Axis Spectrometer in the 'sup(→)Q-constant' mode. An excelent agreement could be observed between the results obtained in the present experiment and the data for copper presented in the literature. This comparison indicates that the IEA Triple-Axis Crystal Neutron Spectrometer is in good operational conditions and is able to perform original experiments. Details on the experimental procedures for the case of a Triple-Axis Spectrometer operating in 'sup(→)Q-constant' mode are also presented. (Author) [pt

  12. Neutronics analysis for the ITER core imaging X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Serikov, Arkady, E-mail: arkady.serikov@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Fischer, Ulrich [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Suarez, Alejandro; Barnsley, Robin; Bertalot, Luciano; O’Connor, Richard; Thenevin, Raphaël; Udintsev, Victor S. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • Proposed substantial radiation shielding design improvements of the CIXS system. • Radiation protection of the CIXS Port Interspace (PI) to provide personnel access. • The SDDR at PI was reduced by 100× from 2 mSv/h to 20 microSv/h. • A screen plate as a temporary shield at the CIXS maintenance period has been proposed. • The shadow effect created by a screen plate reduces SDDR by 9×. - Abstract: This paper presents new results of the MCNP neutronics analysis for the core imaging X-ray spectrometer (CIXS) system of the ITER Equatorial Port Plug #17 (EPP#17). Substantial radiation shielding design improvements of the CIXS system have been suggested as the outcomes of this analysis. These suggested improvements allow reaching two major goals: (1) radiation protection of the CIXS Port Interspace (PI) to provide personnel access for maintenance of the vacuum extension flange; (2) reduction of the neutron and gamma loads on the detectors to reduce the need for maintenance itself. By implementing the improvements in our models such as filling void spaces around the CIXS beams with boron carbide and inserting the tungsten collimators in the narrowed beam channel, we were able to reduce the Shut-Down Dose Rate (SDDR) in the PI by 100× from 2 mSv/h in the original CIXS design to 20 microSv/h. In case of non-changed MCNP geometry, the D1S method was applied in calculations of SDDR. To allow the maintenance access to the flange, a part of shielding was removed, therefore the R2Smesh methodology was applied instead of D1S. During the maintenance access of CIXS from the PI side, a screen plate was proposed to introduce behind which a worker receives much less SDDR.

  13. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M., E-mail: gatu@psfc.mit.edu; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Sayre, D. B.; Skulina, K.; Yeamans, C. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Farrell, M. P.; Hoppe, M.; Kilkenny, J. D.; Reynolds, H. G.; Schoff, M. E. [General Atomics, San Diego, California 92186 (United States)

    2016-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.

  14. The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET

    International Nuclear Information System (INIS)

    Gatu Johnson, M.; Giacomelli, L.; Hjalmarsson, A.

    2007-08-01

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range including high rates of >100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron time-of-flight spectra recorded for plasmas subjected to different heating scenarios. A data acquisition rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to >5 MeV. The implications of instrumental advancement represented by TOFOR are discussed

  15. The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET

    International Nuclear Information System (INIS)

    Gatu Johnson, M.; Giacomelli, L.; Hjalmarsson, A.; Kaellne, J.; Weiszflog, M.; Andersson Sunden, E.; Conroy, S.; Ericsson, G.; Hellesen, C.; Ronchi, E.; Sjoestrand, H.; Gorini, G.; Tardocchi, M.; Combo, A.; Cruz, N.; Sousa, J.; Popovichev, S.

    2008-01-01

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range, including high rates of >100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron TOF spectra recorded for plasmas subjected to different heating scenarios. A true event count rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth, where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to >5 MeV. The implications of instrumental advancement represented by TOFOR are discussed

  16. The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M.; Giacomelli, L.; Hjalmarsson, A. (and others)

    2007-08-15

    A time-of-flight (TOF) spectrometer for measurement of the 2.5-MeV neutron emission from fusion plasmas has been developed and put into use at the JET tokamak. It has been optimized for operation at high rates (TOFOR) for the purpose of performing advanced neutron emission spectroscopy (NES) diagnosis of deuterium plasmas with a focus on the fuel ion motional states for different auxiliary heating scenarios. This requires operation over a large dynamic range including high rates of >100 kHz with a maximum value of 0.5 MHz for the TOFOR design. This paper describes the design principles and their technical realization. The performance is illustrated with recent neutron time-of-flight spectra recorded for plasmas subjected to different heating scenarios. A data acquisition rate of 39 kHz has been achieved at about a tenth of the expected neutron yield limit of JET, giving a projected maximum of 400 kHz at peak JET plasma yield. This means that the count rate capability for NES diagnosis of D plasmas has been improved more than an order of magnitude. Another important performance factor is the spectrometer bandwidth where data have been acquired and analyzed successfully with a response function for neutrons over the energy range 1 to >5 MeV. The implications of instrumental advancement represented by TOFOR are discussed.

  17. Study of High Energy Nucleus-Nucleus Interactions Using the $\\Omega^{'}$ Spectrometer Equipped with a Multiparticle High $p_{T}$ Detector

    CERN Multimedia

    2002-01-01

    The experiment is looking for new physics in 200~GeV/c per nucleon sulphur-tungsten collisions in the $\\Omega$' spectrometer. In particular, we are looking for a quark gluon plasma signature in the increase of the production rate of strange and multistrange baryons and antibaryons. In view of the large number of secondaries, we are using a special detector arrangement, called a ``butterfly system'', which has a large acceptance for particles with 2.2~$\\leq$~ $y _{l}ab $ ~$\\leq$~3.2 and $p _{T} $ ~$>$~0.6 ~GeV/c and is insensitive to all the other particles.

  18. New components for the neutron spectrometer SV5c at the 10H channel of the research reactor FRJ2

    International Nuclear Information System (INIS)

    Stockmeyer, R.

    1991-02-01

    The following new components have been installed at the neutron time-of-flight spectrometer SV5c: 1. Monochromator with devices for tilting and rotating 10 crystal. The fine-adjustment of the crystal orientation can be done with a computer program which maximizes the neutron intensity at the sample position. 2. 128 x 512 multi-channel time-of-flight electronic 3. Computerized equipment for measuring thermal properties of a sample (adsorption isotherm, sample transmission) 4. Data aquisition, data handling and experiment control software coded in ASYST. (orig.)

  19. Neutron spectrometry for D-T plasmas in JET, using a tandem annular-radiator proton-recoil spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P.; Bond, D.S.; Kiptily, V.; Jarvis, O.N. E-mail: onj@jet.uk; Conroy, S.W

    2002-01-01

    A selection of the 14-MeV neutron spectra obtained at the JET Joint Undertaking tokamak during the deuterium-tritium operating campaign in 1997 are presented and analyzed. While several neutron spectrometers were operational during this campaign, the present paper is concerned solely with one: the tandem annular-radiator proton-recoil spectrometer (or proton recoil telescope, for brevity). During neutral beam heating with combined d- and t-beams, analysis of the spectra can define the core fuel composition (D:T) ratio. The spectra are sensitive to the population balance of the fast ions streaming in directions parallel and opposite to that of the injected beams. During ICRF heating of minority deuterium in bulk tritium plasmas, the spectra provide measurements of the effective temperature of the fast-deuteron energy tail and of its relative strength, which vary with the deuterium concentration. This information contributes to the overall understanding of the fusion performance of the various operating scenarios.

  20. Data recording programme for a time-of-flight neutron spectrometer

    International Nuclear Information System (INIS)

    Smit, J.G.

    1975-04-01

    A modular program was written for the acquisition of the measurement data of a rotating crystal neutron spectrometer in a PDP-11/20 computer (16 K core memory). The modules are subroutines called by the higher-order FORTRAN programs. This program, which is carried out under the version 08/02 disk operating system, collects the data of a maximum number of 7 detectors in the core memory via interrupts in the on line mode. The detectors are connected to a time-of-flight unit which assigns the time and the detector number to the signals (minimum width of time channel 0.5 μs). From the T.O.F. unit the signals are passed on to the computer via a CAMAC input register and the CA-11 a branch driver manufactured by DEC. All the measurement data can be graphically displayed on a Tektronix visual display unit (keyboard interrupt). Relevant data are stored on disk and passed on to the central computer (S 4004) for further processing at the end of the experiment. (orig./RF) [de

  1. Response matrix of an extended range Bonner sphere spectrometer for the characterization of collimated neutron beams

    International Nuclear Information System (INIS)

    Bedogni, R.; Esposito, A.; Gomez-Ros, J.M.

    2010-01-01

    Accelerator-based neutron beams are becoming popular tools for material testing, radiation hardness and soft errors studies. The characterization of these beams in terms of dosimetric and spectrometric quantities is a challenging task, mainly due to their wide energy interval (from thermal up to hundreds MeV) and, in certain facilities like VESUVIO - ISIS (RAL, UK), to their small dimension (few cm in radius). Extended Range Bonner Sphere Spectrometers (ERBSS) would be a valuable tool, due to their wide energy range, good photon discrimination and possibility to choose among different central detectors according to the intensity, photon component and time structure of the field. Nevertheless, the non-uniform irradiation of the spheres could lead to important systematic errors. With the aim of bringing the advantages of ERBSS into the characterization of collimated beams, a dedicated study was performed using the VESUVIO spallation-based collimated beam at ISIS (Rutherford Appleton Laboratory, Oxford). Here a 3.21 cm radius collimated beam was characterized using a Dysprosium activation foil-based ERBSS whose response matrix was recalculated for this specific beam diameter. Besides the results of the experimental campaign, this paper presents the calculation of the response matrix and its dependence on the beam dimension.

  2. The multianalyser system of the three axes neutron spectrometer PUMA: Pilot experiments with the innovative multiplex technique

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, Oleg; Hoffmann, Ron; Gibhardt, Holger [Institute for Physical Chemistry, Georg-August-University of Göttingen, Tammannstr. 6, D-37077 Göttingen (Germany); Jünke, Norbert [Forschungs-Neutronenquelle Heinz-Maier-Leibnitz, Technical University of Munich, Lichtenbergstr. 1, D-85748 Garching (Germany); Knorr, Andreas; Meyer, Volker [Institute for Physical Chemistry, Georg-August-University of Göttingen, Tammannstr. 6, D-37077 Göttingen (Germany); Eckold, Götz, E-mail: geckold@gwdg.de [Institute for Physical Chemistry, Georg-August-University of Göttingen, Tammannstr. 6, D-37077 Göttingen (Germany)

    2015-02-01

    A new type of multiplex technique for three axes neutron spectrometers has been realized and successfully commissioned at the PUMA spectrometer at FRM II. Consisting of eleven analyser-detector channels which can be configured individually, this technique is especially suitable for kinetic experiments where a single excitation spectrum is recorded as a function of time without the need to move the spectrometer. On a time-scale of seconds an entire spectrum can be recorded thus allowing users to monitor changes during fast kinetic processes in single shot experiments without the need for stroboscopic techniques. Moreover, the multianalyser system provides an efficient and rapid tool for mapping excitations in (Q,ω)-space. The results of pilot experiments demonstrate the performance of this new technique and a user-friendly software is presented which assists users during their experiments.

  3. Fast neutron and gamma-ray spectra measurements with a NE-213 spectrometer in the FNG Copper Benchmark Experiment

    International Nuclear Information System (INIS)

    Klix, Axel; Angelone, Maurizio; Fischer, Ulrich; Pillon, Mario

    2016-01-01

    Highlights: • Fast neutron and gamma-ray spectra were measured in a copper assembly irradiated with DT neutrons. • The results were compared with MCNP calculations. • Primary aim was to provide experimental data for checking and validation of nuclear data evaluations of copper. - Abstract: A neutronics benchmark experiment on a pure Copper assembly was performed at the Frascati Neutron Generator. The work aimed at testing of recent nuclear data libraries. This paper focuses on the measurement of fast neutron and gamma-ray flux spectra in the Copper assembly under DT neutron irradiation in two selected positions with a spectrometer based on the organic liquid scintillator NE-213. The measurement results were compared with Monte Carlo radiation transport calculations using MCNP and nuclear data from the JEFF-3.1.1 library. Calculations have been done with Cu data from JEFF-3.1.1, JEFF-3.2, FENDL-3 and ENDF/B-7.0. Discrepancies appear in the intermediate neutron energy range between experiment and calculation. Large discrepancies were observed in the gamma-ray spectra calculated with JEFF-3.2.

  4. Fast neutron and gamma-ray spectra measurements with a NE-213 spectrometer in the FNG Copper Benchmark Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klix, Axel, E-mail: axel.klix@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Angelone, Maurizio [ENEA Dipartimento Fusione e Tecnologie per la Sicurezza Nucleare, C.R. Frascati, via E. Fermi 45, 00044 Frascati (Italy); Fischer, Ulrich [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pillon, Mario [ENEA Dipartimento Fusione e Tecnologie per la Sicurezza Nucleare, C.R. Frascati, via E. Fermi 45, 00044 Frascati (Italy)

    2016-11-01

    Highlights: • Fast neutron and gamma-ray spectra were measured in a copper assembly irradiated with DT neutrons. • The results were compared with MCNP calculations. • Primary aim was to provide experimental data for checking and validation of nuclear data evaluations of copper. - Abstract: A neutronics benchmark experiment on a pure Copper assembly was performed at the Frascati Neutron Generator. The work aimed at testing of recent nuclear data libraries. This paper focuses on the measurement of fast neutron and gamma-ray flux spectra in the Copper assembly under DT neutron irradiation in two selected positions with a spectrometer based on the organic liquid scintillator NE-213. The measurement results were compared with Monte Carlo radiation transport calculations using MCNP and nuclear data from the JEFF-3.1.1 library. Calculations have been done with Cu data from JEFF-3.1.1, JEFF-3.2, FENDL-3 and ENDF/B-7.0. Discrepancies appear in the intermediate neutron energy range between experiment and calculation. Large discrepancies were observed in the gamma-ray spectra calculated with JEFF-3.2.

  5. LET spectrometry with track etch detectors-Use in high-energy radiation fields

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spurny, F.

    2008-01-01

    For assessing the risk from ionizing radiation it is necessary to know not only the absorbed dose but also the quality of the radiation; radiation quality is connected with the physical quantity linear energy transfer (LET). One of the methods of determination of LET is based on chemically etched track detectors. This contribution concerns with a spectrometer of LET based on the track detectors and discusses some results obtained at: ·high-energy radiation reference field created at the SPS accelerator at CERN; and ·onboard of International Space Station where track-etch based LET spectrometer has been exposed 273 days during 'Matrjoshka - R' experiment. Results obtained are compared with the results of studies at some lower-energy neutron sources; some conclusions on the registrability of neutrons and the ability of this spectrometer to determine dose equivalent in high-energy radiation fields are formulated

  6. High energy x-ray and neutron studies of disordered energy-related materials at extreme conditions

    International Nuclear Information System (INIS)

    Parise, John

    2016-01-01

    The fundamental scientific accomplishments are: (1) advances in a general description of the liquid state by employing structural models constrained by measurements to interpret experimental results and extend them to liquids in general, with special emphasis on (2) The structure of the high-temperature crystal and molten UO_2 and 3) water. Specifically, samples of UO_2 and water were probed using high-energy x-rays at the Advanced Photon Source. The high Z of UO_2, and the 2-3mm diameter droplet shape of the molten sample, means that >100keV X-rays are required to minimize absorption and multiple scattering, which can distort the measured structure factor. A high flux of x-rays is also required to obtain sufficient statistical accuracy in short (a few seconds) measurement times. The scattered x-ray data were analyzed and pair distribution functions, extracted that characterize the local and long-range atomic structure of the material. The measurements of the hot UO_2 solid show a substantial increase in oxygen disorder and, upon melting, the average U-O coordination was found to decrease from 8 to 6.7±0.5. The research incorporated development of diffraction techniques, sample environment optimization and state-of-the-art simulation techniques. The symbiotic nature of the advances in simulation and experiment allowed for a more focused and informed development of future experiments, effective use of expensive beam time and generated new research agendas for the growing number of research groups, within the US and internationally, that focus on the structure of liquids. Molecular dynamics (MD) provided detailed information when combined with high-quality XN data including addressing key issues in liquids; the relationship between cooling path, structure and fictive temperature, and the trade-offs between network over connectedness in liquids containing low-coordination cations.

  7. High energy x-ray and neutron studies of disordered energy-related materials at extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Parise, John [Stony Brook Univ., NY (United States)

    2016-05-16

    The fundamental scientific accomplishments are: (1) advances in a general description of the liquid state by employing structural models constrained by measurements to interpret experimental results and extend them to liquids in general, with special emphasis on (2) The structure of the high-temperature crystal and molten UO2 and 3) water. Specifically, samples of UO2 and water were probed using high-energy x-rays at the Advanced Photon Source. The high Z of UO2, and the 2-3mm diameter droplet shape of the molten sample, means that >100keV X-rays are required to minimize absorption and multiple scattering, which can distort the measured structure factor. A high flux of x-rays is also required to obtain sufficient statistical accuracy in short (a few seconds) measurement times. The scattered x-ray data were analyzed and pair distribution functions, extracted that characterize the local and long-range atomic structure of the material. The measurements of the hot UO2 solid show a substantial increase in oxygen disorder and, upon melting, the average U-O coordination was found to decrease from 8 to 6.7±0.5. The research incorporated development of diffraction techniques, sample environment optimization and state-of-the-art simulation techniques. The symbiotic nature of the advances in simulation and experiment allowed for a more focused and informed development of future experiments, effective use of expensive beam time and generated new research agendas for the growing number of research groups, within the US and internationally, that focus on the structure of liquids. Molecular dynamics (MD) provided detailed information when combined with high-quality XN data including addressing key issues in liquids; the relationship between cooling path, structure and fictive temperature, and the trade-offs between network over connectedness in liquids containing low-coordination cations.

  8. The high-resolution time-of-flight spectrometer TOFTOF

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Tobias [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II and Physik Department E13, Lichtenbergstr. 1, 85747 Garching (Germany)], E-mail: Tobias.Unruh@frm2.tum.de; Neuhaus, Juergen; Petry, Winfried [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II and Physik Department E13, Lichtenbergstr. 1, 85747 Garching (Germany)

    2007-10-11

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of {approx}10{sup 10}n/cm{sup 2}/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  9. The high-resolution time-of-flight spectrometer TOFTOF

    Science.gov (United States)

    Unruh, Tobias; Neuhaus, Jürgen; Petry, Winfried

    2007-10-01

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of ˜1010n/cm2/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  10. A Bonner Sphere Spectrometer with extended response matrix

    International Nuclear Information System (INIS)

    Birattari, C.; Dimovasili, E.; Mitaroff, A.; Silari, M.

    2010-01-01

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators.

  11. A Bonner Sphere Spectrometer with extended response matrix

    Science.gov (United States)

    Birattari, C.; Dimovasili, E.; Mitaroff, A.; Silari, M.

    2010-08-01

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators.

  12. A Bonner Sphere Spectrometer with extended response matrix

    Energy Technology Data Exchange (ETDEWEB)

    Birattari, C. [University of Milan, Department of Physics, Via Celoria 16, 20133 Milan (Italy); Dimovasili, E.; Mitaroff, A. [CERN, 1211 Geneva 23 (Switzerland); Silari, M., E-mail: marco.silari@cern.c [CERN, 1211 Geneva 23 (Switzerland)

    2010-08-21

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators.

  13. A Bonner Sphere Spectrometer with extended response matrix

    CERN Document Server

    Silari, M; Dimovasili, E; Birattari, C

    2010-01-01

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators. (C) 2010 Elsevier B.V. All rights reserved.

  14. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Kondo, Y.

    2016-06-01

    Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also investigate the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.

  15. Further development of a track detector as the spectrometer of linear energy transfer

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Botollier-Depois, J.F.

    1998-01-01

    Track revealing in a track etch detector is a phenomenon related to the linear energy transfer (LET) of the particle registered. The measurements of track parameters permit to determine the LET corresponding to each revealed track, i.e. LET spectrum. We have recently developed a spectrometer of LET based on the chemically etched polyallyldiglycolcarbonate (PADC). In this contribution the results obtained with such spectrometer in some neutron fields are presented, analyzed and discussed. Several radionuclide neutron sources have been used, LET spectrometer has been also exposed in high energy neutron reference fields at CERN and JINR Dubna, and on board aircraft. (author)

  16. A large neutron missing mass spectrometer using long plastic scintillators with electronical determination of the neutron interaction point

    International Nuclear Information System (INIS)

    Apel, W.D.; Mueller, H.; Schinzel, D.; Sigurdsson, G.; Staudenmaier, H.M.; Stier, U.

    1975-11-01

    A large acceptance and high efficiency neutron detector is described. The sensitive area and volume of the detector is 3.07 m 2 and 1.03 m 3 respectively. The detector consists of sixteen elements of plastic scintillator, each having the dimensions (16 x 16 x 240) cm 3 . The mean detection efficiency is about 33% for neutrons of 100-500 MeV/c momentum. An interesting feature of this instrument is the accuracy achieved in locating incident particles, which is +-3 cm for charged particles and +-4 cm for neutrons. The accuracy achieved for the time-of-flight measurement is +-1 nsec for fast neutrons. (orig.) [de

  17. The thermal triple-axis-spectrometer EIGER at the continuous spallation source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U., E-mail: uwe.stuhr@psi.ch [Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Roessli, B.; Gvasaliya, S. [Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Rønnow, H.M. [Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Féderale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Filges, U.; Graf, D.; Bollhalder, A.; Hohl, D.; Bürge, R.; Schild, M.; Holitzner, L.; Kaegi, C.; Keller, P.; Mühlebach, T. [Laboratory for Scientific Development and Novel Materials, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2017-05-01

    EIGER is the new thermal triple-axis-spectrometer at the continuous spallation SINQ at PSI. The shielding of the monochromator consists only of non- or low magnetizable materials, which allows the use of strong magnetic fields with the instrument. This shielding reduces the high energy neutron contamination to a comparable level of thermal spectrometers at reactor sources. The instrument design, the performance and first results of the spectrometer are presented.

  18. Simulation and optimization of a new focusing polarizing bender for the diffuse neutrons scattering spectrometer DNS at MLZ

    International Nuclear Information System (INIS)

    Nemkovski, K; Ioffe, A; Su, Y; Babcock, E; Schweika, W; Brückel, Th

    2017-01-01

    We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed. (paper)

  19. Simulation and optimization of a new focusing polarizing bender for the diffuse neutrons scattering spectrometer DNS at MLZ

    Science.gov (United States)

    Nemkovski, K.; Ioffe, A.; Su, Y.; Babcock, E.; Schweika, W.; Brückel, Th

    2017-06-01

    We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed.

  20. Testing a newly developed single-sphere neutron spectrometer in reference monochromatic fields from 147 keV to 14.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN—LNF Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Gómez-Ros, J.M. [INFN—LNF Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Pola, A.; Introini, M.V. [Politecnico di Milano - Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); Bortot, D. [INFN—LNF Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy); Politecnico di Milano - Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); Gentile, A.; Esposito, A.; Mazzitelli, G.; Buonomo, B.; Quintieri, L.; Foggetta, L. [INFN—LNF Laboratori Nazionali di Frascati, Via E. Fermi n. 40, 00044 Frascati (Italy)

    2013-06-21

    A new neutron spectrometer, designed to simultaneously respond from the thermal domain up to hundreds of MeV neutrons, was designed and built in the framework of the INFN project NESCOFI@BTF. It has been called SP{sup 2} (SPherical SPectrometer) and it consists of 31 thermal neutron detectors embedded in a 25 cm diameter polyethylene sphere with an internal 1 cm thick lead shell. The new spectrometer shows similar performance as the Bonner sphere spectrometer, but has the notable advantage of requiring only one exposure to determine the whole spectrum. The SP{sup 2} response matrix, previously calculated with MCNP, has been experimentally evaluated with monochromatic reference neutron fields from 147 keV to 14.8 MeV at PTB Braunschweig. As suitable thermal neutron detectors, Dysprosium activation foils were adopted at this stage. The results of the experiment confirmed the correctness of the response matrix within an overall uncertainty of ±3%. The next phase of the NESCOFI@BTF project will be the replacement of passive detectors with active counters, thus leading to a real-time spectrometric monitor that is expected to significantly innovate the neutron control task in neutron-producing facilities, such as the beam-lines for industrial irradiation or condensed matter studies.

  1. Determination of phosphorous in cannabis by neutron activation analysis - measurement of 32P Cerenkov radiation by liquid scintillaton spectrometer

    International Nuclear Information System (INIS)

    Shinogi, M.; Mori, I.

    1977-05-01

    Thermal neutron activaton analysis with measurement of 32 P Cerenkov radiation by liquid scintillation spectrometer was used to determine phosphorus in cannabis. After irradiation of the sample, wet ashing was carried out with conc. nitric acid and 70% perchloric acid. The solution in l M perchloric acid transferred to an inorganic ion-exchange column containing acid aluminium oxide and phosphorus was quantitatively eluted with 1M hydrofluoric acid. The 32 P radioactivity of each fraction of the eluate was counted with Cerenkov radiation by a liquid scintillation spectrometer from 2 to 7 weeks after the irradiation. The activity curve decayed with 32 P half-life. The isotope channel ratio technique was applied for the quench correction. The optimal experimental conditions for chemical separation of phosphorus and for measuring the 32 P Cerenkov radiation were also examined. (Author)

  2. High energy

    International Nuclear Information System (INIS)

    Bonner, B.E.; Roberts, J.B. Jr.

    1990-01-01

    We report here on the considerable progress that we made for the year beginning November 1, 1989, for DOE Contract No. AS05-76ERO5096. One of our Fermilab experiments, E704 -- polarization studies with 200 GeV protons, was run from February through August of this year. This experiment has been in the planning, construction, and commissioning stages for over ten years. In this report we detail just what measurements we managed to complete during the run. Our other Fermilab experiment, E683 -- photoproduction of jets, has had parasitic test beam during most of the same period. There was also a one week engineering test run in June. The schedule calls for a three month data run beginning in January, 1991. We also had three test runs for our CERN experiment, NA47 (SMC) -- spin dependent structure functions for the proton and neutron. We are in the midst of major apparatus construction for this experiment. More of our plans for the future are included in the accompanying Renewal Proposal. As in recent years, the format we follow in both the Progress Report and the Renewal Proposal is to have a brief writeup on each individual experiment and to include in the appendices copies of published papers which provide much greater detail. For manuscripts that have been submitted for publication and experimental proposals, we provide only the cover and abstract page. The aim is to concentrate on the physics goals, results and their significance in the main body of the report. For our two Fermilab experiments and the SMC experiment, exhaustive reports of the physics goals have been provided in previous years and are not repeated here

  3. Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, D. B., E-mail: sayre4@llnl.gov; Barbosa, F.; Caggiano, J. A.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); DiPuccio, V. N.; Weber, F. A. [National Security Technologies, Livermore, California 94551 (United States)

    2016-11-15

    Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures’ image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures’ edges. The fitted image intensities determine the relative attenuation value of each filter. Absolute attenuation values of several imaged filters, measured in situ during calibration experiments, normalize the relative quantities which are now used in analyses of neutron spectrometer data at the National Ignition Facility.

  4. Neutron-activation determination of phosphorus and sulfur in molybdenum and tungsten with the help of a beta-spectrometer

    International Nuclear Information System (INIS)

    Usmanova, M.M.; Mukhamedshina, N.M.; Kim, R.D.; Kaganov, L.K.

    1987-01-01

    An instrumental variant of the neutron-activation determination of phosphorus and sulfur in molybdenum and tungsten was developed with the help of a β-spectrometer that makes it possible to discriminate the participation of the 99 Mo and 187 W radioisotopes in the overall activity of the sample. It was shown that simultaneous determination of P and S on the basis of the 32 P radioisotope is feasible if their contents are comparable or are not different by more than 1-1.5 orders of magnitude, and then the maximum relative standard deviation is 0.15

  5. Novel type of neutron polarization analysis using the multianalyzer-equipment of the three-axes spectrometer PUMA

    Science.gov (United States)

    Schwesig, Steffen; Maity, Avishek; Sobolev, Oleg; Ziegler, Fabian; Eckold, Götz

    2018-01-01

    The combination of polarization analysis and multianalyzer system available at the three axes spectrometer PUMA@FRM II allows the simultaneous determination of both spin states of the scattered neutrons and the absolute value of the polarization. The present paper describes the technical details along with the basic formalism used for the precise calibration. Moreover, the performance of this method is illustrated by several test experiments including first polarized inelastic studies of the magnetic excitations of CuO in the multiferroic and the uniaxial antiferromagnetic phases.

  6. Measurement of the electron antineutrino angular correlation coefficient a with the neutron decay spectrometer aSPECT

    International Nuclear Information System (INIS)

    Simson, Martin

    2010-01-01

    This thesis describes measurements with the retardation spectrometer aSPECT at the Institut Laue-Langevin in Grenoble. The goal of the measurement is to determine the angular correlation coefficient a from the form of the proton recoil spectrum in the decay of the free neutron in order to determine a precise value for the ratio of the weak axial vector and vector coupling constants of the nucleon. A big improvement was achieved with the use of a silicon drift detector which was used here for the first time to detect low energetic protons. A saturation effect of the electronics that was only discovered during the analysis of the data from neutron decay proved to be not correctable. The findings from analysis, simulations and test experiments gained in this work should allow a measurement of a with high precision in a future beamtime. (orig.)

  7. Measurement of the electron antineutrino angular correlation coefficient a with the neutron decay spectrometer aSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Simson, Martin

    2010-09-21

    This thesis describes measurements with the retardation spectrometer aSPECT at the Institut Laue-Langevin in Grenoble. The goal of the measurement is to determine the angular correlation coefficient a from the form of the proton recoil spectrum in the decay of the free neutron in order to determine a precise value for the ratio of the weak axial vector and vector coupling constants of the nucleon. A big improvement was achieved with the use of a silicon drift detector which was used here for the first time to detect low energetic protons. A saturation effect of the electronics that was only discovered during the analysis of the data from neutron decay proved to be not correctable. The findings from analysis, simulations and test experiments gained in this work should allow a measurement of a with high precision in a future beamtime. (orig.)

  8. VESUVIO--the double difference inverse geometry spectrometer at ISIS

    International Nuclear Information System (INIS)

    Mayers, J.; Tomkinson, J.; Abdul-Redah, T.; Stirling, W.G.; Andreani, C.; Senesi, R.; Nardone, M.; Colognesi, D.; Degiorgi, E.

    2004-01-01

    The VESUVIO spectrometer at the ISIS pulsed neutron source performs inelastic neutron scattering at high-energy and wave vector transfers, employing gold and uranium resonant foils. A factor of two improvement in the instrumental resolution has been achieved by making use of the double filter difference method. Experimental results are presented for measurements on polycrystalline Pb, which indicate that accurate measurements of single-particle momentum distribution n(p) in quantum fluids are now possible at eV energy transfers

  9. VESUVIO--the double difference inverse geometry spectrometer at ISIS

    Energy Technology Data Exchange (ETDEWEB)

    Mayers, J.; Tomkinson, J.; Abdul-Redah, T.; Stirling, W.G.; Andreani, C.; Senesi, R.; Nardone, M.; Colognesi, D.; Degiorgi, E

    2004-07-15

    The VESUVIO spectrometer at the ISIS pulsed neutron source performs inelastic neutron scattering at high-energy and wave vector transfers, employing gold and uranium resonant foils. A factor of two improvement in the instrumental resolution has been achieved by making use of the double filter difference method. Experimental results are presented for measurements on polycrystalline Pb, which indicate that accurate measurements of single-particle momentum distribution n(p) in quantum fluids are now possible at eV energy transfers.

  10. VESUVIO-the double difference inverse geometry spectrometer at ISIS

    Science.gov (United States)

    Mayers, J.; Tomkinson, J.; Abdul-Redah, T.; Stirling, W. G.; Andreani, C.; Senesi, R.; Nardone, M.; Colognesi, D.; Degiorgi, E.

    2004-07-01

    The VESUVIO spectrometer at the ISIS pulsed neutron source performs inelastic neutron scattering at high-energy and wave vector transfers, employing gold and uranium resonant foils. A factor of two improvement in the instrumental resolution has been achieved by making use of the double filter difference method. Experimental results are presented for measurements on polycrystalline Pb, which indicate that accurate measurements of single-particle momentum distribution n(p) in quantum fluids are now possible at eV energy transfers.

  11. Measurement of the electron-antineutrino angular correlation coefficient a in neutron beta decay with the spectrometer aSPECT

    International Nuclear Information System (INIS)

    Petzoldt, G.

    2007-01-01

    In the four beam times we performed at the FRM-II, we were able to show that the spectrometer works in principle and that a determination of a with it is possible. A set of routines has been written for decoding and analyzing the raw data. The routines are written in C using the ROOT libraries and can be easily adapted or expanded. We have found a reliable way to extract the proton count rates from the data by building pulseheight spectra for each measurement, subtracting background measurements from those and fitting the resulting peak with a Gaussian. The background of the measurements was studied in detail. The background caused by electrons from neutron decay is very well understood and conforms quantitatively to our expectation. Due to the spatial resolution of our detector and the time resolution provided by our DAQ electronics, we were able to study correlated electron-proton pairs from one neutron decay event. They form a clearly visible peak in a time- and channel-distance spectrum, which can be shifted in the channel-dimension by varying the voltages applied to the lower and upper E x B electrodes. Performing a pulseheight analysis for both involved particles allowed us to obtain a fairly clean energy spectrum of the background caused by electrons from neutron decay in our detector. Using these correlations for data analysis may be of interest for future neutron decay experiments which use segmented detectors. (orig.)

  12. Measurement of the electron-antineutrino angular correlation coefficient a in neutron beta decay with the spectrometer aSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, G.

    2007-08-29

    In the four beam times we performed at the FRM-II, we were able to show that the spectrometer works in principle and that a determination of a with it is possible. A set of routines has been written for decoding and analyzing the raw data. The routines are written in C using the ROOT libraries and can be easily adapted or expanded. We have found a reliable way to extract the proton count rates from the data by building pulseheight spectra for each measurement, subtracting background measurements from those and fitting the resulting peak with a Gaussian. The background of the measurements was studied in detail. The background caused by electrons from neutron decay is very well understood and conforms quantitatively to our expectation. Due to the spatial resolution of our detector and the time resolution provided by our DAQ electronics, we were able to study correlated electron-proton pairs from one neutron decay event. They form a clearly visible peak in a time- and channel-distance spectrum, which can be shifted in the channel-dimension by varying the voltages applied to the lower and upper E x B electrodes. Performing a pulseheight analysis for both involved particles allowed us to obtain a fairly clean energy spectrum of the background caused by electrons from neutron decay in our detector. Using these correlations for data analysis may be of interest for future neutron decay experiments which use segmented detectors. (orig.)

  13. HYSPEC: A crystal time-of-flight hybrid spectrometer for the spallation neutron source with polarization capabilities

    International Nuclear Information System (INIS)

    Shapiro, S.M.; Zaliznyak, I.A.; Passell, L.; Ghosh, V.J.; Leonhardt, W.J.; Hagen, M.E.

    2006-01-01

    The hybrid spectrometer (HYSPEC) is a unique direct geometry inelastic scattering instrument under construction at the spallation neutron source (SNS). It combines the intensity enhancement features of focusing Bragg crystals with time-of-flight energy analysis. It will be located at beam-line 14B, which views a coupled liquid hydrogen moderator. A neutron beam from the moderator will travel along a curved guide, through a Fermi chopper and will then be focused onto a sample in an external building, 39 m from the source. In this configuration the intensity at the sample position is more than an order of magnitude larger than for other planned inelastic instrument. A movable detector bank 4.5 m from the sample will cover an angular range of 60 deg. in the horizontal plane and 15 deg. in the vertical direction. An important feature of HYSPEC is the ability to do neutron polarization analysis experiments. A Heusler crystal, which polarizes the neutron beam, can be used as the focusing crystal and a series of bender analyzers will analyze the polarization of the scattered beam

  14. Design and development of wide energy neutron REM equivalent spectrometer-dosimeters based on polycarbonates and Cr-39

    International Nuclear Information System (INIS)

    Faermann, S.

    1985-03-01

    This work describes a system composed of a Rem response personnel neutron dosemeter, based on boron radiators and a polycarbonate track detector, for monitoring dose equivalents in the energy range 1 eV to 14 MeV, an electrochemical etching system for revealing damage sites in solid state track etch detectors, a reader for magnifying the etched pits and a microprocessor for evaluating the dose equivalents and their uncertainties. The performance and directional dependence of the dosemeter when exposed to monoenergetic and polyenergetic neutron fields in the epithermal and fast energy regions are discussed. Saturation effects in polycarbonate foils are presented and a comparison is made between the response of polycarbonate and CR-39 foils, used as passive detectors in the dosemeter. A new passive miniature fast neutron spectrometer-dosimeter is also described. The device is based on the detection of proton tracks by electrochemical etching of CR-39 foils covered with thin polyethylene layers of different thicknesses. By means of this device it is possible to assess the fast neutron energy spectrum in 10 energy intervals in the energy range 0.5-15 MeV. Dose equivalents can be determined in the dose equivalent range 20 mRem to 8 Rem, approximately (author)

  15. Neutron reference spectra measurements with the Bonner multi-spheres spectrometer; Medidas de espectros de referencia de neutrons com o espectrometro de multiesferas de Bonner

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Junior, Roberto Mendonca de

    2004-07-01

    This paper aims to define a procedure to use the Bonner Multisphere Spectrometer with a {sup 6}LiI(Eu) detector in order to determine of neutron spectra. It was measured {sup 238}PuBe spectra and same of reference ({sup 241}AmBe, {sup 252}Cf e {sup 252}Cf+D{sub 2}O) published in ISO 8529-1 (2001) Norm. The data were processed by a computer program (BUNKI), which presents the results in neutrons energy fluency. Each input parameter of the program was studied in order to establish their influence in the adjustment result. The environment dose equivalent rate obtained placing the detector 1 m from the {sup 241}AmBe source was 122 {+-} 4 {mu}Sv/h with 7% of uncertainty and 95% of confidence level. The procedure established in this work was tested with the {sup 238}PuBe spectrum, obtaining an environment dose equivalent rate of 286 {+-} 9 {mu}Sv/h, 8% lower than the value measured experimentally used as reference. Through this procedure will be possible to measure neutron spectra in different work places where neutrons sources are used. Knowing these spectra, it will be possible to evaluate which area monitors, are more suitable, as well as, to study better the response of individual neutron monitors, as for instance, to obtain a conversion coefficient more appropriate to the albedo dosimeter used in different work places. As the measurements need a long time to be accomplished, the work optimization is fundamental to reduce the exposing time of the Bonner spectrometer operator. For this reason, an important parameter examined in this paper was the possibility of reducing the number of spheres used during the measurement without changing the final result. Considering the radiation protection standards, this parameter has a huge importance when the measurements are performed in work places where the neutron fluency and gamma rate offer risks to the operator's health, as for instance, in nuclear centrals. Studying this parameter, it was possible to conclude that

  16. A method for the determination of detector channel dead time for a neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Adib, M.; Salama, M.; Abd-Kawi, A.; Sadek, S.; Hamouda, I.

    1975-01-01

    A new method is developed to measure the dead time of a detector channel for a neutron time-of-flight spectrometer. The method is based on the simultaneous use of two identical BF 3 detectors but with two different efficiencies, due to their different enrichment in B 10 . The measurements were performed using the T.O.F. spectrometer installed at channel No. 6 of the ET-RR-1 reactor. The main contribution to the dead time was found to be due to the time analyser and the neutron detector used. The analyser dead time has been determined using a square wave pulse generator with frequency of 1 MC/S. For channel widths of 24.4 us, 48.8 ud and 97.6 us, the weighted dead times for statistical pulse distribution were found to be 3.25 us, 1.87 us respectively. The dead time of the detector contributes mostly to the counting losses and its value was found to be (33+-3) us

  17. First test of SP{sup 2}: A novel active neutron spectrometer condensing the functionality of Bonner spheres in a single moderator

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Bortot, D. [Politecnico di Milano—Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); INFN—sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Buonomo, B.; Esposito, A. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Gómez-Ros, J.M. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Introini, M.V.; Lorenzoli, M.; Pola, A. [Politecnico di Milano—Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); INFN—sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Sacco, D. [INFN-LNF Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); INAIL—DPIA Via di Fontana Candida n.1, 00040 Monteporzio C. (Italy)

    2014-12-11

    The NESCOFI@BTF (2011–2013) international collaboration was established to develop realtime neutron spectrometers to simultaneously cover all energy components of neutron fields, from thermal up to hundreds MeV. This communication concerns a new spherical spectrometer, called SP^2, which condenses the functionality of an Extended Range Bonner Sphere Spectrometer (ERBSS) into a single moderator embedding multiple active thermal neutron detectors. The possibility of achieving the complete spectrometric information in a single exposure constitutes a great advantage compared to the ERBSS. The first experimental test of the instrument, performed with a reference 241Am–Be source in different irradiation geometries, is described. The agreement between observed and simulated response is satisfactory for all tested geometries.

  18. The upgraded cold neutron three-axis spectrometer FLEXX at BER II at HZB

    DEFF Research Database (Denmark)

    Duc Le, Manh; Skoulatos, Markos; Quintero-Castro, Diana Lucía

    2014-01-01

    Larmor labeling is seen as one of the key ingredients in the development of novel neutron instrumentation. FLEXX puts special emphasis on exploiting the neutron resonance spin echo (NRSE) technique for high-resolution spectroscopy on dispersive quasi-particle excitations. This enables unique...

  19. FOCUS: time-of-flight spectrometer for cold neutrons at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S; Mesot, J [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland); Hempelmann, R [Saarbruecken Univ., Physical Chemistry, Saarbruecken (Germany)

    1996-11-01

    The physical layout of the Time-Of-Flight spectrometer at the new spallation source SINQ is presented. The concept shows up a hybrid-TOF combining a Fermi-chopper with a crystal monochromator. The demand of a versatile and flexible instrument for several applications is taken into account by the option of switching from time-focusing to monochromatic focusing mode such that the spectrometer can be optimised for both quasielastic and inelastic scattering applications. (author) 5 figs., 2 tabs., 16 refs.

  20. Application of a Bonner sphere spectrometer for determination of the energy spectra of neutrons generated by ≈1 MJ plasma focus

    Czech Academy of Sciences Publication Activity Database

    Králík, M.; Krása, Josef; Velyhan, Andriy; Scholz, M.; Ivanova-Stanik, I.M.; Bienkowska, B.; Miklaszewski, R.; Schmidt, H.; Řezáč, K.; Klír, D.; Kravárik, J.; Kubeš, P.

    2010-01-01

    Roč. 81, č. 11 (2010), 113503/1-113503/5 ISSN 0034-6748 R&D Projects: GA MŠk LA08024 Grant - others:FP-6 EU(XE) RITA-CT2006-26095 Institutional research plan: CEZ:AV0Z10100523 Keywords : plasma focus * fusion DD neutrons * Bonner sphere spectrometer * energy spectra of scattered neutrons * unfolded and calculated spectra Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.598, year: 2010

  1. The vTAS suite: A simulator for classical and multiplexed three-axis neutron spectrometers

    International Nuclear Information System (INIS)

    Boehm, M.; Filhol, A.; Raoul, Y.; Kulda, J.; Schmidt, W.; Schmalzl, K.; Farhi, E.

    2013-01-01

    The vTAS suite provides graphical assistance to prepare and perform inelastic neutron scattering experiments on a TAS instrument, including latest multiplexed instrumental configurations, such as FlatCone, IMPS and UFO. The interactive display allows for flexible translation between instrument positions in real space and neutron scattering conditions represented in reciprocal space. It is a platform independent public domain software tool, available for download from the website of the Institut Laue Langevin (ILL).

  2. Direct mass measurements of neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer

    International Nuclear Information System (INIS)

    Dilling, J.; Audi, G.; Beck, D.; Bollen, G.; Henry, S.; Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Lunney, D.; Moore, R.B.; Scheidenberger, C.; Schwarz, S.; Sikler, G.; Szerypo, J.

    2002-01-01

    The masses of Xe isotopes with 124≥A≥114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500 000 was chosen resulting in an accuracy of δm∼12 keV for all isotopes investigated. Conflicts with existing mass data of several standard deviations were found

  3. Development of Data Acquisition and Measurement Software for Neutron Triple Axis Spectrometer at BATAN-Serpong, Indonesia

    Directory of Open Access Journals (Sweden)

    B Bharoto

    2017-06-01

    Full Text Available The Neutron Scattering Laboratory at the National Nuclear Energy Agency of Indonesia (BATAN possesses several neutron beam instruments for materials science research. One of the instruments is a neutron triple-axis spectrometer (TAS. Due to the malfunction of the main computer, the original main control system had to be replaced with a new one. For this reason, a new data acquisition and measurement software program based on GNU C++ programming language was developed for restoring the spectrometer's functionality. However, using the resulting control system, triple-axis mode experiments were very difficult to perform and their types that can be performed were limited. In order to conduct the experiments more effectively and efficiently, several improvements in both hardware and software have been developed. The Visual Basic programming language was used in developing the data acquisition and measurement software that makes it possible for all motors to move simultaneously, so that the time spent for the experiments is reduced significantly. Also, programmable motor controller cards were used for driving all the 23 motors of the instrument. All the 23 axes can be controlled by clicking the appropriate buttons or inputting text command in the main window of the software's user interface. The software has also been used to perform an elastic experiment, as well as an inelastic experiment for investigating the phenomenon of phonon. The software developed is more user friendly than the older ones, since the spectrometer status and the experiment results can be displayed in real time at the windows, and it also makes experiments more effective and efficient since the experiments can be automated and run without any user intervention until the experiments finish. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso

  4. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  5. High energy (42-66 MeV reactions) fast neutron dose optimization studies in the head and neck, thorax, upper abdomen, pelvis and extremities

    International Nuclear Information System (INIS)

    Griffin, T.W.; Laramore, G.E.; Maor, M.H.; Hendrickson, F.R.; Parker, R.G.; Davis, L.W.

    1990-01-01

    550 Patients were entered into a set of dose-searching studies designed to determine normal tissue tolerances to high energy (42-66 MeV reactions) fast neutrons delivered in 12 equal fractions over 4 weeks. Patients were stratified by treatment facility and then randomized to receive 16, 18 or 20 Gy for tumors located in the upper abdomen or pelvis, and 18, 20 or 22 Gy for tumors located in the head and neck, thorax or extremities. Following completion of the randomized protocols, additional patients were studied at the 20.4 Gy level in the head and neck, thorax and pelvis. Normal tissue effect scoring was accomplished using the RTOG-EORTC acute and late normal tissue effect scales. Acute Grade 3+ toxicity rates in the head and neck were 19 per cent for 20/20.4 Gy and 20 per cent for 22 Gy. Time adjusted late toxicity rates in the head and neck at 12 months were 15 per cent for 20/20.4 Gy and 0 per cent for 22 Gy. The 18 Gy treatment arm of the head and neck protocol was dropped early in the study after only two patients were accrued. For cases treated in the thorax, acute Grade 3+ toxicity rates were 6 per cent for 18 Gy, 15 per cent for 20/20.4 Gy and 7 per cent for 22 Gy. Late toxicity rates at 12 months were 0 per cent for 18 Gy, 11 per cent for 20/20.4 Gy and 18 per cent for 22 Gy. Acute Grade 3+ toxicity rates in the upper abdomen were 0 per cent for 16 Gy, 18 per cent for 18 Gy and 12 per cent for 20 Gy. There were no Grade 3+ late toxicities in the upper abdomen. In the pelvis acute Grade 3+ toxicity rates were 0 per cent for 16 Gy, 3 per cent for 18 Gy and 3 per cent for 20/20.4 Gy. Late Grade 3+ toxicities at 24 months were 20 per cent for 16 Gy, 5 per cent for 18 Gy and 24 per cent for 20/20.4 Gy. In the extremities, acute Grade 3+ toxicity rates were 7 per cent for 20 Gy and 21 per cent for 22 Gy, while at 12 months, late Grade 3+ toxicity rates were 14 and 35 per cent respectively. The 18 Gy treatment arm of the extremities protocol was dropped early

  6. Bayesian and maximum entropy methods for fusion diagnostic measurements with compact neutron spectrometers

    International Nuclear Information System (INIS)

    Reginatto, Marcel; Zimbal, Andreas

    2008-01-01

    In applications of neutron spectrometry to fusion diagnostics, it is advantageous to use methods of data analysis which can extract information from the spectrum that is directly related to the parameters of interest that describe the plasma. We present here methods of data analysis which were developed with this goal in mind, and which were applied to spectrometric measurements made with an organic liquid scintillation detector (type NE213). In our approach, we combine Bayesian parameter estimation methods and unfolding methods based on the maximum entropy principle. This two-step method allows us to optimize the analysis of the data depending on the type of information that we want to extract from the measurements. To illustrate these methods, we analyze neutron measurements made at the PTB accelerator under controlled conditions, using accelerator-produced neutron beams. Although the methods have been chosen with a specific application in mind, they are general enough to be useful for many other types of measurements

  7. Direct mass measurements of neutron-deficient xenon isotopes using the ISOLTRAP mass spectrometer

    CERN Document Server

    Dilling, J; Beck, D; Bollen, G; Herfurth, F; Kellerbauer, A G; Kluge, H J; Moore, R B; Scheidenberger, C; Schwarz, S; Sikler, G

    2004-01-01

    The masses of the noble-gas Xe isotopes with 114 $\\leq$ A $\\leq$ 123 have been directly measured for the first time. The experiments were carried out with the ISOLTRAP triple trap spectrometer at the online mass separator ISOLDE/CERN. A mass resolving power of the Penning trap spectrometer of $m/\\Delta m$ of close to a million was chosen resulting in an accuracy of $\\delta m \\leq 13$ keV for all investigated isotopes. Conflicts with existing, indirectly obtained, mass data by several standard deviations were found and are discussed. An atomic mass evaluation has been performed and the results are compared to information from laser spectroscopy experiments and to recent calculations employing an interacting boson model.

  8. Mass spectrometer provided with an optical system for separating neutron particles against charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Reeher, J R; Story, M S; Smith, R D

    1977-03-03

    This invention concerns a mass spectrometer with an ion focusing optical system that efficiently separates the charged and neutral particles. It concerns an apparatus that can be used in ionisation areas operating at relatively high pressure (> 10/sup -2/ Torr). The invention relates more particularly to a mass spectrometer with an inlet device for the samples to be identified, a sample ionisation system for forming charged and neutral particles, a mass analyser and an optical system for focusing the ions formed in the mass analyser. The optics include several conducting components of which at least one has sides formed of grids, in the direction of the axis, towards the analyser the optics forming a potential well along the axis. The selected charged particles are focused in the analyser and the remaining particles can escape by the openings in the conducting grids.

  9. Beta strength distributions in neutron-deficient Kr and Sr isotopes using a total absorption spectrometer

    CERN Document Server

    Maréchal, F

    2003-01-01

    Far from the line of stability, beta -decay studies are often a primary source of information on nuclear structure. The measured beta -strength distribution for a given decay can be used to verify the accuracy of our theoretical description of the parent nucleus ground state and the states populated in the daughter nucleus. Total absorption spectrometers based on large NaI crystals are well suited tools to determine the beta -strength distribution over the whole Q /sub EC/ decay window. The newly built spectrometer TAgS, dedicated to such studies, is presented and its performances and possibilities are discussed in the light of experiments performed at the ISOLDE /CERN mass separator. The resulting information on ground state deformations for the /sup 74/Kr and /sup 76/Sr isotopes are discussed. (22 refs).

  10. Measuring and acquisition unit of the polarized neutron spectrometer SPN-1; Izmeritel`no0nakopitel`nyj modul` spektrometra na polyarizovannykh nejtronakh SPI-1

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, V V; Korneev, D A; Litvinenko, E I; Lyapin, D I

    1996-12-31

    SPN-1 polarized neutron time-of-flight spectrometer operates on IBR-2 reactor in JINR LNF. It is used to investigate into micromagnetism in ferromagnetics and superconductors as well as to investigate into mono and multilayer magnetic and superconducting thin films. 14 refs.; 3 figs.

  11. Design and validation of a single sphere multi-detector neutron spectrometer based on LiF: Mg,Cu,P thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Gomez-Ros, Jose Maria; Bedogni, Roberto; Moraleda, Montserrat; Romero, Ana; Delgado, Antonio; Esposito, Adolfo

    2010-01-01

    This communication describes a new neutron spectrometer consisting of pairs of 7 Li and 6 Li based thermoluminescent dosemeters (MCP-6, MCP-7) located at selected positions within a single moderating polyethylene sphere. The spatial arrangement of the dosemeters has been designed using the MCNPX Monte Carlo code to calculate the response matrix in order to obtain a nearly isotropic response for neutrons in the energy range up to 20 MeV. A partial validation of the calculated response matrix has been performed with the calibrated 241 Am-Be neutron source at the INFN-LNF Laboratory, using the shadow cone technique.

  12. Deep inelastic neutron scattering on {sup 207}Pb and NaHF{sub 2} as a test of a detectors array on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pietropaolo, A. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica and Centro NAST - Nanoscienze and Nanotecnologie and Strumentazione, via della Ricerca Scientifica 1, 00133 Rome (Italy)], E-mail: antonino.pietropaolo@roma2.infn.it; Senesi, R. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica and Centro NAST - Nanoscienze and Nanotecnologie and Strumentazione, via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2008-01-11

    A prototype array of resonance detectors for deep inelastic neutron scattering experiments has been installed on the VESUVIO spectrometer, at the ISIS spallation neutron source. Deep inelastic neutron scattering measurements on a reference lead sample and on NaHF{sub 2} molecular system are presented. Despite on an explorative level, the results obtained for the values of mean kinetic energy are found in good agreement with the theoretical predictions, thus assessing the potential capability of the device for a routine use on the instrument.

  13. Deep inelastic neutron scattering on 207Pb and NaHF 2 as a test of a detectors array on the VESUVIO spectrometer

    Science.gov (United States)

    Pietropaolo, A.; Senesi, R.

    2008-01-01

    A prototype array of resonance detectors for deep inelastic neutron scattering experiments has been installed on the VESUVIO spectrometer, at the ISIS spallation neutron source. Deep inelastic neutron scattering measurements on a reference lead sample and on NaHF 2 molecular system are presented. Despite on an explorative level, the results obtained for the values of mean kinetic energy are found in good agreement with the theoretical predictions, thus assessing the potential capability of the device for a routine use on the instrument.

  14. Deep inelastic neutron scattering on 207Pb and NaHF2 as a test of a detectors array on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Senesi, R.

    2008-01-01

    A prototype array of resonance detectors for deep inelastic neutron scattering experiments has been installed on the VESUVIO spectrometer, at the ISIS spallation neutron source. Deep inelastic neutron scattering measurements on a reference lead sample and on NaHF 2 molecular system are presented. Despite on an explorative level, the results obtained for the values of mean kinetic energy k > are found in good agreement with the theoretical predictions, thus assessing the potential capability of the device for a routine use on the instrument

  15. Time lens for high-resolution neutron time-of-flight spectrometers

    International Nuclear Information System (INIS)

    Baumann, K.; Gaehler, R.; Grigoriev, P.; Kats, E.I.

    2005-01-01

    We examine in analytic and numeric ways the imaging effects of temporal neutron lenses created by traveling magnetic fields. For fields of parabolic shape we derive the imaging equations, investigate the time magnification, the evolution of the phase-space element, the gain factor, and the effect of finite beam size. The main aberration effects are calculated numerically. The system is technologically feasible and should convert neutron time-of-flight instruments from pinhole to imaging configuration in time, thus enhancing intensity and/or time resolution. Further fields of application for high-resolution spectrometry may be opened

  16. Neutron scattering studies of the dynamics of biopolymer-water systems using pulsed-source spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Middendorf, H.D. [Univ. of Oxford (United Kingdom); Miller, A. [Stirling Univ., Stirling (United Kingdom)

    1994-12-31

    Energy-resolving neutron scattering techniques provide spatiotemporal data suitable for testing and refining analytical models or computer simulations of a variety of dynamical processes in biomolecular systems. This paper reviews experimental work on hydrated biopolymers at ISIS, the UK Pulsed Neutron Facility. Following an outline of basic concepts and a summary of the new instrumental capabilities, the progress made is illustrated by results from recent experiments in two areas: quasi- elastic scattering from highly hydrated polysaccharide gels (agarose and hyaluronate), and inelastic scattering from vibrational modes of slightly hydrated collagen fibers.

  17. The performance of neutron spectrometers AR a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.; Daemen, L.L.

    1995-01-01

    At a recent workshop at Lawrence Berkeley National Laboratory members of the international neutron scattering community discussed the performance to be anticipated from neutron scattering instruments installed at a 1 MW long-pulse spallation source (LPSS). Although the report of this workshop is long, its principal conclusions can be easily summarised and almost as easily understood. This article presents such a synthesis for a 60 Hz LPSS with 1 msec proton pulses. We discuss some of the limitations of the workshop conclusions and suggest a simple analysis of the performance differences that might be expected between short- and long-pulse sources both of which exploit coupled moderators

  18. Neutron scattering studies of the dynamics of biopolymer-water systems using pulsed-source spectrometers

    International Nuclear Information System (INIS)

    Middendorf, H.D.; Miller, A.

    1994-01-01

    Energy-resolving neutron scattering techniques provide spatiotemporal data suitable for testing and refining analytical models or computer simulations of a variety of dynamical processes in biomolecular systems. This paper reviews experimental work on hydrated biopolymers at ISIS, the UK Pulsed Neutron Facility. Following an outline of basic concepts and a summary of the new instrumental capabilities, the progress made is illustrated by results from recent experiments in two areas: quasi- elastic scattering from highly hydrated polysaccharide gels (agarose and hyaluronate), and inelastic scattering from vibrational modes of slightly hydrated collagen fibers

  19. Sensitivity of peak positions to flight-path parameters in a deep-inelastic scattering neutron TOF spectrometer

    International Nuclear Information System (INIS)

    Gray, E.MacA.; Chatzidimitriou-Dreismann, C.A.; Blach, T.P.

    2012-01-01

    The effects of small changes in flight-path parameters (primary and secondary flight paths, detector angles), and of displacement of the sample along the beam axis away from its ideal position, are examined for an inelastic time-of-flight (TOF) neutron spectrometer, emphasising the deep-inelastic regime. The aim was to develop a rational basis for deciding what measured shifts in the positions of spectral peaks could be regarded as reliable in the light of the uncertainties in the calibrated flight-path parameters. Uncertainty in the length of the primary or secondary flight path has the least effect on the positions of the peaks of H, D and He, which are dominated by the accuracy of the calibration of the detector angles. This aspect of the calibration of a TOF spectrometer therefore demands close attention to achieve reliable outcomes where the position of the peaks is of significant scientific interest and is discussed in detail. The corresponding sensitivities of the position of peak of the Compton profile, J(y), to flight-path parameters and sample position are also examined, focusing on the comparability across experiments of results for H, D and He. We show that positioning the sample to within a few mm of the ideal position is required to ensure good comparability between experiments if data from detectors at high forward angles are to be reliably interpreted.

  20. Mechanical neutron spectrometer Chopper - Experimental study of the neutron beam topography in the channel C of the 'A' reactor; Neutronski mehanicki spektrometar (coper) - Eksperimentalno odredjivanje topografije neutronskog snopa na kanalu 'C', reaktora 'A'

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, V [Institute of Nuclear Sciences Boris Kidric, Laboratorija za reaktorsku i neutronsku fiziku, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The objective of the experiment was to measure the axis of the neutron beam from the reactor channel. The collimator, mechanical spectrometer and detectors are to be placed along this axis. Two points along the channel are determined to be defined as centres of the neutron beam. During this experiments the collimators were placed in the reactor at distance of 100 cm and cross section of 3.5 cm in diameter. BF{sub 3} detectors were used for the experiment.